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Co-Higgs bundles are Higgs bundles in the sense of Hitchin and Simpson, but with Higgs

fields taking values in the tangent bundle. They arise as generalised holomorphic bundles on or-

dinary complex manifolds. On curves of positive genus, co-Higgs bundles are generally unstable.

On the other hand there are plenty of stable ones on P1, and we show that the moduli space of

rank-2, odd-degree co-Higgs bundles on P1 is the variety of solutions of an algebraic equation,

providing a universal description for the fibres of the Hitchin map.

We initiate a detailed study of the topology of the co-Higgs moduli spaces on P1. We notice

striking differences between our case and the usual Higgs bundle case: namely, the global mini-

mum of the Morse functional for the circle action is nonzero. We characterise the minima by the

type of the bundle and the type of the Higgs field as a holomorphic chain. We opt to view more

general critical points as quivers, and define invariants and stability conditions for quivers that

are closely related to those for chains. Furthermore, we develop an algorithm for constructing

stable quivers of any rank and degree, which we use to determine the Betti numbers for rank

r ≤ 5. These calculations verify that the Chuang-Diaconescu-Pan ADHM recursion formulas, as

extended to the twisted case by Mozgovoy, give correct Betti numbers for the co-Higgs bundle

moduli spaces, in the range we have checked.

As co-Higgs bundles are unstable on general type surfaces, we look to the opposite end of the

Kodaira spectrum, namely P2, and construct stable co-Higgs bundles there via the Schwarzen-

berger construction of bundles. We show that these families are generically rigid under small

deformations. We also examine the so-called canonical co-Higgs bundle, which is not rigid, pro-

viding a source of new examples.
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Selected notation

A∗ group of units of ring or field A

hi(X;•) dimension of vector space H i(X;•)

P(V) projective space of lines in the vector space V

Pn projective space of lines in Cn+1

Gr(k,N) Grassmannian of k-planes in CN

ci i-th Chern class of coherent sheaf or bundle

C.D intersection number of divisors C and D

O trivial line bundle on variety X

O(d) line bundle of degree d on Pn, n≥ 1

O(a,b) line bundle of bi-degree (a,b) on P1×P1

K → X canonical line bundle on variety X

µ(E) slope of vector bundle E

Tot(E) total space of vector bundle E

Wi the bundle EndE⊗∧iT, where T is the tangent bundle

f∗S the 0-th direct image of a sheaf S
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Φ[k] +(k−1)-shift of holomorphic chain Φ

M(ν) set of vertices in a quiver that are heads of arrows from ν

R(ν) length of quiver subchain at vertex ν

Er r -th Schwarzenberger bundle

◊ end of example

� end of proof

Ch.N chapter N of a book

§m section m of a paper
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INTRODUCTION

What is a co-Higgs bundle?

If X is an algebraic variety with cotangent bundle T∗, then a Higgs bundle on X, in the

sense of Hitchin [33] and Simpson [53], is a vector bundle E → X together with a Higgs

field Φ ∈ H0(X; EndE⊗T∗) for which Φ∧Φ = 0∈ H0(X; EndE⊗∧2T∗). Higgs bundles

have been studied intensely, as they appear naturally in many areas of mathematics and

physics, as diverse as string theory and number theory. We point out a brief but broad

overview highlighting the emergence of these objects [11].

This dissertation is a response to the following question: when we replace T∗ by T in

the definition of the Higgs field, what can be said about the geometry of these co-Higgs

bundles and their moduli spaces, at least in low dimension?

The question has motivations beyond idle curiosity. While they are only beginning

to attract interest (see [35, 36]), co-Higgs bundles appear naturally in geometry, and there

is good reason to investigate them.
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Why study them?

Generalised geometry

Co-Higgs bundles feature prominently in generalised geometry, as developed by Hitchin

[34] and Gualtieri [26]. We follow the development in [36:§2] to demonstrate how co-

Higgs bundles arise in this context. Let X be a real, smooth manifold of dimension 2n.

A generalised complex structure on X, as defined by Hitchin [34:Defn.4.1], is a rank-2n

isotropic subbundle E1,0 ⊂ (T ⊕T∗)C such that

• E1,0⊕E1,0 = (T ⊕T∗)C;

• C∞(E1,0) is closed under the so-called Courant bracket,

[X+θ,X′+θ] := [X,X′]+LXθ′−LX′θ−
1
2

d
(
ιXθ′− ιX′θ

)
,

where X and X′ are vector fields and θ and θ′ are 1-forms.

The bundles E1,0 and E0,1 := E1,0 are the (+i)- and (−i)-eigenbundles, respectively, for

an integrable complex structure J on T ⊕T∗. We refer to a manifold with a generalised

complex structure as a generalised complex manifold.

For any function f , define ∂ f to be the (E0,1)-component of d f ∈ C∞(T∗). Gualtieri

defines a generalised holomorphic bundle [26:p.18] on a generalised complex manifold to be

a smooth vector bundle V together with a differential operator D : C∞(V)→ C∞(V⊗E0,1)

such that

• D( f s) = ∂ f s+ f Ds, for any smooth function f and smooth section s; and

• D
2
= 0∈ C∞(EndV ⊗∧2E0,1).
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Reclaiming the symbols T and T∗ for their holomorphic counterparts, we note as in

[36:§2] that in the case of an ordinary complex structure, E0,1 = T
∗
⊕T and

D = ∂A+Φ,

for a ∂-operator ∂A : C∞(V)→ C∞(V ⊗T
∗
) that we write out as

∂As =

(
∂s
∂zj

+A js

)
dzj

and a linear operator Φ : C∞(V)→ C∞(V ⊗T) that we can write as

Φ ·s = φks
∂

∂zk
,

where we sum over repeated indices in both using the summation convention. The van-

ishing of D
2 means that ∂

2
A = 0 in C∞(EndV ⊗∧2T

∗
), ∂AΦ = 0 in C∞(EndV ⊗T ⊗T

∗
),

and Φ∧Φ =
1
2
[φi ,φ j ]

∂
∂zi

∧
∂

∂zj
= 0 in C∞(EndV ⊗∧2T).

The first of the three consequences means that V is a holomorphic vector bundle,

by a classical result of Malgrange. The second says that Φ is a holomorphic section of

EndV ⊗T. The third, Φ∧Φ = 0, is an integrability condition on Φ that we have seen in

the definition of a Higgs bundle. As the Higgs field Φ is taking values in the holomorphic

tangent bundle, this is precisely our definition of a co-Higgs bundle. Therefore, gener-

alised holomorphic bundles on ordinary complex manifolds comprise not only holomor-

phic bundles (obtained when Φ = 0), but more generally they are co-Higgs bundles.

Poisson structures and modules

Co-Higgs bundles are connected intimately to Poisson geometry, too. This observation

was sparked by a comment of Polishchuk [48:p.1425,E.g.1] connecting co-Higgs struc-

tures on rank-2 bundles to Poisson structures on their P1-bundles. We will come to this
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in a moment. First, let us say something obvious: if E is a vector bundle of any rank

equipped with a Higgs field Φ ∈ H0(EndE⊗T), then there is an associated action of the

holomorphic functions on local sections of E: if f and s are respectively a function and

a section of E over U ⊂ X, then

f ·s = Φ(d f)s.

The integrability condition Φ∧Φ = 0 is equivalent to f · g · s− g · f · s= 0, and so an

immediate link is that every co-Higgs bundle (E,Φ) is a Poisson module for the zero

Poisson structure.

Regarding Polishchuk’s observation, we take a rank-2 bundle E on any variety X and

let π denote the projection of P(E) onto X. The tangent bundle over P(E) fits into a

short exact sequence

0→ TF → TP(E) → π∗TX → 0

in which TF is the tangent bundle along the fibres. From this, we have

TF ⊗π∗TX ⊂ ∧2TP(E).

As well, π∗(TF ⊗π∗Tx) = π∗TF ⊗TX = End0E⊗TX, since TF = Aut(P(E)) = AutE/C×.

Therefore, bi-vectors on the projective bundle can be obtained from trace-zero TX-valued

Higgs fields for E on the base.

If we choose a Φ ∈ H0(End0⊗TX), then we can write it, at least locally, as a 2×2

matrix of vector fields:

Φ =




χ11 χ12

χ21 χ22


 .
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The corresponding section σ of TF ⊗π∗TX on P(E) is

σ = (χ21− (χ22−χ11)t −χ12t
2)∧

∂
∂t
,

where t is a vertical coordinate along the fibres of P(E). The polynomial for the section

of TF is of degree 2 in t because a vector field on a fibre P(E)x
∼= P1 is a section of O(2).

Now, σ is Poisson integrable if and only if [σ,σ]NS= 0, where [−,−]NS is the Nijenhuis-

Schouten bracket [49, 45], which is defined in terms of the usual Lie bracket on vector

fields by:
[

n∧
p=1

αp,
m∧

q=1

βq

]

NS

= ∑(−1)i+1[αi ,β j ]∧α1∧· · · α̂i · · ·∧αn∧β1∧· · · β̂ j · · ·∧βm,

where ̂ indicates omission. In the case of two vector fields, that is, σ = α1∧α2,

[σ,σ]NS = −2[α1,α2]∧α2∧α1.

The Lie bracket of α1 = ∂/∂t with α2 = χ21−(χ22−χ11)t−χ12t2 is simply differentiation

by t, and so

[σ,σ]NS = −(χ22−χ11+2χ12t)∧ (χ21− (χ22−χ11)t −χ12t
2)∧

∂
∂t
.

Therefore, the vanishing of [σ,σ]NS amounts to

(χ22−χ11)∧χ21 = 0

χ12∧χ21 = 0

(χ22−χ11)∧χ12 = 0.

These equations are precisely the ones that result when we go back to the matrix Φ and

ask for Φ∧Φ = 0. Therefore, a rank-2 co-Higgs bundle (E,Φ) gives rise to a Poisson

structure on P(E).



xviii INTRODUCTION

This connection is particularly important for us, because it justifies to some extent

our focus on rank-2 examples of co-Higgs bundles.

Parabolic Higgs bundles

Conventional Higgs bundles are unstable at genus 0. One way to extend the notion of

Higgs bundle to the projective line is to allow Higgs fields to take values in K(D), the

canonical line bundle twisted by a divisor D of points. A vector bundle together with

such a Higgs field is a principal ingredient in what is called a parabolic Higgs bundle. This

modification, along with the choice of some parabolic weights, allows for a broader no-

tion of stability. Parabolic Higgs bundles on curves have generated plenty of literature,

the origins of which can be traced to papers of Nasatyr and Steer [44] (the orbifold for-

mulation) and Boden and Yokogawa [7]. A detailed investigation of the geometry and

topology of their moduli spaces in low rank and positive genus can be found in [19].

The connection to our study is that a co-Higgs bundle can be used as an ingredient

for constructing parabolic Higgs bundles, by combining the data of a co-Higgs bundle

(E,Φ) on P1, whose Higgs field takes values in K−1 = O(2), with a section λ of O(4).

The Higgs field Φ̃ = Φ/λ is a section of H0(P1; EndE⊗K(D)) with D corresponding to

the zeroes of λ. A moduli space of parabolic Higgs bundles on P1 with 4 marked points

was considered in Hausel’s thesis [30:§4.2].

Generalised complex branes

There is a motivation in physics for studying co-Higgs bundles — one that brings us back

round to generalised geometry. An important feature of supersymmetric string theory
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is the way in which mirror symmetry exchanges complex branes for symplectic ones.

Gualtieri’s notion of generalised complex submanifold — which encompasses the usual

complex and symplectic notions — is a natural candidate for describing these branes. A

flurry of investigation by physicists, e.g. [28, 38, 60], reflects the growing interest in this

development. In Gualtieri’s framework, a generalised complex brane in an ordinary com-

plex manifold X is a subvariety S⊂ X, together with the data of a sheaf F supported on S

and an endomorphism of F taking values in the normal bundle [27:Rmk.1]. A co-Higgs

bundle (E,Φ) on a complex manifold X is a natural example, through its spectral variety.

Let π : T → X be the tangent bundle, and let M stand for the the total space of T. The

variety of eigenvalues of Φ is naturally a subvariety S⊂M. There is a rank-1 sheaf F on S

whose direct image is E, and with the property that Φ descends from the multiplication

of F by the tautological section η of π∗T → M. The triple
(

S,F ,F
η
→ F ⊗ (π∗T)|S

)
is

a generalised complex brane in M.

Results and overview

After dispensing with co-Higgs bundles on positive-genus curves, most of which are un-

stable, we study co-Higgs bundles on the complex projective line P1. Given a vector

bundle on P1, we find necessary and sufficient conditions on its Birkhoff-Grothendieck

splitting for it to admit a stable Higgs field. The main result here is a realisation of the

smooth moduli space of rank-2, odd-degree co-Higgs bundles on P1 as the variety of so-

lutions of an algebraic equation. This equation provides a universal description for the

fibres of the Hitchin map. One application of this model is a concrete description of the
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nilpotent cone. In the even case, we find a distinguished section of the Hitchin fibra-

tion, one that provides an analogy to Hitchin’s model of Teichmüller space in [33:§11].

We also make contact with gauge theory, by adapting the rank-2 existence theorem for

Hitchin’s equations [33:Thm.4.3] to arbitrary-rank co-Higgs bundles on P1.

In Chapter 4, we initiate a detailed study of the topology of the co-Higgs moduli

spaces on P1, using techniques developed by Hitchin [33:§7] and Gothen [21] in the usual

Higgs bundle context. As with usual Higgs bundles, pursuing the topology with Morse

theory requires us to consider moduli of holomorphic chains. Immediately, we notice

some striking differences between our case and the conventional Higgs case: namely, the

global minimum of the Morse functional for the circle action is nonzero. Using a defor-

mation theory for co-Higgs bundles that we develop in Chapter 2 of the thesis, we are

able to characterise the minima by their splitting type and chain type. For more general

fixed points, we significantly develop the quiver viewpoint of Gothen [22, 23] and King

[23]. For these quivers, we define invariants and stability conditions that are closely re-

lated to those for chains. The main idea is that a quiver of a particular form represents a

family of twisted holomorphic chains on P1, and if the quiver is unstable, then the entire

family is unstable as well. Using this relationship, we develop an algorithm for construct-

ing stable quivers of any rank and degree, which we use to determine the Betti numbers

of the moduli spaces of co-Higgs bundles for rank r ≤ 5. Indeed, while a calculation of

the Hodge polynomial for rank-4 Higgs bundles has emerged lately via motivic methods

[20], ranks higher than 3 proved intractable to traditional Morse theory because of the

chain types involved. For genus 0, the distinctly combinatorial flavour of the fixed points

allows us to successfully apply the Hitchin-Gothen technique beyond rank 3.
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Furthermore, our calculations verify that the Chuang-Diaconescu-Pan ADHM recur-

sion formulas of [12] coming from physics, as extended to genus 0 and the twisted case

by Mozgovoy [43], give correct Betti numbers for co-Higgs bundle moduli spaces, in the

range we have checked. This provides a significant corroboration of the conjecture that

the ADHM recursion formulas encode the cohomology of twisted Higgs bundle spaces.

For surfaces, we follow the suggestion from the curves case that stable co-Higgs

bundles exist mostly at the lower end of the Kodaira spectrum. We recall the classical

Schwarzenberger construction [50] of vector bundles: P1×P1 is a 2:1 cover of P2, and

pushing down line bundles from P1×P1 gives rank-2 vector bundles on P2. We show how

to attach Higgs fields to these bundles using the double cover and the Euler sequence. Be-

cause the direct image bundle is stable, the resulting co-Higgs bundle is stable, too. By

studying infinitesimal deformations of these pairs, we show that generic Schwarzenberger

co-Higgs bundles are rigid, in the sense that a deformation is again Schwarzenberger.

Additionally, every variety X comes equipped with a canonical nilpotent co-Higgs

bundle, whose rank is 1 plus the dimension of X. If T is the tangent bundle of X, then

this canonical co-Higgs bundle is (E,Φ) with E = O⊕T and Φ : O⊕T → (O⊕T)⊗T

given by (s,ξ) 7→ (ξ,0) for all s∈ O and ξ ∈ O(T). In Chapter 5, we derive conditions on

T → X so that (E,Φ) is stable, and then study its deformations when X is a surface. We

produce a deformation of (E,Φ) that offers another example of a co-Higgs bundle, one

that is clearly distinct in that it fails to be nilpotent.

The thesis concludes with a justification for our preference of low Kodaira dimension:

a non-existence theorem for stable co-Higgs bundles on K3 and general-type surfaces.
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Basic conventions

Throughout the dissertation we work over the complex numbers, in the holomorphic

category. Unless otherwise specified, by “curve” we mean smooth, compact, and con-

nected Riemann surface; by “variety”, smooth and connected complex projective variety;

by “vector bundle”, holomorphic vector bundle; by “section”, holomorphic section; and

so on. The symbol Pn always means the projective space of lines in Cn+1. The symbol

Gr(k,N) stands for the Grassmannian variety of k-planes in CN.

Assuming that varieties are projective ensures we have proper equipment to discuss

stability, namely the existence of a very ample divisor denoted by OX(1). Whenever there

is no confusion, we denote OX(1) by only O(1), and we understand this line bundle to be

the pullback of the dual of the tautological line bundle on a high-dimensional projective

space.

When there is no ambiguity, we use T to denote the tangent bundle TX of X; likewise,

T∗ for the cotangent bundle T∗
X . In many cases we only write H i(E) when we mean

the cohomology H i(X;E) of a sheaf E over X. We use the lower-case convention for

dimensions: hi(E) = dimH i(E), exti = dimExti(E ;F ), and so on. Suppose that X is

a projective variety with an embedding p : X → PN, and that E is a sheaf on X. If

L = p∗O(d) is a line bundle pulled back from PN, and if there is no ambiguity about the

map p, then we denote the tensor product E ⊗L by E(d).

Whether (E,Φ) is a Higgs bundle or a co-Higgs bundle, we refer to Φ as a Higgs field.

Unless we indicate specifically that we are considering Higgs bundles, a statement such as

“E admits a stable Higgs field Φ if and only if...” will always mean Φ ∈ H0(EndE⊗T).
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CHAPTER 1

Preliminaries

1.1 Basic facts about vector bundles and torsion-free sheaves

We assume the reader is familiar with the basic definitions surrounding vector bundles.

We remind ourselves that a torsion-free sheaf over X is a coherent sheaf E of OX-modules

such that the stalk Ex over any point x ∈ X is a torsion-free OX,x-module; that is, the

annihilator in the local ring OX,x of each ν ∈ Ex is zero. A locally-free sheaf is a torsion-

free sheaf in which every stalk is a free OX,x-module. For us, locally-free sheaf means the

same thing as “vector bundle”. By the “rank” of a torsion-free sheaf we mean the rank at

a general point of X. For a locally-free sheaf, the rank is constant.

The next few propositions and corollaries are very basic but useful facts about torsion-

free sheaves. We refrain from saying why they are true, other than to say that they fol-

low directly from properties of finite modules over local Noetherian rings, which can be

found throughout the standard reference [3]. As statements about sheaves, they can be

found in [16, 29, 40, 42], to name only a few places. We assume, as per the conventions
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of the Introduction, that X is a smooth variety. (Propositions (1.1) and (1.4) and their

corollaries require smoothness.)

Proposition 1.1. A torsion-free sheaf on a smooth variety X is locally free outside a closed

subset of codimension at least 2.

Corollary 1.1. If X is a smooth curve, then every torsion-free sheaf is a locally-free sheaf.

Proposition 1.2. A coherent sheaf on a variety X is torsion-free if and only if it is a subsheaf

of a locally-free sheaf.

Every torsion-free sheaf E is naturally a subsheaf of its double dual E∗∗ = (E∗)∗. A

reflexive sheaf is a torsion-free sheaf that is isomorphic to its double dual. (At the level

of modules, the torsion of a module M is the kernel of the natural map M → M∗∗, and

so M is torsion-free if and only if the map into its double-dual is injective, and reflexive if

the map is an isomorphism.)

Proposition 1.3. The dual sheaf of a coherent sheaf is coherent; furthermore, it is reflexive.

Proposition 1.4. A reflexive sheaf on a smooth variety X is locally-free outside a closed subset

of codimension at least 3.

Corollary 1.2. If X is a smooth curve or surface, then every reflexive sheaf is locally free.

Corollary 1.3. A rank-1 reflexive sheaf on a smooth variety is locally free.
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1.2 Chern classes

Now, we review the theory of Chern classes. For line bundles, these cohomological

invariants are assigned via the long exact sequence of the exponential exact sequence

0→ Z→ O
exp(2πi)
−→ O∗ → 1.

In the long cohomology sequence there is a coboundary map H1(X;O∗) → H2(X;Z).

The image of a class of line bundles [L] ∈ H1(X;O∗) in H2(X;Z) is the (first) Chern

class of [L]. We can compute Chern classes of a vector bundle via the so-called splitting

principle: if E → X is a rank-r vector bundle, then it can be shown that there exists

another space Y (in fact, the flag bundle associated to E) with a map p : Y → X such that

(a) the induced homomorphism p∗ : H∗(X)→ H∗(Y) on cohomology is injective; and

(b) the pullback bundle p∗E →Y is a direct sum of r line bundles on Y, say L1, . . . ,Lr .

Then, the Chern classes of E can be computed from those of the line bundles. In par-

ticular, the first Chern class c1(E) ∈ H2(X;Z) is the sum of the Chern classes of the line

bundles:

c1(E) “ = ” c1(L1)+c1(L2)+ · · ·+c1(Lr).

The inverted commas admit to the abuse of notation: what we are really doing is sending

c1(E) injectively into H2(Y;Z) by c1(E) 7→ p∗c1(E) = c1(L1)+ · · ·+ c1(Lr). In general,

we compute the Chern classes iteratively by the formula

1+c1(E)+c2(E)+ · · · = (1+c1(L1))(1+c1(L2)) · · ·(1+c1(Lr)).
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Knowing how to find Chern classes of vector bundles, we can then define these in-

variants for general coherent sheaves, using the following classical result of Serre: ev-

ery coherent sheaf F on a (quasi)projective variety admits a finite resolution, that is, a

bounded exact sequence

0→ En → En−1 → ·· · → E1 → E0 → F → 0

in which the Ei are locally-free sheaves. This is the analogue for sheaves of the “Hilbert

syzygy theorem". We can then define the total Chern class of F in
⊕

k=1H2k(X,Z) by

the formula

c(F ) = ∏
i

c(Ei)
(−1)i

.

It will also be important to know how the Chern classes E change when we twist by

a line bundle. The twisting formula is given in the following

Proposition 1.5. Let E be a torsion-free sheaf of rank r on a variety X of dimension n. For

any line bundle L on X, we have

ck(E ⊗L) =
k

∑
i=0




r − i

k− i


ci(E) ·c1(L)

k−i . (1.1)

By the degree of a vector bundle or sheaf E , we mean the intersection number

deg(E) = c1(E).c1(O(1))
n−1.

Whereas the Chern classes are invariants, the degree is defined only up to the choice

of polarisation O(1) (or of a Kähler form). In some parts of the dissertation, we will

prefer to work with “normalised” bundles and sheaves. We say that a torsion-free sheaf



1.3 Rank-2 bundles 5

E of rank r is normalised if −r < deg(E) ≤ 0. If degO(1) = 1, then we can always

normalise E by tensoring it with O(±1)⊗n for an appropriate n. We can use formula

(1.1) to calculate the Chern classes of the normalised E .

A vector bundle on the projective line is strictly controlled by the following

Theorem 1.1. (Birkhoff-Grothendieck, [25]) A holomorphic vector bundle E on P1 is

isomorphic to a direct sum of line bundles, unique up to permutation.

This fact can be used to discuss the restriction of vector bundles to projective lines in

higher-dimensional varieties. We call the decomposition of E|L=P1 into line bundles the

splitting type of E on the line L. The degrees of the line bundles uniquely determine

them, and we refer to the collection of these integers as the Grothendieck numbers of

E on L.

Definition 1.2. A splitting type in the above sense is called the generic splitting type

if E|L ∼= O(a1)⊕ . . .⊕O(ar) for integers a1 ≥ ·· · ≥ ar , and a1−ar ≤ 1 and a1−ar is as

small as possible.

1.3 Rank-2 bundles

Special focus will be given in subsequent chapters to co-Higgs structures on rank-2 vector

bundles. There is a distinguished relationship between a vector bundle and its dual when

the rank is 2.

Proposition 1.6. If V is a rank-2 locally-free sheaf, then V∗ ∼=V ⊗ (∧2V)∗.

We will record another useful result concerning rank-2 bundles, which aids us in

understanding their sub-line bundles.
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Remark 1.1. By a “subbundle” of a vector bundle E, we mean one in an algebraic sense: a

subsheaf F that is also a vector bundle (cf. Definition 2.3 of [16]). This is weaker than the

geometric notion of a smooth submanifold of E with a vector bundle structure induced

from E.

Proposition 1.7. Let E be a rank-2 vector bundle over any variety X, with i : L → E a sub-

line bundle. There exists a unique effective divisor D on X (possibly zero) such that i factors

through the inclusion L → L⊗OX(D), and such that E/(L⊗OX(D)) is torsion free. If E/L

is torsion free, then there exists a codimension-2 subvariety Z ⊂ X and an exact sequence

0→ L → E → L′⊗IZ → 0

in which L′ is a line bundle and IZ is the ideal sheaf concentrated at Z.

A proof of this fact is found in [16:Prop.2.5]. In the case that X is a curve, the result

simply communicates that E is obtained from an extension of line bundles.

It will be useful for us to know when two different algebraic or holomorphic bundles

realise the same Chern classes. In particular:

Proposition 1.8. Let X = P2 and H = c1(O(1)). Up to equivalence, the only rank-2 vector

bundle E with (c1,c2) = (−H,0) on P2 is O⊕O(−1). The only rank-2 vector bundle with

c1 = c2 = 0 is the trivial bundle O⊕O.

Proof. Note that a bundle with these Chern classes must have a section. To see why,

recall that the Chern character of a rank-r vector bundle on a smooth surface X is given

by

ch(E) = r +c1(E)+
c1(E)2

2
−c2(E) (1.2)
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and so the Chern character in our case is ch(E) = 2−H +H2/2. As well, if t1 and t2 are

the Chern classes of (the tangent bundle of) the surface, then the Todd genus of X is

td(X) = 1+
t1
2
+

t2
1 + t2
12

. (1.3)

As the tangent bundle over P2 has c1 = c2 = 3H (which can be read from the Euler

exact sequence), we have td(P2) = 1+3H/2+H2. We now appeal to the Riemann-Roch

formula to arrive at the equation

h0(E)−h1(E)+h2(E) = coeffH2(ch(E) · td(X))

= coeffH2

(
2H2−

3
2

H2+
1
2

H2
)

= 1

from which we extract the inequality h0(E) + h2(E) ≥ 1. By Serre duality, h2(E) =

h0(E∗⊗Ω2) = h0(E∗(−3)). On the other hand, E∗ = E⊗detE∗ = E(1), and so h2(E) =

h0(E(−2). Since h0(E) ≥ h0(E(k)) whenever k is a negative integer, we have by the

inequality that h0(E) ≥ 1. Therefore, we have a global section of E, which means that

we have a map O → E. We can fit this map into an exact sequence

0→ O → E → E/O → 0.

The relation c2(E) = c1(O)c1(E/O) + c2(E/O) immediately reduces to 0 = c2(E/O).

This, in combination with the fact that the generic rank of E/O is 1, implies that E/O is

locally free (Prop. 1.7). In other words, the quotient is a line bundle, and the preservation

of first Chern classes identifies it as O(−1). Since Ext1(O,O(−1)) = H1(O(1)) = 0 by

Kodaira’s vanishing theorem (cf. [24:p.154]), the line bundle O(−1) may only extend O

trivially—that is, by direct sum. In other words, the only possible vector bundle with the

given Chern classes is E = O⊕O(−1).
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The argument for c1 = c2 = 0 is very similar.

thisisheretodeclarethatthisproo f isdone...................................................................

1.4 Stability of sheaves and bundles

Moduli problems in geometry (vector bundles, curves, vortices, etc.) demand stability

conditions. Restricting to stable objects ensures that the resulting moduli space is Haus-

dorff. While the purpose of this dissertation is not to construct moduli spaces—at least

not globally and not in a formal sense—we do insist that the co-Higgs bundles we study

are stable. First, we review stability for a torsion-free sheaf without extra structure.

The stability notion we use is Mumford-Takemoto stability, or “slope stability”.

There are other related notions, but we do not make use of them here. Subsequently,

we will write “stable” without any adjectives.

Definition 1.3. Let E be a torsion-free sheaf. Its slope is the rational number

µ(E) :=
deg(E)

rank(E)
.

A torsion-free sheaf E is semistable when

µ(F ) ≤ µ(E) (1.4)

for every nonzero coherent subsheaf F ⊆ E with 0 < rkF < rkE. Otherwise, E is

unstable. If inequality (1.4) is strict for every U, then E is said to be stable.

Remark 1.2.

1. It can be shown that the only subsheaves that need checking are those with torsion-

free quotient F /E .
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2. If X is a curve, all of the adjectives describing “sheaf” / “sheaves” in the definition

of stability can be replaced by “locally free” without any loss of generality.

3. If X is a surface and E → X is a rank-2 vector bundle, then we can make simplifi-

cations to the criterion for the stability of E. Since E is locally free, its coherent

subsheaves are torsion-free by Proposition 1.2. Let F be a torsion-free subsheaf of

E of rank 1. The sheaf F is contained in its double dual F ∗∗, which is reflexive

by Proposition 1.3. Moreover, F ∗∗ is locally free, by Corollary 1.2 or Corollary

1.3. Because F and F ∗∗ are identical at all but finitely-many points, we have that

F = W⊗ IZ, where W is a line bundle and Z is the set of points. In particular,

c1(F ) = c1(F
∗∗), and so µ(F ) = µ(F ∗∗). Finally, because E ∼= E∗∗, there is an in-

clusion of F ∗∗ into E. Therefore, we need only check the slopes of proper sub-line

bundles of E.

Definition 1.4. A torsion-free sheaf E is called simple if H0(EndE) = C.

We state the following well-known facts, noting that proofs are given in [16:Lemm.4.5]

and [16:Prop.4.7], respectively.

Proposition 1.9. A torsion-free sheaf E is stable if and only if E∗ is stable; and if and only if

E ⊗L is stable for any line bundle L;

and

Proposition 1.10. If E and E ′ are stable torsion-free sheaves with slope µ(E) = µ(E ′) and

ψ : E → E ′ is a nonzero homomorphism, then ψ is injective. If E and E ′ are locally-free, or

if E = E ′, then ψ is an isomorphism. In particular, a stable torsion-free sheaf is simple.



10 Preliminaries

In some cases we can use simplicity to estabilish stability.

Proposition 1.11. A rank-2 vector bundle on P2 is stable if and only if it is simple.

Proof. We follow Friedman’s argument, [16:Cor.4.13]. Take a rank-2 vector bundle

V → P2 of degree d that is not stable (i.e. it is unstable or semistable but not stable). By

our previous remarks we need only consider sub-line bundles. This means that V has

a sub-line bundle L = O(k) with 2k ≥ d. By Proposition 1.7 above, L fits into an exact

sequence

0→ O(k)→V → O(k′)⊗IZ → 0,

in which IZ is supported on a discrete set of points, and k+ k′ = d. But 2k ≥ d means

that k′ ≤ k, and so there are inclusions

O(k′)⊗IZ ⊆ O(k′)⊆ O(k),

and consequently a nonzero map

V → O(k′)⊗IZ → O(k′)→ O(k)→V

which is not scalar multiplication. Therefore, V is not simple, and we have the result that

a simple vector bundle on P2 is necessarily stable. In combination with the fact that a

stable bundle must be simple, we have that a vector bundle on P2 is stable if and only if

it is simple.

thisisheretodeclarethatthisproo f isdone...................................................................

This argument applies equally to any surface with Pic(X) = Z.
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1.5 Morphisms and stability of co-Higgs bundles

First, we remind the reader what we mean by a co-Higgs bundle.

Definition 1.5. Let X be a complex manifold with tangent bundle T. By a co-Higgs

bundle (E,Φ) we mean a holomorphic vector bundle E together with a holomorphic

Higgs field Φ ∈ H0(EndE⊗T) satisfying Φ∧Φ = 0∈ H0(EndE⊗∧2T).

