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Abstract

Generalized geometry of type Bn is the study of geometric structures in
T + T ∗ + 1, the sum of the tangent and cotangent bundles of a manifold
and a trivial rank 1 bundle. The symmetries of this theory include, apart
from B-fields, the novel A-fields. The relation between Bn-geometry and
usual generalized geometry is stated via generalized reduction.

We show that it is possible to twist T+T ∗+1 by choosing a closed 2-form F

and a 3-form H such that dH +F 2 = 0. This motivates the definition of an
odd exact Courant algebroid. When twisting, the differential on forms gets
twisted by d+Fτ+H. We compute the cohomology of this differential, give
some examples, and state its relation with T -duality when F is integral.

We define Bn-generalized complex structures (Bn-gcs), which exist both in
even and odd dimensional manifolds. We show that complex, symplectic,
cosymplectic and normal almost contact structures are examples of Bn-
gcs. A Bn-gcs is equivalent to a decomposition (T +T ∗+1)C = L+L+U . We
show that there is a differential operator on the exterior bundle of L+ U ,
which turns L+U into a Lie algebroid by considering the derived bracket.
We state and prove the Maurer-Cartan equation for a Bn-gcs.

We then work on surfaces. By the irreducibility of the spinor representa-
tions for signature (n+ 1, n), there is no distinction between even and odd
Bn-gcs, so the type change phenomenon already occurs on surfaces. We
deal with normal forms and L+ U-cohomology.

We finish by defining G2
2-structures on 3-manifolds, a structure with no

analogue in usual generalized geometry. We prove an analogue of the
Moser argument and describe the cone of G2

2-structures in cohomology.
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Introduction

Generalized geometry is an “approach to differential geometric structures” initiated
by Hitchin in [Hit03] (see also [Hit10a], [Hit10b]). There, the analysis of a volume
functional led to the study of the geometry of the direct sum of the tangent and
cotangent bundles of a manifold, T + T ∗, endowed with a generalization of the Lie
bracket, the Courant bracket.

Naively, one could state that generalized geometry consists of redoing geometry
on this generalized tangent bundle T + T ∗. This bundle comes canonically equipped
with an orientation and a pairing of signature (n, n), so its structure group is SO(n, n).
Together with the Courant bracket, and the projection to T , the generalized tangent
bundle has the structure of a Courant algebroid. Before approaching any structure,
one realizes that the symmetries of our theory have changed: the transformations
preserving both the bracket and the metric are not only the diffeomorphisms, but
also the closed 2-forms, called B-fields. Moreover, the bundle of differential forms
corresponds, up to rescaling, to the spinor bundle for T + T ∗. Although we will keep
talking about T+T ∗ for the sake of simplicity, it is possible to follow the same program
with a non-trivial extension T ∗ → E → T , known as an exact Courant algebroid.

A major area of generalized geometry, and also the source of the most illustrative
examples, is generalized complex geometry, developed in [Gua04]. The analogue of
the J-operator of a complex structure is a (generalized) J -operator: an endomorphism
of T + T ∗ squaring to − Id, which can be defined only on even-dimensional manifolds.
This definition contains as a particular case a usual J-operator T → T , but also a
symplectic form T → T ∗. Thus, complex and symplectic geometry fit into generalized
complex geometry, after dealing with integrability conveniently. In this respect, a J -
operator is integrable if its Nijenhuis operator vanishes. Equivalently, a generalized
complex structure is given by a maximal isotropic subbundle L ⊂ (T + T ∗)C (the +i-
eigenbundle of J ) such that L∩L = 0 which is involutive with respect to the Courant
bracket. The formalism in terms of isotropic subbundles and the fact that maximal
isotropic subspaces are annihilators of pure spinors gives yet another way of describing
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generalized complex structures: they are locally given by a differential form of mixed
degree satisfying certain conditions. This is an intuitive way to realize that, since
the spinor representation for a metric of signature (n, n) consists of two half-spinor
irreducible representations, there are two types of generalized complex structures:
even and odd, locally given by even and odd differential forms.

Not only does generalized complex geometry unify complex and symplectic geome-
try, but also introduces a genuinely new structure: there are compact manifolds which
are neither complex nor symplectic, but still admit a generalized complex structure.
The first of these manifolds was found in [CG07] by performing surgery: 3CP 2#19CP 2.

A third remarkable phenomenon in generalized geometry is the revival of pre-
viously known but somehow forgotten structures. This is the case of generalized
Kähler structures. Generalized Kähler geometry was defined ([Gua04]) and shown to
be equivalent to a bihermitian geometry defined in 1984 ([GHR84]). And the state-
ment of this equivalence was indeed followed by many publications about this subject
(see References in [Gua14]).

One may actually try to find generalized analogues of any previously known struc-
ture. The relevance that this attempt may have will depend on the outcome: does it
say anything new about known structures?, does it define an interesting new struc-
ture?, is it of any interest for other branches of Mathematics or Theoretical Physics?
Apart from the original generalized Calabi-Yau structures and the successful exten-
sions of complex and Kähler geometry, there already exist in the literature analogues
to paracomplex ([Wad04]), CR ([LB11]), Sasakian and CRF ([Vai08]) structures by
using T + T ∗.

The present thesis goes, though, in a different direction. Adding T ∗ to T was
motivated by the study of a certain functional, but could well have been an arbi-
trary decision justified by the theories obtained. In this sense, adding extra terms
and starting the process again may happen to be a fertile process. For instance, ex-
ceptional generalized geometries involve rather complicated extensions that feature
non-compact exceptional groups and are objects of study because of their suitability
as a language for M-theory within String Theory ([Hul07], [Bar12]).

In this thesis we focus on the simplest possible addition, suggested by Baraglia:
a trivial rank one bundle that we denote by 1. The generalized tangent bundle then
becomes T + T ∗ + 1. It still has a canonical orientation, but the canonical pairing has
signature (n + 1, n), so its structure group is SO(n + 1, n), a real Lie group of Lie type
Bn. Thus, we give the study of T +T ∗+1 the name of generalized geometry of type Bn,
or, for the sake of brevity, Bn-geometry. In this sense, generalized geometry of T + T ∗
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is referred to as Dn-geometry, and classical differential geometry could be referred to
as An-geometry.

Chapter 1 deals with the linear algebra of a vector space V ⊕ V ∗ ⊕ R, where one
can observe many of the new features of Bn-geometry. First, the orthogonal transfor-
mations preserving a metric of signature (n+ 1, n) include elements B ∈ ∧2V ∗ and also
elements A ∈ V ∗. Second, for the exterior algebra ∧•V ∗ to become a Clifford module,
we have to define the action of λ ∈ R by λ · ω = λ(−1)degωω =: λτω, where ω is a pure
degree form in ∧•V ∗. The spinor representation then corresponds, up to rescaling, to
the exterior algebra ∧•V ∗, and is irreducible, unlike in Dn-geometry.

Bn-geometry starts in Chapter 2, where we introduce the Courant algebroid T+T ∗+

1 and see that closed A-fields, i.e., closed 1-forms, do preserve the Courant bracket.
While in Dn-geometry, B-fields commute, in Bn-geometry, the product of two A-
fields gives a B-field and this product is not abelian. This non-abelianness plays
an important role when parameterizing twisted versions of T + T ∗ + 1, i.e., Courant
algebroids obtained by gluing local models of T + T ∗ + 1. While in Dn-geometry
equivalence classes of twisted versions of T +T ∗ are given by H3(M,R), in Bn-geometry
we get a non-trivial extension, denoted by H1(M,Ω2+1

cl ), described by

0→ H3(M,R)→ H1(M,Ω2+1
cl )→ {[F ] ∈ H2(M,R) | [F ]2 = 0} → 0.

A global approach to these twisted versions motivates the definition of an odd exact
Courant algebroid as a Courant algebroid E that fits into the exact diagram

T ∗

��

π∗

  AAAAAAAA

A∗ //

��

E
π //

  @@@@@@@@ T.

1 A

OO

1

OO

where A is a Lie algebroid of rank n + 1 and all the vertical, horizontal and diagonal
rows form a short exact sequence.

For any odd exact Courant algebroid, it is possible to find a closed 2-form F

and a 3-form H satisfying dH + F 2 = 0 such that the odd exact Courant algebroid is
isomorphic to T + T ∗ + 1 together with a twisted Courant bracket. This chapter ends
with the answer to the question of how Bn-geometry and Dn-geometry relate to each
other. While Dn-geometry sits inside Bn-geometry in a simple way, Bn-geometry is
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obtained from Dn+1-geometry by the process of generalized reduction introduced in
[BCG07].

Chapter 3 is devoted to the cohomology coming from a twisted version of T+T ∗+1.
The differential operator in the bundle of differential forms gets also twisted and
becomes d+Fτ +H. We compute the cohomology of this differential by using spectral
sequences and matric Massey products, and give some non-trivial examples. We
finish the chapter by showing the relation of this (F,H)-twisted cohomology with T -
duality when F is integral. Chapter 4 develops the theory of Bn-generalized complex
geometry. We define a Bn-generalized complex structure (for the sake of brevity, Bn-
gcs) as a maximal isotropic subbundle L ⊂ (T + T ∗ + 1)C such that L ∩ L = 0 which
is involutive for the Courant bracket. We have that Bn-gcs can be defined both in
even and odd dimensional manifolds. The subbundle L determines a decomposition
L+L∗+U = (T +T ∗+ 1)C where U is a trivial line bundle generated by a real section u

that acts as a derivation of both L and L∗. A Bn-gcs is equivalently defined in terms
of an F-operator (Section 4.1.4). This is the best way to see the Poisson structure
that comes with any Bn-gcs, for which πT (u) is a Poisson vector field. A Bn-gcs can
also be expressed locally in terms of spinors. The fact that there is only one spin
representation makes that Bn-gcs are given by differential forms of mixed degree.
The type of a Bn-gcs is defined as the least non-zero degree and can increase along a
codimension 2-submanifold. In Section 4.2 we look at extremal minimal and maximal
type and give a description of them. For odd dimensions, n = 2m + 1, we have that
type 0 is equivalent to cosymplectic and type m to normal almost contact, while for
even dimensions, n = 2m, we have equivalences, for type 0 and m, to symplectic and
complex, both together with a 1-form. In Section 4.3 we deal with the topological
obstructions for the existence of a Bn-gcs. In Section 4.4 we introduce a way to
construct an odd exact Courant algebroid from a pair of dual Lie algebroids, which
not necessarily form a Lie bialgebroid, together with a compatible derivation. In
Section 4.5, we look at the infinitesimal symmetris of a Bn-gcs. This motivates the
definition of a differential on the sections of the exterior bundle ∧•(L + U)∗, which,
by considering the derived bracket on L + U , turns L + U into a Lie algebroid, as
we described in Section 4.6. Note that L + U is not isotropic, so the restriction of
the Courant bracket does not define a Lie bracket. Chapter 5 mainly deals with the
Maurer-Cartan equation for the deformation of a Bn-gcs. We start by deriving some
non-trivial identities involving the Schouten bracket with the Courant bracket. The
Maurer-Cartan equation describes the conditions for eB+A⊗uL to be a Bn-gcs, where
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L is a Bn-gcs, B ∈ C∞(∧2L∗) and A ∈ C∞(L∗). These conditions are

dLA+
(−1)n

2
[u,B] + [B,A]− 1

2
[u,A] ∧A = 0,

dLB +
1

2
[B,B] +

1

2
[u,B] ∧A = 0,

which can be stated in terms of the Lie algebroid L+ U as

dL+U (B +A⊗ u) +
1

2
[B +A⊗ u,B +A⊗ u] = 0.

Instead of following the path to a Kuranishi deformation space, we just look at the
infinitesimal deformation theory. Unlike in Dn-geometry, the infitesimal deformation
theory is not described by a second cohomology of an elliptic complex. The reason
for this is that the equivalence by the action of a real generalized vector field is a
stronger condition than equivalence by dL+U (L∗ + U), which includes the action of
complex generalized vector fields.

In Chapter 6 we look at low dimensions: surfaces and 3-manifolds. One of the main
novelties of Bn-geometry with respect to Dn-geometry is that type change phenomena
can already occur in surfaces. We first deal with normal forms of B2-gcs depending
on the type of the points and assuming some genericity conditions. We then move to
the local computation of L-cohomology and L+ U-cohomology around a type change
point. We show the relation of B2-gcs and meromorphic forms, which allows us to
show that on a compact surface, a B2-gcs with non-degenerate type change points
cannot have only one type change point. We also compute H2(M,L + U) in a simple
example, namely CP1 with two type change points. We finish the chapter by making
some considerations about 3-manifolds.

Finally, Chapter 7 deals with a structure that genuinely belongs to B3-geometry,
a G2

2-structure. So far, we have dealt with pure spinors. Dimension 3 is the first
dimension where spinors which are not pure appear. The structure given by a sec-
tion of real non-pure spinors is defined to be a G2

2-structure, since the stabilizer of
such a spinor is the non-compact real group G2

2. We characterize these structures,
prove a Moser argument for them, find their cone in the cohomology group and state
their relationship to B3-generalized Calabi Yau structures. This chapter essentially
corresponds to the previously published work [Rub13]. The three appendices that
follow just contain some complicated calculations kept aside to ease the reading of
the thesis.

We have focused on several aspects of Bn-geometry that are different from ordinary
generalized geometry. There are still more to be discovered. One source will surely be
the Bn-version of generalized Kähler geometry, whose study we leave for future work.
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Apart from its own interest, Bn-geometry provides the simplest model of a more
general class of Courant algebroids, T + adP + T ∗, where P is a principal bundle over
M . These are, in particular, regular Courant algebroids ([CSX13]) and provide a way
to explore new links to Theoretical Physics. For instance, it has been recently proved
([GF14]) that there is an equivalence between the equations of motion of Einstein-
Yang-Mills and Heterotic Supergravity and a generalized Ricci flat condition.
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Chapter 1

Preliminaries: the linear algebra of
V ⊕ V ∗ ⊕ R

1.1 The group of symmetries

Let V be a real vector space of dimension n. Consider the vector space V ⊕ V ∗ ⊕ R

endowed with the natural inner product defined by

〈X + ξ + λ,X + ξ + λ〉 = iXξ + λ2,

where X+ξ+λ denotes a general element of V ⊕V ∗⊕R. Note that 〈X, ξ〉 = 〈ξ,X〉 = 1
2 iXξ

and 〈λ, λ〉 = λ2. This inner product has signature (n+ 1, n), and it is thus preserved by
the Lie group O(n+ 1, n). We describe its Lie algebra of skew-adjoint transformations,
so(n+1, n), by using block matrices as follows. Take a linear transformation of V ⊕V ∗⊕R
given by  E β γ

B F C

A α e

 .