The following notions carry over from the usual Higgs bundles without modification.

A morphism taking (E,Φ) to (E′,Φ′) is a commutative diagram

E
Ψ

−−−−→ E′

Φ
y

yΦ′

E⊗T
Ψ⊗1

−−−−→ E′⊗T

in which Ψ : E → E′ is a morphism of vector bundles. The pairs (E,Φ) and (E′,Φ′) are

isomorphic if there exists such a diagram in which Ψ is an isomorphism of bundles. In

particular, (E,Φ) and (E,Φ′) are isomorphic if and only if there exists an automorphism

Ψ of E such that ΨΦΨ−1 = Φ′.

Hitchin introduced in [33:Defn.3.1] an appropriate stability condition for Higgs bun-

dles on a curve. Hitchin’s condition applies in greater generality to Higgs bundles over

Kähler (in particular, projective) varieties of any dimension. We will state the version of

this condition for co-Higgs bundles.

Definition 1.6. Let X be a projective variety. A co-Higgs bundle (E,Φ) on X is semistable

if

µ(F ) ≤ µ(E) (1.5)
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for every coherent subsheaf F ⊂ E with 0< rkF < rkE and Φ(F )⊆ F ⊗T. Any sub-

sheaf with the latter property is called Φ-invariant. When we have the strict inequality

µ(F ) < µ(E) (1.6)

for every F with the aforementioned properties, then (E,Φ) is stable.

Remark 1.3. The simplifications for stability without Higgs fields apply to bundles with

Higgs fields too: (1) E is locally free, so we need only check Φ-invariant torsion-free

subsheaves F with E/F torsion free; (2) a co-Higgs bundle on a smooth curve, or a

rank-2 co-Higgs bundle on any smooth variety, is stable if (1.6) holds for all Φ-invariant

sub-line bundles.

Any vector bundle E can be viewed as a co-Higgs bundle with the zero Higgs field:

(E,0). Every subbundle of E is 0-invariant, and so from Hitchin’s condition we recover

the usual slope stability condition for vector bundles.

Clearly, if E is stable as a vector bundle — meaning that all of its subbundles satisfy

(1.6) — then for any Higgs field Φ ∈ H0(X;End E⊗T), the pair (E,Φ) is also stable.

Remark 1.4. As for maps between vector bundles, a nonzero map between two stable

co-Higgs bundles of the same slope is an isomorphism. In particular, a stable co-Higgs

bundle is simple, i.e. every endomorphism E that commutes with Φ is a constant mul-

tiple of 1E. The proof of this fact can be adapted immediately from the analogous result

for stable vector bundles, e.g. [16:Prop.4.7].

If (E,Φ) is semistable but not stable, E has a proper subbundle U for which (U,Φ) is

stable. It follows that (E/U,Φ) is semistable. This process, which terminates eventually,
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gives us a Jordan-Hölder filtration of E:

0= E0 ⊂ ·· · ⊂ Em = E,

for some m, where (E j ,Φ) is semistable, (E j/E j−1,Φ) is stable, and µ(E j/E j−1) = µ(E),

for each 1≤ j ≤ m. In these pairs, Φ always denotes the appropriate quotient Higgs field.

While the filtration is not unique, the isomorphism class of the following object is:

gr(E,Φ) :=
m⊕

j=1

(E j/E j−1,Φ).

This object is called the associated graded object of (E,Φ). Then, two semistable pairs

(E,Φ) and (E,Φ′) are said to be S-equivalent whenever gr(E,Φ) ∼= gr(E′,Φ′). If a pair

is strictly stable, then the underlying bundle has the trivial Jordan-Hölder filtration con-

sisting of itself and the zero bundle, and so the isomorphism class of the graded object is

nothing more than the isomorphism class of the original pair.

Taking Φ= 0 throughout recovers the notion of S-equivalence for ordinary semistable

vector bundles.

1.6 Direct image sheaves

In several of the succeeding chapters, the direct image operation on sheaves plays an

important role. The facts below can be referenced in many places; however, the one

whose language is closest to ours is [37:Ch.2].

Definition 1.7. If E is a sheaf on Y and f : Y → X is a surjective map, then the (zero-th)

direct image of E under f is the sheaf on X defined by

( f∗E)(U) := E( f−1(U))
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on each open set U in the topology determined by the complex analytic structure on X.

Under a very general set of circumstances, the direct image of a coherent sheaf is again

coherent. For our purposes, we are interested in something more special: when E = L

is a line bundle and f : Y → X is a finite, holomorphic covering map of smooth curves

or surfaces branched over a codimension-1 subvariety. In this case, f∗L is a locally-free

sheaf of finite rank equal to the degree of the map f . We will prove this for curves in a

moment. First, we point out some basic properties of f∗ that require little explanation.

It follows immediately from the definition that

(a) H0(X; f∗L)∼= H0(Y;L); in other words, the direct image operation preserves global

sections.

(b) For any vector bundle V, f∗O(L⊗ f ∗V)∼= O( f∗L⊗V).

Now, we prove that f∗L is locally free when X and Y are curves.

Proposition 1.12. When f : Y → X is a finite, holomorphic covering map of smooth curves

ramified at finitely-many points, the direct image f∗L of a line bundle L on Y is a line bundle

on X.

Proof. Assume that the degree of f is r ≥ 1. We need to convince ourselves that

around each p ∈ X there is a neighbourhood U for which we have a free decomposi-

tion f∗O(L)(U) ∼=
⊕r

i=1O(U), where O(U) is the ring of functions on U . If p ∈ X is a

regular (unbranched) value of f , so that f−1(p) consists of r distinct points, then there is

a neighbourhood U around p such that f−1(U) = ∪r
i=1U , by the fact that f is a covering

map, and f∗O(L)(U) =
⊕r

i=1O(U). At a branch point p, the set f−1(p) will have fewer
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than r points. We will deal explicitly with the case where the set has just 1 point, as the

general situation can be extrapolated from it. We choose local coordinates on sufficiently

small neighbourhoods U of p and Ũ = f−1(U) of f−1(p) so that over U the map f looks

like z 7→ zr , where z is the local coordinate on Ũ , w= zr is the local coordinate on U , and

w(p) = 0 so f−1(w(p)) = 0 is the single point where the r sheets come together. Now,

a section of L over Ũ is really just a local holomorphic function, whose Taylor series

expansion around 0 can be written as h(z) = ∑∞
i=0aizi . To see how this section descends

to one on the base, we need to be able to write it in terms of the local coordinate w. To

do this, we write out h(z) as a sum of functions of zr :

h(z) =
r−1

∑
k=0

∞

∑
j=0

a jr+kz
jr+k

=
r−1

∑
k=0

∞

∑
j=0

a jr+kz
kzjr

=
r−1

∑
k=0

zkhk(z
r)

= h0(z
r)+zh1(z

r)+ · · ·+zr−1hr−1(z
r),

where hk(w) = ∑∞
j=0a jr+kw j . So, the local section on U looks like a combination of r

local holomorphic functions in w. All we need to confirm is that the grading is preserved

when we multiply this by another local function on U , say g(w), but this is immediate

since w= zr means g(w) ·hk(zr) will only involve powers that are integer multiples of r

and so g ·O(U)k ⊂ O(U)k. Therefore, the sheaf of holomorphic sections of the direct

image is locally free, and so we can identify this with a holomorphic vector bundle on X.

thisisheretodeclarethatthisproo f isdone...................................................................

When X is a surface or other higher-dimensional variety, we refer to Schwarzenberger

[50], who uses Serre’s work on Cohen-Macaulay coherent sheaves in [51] and [52]. Those
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arguments establish local freeness of the direct image sheaf under very general hypotheses

on the covering space Y.

In the case where X and Y are curves, a basic question is: what is the degree of

E = f∗L? Ramification results in a modification of degree. To express this quantitatively,

we need to appeal to the following fact: for any vector bundle V and a sufficiently large

integer n, H0(X;V ⊗ (M∗)⊗n) = 0, where M is a choice of ample line bundle on X with

degM = 1. Applying this to V∗⊗KX, it follows from Serre duality that

H1(X;V ⊗M⊗n)∗ ∼= H0(X;V∗⊗ (M∗)⊗n⊗KX) = 0.

Thus, we have H1(Y;L⊗ f ∗Mn) = 0 and H1(X; f∗L⊗Mn) = 0 for n large enough. Let g

and g̃ be the genera of X and Y, respectively. Because degM = 1, Riemann-Roch gives us

h0(Y;L⊗ f ∗Mn) = degL+ rn+(1− g̃)

and

h0(X; f∗L⊗Mn) = degf∗L+ rn+ r(1−g),

and so

degf∗L = degL+(1− g̃)− r(1−g). (1.7)
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CHAPTER 2

Deformation theory

The first step in studying co-Higgs bundles, other than to find examples, is to determine

how they behave under infinitesimal deformations. Understanding their local moduli

provides one way of constructing new examples from existing ones. As another applica-

tion, we need to understand the tangent space to the moduli space when we use Morse

theory in Chapter 4 to probe the topology of the moduli space on P1.

The deformation theory of holomorphic vector bundles is standard, and there are

numerous references on the matter. The one we follow most closely is [16:Ch.6,pp.153–

159]. The deformation theory of co-Higgs bundles is a straightforward adaptation of the

one developed for Higgs bundles in several papers at roughly the same time by Nitsure,

Biswas and Ramanan, and Bottacin; cf. respectively [46], [6], and [8]. All of these treat

Higgs bundles on algebraic curves. The discussion in this chapter applies to co-Higgs

bundles on surfaces, as well.

First, we review hypercohomology, as it applies to our study. Our main reference is

[24:pp.438–447], as reflected in the choices of notation.
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2.1 Hypercohomology

Because a co-Higgs bundle (E,Φ) satisfies the condition

Φ∧Φ = 0 ∈ H0(X;EndE⊗∧2T),

there is a natural complex of sheaves associated to (E,Φ):

EndE
−∧Φ
−→ EndE⊗T

−∧Φ
−→ EndE⊗∧2T

−∧Φ
−→ ·· · ,

where −∧Φ acts by the Lie bracket. The vanishing of Φ∧Φ means that the map −∧Φ

is a differential, and so we can define cohomologies for EndE⊗∧iT relative to it. There

is also the ordinary sheaf cohomology coming from Čech resolutions. Together, the two

can be used to define hypercohomology spaces for the sheaves EndE⊗∧iT.

For our purposes, we will assume that X is of dimension at most 2. It follows that

the sheaf EndE⊗∧iT is zero for all i > 2. Moreover, all of the co-Higgs bundles we

encounter in later chapters (cf. the tables in §5.3.3) will have ordinary cohomology

H2(X;EndE⊗∧iT) = 0 for i = 0,1,2. If we make this vanishing one of our assumptions,

then we have Hk(X;EndE⊗∧iT) = 0 if either k≥ 2 or i ≥ 2.

To make the notation compact, we will write Wi in lieu of EndE⊗∧iT. Therefore,

our complex is

W0 −∧Φ
−→W1 −∧Φ

−→W2 −∧Φ
−→ 0. (2.1)

A double complex arises from including the Čech coboundary operator in the vertical di-

rection. We denote −∧Φ by d; the Čech coboundary operator, by δ. Adopting standard

notation for spectral sequences, we use E p,q
0 for CpWq, which are the Čech p-cochains of

Wq. The zero-th page of the spectral sequence looks like
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...
...

...
xd

xd

xd

C3W0 d
−−−−→ C3W1 d

−−−−→ C3W2 d
−−−−→ 0

xδ
xδ

xδ

C2W0 d
−−−−→ C2W1 d

−−−−→ C2W2 d
−−−−→ 0

xδ
xδ

xδ

C1W0 d
−−−−→ C1W1 d

−−−−→ C1W2 d
−−−−→ 0

xδ
xδ

xδ

C0W0 d
−−−−→ C0W1 d

−−−−→ C0W2 d
−−−−→ 0

To define the E p,q
1 terms, we need to pick a direction. Most convenient to us is the

vertical one, as our arguments will rely upon properties of the maps H j
δ(W

i)→H j
δ(W

i+1)

induced by d = −∧Φ. Taking the cohomology of the E p,q
0 with respect to δ, we get to

the E1 page:

E1,0
1

d
−→ E1,1

1
d

−→ E1,2
1

E0,0
1

d
−→ E0,1

1
d

−→ E0,2
1

Here, E p,q
1 := H p

δ (W
q), that is, E p,q

1 is the p-th Čech cohomology of the sheaf Wq. The

page has only the two rows shown because H2
δ (W

i) = 0, by assumption.

It is the E2 sheet that encodes the hypercohomology of the double complex. The

vanishing of the cohomologies Hk
δ (W

i), k ≥ 2, means that the exact sequence giving the

hypercohomology H∗ is

0 → E0,0
2 → H0 → E−1,1

2
d2→ E1,0

2 → H1 → E0,1
2

d2→ E2,0
2 → H2 → E1,1

2
d2→ E3,0

2 → H3 → E2,1
2

d2→ E4,0
2 = 0
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in which

E p,q
2 = H p

d (H
q
δ (W

∗)) =
ker Hq

δ (W
p)

−∧Φ
−→ Hq

δ (W
p+1)

im Hq
δ (W

p−1)
−∧Φ
−→ Hq

δ (W
p)

,

and the homomorphism d2 :E p,q
2 −→E p+2,q−1

2 is the induced differential on the E2 page.

Above, −∧Φ stands for the induced map on cochains of appropriate degree. Because

this sequence is written entirely on one page of the spectral sequence, we drop the “2”

subscript from now on, as well as the “δ” subscript on the Čech cohomology. We remark

thatE3,0, E4,0 andE−1,1 are necessarily zero, due to their extreme values of p or q relative

to where EndE⊗∧∗T has nonzero cohomology. This leaves us with the isomorphisms

E0,0 ∼= H0 (2.2)

E2,1 ∼= H3 (2.3)

and the truncated sequence

0→ E1,0 →H1 → E0,1 d2→ E2,0 →H2 → E1,1 → 0. (2.4)

The d2 map is an obstacle to our ascertaining the dimension of H1: even if we cal-

culate all of the numbers dimE p,q, we can only know the difference dimH2− dimH1.

However, if d2 is zero, then we have a surjection H1 → E0,1. Because the domain of d2 is

the kernel of −∧Φ : H1(EndE)→ H1(EndE⊗T), the map is acting on 1-cocycles (ψαβ)

for EndE whose images under −∧Φ take the form θβ − θα, where the θα and θβ are

0-cochains for EndE⊗T. (Here, θα and θβ are defined on open sets Uα and Uβ, respec-

tively, and ψαβ on their intersection.) The range of the d2 map is the space E2,0, which

is a quotient space of H0(EndE⊗∧2T). From the definition of the spectral sequence, it
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can be shown that d2 is the map

d2 : (ψαβ) 7→
([

θβ,Φ
])
.

It is straightforward to see that this map is well-defined: because
[
ψαβ,Φ

]
= θβ − θα,

we have
[
θβ,Φ

]
− [θα,Φ] =

[[
ψαβ,Φ

]
,Φ
]
. If we write Φ in a basis of vector fields, say,

Φ = φ1
∂

∂z1
+φ2

∂
∂z2

with φi ∈ H0(EndE), then

(ψαβ ∧Φ)∧Φ = (ψαβ ∧ (φ1∂1+φ2∂2))∧ (φ1∂1+φ2∂2)

= (
[
ψαβ,φ1

]
∂1+

[
ψαβ,φ2

]
∂2)∧ (φ1∂1+φ2∂2)

=
[[

ψαβ,φ1
]
,φ1
]

∂1∧∂1+
[[

ψαβ,φ1
]
,φ2
]

∂1∧∂2+

[[
ψαβ,φ2

]
,φ1
]

∂2∧∂1+
[[

ψαβ,φ2
]
,φ2
]

∂2∧∂2

=
([[

ψαβ,φ1
]
,φ2
]
−
[[

ψαβ,φ2
]
,φ1
])

∂1∧∂2

But the Jacobi identity is
[[

ψαβ,φ1
]
,φ2
]
−
[[

ψαβ,φ2
]
,φ1
]
=
[
[φ1,φ2] ,ψαβ

]
, and so

(ψαβ ∧Φ)∧Φ = 0

because Φ∧Φ = 0 is equivalent to φ1 and φ2 commuting. This means that

[
θβ,Φ

]
− [θα,Φ] =

[[
ψαβ,Φ

]
,Φ
]
= 0,

and so [θβ,Φ] and [θα,Φ] glue to give a global section of EndE⊗∧2T.

2.2 Interpretation

What do the vector spaces E p,q mean? We would like to attach some information to

them, in terms of first-order deformations of (E,Φ).



22 Deformation theory

We start with X a projective variety over C; T, a smooth 1-dimensional C-scheme

with coordinate t. If we like, we can take T to be the spectrum of the ring of dual

numbers:

T = Spec(C[t]/(t2)).

We can think roughly of the local moduli space near a fixed rank-r co-Higgs bundle

(E,Φ) as a local universal bundle E(t) on X×T together with a local universal Higgs field

Φ(t), such that (E(0)⊗C[t]/(t2) C,Φ(0)⊗C[t]/(t2) C)
∼= (E,Φ). In keeping the discussion

informal, we will gloss over a few of the technical details. In particular, we ignore the

need for the universal family to be a flat family.

Let us focus on the bundle E(t) first. We restrict to a small enough region T0 ⊂ T

so that E is trivialised on the cover {Uα}×T0 of X ×T0. We can write out the transi-

tion function of E(t) on (Uα ∩Uβ)×T0 as Aαβ(t) = Aαβ +Bαβ · t +O(t2), where Aαβ ∈

H1(X;GLr(C)), Bαβ ∈C1(X;GLr(C)). At t = 0, we recover the transition function Aαβ

for E.

We want to classify the linear data Bαβ. Recall that the cocycle condition for the

Aαβ on Uα ∩Uβ ∩Uγ is AαβAβγ = Aαγ. We want Aαβ to satisfy the cocycle condition over

Uα ∩Uβ ∩Uγ ×T0, which amounts to

Aαγ +Bαγt + · · · = AαβAβγ +AαβBβγt +AβγBαβt + · · · ,

and so

Bαγ = AαβBβγ +AβγBαβ. (2.5)
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If we rewrite the cocycle condition for Aαβ as A−1
αγ = A−1

βγ A−1
αβ , then (2.5) becomes

Zαγ = AαβZβγA
−1
αβ +Zαβ

where Zαβ := BαβA−1
αβ . This condition is equivalent to saying that BαβA−1

αβ transforms

exactly like a 1-cocycle for EndE, and it is easy to check that a Bαβ and a B′
αβ may

differ by a 1-coboundary for EndE without changing E. On the other hand, an element

Cαβ ∈ H1(X;EndE) defines linear terms in a Taylor expansion about t = 0 for Aαβ(t)

by the rule Bαβ =CαβAαβ. Therefore, first-order deformations of E are parametrised by

elements of H1(X,EndE). For a given E(t), the associated element of H1(EndE) is the

analogue of the Kodaira-Spencer class for deformations of complex manifolds.

For a vector bundle this is the whole story concerning the first-order data. In our

situation, we must also consider the Higgs field. The Higgs field Φ is a morphism of

sheaves, and so is prescribed by vector space homomorphisms

Φα : E(Uα ×T0)→ (E⊗TX×T)(Uα ×T0),

where TX×T is the pull-back to X ×T of the tangent bundle of X via the natural map

X ×T → X. The Taylor expansions about t = 0 of these maps are Φα(t) = Φα +Θα +

O(t2), where Φα is Φ|Uα ⊗C[t]/(t2)C, i.e. essentially the restriction of Φ to Uα, and Θα is a

0-cochain for EndE⊗T. The gluing condition is that Φα and Φβ agree on (Uα∩Uβ)×T0

up to conjugation with Ψαβ(t) = 1+Zαβt +O(t2), where 1 is the identity on E and Zαβ

is the Kodaira-Spencer class as above. In symbols, the condition we want to satisfy is

Ψαβ ◦Φα = Φβ ◦Ψαβ.
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This yields an equation for coefficients of t:

ZαβΦα +1Θα = ΦβZαβ +Θβ1,

which we rearrange as

Θα −Θβ = ΦβZαβ −ZαβΦα

=
[
Zαβ,Φ

]
|(Uα∩Uβ)×T0

.

This says that Zαβ and Φ commute up to a Čech 1-coboundary for EndE ⊗T. That

is, Zαβ not only defines an element of H1(EndE), but must also be in the subspace

ker H1(EndE)
−∧Φ
→ H1(EndE⊗T) = E0,1.

We now have a pair (Zαβ,Θγ) giving a T-valued Higgs field Φ for E, although it may

not satisfy the integrability condition: we have yet to insist that Φ∧Φ = 0. Let Θ stand

for the sheaf morphism corresponding to the various maps Θγ. Because Φ∧Φ = 0 by

assumption and Θ∧Θ is a coefficient of t2 ≡ 0, we need only concern ourselves with the

condition Θ∧Φ = 0. Adding an element of the form θ∧Φ to Θ, for any θ ∈ H0(EndE),

does not change the equivalence class of Φ as a Higgs field for E, and also preserves

Θ∧Φ = 0. In other words, any Θ and Θ′ defining the same first-order deformation of

Φ differ by a 1-(−∧Φ)-coboundary for EndE⊗T. Hence, the first-order deformations

satisfying the integrability condition are elements of

E1,0 =
ker H0(EndE⊗T)

−∧Φ
→ H0(EndE⊗∧2T)

im H0(EndE)
−∧Φ
→ H0(EndE⊗T)

. (2.6)

Therefore, the vector space E1,0 parametrises first-order deformations of Φ, while

E0,1 = ker H1(EndE)
−∧Φ
→ H1(EndE⊗T) (2.7)
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parametrises the first-order deformations of E compatible with Φ. Regarding how these

spaces fit into (2.4), these interpretations are compatible with H1 as the Zariski tangent

space to the local moduli space around (E,Φ).

2.3 B-field deformations

A feature of generalised geometry that comes into play is the B-field. This is a closed

real (1,1)-form B which provides an extra symmetry of a complex manifold when it

is considered to be generalised complex. Recall from the Introduction that a co-Higgs

bundle is a generalised holomorphic bundle, and that its D operator can be thought of as

the sum of the Higgs field Φ and an operator ∂A : C∞(V)→ C∞(V ⊗T
∗
), given as

∂As =

(
∂s
∂zj

+A js

)
dzj .

As in [36:§4.1], we can use B to perturb the holomorphic structure on E by defining a

new ∂ operator on the underlying C∞ bundle:

∂B = ∂A+ ιΦB,

where ιΦ is contraction with Φ. Since we are contracting an element of H1(T∗) along an

element of H0(EndE⊗T), we have ιΦB∈ H1(EndE). Furthermore, because of Φ∧Φ =

0, we have [Φ, ιΦB] = 0. Therefore, [ιΦB] is an element of E0,1, as defined in (2.7), which

makes sense according to the interpretation of E0,1 as the space of deformations of the

complex structure on E compatible with Φ.

Because [Φ, ιΦB] = 0, we also have that Φ is holomorphic with respect ∂B. This

means that Φ is the Higgs field for a new co-Higgs bundle. In other words, the Higgs
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field is unchanged as a smooth section acting on the underlying smooth bundle of E,

and it is holomorphic with respect to both the original and the new complex structures.

This makes sense in that the space of deformations of Φ, E1,0, is the kernel of the map

H1 → E0,1, so the deformation [ιΦB] only affects E.

When examples of co-Higgs bundles appear in subsequent chapters, we point out the

action of the B-field.
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CHAPTER 3

Co-Higgs bundles on P1

For actual examples of co-Higgs bundles, we start at the bottom, over curves. In this

setting, Φ∧Φ = 0 is automatic, and so our only restriction is stability.

3.1 Higher-genus curves

Suppose that X has genus g > 1 and that (E,Φ) is a stable co-Higgs bundle on X. The

canonical line bundle K has a g-dimensional space of sections: choose any nonzero one,

say, s. Taking the product s·Φ contracts K with K∗, making s·Φ an endomorphism of E.

But s·Φ and Φ commute, and so s·Φ must be a multiple of the identity, by the “simple”

property of stability. Because degK = 2g−2> 1, s vanishes somewhere, and so Φ must

vanish everywhere. In other words, a stable co-Higgs bundle on X with g> 1 is nothing

more than a stable vector bundle.

When g= 1, K ∼= K−1 ∼= O, and so a co-Higgs bundle is a Higgs bundle.

Given these facts, the only possibilities for bona fide co-Higgs bundles are on the
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projective line, P1 — plenty of them, in fact. This is in contrast to Higgs bundles, which

are never stable on P1. Co-Higgs bundles therefore extend the theory of Higgs bundles

to genus 0.

Using the deformation theory of Chapter 2, we can calculate an expected dimen-

sion for moduli space of co-Higgs bundles on P1. This task is greatly simplified by

the Birkhoff-Grothendieck theorem (Thm. 1.1): if E is a rank-r vector bundle on P1,

then E ∼= O(a1)⊕·· ·⊕O(ar) for integers a1, . . . ,ar unique up to permutation. This in-

duces a decomposition of the Higgs field into sections of line bundles, so that Φi j ∈

H0(O(−mj +mi +2)). For a curve, the long hypercohomology sequence (2.4) reduces to

0−→ E1,0 −→H1
(E,Φ) −→ E0,1 −→ 0,

where

E1,0 =
H0(EndE⊗T)

im H0(EndE)
[−,Φ]
−→ H0(EndE⊗T)

,

E0,1 = ker H1(EndE)
[−,Φ]
−→ H1(EndE⊗T),

and T = O(2) because X = P1. It is useful for us to know that the [−,Φ] map in E1,0

is injective and that the map in E0,1 is surjective. (These claims are verified later in

§4.1.3.) But now, suppose that O(a) and O(b) are two line bundles in the decompo-

sition of E. If a− b = k < 2, we have A = h0(O(−a+ b+ 2)) = −k+ 2+ 1 > 0 and

B = h0(O(−a+b)) = −k+1 ≥ 0. Calculating dimE1,0 for U = O(a)⊕O(b) is, by the

injectivity of the denominator map, equivalent to subtracting B from A, and the differ-

ence is 2. On the other hand, h1(O(−a+b)) = h0(O(a−b−2)) = 0 by Serre duality,

and so the contribution to dimH1 from the two line bundles is 2. On the other hand,
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when k> 2, we have h0(O(−a+b+2)) = 0, and so there is no contribution to E1,0 but

h1(O(−a+b)) = h0(O(a−b−2)) = k−1 and h1(O(−a+b+2)) = h0(O(a−b−4)) =

k−3≥ 0. The surjectivity of the map H1(EndE)
[−,Φ]
−→ H1(EndE⊗T) means that the con-

tribution to dimE0,1 = dimH1 from these line bundles is (k−1)− (k−3) = 2. Finally,

it is easy to see that in the case k= 2 there is a contribution of 1 to each of dimE1,0 and

dimE0,1. Therefore, for any pair of line bundles, there is a 2-dimensional first-order de-

formation space of the co-Higgs structure. Noting that there are r2 pairs of line bundles,

and taking into account the scaling of the Higgs field, we have dimH1 = 2r2+1.

3.2 Hitchin morphism and spectral curves

There exists a moduli space for semistable co-Higgs bundles on P1. In [46], Nitsure

constructs a quasiprojective variety that is a coarse moduli space for S-equivalence classes

of semistable “L-pairs” of rank r on an algebraic curve X. Here, L is a sufficiently-ample

line bundle and “L-pair” means a pair (E,Φ) in which E is a rank-r vector bundle and

Φ ∈ H0(X;EndE⊗L). This was the first generalisation of Hitchin’s construction in [33]

of the rank-2 Higgs bundle moduli space. The construction uses geometric invariant

theory, and the stability condition is the one defined previously. For X = P1 and L =

O(2), we obtain the moduli space we desire. We use M (r) to signify this space; M (r,d),

the component in M (r) consisting of degree-d co-Higgs bundles. When r and d are

coprime, M (r,d) is smooth. Nitsure calculates the dimension of M (r) to be 2r2+1, and

proves that this number is independent of the degree component [46:Prop.7.1(c)].

Remark 3.1. The real dimension of the moduli space is 4r2+2≡ 2 mod 4, which means
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that the moduli space of co-Higgs bundles never admits the structure of a hyperkähler

manifold. While lacking in this feature, the co-Higgs moduli space comes with an extra

symmetry absent from the usual Higgs case, namely a PGLC(2) action on P1 that in-

duces an action on M (r,d), by interpreting the Higgs field as a polynomial in the affine

parameter on P1.

Consider the Hitchin map h : M (r)→
⊕r

k=1H0(O(2k)) given by (E,Φ) 7→ char(Φ),

the characteristic polynomial of Φ. Since char(Φ) is invariant under conjugation, this

map is well-defined on equivalence classes. Nitsure proves that h is proper [46:Thm.6.1].

In particular preimages of points, and therefore fibres of h, are compact.

Let ρ ∈
⊕r

k=1H0(P1;O(2k)) be a generic section. It follows from more general argu-

ments in [5], and also [14], that the fibre h−1(ρ) is isomorphic to the Jacobian of a spectral

curve embedded as a smooth subvariety Xρ of the total space of O(2). The correspon-

dence works like this:

(a) if π is the projection to P1 of M := Tot(O(2)), then the restriction πρ : Xρ → P1 is

an r : 1 covering map;

(b) the equation of Xρ is ρ(π(η))= 0, where η is the tautological section of the pullback

of O(2) to its own total space;

(c) the direct image of a line bundle L on a generic Xρ is a rank-r vector bundle (πρ)∗L=

E on P1;

(d) the pushforward of the multiplication map L → ηL is a Higgs field Φ for E, with

characteristic polynomial ρ.
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The spectral curve ramifies at finitely-many points, which are the z∈ P1 for which Φz has

repeated eigenvalues. The generic characteristic polynomial ρ is irreducible, and so its Xρ

is connected.

The cotangent bundle of M fits into a short exact sequence

0→ Θ → T∗
M → π∗KP1 → 0,

where Θ is the cotangent bundle along the fibres of KP1 → P1. The bundle along the

fibres is actually isomorphic to the pullback of the cotangent bundle from P1, and so

KM = ∧2T∗
M = Θ⊗π∗KP1 = (π∗O(−2))⊗2 = π∗(O(−4)).

Now, let C stand for the divisor on M of the curve Xρ ⊂ M; this makes C the divisor of

a section of π∗O(2r). The fibre over z∈ P1 of M is the line in M corresponding to the

divisor of a section of π∗O(1). This section is precisely the section of O(1) vanishing at z.

Over a generic z, Xρ intersects the fibre in r points, and so C.C = (2r)r = 2r2. Similarly,

KM.C=−4r . The adjunction formula asserts that

(2g(Xρ)−2) = C.(C+KM)

= −4r +2r2,

from which we get

g(Xρ) = (r −1)2. (3.1)

Since for a generic ρ the fibre h−1(ρ) is isomorphic to the Jacobian of Xρ, we see now

that the generic fibre is of dimension (r − 1)2. This agrees with subtracting away the

dimension of the affine base
⊕r

k=1H0(O(2k)) from Nitsure’s dimension, 2r2+1.
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There is another important feature to the correspondence. Because the generic ρ is

irreducible, a co-Higgs bundle (E,Φ) coming from a line bundle on Xρ has no Φ-invariant

subbundles, and so is stable. Therefore, stability limits the underlying vector bundles that

can be obtained from spectral line bundles. In the next section, we address this.

3.3 Stable Grothendieck numbers

For E = O(m1)⊕·· ·⊕O(mr) on P1, we find necessary and sufficient conditions on the

Grothendieck numbers mi for the existence of stable Higgs fields.

Theorem 3.1. A rank-r vector bundle

E = O(m1)⊕O(m2)⊕·· ·⊕O(mr)

over P1, where m1 ≥ m2 ≥ ·· · ≥ mr , admits a semistable Φ ∈ H0(EndE(2)) if and only

if mi ≤ mi+1 + 2 for all 1 ≤ i ≤ r − 1. The generic Φ leaves invariant no subbundle of E

whatsoever; therefore, the generic Φ is stable trivially.