Skew-adjointness of so(n+ 1, n) with respect to the inner product implies
〈

(EX + βξ + γλ) + (BX + Fξ + Cλ) + (AX + αξ + eλ), (X + ξ + λ)
〉

= 0,

for any element X + ξ + λ ∈ V ⊕ V ∗ ⊕ R. Specializing this equation we get several
constraints:

- From X = 0, ξ = 0 we obtain eλ2 = 0, i.e., e = 0.

- From X = 0, λ = 0 we obtain ξ(βξ) = 0, i.e., β skew-symmetric.

- From ξ = 0, λ = 0 we obtain iX(BX) = 0, i.e., B skew-symmetric.
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- From X = 0 we obtain 1
2 (ξ(λγ)) + λαξ = 0, i.e., γ = −2α.

- From ξ = 0 we obtain 1
2 (λCX) + λAX = 0, i.e., C = −2A.

- From λ = 0 we obtain ξ(EX) + (Fξ)(X) = 0, i.e., F = −ET .

We thus have that the elements of so(n+ 1, n) are matrices E β −2α

B −ET −2A

A α 0

 ,

where E is an endomorphism of V , B and β are skew-symmetric, i.e., B ∈ ∧2V ∗,
β ∈ ∧2V , and A ∈ V ∗, α ∈ V . Note that we are using the identification of −2A : V → R

with C : R→ V ∗, given by d(1) = −2A, and analogously for −2α : V ∗ → R and γ : R→ V .
The block matrix decomposition is alternatively expressed by

so(V ⊕ V ∗ ⊕ R) ∼= ∧2(V ⊕ V ∗ ⊕ R) ∼= End(V )⊕ ∧2V ⊕ ∧2V ∗ ⊕ V ⊕ V ∗.

There is a canonical orientation in the vector space V ⊕ V ∗ ⊕ R, since

∧2n+1(V ⊕ V ∗ ⊕ R) ∼= ∧nV ⊗ ∧nV ∗ ⊗ R ∼= R,

where the last isomorphism is given by (u, v, λ) 7→ λ〈u, v〉 using the natural pairing
between ∧nV and ∧nV ∗. The element 1 ∈ R thus defines a canonical orientation. From
now on, we will talk about SO(n + 1, n) or SO(V ⊕ V ∗ ⊕ R), the group of symmetries
preserving the canonical orientation.

Among the elements of this group of symmetries we find three relevant types:

• B-fields (or the dual β-fields), already present in the symmetries of V ⊕V ∗, given
by the exponentiation of B ∈ ∧2V ∗:

exp(B) =

 Id 0 0

B Id 0

0 0 1

 ,

• A-fields (or the dual α-fields), a new feature of the linear algebra of V ⊕ V ∗ ⊕R,
given by the exponentiation of A ∈ V ∗:

exp(A) =

 Id 0 0

−A⊗A Id −2A

A 0 1

 .
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• GL(V ), automorphisms of V . Let the superscript ± denote the connected com-
ponent of ± Id. By exponentiating an element E ∈ End(V ), we get an embedding
of GL+(V ) into SO+(V ⊕ V ∗ ⊕ R),

exp(E) =

 eE 0 0

0 (eE
T

)−1 0

0 0 0

 ,

Correspondingly, the elements in GL−(V ) lie in SO−(V ⊕ V ∗ ⊕ R) in the same
diagonal fashion, and we have an embedding of GL(V ) into SO(V ⊕ V ∗ ⊕ R).

The combination of B-fields and A-fields gives the B +A-field or (B,A)-transform:

(B,A) := exp(B +A) =

 Id 0 0

B −A⊗A Id −2A

A 0 1

 .

which acts on V ⊕ V ∗ ⊕ R by

(B,A)(X + ξ + λ) = X + ξ + iXB − 2λA− iXAA+ λ+ iXA.

The composition law of two of these elements is

(B,A)(B′, A′) = (B +B′ +A ∧A′, A+A′).

Note that A-fields do not commute and their product involves a 2-form.

1.2 Maximal isotropic subspaces

Following the agenda of the linear algebra of V ⊕V ∗ for ordinary generalized geometry
([Gua04]), we look now at the maximal isotropic spaces of V ⊕ V ∗ ⊕R, since they will
be used to define linear Bn-generalized complex structures in Section 1.4. Maximal
isotropic subspaces are subspaces L ⊂ V ⊕V ∗⊕R where the metric is null, i.e., 〈u, v〉 = 0

for u, v ∈ L, and have the maximal possible dimension among these. Since the metric
has signature (n + 1, n), the maximal dimension possible is n. We describe these
subspaces in the present section. Let πV , πV ∗ and πR be the natural projections from
V ⊕ V ∗ ⊕ R.

Lemma 1.1. If we have that v1 = X+ξ1+λ1, v2 = X+ξ2+λ2 belong to the same isotropic
subspace L, then λ1 = λ2. Hence, for any element v, πV (v) determines πR(v) and this
defines a map δ : πV (L)→ R, such that any element of L has the form X + ξ + δ(X).
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Proof. By the isotropy of L, we have that 〈v1, v1〉 − 2〈v1, v2〉+ 〈v2, v2〉 = (λ1 − λ2)2 equals
zero. Therefore, λ1 = λ2.

Proposition 1.2. Given a subspace W ⊂ V , a linear form δ ∈ W ∗ and ε ∈ ∧2W ∗, the
subspace

L(W, δ, ε) = {X + ξ + δ(X) | X ∈W, ξ|W = iXε− iXδ δ}

is maximal isotropic. Moreover, any maximal isotropic subspace is of this form.

Proof. To check the isotropy, we calculate the product of two elements:

2〈X + ξ + iXδ, Y + η + iY δ〉 = iXη + iY ξ + 2iXδ iY δ

= iX iY ε− iY δ iXδ + iY iXε− iXδ iY δ + 2iXδ iY δ = 0.

To check that it is maximal, in the generic element X + ξ + iXδ ∈ L(W, δ, ε), X is any
element of the linear subspace W and ξ ∈ V ∗ is completely determined in W . Thus,
the dimension of L(W, δ, ε) is dimW + (n− dimW ) = n, and hence maximal.

For the second part, given any maximal isotropic subspace L, define W = πV (L)

and δ as in Lemma 1.1. If we have X + ξ + iXδ, X + ξ′ + iXδ ∈ L, their difference ξ − ξ′

is also in L and must satisfy 〈Y + η + µ, ξ − ξ′〉 = 〈Y, ξ − ξ′〉 = 0 for any Y + η + µ ∈ L, i.e.,
ξ − ξ′ ∈ Ann(πV (L)) = Ann(W ). Note that W ∗ = V ∗/Ann(W ) and define ε : W → W ∗ by
X → ξ + Ann(W ), where ξ is such that X + ξ + iXδ ∈ L. We thus have L = L(W, δ, ε).

Those maximal isotropic subspaces with δ = 0 correspond to the isotropic sub-
spaces of V ⊕ V ∗. When furthermore ε = 0, we have the subspaces W ⊕ Ann(W ). The
following proposition is straightforward to check.

Proposition 1.3. For A ∈ V ∗, B ∈ ∧2V ∗ and i : W → V ,

(B,A)L(W, δ, ε) = exp(B +A)L(W, δ, ε) = L(W, δ + i∗A, ε+ i∗A ∧ δ + i∗B).

Consequently, any isotropic subspace L(W, δ, ε) is a (B,A)-transform of L(W, 0, 0), taking
(B,A) such that i∗B = ε and i∗A = δ.

1.3 Exterior algebra as spinors

The exterior algebra ∧•V ∗ will provide an alternative description of maximal isotropic
subspaces, as we will see in Section 1.3.4. We endow the algebra of differential forms
Λ•V ∗ with the structure of a Clifford module for the Clifford algebra generated by
V ⊕ V ∗ ⊕ R with the inner product defined above,

Cl := Cl(V ⊕ V ∗ ⊕ R) =

⊗•(V ⊕ V ∗ ⊕ R)

span{(X + ξ + λ)2 − 〈X + ξ + λ,X + ξ + λ〉1}
.
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We first define the involution τ on the forms ∧•V ∗ by

τ : ϕ 7→ ϕ+ − ϕ−,

where ϕ+ and ϕ− are respectively the even and odd part of ϕ. We define the action
of X + ξ + λ ∈ V ⊕ V ∗ ⊕ R on ϕ ∈ ∧•V ∗ by

(X + ξ + λ) · ϕ = iXϕ+ ξ ∧ ϕ+ λτϕ.

When acting twice with the same element we get

(X + ξ + λ)2 · ϕ = 〈X + ξ,X + ξ〉ϕ+ λ2ϕ+ iX(λτϕ) + ξ ∧ λτϕ+ λ(τiXϕ+ τξ ∧ ϕ)

= 〈X + ξ + λ,X + ξ + λ〉ϕ,

so the action of V ⊕V ∗⊕R extends to an action of the Clifford algebra Cl on ∧•V ∗, and
∧•V ∗ becomes a Cl-module. Note that the action of λ ∈ R on ϕ ∈ ∧•V ∗ is defined by
λ · ϕ = λτϕ. We identify the basis element 1 ∈ R ⊂ V ⊕ V ∗ ⊕ R with τ , to make clear its
action and to distinguish it from 1 in the field R of the vector spaces V, V ∗,R ⊂ V ⊕V ∗⊕R.
Note also that τ commutes with multiplication by even forms and anti-commutes with
multiplication by odd forms.

1.3.1 B + A-fields inside the Clifford algebra

We see now how the Spin group and algebra sit inside the Clifford algebra Cl. Recall
that there exist a map κ, with differential dκ, defined by

κ : Spin(V ⊕ V ∗ ⊕ R) ⊂ Cl→ SO(V ⊕ V ∗ ⊕ R)

κ(x)(v) = xvx−1, x ∈ Spin(V ⊕ V ∗ ⊕ R), v ∈ V ⊕ V ∗ ⊕ R,

dκ : so(V ⊕ V ∗ ⊕ R) ⊂ Cl→ so(V ⊕ V ∗ ⊕ R)

dκx(v) = xv − vx = [x, v], x ∈ so(V ⊕ V ∗ ⊕ R), v ∈ V ⊕ V ∗ ⊕ R,

where the conjugator and commutator are given by the Clifford product.
We shall see next how the B-fields and the A-fields sit inside the Clifford algebra

and act on ∧•V ∗. Let {ei} and {ei} be dual bases of V and V ∗, respectively. Just as in
the classical case, for ei ∧ ej ∈ ∧2V ∗ ⊂ so(V ⊕ V ∗ ⊕ R) we have dκ−1(ei ∧ ej) = ejei, since

(ejei)ei − ei(ejei) = (eiei + eie
i)ej = ej ,
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and ejei vanishes when acting on ek for k 6= i, j. Recall that 〈ei, ei〉 = 〈ei, ei〉 = 0,
〈ei + ei, ei + ei〉 = 1 and therefore, ϕ = 〈ei + ei, ei + ei〉ϕ = (ei + ei)2 · ϕ = (eiei + eie

i) · ϕ. We
then have that B = 1

2

∑
Bije

i ∧ ej ∈ so(V ⊕ V ∗ ⊕ R) corresponds to 1
2

∑
Bije

jei via dκ−1

and acts on the exterior algebra by

B · ϕ =
1

2

∑
Bije

j ∧ (ei ∧ ϕ) = −B ∧ ϕ.

The exponentiation of this action is the action of the B-field

(B, 0) · ϕ = exp(B) · ϕ = e−B ∧ ϕ = (1−B +
1

2
B2 − . . .) ∧ ϕ.

For the A-field, take ei ∈ V ∗. As an element of Cl, it satisfies eiei = τ ∈ R ⊂ Cl. We
have that dκ−1(ei) = −eiτ , since

−eiτei + eie
iτ = (eiei + eie

i)τ = τ,

and −eiτ vanishes when acting on ek for k 6= i. The A-action in the Clifford algebra is
then given by −Aτ . By the nilpotency of Aτ , the exponentiation of this action is just

(0, A) · ϕ = exp(A) · ϕ = e−Aτ ∧ ϕ = ϕ−Aτϕ.

Since B and A commute in the Lie algebra, [B,A] = 0, the elements exp(B), exp(A) ∈

Spin(V ⊕ V ∗ ⊕ R) also commute, as well as their action on any representation. In
particular, exp(B) exp(A)ϕ = exp(A) exp(B)ϕ = exp(B +A)ϕ.

1.3.2 The spinor representation and the Chevalley pairing

We now compare the Cl-module ∧•V ∗ with the spinor representation for the Spin

group. For an odd-dimensional vector space equipped with a metric of signature
(n + 1, n), the spinor representation is irreducible and can be expressed in terms of a
maximal isotropic subspace L as S = ∧•L ⊗ (detL∗)

1
2 , where detL∗ = ∧maxL∗ = ∧nL∗.

For V ⊕ V ∗ ⊕ R, by taking V ∗ as the maximal isotropic subspace we have that

S = ∧•V ∗ ⊗ (detV )
1
2 .

The spinor representation comes equipped with a Spin0-invariant bilinear form,
the Chevalley pairing on spinors ([Che54]), which gives an invariant inner product on
∧•V ∗ with values in detV ∗. For the sake of simplicity, we will also refer to ∧•V ∗ as the
spinor representation.

The pairing for V ⊕ V ∗, even-dimensional vector space with an (n, n)-metric, is
defined as follows. We denote by ᵀ the anti-involution of the Clifford algebra given
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by reversing the order of the products, (x1x2 . . . xr)
ᵀ = xrxr−1 . . . x1. This involution

acts as (−1)j in the forms of degree 2j and 2j + 1, i.e., ωᵀ = (−1)(
degω

2 )ω. The pairing of
two spinors ϕ,ψ ∈ ∧•V ∗ is given by

(ϕ,ψ) = [ϕᵀ ∧ ψ]top,

and it is invariant by the action of Spin0(V ⊕ V ∗).
We now try to derive the pairing on V ⊕ V ∗ ⊕ R from the pairing on V ⊕ V ∗. As a

vector space, the spinor representation for V ⊕ V ∗ ⊕ R is the same as the total spinor
representation for V ⊕ V ∗, i.e., ∧•V ∗. However, we require the inner product to be
invariant by a bigger group, Spin0(V ⊕ V ∗ ⊕ R), which includes not only Spin0(V ⊕ V ∗),
but also the A-fields and the α-fields. We check if the pairing we have defined on ∧•V ∗

is invariant by the action of the A-fields.

(exp(A) · ϕ, exp(A) · ψ) = (ϕ−A ∧ (ϕ+ − ϕ−), ψ −A ∧ (ψ+ − ψ−))

= (ϕ,ψ) + (ϕ,−A ∧ ψ+ +A ∧ ψ−)− (A ∧ ϕ+ +A ∧ ϕ−, ψ). (1.1)

For dimV = 2m even, the last two terms equal

[ϕᵀ+ ∧A ∧ ψ− + ϕᵀ− ∧ (−A) ∧ ψ+ − ϕᵀ+ ∧A ∧ ψ− + ϕᵀ− ∧A ∧ ψ+]top = 0,

and the product is indeed invariant under the action of A-fields. Similarly, it is
invariant by the action of α-fields acting by ϕ 7→ ϕ − iα(ϕ+ − ϕ−). Therefore, it is
invariant by Spin0(V ⊕ V ∗ ⊕ R). Thus, the 2n = 4m-dimensional pairing extends to the
2n+ 1 = 4m+ 1-dimensional pairing.