Proof. Since every co-Higgs line bundle is stable, we consider only r > 1. We begin with

the only if direction, for which we proceed by induction on successive extensions of bal-

anced bundles by each other. (A rank-r balanced vector bundle over P1 splits into r copies

of a single line bundle.) To arrive at these bundles, we filter the decomposition of E by its

repeated Grothendieck numbers. That is, if the first d1 ordered Grothendieck numbers

are m1= · · ·=md1 = a1, then we write E1 for the balanced vector bundle
⊕d1O(a1). If the

next d2 numbers are all equal to the same number, say a2, then we set E2 :=
⊕d2O(a2);

and so on. Then, E =
k⊕

i=1

Ei =
k⊕

i=1

(
di⊕

i=1

O(ai)

)
, where d1+ · · ·+dk = r and a1 > · · ·> ak.
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Begin with the (inexact) sequence

E1
Φ
→ E⊗O(2)

p
→ (E2⊕·· ·⊕Ek)⊗O(2).

The composition of Φ with the quotient map p is a section of E∗
1 ⊗E/E1⊗O(2), and

so has components in O(−a1+a j + 2), for each of j = 2,3, . . . ,k. If a1 > a2+2, then

a1 > a j +2 for j = 2,3, . . . ,k and

H0(O(−a1+a2+2)) = · · · = H0(O(−a1+ak+2)) = 0.

Therefore, p◦Φ is the zero map. It follows that E1 is Φ-invariant. It is destabilising,

however, because d1+ · · ·+dk = r and a1 > a2 > · · ·> ak imply

degE1

rkE1
=

d1a1

d1
= a1 =

a1(d1+ · · ·+dk)

r
>

d1a1+d2a2+ · · ·dkak

r
=

degE
rkE

.

In light of the contradiction, we must have a1 ≤ a2+2, and so

m1 = · · ·= md1 ≤ md1+1+2= · · ·= md1+d2 +2.

We assume now that

a2 ≤ a3+2

...

a j−1 ≤ a j +2.

Consider the sequence

E1⊕E2⊕·· ·⊕E j
Φ
→ E⊗O(2)

p
→ (E j+1⊕·· ·⊕Ek)⊗O(2),

where we abuse notation and re-use p for the quotient of E by E1⊕ . . .⊕E j . Assume that

a j > a j+1+2. Because of the inductive assumption, we have that ai > a j > au+2 for each
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i ≤ j and each u> j . Therefore, −ai +au+2< 0, and the images of the balanced bundles

Ei , i ≤ j , are zero under the composition of Φ and p. Hence, E1⊕·· ·⊕E j is Φ-invariant

and its slope exceeds that of E.

Remark 3.2. The above argument does not rely on X = P1. In fact, X could be projective

space Pn of any dimension, so long as we are considering fully decomposable bundles. In

that case, the result would say that stable Higgs fields exist only if mi ≤ mi+1+s, where s

is the largest integer such that T(−s) has sections. Only for P1 is s= 2; for all other n it

is s= 1, as can be seen immediately from the cohomology of the Euler exact sequence

0→ OPn →
3⊕

i=1

OPn(1)→ TPn → 0.

For the other direction, suppose that mi ≤ mi+1 + 2 for each i = 1, . . . , r − 1. Our

strategy is to find a particular Higgs field Φ under which no subbundle of E is invariant,

meaning that (E,Φ) is trivially stable. Consider the Higgs field as an r × r matrix whose

(i, j)-th entry is a section of the line bundle O(−mj +mi + 2). In the (r − 1)× (r − 1)

matrix that remains when we ignore the first row and the r -th column, the diagonal

elements are sections of O(−mi−1+mi +2)∼= O(pi) for i = 2, . . . , r , where each pi is one

of 0, 1, or 2. Into each of these positions, we enter a ‘1’, which in the case of the trivial

line bundle (pi = 0) is simply the number 1. In the case of pi = 1, ‘1’ represents the section

of O(1) that is 1 on P1−∞ and is 1/zon P1−0, where z is the affine parameter on P1−∞.

For O(2), ‘1’ refers to the section that is 1 on P1−∞ and 1/z2 on P1−0. In each case,

1 is well-defined. For all other entries of the (r −1)× (r −1) sub-matrix, we insert the
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zero section of the corresponding line bundle. For the first row and r -th column, we

insert zeros everywhere save for the (1, r)-th entry q∈ H0(O(−mr +m1+2)). If q is not

identically zero, then it is a polynomial in z of degree 2 or more, and so we can choose

q(z) = z (by setting the higher-degree coefficients to zero). The characteristic polynomial

of Φ is therefore −z+yr , which is irreducible in C[y][z].

Φ(z) =




0 0 · · · 0 0 z

1 0 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · 1 0 0

0 0 0 · · · 1 0




Because the characteristic polynomial does not split, Φ has no proper eigen-subbundles

in E; that is, E has no Φ-invariant subbundles. As irreducibility is an open condition, the

genericity follows immediately: there is a Zariski open subset of H0(End E(2)) whose

elements leave invariant no subbundles whatsoever.

thisisheretodeclarethatthisproo f isdone...................................................................

Theorem 3.1 greatly narrows the choice of underlying bundle for a stable co-Higgs

bundle. For rank 2, the theorem says that if E has even degree d, then it admits a

(semi)stable Higgs field if and only if E ∼=O(d/2)⊕O(d/2) or E ∼=O(d/2+1)⊕O(d/2−

1). On the other hand, if d is odd, there is only one choice: O((d+1)/2)⊕O((d−1)/2).

Note that we need only consider the normalised-degree components M (r,0) and

M (r,−1), as we can recover co-Higgs bundles of other degrees by tensoring the elements

of these r spaces by O(±1)⊗n for appropriate n. For a further simplification, we consider
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only trace-free Higgs fields. The map

M (2) → H0(O(2))×M0(2)

defined by

(E,Φ) 7→

(
TrΦ,

(
E,Φ−

1
2

TrΦ
))

,

where M0(2) denotes the 6-dimensional trace-free part of the moduli space, is an isomor-

phism. As TrΦ is a Higgs field for a line bundle, the factorisation can be thought of as

M (2) =M (1)×M0(2), where the first factor is the space of co-Higgs line bundles. The

piece of the moduli space that we do not already understand is M0(2), and so there is no

generality lost in restricting attention to it. The dimension is

dimM0(2) = dimM (2)−h0(O(2)) = (2(2)2+1)−3 = 6.

For a rank-2 (E,Φ) with Φ trace-free, the characteristic polynomial is a monic poly-

nomial of degree 2 in η with no linear term, and with a section of O(4) for the coefficient

of η0. This section vanishes at 4 generically distinct points in P1, which are the branch

points of the double cover Xρ → P1. By equation (3.1), the generic spectral curve Xρ is an

elliptic curve. Its Jacobian is another elliptic curve, and therefore the map h on M0(2,d)

is a fibration of generically nonsingular elliptic curves over a 5-dimensional affine space

of determinants.

3.4 Rank-2 odd degree moduli space

We start with the odd-degree component, where the underlying bundle of every co-Higgs

bundle is isomorphic to E = O⊕O(−1). Since E has non-integer slope, every semistable
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Higgs field for E is stable. Every Higgs field for E is of the form

Φ =




a b

c −a


 ,

where a, b, and c are sections of O(2), O(3), and O(1), respectively. The stability of

Φ means that c is not identically zero: because µ(E) = −1/2, Φ cannot leave the trivial

sub-line bundle O invariant. Accordingly, c has a unique zero z0 ∈ P1.

It is possible to provide a global description of the odd-degree moduli space as a kind

of universal elliptic curve. Using M again for the two-dimensional total space of O(2), let

π : M → P1 be the natural map. We claim that we can assign uniquely to each stable Φ a

point in the 6-dimensional space S defined by

{
(y,ρ) ∈ M×H0(O(4)) : η2(y) = ρ(π(y))

}
.

That S is a smooth subvariety of the 7-dimensional space M ×H0(O(4)) can be seen as

follows. Over the affine patch U0 of P1 where the coordinate z is not ∞, we have

S =
{
(z,y,a0, . . . ,a4) : y2 = a0+a1z+a2z2+a3z3+a4z4} ,

with y as the vertical coordinate on M. If z̃= 1/zand ỹ= y/z2, then (z̃, ỹ) give coordinates

on M over U1=P1−0. There, S is given by ỹ2= a4+a3z̃+ · · ·+a0z̃4. Since ∂ f/∂a0 6= 0 on

M|U0×C5 and ∂ f̃/∂a4 6= 0 on T|U1×C5, where f (z,y,a0, . . . ,a4)= y2−a0−a1z− ...−a4z4

and f̃ (z̃, ỹ,a0, . . . ,a4) = ỹ2 − a4 − a3z̃− ...− a0z̃4, the variety S is in fact smooth as a

subvariety.

We will define an isomorphism of M0(2,−1) onto S by sending Φ to (a(z0),−detΦ),

with z0 and a ∈ H0(O(2)) as above. By definition, a(z0) is a point on M. The point is

determined uniquely by the conjugacy class of Φ, for if
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ψ =




1 d

0 e




is an automorphism of E, in which case d is a section of O(1) and e 6= 0 is a number, then

the Higgs field transforms as

Φ′ = ψΦψ−1 =




a+dc −e−1(2ad−b+cd2)

ec −a−dc


 .

Because (a+dc)(z0) = a(z0), the image of Φ in the variety S remains unchanged by Φ →

Φ′. Since c vanishes at z0, we have (a(z0))
2 = −detΦ(z0), and therefore (a(z0),−detΦ)

is a point on S .

For the other direction, we begin with a point (y0,ρ0) ∈ S ⊂ M ×C5. Choose an

affine coordinate z on P1 such that π(y0) = 0 in this coordinate. By the definition of S ,

y2
0 = ρ0(0), and so we may write ρ0(z) = y2

0+ zb(z) for b(z) a cubic polynomial. This

makes

Φ(z) =




y0 b(z)

z −y0




a representative Higgs field.

Remark 3.3. For a fixed generic ρ, the points (y,ρ) on S are the points on the spectral

curve Xρ. According to formula (1.7), to get (πρ)∗L = O ⊕O(−1) = E on P1 we need

a line bundle L of degree 1 on Xρ. By Riemann-Roch, every such line bundle has a 1-

dimensional space of sections, and so there is a single point in Xρ at which all of the

sections vanish. Now, pulling back (πρ)∗L = E to Xρ gives an evaluation map π∗
ρE → L,

whose kernel is a line bundle on Xρ. This is the bundle of eigenspaces in E with respect
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to Φ = (πρ)∗(L → ηL). The maximal destabilising subbundle O of E is preserved by Φ

when the evaluation map restricted to O is zero. But this is the vanishing of the unique

section of L. Consequently, the defining point of L is the eigenvalue of Φ at the point

where O is an eigenspace. This point is z0, and so L is given by the point a(z0) on Xρ.

3.5 Rank-2 even degree moduli space

The co-Higgs moduli space with degree-0 underlying bundle does not yield such an ex-

plicit description; however, we can still say something about the fibres of the Hitchin

map.

The two choices of underlying bundle are E 1
−1 := O(1)⊕O(−1) or the trivial rank-2

bundle E0 := O⊕O, the latter of which is the generic splitting type. If a pair (E 1
−1,Φ)

is not unstable, then it is strictly stable: any subbundle of nonnegative degree must be

isomorphic to O(1), and so the pair can have no destabilising subbundle of degree 0.

On the other hand, E0 admits semistable but not stable fields Φ: these are the upper-

triangular Higgs fields, in which the three matrix coefficients in the polynomial Φ(z) =

A0 +A1z+A2z2 admit a common eigenvector. The S-equivalence class of such a Φ is

represented by its associated graded object

gr(Φ) =




a 0

0 −a


 ,

for some a∈ H0(O(2)). This form is fixed by the determinant ρ =−a2 and so any fibre

of the Hitchin map has at most one semistable but not stable Higgs field. In fact, the

generic fibre has none, because ρ = −a2 is a disconnected spectral curve. One example
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of a nongeneric fibre is the nilpotent cone over ρ = 0: in addition to stable Higgs fields it

also contains the zero Higgs field for E0, which is semistable but not stable.

To study Higgs fields for E 1
−1, we define a section of the Hitchin map h : M0(2,0)→

H0(O(4)) in the following way: to each ρ ∈ H0(O(4)), we assign the Higgs field for E 1
−1

Q(ρ) =




0 −ρ

1 0


 ,

with the symbol 0 denoting the zero section of O(2), and where 1 is unity. This section

is the genus-0 analogue of Hitchin’s model of Teichmüller space [33:§11], but with our ρ

replacing the quadratic differential in his model.

Proposition 3.1. The section Q is the locus in M0(2,0) of co-Higgs bundles with underlying

bundle isomorphic to E 1
−1 = O(1)⊕O(−1).

Proof. If

Φ =




a b

c −a




is a Higgs field for E 1
−1, then a is a section of O(2) and b is a section of O(4). The entry

c is constant. To study the orbit of this field under an automorphism of E 1
−1, we take a

general automorphism

ψ =




1 d

0 e


 ,

in which d is a section of O(2) and e∈ C∗. Under ψ, the Higgs field is sent to

Φ′ = ψΦψ−1 =




a+d −2ade−1+be−1−d2e−1

e −a−d


 .
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Taking the transformation ψ with e= 1, d =−a, we get

Φ′ = ψΦψ−1 =




0 −2ad+b−d2

1 0


 .

In other words, the conjugacy class of a trace-free Higgs field acting on E 1
−1 is determined

by a unique section ρ =−2ad+b−d2 =−detΦ ∈ H0(O(4)).

thisisheretodeclarethatthisproo f isdone...................................................................

Remark 3.4. For the direct image of a line bundle L on Xρ to be a rank-2 vector bundle of

degree 0 on P1, we need degL = 2, by formula (1.7). On P1, twisting E0 by O(−1) gives

O(−1)⊕O(−1), which has no sections. On the other hand, twisting E 1
−1 by O(−1)

gives O ⊕O(−2), which still has a section. Because the direct image functor preserves

the number of global sections, this is the same as asking whether or not L⊗π∗
ρO(−1) has

sections. The twisted line bundle L⊗π∗
ρO(−1) has degree degL+(−1)degπρ = 2−2= 0.

The only line bundle of degree 0 with a section is the trivial line bundle. Pushing down

the trivial line bundle therefore produces the co-Higgs bundle (E 1
−1,Q(ρ)), while pushing

down any other line bundle gives a Higgs field for E0.

3.6 Nilpotent cones

The fibre in M (2,d) over 0 ∈ H0(O(4)) consists of nilpotent Higgs fields. In the case

of d = 0, we know from Proposition 3.1 that each and every fibre has a distinguished

point represented by (E 1
−1,Φ), where Φ is determined up to its conjugacy class by the

base point ρ ∈ H0(O(4)). Accordingly, this point is represented by (E 1
−1,Q(0)) in the

fibre over 0. The remaining elements of the fibre are isomorphism classes of co-Higgs
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bundles with underlying bundle E0 = O⊕O. A nonzero nilpotent Higgs field acting on

E0 has an image contained in its kernel, and both are isomorphic to O(−k), where k is

some nonnegative integer. The quotient line bundle L in

O(−k)→ O⊕O → L

is isomorphic to O(k), and so Φ is determined by a map Φ̃ : O(k)→ O(−k)⊗O(2), that

is, a section of O(−2k+2). Therefore, a nonzero holomorphic Higgs field only exists

when k≤ 1. At the same time, semistability implies that the degree of the kernel must be

bounded from above by 0. Taking these conditions together, we have k= 0 or k= 1, with

k = 0 for strict semistability and k = 1 for strict stability. In the case of strict stability,

the kernel of Φ is O(−1), and so Φ is defined by a nonzero section of O(−2+2) = O.

In other words, every stable, nilpotent Higgs field acting on E0 is determined by a single

number λ ∈ C. Therefore, the stable Higgs fields of determinant zero embed themselves

as a copy of C=C∗∪{∞} in the degree-0 moduli space. We know, however, that E0 also

admits strictly semistable Higgs fields. These are the nilpotent Higgs fields with kernel

of degree 0. Such a Higgs field is determined by a map from O into O(2). The space of all

such maps is three-dimensional. However, the strictly semistable Higgs fields on E0 are

upper-triangular (so as to admit a common eigenvector), and so they must take the form

Φ =




0 b

0 0




for some global section b of O(2). Respecting S-equivalence, however, we represent the

isomorphism class of (E,Φ) by the associated graded object, which in this case is the zero

Higgs field. Hence, all of the strictly semistable Higgs fields acting on E0 are represented



3.7 The B-field 43

by the trivial co-Higgs bundle, and so the zero fibre in the degree-0 moduli space is a copy

of the projective line P1 = {0}∪C.

In the odd-degree case, we refer to our concrete model from §3.4. Nilpotency gives

a0 = a1 = · · · = a4 = 0 and at the root z∗, detΦ = −a(z∗) = 0. As a result, the nilpotent

cone is the copy of P1 defined by y= 0, a0 = a1 = · · ·= a4 = 0.

3.7 The B-field

Recall from §2.3 that a real closed (1,1)-form B can be used to deform the given complex

structure on E, and that Φ is unchanged by this deformation. This means that the spectral

curve is unchanged, too. If the original (E,Φ) is stable with a generic, connected spectral

curve π : X → P1, then the new (E′,Φ) is stable, too, because the connectedness of X

prohibits Φ-invariant subbundles. (More is true actually: the B-field transform preserves

stability in general, as Hitchin argues in [36:§4.1].) Even though X remains the same,

the change E
ιΦB
7→ E′ means that the spectral line bundle changes from L with π∗L = E to

some other L′ with π∗L′ = E′. Hitchin demonstrates in [36:§4.2] that this induced B-field

transform on the spectral line bundle is L′ = L⊗LB, where LB is a line bundle determined

by B.

For P1, the B-fields come from H1(T∗) =H1(O(−2))∼=C, and so there is essentially a

single generating action. According to formula 1.7, we can take a generic, degree-(r2− r)

line bundle L on the r : 1 spectral curve X ⊂ Tot(O(2)), so that π∗L = O⊕r . The B-field

action on L, which generates a linear flow along Jac(r
2−r)(X), produces on P1 an action
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corresponding to the evolution at a fixed time of three r × r matrices, linked by a system

of differential equations. These are the matrix coefficients of a Higgs field on O⊕r , and

the equations are Nahm’s equations. As we only make these remarks in passing, we

refer the reader to [36:§4] for details, where the connection of this picture to the SU(2)

Bogomolny equations is also elaborated.

3.8 Gauge-theoretic correspondence

In contrast to Nitsure’s geometric-invariant theory construction of the L-pair moduli

space (and the co-Higgs moduli space in particular), M (2,d) can be constructed by an-

alytic methods, as was done by Hitchin for conventional rank-2 Higgs bundles in [33].

While for Higgs bundles the method of [33] is tractable only in rank 2, we can extend

Hitchin’s method to co-Higgs bundles of arbitrary rank using Theorem 3.1.

It is possible to identify co-Higgs bundles over P1 as solutions to certain gauge-

theoretic equations. Higgs bundles in the usual sense arise as solutions to the Hitchin

equations obtained from reducing the Yang-Mills equations to conformally-invariant equa-

tions on a Riemann surface X. More precisely, solutions of the Hitchin equations are

pairs (A,Φ) in which A is a connection on a principal G-bundle P over a compact Rie-

mann surface X, and in which Φ is a (1,0)-form on X taking values in the complexified

Lie algebra bundle of P. We can write down the first Hitchin equation by insisting that

Φ should be holomorphic with respect to the connection:

d′′
AΦ = 0, (3.2)

where d′′
A : C∞(E) → Ω0,1(E) is the holomorphic structure on E induced by A. The
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second equation,

F(A)+ [Φ,Φ∗] = 0,

makes invariant sense as an equation of endomorphism-valued two-forms. In the co-

Higgs case, the Higgs field is an endomorphism-valued vector field, and any sensible equa-

tion will depend upon a map between the canonical and anticanonical bundles of the

curve. This is accomplished through a choice of metric on P1, say g∈ C∞(K⊗ K̄)∼= Ω1,1,

with which we may write down a dual Hitchin equation

F(A)+ [Φ,Φ∗]g2 = 0. (3.3)

We will refer to the equations

F(A)+ [Φ,Φ∗]g2 = 0

d′′
AΦ = 0

collectively as dual (G,g)-Hitchin equations. As we will work exclusively with unitary

connections on vector bundles, we take G= U(r).

We now state two results of [33], theorems 2.1 and 2.7 respectively, that can be

adapted with little change to co-Higgs bundles of arbitrary rank:

Theorem 3.2. Let (A,Φ) satisfy the dual Hitchin equations on P1 and let E be an associated

rank-r holomorphic vector bundle. The co-Higgs bundle (E,Φ) is stable whenever A is irre-

ducible. (The pair (E,Φ) is strictly semistable if and only if A is reducible, and in this case A

reduces to a U(1) solution.)

Theorem 3.3. Let E be a vector bundle on P1, equipped with two irreducible connections

A1 and A2 which appear respectively in solutions (A1,Φ1) and (A2,Φ2) of the dual Hitchin
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equations. By Theorem 3.2, (E,Φ1) and (E,Φ2) are stable co-Higgs bundles. If Ψ : E →

E is an isomorphism that commutes both with the holomorphic structures induced by the

connections and with the Higgs fields, that is,

d′′
A1

Ψ = Ψd′′
A1

Φ2Ψ = ΨΦ1,

then (A1,Φ1) and (A2,Φ2) are gauge-equivalent solutions.

Theorem 3.2 informs us that to each irreducible solution of the equations there is

an associated stable co-Higgs bundle. This also gives us a definition of stability for pairs

(A,Φ): if A is a connection on a vector bundle E, then a pair (A,Φ) is stable if and only

if A is irreducible and Φ is a stable Higgs field for E. Theorem 3.3 equips us with the

desired uniqueness result for solutions up to gauge-equivalence.

For the converse to Theorem 3.2, we turn now to moment maps. In [2], Atiyah

and Bott realise the curvature map µ1 := F : A → Ω2(X,adP) as a moment map for the

action of a gauge group G on the infinite-dimensional affine space A of connections on

P → X. Furthermore, the bracket µ2(Φ) := [Φ,Φ∗] gives a moment map on the space

Ω1,0(X,adP⊗C), in the case where the Higgs field is an endomorphism-valued one-

form on a vector bundle associated to P. When the Higgs field is a vector field, the re-

defined µ2(Φ) := [Φ,Φ∗]g2 gives a moment map taking values in the same space. Thus,

µ(A,Φ) = µ1(A)+ µ2(Φ) is a moment map for G acting on each factor of the infinite-

dimensional Kähler manifold

N = A×C∞(P1;End E⊗O(2)).
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We restrict A to the infinite-dimensional complex submanifold defined by d′′
AΦ= 0. Since

complex submanifolds of Kähler manifolds are Kähler, the restriction of the moment map

remains a moment map for the actio of G on the submanifold. (Abusing of notation, we

use µ for the restricted map, too.)

Our general procedure is to fix a stable co-Higgs bundle (E,Φ) → P1 and then to

consider the equation F + [Φ,Φ∗]g2 = 0 along the orbit of a pair (A,Φ), where A is a

unitary connection on E, and where the orbit is determined by action of the group GC of

complex automorphisms of E (of fixed determinant 1). Recall that if Ψ is a nonzero map

between two co-Higgs bundles, of which at least one is stable, then Ψ is an isomorphism

and both are stable, cf. Remark 1.4. This implies that GC acts freely on the orbit:

Ψ : (E,Φ)→ (E,Φ′) is an isomorphism, and so Ψ belongs to the subspace ofGC generated

by 1E. It follows now from standard symplectic techniques that finding a minimum of

‖µ‖2 is equivalent to producing a solution of µ= 0.

Theorem 3.4. Let (E,Φ) be a stable, trace-free co-Higgs vector bundle on P1; let A be a

unitary, irreducible connection on E; and let g∈ C∞(K ⊗ K̄) be a metric on P1. There is an

automorphism of E of determinant 1, unique modulo unitary gauge transformations, taking

(A,Φ) to a solution of the equation

µ(A,Φ) = F(A)+ [Φ,Φ∗]g2 = 0.

Sketch of proof. Rather than repeat the full substance of the proof here, we wish to high-

light the augmentations required to translate the argument from rank-2 Higgs bundles on

X, a curve of genus at least 2, to rank-r co-Higgs bundles on P1. The argument, which

relies on estimates of norms in Sobolev spaces, can be divided into stages as follows:



48 Co-Higgs bundles on P1

1. We find an L2 bound on F(An), where (An,Φn) is a minimising sequence for

‖µ(A,Φ)‖2 on the orbit of (A,Φ) under the group of L2
2 gauge transformations

in GC.

2. We apply Uhlenbeck’s theorem [58] to obtain a connection A0 to which the An

converge weakly in L2
1.

3. We find an L2
1 bound on the Φn, which tend to a map Φ0 by the weak convergence

theorem.

4. When (E,Φ) is generic (i.e. Φ leaves invariant no subbundles), the weak limit

(A0,Φ0) trivially lies on the orbit of (A,Φ).

5. If (E,Φ) is a general stable pair—possibly with invariant subbundles—we fix the

connection A and take a sequence of generic Φn such that Φn → Φ in the finite-

dimensional vector space H0(EndE(2)). It follows from Step 4 that in the orbit

of each (A,Φn) there is a (An,Ψn) which satisfies the equations, and these converge

because the sequence is bounded in L2. By stability, the limit is in the orbit of

(A,Φ).

Steps 1 and 2 proceed almost identically to Hitchin’s exposition in [33]. The only

exception is the argument’s invoking of the identity

Tr(AA∗−A∗A)2 = 4Tr(AA∗)2−4|detA|2 ,

which holds for any 2×2 trace-free matrix A, and from it the inequality

‖[A,A∗]‖2+4|detA|2 ≥ ‖A‖4.
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In our case, where the representative matrix of a Higgs field at a point is of arbitrary

rank, we take a nonzero matrix A and normalise it: B = A/‖A‖. We note that [B,B∗]

and the numbers TrBk, k = 1, . . . , r , cannot all be zero. (If the commutator were zero,

then B would be diagonalisable. If the traces of all the powers of B were zero, then the

diagonal elements of B would be zero, and so B itself would be zero.) On the unit sphere

‖B‖= 1, the function f (B) = ‖[B,B∗]‖2+∑r
1‖TrBk‖4/k has a minimum c> 0, and so we

may write

‖[A,A∗]‖2+
r

∑
1

‖TrAk‖4/k ≥ c‖A‖4

for the original A. This latter inequality holds even if A= 0, and since the numbers TrAk

are coefficients of the characteristic polynomial, it also holds under conjugating A by

automorphisms. The remainder of steps 2 and 3 proceed as in Hitchin’s article.

In Step 4, we define an operator

d′′
AnA1

: Ω0(P1;E∗⊗E)→ Ω0,1(P1;E∗⊗E)

by applying the connections An and A1 to the E∗ and E factors, respectively. As the

An converge weakly in L2
1 to A0, we have d′′

A0A1
= d′′

AnA1
+βn in which βn → 0 weakly in

L2
1. Elliptic estimates are used to find a L2

1-weakly-converging sequence ψn : (An,Φn) →

(A1,Φ1) of complex automorphisms, each term of which satisfies the identities d′′
AnA1

ψn =

0 and Φ1ψn−ψnΦn = 0, and such that the weak limit ψ is nonzero. Using the fact that

ψn and Φn converge weakly in the compact subspace L2
1 ⊂ L4, it is argued that, in the

limit,

Φ1ψ−ψΦ0 = 0 and d′′
A0A1

ψ = 0.

Now, if ψ were an isomorphism, then it would be the required complex gauge transfor-
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mation to place (A0,Φ0) on the same orbit as (A1,Φ1). If not, then it maps E into a

proper subbundle U ⊂ E, holomorphic with respect to d′′
A0

. Furthermore, U is invariant

by Φ1. Since (E,Φ1) is stable, this is impossible if (E,Φ) has no nontrivial invariant

subbundles. By Theorem 3.1, there is a Zariski open set of Higgs fields with this prop-

erty. For a generic Φ1, (A0,Φ0) is therefore on the same orbit as both (A1,Φ1) and

(A,Φ), and is a minumum for the functional ‖µ‖2. This gives a solution to the equation

F +[Φ,Φ∗]g2 = 0.

With regard to Step 5, we add that if the weak limit of the sequence (An,Ψn) of

solutions is (A0,Ψ0), then it is possible to deduce from L2 bounds that there exists a

nonzero automorphism ψ of E for which ψΦ−Ψ0ψ = 0. The pair (A0,Ψ0) is stable by

Theorem 3.2, since it is a solution, and the pair (A,Φ) is stable by assumption. It follows

from the “simple” property of stability that ψ is an isomorphism and therefore the two

pairs are gauge-equivalent. This completes the proof.

thisisheretodeclarethatthisproo f isdone...................................................................

Since Theorem 3.1 guarantees the existence of stable co-Higgs bundles (E,Φ) we

therefore have solutions of the co-Higgs equations, by Theorem 3.4. The solution space

modulo the group of gauge transformations is isomorphic to M (r,d) for some fixed

determinant O(d) ∼= detE, although making this identification requires the use of slice

theorems and elliptic estimates as in [33:§5].

We mention in passing that the dimension of the moduli space of stable co-Higgs

bundles can be computed independently of Nitsure’s calculation, by linearising the field

equations and then applying the Atiyah-Singer index theorem to the resulting elliptic

complex. The vector space of infinitesimal deformations is the first cohomology group
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of the elliptic complex, whose zero-th and second cohomologies can be shown to vanish,

and so h1 and the topological index of the elliptic complex are the same (up to sign).
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CHAPTER 4

Betti numbers of the P1 moduli

space

We build on results of the previous chapter to study the topology of M (r), the moduli

space of stable co-Higgs bundles of rank r on P1. We follow the approaches of Hitchin

[33:§7] and of Gothen [21, 22] for the rank-2 and rank-3 Higgs bundle moduli spaces,

respectively. They use a moment map for the action (E,Φ)
θ
7→ (E,eiθΦ) of a circle S1 ⊂C∗

on the moduli space. Conveniently, this moment map is a perfect Morse-Bott functional.

We use the same functional here to study the circle action on M (r) for small values of r .

To study the critical points of the circle action and the corresponding critical strata

of the moduli space, we need to understand co-Higgs bundles of a particular form: holo-

morphic chains. First, we will show how using Morse theory to pursue the topology of

M (r) gives rise to these chains.
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4.1 Morse theory

No effort is required to extend the Morse theory for co-Higgs bundles to more general

pairs of the form (E,Φ) with Φ∈H0(P1; EndE⊗O(t)) for an arbitrary line bundle O(t).

We refer to such an object as an O(t)-twisted Higgs bundle on P1, or simply a twisted Higgs

bundle when t is understood. For every t ≥ 0, there exists a coarse moduli space Mt(r,d)

of rank-r and degree-d semistable S-equivalence classes, and each is a special instance of

Nitsure’s moduli space [46:Prop.7.1(c)]. For t = 0, the only stable pairs occur in rank 1,

and so we shall consider positive t only. Smoothness for Mt(r,d) is subject to the usual

numerical condition: the space admits the structure of a smooth quasiprojective variety

when the rank and degree are coprime. For the most part, we will work with general t,

specialising to the co-Higgs case of t = 2 towards the end.

All remarks below are made under the assumption (r,d) = 1.

Keeping with our convention, we denote by A the infinite-dimensional Kähler man-

ifold of connections on a fixed principal bundle P→ P1. Assuming that P has structure

group U(r), denote by E the rank-r C∞ vector bundle associated to P. By analogy with

[33:§7], we can put a Kähler metric on the product N r
t =A×Γ(P1;EndE(t)), by defining

g((Ψ1,Φ1),(Ψ2,Φ2)) = 2i
∫

P1
tr(Ψ∗

1Ψ2+Φ1Φ∗
2).

This form is invariant under the action of the gauge group, and so descends to a metric

on the moduli space Mt(r) = (N r
t/G)s; here, G is the gauge group of automorphisms of

E, and “s” indicates that we are retaining only the stable equivalence classes.

The metric gives us a norm map for the Higgs field of a pair:

η(A,Φ) :=
1
2
‖Φ‖2.
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This map is proper, which follows from applying Uhlenbeck’s theorem to solutions

of the dual Hitchin equations, as in the previous chapter.