However, for dimV odd, the last two terms in (1.1) equal

[ϕ
ᵀ
+ ∧ (−A) ∧ ψ+ + ϕ

ᵀ
− ∧A ∧ ψ− − ϕ

ᵀ
+ ∧A ∧ ψ+ + ϕ

ᵀ
− ∧A ∧ ψ−]top,

which is not necessarily zero. In the next section we introduce the suitable inner
product.

1.3.3 The Chevalley pairing in odd dimensions

In order to define a pairing when dimV = 2m + 1 is odd, we relate the spinors for a
2n + 1 = 4m + 3-dimensional vector space to the even spinors for a 2n + 2 = 4m + 4-
dimensional vector space. Consider the inclusion of our odd-dimensional vector space
with signature (n + 1, n) in an even dimensional one with signature (n + 1, n + 1), and
change the basis to get an isotropic element γ and its dual, so that 〈γ, γ∗〉 = 1:

V ⊕ V ∗ ⊕ Rτ ⊂ V ⊕ V ∗ ⊕ Rτ ⊕ Rτ∗ = (V ⊕ Rγ∗)⊕ (V ∗ ⊕ Rγ),
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where γ and its dual γ∗ are such that τ = γ + γ∗, τ∗ = γ − γ∗.
The spinor representation ∧•V ∗ is identified with the even half-spinor representa-

tion of the even dimensional vector space via the map

∧•V ∗ → ∧ev(V ∗ ⊕ Rγ)

ϕ 7→ ϕ+ + ϕ− ∧ γ.

The top exterior powers of V and V ⊕ Rγ are identified by

p : ∧max(V ∗ + Rγ) → ∧maxV ∗

ϕ ∧ γ 7→ ϕ.

We induce a pairing on ∧•V ∗ from the pairing on ∧ev(V ∗ ⊕ Rγ) by

(ϕ,ψ)o := p(ϕ+ + ϕ− ∧ γ, ψ+ + ψ− ∧ γ).

In terms of the odd and even parts, this pairing is given by

(ϕ,ψ)o = p
( [

(ϕᵀ+ + γ ∧ ϕᵀ−) ∧ (ψ+ + ψ− ∧ γ)
]
top,V ∗⊕Rγ

)
= p
( [
ϕᵀ+ ∧ ψ

+ − γ ∧ ϕᵀ− ∧ ψ+ − ϕᵀ+ ∧ ψ− ∧ γ
]
top,V ∗⊕Rγ

)
= [ϕᵀ− ∧ ψ+ − ϕᵀ+ ∧ ψ−]top.

Note that this inner product is different to (ϕᵀ ∧ ψ)top = ϕᵀ+ ∧ ψ− + ϕᵀ− ∧ ψ+. From
now on, we drop the subindex o from the pairing.

1.3.4 Pure spinors and complexification

The annihilator of a spinor ϕ ∈ ∧•V ∗, given by

Lϕ = {u ∈ V ⊕ V ∗ ⊕ R | u · ϕ = 0}

defines an isotropic subspace of V ⊕ V ∗ ⊕ R since

2〈u, v〉ϕ = (uv + vu) · ϕ = 0.

Note that any non-zero multiple of ϕ defines the same subspace. When Lϕ is of
maximal dimension, n = dimV , we say that ϕ is a pure spinor.

From Proposition 1.3, we know that any maximal isotropic subspace is given by
(B,A)L(W, 0, 0), where A ∈ V ∗, B ∈ ∧2V ∗ and W ⊂ V . When B and A are zero, we
have that L(W, 0, 0) = W ⊕Ann(W ). This subspace is described in terms of the Clifford
algebra as the annihilator of any element in the line det Ann(W ). In general, we have
the following proposition.
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Proposition 1.4 ([Che54], III.1.9). The isotropic subspace (B,A)L(W, 0, 0) is given
by the annihilator of any spinor ϕ in the line (B,A)(det Ann(W )). More concretely, if
{θ1, . . . , θk} is a basis for Ann(W ), ϕ is given by

ϕ = c(B,A)θ1 ∧ . . . ∧ θn,

where c 6= 0. Any pure spinor is expressed in this way.

We will be interested in maximal isotropic subbundles of the complexification
(V ⊕ V ∗ ⊕ R)C. The natural inner product, as well as the previous definitions and
results, extend by complexification. We then have an analogous proposition.

Proposition 1.5. The isotropic subspace (B + iω,A + iσ)L(W, 0, 0), where A, σ ∈ V ∗,
B,ω ∈ ∧2V ∗ and W ⊂ VC is given by the annihilator of any spinor ϕ in the line (B+iω,A+

iσ)(det Ann(W )). More concretely, if {θ1, . . . , θk} is a basis for Ann(W ), ϕ is given by

ϕ = c(B + iω,A+ iσ)θ1 ∧ . . . ∧ θn,

where c ∈ C∗, or equivalently,

ϕ = c(B,A)(iω′, iσ)θ1 ∧ . . . ∧ θn,

for ω′ = ω −A ∧ σ. Any pure spinor in ∧•V ∗C is expressed in this way.

We define the real index of a maximal isotropic subspace L ⊂ (V ⊕ V ∗ ⊕ R)C by
r = dim(L∩L). Note that L∩L is a real subspace, i.e., L∩L = P ⊗C for P ⊂ V ⊕ V ∗ ⊕R

and r = dimP .
We will be interested in isotropic subspaces of real index 0. This property can be

expressed by using the following result.

Proposition 1.6 ([Che54], III.2.4). Both in the real and the complex case, the max-
imal isotropic subspaces L = Ann(ϕ) and L′ = Ann(ϕ′) satisfy L ∩ L′ = 0 if and only if
(ϕ,ϕ′) 6= 0. Consequently, L = Ann(ϕ) ⊂ (V ⊕ V ∗ ⊕ R)C has real index zero if and only if
(ϕ,ϕ) 6= 0.

1.4 Linear Bn-generalized complex structures.

We define a linear Bn-generalized complex structure (linear Bn-gcs for the sake of
brevity) in terms of maximal isotropic subspaces.

Definition 1.7. A linear Bn-gcs on a vector space V is a maximal isotropic subspace
L ⊂ (V ⊕ V ∗ ⊕ R)C such that L ∩ L = 0.
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Equivalently, by Section 1.3.4, a linear Bn-gcs is given by a pure spinor ϕ ∈ ∧•V ∗C
satisfying (ϕ,ϕ) 6= 0. Any non-zero multiple of ϕ defines the same linear Bn-gcs, so a
linear Bn-gcs is actually equivalent to a complex line of pure spinors.

1.4.1 The decomposition L⊕ L⊕ U

Given a linear Bn-gcs L ⊂ (V ⊕ V ∗⊕R)C, the subspace L defines a conjugate linear Bn-
gcs and L⊕ L is a complex vector space. By looking at the pairing on (V ⊕ V ∗ ⊕R) as
an SO(n+1, n)-structure on the vector space, we have that L⊕L is giving a U(m+1,m)-
structure when n = 2m + 1, as U(m + 1,m) ⊂ SO(2m + 2, 2m); and a U(m,m)-structure
when n = 2m, as U(m,m) ⊂ SO(2m, 2m) ⊂ SO(2m+ 1, 2m).

The subspace U := L⊥ ∩ L⊥ is a real subspace, i.e., U = U . We thus obtain a
decomposition (V ⊕ V ∗ ⊕ R)C = L ⊕ L ⊕ U . We have that L ∼= L∗ by using the pairing
in (V ⊕ V ∗ ⊕R)C: for l′ ∈ L, l 7→ 2〈l′, l〉 is an element of L∗, and the correspondence is a
bijection since (L)⊥ = L+ U . As U is real, the pairing on U is non-zero, so there exist
exactly two real elements in U ∩ (V ⊕ V ∗ ⊕ R) whose norm squared is either 1 or −1.

By looking at the structure group of the vector space V ⊕ V ∗ ⊕ R, we have that
for dimV odd, 〈u, u〉 = −1, since u corresponds to the extra negative direction in
SO(2m+ 2, 2m+ 1) with respect to U(m+ 1,m) ⊂ SO(2m+ 2, 2m). Whereas for dimV even,
〈u, u〉 = 1, as U(m,m) ⊂ SO(2m, 2m) ⊂ SO(2m+ 1, 2m). Thus 〈u, u〉 = (−1)dimV .

The two possible elements u are opposite to each other. We study the action of
any of these two elements u on the spinor ϕ. For an element l ∈ L, we have that
l · u · ϕ = −u · l · ϕ = 0 by the orthogonality of U and L, so L = Ann(u · ϕ), i.e., u · ϕ = λϕ

for some non-zero λ. Since u2 · ϕ = 〈u, u〉ϕ = (−1)nϕ and u · u · ϕ = λ2ϕ, we have that
λ2 = (−1)n. Hence, for dimV odd, λ = ±i, and for dimV even, λ = ±1.

Definition 1.8. We define u ∈ U to be the unique real element such that u · ϕ = iϕ

for n odd, and u · ϕ = ϕ for n even.

As a consequence of the definition, the norm squared of u is 〈u, u〉 = (−1)n. We
thus have that a linear Bn-gcs determines a decomposition (V ⊕ V ∗ ⊕ R)C = L ⊕ L ⊕ U

and a distinguished element u ∈ U .

1.4.2 The F-operator of a linear Bn-gcs

The fact that the Bn-gcs L is equivalent to the decomposition L + L + U gives yet
another way to describe the Bn-gcs: a linear F-operator. A linear F-operator is an
orthogonal endomorphism F ∈ so(V ⊕ V ∗ ⊕ R) such that F3 + F = 0 and F has rank 2n
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(which is maximal given the property F3 + F = 0). The equivalence with a Bn-gcs is
as follows. Consider the operator F on (V ⊕ V ∗ ⊕ R)C. Since the eigenvalues of F are
±i and 0, we have a decomposition L+L+U (recall that the eigenspaces for conjugate
eigenvalues are conjugate). By the hypothesis on the rank of F , the subspace U is
one-dimensional, and L,L are of dimension n. By the orthogonality of F , for l, l′ ∈ L,

〈l, l′〉 = 〈F l,F l′〉 = 〈il, il′〉 = −〈l, l′〉,

and L is isotropic. Finally, as U corresponds to a real eigenvalue, U is a real subspace.

1.4.3 The filtration associated to a linear Bn-gcs

Moreover, any linear Bn-gcs defines a filtration of ∧•V ∗C . Let Kϕ = Cϕ be the complex
line generated by the spinor ϕ. On the other hand, let

Cl0 = C ⊂ Cl1 = (V ⊕ V ∗ ⊕ R)C ⊂ Cl2 ⊂ . . . ⊂ Cl2n+1 = Cl((V ⊕ V ∗ ⊕ R)C)

be the filtration associated to the Clifford algebra Cl((V ⊕ V ∗ ⊕ R)C), where Clk is
generated by products of k elements. The action of this filtration on ϕ determines a
filtration

K0 = Kϕ ⊂ K1 = Cl1ϕ ⊂ ... ⊂ K2n+1 = Cl2n+1ϕ = ∧•V ∗C . (1.2)

Furthermore, L annihilates K1, so K1 = (L+U)·ϕ, and similarly Kj equals ∧j(L+U)·ϕ,
since it is annihilated by ∧jL. In particular, U fixes every Kj, and u acts as (−1)j Id

when n is even, and (−1)ji Id when n is odd.
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Chapter 2

Basics on Bn-generalized geometry

2.1 The Courant algebroid T + T ∗ + 1

We introduce our main object of study, the Bn-generalized tangent bundle and use
the linear algebra of Chapter 1 to state its main properties.

Let M be a differentiable manifold of dimension n with tangent bundle T and
cotangent bundle T ∗. Let 1 denote the trivial bundle of rank 1 over M . Define the Bn-
generalized tangent bundle by T⊕T ∗⊕1. For the sake of simplicity we use the notation
T +T ∗+1 instead of T ⊕T ∗⊕1. The sections of this bundle are called generalized vector
fields and are naturally endowed with a signature (n+ 1, n) inner product given by

〈X + ξ + λ, Y + η + µ〉 =
1

2
(iXη + iY ξ) + λµ,

where X + ξ + λ, Y + η + µ denote now sections of T + T ∗ + 1, i.e., X + ξ + λ, Y + η + µ ∈

C∞(T + T ∗ + 1). Together with the canonical orientation on T + T ∗ + 1, this endows
T + T ∗ + 1 with the structure of an SO(n + 1, n)-bundle. We introduce a bracket on
C∞(T + T ∗ + 1) via

[X + ξ + λ, Y + η + µ] = [X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ)

+ µdλ− λdµ+ (iXdµ− iY dλ),
(2.1)

and we shall show that (T + T ∗ + 1, 〈, 〉, [, ], π), where π is the canonical projection to T ,
is a Courant algebroid in the following sense.

Definition 2.1 ([LWX97]). A Courant algebroid (E, 〈·, ·〉, [·, ·], π) over a manifold M

consists of a vector bundle E →M together with a non-degenerate symmetric bilinear
form 〈·, ·〉 on E, a skew-symmetric bracket [·, ·] on the sections C∞(E) and a bundle
map π : E → TM such that the following properties are satisfied

(C1): [v, [w,w′]] = [[v, w], w′] + [w, [v, w′]]− 1
3D(〈[v, w], w′〉+ 〈[w,w′], v〉+ 〈[w′, v], w〉),
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(C2): π([v, w]) = [π(v), π(w)],

(C3): [v, fw] = f [v, w] + (π(v)f)w − 〈v, w〉Df ,

(C4): π(v)〈w,w′〉 = 〈[v, w] +D〈v, w〉, w′〉+ 〈w, [v, w′] +D〈v, w′〉,

(C5): π ◦D = 0, and consequently, 〈Df,Dg〉 = 0,

for any v, w,w′ ∈ Γ(E), f, g ∈ C∞(M), where D : C∞(M)→ C∞(E) is defined by

〈Df, v〉 =
1

2
π(v)(f).

In the case of T + T ∗ + 1, the map D is given by the usual exterior derivative
d : C∞(M)→ C∞(T ∗) ⊂ C∞(T + T ∗ + 1), since 〈df, v〉 = 1

2π(v)(f).

Remark 2.2. By using the notation [v, f ] = π(v)f , the properties (C3) and (C4) are
easier to remember:

[v, fw] = [v, f ]w + f [v, w]− 〈v, w〉df,

[v, 〈w,w′〉] = 〈[v, w] +D〈v, w〉, w′〉+ 〈w, [v, w′] +D〈v, w′〉〉.