Now consider a circle S1 =
{

eiθ : θ ∈ R
}

in C∗. It acts on Mt(r) by rotating the Higgs

fields:

(A,Φ) 7→ (A,eiθΦ).

This action clearly preserves the metric g, as eiθΦ(eiθΦ)∗ = eiθ−iθΦΦ∗ = ΦΦ∗.

The map −η, which is constant on orbits of the circle action, is a moment map for

this action. Since Mt(r) is a (real) Kähler manifold, Frankel’s theorem in [15:p.5] tells us

that η is furthermore a nondegenerate perfect Morse-Bott function, so that the Poincaré

polynomial in ordinary cohomology of the smooth variety Mt(r,d) is given by

P(Mt(r,d),z) = ∑
N

zβ(N)P(N,z), (4.1)

where the N are the critical subvarieties of η; β(N) is the Morse index, that is, the (real)

rank of the subbundle of the normal bundle to N on which the Hessian of f is negative

definite; and P(N,z) is the Poincaré polynomial of N.

Therefore, finding the Poincaré polynomial of Mt(r,d) amounts to the following

programme:

1. Identify the (stable) critical pairs (E,Φ) of rank r and degree d on P1.

2. Compute their Morse indices — we will show how to do this by studying the

tangent space to the moduli space.

3. Find Poincaré polynomials for the critical subvarieties.
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4.1.1 Holomorphic chains

If we let ω(Y,Z) = g(IY,Z) be the symplectic form associated to the metric g, where I is

the complex structure on Mt(r) and X is the vector field on Mt(r) generated by the circle

action, then we have

dη = −2ιXω.

This says that a critical point of η is precisely a point where X vanishes — in other words,

a fixed point of the circle action.

On N r
t , the only fixed point of the S1-action is Φ = 0. On the stable moduli space

Mt(r) = (N r
t/G)s, there are nontrivial fixed points: (A,Φ) is a fixed point if there ex-

ists a one-parameter family of gauge transformations Ψ(θ) under which Ψ(θ) · (A,Φ) =

(A,Ψ−1(θ)ΦΨ(θ)) = (A,eiθΦ). This family is generated infinitesimally by

ϑ :=
dΨ(θ)

dθ

∣∣∣∣
θ=0

,

and ϑ satisfies

dAϑ = 0, (4.2)

as in [22:Eqn.2.15]. Because ϑ is covariant constant, the eigenvalues Λk ∈ C of ϑ acting

on E are constant. Therefore, E decomposes globally as a direct sum of eigenbundles of

ϑ,

E =
n⊕

k=1

Uk,

with ∑n
k=1rkUk = r . If we differentiate both sides of Ψ−1(θ)ΦΨ(θ) = eiθΦ and evaluate

at θ = 0, we get

[ϑ, Φ] = iΦ, (4.3)
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just as in [22:Eqn.2.16]. If we allow both sides of (4.3) to act on an eigen-subbundle U j

with eigenvalue Λ j , we get

ϑ(ΦU j)−Λ jΦU j = iΦU j

ϑ(ΦU j) = (i+Λ j)ΦU j .

This says that ΦU j is contained in an eigen-subbundle for ϑ, and that the eigenvalue for

that subbundle is (i +Λ j). We can re-index the eigenbundles as necessary so that the

eigenbundle containing ΦU j is U j+1, and so Λ j+1 = i +Λ j . The effect is that Φ acts with

“weight 1” on the eigenbundles for ϑ: the Higgs field takes the eigenbundle U j to U j+1,

twisted by O(t), and consecutive eigenvalues differ by i.

We now have a characterisation of the behaviour of critical points: a pair (E,Φ) with

E a holomorphic vector bundle on P1 and Φ ∈ H0(EndE(t)) is a critical point of the

Morse functional η if and only if

1. E decomposes as a sum of some number of holomorphic subbundles, which are

indexed by ascending consecutive integers; and

2. Φ acts with weight 1 on these subbundles, taking one subbundle into the next and

twisting by O(t) each time.

Definition 4.1. Let (E,Φ) be a pair in which E =U1⊕·· ·⊕Un is a holomorphic vector

bundle on P1 and Φ ∈ H0(EndE(t)) is an OP1-linear map such that

Φ : U j −→ U j+1(t)

for 1 ≤ j ≤ n−1. Put r j := rkU j . We refer to the pair (E,Φ) as a O(t)-twisted holo-

morphic chain on P1 of type (r1, . . . , rn). The number n is the length of the chain. A
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holomorphic chain is (semi)stable if it is (semi)stable as an O(t)-twisted Higgs bundle.

Similar objects have appeared in the literature many times. For instance, a KX-twisted

holomorphic chain on a curve of positive genus is called a “complex variation of Hodge

structure”, cf. Simpson [53:§1,p.868]. When n = 2, a holomorphic chain is usually re-

ferred to as a “holomorphic triple”. Holomorphic triples on curves of genus g≥ 2 have

been carefully studied by Bradlow, García-Prada, and Gothen [10]. Additionally, Álvarez-

Cónsul has written a survey on the moduli problem of length-n holomorphic chains [1],

although P1 is not dealt with explicitly.

Remark 4.1. Clearly, a holomorphic chain of length n is nilpotent of order n. In terms

of the moduli space, the critical points of the Morse function are contained exclusively

within the nilpotent cone, i.e. the Hitchin fibre over 0.

There is a basic property of holomorphic chains which we use over and over again.

It is the germ of many arguments to follow, and its use will typically be implicit:

Proposition 4.1. Let

Φ : Ui → Ui+1(t)

be a holomorphic chain of length n. For each k, 1≤ k≤ n−1, define Φ[k] to be the shift of Φ

by k−1 positions, i.e. Φ[k] is the restriction of Φ to Uk⊕·· ·⊕Un. If Φ is a stable chain, then

for 1≤ k ≤ n−1, the shifted chains Φ[k] are stable with respect to the stability condition on

the original chain.

Remark 4.2. As in the case of vector bundles, stability conditions for twisted Higgs

bundles and chains are parametrised by Q. Instead of asking for a bundle to be stable



4.1 Morse theory 59

with respect to its own slope, we could ask for it to be stable with respect to some other

one. We say that a bundle is α-stable if all its proper subbundles have slope less than

a fixed rational (or real) number α, and we extend this notion in the obvious way to

Higgs bundles. This is what we mean in the “with respect to” phrase in Proposition

4.1: the subbundle Uk ⊕ ·· ·⊕Un with the restricted Higgs field is µE-stable, where E =

U1⊕ ·· ·⊕Un. The stability condition α is the analogue for our chains of the Bradlow-

Thaddeus stability parameter arising in the study of vortex equations and holomorphic

triples [18], [57], [10:Defn.2.1].

Proof of Proposition 4.1. The bundle Uk⊕·· ·⊕Un cannot have a Φ-invariant subbundle

with slope larger than µE, as this would be a destabilising subbundle of (E,Φ). Further-

more, Uk⊕·· ·⊕Un is itself a Φ-invariant subbundle of E, and so its slope is less than µE.

Therefore, the restricted chain is µE-stable.

thisisheretodeclarethatthisproo f isdone...................................................................

Step 1 of the programme for computing Poincaré polynomials can now be rephrased

in terms of holomorphic chains. As holomorphic bundles on P1 are sums of line bundles,

and so in particular the eigenbundles of a chain are sums of line bundles, it is easy to write

down many holomorphic chains. We must, however, restrict our attention to stable ones.

Later in this chapter we will develop methods for constructing stable holomorphic chains

of any rank and degree.

4.1.2 Automorphisms of a holomorphic chain

Let (E,Φ) be a holomorphic chain, and suppose that Ψ is an automorphism of E com-

muting with the circle action, i.e. an automorphism preserving the eigenbundles of ϑ.
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Let φi and ψi be the components of Φ and Ψ, respectively, acting on the eigenbundle Ui .

Then the conjugation action of Ψ on Φ transforms φi as

φi 7→ ψ−1
i+1 · φi · ψi .

That is, each φi is a (twisted) holomorphic triple Ui →Ui+1(t), and elements of its equiva-

lence class are determined by multiplication on the left by an automorphism of Ui+1 and

multiplication on the right by an automorphism of Ui . Therefore, the isomorphism class

of a holomorphic chain, as a twisted Higgs bundle, is determined by the isomorphism

classes of its components, considered as holomorphic triples.

This begs the question of whether the moduli space of holomorphic chains of a fixed

length n can be constructed from moduli spaces of holomorphic triples. The stability

condition becomes very complicated if one attempts to “break it up” in terms of triples.

One must consider not only if a triple has destabilising sub-triples, but also how the

images of its sub-triples interact with stability further along the chain. It is better to

consider sub-chains of arbitrary length, and this is the approach we take in later sections,

when we introduce the quiver point of view.

In the meantime we will determine how to compute the Morse index of a holomor-

phic chain, using first-order deformation data.

4.1.3 Computing the Morse index

In [22:§2.3.2], Gothen shows how to read off the Morse index of a critical point from

the action of the infinitesimal gauge transformation ϑ on the Zariski tangent space to the

moduli space. This method is particularly valuable for twisted-Higgs moduli spaces on
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P1 because his argument does not rely on the symplectic geometry of the Higgs bundle

moduli space, in contrast to Hitchin’s argument in [33:§7].

Recall from §3.1 that first-order deformations near a stable co-Higgs bundle on P1

are determined by

0−→ E1,0 −→H1
(E,Φ) −→ E0,1 −→ 0,

where

E1,0 =
H0(EndE(2))

im H0(EndE)
[−,Φ]
−→ H0(EndE(2))

,

E0,1 = ker H1(EndE)
[−,Φ]
−→ H1(EndE(2)).

Replacing the number 2 with t throughout, we have the H1 for Mt(r,d). We can opt

to think of H1
(E,Φ) as the tangent space T(A,Φ)S to the solution space S of the O(t)-twisted

version of equations (3.2,3.3). At the end of Chapter 3, we mention that linearising these

equations results in an elliptic complex; therefore, H1 admits harmonic representatives.

In particular, we get an L2-inner product on H1, which gives us a splitting, namely into

E1,0 and E0,1. Furthermore, we can always choose the circle action so that its infinitesi-

mal action has eigenvalues of the form Λ j = iλ j for real numbers λ j , as in [22:p.18].

Proposition 4.2. If ϑ acts with eigenvalues (i λ, i ρ) on an infinitesimal deformation (Ȧ,Φ̇),

then the Hessian of η has eigenvalues (−λ,1−ρ).

The proof carries over with no modification, and so we refer the reader to the original

[22:§2.3.2,pp.18–19].
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Deformations of bundles

Proposition 4.2 can be interpreted in the following way: since all positive weights for

the action of ϑ on Ȧ produce a negative eigenvalue for Hess(η), the contribution to the

Morse index is the dimension of the subspace of

E0,1 = ker H1(EndE)
[−,Φ]
→ H1(EndE(t))

whose elements act with positive weight on the eigenbundles of ϑ. We denote this integer

by β0,1(E,Φ).

Claim 4.1. At a stable point (E,Φ), the map H1(EndE)
[−,Φ]
−→ H1(EndE(t)) is a surjection.

Proof. The map is surjective if and only if the Serre-dual map H0(EndE(−t −2))
[Φ′,]
−→

H1(EndE(−2)) is injective, where Φ′ denotes the dual of Φ. Let Ψ be an element of

the kernel of this map. Choose a nonzero s∈ H0(O(t +2)). The section sΨ is an endo-

morphism of E that commutes with Φ′. But Φ′ is stable if and only if Φ is stable, and

so sΨ must be constant by the “simple” property of stability. However, for all t > 0, s

vanishes only along a divisor of points, and so sΨ = 0 and in particular Ψ = 0. Therefore,

ker H0

(
EndE(−t −2))

[Φ′,]
−→ H1(EndE(−2)

)
= 0.

thisisheretodeclarethatthisproo f isdone...................................................................

The validity of the claim allows us to compute β0,1(E,Φ) as follows: first calculate

the dimension of the subspace H1
+(EndE(t)) of H1(EndE(t)) whose elements act with

positive weight, and then the dimension of the subspace of H1
+(EndE) of H1(EndE)

whose elements acts with positive weight. Then β0,1(E,Φ) = h1
+(EndE)−h1

+(EndE(t)).
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Deformations of Higgs fields

The other contribution to the index of a fixed point comes from deformations of the

Higgs field, which are parametrised by

E1,0 =
H0(EndE(t))

im H0(EndE)
[−,Φ]
−→ H0(EndE(t))

.

We can prove a similar fact here, namely that the the map in the denominator is in-

jective. Therefore, because the eigenvalue of the Hessian of η acting on E1,0 is 1−µ, we

compute the contribution to the Morse index by calculating the dimension of the sub-

space of H0(EndE(t)) consisting of infinitesimal Higgs fields of weight at least 2 and at

most n−1, and then subtracting from this the dimension of the subspace of H0(EndE)

consisting of endomorphisms of weight at least 1 and at most n−2. This gives us a non-

negative integer β1,0(E,Φ), and the total Morse index is

β(E,Φ) = 2β1,0(E,Φ)+2β0,1(E,Φ),

where the multiplication by 2 converts the index into a real one.

Remark 4.3. This procedure can be turned into an algorithm for computing the Morse

index of an arbitrary stable chain. We give such an algorithm in MAPLE code in the

Appendix.

4.2 Global minimum of the Morse functional

Here we find the first tangible difference between the Higgs case and co-Higgs / twisted

Higgs case, regarding the S1 Morse theory. On the Higgs bundle moduli spaces for curves

of genus g≥ 2, the minimum of the Morse functional is obvious: Φ = 0. However, for
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twisted Higgs moduli spaces on P1, the answer is not this, and is not so cut and dry. When

the rank is larger than 1, the decomposition of E into line bundles means that (E,0) is

either semistable (but not stable) or unstable. When (r,d) = 1 there are no semistable

points in the moduli space; consequently, there is no point with Φ = 0.

Theorem 4.2. A η-minimising point in Mt(r,d) has the generic splitting type. If d = −1,

then its chain type is (r1, r2, . . . , rn) = (r1, t(t + 1)n−3, . . . , t(t + 1)0,1), with ∑ r i = r and

1< r1 < t(t +1)n−2.

Proof. Minima of the Morse functional belong to the Morse stratum at the lowest index.

To find the splitting type of a minimising (E,Φ), we need to first minimise the contri-

bution to the Morse index coming from deformations of the bundle. Recall that this

contribution is given by

β0,1(E,Φ) = h1
+(EndE) − h1

+(EndE(t)) ≥ 0,

where the “+” subscripts mean the same as they do above. For t > 0, h1
+(EndE) and

h1
+(EndE(t)) are never equal, and so β0,1(E,Φ) = 0 if and only if h1

+(EndE) = 0. We

will show that h1
+(EndE) = 0 is attainable, and that this only occurs when E has the

generic splitting type. If r = 1, this number is zero anyway, and the splitting type is just

its degree, i.e. it is automatically the generic one. So, we concentrate on r > 2. For this

case, we note that the chain type (r) can be safely eliminated — this is the case where the

Higgs field is identically zero, which as argued above is always unstable. Hence, we can

assume that the chain length n is always at least 2.

We can study h1
+(EndE) at the level of sub-line bundles of the various eigenbundles of

the chain. If L1
∼= O(a1) is a line bundle in Ui and L2

∼= O(a2) is a line bundle in U j , then
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by the Riemann-Roch theorem their contribution to h1
+(EndE) is a1−a2−1, but if and

only if j > i and a1−a2−1> 0. Therefore, h1
+(EndE) = 0 when degL ≤ degM+1 for

every sub-line bundle L ⊂Ui and every sub-line bundle M ⊂U j , for every i < j . In partic-

ular, this condition must hold for j = n. Suppose that the Grothendieck numbers of Un

contain an integer less than −1. Because of the inequality degL ≤ degM+1, this means

that no integer in the decompositions of any U1, . . . ,Un−1 can be greater than −1. If r >

|degE|, there is an immediate contradiction here concerning the degree of E. Therefore,

in this case the splitting type must be (0, . . . ,0,−1, . . . ,−1), which is the generic one. If

r < |degE|, then it follows from stability. Start by giving the bundle the generic splitting

type, which looks in this case like (⌈degE/r⌉, . . . ,⌈degE/r⌉,⌊degE/r⌋, . . . ,⌊degE/r⌋),

with Un made up only of line bundles of degree ⌊degE/r⌋ (possibly only one). If we

perturb this splitting in any way, i.e. lowering one degree while raising another, then

either a line bundle in a U j for some j < n will not be bounded by ⌊degE/r⌋+1 and/or

a line bundle in Un will have degree ⌈degE/r⌉. Consequently, we would have a nonzero

Morse index and/or an unstable bundle. This proves the first statement in the theorem.

Now, assume d =−1 exclusively, which entails a splitting type of (0, . . . ,0,−1). It is

automatic that the last integer in the chain type is rn = 1, since rn > 1 would imply that

the n-th eigenbundle Un contains at least one copy of a (destabilising) trivial line bundle.

Therefore, Un
∼= O(−1). Continue by induction: assume that if (E,Φ) minimises η and

has length k as a chain, then the type is as stated in the theorem. Now, suppose we have a

minimum of length k+1. Consider the direct sum E2 =U2⊕·· ·⊕Uk+1 of all of the eigen-

subbundles save for the one of lowest index, together with the restricted Higgs field, that

is, the pair (E2,Φ[2]). By Proposition 4.1, this chain is µE-stable, but we need something
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stronger — that it is stable in the usual sense. Assume the contrary. Then there exists a

destabilising Φ[2]-invariant subbundle of E2, and this subbundle must be isomorphic to

O⊕p⊕O(−1) for some 1≤ p< r − r1. Therefore,
−1

p+1
>

−1
r − r1

, and so p> r − r1−1.

But since p is an integer, this is a contradiction. Because (E2,Φ[2]) is stable, it determines

a point in the moduli space Mt(r − r1,−1), and its Higgs field is a length-k chain that

minimises the Morse function on Mt(r − r1,−1). We have by hypothesis that its chain

type is (t(t +1)k−2, . . . , t,1). This establishes that the original length-(k+1) chain is of

type (r1, t(t +1)k−2, . . . , t,1).

To figure out the range r1 can occupy, we need to check which constraints the min-

imality places on r1. Because E has the generic splitting type, β0,1 = 0 regardless of

the value of r1, and so we turn to deformations of the Higgs field. We can decompose

β1,0(E,Φ) as β1,0(U1)+β1,0(E2,Φ[2]), where β1,0(U1) is the contribution from infinites-

imal Higgs fields that act on U1 with weight at least 2, modulo endomorphisms that act

on U1 with weight at most k− 1. Because the sub-chain (E2,Φ[2]) ⊂ (E,Φ) is stable

and minimising, we have β1,0(E2,Φ[2]) = 0, and so we must have β1,0(U1) = 0. We can

expand β1,0(U1) as follows:

β1,0(U1) =

{(
k

∑
j=3

h0((O⊕r1)∗⊗O(t)⊕t(t+1)k− j
)

)
+h0((O⊕r1)∗⊗O(−1+ t))

}

−

{
k

∑
j=2

h0((O⊕r1)∗⊗O⊕t(t+1)k− j
)

}

=
k

∑
j=3

r1t(t +1)k− j+1+ r1t −
k

∑
j=2

r1t(t +1)k− j

= r1t

(
k

∑
j=3

(t +1)k− j+1+1−
k+1

∑
j=3

(t +1)k− j+1

)

= r1t
(
1− (t +1)0)

)
,
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which is 0 for any r1.

The only restrictions that remain come from stability, and ultimately linear algebra.

If r1 is too large, then there will necessarily be a nontrivial kernel for Φ : U1 → U2(t).

Since U2(t)=O(t)⊕t(t+1)k−2
has a (t(t+1)k−1)-dimensional space of sections, for any p> 0

the images in U2(t) of (t(t +1)k−1+ p)-many sections of O will necessarily have linear

relations; specifically, at least p sections will be annihilated. This corresponds to the

invariance of at least p copies of the trivial line bundle, which would destabilise the

chain. Therefore, r1 < t(t +1)k−1.

thisisheretodeclarethatthisproo f isdone...................................................................

Remark 4.4. A statement about the chain type of a minimal Higgs field for d < −1 is

more complicated because it is not clear a priori what the last integer in the chain type

should be. For instance, d = −2 has generic splitting type (0, . . . ,0,−1,−1) and so the

last bundle in the chain can be rank 1 or rank 2; the number of choices grows as d grows.

However, we provide some evidence later on that the Poincaré polynomial is independent

of d anyway, so long as (r,d) = 1.

Theorem 4.2 tells us two properties which, should they be satisfied, guarantee a min-

imum. But it does not say whether stable Higgs fields actually exist with such properties.

At least in the case of d =−1, it turns out that the generic Higgs field with the necessary

chain type is stable. This is easy to see: as we alluded to in the proof of Theorem 4.2, the

stability condition for these objects is equivalent to linear independence. If at any point

in the chain the component of the Higgs field there, say φi , has a kernel of degree −1 or

less, then this is not a destabilising situation, because the degree of E is −1 while the rank



68 Betti numbers of the P1 moduli space

of the kernel is an integer r ′ < r , and so −1/r ′ < µE. The only question is whether the

Higgs field preserves any degree-0 subbundles. But the numbers in the chain type

(t(t +1)n−1, t(t +1)n−2, . . . , t(t +1)0,1)

are such that any set of linearly-independent sections of one eigen-subbundle is always

mapped into a larger space of sections for the next, and so a nonzero, linear chain map

will not annihilate any of these sections. Therefore, every Higgs field that is nonzero

everywhere along the chain (except of course at Un) is stable.

Example 4.1. For degree d = −1 and t = 2, we list the first dozen minimising chain

types.

Table 4.1.

Rank Chain type Rank Chain type

1 (1) 7 (4,2,1)

2 (1,1) 8 (5,2,1)

3 (2,1) 9 (6,2,1)

4 (1,2,1) 10 (1,6,2,1)

5 (2,2,1) 11 (2,6,2,1)

6 (3,2,1) 12 (3,6,2,1)

thisisheretodeclarethatthisproo f isdone......................................................................◊

For critical points more general than the minimum, it is useful to know that we

may view a holomorphic chain as a directed graph, or quiver. The idea of viewing a

holomorphic chain as a quiver is due to Gothen in his work on the rank-3 Higgs bundle
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topology. He recognised these quivers as special instances of Alastair King’s “Q-bundles”

[23].

There are certain advantages to the quiver viewpoint, especially in the construction

of holomorphic chains on P1, as the Birkhoff-Grothendieck decomposition makes these

chains particularly combinatorial. A key feature is that we can define a stability condition

on the quiver of a chain, such that if the quiver is unstable, then all of the holomorphic

chains represented by that quiver are unstable too. At first glance there are many holo-

morphic chains on P1. Examining their quivers allows us to extract a more reasonable

short-list of candidates for Step 1 of our programme.

4.3 Quiver chains

We denote the vertex set and the edge set of a finite graph G by V(G) and A(G), respec-

tively.

Definition 4.3. Fix a positive integer t and nonnegative integers r1, . . . , rn. By a quiver

chain Q of type (t; r1, r2, . . . , rn), we mean an (n+1)-tuple

(B1,B2, . . . ,Bn; deg)

in which

1. Bi is a finite graph, called the i-th block, with |V(Bi)|= r i and A(Bi) =∅;

2. if i < j and r i > 0 and r j > 0, then rk > 0 for all k such that i < k< j ;

3. deg :
n⋃

i=1

V(Bi) −→ Z is a function assigning to each vertex ν an integer called the

degree of ν;
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4. there is an arrow starting at ν ∈ V(Bi) and terminating at ω ∈ V(B j) if and only if

j = i +1 and −deg(ν)+deg(ω)+ t ≥ 0. This number is called the degree of the

arrow taking ν to ω.

The word “degree” is not meant to cause confusion with the typical use of “degree”

in graph theory. Rather, it is inspired by its use for vector bundles, as will hopefully

become apparent.

Not every quiver gives rise to a quiver chain, because of the restrictions on arrows:

arrows originating at a vertex in a block Bi only terminate at vertices Bi+1, and so there

are no loops, no arrows that go backward to blocks of lower index, and no arrows that go

farther forward than the next block. The sum of the degrees of the vertices is the degree

of Q, i.e. degQ := ∑
ν∈V(Q)

deg(ν).

Example 4.2. A permissible quiver chain of degree −5 and type (2; 2,3,2). The vertical

dashed lines distinguish the three blocks from one another.

0

1

0

0

−1

−2

−3

2

2

1

1

1

0

0

0

1

0

thisisheretodeclarethatthisproo f isdone......................................................................◊
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When t is understood — or unimportant — we write only (r1, r2, . . . , rn) for the type.

The number of blocks, n, is called the length of the chain.

We only study quiver chains of negative degree, and always assume that degQ and ∑ r i

are coprime.

There are a couple more definitions that we need for later. Let G be any subgraph of

a chain quiver Q. We use M(G) for the image of G: this is the set of vertices in Q that are

the heads of arrows originating in G. If G is a subgraph of a single block Bi (i < n), then

M(G) ⊆ V(Bi+1). For t sufficiently large, M(G) = V(Bi+1). If G⊆ Bn, then M(G) = ∅.

More generally, Mn−i+1(Bi) =∅, where Mn−i+1 is M applied successively, n− i+1 times.

Let p be any integer. We define the p-dimension of a subgraph G to be the integer

Γp(G) := ∑
ν∈V(G)

(degν+1+ p).

4.3.1 Quiver stability

We now introduce a sub-object notion for quiver chain. We omit t, taking it to be fixed.

Definition 4.4. Let Q be a quiver chain. The subchain 〈ν〉 generated by a vertex ν ∈

V(Bi) is the collection of vertices {ν} ∪ M{ν} ∪ M(M{ν}) ∪ · · ·∪Mn−i {ν}, together

with all of the arrows in Q whose head and tail are in this collection.

Subchains generated by several vertices are unions of subchains of the vertices, but we

do not need these for our purposes. The important point is: we are free to choose where

to start a subchain, but have no freedom as to where it ends. Once we choose the starting

vertex, we must follow all the arrows departing from it, and we move along rightward

through the graph until there are no more arrows.
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Example 4.3. Below is a quiver Q with degQ = −1 and type (2; 2,3,3,2), with a sub-

chain selected. The root is marked in red.

....

2

2

1

0

0

−1

−1

−2

−1

−1

thisisheretodeclarethatthisproo f isdone......................................................................◊

To discuss stability of quiver chains, we need a notion of “slope” for a subchain akin

to Mumford’s condition for a subbundle. For our purposes, a suitable notion of slope

requires a subtler notion of degree than the obvious tallying of degrees of vertices.

Definition 4.5. Consider a vertex ν in a quiver chain Q. The subchain degree of ν is an

integer, denoted deg〈ν〉 and defined by the following algorithm:

1. Start with deg〈ν〉 = degν. Put ν0 := ν. If there is no arrow from ν0 into the next

block, stop. Otherwise, proceed.

2. If the image M{ν0} in the next block is a single vertex, then add to deg〈ν〉 the de-

gree of the vertex. If M{ν0} is made up of more than one vertex, then add to deg〈ν〉

the number degν0− t. If there are no arrows leaving M{ν0}, stop. Otherwise, set

ν1 to be the vertex of smallest degree in M{ν0}.

3. Apply the previous step to ν1, and repeat until we reach a vk with M{νk}=∅.
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The number of blocks traversed by the algorithm, including the block containing ν, is

denoted by R(ν).

This definition might seem curious; however, it will make sense in the context of

the next section. (We will not stop the reader from jumping to Example 4.4, where the

motivation surfaces.)

By the slope of the parent quiver Q we mean

µ(Q) :=
degQ

r1+ · · ·+ rn
.

By the slope of the subchain at ν we mean

µ〈ν〉 :=
deg〈ν〉
R(ν)

.

Definition 4.6. For a real number α, a quiver chain is said to contain an α-bottleneck if

a block has a subgraph G whose vertices have degrees all larger than α, and if Γt(M(G))<

Γ0(G). The width of the bottleneck is the number of vertices in G.

Finally, we come to the definition of a stable quiver chain.

Definition 4.7. For a real number α, we say that a quiver chain Q is α-stable when

µ〈ν〉 < α for every vertex ν ∈ Q whose subchain is proper (i.e. not all of Q), and there

exists no α-bottleneck in Q of any width. Otherwise, it is α-unstable.

Definition 4.8. We say that a quiver chain is stable if and only if it is µ(Q)-stable, and

unstable otherwise.

Remark 4.5. Whether Q is stable or not depends partially upon the parameter t ∈Z. The

choice of t impacts the permissibility of arrows, which in turn influences the number of
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quiver subchains. For larger t there are generally more subchains to check. Because degQ

and ∑ r i are assumed coprime, we bypass the need for a semistability notion, although its

phrasing would be obvious.

4.3.2 Connection to holomorphic chains

A quiver chain can be interpreted as representing a family of holomorphic chains.

• Each vertex of the quiver represents a line bundle on P1.

• The degrees of the vertices in the quiver are the degrees of the line bundles in

the Birkhoff-Grothendieck decomposition of the underlying bundle E. This deter-

mines E up to isomorphism.

• The degrees of the vertices in a block Bi are the degrees of the line bundles in the

Birkhoff-Grothendieck decomposition of the eigen-subbundle Ui ⊂ E.

• Because degQ < 0 by assumption, we have degE < 0 and µ(E)< 0.

• The arrows of the quiver determine how the Higgs field Φ ∈ H0(EndE(t)) can

transform E.

Example 4.4. Consider the following holomorphic triple with type (2; 1,2):

O
Φ

−→




O(−1)

⊕

O(−1)




⊗O(2).

The Higgs field must be nonzero, or else O will be destabilising. But what is the image

of O? We need for the image of O in O(1)⊕O(1) to be saturated, which is the same
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thing as saying that the quotient of the image is locally free. By degree considerations,

the quotient is O(2). Therefore, the image of O has degree 0 in O(1)⊕O(1); equivalently,

degree −2 in O(−1)⊕O(−1). Therefore, the holomorphic subchain generated by O is

O → O(−2)⊗O(2). The quiver diagram corresponding to Φ is

0

−1

−1

but we cannot read off the holomorphic subchain from the vertices directly. The notion

of quiver-subchain degree proposed above compensates for this.

thisisheretodeclarethatthisproo f isdone......................................................................◊

The next two examples shed light on the relationship between stability of a quiver

chain and stability of a holomorphic chain.

Example 4.5. We consider a quiver with negative degree and t = 1. Suppose that in some

block Bk there is a vertex ν of degree 1, and that the next block, Bk+1, consists of only

two two vertices, one of degree −1 and the other of degree −2. This quiver chain is

unstable. To see this, note from Definition 4.3 that there are no permissible arrows from

ν into the next block, because the degree of such an arrow would be −1 or −2. This is

the same as saying that the subchain starting at ν must also terminate at ν. Hence, the

degree of 〈ν〉 is just 1, which exceeds the degree of the quiver.

In terms of holomorphic chains, the vertex of degree 1 in Bk means that there is a line

bundle with degree 1 in the Birkhoff-Grothendieck decomposition of the corresponding

eigen-subbundle Uk. That V(Bk+1) is {−1,−2} means that Uk+1
∼= O(−1)⊕O(−2). The
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fact that there are no arrows from µ∈ V(Bk) into Bk+1 agrees with the observation that

there is no holomorphic map from a line bundle of degree 1 into a line bundle of degree

−1+ t = −1+1= 0, or into one of degree −2+ t = −2+1= −1. Therefore, Uk has a

sub-line bundle of degree 1 that is Φ-invariant, for every Φ ∈H0(EndE(1)). As µ(E)< 0,

it follows that every Φ ∈ H0(EndE(1)) is unstable.

thisisheretodeclarethatthisproo f isdone......................................................................◊

Example 4.6. Consider a different quiver chain, this time with t = 2, and with a block

Bk consisting of vertices ν0,ν1,ν2 of degrees −1,0,1 respectively. Also, let Bk+1 consist

of two vertices, ω0 with degree −3 and ω1 with degree −1. Consider the subgraph G

of Bk consisting of ν1 and ν2. Its image is M(G) = {ω1}. However, the t-dimension of

{ω1} is Γ2({ω1}) =−1+1+2= 2, while Γ0(G) = (O+1)+ (1+1) = 3. Hence, G is a

µ(Q)-bottleneck of width 2, and the quiver is unstable.

In terms of the holomorphic chains represented by the quiver, Uk has sub-line bundles

of degree 0 and 1, while Uk+1
∼= O(−1)⊕O(−3). Let L0 be a degree-0 line bundle in

Uk+1; L1, degree 1. Because t = 2, the image L0⊕ L1 in Uk+1(2) must be contained in

O(−1)⊗O(2) = O(1). The map taking L0⊕L1 into O(1) is (s, f ) 7→ s·g+b · f , where s

and f are sections of L0 and L1 respectively, while g and b are nonzero sections of O(1)

and O respectively. This is easy to see that there is a trivial line bundle in the kernel of

this map: send a copy of O into L0⊕L1 by s 7→ (−b · s,s·g). This means that for every

Φ ∈ H0(EndE(2)), there is a Φ-invariant degree-0 sub-line bundle of E, and so (E,Φ) is

always unstable.

thisisheretodeclarethatthisproo f isdone......................................................................◊
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We can formalise the pathologies of the two previous examples into a crucial relation-

ship between quiver chains and holomorphic chains.

Proposition 4.3. Suppose that Q is a chain graph of type (t; r1, r2, . . . , rn), and that E is

the holomorphic vector bundle on P1 determined by the vertices of Q. If Q is unstable as a

chain graph, then (E,Φ) is unstable as a holomorphic chain of type (r1, r2, . . . , rn) for every

Φ ∈ H0(EndE(t)).

The proof follows from adapting examples 4.5 and 4.6 in slightly more generality,

and so for economy we omit it.

4.3.3 Stable quivers and holomorphic chains of degree −1

The relationship between holomorphic chains and quiver chains, culminating in Propo-

sition 4.3, allows us to derive quickly some important properties of stable holomorphic

chains. We make the following observations for quivers and chains of degree −1.

Proposition 4.4. Suppose that a quiver chain Q has no (−1/∑ r i)-bottlenecks. To deter-

mine whether Q is (−1/∑ r i)-stable, it is sufficient to check that the degrees of the subchains

generated by the vertices are at most −1.

Proof. The traversing number R(ν) of the subchain leaving a vertex ν is at most r = ∑ r i ;

for a proper subchain it is always strictly less. Therefore, if the degree d of a proper

subchain is negative and at most −1, we always have d/R(ν)<−1/r .

thisisheretodeclarethatthisproo f isdone...................................................................

Proposition 4.5. Every quiver chain with degree −1 and a vertex of nonnegative degree in

its last block is unstable.
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Proof. Every vertex in the last block generates a subchain consisting only of that vertex.

The degree of the vertex is the degree of its subchain. A proper subchain of degree larger

than −1 is destabilising. Since the quiver simultaneouly has degree −1 and a vertex of

nonnegative degree, it must have at least 2 vertices, and therefore the subchain consisting

of the vertex of nonnegative degree is proper.

thisisheretodeclarethatthisproo f isdone...................................................................

Proposition 4.6. If Q is a chain graph of degree −1 and type (t; r1, r2) with t = 1,2 and

r2 > 1, then Q is unstable.

Proof. By Proposition 4.5, every vertex in B2 must be of negative degree. In particular,

degB2 < −1, since B2 contains at least two vertices, each of which is at most −1. This

means that B1 must contain a positive-degree vertex, in order that degQ =−1. Any ver-

tex of positive degree in B1 must have degree 1, because there is no arrow from a vertex

of larger degree to a vertex of negative degree, for the given range of t. (If no arrows can

be drawn, then the postive-degree vertices in B1 generate destabilising chain subgraphs.)

If we can draw an arrow starting at a vertex ν of degree 1 in B1, the arrow must terminate

at a vertex of degree −1 in B2, as a vertex of lower degree would be unreachable. But

this arrow would be part of a subchain rooted at ν whose degree is nonnegative, regard-

less of whether the image of ν consists of only one vertex of degree −1, in which case

deg〈ν〉= 0, or of several vertices, in which case deg〈ν〉= 1+(1− t)≥ 0. This is destabil-

ising.

thisisheretodeclarethatthisproo f isdone...................................................................

Because of Proposition 4.3, the preceding two propositions translate immediately
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into facts about holomorphic chains of degree −1 on P1.

Corollary 4.1. If (E,Φ) is a stable holomorphic chain of degree −1, then there is no sub-

line bundle of nonnegative degree in the last block. In particular, the Birkhoff-Grothendieck

numbers of the last block are all negative.

Corollary 4.2. If (E,Φ) is a holomorphic chain with degree −1 and type (t; r1, r2) with

t = 1,2 and r2 > 1, then (E,Φ) is unstable.

Remark 4.6. A key difficulty in the problem of computing the Poincaré polynomial of

the rank-4 Higgs bundle moduli space is the existence of (2,2) chains. Corollary 4.2 says

that there are no stable co-Higgs (2,2) chains. Furthermore, there are no stable (1,3)

chains.

4.4 Quiver method for generating stable chains

One of the key strengths of the quiver interpretation, alongside the stability relationship

in Proposition 4.3, is the following observation: if we delete any vertex from the first block

of a stable quiver, then the resulting quiver is still stable, with respect to the stability condition

on the original chain. That is, if Q is α-stable, then so too is Q−ν, so long as ν ∈ V(B1).

This is the quiver version of Proposition 4.1, and is an immediate consequence of our

ability to start subchains anywhere in a quiver. Because of the direction of the arrows,

no subchains starting at any of the remaining vertices could have involved ν prior to

its deletion, and so they still satisfy the requirements on their slopes for stability with

respect to α.

This allows us to build stable quivers from quivers of fewer vertices, by adding a
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vertex to the first block — or starting a new leftmost block. To formalise this, we define

two operations on quivers.

Definition 4.9. Let Q be a quiver of degree d and type (r1, . . . , rn). We define a new

quiver Q+
a from Q by adding an additional vertex ν with degν = a to its first block B1,

and drawing all permissible arrows from ν into B2. Then, Q+
a is a chain quiver of degree

d+a and type (r1+1, . . . , rn). We define another new quiver +
a Q by adding an additional

block B0, consisting of a lone vertex ν with degν = a, to the left of B1 and drawing all

permissible arrows from ν into B1. Then, +a Q has degree d+a and type (1, r1, . . . , rn).

The following proposition follows immediately.

Proposition 4.7. If Q is an α-stable quiver of degree d and type (r1, . . . , rn), then +
a Q and is

an α-stable quiver of degree d+a and type (1, r1, . . . , rn) if and only if µ〈ν〉<α, where ν is the

vertex added to Q. Similarly, Q+
a is an α-stable quiver of degree d+a and type (r1+1, . . . , rn)

if and only if µ〈ν〉 < α and B1 contains no α-bottleneck. In other words, to determine the

α-stability of the new quivers, it is sufficient to check the slope of the subchain generated by

the new vertex and to check that no bottleneck is introduced in the first block, which is only

relevant to Q+
a .

This proposition is the essential ingredient in an algorithm for generating stable quiv-

ers of any desired degree and type. Here is how it works:

1. Fix integers r1, . . . , rn,a1,a2, . . . ,ar1+···+rn−1, and put r := r1+ · · ·+ rn.

2. If we want a stable chain of degree d and type (r1, . . . , rn) with r1 > 1, take a

vertex of degree a1 and add it to a d/r -stable quiver Q of degree d− a1 of type
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(r1−1, . . . , rn). Decide if the resulting quiver Q+
a1

is d/r -stable, by checking the

subchains of the new vertex and for bottlenecks in B1. If r1 = 1 is desired, then

take a d/r -stable Q of degree d−a1 and type (r2, . . . , rn) and then form +
a1

Q, which

is of type (1, r2, . . . , rn). If a stable quiver does not result, the algorithm terminates

with no output. Otherwise, proceed.

3. To get the Q we used in Step 2, add a vertex of degree a2 to a d/r -stable quiver

P of degree d−a1−a2 of type (r1−1−1, . . . , rn) if r1 > 2 or of type (r2, . . . , rn)

if r1 = 2, or of type (r2−1, . . . , rn) if r1 = 1 and r2 > 1 or of type (1, r3, . . . , rn) if

r1 = r2 = 1. Again, decide if the new quiver is d/r -stable. If not, terminate with no

output. Otherwise, proceed.

4. Continue until we are in the position where we are adding a single vertex of degree

ar1+···+rn−1 to a quiver of type (1), to get something with shape (1,1) or (2). This

quiver of type (1) is a single vertex of degree d−a1−a2−·· ·−(ar1+···+rn−1). Check

stability for subchains departing from the new vertex. (These subchains will have

at most two vertices.) If d/r -unstable, there is no output. Otherwise, the output

is the overall stable quiver built from all of the preceding steps, and the algorithm

terminates.

As given, the algorithm terminates in r1+ · · ·+ rn steps, and produces a unique stable

quiver chain, if it exists. However, not all of the inputs for the algorithm are well-defined:

how did we choose the ai? At each step there is an upper and lower bound for ai .

Proposition 4.8. Let r = r1+ · · ·+ rn. We wish to construct a stable quiver chain of degree d

and type (t; r1, . . . , rn) by taking it to be Q+
a (or +

a Q, if appropriate) for some a and some d/r -
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stable quiver Q of degree d−a and type (t ; r1−1, . . . , rn) (respectively (t; r2, . . . , rn) ). There

exists an integer A+ such that for all a> A+, the quiver Q+
a (respectively +

a Q) is d/r -unstable.

There exists an integer A− such that for all a< A−, Q+
a (respectively +

a Q) is d/r -unstable.

Proof. For the lower bound on a, note that there is an upper bound for the total degree

of a chain. This follows from a simple generalisation of Theorem 3.1, which would

say that an O(t)-twisted Higgs bundle on P1 is stable if and only if the jumps between

the ordered Grothendieck numbers are no larger than t. If the underlying bundle of a

holomorphic chain has rank r ′ < r , then its maxium degree is attained when the last block

is a line bundle of degree ⌊d/r⌋ < 0, and the degree increases by t with each subsequent

line bundle. Therefore, the maximum degree is (r ′−1)t + ⌊d/r⌋. If d−a exceeds this,

we cannot choose a d/r -stable Q, and so we need a≥ A− := d− (r ′−1)t −⌊d/r⌋, noting

that r ′ = r −1.

For the upper bound on a, note that we may choose a sufficiently large and positive

so that the degQ = d−a< d and every vertex in Q is negative, and no vertex in Q can

be made positive by adding t to it. Therefore, no arrow can be drawn from a vertex ν

of degree a into Q. This means that 〈ν〉 = {ν}, and it is destabilising. So there exists a

number A+ such that Q+
a (or +

a Q) is d/r -unstable if a> A+.

thisisheretodeclarethatthisproo f isdone...................................................................

At step i of the algorithm, instead of choosing an arbitrary ai for the vertex degree,

we can run through the list A−
i ≤ ai ≤A+

i , and the bounds A±
i can be determined without

the user’s intervention, using the recipe in the proof for Proposition 4.8. Each ai initiates

a new, nested instance of the algorithm, with a unique result (if at all). In the end, these

instances produce all stable quivers with the desired degree and type.
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We may frame the content of propositions 4.7 and 4.8 as a single statement:

Theorem 4.10. There exists an algorithm whose input is a (n+2)-tuple (d; t; r1, . . . , rn) ∈

Z<0×Z≥0×Zn
>0, and whose output is a list of the stable quiver chains of degree d and type

(t; r1, . . . , rn).

We have written the algorithm for Theorem 4.10 into a MAPLE routine “StableChains”;

this is Routine A.4 in the Appendix. Even though we have considered only positive values

t, the input t = 0 is a permissible. In that case, only the chain type (r1) = (1) produces

non-empty output.

Because every holomorphic chain has a unique representation as a quiver chain, as

per the description in §4.3.2, we can describe the output of the algorithm in Theorem

4.10 in terms of holomorphic chains:

Corollary 4.3. There exists an algorithm whose input is an (n+2)-tuple (d; t; r1, . . . , rn) ∈

Z<0×Z≥0×Zn
>0, and whose output contains all isomorphism classes of O(t)-twisted holo-

morphic chains on P1 of degree d and type (r1, . . . , rn).

Because of Proposition 4.3, not every stable quiver chain is necessarily stable as a fam-

ily of holomorphic chains, and so in practice several quivers may need to be discarded

from the list. The point, however, is that the quiver stability condition resembles the

holomorphic condition closely enough that these pathological quivers should be rela-

tively few in number.
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4.4.1 Worked example

For displaying the output of these algorithms, a useful shorthand is to represent a quiver

by a list of degrees, using vertical bars to separate blocks. For instance, the notation for

the quiver in Example 4.4 would be [ 0 | −1−1 ].

Example 4.7. Let us try to generate all stable quiver chains with degree d=−2 and twist

t = 2 on three vertices.

We start with type (1,1,1). The initial quiver decomposition here is Q =+
a Q′, for

some −2/3-stable quiver Q′ with type (1,1). The proof of Proposition 4.8 gives a lower

bound for the degree a of the vertex we add to Q′. This number is

A− = d− (r −2)t −⌊d/r⌋ = −2−1·2−⌊−2/3⌋ = −3.

a=−3: At this value of a, we need degQ′ = degQ−a= 1. So now we want to decompose Q′

as +
b Q′′ for Q′′ of type (1). The lower bound for b is 1− 0(2)− (−1) = 2, at which

degQ′′ =−1. But Q′′ is just a single vertex of degree −1, and it is −2/3-stable. So we

want to add a vertex of degree 2 to this, to get Q′, but this is −2/3-unstable because no

arrow can be drawn from 2 to −1 when t = 2. And it is clear that if we increase b, the

gap between b and degQ′′ will only increase, and so there are no stable chains at this

level of the program. We move on, to a=−2.

a=−2: Here we need degQ′ = 0. The new lower bound for b is 1, and at this value of b,

we need degQ′′ = −1. This time, we have Q′ = [ 1 | −1 ], which is a destabilising

subchain of Q (the slope is 0). If we increase b then the situation becomes worse.

a=−1: Here, we need degQ′ =−1, and then b has a lower bound of 0. At b= 0, degQ′′ =−1.



4.4 Quiver method for generating stable chains 85

This will be unstable, because Q′ = [0 | − 1] which as a subchain has slope −1/2 >

−2/3, and increasing b only makes things worse.

a= 0: For this we need degQ′ = −2, so that b has a lower bound of −1. For the lowest b,

degQ′′ =−1. This gives a subchain Q′ = [−1 | −1 ], which is not −2/3-destabilising

as it has slope −1<−2/3. Since Q′ and Q′′ are the only proper subchains, the full chain

is Q = [ 0 | −1 | −1 ] is stable.

If we increase b to 0, then Q′ = [ 0 | −2 ], and this is not −2/3-destabilising, for the

slope remains −1. The full stable chain is Q = [ 0 | 0 | −2 ].

Increasing b again destabilises the chain, because Q′ = [ 1 | −3 ], which has no arrow

to keep 1 from being invariant.

a= 1: Now we need degQ′ =−3, so that b has a lower bound of −2, at which degQ′′ =−1.

This gives us a subchain Q′ = [−2 | −1 ], whose slope is −3/2. However, the full chain

is unstable because in Q = [ 1 | −2 | −1 ] the leading vertex 1 is a subchain consisting

only of itself, as there is no arrow from 1 to −2.

If we increase b to −1, then we have Q = [ 1 | −1 | −2 ], which has proper subchains

[−1 | −2 ] and [−2 ], both of which have sufficiently negative slope, and so the length-

3 chain is stable.

a≥ 2: Let Q = [ a | b | c ], and hence Q′ = [ b | c ] and Q′′ = [ c ]. We need an arrow from a

to b, which requires −a+b+2≥ 0, which can be rearranged as a+b≥ 2a−2≥ 2.

On the other hand, a+b+ c = −2, and so −2 = a+b+ c ≥ 2+ c, and so c ≤ −4.

As an arrow from a to b forces b to be nonnegative, there can be no arrow from b to c



86 Betti numbers of the P1 moduli space

when t = 2, and so {b} is a subchain, and it is always destabilising. The algorithm for

(1,1,1) terminates accordingly.

For the chains of type (2,1), we want Q =+
a Q′ where Q′ is of type (2) and is −2/3-

stable. We can actually work out a better lower bound on a, because both vertices in Q′

are at most −1. Therefore, the maximum degree of Q′ is −2, and so a≥ 0. When a= 0,

we have Q = [ 0 | −1 −1 ]. Each vertex of the last block generates a subchain consisting

only of that vertex, but they are not destabilising, since −1 < −2/3. So stability rests

upon the subchain generated by 0. The rule for subchain degrees says that because there is

more than arrow from 0, the subchain degree is 0− t =−2, which is sufficiently negative.

Hence, the chain is stable. There are no more stable chains starting with 0, because the

other two vertices must add to −2, and lowering one will make the other nonnegative.

The only remaining action is to increase a so that a≥ 1, which requires degQ′ ≤−3.

So that an arrow can be drawn from a, we need one of the vertices in Q′ to be at least

−1; by stability, it is at most −1. Therefore, a= 1 and Q′ contains −1. The other vertex

in Q′ is −2, and a= 1 has no arrow to it. Hence, there is a subchain [ 1 | −1 ] of degree

0, and this is destabilising. The algorithm for (1,2) terminates.

Finally, note that there is no output for the last chain type, (2,1), because duality of

holomorphic chains (interpreted as a duality on quiver chains) takes chains of degree −2

and type (2,1) to chains of degree 2≡−1 and type (1,2). By Proposition 4.6, there can

be no stable quivers of degree −1 with that type.

thisisheretodeclarethatthisproo f isdone......................................................................◊

One thing this example illustrates, apart from how the algorithm works, is how
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writing down stable chains in a systematic way by hand is very laborious, even for low

rank. The automation of this gives us a significant tool for computing Betti numbers.

4.5 Poincaré polynomials of co-Higgs moduli spaces

Using Routine A.4, we isolate the stable quiver chains of twist t = 2, degree d = −1,

and small rank r . After eliminating the few that are unstable as holomorphic chains,

we obtain a list of the fixed points of the circle action on the moduli spaces of co-Higgs

bundles of degree −1 and those ranks. Calculating Poincaré polynomials for the critical

subvarieties of the Morse functional gives us the following

Theorem 4.11. The Poincaré polynomials of M2(r,−1), for 2≤ r ≤ 5, are

r = 2: z2+1

r = 3: 3z8+4z6+3z4+z2+1

r = 4: 10z18+20z16+22z14+18z12+13z10+9z8+5z6+3z4+z2+1

r = 5: 40z32+103z30+154z28+165z26+156z24+131z22+105z20+77z18+56z16+38z14+

26z12+15z10+10z8+5z6+3z4+z2+1.

Let r be one of the ranks above, but not 5. The Poincaré polynomial for d = −1 is identical

to that for any other degree d, so long as (r,d) = 1, by the duality (E,Φ) 7→ (E∗,Φ∗). When

r = 5, the Poincaré polynomial above is the same by duality as the one for d =−4.

Lemma 4.1. Let (E,Φ) be a O(t)-twisted holomorphic chain on P1 of degree d < 0, rank

r > |d|, and type (1, . . . ,1), assuming as usual (r,d) = 1. Assume the eigenspace decomposition
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of E is L1 ⊕ ·· · ⊕ Ln with Li = O(ai), and that its quiver [ a1 | . . . | an ] is in the output

of Routine A.4. Then (E,Φ) is stable as a holomorphic chain, −ai + ai+1 + t ≥ 0 for all

1≤ i ≤ n−1, and the Poincaré polynomial for the critical variety of (E,Φ) in Mt(r,−1) is

P(N (E,Φ)) =
n−1

∏
i=1

P(P−ai+ai+1+t).

Proof of Lemma 4.1. For the first claim of the lemma, we know that the output is

always stable as a quiver chain. What we want to show is that no quiver in the output

is unstable as a holomorphic chain. Because no block is of size larger than 1, there are

no bottlenecks to check for (other than those of width 1, but these are already accounted

for by the slope condition on the subchains). As for the holomorphic chain, a unique

holomorphic subchain is generated by a line bundle Li , and its slope is the same as the

subchain slope of its corresponding vertex. This is enough to see that the combinatorial

and holomorphic stability conditions coincide exactly.

For the second part, we want to show that the stability condition amounts to the

requirement that the maps Li
φi
→ Li+1(t) are all nonzero. To see this, we start with the

fact that every (E,Φ) with the hypotheses of the lemma must have at least one nonneg-

ative Grothendieck number. (Start with the generic splitting type (0, . . . ,0,−1. . . ,−1).

If we make any one of these numbers negative, then another must change to become

positive.) Furthermore, all of the negative integers must be concentrated at the end of

the chain. If not, then there is a nonnegative integer, say a j , appearing after a negative

one. Then L j ⊕ ·· ·⊕Ln is Φ-invariant of slope larger than d/r , destabilising the chain.

This means that a subchain starting from a nonnegative-degree line bundle cannot ter-

minate before the last line bundle of the chain without upsetting stability. In particular,
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no subchain starting from L1 can terminate before Ln. Therefore, the stability condi-

tion is that no map in the chain is zero. After identifying maps differing only by a

scale factor (i.e. automorphisms of the line bundles), we see that the contribution to the

Poincaré polynomial by Li → Li+1(t) is a factor of P(P(H0(L∗
i Li+1(t))) = P(P−ai+ai+1+t).

thisisheretodeclarethatthisproo f isdone...................................................................

Proof of Theorem 4.11, for cases r = 2,3,4.

r=2

Here, the only chain type is (1,1). For this type, the only stable quiver produced

by Routine A.4 is [ 0 | −1 ], which by Lemma 4.1 is stable as a holomorphic chain O →

O(−1)⊗O(2). Its Morse index is 0, according to A.3. Also by the lemma, the Poincaré

polynomial is z0 ·P(P(H0(O(1)),z) = P(P1,z) = 1+z2.

Remark 4.7. The numbers in [ 0 | −1 ] agree with Theorem 3.1. As the nilpotent cone of

M2(2,−1) is isomorphic to P1 (cf. §3.6), we see now that the moduli space deformation

retracts onto the nilpotent cone. In terms of Theorem 4.2, the global minimum of the

Morse functional is the whole of the nilpotent cone.

r=3

As per formula (3.1), the generic fibres of the Hitchin map are 4-dimensional in this

case, and so we expect the Poincaré polynomial to have degree at most 8. Algorithms

A.3 and A.4 produce the following stable quivers: of type (1,1,1), there are [ 0 | 0 | −1 ],

[ 1 | −1 | −1 ], and [ 1 | 0 | −2 ], with Morse indices 2, 4, and 6, respectively; of type

(2,1), there is [ 0 0 | −1 ] with index 0. This latter quiver corresponds to the minimum of
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the Morse function, as per Theorem 4.2. As the algorithm yields no type (1,2) candidate,

the list is in concordance with Proposition 4.6.

By Lemma 4.1, all of the (1,1,1) quivers are stable as holomorphic chains, and their

contribution to is z2P(P2,z)P(P1,z)+z4P(1,z)P(P2,z)+z6P(P1,z)P(1), where P(1) = 1

is the Betti number of a point.

Now we come to the quiver [ 0 0 | −1 ] with type (2,1). The bundle U1 = O ⊕O

must not be Φ-invariant, and so its image in U2(2) = O(1) must be nonzero. Suppose

that O⊕O has image isomorphic to O(k) ⊆ O(1), for some k ≤ 1. The kernel is a line

bundle of degree −k. If k≤ 0, then the kernel line bundle is destabilising. To avoid this,

we need k ≥ 1, entailing that every stable Higgs field maps U1 onto O(1). This means

that if s1 is a nonzero section of a trivial sub-line bundle of U1 and s2 is a nonzero section

of the quotient line bundle (also trivial), then their images are linearly independent in

U2(2) = O(1), so that they span H0(O(1)). The fixed-point set can therefore be realised

as a copy of GL2(C) (isomorphisms between two 2-dimensional spaces) modulo GL2(C)

(automorphisms of O⊕O), and so is just a point. The Poincaré polynomial for r = 3,

as displayed in the statement of the theorem, is obtained by collecting the like terms of

z0 ·1+z2(1+z2+z4)(1+z2)+z4(1+z2+z4)+z6(1+z2).

r=4

For r = 4, the generic fibre is 9-dimensional, by equation (3.1). We expect a Poincaré

polynomial of degree no larger than 18. In Table 4.2, we show the output of routines A.3

and A.4, giving a list of stable quivers together with their Morse indices.

By Lemma 4.1, the (1,1,1,1) candidates are all stable as holomorphic chains, and the
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contribution to the overall Poincaré the polynomial from these chains is 2z8 + 8z10+

18z12+22z14+20z16+10z18, according to the formula in the lemma.

................Table 4.2.

Type Morse index, [Chain]

(1,1,1,1) 8, [ 0 | 0 | 0 | −1 ] ; 8, [ 0 | 1 | −1 | −1 ] ;

10, [ 0 | 1 | 0 | −2 ] ; 10, [ 1 | −1 | 0 | −1 ] ;

10, [ 1 | 0 | −1 | −1 ] ; 12, [ 1 | 0 | 0 | −2 ] ;

12, [ 1 | 1 | −1 | −2 ] ; 12, [ 2 | 0 | −2 | −1 ] ;

14, [ 2 | 0 | −1 | −2 ] ; 16, [ 2 | 1 | −1 | −3 ]

(3,1),(1,3),(2,2) no output

(2,1,1) 4, [ 0 0 | 0 | −1 ] ; 8, [ 1 0 | 0 | −2 ]

(1,2,1) 0, [ 0 | 0 0 | −1 ] ; 4, [ 1 | 0 −1 | −1 ]

(1,1,2) 8, [ 1 | 0 | −1 −1 ]

Type (2,1,1) has two quivers. The first is [ 0 0 | 0 | −1 ]. For stability, the Higgs

field cannot annihilate a vector in U1 = O ⊕O. Therefore, if φ1 = s1 + s2 for linearly-

independent sections s1,s2 of O(2), the stability condition is that s1 and s2 span a 2-

dimensional subspace of H0(O(2)) =C3. In other words, φ1 is parametrised by the space

of 2-planes in C3, that is, Gr(2,3)∼= P2. This means that the contribution to the polyno-

mial is z4 ·P(P2,z)P(P1,z), where the P1 accounts for maps from U2 =O to U3(2) =O(1).

The quiver [ 1 0 | 0 | −2 ] is similar. So that the kernel of φ1 : O(1)⊕O → O(2) has de-
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gree at most −1, we need that the map is surjective. We need a section f ∈ H0(O(1)) to

map O(1) into O(2); g∈ H0(O(2)) to map O into O(2). However, we can use an auto-

morphism of O(1)⊕O to transform ( f ,g) into ( f ,b f +g) where b is another section of

O(1), and so the essential data is a section of P1. The map φ2O → O(−2)⊗O(2) is an

isomorphism, and so z8 ·P(P1,z) is the contribution.

For type (1,2,1) and quiver [ 0 | 0 0 | −1 ], recall from the rank-3 case that the type-

(2,1) stable subchain [ 0 0 | −1 ] was a point. Therefore, we need only look at maps from

O to O⊕O. These are embeddings of O into O(2)⊕O(2), which are parametrised by P5,

and so we have z0 ·P(P5,z). For [ 1 | 0−1 | −1 ], it can be shown by arguments similar

to those for the type-(2,1,1) quivers that its piece of the polynomial is z4 ·P(P1)P(P2).

Finally, we have (1,1,2) and [ 1 | 0 | −1−1 ]. We have a P1 coming from φ1 : O(1)→

O⊗O(2), while φ2 : O → O(1)⊕O(1) is a point: the argument for this exact situation

was given in Example 4.4. As argued there, O is embedded into O(1)⊕O(1) by the

Higgs field. The space of maps is 4-dimensional while the space of automorphisms of

O(1)⊕O(1) is also 4-dimensional. So the contribution is z8 ·P(P1,z)P(1).

The Poincaré polynomial for rank 4 and degree −1 is therefore

P(M2(4,−1),z) = z0P(P5,z)+2z4P(P2,z)(P1,z)+2z8P(P1,z)

+(2z8+8z10+18z12+22z14+20z16+10z18),

which simplifies to the one in the statement of the theorem.

thisisheretodeclarethatthisproo f isdone...................................................................

For economy, we have omitted the calculation for r = 5, as the algorithm results in

72 chains, and therefore just as many critical subvarieties whose Poincaré polynomials
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need to be determined. The chains and their Morse indices can be called up in Routine

A.4 with the appropriate inputs. The Poincaré polynomials for chains of type (1,1,1,1,1)

are calculated via Lemma 4.1; the rest are analysed in a similar manner to those in r = 3

and r = 4 above.

In principle, these arguments can be continued for higher rank indefinitely, but we

elect to stop at rank 5 because of the increasingly cumbersome number of chains. For

r = 6 there are hundreds; while some make contributions to the Poincaré polynomial

that are obvious, many require careful inspection.

4.6 Relationship to ADHM recursion formula

In [12], Chuang, Diaconescu, and Pan give a recursion formula conjectured to relate the

Donaldson-Thomas invariants of the usual Higgs bundle moduli space for genus g≥ 1 to

so-called “asymptotic ADHM” invariants. In [43], Mozgovoy finds a multivariable power

series solution, and shows that the coefficients agree with the Hausel–Rodriguez-Villegas

conjectures for the Higgs bundle Hodge polynomials [31]. Moreover, Mozgovoy solves

a “twisted” version of the recursion formula and extends the solutions to genus 0. These

solutions can be conjectured to be Hodge polynomials of twisted Higgs bundles moduli

spaces; in particular, for t = 2 and g= 0, the co-Higgs bundle moduli spaces.

For ranks 1 through 5, the conjectural Poincaré polynomials in [43:§6] coincide with

those in our Theorem 4.11. We also mention (without displaying the results) that for

ranks 1 through 6, we have checked the formulas in [43] against the Poincaré polyno-

mials of O(1)-twisted Higgs bundle moduli spaces on P1 — again, there is agreement.
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This significantly corroborates the conjecture that Mozgovoy’s twisted ADHM motives

encode the cohomology of twisted Higgs bundle moduli spaces at genus 0.

4.7 Further remarks

4.7.1 Number of components

The (1, . . . ,1) chains always have the Morse indices of largest magnitude. This can be

explained in so much as all of the blocks are of length 1, and so as per Theorem 3.1,

the maximum degree jump between consecutive line bundles can be attained, namely a

jump of degree t, or 2 in the co-Higgs case. For any other chain type, there is at least one

block of length longer than 1, and Theorem 3.1 still applies, but at the level of blocks

rather than line bundles: essentially, if M is the maximum degree in block Bi and m is the

maximum degree in block Bi+1, then M ≤ m+ t. Then any degree in Bi is bounded by

m+ t, and so the line bundle degrees cannot grow to the same extent as in (1, . . . ,1). In

other words, as blocks grow in length, the splitting type becomes more generic, and so

h1
+(EndE) becomes smaller.

We translate this combinatorial observation into a geometric statement, which holds

true for any rank and for any twist t > 0. By a “Morse set”, we mean the subvariety filled

out by a critical subvariety and the Morse flow downward from the critical subvariety.

Proposition 4.9. The Morse sets determined by the critical points of type (1, . . . ,1) are equi-

dimensional. This (complex) dimension is
(r −1)(rt −2)

2
. The Morse set around any other

critical point is strictly smaller in dimension.

Proof. Suppose that E admits a Higgs field Φ such that the pair is a stable holomorphic
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chain. The dimension of the Morse set around N (E,Φ) is the sum of the dimension of

the space M of all such Φ, modulo automorphisms, and the Morse index β. We can

decompose β0,1, the Morse index for deformations of E, into

β0,1
2 +β0,1

1 ,

where the “2” subscript is for endomorphisms acting with weight at least 2 on the

eigenspaces of the S1 action generator, while the “1” subscript is for weight 1 actions.