Proposition 2.3. The tuple (T + T ∗ + 1, 〈·, ·〉, [·, ·], π) defined above has the structure of
a Courant algebroid.

Proof. A direct proof of these properties is found in Section A.2 of the Appendices.
However, we refer to Section 2.4, where a proof based on a reduction process from
ordinary generalized geometry is indicated after Lemma 2.24.

Since the structure group of T + T ∗ + 1, SO(n+ 1, n), is of Lie type Bn, we will refer
to the geometry arising from T + T ∗ + 1 as Bn-geometry. Correspondingly, since the
structure group of T + T ∗ with the natural pairing is SO(n, n), of Lie type Dn, we will
use the term Dn-geometry to refer to ordinary generalized geometry.

We use the linear algebra of Section 1.1 to describe the symmetries of T + T ∗ + 1.
The infinitesimal orthogonal transformations of T + T ∗ + 1 are given by the elements E β −2α

B −Et −2A

A α 0

 ∈ C∞(so(T + T ∗ + 1))

such that E ∈ End(T ), β ∈ ∧2T , B ∈ ∧2T ∗, the B-field already present in Dn-geometry,
α ∈ T and A ∈ T ∗, the A-field which will be relevant in Bn-geometry. The exponentia-
tion of a B +A-field gives the element

(B,A) := exp(B +A) =

 1

B −A⊗A 1 −2A

A 1

 ∈ C∞(SO(T + T ∗ + 1)),

13



which acts by

(B,A)(X + ξ + λ) = X + ξ + iXB − 2λA− iXA ·A+ λ+ iXA.

The composition law of these elements in C∞(SO(T + T ∗ + 1)) is

(B,A)(B′, A′) = (B +B′ +A ∧A′, A+A′).

Their action on the Courant bracket is given by the following result.

Proposition 2.4. Let (B,A) ∈ C∞(SO(T + T ∗ + 1)). For generalized vector fields v =

X + ξ + λ and w = Y + η + µ, we have

[(B,A)v, (B,A)w] = (B,A)[v, w] + iY iX(dB +A ∧ dA)− 2iY iXdA ·A

+ iY iXdA+ 2(λiY dA− µiXdA).

In particular, the action of (B,A) commutes with the Courant bracket if and only if A
and B are closed.

Proof. See Proposition A.1 in the Appendices.

The proposition above motivates the definition of the group

Ω2+1
cl (M) = {(B,A) ∈ C∞(SO(T + T ∗ + 1)) | B ∈ Ω2

cl(M), A ∈ Ω1
cl(M)}.

The group Ω2
cl(M) is a central subgroup in Ω2+1

cl (M), so Ω2+1
cl (M) is the central extension

1→ Ω2
cl(M)→ Ω2+1

cl (M)→ Ω1
cl(M)→ 1.

Proposition 2.5. The group of orthogonal transformations of T + T ∗ + 1 preserving
the Courant bracket is Diff(M) n Ω2+1

cl (M) =: GDiff(M), called the group of generalized
diffeomorphisms of M . The product of two elements (fn(B,A)), (gn(B′, A′)) ∈ GDiff(M)

is given by

(f n (B,A)) ◦ (g n (B′, A′)) = fg n (g∗B, g∗A)(B′, A′)

= fg n (g∗B +B′ + g∗A ∧A′, g∗A+A′).

We describe gdiff(M), the Lie algebra of GDiff(M), by differentiating the action of
a smooth one-parameter family of generalized diffeomorphisms Ft = ft n (Bt, At) such
that Ft ◦Fs = Ft+s and F0 = id. By Proposition 2.5 and Ft ◦Fs = Ft+s we have the three
equations

ft+s = ft ◦ fs, At+s = As + f∗sAt, Bt+s = Bs + f∗sBt + f∗sAt ∧As.
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The first equation says that {ft} is a one-parameter subgroup of diffeomorphisms
of M . Let X be the corresponding vector field.

From the second equation,

dAt
dt |t=s

=
d

dt |t=0
(At+s) =

d

dt |t=0
(As + f∗sAt) = f∗s

dAt
dt |t=0

,

so we get At =
∫ t
0 f
∗
s a ds, where a = dAt

dt |t=0
. From the third equation,

dBt
dt |t=s

=
d

dt |t=0
(Bt+s) = f∗s

dBt
dt |t=0

− f∗s
dAt
dt |t=0

∧As,

so Bt =
∫ t

0 (f∗s b− f∗s a ∧As)ds, where b = dBt
dt |t=0

and As depends on a.
Hence, the one-parameter subgroup depends on two integrations, as opposed to

the single integration for a generalized vector field in Dn-geometry.
Using the convention LXY = − d

dt |t=0
ft ∗Y for the Lie derivative of a vector field Y ,

we see that the infinitesimal action of the one-parameter subgroup {Ft} is

− d

dt |t=0
Ft ∗(Y + η + µ) = LX(Y + η + µ)− iY b+ 2µa− iY a,

which only depends on the action of (X, b, a) (see Section A.3 for details). We thus
make the identification

gdiff(M) = C∞(T )⊕ Ω2
cl(M)⊕ Ω1

cl(M).

An element of gdiff(M) is given by (X, b,A) ∈ C∞(T ) ⊕ Ω2
cl(M) ⊕ Ω1

cl(M) acting on
C∞(T + T ∗ + 1) by

(X, b, a)(Y + η + µ) = LX(Y + η + µ)− iY b+ 2µa− iY a. (2.2)

The action of (X, b, a) is compatible with the inner product and the Courant bracket
in the sense that for v, w ∈ T + T ∗ + 1 we have

X〈v, w〉 = 〈(X, b, a)v, w〉+ 〈v, (X, b, a)w〉,

(X, b, a)[v, w] = [(X, b, a)v, w] + [v, (X, b, a)w].

Conversely, given an infinitesimal generalized diffeomorphism (X, b, a), we can inte-
grate it to a one-parameter subgroup of generalized diffeomorphisms Ft = ft n (Bt, At)

where ft is the one-parameter subgroup associated to X, At =
∫ t

0 f
∗
s a ds and Bt =∫ t

0 (f∗s b− f∗s a ∧As)ds.

Remark 2.6. It is also possible to integrate a time-dependent infinitesimal generalized
diffeomorphism. From (Xt, bt, at), we get Bt =

∫ t
0 (f∗s bs + f∗s as ∧ As)ds and At =

∫ t
0 f
∗
s asds,

using a method analogous to that used to show Proposition 2.3 in [Gua11].
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Using the map from C∞(T + T ∗ + 1) to gdiff(M) given by

X + ξ + λ 7→ (X, dξ, dλ),

we introduce the Dorfman product of two generalized vector fields.

Definition 2.7. For X + ξ + λ ∈ C∞(T + T ∗ + 1), the action of (X, dξ, dλ) ∈ gdiff(M) on a
section Y +η+µ of T +T ∗+ 1 gives an action of generalized vector fields on generalized
vector fields, known as the Dorfman product:

(X + ξ + λ)(Y + η + µ) = [X,Y ] + LXη + iXdµ− iY dξ + 2µdλ− iY dλ ∈ C∞(T + T ∗ + 1).