Suppose E = L1⊕ ·· ·Ln has type (1, . . . ,1). For some k ≥ 2, we can look at all the

weight k actions taking some Lp = O(a) to Lp+k = O(b). We recall that since k≥ 2 there

is a contribution to the Morse index from deformations of Φ, which is

dimC

[
H0(L∗

1L2(t))
im H0(L∗

1L2)→ H0(L∗
1L2(t))

]
,

which we can rewrite as

h0(O(−a+b+ t))−h0(O(−a+b)) (4.4)

because the denominator map is injective (cf. §4.1.3). On the other hand, the contribu-

tion to β0,1
2 from these line bundles is

h1(O(−a+b))−h1(O(−a+b+ t)). (4.5)

Let βpq be the sum of (4.4) and (4.5). Note that, as in Lemma 4.1, stability necessitates

−a+b+ t ≥ 0.

Case 1: −a+b+ t >−a+b≥ 0. By Riemann-Roch,

h1(O(−a+b+ t)) = h1(O(−a+b)) = 0,

and so βpq = h0(O(−a+b+ t)−h0(O(−a−b)) =−a+b+ t +1− (−a+b+1) = t.
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Case 2: −a+b+ t ≥ 0>−a+b. Here, h1(O(−a+b+ t)) = 0 but h1(O(−a+b)) =

a−b−1≥ 0. Hence, for βpq we get

h0(O(−a+b+ t))+h1(O(−a−b)) =−a+b+ t +1+(a−b−1) = t.

The contribution to the Morse index is therefore always t. The number of pairs

Lp,Lp+k with k≥ 2 is (r −1)(r −2)/2 (i.e. the number of entries in the lower triangular

region of an r × r matrix), and so we have

β1,0+β0,1
2 = ∑

p,q:q−p≥2

βpq =
(r −1)(r −2)t

2
.

What remains to consider is the case k= 1. In this case there is no contribution from

deformations of Φ. But in addition to β1,0
1 we need to consider the dimension of the fixed

point set, which for two sub-line bundles Lp = O(a) and Lp+1 = O(b) is dimP−a+b+t =

−a+b+t ≥ 0 by Lemma 4.1. The key observation is that, for any m≥ 0, if −a+b+t =m

and t > m+1, then we have a−b−1= (t −1)−m, and so h1(O(−a+b)) = (t −1)−m.

If t = m+1, then −a+b+ t = t−1 and h1(O(−a+b)) = 0. Finally, if t < m+1, then we

have −a+b+ t > t −1, which means a−b> 1, and so h1(O(−a+b)) = a−b−1> 0.

In every case, we have −a+b+ t +h1(O(−a+b)) = t −1. This means that

dimM+β0,1
1 = ∑

(Lp,Lp+1)

(t −1) = (r −1)(t −1).

Putting this altogether, we get

dimN(E,Φ) = β1,0+β0,1
2 +β0,1

1 +dimM

=
(r −1)(r −2)t

2
+(r −1)(t −1)

=
(r −1)(rt −2)

2
,
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and this number is independent of (E,Φ), so long as the type of (E,Φ) is (1, . . . ,1).

In contrast to the formal calculations above, for the last claim of the proposition let

us simply say that, for any other chain type, the presence of a block of length longer

than 1 brings with it automorphisms that lower the dimension of the space of stable

Higgs fields. In the (1, . . . ,1) situation, the only automorphisms are scalings of maps

between line bundles. It can be argued from this that the maximum dimension of a

critical subvariety is the one attained by the chains of type (1, . . . ,1), and that no other

chain type attains it.

thisisheretodeclarethatthisproo f isdone...................................................................

Remark 4.8. Notice that when t = 2 the maximum component dimension is (r −1)2.

This is exactly the dimension of the generic fibre of the Hitchin map, as in formula (3.1).

More generally, the expression written in terms of t in the statement of the proposition

is indeed the generic fibre dimension for the moduli space of O(t)-twisted Higgs bundles,

although we did not compute it explicitly earlier.

Corollary 4.4. The leading coefficient of the Poincaré polynomial determines the number of

components of maximum dimension, that is, of dimension equal to that of the fibre.

Proof. By the Proposition 4.9, the number of components of maximum dimension is

the number of distinct underlying bundles admitting stable (1, . . . ,1) chains. It remains

to show that each such bundle E contributes exactly 1 to the leading coefficient of the

overall Poincaré polynomial. But the Poincaré polynomial PE for all the (1, . . . ,1) chains

on E is a product of projective spaces (Lemma 4.1), and so its leading coefficient is 1.

thisisheretodeclarethatthisproo f isdone...................................................................
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We can give a combinatorial interpretation of this number, which is given essentially

in the proof of Lemma 4.1: the leading coefficient is the number of ways of writing the

degree d (−r < d < 0) as a sum of r integers, subject to certain constraints:

• order matters, and if b comes directly after a, then −a+b+ t ≥ 0;

• there is to be no mixing of nonnegative with negative integers — all of the positive

integers are at the left side of the list, and all of the negative ones at the right.

Remark 4.9. This is a kind of partition counting problem, but the request is perhaps

atypical: rather than lower and upper bounds on the summands, it is the jumps between

them that should be bounded. If the Betti numbers do not depend on d, then we would

have as a somewhat surprising by-product that the solution of this counting problem does

not depend on d either, perhaps with the proviso that (r,d) = 1. Comparing expressions

(4.7) and (4.6), it would be appear that this is indeed the case for rank 5.

Remark 4.10. If there are no components of dimension smaller than the fibre dimen-

sion, then we would have the analogue in our case of a result due to Hausel and Thaddeus

[32:Prop.9.1] regarding the Higgs bundle moduli space, namely that all of the critical sets

are equidimensional. On this note, we mention an interesting numerical phenomenon

that is readily apparent even in the few ranks we have considered. At rank 2, the co-

Higgs nilpotent cone is a single component (a copy of P1), all of which minimises the

Morse function. In rank 3, we saw that the minimum is only a point. There are

three other chains, all of type (1,1,1), and by adding the complex Morse index to the

dimension of the fixed point sets, we see that their Morse sets have complex dimen-

sion 4= (3−1)2. In the rank-4 case, the minimum is 5-dimensional, and apart from the
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(1,1,1,1) chains generating 9-dimensional components, the remaining fixed points also

generate 5-dimensional Morse sets. This makes for a difference of 4 complex dimensions

between the maximum-dimensional components and the other Morse sets (which may or

may not be components). In rank 5, the same phenomena largely continues: the Morse

sets start out at complex dimension 4 and increase by 4 until 16, although there are iso-

lated cases of chains with dimensions in between these, but they are only a handful out

of the 72 chains considered.

The emergence of this “4” is a curious feature. In the case of rank 6, where there are

several hundred chains, the trend more or less continues, with Morse sets starting at 9

dimensions and incrementing by 4 until the fibre dimension of 25 is attained. We will

reserve for the Outlook any further speculation on this.

4.7.2 Twisted Higgs Betti numbers vs. degree

In Theorem 4.11, we remarked that for ranks 2 through 4, the Poincaré polynomial of

the co-Higgs moduli space does not depend on the degree. This is true of twisted Higgs

bundles for any t, and is a consequence of duality. In fact, for rank 2, there is only one

degree that is normalised and coprime to 2, which is d = −1. For rank 3, there are

two degrees to consider: −1 and −2. In general, the duality (E,Φ) 7→ (E∗,Φ∗) gives

us a biholomorphic map of moduli spaces, Mt(r,d) ∼=Mt(r,−d), and so the underlying

topology is the same. For chains in particular, a holomorphic chain of normalised degree

d, −r < d < 0, and type (r1, . . . , rn) is sent to one of degree −d > 0 and type (rn, . . . , r1).

Tensoring by O(−1) re-normalises the dual chain to one of degree −d− r . Recall that

in Example 4.7, we generated stable chains of rank 3 and degree −2 in the co-Higgs
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case. Notice that these are precisely the chains obtained by dualising the ones for rank 3

and degree −1 in the proof of Theorem 4. In particular, the generic splitting types are

identified, and the stable chain of type (2,1) in degree −1 goes to the one of type (1,2) in

degree −2.

For rank 4, the only degrees coprime to 4 are −1 and −3, and duality again gives us

an isomorphism of moduli spaces. It is in rank 5 that we obtain for the first time degree

pairs that are not related by this simple duality. We have that −1 and −4 are related

by (E,Φ) 7→ (E∗,Φ∗), but −2 and −3 are a separate degree pairing. However, we have

reasons to suspect that the Betti numbers do not depend on the degree. Perhaps the most

compelling evidence for our particular case is that Mozgovoy’s twisted ADHM solutions

depend only on the rank and not on the degree.

As for our direct calculations, a simple experiment is to compute for each of d =−2

and d = −1 the co-Higgs chains of type (1,1,1,1,1). Because (1, . . . ,1) chains maintain

exlusive control over the top Betti numbers, and because isolating Poincaré polynomials

for type (1, . . . ,1) critical varieties is much easier than for other types, we can obtain

definitive information about the Betti numbers without repeating for r = 5, d = −2 the

unwieldy calculation of the entire Poincaré polynomial. (We expect a similar number of

chains for d = −2 as for d = −1.) Generating the (1,1,1,1,1) quivers for d = −2 and

then applying Lemma 4.1, we find that they contribute

40z32+103z30+154z28+165z26+130z24+72z22+25z20+4z18 (4.6)

to P(M2(r,−2),z). For d =−1, the (1,1,1,1,1) contribution is:

40z32+103z30+154z28+165z26+131z24+73z22+26z20+5z18. (4.7)
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While slight differences exist in the lower-degree terms (from which no conclusions can

be drawn), the top-most Betti numbers agree, with each other and with the ADHM num-

bers, thereby providing some support in this case for degree independence.

......Table 4.3.

d =−2 d =−1

Type Morse index, [Chain] Morse index, [Chain]

(1,1,1,1,1) 6, [ 0 | 0 | 0 | −1 | −1 ] 6, [ 0 | 0 | 0 | 0 | −1 ]

6, [ 0 | 0 | −1 | 0 | −1 ] 6, [ 0 | 1 | 0 | −1 | −1 ]

8 [ 1 | 0 | −1 | −1 | −1 ] 8 [ 1 | 0 | 0 | −1 | −1 ]

8, [ 0 | 1 | 0 | −1 | −2 ] 8, [ 1 | 0 | −1 | 0 | −1 ]

10, [ 1 | 0 | 0 | −1 | −2 ] 10, [ 1 | 1 | 0 | −1 | −2 ]

(4,1),(1,4) no output no output

(3,1,1),(1,3,1),(1,1,3) no output no output

(2,2,1),(2,1,2) no output no output

(1,2,2) 0, [ 0 | 0 0 | −1 −1 ] no output

(2,1,1,1) 4, [ 0 0 | 0 | −1 | −1 ] 4, [ 0 0 | 0 | 0 | −1 ]

(1,2,1,1) no output 0, [ 0 | 0 0 | 0 | −1 ]

(1,1,2,1) 2, [ 0 | 0 | 0 −1 | −1 ] 4, [ 1 | 0 | 0 −1 | −1 ]

(1,1,1,2) 6, [ 1 | 0 | −1 | −1 −1 ] no output

Stronger computational evidence comes from comparing d = −1 and d = −2 for

r = 5, but with t = 1 instead of t = 2. The presence of two separate degree pairings, i.e.
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−1 with −4 and −2 with −3, has nothing to do with the twist t. The t = 1 calculations

for rank 5 are far easier than for t = 2, as the number of chains is more in line with ranks

3 and 4 of t = 2.

The outputs of Routine A.4 for both (t, r,d) = (1,5,−2) and (t, r,d) = (1,5,−1) are

displayed above in Table 4.3. The sum of the Morse-index-weighted contributions from

the corresponding critical varieties is

P(M1(5,−2),z) = P(M1(5,−1),z) = 5z12+9z10+7z8+5z6+3z4+z2+1.

Interestingly, there is no obvious structural relationship between the chains of the

two cases — in particular the numbers of chains are unequal — yet they result in identical

Betti numbers.
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CHAPTER 5

Co-Higgs bundles on P2

By analogy with the general absence of stable co-Higgs bundles on positive-genus curves,

we expect on surfaces a concentration of stable co-Higgs bundles towards the lower end

of the Kodaira spectrum. In Chapter 7, this prediction is validated by negative results for

co-Higgs bundles on surfaces of general type. For now, we concentrate on the projective

plane, P2, where we find some interesting examples.

As with our study over curves, we insist that our examples of co-Higgs bundles on

P2 are stable. This means that they are represented by points in a moduli space, which

we know to exist from Simpson’s work in [54, 55]. The properness of the Hitchin map

in arbitrary dimension also emerges from his techniques [54:Thm.6.11]. A consequence

of the great generality of his construction is that translating its existence into concrete

observations about co-Higgs bundles is not so easy. In particular, there is no obvious

formula for the dimension of the moduli space in terms of the Chern classes of the

underlying bundles. Instead, we take the route of studying specific examples, and through

them we might see some of the local structure of the moduli space.
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We can wrap up co-Higgs line bundles on P2 with a single sentence: each one is

an ordinary line bundle L = O(d) together with a vector field ν ∈ H0(T) ∼= C8, and so

they are parametrised by Z×C8. There is far more to say in rank 2. Two methods of

constructing rank-2 vector bundles on P2 that are perhaps the simplest are

(a) taking extensions of a line bundle by another; and

(b) taking direct images of line bundles on a double cover.

In this chapter, we explore ways of turning bundles constructed via these techniques

into co-Higgs bundles. Once we have co-Higgs structures, we deform them, using the

deformation theory outlined in Chapter 2, in hopes of obtaining more examples. As

with our study of co-Higgs bundles on P1, we will consider only trace-zero Higgs fields.

5.1 Direct sums

Kodaira’s vanishing theorem tells us that Ext1(L;L′) = H1(LL′∗) = 0 for any two L,L′ ∈

Pic(P2), and so the only rank-2 extensions on P2 are direct sums. But not every direct

sum admits a stable Higgs field.

Proposition 5.1. Suppose E = O(m1)⊕O(m2), and that there exists a stable Φ for E. Then

we must have |m1−m2| ≤ 1.

Proof. Consider the Euler sequence on P2:

0→ O →
3⊕

i=1

O(1)→ T → 0. (5.1)

If we twist the terms of the sequence by O(−d) for any d> 1, then the free terms become
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O(−d) and
⊕3

i=1O(1−d), which are sums of negative-degree line bundles. Therefore,

T(−d) has no sections for d > 1.

Assume without loss of generality that m1 ≥ m2. The Higgs field Φ has a component

q :O(m1)→ T(m2) ∈ H0(T(m2−m1)). If m2−m1 > 1, then q = 0 and O(m1) is invariant

and maximally destabilising, contradicting the stability of (E,Φ).

thisisheretodeclarethatthisproo f isdone...................................................................

Remark 5.1. This result extends by induction to higher rank, saying that a fully decom-

posable bundle E = O(m1)⊕·· ·O(mr) on P2 with mi ≥ mi+1 admits a stable Higgs field

only if mi ≤ mi+1+1. See Remark 3.2.

If we restrict to normalised vector bundles, the only decomposable rank-2 bundles

admitting stable co-Higgs structures are E =O⊕O(−1) and E =O⊕O. If we begin with

the former, then every Φ ∈ H0(End0E⊗T) has the form



A B

C −A




for some A∈ H0(T), B∈ H0(T(1)), and C ∈ H0(T(−1)). This defines a stable co-Higgs

structure for E if and only if C is not identically zero (so that the trivial sub-line bundle

in E is not preserved) and the form

Φ∧Φ =




B∧C 2A∧B

2C∧A C∧B




vanishes identically. The latter is equivalent to A, B, and C satisfying the simultaneous

system

A∧B = 0, A∧C = 0, B∧C = 0.
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Now, we make use of the fact that the Euler sequence gives rise to

C3 ∼=
→ H0(T(−1)),

because the vector spaces H0(O(−1)) and H1(O(−1)) in the long cohomology sequence

of (5.1) vanish. That the second Chern class of T(−1) is 1 lends meaning to the isomor-

phism: it assigns to each nonzero section of T(−1) the unique point at which it vanishes.

Let p∈ P2 be the point where C vanishes. Away from the point, the simultaneous condi-

tions imply that A= λC and B= µC, where λ is a section of O(1) over P2−{p} and µ is a

section of O(2) over P2−{p}. The extension theorem of Hartogs (cf. [17], for instance)

allows us to extend each of λ and µ uniquely to sections over the whole of P2.

What we have shown is that, globally, we can factor Φ into



λ µ

1 −λ


⊗C, (5.2)

where the matrix is a section of End0E(1) and C is a section of T(−1).

We approach the case of the trivial bundle E = O⊕O in a similar fashion. Here, a

Higgs field is a matrix of holomorphic vector fields A, B, and C:

Φ =




A B

C −A


 .

Certainly, when one of B or C is identically zero, a trivial sub-line bundle will be pre-

served (i.e. one of the line bundles in the direct sum), and so the pair (E,Φ) will be

semistable but not stable. Therefore, we assume neither B nor C vanishes everywhere.

If C does not vanish everywhere, then it vanishes either on a (finite) set of points or

along a line P1 ⊂ P2. If C vanishes on a set of points only, then by the argument used
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above for degree −1, we must have A= aC and B= bC for a∈ C and b∈ C∗. We may

therefore write Φ as the product of a constant matrix φ and the vector field C.

If C vanishes along a P1, which we may take to be the zero set of a linear form

s(x0 : x1 : x2) ∈ H0(O(1)), then (1/s)C is a nonzero section of T(−1) and so vanishes on

a single point. If we use C′ to denote the section of T(−1) obtained from dividing C by

the linear form, then we may write Φ as

Φ =




a b

c −a


⊗C′ ,

where a, b, c are sections of O(1).

5.1.1 Parameters

From above, we know that a stable Higgs field on O⊕O(−1) decomposes in the form

Φ = φ⊗C for some C ∈ H0(T) and for some φ =




λ µ

1 −λ


 with λ ∈ H0(O(1)) and

µ∈ H0(O(2)).

Using λ, we can write down an automorphism of E = O⊕O(−1):

Ψ =




1 λ

0 1


 .

The conjugation action of Ψ sends Φ to

Φ′ =




0 λ2+µ

1 0


⊗C.

This normal form Φ′ is not unique: we have C∗-many such forms identified with Φ′

by the conjugation action of diag(a,a−1), a ∈ C∗. Therefore, it is the determinant of φ
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modulo scaling, i.e. a section of P(H0(O(2))) ∼= C5, and the choice of the vector field

C that determines the equivalence class of (E,Φ). In other words, there are 8 degrees of

freedom involved in constructing (E,Φ).

In the degree-0 case, the generic decomposition type is Φ= φ⊗C with C∈H0(T(−1)),

and φ in sl2(C)⊗O(1). We can write down φ as A0+A1z1+A2z2 in affine coordinates

on P2, where the Ai are 2×2 trace-free constant matrices. This reduces the problem to

the linear algebra of a triple of matrices: the stability of Φ is equivalent to the Ai having

no common eigenspace, so that Φ leaves no trivial subbundle invariant. This triple has

nothing to do with the actual geometry of P2. We can in fact transplant them into a

situation we have seen previously: the three matrices can be thought of as coefficients in

an O(2)-valued Higgs field A0+A1z+A2z2 for E = O⊕O on P1. We know from Chapter

3 that there is a 6-dimensional dense open set of a component of the moduli space con-

sisting of these Higgs fields. (For fixed detφ, this set is a fibre of the Hitchin fibration

minus the point for the unique stable Higgs field on O(1)⊕O(−1), cf. Proposition 3.1.)

Therefore, we have 6 parameters for choosing φ for the rank-2 trivial bundle on P2. The

choice of C, modulo scale in either C or φ, means that we have 8= 6+3−1 parameters

in total.

5.2 Direct images

Another way to generate rank-2 vector bundles is by taking direct images of line bundles

on a double cover. A well-known double cover of P2 is P1×P1, under an appropriately-

defined cover map. One feature of bundles produced in this way is that, unlike extensions
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of line bundles, they are generically indecomposable, as we will see. A complete study

of these bundles on P2 was carried out by Schwarzenberger in [50]. His results are recast

with a contemporary wording in [16:pp.46–51].

Define a map

p : P1×P1 2:1
−→ P2

by

(z,w) 7→ (z+w,zw). (5.3)

The branch locus is a conic, which is the image of the diagonal in P1×P1, given by p:

(z,z) 7→ (2z,z2). The branch conic is nondegenerate with equation v= u2/4, where (u,v)

are affine coordinates on P2.

The surface P1×P1 has Picard variety Z×Z: each line bundle in Pic(P1×P1) can

be realised as p∗1OP1(a)⊗ p∗2OP1(b), where the pi are the projections of P1×P1 onto its

rulings, for some a,b∈Z. We denote the line bundles on P1×P1 by O(a,b) for economy.

Definition 5.1. Let r ≥ 0 be an integer. The r -th Schwarzenberger bundle on P2 is the

sheaf Er = p∗O(0, r).

As we remarked in §1.6, Er is not only coherent but is furthermore locally free.

5.3 Properties of Schwarzenberger bundles

In this section we compute the Chern classes of Er , as well as the cohomology of the

bundles End0Er(d) and End0Er ⊗∧iT for i,d ≥ 0. The cohomology data will be needed

in subsequent sections for deformation-theoretic calculations. But in particular, when we
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compute the cohomology of End0Er (i.e. End0Er(d) when d = 0), this will inform us of

the stability of Er .

5.3.1 Chern data

To access the Chern classes, we use the Grothendieck-Riemann-Roch theorem. In the case

of our covering map, for which the direct images Rqp∗O(0, r) vanish save for p∗O(0, r) =

R0p∗O(0, r) (cf. [50:§3]), the theorem gives us

p∗(ch(O(0, r)).td(P1×P1)) = ch(Er).td(P2), (5.4)

where “ch” and “td” denote the Chern character and Todd polynomial, respectively. The

Chern character of a rank-r bundle on a surface is

ch(E) = r +c1(E)+
1
2

c1(E)
2−c2(E), (5.5)

The Todd polynomial of a curve X is

td(X) = 1+
1
2

c1(T), (5.6)

while for a surface it is

td(X) = 1+
1
2

c1(T)+
1
12

(c2
1(T)+c2(T)). (5.7)

Since c1(P2) = 3H and c2(P2) = 3H2, where H is the Chern class of O(1), we have

td(P2) = 1+
3
2

H +H2. (5.8)

The tangent bundle of P1 is O(2) and so

td(P1×P1) =

(
1+

1
2

2M

)(
1+

1
2

2N

)

= (1+M+N+M.N), (5.9)
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where M and N are the Chern classes of p∗1O(1) and p∗2O(1), respectively. Then, (5.4)

becomes

p∗ ((1+ rN).(1+M+N+M.N)) =

(
2+c1(Er)+

1
2

c1(Er)
2−c2(Er)

)
.

(
1+

3
2

H +H2
)
.

Using p∗M = p∗N = H and equating terms of like degree, we have the following:

c1(Er) = (r −1)H

c2(Er) =
r(r −1)

2
H2.

Because rank(Er) = 2, by Proposition (1.6) we can identify E∗
r with Er ⊗ (∧2(Er))

−1 =

Er(−deg(Er)), and then Proposition (1.5) gives us

c1(E
∗
r ) = (1− r)H

c2(E
∗
r ) =

r(r −1)
2

H2.

These formulae tell us in particular that c1(E0) = −H, c1(E1) = 0, and c2(E0) =

c2(E1) = 0. By Proposition 1.8, we must have E0
∼= O⊕O(−1) and E1

∼= O⊕O, which

are precisely the direct sums we studied at the beginning of this chapter.

We would like to show that no two Er are isomorphic to each other. We can nor-

malise Er to be of degree either 0 or −1, according as to whether r is respectively odd or

even. To be precise, the first Chern class of Er(−k) is r −1−2k, and so if r is even, then

c1(Er(−k)) is odd, and vice-versa. If r is even, then k = r/2 gives c1(Er(−r/2)) = −1;

if r is odd, then c1(Er(−(r −1)/2)) = 0. After normalising, what are the second Chern

classes of the Er? We enlist formula (1.5), which tells us that the second Chern number

of Er for even r is r2/4, while it is (r2−1)/4 for odd r . Since the second Chern number
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is an increasing function of r ≥ 0 even after normalising c1, we infer that Er
∼= Er ′ if and

only if r = r ′.

5.3.2 Cohomology and stability

A basic tool to unlock the cohomology of the bundles End0Er(d) and End0Er ⊗∧iT is

the push-pull functoriality. For End0Er(d), this is

H0(P2;EndEr(d)) = H0(P2;E⊗E∗⊗O(d))

= H0(P1×P1;O(0, r)⊗ p∗(E∗
r (d)))

= H0(P1×P1; p∗E∗
r ⊗O(d,d+ r)). (5.10)

This identification allows us to calculate cohomology upstairs instead of downstairs.

Proposition 5.2. Suppose r ≥ 2 and d ≥ 0. If d ≥ r −1, then

h0(P2; End0Er(d)) =
d(d+1)

2
+(d+2)2− r2;

else,

h0(P2; End0Er(d)) =
d(d+1)

2
.

Proof. Pulling back Er to P1×P1 gives us a surjective map p∗Er → O(0, r), and so there

is a kernel — that is, a short exact sequence

0→ O(a,b)→ p∗Er → O(0, r)→ 0.

Because of c1(Er) = (r −1)H and the functoriality of the Chern classes, we must have

O(r −1, r −1) = ∧2p∗Er = O(a,b+ r),
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and so O(a,b) = O(r −1,−1). The dual sequence

0→ O(0,−r)→ p∗E∗
r → O(1− r,1)→ 0

can be twisted by O(d,d+ r) to give

0→ O(d,d)→ p∗E∗
r (d,d+ r)→ O(d− r +1,d+ r +1)→ 0

Because H1(O(d,d)) = 0, we have

h0(p∗E∗
r (d,d+ r)) = h0(O(d,d))+δr,dh0(O(d− r +1,d+ r +1))

= (d+1)2+δr,d(d+2− r)(d+2+ r)

= (d+1)2+δr,d((d+2)2− r2),

where δr,d = 1 if d ≥ r −1 and 0 otherwise. By (5.10), we have

h0(EndEr(d)) = (d+1)2+δr,d((d+2)2− r2).

Removing the trace in H0(O(d)) leaves

h0(End0Er(d)) = (d+1)2+δr,d((d+2)2− r2)−
(d+1)(d+2)

2

=
d(d+1)

2
+δr,d((d+2)2− r2).

thisisheretodeclarethatthisproo f isdone...................................................................

Corollary 5.1. For r ≥ 2, the bundles Er are indecomposable.

Proof. If Er were decomposable, then there would exist a nonzero traceless endomor-

phism of Er , which is the projection onto one of the proper subbundles. However, the

formula of the preceding proposition tells us that H0(End0Er) = 0.

thisisheretodeclarethatthisproo f isdone...................................................................
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Corollary 5.2. For r ≥ 2, the bundles Er are stable.

Proof. The formula of the preceding proposition tells us that H0(End0Er) = 0, and so Er

is simple. By Proposition 1.11, Er is stable.

thisisheretodeclarethatthisproo f isdone...................................................................

Corollary 5.3. For r ≥ 2 and d ≥ 0, H2(P2; End0Er(d)) = 0.

Proof. Applying Serre duality, we have H2(End0Er(d))∗ = H0(End0Er(−d−3)). Since

H0(End0Er) = 0 and O(−d−3) has negative degree, the result follows.

thisisheretodeclarethatthisproo f isdone...................................................................

Corollary 5.4. As before, r ≥ 2 and d ≥ 0. For d ≥ r −1≥ 1, H1(P2; End0Er(d)) = 0; for

any other r and d, h1(P2; End0Er(d)) = r2−d2−4d−4.

Proof. This follows from Proposition 5.2 and Corollary 5.3, by using Riemann-Roch

with

ch(End0Er) = 3+(1− r2)H2

ch(O(d)) = 1+dH+
1
2

d2H2

and td(P2) = 1+
3
2

H +H2.

Taking the coefficient of H2 in the product of these, we have by Riemann-Roch

h0(End0Er(d))−h1(End0Er(d))+h2(End0Er(d)) = 4− r2+
3d
2
(d+3).

The result comes from substituting h2(End0Er(d) = 0 and the values of h0(End0Er(d))

from Proposition 5.2.

thisisheretodeclarethatthisproo f isdone...................................................................
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Proposition 5.3. For r > 3, h0(End0Er ⊗T) = 3. For r = 2 and r = 3, the dimensions of

the space H0(End0Er ⊗T) are 18 and 8, respectively.

Proof. The direct image operation gives us another push-pull identity:

H0(P2;Er
∗⊗Er ⊗T) = H0(P1×P1; p∗(Er

∗⊗T)⊗O(0, r)),

and so we may calculate the dimension of the space on the right instead. Recall from the

proof of Lemma 5.2 the short exact sequence

0→ O(1− r,1)→ p∗Er → O(0, r)→ 0 (5.11)

The dual sequence to (5.11) is

0→ O(0,−r)→ p∗Er
∗ → O(1− r,1)→ 0, (5.12)

from which we arrive at

0→ p∗T → p∗(Er
∗⊗T)(0, r)→ p∗T(1− r, r +1)→ 0. (5.13)

We want to calculate H0 of the middle term.

Now, at r = 2, sequence (5.11) gives us

0→ O(1,−1)→ p∗E2 → O(0,2)→ 0,

which becomes

0→ O(2,0)→ p∗T → O(1,3)→ 0 (5.14)

after a twist by O(1,1). Yet another twist, this time by O(1− r,1+ r), gives

0→ O(3− r,1+ r)→ p∗T(1− r,1+ r)→ O(2− r,4+ r)→ 0. (5.15)
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The cohomology sequence corresponding to (5.15) tells us that H0(p∗T(1− r,1+ r)) van-

ishes for r > 3. From (5.13), we find that H0(P1×P1; p∗(Er
∗⊗T)⊗O(0, r))∼= H0(p∗T),

and from (5.14) we can read off that h0(p∗T) = 11. However, the traces of the T-valued

endomorphisms of Er correspond to vector fields on P2, which span an 8-dimensional

space; it follows that h0(P2;End0E⊗T) = 3.

When r = 3, sequence (5.15) tells us that H0(p∗T(1− r,1+ r)) is not zero, but rather

5-dimensional, coming from H0(O(3− r,1+ r)), and so

H0(P1×P1; p∗(Er
∗⊗T)⊗O(0, r))∼= H0(p∗T) = h0(p∗T)+5= 16.

Removing the trace (vector fields on P2) leaves an 8-dimensional space. The calculation

for r = 2 is similar.

thisisheretodeclarethatthisproo f isdone...................................................................

Corollary 5.5. For r ≥ 2, h2(End0Er ⊗T) = 0. For r > 3, h1(End0Er ⊗T) = 2r2−23. If

r = 2 or r = 3, then h1(End0Er ⊗T) = 0.

Proof. If we take the Euler sequence for the cotangent bundle and twist each term by

End0Er(−3), then we have

0→ End0Er ⊗T∗(−3)→ (End0Er(−4))⊕3 → End0Er(−3)→ 0. (5.16)

But h0(End0Er(−3)) = h2(End0Er) = 0 because of Lemma 5.2 for d = 0. It follows that

h0(End0Er(−4)) = 0 as well, and so in turn,

h2(End0Er ⊗T) = h0(End0Er ⊗T∗(−3)) = 0.

For h1(End0Er ⊗T), we use Riemann-Roch and the fact that ch(End0Er)ch(T)td(P2) has

leading coefficient 26−2r2. The different values for h1(End0Er ⊗T) come from adding
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3, 8, or 18 to −(26−2r2) as appropriate, according to the values for h0(End0Er ⊗T) in

Proposition 5.3.

thisisheretodeclarethatthisproo f isdone...................................................................

5.3.3 Schwarzenberger cohomology tables

For ease of reference, we summarise the above cohomology calculations in the following

tables. We set apart r = 4 and r = 5 to highlight extra vanishing in those cases.

Table 5.0.

E0 = O⊕O(−1) h0 h1 h2

End0E0 4 0 0

End0E0(1) 10 0 0

End0E0(2) 19 0 0

End0E0⊗T 26 0 0

End0E0⊗∧2T = End0E0(3) 31 0 0

Table 5.1.

E1 = O⊕O h0 h1 h2

End0E1 3 0 0

End0E1(1) 9 0 0

End0E1(2) 18 0 0

End0E1⊗T 24 0 0

End0E1⊗∧2T = End0E1(3) 30 0 0
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Table 5.2.

E2 = T(−1) h0 h1 h2

End0E2 0 0 0

End0E2(1) 6 0 0

End0E2(2) 15 0 0

End0E2⊗T 18 0 0

End0E2⊗∧2T = End0E2(3) 27 0 0

Table 5.3.

E3 h0 h1 h2

End0E3 0 5 0

End0E3(1) 1 0 0

End0E3(2) 10 0 0

End0E3⊗T 8 0 0

End0E3⊗∧2T = End0E3(3) 22 0 0

Table 5.4.

E4 h0 h1 h2

End0E4 0 12 0

End0E4(1) 1 7 0

End0E4(2) 3 0 0

End0E4⊗T 3 9 0

End0E4⊗∧2T = End0E4(3) 15 0 0
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Table 5.5.

E5 h0 h1 h2

End0E5 0 21 0

End0E5(1) 1 16 0

End0E5(2) 3 9 0

End0E5⊗T 3 27 0

End0E5⊗∧2T = End0E5(3) 6 0 0

Table 5.6.

Er r > 5 h0 h1 h2

End0Er 0 r2−4 0

End0Er(1) 1 r2−9 0

End0Er(2) 3 r2−16 0

End0Er ⊗T 3 2r2−23 0

End0Er ⊗∧2T = End0Er(3) 6 r2−25 0

5.4 Higgs fields for Schwarzenberger bundles

Choosing a section s of O(1,1)→ P1×P1 induces a multiplication

H0(p−1(U),O(0, r)) −→ H0(p−1(U),O(1, r +1))

over each open set U of P2. Because the pullback under p ofO(1) on P2 isO(1,1), we have

H0(p−1(U),O(1, r +1)) ∼= H0(U,Er(1)) by one of the basic features of the direct image
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functor (cf. §1.6). Therefore, the multiplication maps descend to a bundle morphism

φ : Er → Er(1).

To obtain T-valued Higgs fields, we turn to the Euler sequence

0→ O → C3⊗O(1)→ T → 0,

in which C3 parametrises sections of T(−1). If we twist by EndEr and take the long

exact sequence in cohomology, we have

0→ H0(EndEr)→ C3⊗H0(EndEr(1))→ H0(EndEr ⊗T)→ H1(EndEr)→ ·· ·

If we consider trace-zero endomorphisms only, then stability for r ≥ 2 leaves us with

0→ C3⊗H0(End0Er(1))→ H0(End0Er ⊗T)→ H1(End0Er)→ ·· · (5.17)

which gives us an injection of H0(T(−1))⊗H0(End0Er(1)) into H0(End0Er ⊗T).

For most r , the tables in §5.3.3 tell us exactly what the Higgs fields look like. For

r > 3, the space H0(End0Er(1)) is 1-dimensional. On the other hand, H0(End0E⊗T)

is 3-dimensional. Therefore, H0(T(−1))⊗H0(End0Er(1)) →֒ H0(End0Er ⊗T) is an iso-

morphism, and every Higgs field can be obtained as a product Φ = φ⊗C, where φ is a

generator for H0(End0Er(1)), unique up to scale, and C is a section of T(−1). In the case

r = 3, h0(End0Er ⊗T) is now 8 while h0(End0Er(1)) is still 1. There is a 3-dimensional

subspace of H0(End0Er ⊗T) consisting of sections of the form φ⊗C, although there is a 5-

dimensional subspace of H0(End0Er ⊗T) that cannot be obtained in this way. In the case

r = 2, every Φ ∈H0(End0Er ⊗T) is of the form φ⊗C: although h0(End0Er ⊗T) = 18, we

now have h0(End0Er(1)) = 6, and so H0(T(−1))⊗H0(End0Er(1)) →֒ H0(End0Er ⊗T)

is again an isomorphism.
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5.4.1 Φ∧Φ = 0

Consider the exact sequence

0→ O(−1)→ C3 → T(−1)→ 0,

which is just the Euler sequence twisted by O(−1). In local coordinates (1,z1,z2) on P2,

the map from C3 to T(−1) is given by

(c0,c1,c2) 7→ (c1−c0z1)∂/∂z1+(c2−c0z2)∂/∂z2.

Then, the map taking 3-tuples of sections of End0Er(1) to sections of End0Er ⊗ T in

sequence (5.17) is given by

(φ0,φ1,φ2) 7→ (φ1−φ0z1)∂/∂z1+(φ1−φ0z2)∂/∂z2.

The integrability of a Higgs field Φ in the image of this map is given by the vanishing of

Φ∧Φ = [φ1−φ0z1,φ2−φ0z2]∂/∂z1∧∂/∂z2,

which occurs whenever the φi pairwise commute. Of course, this is automatically true

for r > 3, since H1(End0Er(1)) =C as discussed above. But even if this were not the case,

the pushdown construction comes into play. Any two sections s1 and s2 of O(1,1) on

P1×P1 commute with each other and so, downstairs, their respective direct images φ1

and φ2 also commute. This means that Φ∧Φ = 0 for r = 2, and also for r = 3 when the

Higgs field Φ is obtained as φ⊗C for φ ∈ H0(End0Er(1)) and C∈ H0(T(−1)).

Remark 5.2. The surface P1 ×P1 is a subvariety of P3, via the Segre embedding, and

O(1) on P3 restricts to O(1,1) on P1×P1. The coefficient of the constant term of the

characteristic polynomial of φ ∈ H0(End0Er(1)) is a section of O(2), and since (Er ,φ)
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is stable, the spectral cover generated by φ is branched over a nondegenerate conic—

precisely the conic we started with. This spectral cover is embedded in the total space of

O(1), which is compatible with how we began the construction: the total space of O(1)

on P2 is P3 minus a single point, and so the constraint on the spectral P1×P1 is that it

misses this point.

We also remark briefly upon the B-field in this case. Unlike the rank-2 case on P1,

where the spectral Jacobian is generically a nonsingular elliptic curve, the spectral Picard

in this case is discrete, essentially Z×Z. (To be more precise, there is a map induced by

the Euler sequence taking P1×P1 onto a surface, possibly singular, in the total space of

the tangent bundle, and in turn an induced map on Picard varieties.) The consequence

is that the spectral flow induced by the B-field is trivial, in the sense that a line bundle

O(0, r) is stationary for all time.

5.5 Deforming co-Higgs structures on Schwarzenberger bundles

Using the deformation theory derived in Chapter 2 for co-Higgs bundles on surfaces, we

will count the first-order deformations around our rank-2 Schwarzenberger examples.

Definition 5.2. From now on when we write Schwarzenberger co-Higgs bundle, we

mean a rank-2 co-Higgs bundle (E,Φ) on P2 in which E=Er is a Schwarzenberger bundle

and Φ = φ⊗C, for some φ and C in H0(End0E(1)) and H0(T(−1)) respectively.

Note that this includes most rank-2 co-Higgs bundles whose underlying bundle is an

Er . The decomposable rank-2 bundles E0 and E1 must have Higgs fields of this form for

stability and to satisfy the integrability condition, cf. §5.1. Those with r ≥ 2 are all of
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this form, save for a 5-dimensional family of Higgs fields for E3, as discussed above. In

particular, every Schwarzenberger co-Higgs bundle is stable.

First, it is automatic that H0
(Er ,Φ) = 0 for any Schwarzenberger co-Higgs bundle. As

defined in §2.1, this is the kernel of H0(End0Er)
−∧Φ
−→ H0(End0Er ⊗T). But by stability,

the only trace-zero endomorphism of Er that commutes with Φ is zero.

Now we state the main theorem, regarding H1 for these objects:

Theorem 5.3. The hypercohomology H1
(Er ,Φ) is 8-dimensional at every Schwarzenberger co-

Higgs bundle (Er ,Φ).

We will divide the proof into cases depending upon the index r , but we need to

examine the differential map in sequence (2.4) first. In §2.1, we defined d2 by (ψαβ) 7→

([
θβ,Φ

])
, where (ψαβ) is a 1-cocycle for EndE whose bracket with Φ is θβ −θα, where

θα,θβ are 0-cochains for EndE⊗T. We showed it is well-defined as a map from E0,1 into

E2,0, where the symbols E p,q mean the same as they do in Chapter 2, that is,

E p,q =
ker Hq(Wp)

−∧Φ
−→ Hq(Wp+1)

im Hq(Wp−1)
−∧Φ
−→ Hq(Wp)

,

where Wp is End0Er ⊗∧pT. Thus, E1,0 = ker H1(End0E)
−∧Φ
→ H1(End0E⊗T), where

−∧Φ acts by the Lie bracket, and E2,0 is a quotient space of H0(End0E⊗∧2T).

Lemma 5.1. The map d2 : E0,1 → E2,0 defined by (2.5) in §2.1 is zero at a Schwarzenberger

co-Higgs bundle.

Proof. Consulting the tables in §5.3.3 for r = 0,1,2, we find H1(End0Er) = 0. Hence,

d2 = 0, because by definition E0,1 ⊂ H1(End0Er). For any other Schwarzenberger co-

Higgs bundle, let (ψαβ) be a cocycle in ker H1(End0Er)
[−,Φ]
→ H1(End0Er ⊗ T). Then
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[ψαβ,φC] = θβC−θαC, where θα,θβ are 0-cochains for End0E⊗T, and φC is the decom-

position of Φ. But then d2(ψαβ) = [θβC,φC] = [θβ,φ]C∧C = 0.

thisisheretodeclarethatthisproo f isdone...................................................................

This means that the hypercohomology sequence (2.4) becomes a short exact sequence

0→ E1,0 −→H1
(Er ,Φ) −→ E0,1 → 0, (5.18)

and in particular we obtain dimH1 by simply adding the numbers e1,0 := dimE1,0 and

e0,1 := dimE0,1.

5.5.1 Cases r = 0,1

These are the direct sums of §5.1, where we showed that the number of moduli for stable

co-Higgs bundles with this form is 8 — essentially proving Theorem 5.3 in these cases.

Without expending too much energy, we will perform these calculations again, but using

the hypercohomology sequence instead. To this aim, we will peform the calculations for

E1 = O⊕O only, but with instructions for modifying them for E0 = O⊕O(−1).

In these decomposable cases, the exact sequence (5.18) simplifies even further, in that

we have H1 ∼=E1,0. This is because E0,1 ⊂ H1(End0Er) = 0 for these bundles, as in tables

5.0 and 5.1. By definition,

E1,0 =
ker H0(EndE1⊗T)

−∧Φ
→ H0(EndE1⊗∧2T)

im H0(EndE1)
−∧Φ
→ H0(EndE1⊗T)

. (5.19)

To calculate the dimension of this space, we take {C1,C2,C3} to be a basis of global

sections for T(−1). Without loss of generality we may take Φ = φ ⊗C1, where φ ∈

H0(End0E1(1)) as usual. In this basis, the generic element of H0(End0E1 ⊗T) can be



5.5 Deforming co-Higgs structures on Schwarzenberger bundles 125

written in the form

Θ = θ1C1+θ2C2+θ3C3

for some θ1,θ2,θ3 ∈ H0(End0E1(1)). This is permissible because H1(End0E1) = 0, and

so there is a surjective map

t : H0(T(−1))⊗H0(End0E1(1))→ H0(End0E1⊗T) (5.20)

arising from the Euler sequence.

If z1 and z2 are affine coordinates on P2 such that Cj = ∂zj for j = 1,2 and C3 =

z1∂z1 +z2∂z2, then the vanishing of the wedge product of Φ and Θ is equivalent to

[φ,θ2+z2θ3] = 0. (5.21)

Because Φ is regular, and consequently everywhere nonvanishing, equation (5.21) implies

that one matrix is a multiple of the other (on the open set {z1,z2}=C2 ⊂ P2, but we can

extend this to all of P2). As the combination θ2+z2θ3 defines an element of End0E1(2),

while φ ∈ H0(End0E1(1)), the multiplication is by a section Λ of O(1):

Λφ = θ2+z2θ3. (5.22)

If we put:

◦ Λ = λ0+λ1z1+λ2z2 ;

◦ φ = φ0+φ1z1+φ2z2 ; and

◦ θ2 = A0+A1z1+A2z2 , θ3 = B0+B1z1+B2z2 ,
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where λi ∈ C and φi ,Ai ,Bi ∈ H0(End0E1), then expanding equation (5.22) and equating

coefficients produces the following relations:

λ0φ0 = A0

λ0φ1+λ1φ0 = A1

λ0φ2+λ2φ0 = A2+B0

λ1φ2+λ2φ1 = B1

λ1φ1 = 0

λ2φ2 = B2.

As the φi are fixed, these relations completely determine the matrices Ai once we

choose B0 and all λ0 and λ2. The number λ1 must be 0 by the relation λ1φ1 = 0. The

choice of B0 corresponds to 3 degrees of freedom. The choice of θ1 is arbitrary, as it was

not involved in (5.22), and therefore adds 9 degrees of freedom. With the numbers λ0

and λ2, this makes for 14 degrees of freedom for the kernel of numerator in (5.19). We

must be careful, though. The map t in (5.20) introduces an extraneous relation, because

T has one fewer section than H0(T(−1))⊗O(1). From our tally, we need to remove

this extraneous degree of freedom from each θi , meaning the dimension of the kernel is

actually 11. Finally, the image of the map in the denominator of (5.19) is 3-dimensional,

and so

dimH1
(O⊕O,Φ) = 11−3 = 8.

The calculations are very similar for E0 =O⊕O(−1). The equation [φ,θ2+z2θ3] = 0

leads to a different set of conditions, because elements of H0(End0E0(1)) can have com-
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ponents taking values in O(2). Therefore, there are additional matrix equations arising

from the z2
1, z2

2, and z1z2 terms.

5.5.2 Cases r = 2,3

We will start with r = 3. As can be seen from Table 5.3, the φ in Φ = φ⊗C generates

H0(End0E3(1))∼= C.

Claim: e1,0= 3

Using the Wi = End0E3⊗∧iT notation, we have

E1,0 =
ker H0(W1)→ H0(W2)

im H0(W0)→ H0(W1)

=
{

Ψ ∈ H0(End0E3⊗T) : Ψ∧Φ = 0
}
.

Also, the vanishing of H1(End0E3(1)) in Table 5.3 means that the Euler sequence

gives rise to another short exact sequence:

0→ C3⊗H0(End0E3(1))→ H0(End0E3⊗T)→ H1(End0E3)→ 0.

The spaces in the sequence have dimensions 3, 8, and 5, respectively. We know that

every element of the 3-dimensional space C3⊗H0(End0E3(1)) commutes with Φ.

We aim to show that E1,0 is precisely this space, and so e1,0 = 3.

Let x ∈ P2 be the point where C vanishes; Ix, the ideal sheaf concentrated there.

The equation Ψ∧Φ = 0 can be reconsidered in the form [φ,Ψ∧C] = 0, and there-

fore Ψ ∧C, which is in H0(End0E3(2)⊗ Ix), must be of the form sφ for some

s∈ H0(O(1)). Since the regularity of φ prohibits its vanishing, we must have that
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s vanishes at x; in particular, s passes through x. This means that there are two de-

grees of freedom in choosing s: one restriction applied to h0(O(1)) = 3. Consider

now the map on functions given by f 7→C f . This gives rise to an exact sequence

of sheaves

0→ O → T(−1)→ Ix⊗O(1)→ 0,

which in turn gives us

0→ End0E3(1)→ End0E3⊗T
−∧C
−→ End0E3(2)⊗Ix → 0

when we apply End0E3(1)⊗−. Applying H0(−) and noting the vanishing of

H1(End0E3(1)), we have

0→ H0(End0E3(1))→ H0(End0E3⊗T)
−∧C
−→ H0(End0E3(2)⊗Ix)→ 0, (5.23)

in which the first space, H0(End0E3(1)), is 1-dimensional. The problem is now

about determining which elements of H0(End0E3⊗T) go to elements of the form

sφ in H0(End0E3(2)⊗Ix). Since such elements form a 2-dimensional subspace of

H0(End0E3(2)⊗Ix), and since the kernel of the exact sequence is 1-dimensional,

we conclude that inside H0(End0E3 ⊗T) is a 3-dimensional subspace whose ele-

ments take the desired form after −∧C.

Claim: e0,1= 5

Here we have E0,1 = ker H1(W0) −→ H1(W1), which is all of H1(W0) because

H1(W1) = H1(End0E3⊗T) = 0, as in Table 5.3, where we also see that H1(W0) =

H1(End0E3) is 5-dimensional.



5.5 Deforming co-Higgs structures on Schwarzenberger bundles 129

This is enough information to conclude that H1(E3,Φ) is 8-dimensional, by Lemma

5.1. The case of r = 2, in which E2 = T(−1), is almost identical in the style of argument.

In sequence (5.23), the kernel is 6-dimensional rather than 3-dimensional, and so e1,0 =

6+2= 8. On the other hand, e0,1 = 0 because h1(EndE2) = r2−4= 0. In other words,

there are no deformations of the bundle (the tangent bundle is rigid), and so all degrees

of freedom come from perturbing the Higgs field.

5.5.3 Case r > 3

In the following calculations we refer to Table 5.6 as necessary.

Claim: e1,0= 3

We have

E1,0 =
ker H0(W1)→ H0(W2)

im H0(W0)→ H0(W1)
(5.24)

=
{

Θ ∈ H0(W1) : Θ∧Φ = 0
}

(5.25)

= H0(W1), (5.26)

since H0(W0) = 0, and since every Θ∈H0(W1) can be written as θ ·C′ = aφ⊗C′ for

some a∈ C. From this, we have Θ∧Φ = [θ,φ] ·C′∧C= a[φ,φ] ·C′∧C. Therefore,

e1,0 = h0(W1) = 3.

Claim: e0,1= 5

Here we have E0,1 = ker H1(W0) −→ H1(W1). This is the kernel of a map on
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1-cochains induced by −∧Φ, which factors into two related maps:

[−,φ] : H1(End0Er)→ H1(End0Er(1)),

followed by a map

H1(End0Er(1))→ H1(End0Er ⊗T)

induced by C∈ H0(T(−1)).

Step 1: Show that ker H1(End0Er)→ H1(End0Er(1)) is 5-dimensional.

Interpreting φ as a section of Hom(O(−1),End0Er), we have an exact sequence

0→ O(−1)→ End0Er
[−,φ]
→ End0Er(1)→ M → 0 (5.27)

in which M is a rank-1 coherent sheaf. The dual sequence is

0→ M∗ → End0Er(−1)→ End0Er → O(1)→ 0,

wherein the last three terms are, up to a twist by O(−1), identical to the terms

in the same respective positions in (5.27). Because [φ,−] is skew adjoint, this

means that the sequences are simply twisted versions of each other; so in fact

M = O(1)⊗2 = O(2). Now, the first two terms give rise to a short exact sequence

0→ O(−1)→ End0Er → Q→ 0

in which Q is the (sheaf-theoretic) image of End0Er in End0Er(1). It is easy to

see by writing down the long exact cohomology sequence that H0(Q) = 0 and
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H1(End0Er) ∼= H1(Q). On the other hand, the short exact sequence for the last

two terms of (5.27),

0→ Q→ End0Er(1)→ O(2)→ 0,

has a cohomology sequence that looks like

0→ H0(End0Er(1))→ H0(O(2))→ H1(Q)→ H1(End0Er(1))→ 0.

From this, we see that

ker H1(End0Er)
[−,φ]
→ H1(End0Er(1)) = im H0(O(2))→ H1(End0Er))

since H1(Q) = H1(End0Er). Using the exactness of the sequence and the fact that

h0(End0Er(1)) = 1, we know that the dimension of im H0(O(2)) → H1(End0Er)

is 6−1= 5, which makes ker H1(End0Er)
[−,φ]
→ H1(End0Er(1)) 5-dimensional, too.

The relevance of Step 1 is that, since H1(End0Er) is (r2 − 4)-dimensional while

H1(End0Er(1)) is (r2−9)-dimensional, we have that the map [−,φ] : H1(End0Er)→

H1(End0Er(1)) is surjective.

Step 2: Show that the second map, H1(End0Er(1))→H1(End0Er ⊗T), is injective.

To do this, we note the exact sequence

0→ End0Er(1)→ End0Er ⊗T → End0Er(2)⊗Ix → 0
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coming from the map O → T(−1) given by f 7→ fC. The long exact cohomology

sequence begins with the left-exact sequence

0→ H0(End0Er(1))→ (End0Er ⊗T)→ H0(End0Er(2)⊗Ix)

in which the first term is 1-dimensional and the second is 3-dimensional. Refer-

ring to the cohomology tables, we also know that h0(End0Er(2)) = 3, and so the

constraint that sections vanish at x means h0(End0Er(2)⊗Ix) = 2. This makes the

left-exact sequence fully exact. Therefore, H1(End0E(1))→ H1(End0Er ⊗T) is in-

jective.

We have proved that the kernel of the map H1(End0Er)→ H1(End0Er ⊗T) is the

kernel of ker H1(End0Er) → H1(End0Er(1)). Hence, e0,1 = 5. By Lemma 5.1,

dimH1
(Er ,Φ) = 3+5= 8.

As we now have the number dimH1 = 8 in every case, we have proved Theorem 5.3.

5.6 Zariski tangent space to the local moduli space

Theorem 5.3 says that the Zariski tangent space to the moduli space of stable rank-2 co-

Higgs bundles is 8-dimensional at a Schwarzenberger co-Higgs bundle (Er ,Φ). However,

the space H2
(Er ,Φ) is nonzero for every r . Extending the calculations in §5.5 a little bit

would reveal that dimH2
(Er ,Φ) = 17 in every case.

We note the Kuranishi-type theorem invoked in [16] for moduli of vector bundles,

which can be adapted to the addition of the co-Higgs structure:
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Theorem 5.4. [16:Thm.6.15] Suppose that x ∈ M is a stable point of the moduli space.

If H2 = 0, then M is smooth at x of dimension equal to dimH1. More generally, there is

an analytic neighbourhood of x in M which is the zero variety of h holomorphic functions

f1, . . . , fh defined in a neighbourhood of the origin in H1, and where h= dimH2.

Therefore, the dimension of the moduli space at (Er ,Φ) is at most dimH1
(Er ,Φ). On

the other hand, we used 8 parameters to construct these pairs in the first place, namely

the choice of a conic in P(H0(O(2))) and of a section of T(−1) (or equivalently a point

in the total space of O(1) over P2).

Two conclusions we draw from this are: (a) the moduli space is in fact 8-dimensional

at any Schwarzenberger co-Higgs bundle; and (b) the Schwarzenberger co-Higgs bundles

cannot be “bent out of shape” — that is, there are no nearby co-Higgs bundles that are

not part of the Schwarzenberger family.

We make a further remark in the case of r ≥ 3: the moduli space of Schwarzenberger

co-Higgs bundles (Er ,Φ) intersects the (r2−4)-dimensional moduli space of stable rank-

2 bundles on P2 at Φ = 0, because the underlying bundles themselves are stable. As

the datum determining the underlying bundle is a conic on P2, these two moduli spaces

intersect in the 5-dimensional projective space of sections of O(2). Furthermore, the

moduli space of stable bundles with zero Higgs field is contained inside the nilpotent

cone, and so the nilpotent cone intersects the cone of Schwarzenberger co-Higgs bundles.

In the r = 2 case, the underlying bundle E2 = T(−1) is stable but rigid and so the

space of Schwarzenberger co-Higgs structures on T(−1) intersects the nilpotent cone in

one point. In the cases of E0 = O⊕O(−1) and E1 = O⊕O, the zero co-Higgs structure

is unstable, and so there is no intersection with the nilpotent cone.
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In the next chapter, we will encounter a co-Higgs bundle that can be deformed into

something new.
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CHAPTER 6

Canonical co-Higgs bundle

In this chapter, we study the canonical co-Higgs bundle that can be defined on any variety.

As in the Introduction, we define it like so: if O and T are respectively the structure sheaf

and tangent bundle of X, then put E = O ⊕ T and Φ(s,ξ) = (ξ,0) for all s∈ O and

ξ ∈ O(T). This example is nilpotent: the kernel of Φ is the trivial sub-line bundle O,

while the image of Φ is contained in O⊗T. Because Φ◦Φ = 0∈ H0(EndE⊗T ⊗T) we

have as a direct consequence Φ∧Φ = 0∈ H0(EndE⊗∧2T).

Whereas in the previous chapter we were unable to coax out new examples from

Schwarzenberger bundles, we find more success here: the canonical co-Higgs bundle on

P2 admits first-order deformations that are genuinely distinct from (E,Φ). In particular,

they are not nilpotent in the sense of above.

We will explain some properties of (E,Φ) before we look at its deformations.
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6.1 Origins

The canonical co-Higgs bundle arises naturally, once we switch to another definition of

co-Higgs bundle. This viewpoint is due to Miyaoka. In [41], he studies an analogous

canonical Higgs bundle (with Higgs field taking values in the cotagent bundle). His

canonical Higgs bundle arises from interpreting a Higgs bundle, in the sense of Simpson,

as a locally-free sheaf of Sym(T)-modules.

We adapt the idea to the co-Higgs situation. A co-Higgs bundle can be reinterpreted

as a locally-free sheaf of Sym(T∗)-modules: the commutativity condition

Φ∧Φ = 0∈ H0(End0E⊗∧2T)

is equivalent to saying that there exists an action of O(T∗) on E for which θ1(θ2(s)) =

θ2(θ1(s)) for any θ1,θ2 ∈ O(T∗) and s∈ O(E). Under this definition, it is easy to see

that the bundle El
k :=⊕l

i=kSiT is a co-Higgs bundle, whose O(T∗)-action annihilates SkT

while applying the standard contraction T∗⊗SiT → Si−1T everywhere else.

The simplest example in this collection that is not a line bundle is E1
0 = O⊕T with

Φ =




0 1

0 0


 ,

where 1 ∈ End0T. This example is what we have called the “canonical” co-Higgs bundle.

6.2 Stability

There are sufficient conditions for the stability of the canonical co-Higgs bundle.
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Proposition 6.1. If degT > 0 and T is semistable, then the canonical co-Higgs bundle is

stable. If degT = 0 and T is semistable, then the canonical co-Higgs bundle is semistable but

not stable.

Proof. Let n stand for dimX. The tangent bundle T and its subbundles are not Φ-

invariant, because they are mapped by Φ into O ⊗ T. The trivial sub-line bundle in

the direct sum decomposition is Φ-invariant (because it is mapped to zero), but it is

destabilising only when deg(O⊕T) = degT < 0. The same holds for sub-line bundles of

O, as all of these have nonpositive degree. Therefore, requiring degT > 0 prevents this

particular destabilisation from occurring.

Now, consider general Φ-invariant torsion-free subsheaves F of E. The image of Φ

is contained in O ⊗T, and so a Φ-invariant subsheaf must contain a subsheaf R of O.

The quotient F /R is a coherent subsheaf of T. But because T is locally free, S = F /R

is torsion free (Proposition 1.2). Also, if T is semistable, we must have µ(S) ≤ µ(T).

Similarly, R ⊂ O is a torsion-free rank-1 sheaf. It is contained in its double dual, which is

a reflexive rank-1 sheaf and subsequently a line bundle. This line bundle R ∗∗ has degree

at most 0 because it is a subbundle of O ∼= O∗∗, and so R has degree at most 0. Putting

these facts together, we have

degF = degR+degS ≤ degS ≤ µ(T) · rkS .

But rkF −1= rkS , and so

degF
rkF −1

≤
degT

n
.
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Multiplying both sides by (rkF −1)/rkF gives

degF
rkF

≤
degT

n· rkF
(rkF −1).

Putting m := rkF , we note that (m−1)(n+1)−nm= m−n−1< 0, which is the same

as

m−1
mn

<
1

n+1
.

Comparing the two inequalities gives us

µ(F ) =
degF
rkF

≤ (degT)
m−1
mn

<
degT
n+1

= µ(O⊕T),

thereby establishing the stability of (E,Φ) under the given hypotheses.

thisisheretodeclarethatthisproo f isdone...................................................................

Remark 6.1. The arguments above can be extended to conclude that the higher-rank

canonical co-Higgs bundles (El
k,Φ) are stable under the same hypotheses. However, we

restrict our study to k = 0, l = 1, and when we write (E,Φ) we will always mean E =

O⊕T and the natural Higgs field.

Projective spaces are an example of where the canonical co-Higgs bundle is stable,

because degT = n+1 on Pn and T is stable. On P1, the underlying bundle is O⊕O(2).

This bundle differs from O(−1)⊕O(1) in a twist by O(−1), and so we may assign to

each equivalence class of co-Higgs structures on O ⊕O(2) a unique such structure on

O(−1)⊕O(1). In Chapter 3, we showed that these structures constitute a section of

the Hitchin fibration for the moduli space of degree-0 rank-2 co-Higgs bundles. The

canonical co-Higgs structure Φ is obtained at the point in the moduli space where this

section intersects the nilpotent cone.
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On P2, however, the canonical co-Higgs bundle is of rank 3, and so has not been

encountered in previous chapters.

Now that we are aware of how to guarantee a stable (E,Φ), we can use the techniques

of Chapter 2 to see if one can be deformed into a genuinely different example.

6.3 Deformations

For the canonical co-Higgs bundle, the contributions to H1 in the long exact sequence

(2.4) come from two places:

1. deformations of the Higgs field Φ:

E1,0 =
ker H0(End0E⊗T)

−∧Φ
−→ H0(End0E⊗∧2T)

im H0(End0E)
−∧Φ
−→ H0(End0E⊗T)

;

2. deformations of the underlying bundle compatible with Φ:

E0,1 = ker H1(End0E)
−∧Φ
→ H1(End0E⊗T).

We will see in our calculations below that, as was the case for Schwarzenberger co-Higgs

bundles, the dimension of H1 can be obtained exclusively from these vector spaces, at least

when X is a surface. To compute these spaces, we look to representations associated to the

bundles. Because the bundles and Higgs field are canonically defined, the induced −∧Φ

maps on the cohomology spaces of End0E⊗∧iT should be realisable as isomorphisms

between irreducible representations of standard Lie groups, which can be understood

using the Clebsch-Gordan decomposition. To bring in the representations, note that the

tangent space at a point of X is a 2-dimensional representation of the Lie group GL2(C) =

SL2(C)×±1C
∗, in the form Tx

∼=V ⊗L, where V ∼=V∗ is an irreducible representation of
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SL2(C) and L is a one-dimensional vector space (corresponding to the weight-1 action).

We have the following dictionary:

..Table 6.1. The subscript 0 means “without the trace”.

Geometric Representation-theoretic

E = O⊕T 1+VL

End0E = (O⊕T∗⊕T ⊕EndT)0 1+VL−1+VL+S2V

End0E⊗T = (T ⊕EndT ⊕ (T⊗2)⊕EndT ⊗T)0 (1+S2V)+(S2VL2+L2)

+(S3VL+VL)

End0E⊗∧2T = (∧2T ⊕T ⊕ (T ⊗∧2T)⊕EndT ⊗∧2T)0 L2+VL+VL3+S2VL2

In the right-hand column, the summands are irreducible Lie-group representations, and

so Schur’s lemma weighs in: the only homomorphisms between like summands are zero

and the identity. It follows that the only morphisms from End0E to End0E ⊗T are

combinations of multiples of the identity maps on 1, VL, and S2V. At the next stage,

1+VL+S2V must be in the kernel of any map taking End0E⊗T to End0E⊗∧2T.

Theorem 6.1. Let X be a surface with degT > 0 and T semistable. For the canonical co-

Higgs bundle, the space E1,0 is isomorphic to H0(S3(T)∧2 T∗); E0,1, to H1(T∗); and there

exists a short exact sequence of vector spaces

0→ E1,0 →H1 → E0,1 → 0

whose maps come from the longer sequence (2.4). A first-order deformation of Φ is a section of

H0(S3(T)∧2 T∗).
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Proof. First, we want to find out more about the sheaf map −∧ Φ : O(End0E) →

O(End0E⊗T). Let U be an open set of X. We let

ΨU =




−trA θ

η A




be a local section over U of the trace-free endomorphisms of E: θ, a local one-form on

U ; η, a local vector field on U ; and A, an endomorphism of T over U . Then, if (g,ν) is a

section of E over U ,

[ΨU ,Φ]




g

ν


 = Ψ




ν

0


−Φ




−(trA)g+θν

gη+Aν




=




−(trA)ν

η⊗ν


−




gη+Aν

0


 .

If we want ΨU ∧Φ to vanish, we need first of all η⊗ν= 0∈H0(U ;T⊗T). If this holds for

all ν, then η=0. This reduces the other equation to A=−(trA)IT , where IT is the identity

on T. Taking the trace of both sides gives us trA=−ntrA, and so trA=0 and subsequently

A= 0. This means that the ΨU in the kernel of −∧Φ : O(End0E)→ O(End0E⊗T) are

parametrised by the local one-forms on U . There are immediate implications:

• We have answered one of the claims of the theorem: by the definition of E0,1, we

must have E0,1 ∼= H1(T∗).

• We remarked that morphisms from End0E to End0E⊗T are represented by some

combination of the identity maps on 1, VL, and S2V. We now know that the map

induced by −∧Φ is in fact a sum of nonzero multiples of the identity maps on all
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three, because the kernel is precisely VL∗. Hence,

im H0(End0E)
−∧Φ
−→ H0(End0E⊗T) ∼= 1+VL+S2V.

• We can also compute the d2 map taking E0,1 into E2,0 in the hypercohomology

sequence. If the cocycle (Ψαβ) is in the kernel of −∧Φ, then by our calculations

(Ψαβ) is contained in H1(T∗). That is, the only nonzero entries in the matrix

form for Ψαβ is θ. However, we saw that the image of (g,ν) under [Ψαβ,Φ] is

(−trAν−gη−Aν,ην), which is zero only when A= η = 0. Therefore, the image

of (Ψαβ) under −∧Φ is not only zero up to a coboundary for End0E⊗T, but it

is actually globally zero. In turn, d2 = 0 and a short exact sequence involving E1,0,

H1, and E0,1 detaches from the longer sequence (2.4).

Now, we perform a similar analysis with a section ΘU of End0E⊗T over U . Put

ΘU =




−trσ ψ

Z σ




for some endomorphism ψ of T over U ; Z, a section over U of T⊗T; and σ, a section over

U of EndT⊗T. We already know from Table 6.1 that ψ is in the kernel of −∧Φ, because

endomorphisms of T correspond to 1+S2V on the representations side, and neither 1

nor S2V appear in the last row of the table. The action of −∧Φ on the component

Z ∈ O(T ⊗T) is a map S2VL2+L2 → S2VL2+L2 from the second-last to the last row of
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Table 6.1. To determine this, we let s= (g,ν) be a section of E over U , and then look at

[ΘU ,Φ]




g

ν


 = Θ




ν

0


−Φ




−g(trσ)+ψν

gZ+σν




=




−(trσ)ν

Zν


−




gZ+σν

0


 .

On a small enough subset of U , we can represent Z by ∑i wi ⊗Yi , where wi is a local

vector field coming from the T in E = O⊕T, while Φ takes values along the Yi vector

fields. Therefore, the action of Z on ν is ∑i wi ⊗ (ν⊗Yi). When we skew-symmetrise

this, we get ∑i wi ⊗ (ν∧Yi), and this vanishes for all ν only when Z = 0. This means that

the map S2VL2+L2 → S2VL2+L2 induced by −∧Φ is nonzero, and so Z is not in the

kernel. Finally, σ ∈ O(EndT ⊗T), which can be broken up as S3VL+VL, must be in

the kernel of −∧Φ, because (a) S3VL does not appear in the last row; and (b) although

VL does appear in the last row, we know from the arguments above that the image of

−∧Φ : O(End0E)→ O(End0E⊗T) contains a copy of VL, and so VL is automatically

in the kernel of −∧Φ : O(End0E⊗T)→ O(End0E⊗∧2T).

Therefore, ker H0(End0E⊗T)
−∧Φ
−→H0(End0E⊗∧2T)∼= 1+VL+S2V+S3VL. Putting

all of this information together, the quotient is

1+VL+S2V +S3VL
1+VL+S2V

= S3VL.

This means that a first-order deformation of Φ is an element Φ1 of H0(S3(T)∧2 T∗).

thisisheretodeclarethatthisproo f isdone...................................................................
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6.4 New example on P2

Because first-order deformations of Φ are sections of S3(T)∧2 T∗, which do exist on

P2, this suggests the existence of a new co-Higgs bundle on P2: Φ+ (C ⊗C ⊗ C ), for

C ∈ H0(P2;T(−1)). This satisfies the integrability condition, as we can verify here. Let

us apply Φ ◦Φ to (g,ν) ∈ O(E), noting that the action of C ⊗ C ⊗ C on ν ∈ O(T) is

(C ∧ν)⊗C ⊗C ∈ O(T2(−2)⊗O(2)) = O(T ⊗T). Now, applying Φ once gives



0 1

0 C ⊗C ⊗C







g

ν


 =




ν

(C ∧ν)C ⊗C


 .

Applying Φ again, we have




0 1

0 C ⊗C ⊗C




2


g

ν


 =




(C ∧ν)C ⊗C

{C ∧ (C ∧ν)C}⊗C ⊗C ⊗C


 ,

which is actually just ((C ∧ν)C ⊗C , 0), because of C ∧C = 0 in the second entry. Now,

when we take the skew-symmetric part of Φ◦Φ, the symmetric tensor C ⊗C is mapped

to zero, and so Φ∧Φ = 0. However, this deformation is clearly not nilpotent in the

same sense as the original pair; that is, it is not nilpotent in the sense of Φ ◦Φ = 0 ∈

H0(EndE⊗T ⊗T), as we could see before we skew-symmetrising. Hence, we can see

that this deformation takes us outside of the nilpotent cone, and is a completely distinct

example from the original one.

6.5 The B-field

In taking the deformation Φ+(C ⊗C ⊗C ), we left the complex structure on E alone.

Deformations of the complex structure on E = O ⊕T that are compatible with Φ are
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parametrised by H1(T∗), as shown in the theorem above. This means that every defor-

mation of E for which Φ remains holomorphic is a B-field.

Viewing the canonical co-Higgs bundle as generalised holomorphic bundle, the ∂A-

operator is diagonal in accordance with the direct sum decomposition:

∂A =




∂0 0

0 ∂T


 ,

where the ∂0 and ∂T operators endow O and T respectively with their complex structures.

The B-field transformation ∂A 7→ ∂A+ ιΦB puts a new holomorphic structure on O⊕T,

which is an extension but not a direct sum, given by

∂B =




∂0 B

0 ∂T


 .

Here, B is being thought of as an element of Ω0,1(T∗), as in [36:§4.1].

As we remarked in §2.3, following Hitchin in [36:§4.1], the Higgs field is unaffected

by the change in structure on E. Hitchin offers a nice way of seeing this in this particular

example. The extension 0 → O → E
π
→ T → 0 comes with a projection π, and so the

canonical Higgs field in the twisted case sends a vector in E to its projection onto T, and

so the image of Φ is contained in a canonically-determined copy of T in E⊗T.

In the case of P2, H1(T∗) =C=H1(End(O⊕T)), and so there is a unique, non-scalar

deformation of O⊕T induced by the B-field.
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CHAPTER 7

Vanishing theorems for other

surfaces

Here, we justify the special focus given in dimension 2 to the lower end of the Kodaira

spectrum. We will concentrate on rank 2. Recall that the surfaces we consider are always

nonsingular and projective. Stability now depends on the polarisation O(1) pulled back

from projective space, with the degree defined as in (1.2), by taking the intersection of

the first Chern class and c1(O(1)).

7.1 General-type and K3 surfaces

Lemma 7.1. If X is a surface of general type or is birational to a K3 surface, then

H0(S2T) = 0.

In the case of X of general type, this follows from a vanishing theorem of Peternell

[47:Cor.9], saying that H0(T⊗m)= 0 for any m> 0. Peternell’s result, derived via algebraic
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methods, was actually in response to a question posed by Hitchin regarding this thesis.

We remark that it is also possible to obtain this result through differential-geometric

methods, by using the Kähler-Ricci flow to deform the curvature on a minimal model, as

in [56], before applying an appropriate version of the Bochner-Yano vanishing theorem

[59]. Still, Peternell’s argument is much more general.

For the case of a K3 surface, we apply a differential-geometric argument: we note

the presence of the Calabi-Yau metric, and therefore the vanishing of the Ricci curvature

tensor. This means that holomorphic sections of S2T are covariant constant. On the

other hand, S2Tx = S2
C2 is an irreducible representation of the holonomy group of X,

which is SU(2). By Schur’s Lemma we must therefore have S2Tx = 0, and the result

follows for global sections.

This lemma is an ingredient in a vanishing theorem that severely restricts the exis-

tence of stable co-Higgs bundles in dimension 2.

Theorem 7.1. Let X be as in Lemma 7.1. Then if (E,Φ) is a stable, trace-free rank-2 co-Higgs

bundle on X with c1(E) = 0, we must have Φ = 0.

Proof. Locally, on any open set U , we can think of the Higgs field as φ1
∂

∂z1
+φ2

∂
∂z2

for a

pair of local endomorphisms φi of E. The condition Φ∧Φ = 0 is the same as [φ1,φ2] = 0.

The vanishing of H0(S2T) means that Tr(Φ ◦Φ) = 0 ∈ H0(S2T), and when we expand

Φ◦Φ as

φ2
1

∂
∂z1

⊗
∂

∂z1
+2φ1φ2

∂
∂z1

⊗
∂

∂z2
+φ2

2
∂

∂z2
⊗

∂
∂z2
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we see that

Trφ2
1 = 0

Tr(φ1φ2) = 0

Trφ2
2 = 0.

Because E is rank 2, the combination of Trφi = 0 and Trφ2
i = 0 implies that φi is

nilpotent. Therefore, we can find an open subset of U and a local basis for sections of E

such that

φ1 =




0 1

0 0


 .

Similarly, φ2 is nilpotent. When φ2 is written in the same basis as φ1, the condition

[φ1,φ2] = 0 forces φ2 to be upper triangular as well, so that φ2 is represented by



0 α

0 0




for some number α. In particular, φ1 and φ2 annihilate a common 1-dimensional sub-

space. Globally, these subspaces glue together to form the kernel line bundle of Φ, and

so E is given by an extension

0→ L → E → L∗⊗IZ → 0

where IZ is an ideal sheaf of points, by Proposition 1.7. This means that Φ∈H0((L∗)∗LIZT).

However, by the theorem of Hartogs we can extend Φ over the points of Z to a unique

map Φ ∈ H0(L2T), where we abuse notation and persist with the symbol Φ.

For stability, we must have degL< 0. The argument now develops two branches. For

X of general type, we note that degL−2 > 0, and by definition this means L−2.C|X > 0,
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where C is a curve corresponding to a section of a very ample line bundle, say O(1),

pulled back along j : X →֒ PN, where N is sufficiently large. The linear system of j∗O(1)

covers X with curves, and if we change the choice of C to any other curve in the same

linear system, we still have L−2.C > 0. This is precisely the same thing as saying that

L−2 is pseudo-effective [9:Thm.0.2]. On the other hand, Peternell has another result (see

remark after [47:Cor.9]) indicating that H0(T ⊗M∗) = 0 for any pseudo-effective line

bundle M on a projective general-type manifold. If we take M = L−2, then H0(L2T) = 0,

and so the Higgs field Φ must vanish identically.

For X a K3 surface, we appeal again to differential-geometric methods, in particular a

vanishing theorem of Kobayashi and Wu [39:p.1]. We want to show that H0(L2⊗T) = 0.

We again use the fact that the Ricci tensor vanishes, and so the only nonzero curvature is

picked up on the line bundle L, which is where the Kobayashi-Wu theorem will act. The

stability condition degL < 0 means that

∫
X

F ∧ω =
∫

X
[c1(L)].[ω] = c < 0, (7.1)

for any curvature (1,1)-form F on L, where ω is the choice of Kähler form (and hence the

curvature on O(1)). We want to show that there exists a curvature form F0 for which

F0∧ω = λω2,

for a constant λ, which must therefore be negative because of (7.1). To arrive at this,

recall that we can always express the difference between any two curvature (1,1)-forms

as ∂∂ of some function h, i.e.

F0 = F +∂∂h
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for another curvature F with F ∧ω = f ω2 for some function f . Therefore, we would

like to solve

∂∂h = λ− f

for h, subject to the condition

∫
X
(λ− f )ω2 = 0.

This condition is exactly what we need to invoke (abelian) Hodge theory, which guaran-

tees for us that such an h exists. With this function in hand, we have

F0∧ω = F ∧ω+∂∂h∧ω = ( f +λ− f )ω2 = λω2.

Now, the vanishing theorem in [39:p.1] states that a holomorphic vector bundle is with-

out holomorphic sections if it admits a curvature (induced by a Hermitian metric) that

is everywhere negative definite after being contracted with the metric. In the constant

λ, this is precisely what we have for L2⊗T (which we have contracted with the Kähler

form). Therefore, we have obtained the vanishing theorem for stable co-Higgs bundles.

thisisheretodeclarethatthisproo f isdone...................................................................

7.2 A construction over ruled surfaces

In the face of these vanishing theorems, we want to assuage any fears that stable co-Higgs

bundles on surfaces might be confined to P2. Here is an example of a class that is not.

Start with a curve X of genus g> 1. By taking KX ⊕OX and then projectivising this, we

create a P1-bundle π : P(KX ⊕OX) → X, which we denote by S. Let (E,Φ) be a Higgs
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bundle, in the usual sense, over X. If we pull back (E,Φ) to S, then (p∗E, p∗Φ) is a Higgs

bundle upstairs (e.g. [41:p.124]).

Bartocci and Macri produce in [4] a classification of algebraic surfaces admitting Pois-

son structures. According to [4:Thm.1.1], there exists a Poisson structure on a ruled

surface P(V) → X with g > 1 whenever the rank-2 vector bundle V has degree at least

3g−2. The result also permits Poisson structures for smaller values of degV, but there

are extra conditions in those cases. The important thing is that we know we can construct

an Sthat is Poisson, by choosing degV sufficiently large.

Assuming this, let σ denote a Poisson structure on S. The pair

(π∗E,σ(π∗Φ)) =: (Ẽ,Φ̃)

is a co-Higgs bundle on S, by interpreting the bi-vector σ as a bundle map from T∗
S into

TS. The co-Higgs bundle is integrable because Φ∧Φ ∈ H0(X; EndE⊗∧2KX) = 0, and so

Φ̃∧ Φ̃ = σ [(π∗Φ)∧ (π∗Φ)] = σ(π∗(Φ∧Φ)) = 0.

As for stability, if we take (E,Φ) on X to be a rank-r stable Higgs bundle, then by

Hitchin’s correspondence [33:p.112] it gives us an irreducible SLr(C)-representation of

π1(X). On the other hand, π1(S)∼= π1(X), and so the pullback Higgs bundle corresponds

to an irreducible representation of the surface group π1(S). By the theorem of Corlette

[13], this means that (π∗E,π∗Φ) can be equipped with a harmonic metric, which by Simp-

son’s work [53, 54, 55] means that (E,Φ) is a stable Higgs bundle on S (independently of

how S is polarised). Interpreting σ as a section of the line bundle ∧2TX, taking σ(π∗Φ)

is the same as tensoring by a section of a line bundle, and so does not disturb stability.

Therefore, (Ẽ,Φ̃) is a stable co-Higgs bundle on S.
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This example is as good as any to end on, as it speaks to the inevitable interaction

of various geometric objects and ideas — Higgs bundles, topology, Poisson geometry —

pervading the study of co-Higgs bundles.
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CHAPTER 8

Outlook

Reflecting upon the previous chapters, we take a moment to outline some directions for

further investigation.

Geometry of co-Higgs bundles on P1

1. A by-product of writing down the self-dual Yang-Mills equations in a form realising

co-Higgs bundles as solutions, e.g. equations (3.2) and (3.3), is the nonlinear cou-

pling of two metrics on P1 by a vortex-like equation. Suppose that a Riemannian

metric h on P1 induces a connection Ah on the vector bundle E = O(1)⊕O(−1)

such that (Ah,Q(q)) satisfies the co-Higgs equations, where Q(q) is the stable Higgs

field determined by a section q ∈ H0(P1; O(4)), unique up to gauge transforma-

tions, as in §3.5. The equation

F(Ah)+ [Q(q),Q′(q)]g2 = 0
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reduces to one involving the two metrics h and g, as well as the Higgs field data q.

In [33], Teichmüller space can be realised by the solutions to an analogous equation

corresponding to conventional Higgs bundles with such Higgs fields, but without

the auxiliary fixed metric g. It is an interesting question as to what the co-Higgs

interpretation of this is.

2. The geometry of the higher-rank moduli spaces on P1 is something else to explore.

This ties in with further explorations of the topology of these spaces.

Topology of co-Higgs bundles on P1

There are several open ends here.

1. We observed the possibility of components in the nilpotent cone of dimension

smaller than the fibre dimension. A nice symmetry with the Higgs case, where

every subvariety is half the dimension of the moduli space [32:Prop.9.1] (and hence

the same dimension as the generic fibre), would result if these Morse sets were

actually intersections of components of maximal dimension. Related to this, what

is the significance of the number 4 pervading the study of these Morse sets in the

co-Higgs case? One possibility is that it could be a shadow of the fibre dimension

in rank 3, as rank 3 is the first case where the Morse functional picks up critical

varieties that are not minimising. How much of the geometry of these spaces is

fixed at low rank?

2. A goal could be to exploit the combinatorics of the quiver set-up to prove that the

Poincaré polynomials of twisted Higgs moduli spaces on P1 are independent of the
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degree, as suggested by the ADHM polynomials and the computational evidence

presented in Chapter 4.

3. Which refinements are required to the stability condition for quiver chains so that

the corresponding holomorphic chains are necessarily stable? It is possible that

the stability condition proposed in Chapter 4 already accomplishes this: up to and

including rank 5 of the co-Higgs case, we found no quivers that were unstable as

holomorphic chains. If this is the case, a proof is necessary. If the proposed stability

condition admits stable quivers representing unstable holomorphic chains, then

one potential modification would be to consider subchains generated by more than

one vertex.

4. A formula for the Poincaré or Hodge polynomials of the co-Higgs or twisted Higgs

moduli spaces in all ranks is desirable and, we hope, realisable. The key to unlock-

ing this is an automatic way of deciding an arbitrary stable chain’s topological con-

tribution. While the proof of Theorem 4.11 would have been much more arduous

if the stable chains had to be isolated by hand without the quiver methods (espe-

cially in ranks 4 and 5), the Betti-number contributions from the chains were still

considered on a case-by-case basis. However, in principle the method for generating

the stable chains can be fitted with the means to decide the contributions, because

of the following: if (U1, . . . ,Un) is an ordered tuple of bundles whose manifold of

stable chains Φ : Ui →Ui+1(t) is M, then (U0,U1, . . . ,Un) has manifold (M0)×G0M,

where M0 is the vector space of stable Higgs fields φ0 : U0 →U1(t) and G0 are the

automorphisms of U0. Combined with this, we would need a theorem to the effect
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that every time we augment the Poincaré polynomial of a shorter chain, then we

are only adding a projective space or Grassmannian. Up to rank 5 and t ≤ 2, we

encountered nothing else topologically. We hope to return to this in future work.

5. There are other actions on the moduli space of twisted Higgs bundles to consider.

On the one hand, the B-field action on the co-Higgs space has an analogue in the

general twisted Higgs setting: contracting the Higgs field Φ with an element of

H1(O(−t)). There is also the PGLC(2) action on the base, mentioned in Remark

3.1, which induces an action on the moduli space. This action has the potential for

isolated fixed points, and might lead to a faster realisation of the preceding goal.

6. Finally, we notice some “relationships” between the ADHM polynomials of differ-

ent ranks. The polynomial corresponding to rank 7 and twist t = 1, as given by

Mozgovoy’s twisted ADHM formula, has a similar number of terms to the r = 5,

t = 2 polynomial. The two polynomials have exact agreement in just under half

of their coefficients, and all but two of the remaining higher-degree coefficients in

r = 7, t = 1 differ by either 1 or 5 from respective coefficients in r = 5, t = 2:

r = 7, t = 1 : 1+z2+3z4+5z6+10z8+16z10+26z12+38z14+57z16+78z18

+100z20+126z22+138z24+132z26+97z28+35z30

r = 5, t = 2 : 1+z2+3z4+5z6+10z8+15z10+26z12+38z14+56z16+77z18

+105z20+131z22+156z24+165z26+154z28+103z30+40z32.

Similar observations can be made for other pairings where one has higher rank but

the other has a larger twist. Existing cohomological identities explain some of the

observed congruences, but not all. Is there a duality lurking in the ADHM data
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that can be explained in terms of the geometry of Higgs moduli spaces?

Constructions in higher dimensions

Another construction of bundles that is ideal for P2 but unexplored in the thesis

is the Serre construction. Serre’s method allows us to associate to a set of points Z

a vector bundle E with a section vanishing at those points. This makes E into an

extension

0→ O → E → L⊗IZ → 0,

which means that nilpotent Higgs fields for E live in H0(L∗⊗T), after applying

Hartogs’ theorem to extend Φ over the set Z. Because the trivial sub-line bun-

dle is invariant, stability necessitates degL > 0. This severely limits the freedom

for Higgs fields, whose existence requires deg(TL∗) > 0. On P2, T(−k) has no

sections for k < −1. This means that the only possibility is L = O(1), and so all

the even-degree examples in this class of co-Higgs bundle are unstable or have the

zero Higgs field. As the Serre construction leads to a very different example from

the Schwarzenberger ones, which were only nilpotent at Φ = 0, it will be worth

studying in detail the Serre construction in this context.



160 Outlook



161

APPENDIX

These are the MAPLE algorithms for Chapter 4. They should be backward compatible with most installations.

The linalg package must be loaded.

Explanation of input and output data

Typically we run algorithm A.4 first, to generate the stable chains. It requires the following data:

• and integer r0> 0, which is the rank of the chains

• an integer d< 0, which is the degree of the chains

• a real number s, which is the stability condition

• a row matrix C indicating the chain type, e.g. a chain type (1,2,1) would be matrix([ [ 1,2,1 ] ]); note

that r0 should be equal to the sum of the elements of C

• a twisting integer t, i.e. Φ ∈ H0(EndE(t))

• an integer top> 0

• an integer bot< 0

In practice, we set s=d/r0. However, it is important that the stability condition can be selected indepen-

dently of the degree: the chain algorithm is recursive, and needs to preserve the original stability condition

even as it descends through different ranks and degrees. The algorithm works in the range top≥ k ≥bot,

where k are the degrees of the rank r0−1 chains used to build the rank r0 output chains. (This version of
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the algorithm requires the user to select this range through the choice of top and bot, which is useful for

testing purposes; however, an alternate formulation can use Proposition 4.8 to determine a suitable range

without user intervention.)

The output is a list of lists. Each list contains r0+1 integers. The latter r0 integers are are the degrees

of the vertices in a quiver; alternatively, Grothendieck numbers of a vector bundle E. These integers always

sum to d, and they are read from left to right in conjunction with the chain type. The leading integer in the

list is a dimension count: it is the complex dimension of the space of Higgs fields, modulo automorphisms of

E, that respect the chain type, i.e. it is the maximum possible dimension of the stable fixed-point set having

E as its underlying bundle.

Routines A.1 through A.3 concern the Morse index. A.1 and A.2 are contributions from the two types

of deformations, while A.3 returns the total Morse index, using A.1 and A.2. The inputs for A.3 are the

same as those for A.4 above. The output of A.3 is a list of r0+2 integers: a Morse index, a dimension count,

and the vertices / Grothendieck numbers.

The routines THom and BottleneckCheck are not meant to be called by the user; rather, they are

supporting modules for StableChains (A.4). Included in BottleneckCheck is an additional test of stability;

namely, it checks the dual quiver chains for instability (by examining them for bottlenecks).

A.1 Morse index from deformations of Φ

> MorseIndexE10:=proc(E,C,t)

> L:=[]:

>

> for e from 1 by 1 to nops(E) do

> n1:=0: n0:=0:

>

> if coldim(C)>2 then

> for b from 2 by 1 to coldim(C) do

> blockstartJ:=1:

> if b>1 then

> for s from 1 by 1 to b-1 do

> blockstartJ:=blockstartJ+C[1,s]:

> od: #end s

> fi:

> for J from blockstartJ by 1 to blockstartJ+C[1,b]-1 do
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>

> for c from 1 by 1 to b-1 do

>

> blockstartK:=1:

> if c>1 then

> for s from 1 by 1 to c-1 do

> blockstartK:=blockstartK+C[1,s]:

> od: #end s

> fi:

> for K from blockstartK by 1 to blockstartK+C[1,c]-1 do

> if (-1)*op(K,op(2,op(e,E)))+op(J,op(2,op(e,E)))+t>=0 and b-c>1 then

> n1:=n1+(-1)*op(K,op(2,op(e,E)))+op(J,op(2,op(e,E)))+t+1:

> fi:

> if (-1)*op(K,op(2,op(e,E)))+op(J,op(2,op(e,E)))>=0 and b-c<coldim(C)-1 then

> n0:=n0+(-1)*op(K,op(2,op(e,E)))+op(J,op(2,op(e,E)))+1:

> fi:

> od: #end K

> od: #end c

> od: #end J

> od: #end b

>

> fi:

> N:=[2*(n1-n0),op(1,op(e,E)),op(2,op(e,E))]:

> L:=[op(L),N]:

>

> od: #end e

>

> return L:

>

> end:

A.2 Morse index from deformations of E

MorseIndexE01:=proc(E,C,t)

> W:=[]:

>

> for e from 1 by 1 to nops(E) do

>

> m1:=0: m0:=0:

>

> for b from 2 by 1 to coldim(C) do

> blockstartJ:=1:

> if b>1 then
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> for s from 1 by 1 to b-1 do

> blockstartJ:=blockstartJ+C[1,s]:

> od: #end s

> fi:

> for J from blockstartJ by 1 to blockstartJ+C[1,b]-1 do

>

> for c from 1 by 1 to b-1 do

>

> blockstartK:=1:

> if c>1 then

> for s from 1 by 1 to c-1 do

> blockstartK:=blockstartK+C[1,s]:

> od: #end s

> fi:

> for K from blockstartK by 1 to blockstartK+C[1,c]-1 do

> if op(K,op(2,op(e,E)))+(-1)*op(J,op(2,op(e,E)))>1 then

> m1:=m1+op(K,op(2,op(e,E)))+(-1)*op(J,op(2,op(e,E)))-1:

> fi:

> if op(K,op(2,op(e,E)))+(-1)*op(J,op(2,op(e,E)))-t>1 then

> m0:=m0+op(K,op(2,op(e,E)))+(-1)*op(J,op(2,op(e,E)))-t-1:

> fi:

> od: #end K

> od: #end c

> od: #end J

> od: #end b

>

>

> Z:=[2*(m1-m0),op(1,op(e,E)),op(2,op(e,E))]:

> W:=[op(W),Z]:

>

> od: #end e

>

> return W:

>

> end:

A.3 Total Morse index

MorseIndexTotal:=proc(r0,d,s,C,t,top,bot)

> L:=[]:

> E:=StableChains(r0,d,s,C,t,top,bot):

> E01:=MorseIndexE01(E,C,t):

> E10:=MorseIndexE10(E,C,t):
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>

> for j from 1 by 1 to nops(E10) do

> if op(1,op(j,E01))+op(1,op(j,E10))>=0 then

> M:=[op(1,op(j,E01))+op(1,op(j,E10)),op(1,op(j,E)),op(2,op(j,E))]:

> L:=[op(L),M]:

> fi:

> od:

>

> return L:

>

> end:

A.4 Stable chains

StableChains:=proc(r0,d,s,C,t,top,bot)

>

> r:=0:

> for u from 1 by 1 to coldim(C) do

> r:=r+C[1,u]:

> od:

>

> if r=1 then if d<s then return [d]: else return []: fi:

> else

> L:=[]: #empty list

> if C[1,1]=1 then

> C0:=matrix(1,coldim(C)-1):

> for k from 1 by 1 to coldim(C)-1 do

> C0[1,k]:=C[1,k+1]:

> od:

> else

> C0:=matrix(1,coldim(C)):

> for k from 2 by 1 to coldim(C) do

> C0[1,k]:=C[1,k]:

> od:

> C0[1,1]:=C[1,1]-1:

> fi:

>

> for k from top by -1 to bot do

> a:=d-k:

> E:=Chains(r0,k,s,C0,t,top-t,bot+t):

> if nops(E)>0 then

> for j from 1 by 1 to nops(E) do

> chaindeg:=a: prevdeg:=a:
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> stopflag:=0: subrank:=1:

>

> if coldim(C0)<coldim(C) then

> i:=1: blockstart:=1:

> else

> i:=2: blockstart:=C0[1,1]+1:

> fi:

>

> while a>=s and stopflag=0 and i<=coldim(C0) do

> blockcount:=0: p:=0:

> for p from 0 by 1 to C0[1,i]-1 do

> if -prevdeg+op(blockstart+p,op(j,E))+t>=0 then

> blockcount:=blockcount+1:

> nextdeg:=op(blockstart+p,op(j,E)):

> fi:

> od: #end p

> if blockcount=0 then

> stopflag:=1:

> else

> if blockcount>1 then

> nextdeg:=prevdeg-t:

> fi:

> chaindeg:=chaindeg+nextdeg:

> subrank:=subrank+1:

> prevdeg:=nextdeg:

> blockstart:=blockstart+C0[1,i]:

> fi:

>

> i:=i+1:

> od: #end i

>

> if subrank=r0 or chaindeg/subrank<s then

> V:=[a,op(op(j,E))]:

> if r=r0 then

> stopV:=0:

> for v from 1 by 1 to C[1,1] do

> if -op(v,V)-1>=-(d+r0)/r0 then

> stopV:=1:

> fi:

> od:

> if stopV=1 then

> V:=[]:

> fi:

> V:=BottleneckCheck(V,s,-(d+r0)/r0,C,t):
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> fi:

> L:=[op(L),V]:

> fi:

> od: #end j

> fi:

> od: #end k

> return L:

> fi:

>

> end:

>

THom:=proc(U,V,t)

>

> dim:=0:

> for u from 1 by 1 to nops(U) do

> for v from 1 by 1 to nops(V) do

> if (-1)*op(u,U)+op(v,V)+t>=0 then

> dim:=dim+(-1)*op(u,U)+op(v,V)+t+1:

> fi:

> od: od:

>

> return dim:

> end:

>

> BottleneckCheck:=proc(F,s,sd,C,t)

>

> if nops(F)>0 then

> dim:=1: unstableflag:=0:

>

> U:=[]:

> for f from 1 by 1 to C[1,1] do

> U:=[op(U),op(f,F)]:

> od:

>

> start:=C[1,1]+1:

> for c from 2 by 1 to coldim(C) do

> V:=[]:

> for f from start by 1 to start+C[1,c]-1 do

> V:=[op(V),op(f,F)]:

> od:

>

> dimU:=0: dimV:=0: numbigu:=0: maxU:=op(1,U): dimVd:=0: dimUd:=0: numbigv:=0: maxVd:=-(op(1,V)+1):

>

> for u from 1 by 1 to nops(U) do if op(u,U)>=s then
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> if op(u,U)>maxU then maxU:=op(u,U): fi:

> dimU:=dimU+op(u,U)+1: numbigu:=numbigu+1: fi: od:

>

> if numbigu>1 then

> for v from 1 by 1 to nops(V) do if -maxU+op(v,V)+t>=0 then dimV:=dimV+op(v,V)+t+1: fi: od:

> fi:

>

> for v from 1 by 1 to nops(V) do if -(op(v,V)+1)>=sd then

> if -(op(v,V)+1)>maxVd then maxVd:=-(op(v,V)+1): fi:

> dimVd:=dimVd+(-(op(v,V)+1))+1: numbigv:=numbigv+1: fi: od:

>

> if numbigv>1 then

> for u from 1 by 1 to nops(U) do if -maxVd+(-(op(u,U)+1))+t>=0 then dimUd:=dimUd+(-(op(u,U)+1))+t+1: fi: od:

> fi:

>

> if (numbigu>1 and dimU>dimV) or (numbigv>1 and dimVd>dimUd) then

> unstableflag:=1:

> fi:

> dim:=dim+THom(U,V,t)-THom(U,U,0):

> start:=start+C[1,c]:

> U:=V:

> od:

>

> dim:=dim-THom(U,U,0):

> if unstableflag=0 and dim>=0 then

> return [dim,F]:

> fi:

> fi:

> end:
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