Remark 2.8. The Dorfman product is not skew-symmetric, but it satisfies the Jacobi
and Leibniz identities and is a derivation with respect to the metric. It satisfies, for
v, w,w′ ∈ C∞(E) and f ∈ C∞(M),

(D1): v(ww′) = (vw)w′ + w(vw′),

(D2): π(vw) = [π(v), π(w)],

(D3): v(fw) = π(v)(f)w + f(vw),

(D4): π(v)〈w,w′〉 = 〈vw,w′〉+ 〈w, vw′〉,

(D5): vw + wv = 2D〈v, w〉.

In fact, the skew-symmetrization of the Dorfman product is the Courant bracket
defined in Equation (2.1). We have denoted it by the juxtaposition vw for the sake
of simplicity. The usual notation for the the Dorfman product is v ◦ w or even [v, w],
and it is sometimes called Courant bracket and used to define a Courant algebroid
structure, as in [Gua11].

2.2 Differential forms as spinors

By Section 1.3, the differential forms Ω•(M) are a Clifford module over the algebra
C∞(Cl(T + T ∗ + 1)) with an action defined by

(X + ξ + λ) · ϕ = iXϕ+ ξ ∧ ϕ+ λτϕ,

where ϕ ∈ Ω•(M) and τϕ = ϕ+ − ϕ− for the even ϕ+ and odd ϕ− parts of ϕ. Thus, τ
defines an involution of Ω•(M). As in Section 1.3, the action defined above satisfies
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the Clifford condition (X + ξ + λ)2 · ϕ = 〈X + ξ + λ,X + ξ + λ〉ϕ, as τ anticommutes with
interior and exterior products.

Similarly, the action of B,A ∈ C∞(so(T +T ∗+ 1)) on Ω•(M) via the (rescaled) spinor
representation κ : C∞(Spin(T + T ∗ + 1)) → C∞(Aut(∧•T ∗M)) is given by the Lie algebra
action κ∗(B)ϕ = −B ∧ ϕ, κ∗(A)ϕ = −A ∧ τϕ, and the Lie group action by

κ(expB)ϕ = ϕ−B ∧ ϕ+B2 ∧ ϕ+ . . . = e−B ∧ ϕ, κ(expA)ϕ = ϕ−A ∧ τϕ = e−Aτ ∧ ϕ.

The Lie derivative of a spinor with respect to a generalized vector field X + ξ + λ,
as in Definition 2.7 of the Dorfman product, is given by mapping the vector field to
the infinitesimal generalized diffeomorphism (X, dξ, dλ) ∈ gdiff(M) and differentiating
the action of the one-parameter subgroup {Ft} to which it integrates:

LX+ξ+λϕ = − d

dt |t=0
Ft ∗ϕ = LXϕ+ dξ ∧ ϕ+ dλτϕ.

The Lie derivative of a spinor satisfies a Cartan formula, where the interior product
is replaced by the Clifford action.

Proposition 2.9. For v ∈ C∞(T + T ∗ + 1) and ϕ ∈ Ω•(M),

Lvϕ = d(v · ϕ) + v · dϕ. (2.3)

Proof. Let v = X + ξ + λ. We then have

d((X + ξ + λ) · ϕ) + (X + ξ + λ) · dϕ = diXϕ+ d(ξ ∧ ϕ) + λd(ϕ+ − ϕ−) + dλ ∧ (ϕ+ − ϕ−)

+iXdϕ+ ξ ∧ dϕ+ λdϕ− − λdϕ+ = LXϕ+ dξ ∧ ϕ+ dλ(ϕ+ − ϕ−) = LX+ξ+λϕ = Lvϕ.

The exterior bundle ∧•T ∗M is endowed with an SO(T + T ∗ + 1)-invariant pairing
with values in ∧nT ∗M , as described in Section 1.3.3. For rkT = dimM odd, the pairing
is given by

(ϕ,ψ) = [ϕᵀ− ∧ ψ+ − ϕᵀ+ ∧ ψ−]top,

while for rkT = dimM even, it is given by

(ϕ,ψ) = [ϕᵀ+ ∧ ψ+ + ϕᵀ− ∧ ϕ−]top,

usually referred to as Mukai pairing.
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Example 2.10. In the case of 3-manifolds,

(ϕ,ψ) = [ϕᵀ+ ∧ ψ− − ϕ
ᵀ
− ∧ ψ+]top

= [(ϕ0 − ϕ2) ∧ (ψ1 + ψ3)− (ϕ1 − ϕ3) ∧ (ψ0 + ψ2)]top

= ϕ0ψ3 + ψ0ϕ3 − ϕ1 ∧ ψ2 − ψ1 ∧ ϕ2,

and, in particular, (ϕ,ϕ) = 2(ϕ0ϕ3−ϕ1∧ϕ2), thus defining a quadratic form of signature
(4, 4).

Remark 2.11. Following [KS04], the spinor action can be used to define the Courant
bracket of two generalized vector fields e1, e2 ∈ C∞(T + T ∗ + 1) as the only section
[e1, e2] ∈ C∞(T + T ∗ + 1) such that

[e1, e2] · ϕ = [[d, e1·], e2·]ϕ ∀ϕ ∈ Ω•(M), (2.4)

where the bracket on the right-hand side is the commutator. This formula will be
relevant in Chapter 4.

2.3 Twisted versions

In classical generalized geometry, a twisted version of the generalized tangent space
is obtained by gluing local models of T + T ∗ in an open covering {Ui} by using closed
2-forms {Bij} satisfying the cocycle condition, Bij +Bjk +Bki = 0. The resulting space

E =
∐
i

(T + T ∗)|Ui

/
v ∼ w if πM (v) ∈ Ui, πM (w) ∈ Uj , w = Bij(v)

is an extension E of T by T ∗,

0→ T ∗ → E → T → 0,

which inherits the metric since 2-forms are orthogonal transformations. Equivalently,
since E is isomorphic to T + T ∗, the twisted version can be regarded as T + T ∗ with a
twisted Courant bracket. This twisted bracket is given by

[X + ξ, Y + η]H = [X + ξ, Y + η] + iY iXH,

where H is global closed 3-form H ∈ Ω3
cl(M). In both cases, the twisted versions up

to isomorphism are parameterized by the first cohomology group with coefficients on
the sheaf Ω2

cl, which is shown to be isomorphic to H3(M,R).
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2.3.1 Twisting via cocycles

We now define a twisted version of Bn-generalized geometry by gluing local models
of T + T ∗ + 1. Given a 1-cocycle {(Bij , Aij)} in an open covering {Ui}, consider

E =
∐
i

(T + T ∗ + 1)|Ui

/
v ∼ w if πM (v) ∈ Ui, πM (w) ∈ Uj , w = (Bij , Aij)(v) . (2.5)

The vector bundle E is topologically isomorphic to T +T ∗+1. Moreover, E inherits
a metric and a Courant bracket from the local models (T + T ∗ + 1)|Ui . The metric
remains the same as in T + T ∗ + 1, since the (Bij , Aij) are orthogonal transformations.
The new Courant bracket is discussed in Section 2.3.3 from a different perspective.

On the bundle E there is a well-defined projection to T , since the projection to
T , πT (v), remains unchanged by the action of (Bij , Aij), πT (v) = πT ((Bij , Aij)v). Let
A∗ ⊂ E be the kernel of the projection E

π−→ T . The elements of A∗ can be expressed
as equivalence classes [ξ + λ]. Let π1 : T + T ∗ + 1 → 1 be the projection to 1. Since
π1(ξ+λ) = π1((Bij , Aij)(ξ+λ)) = λ, there is a well defined map A∗ → 1, given by [ξ+λ] 7→ λ.
The kernel of this map consists of classes [ξ] for ξ ∈ T ∗. Since, [ξ] = [η] only when ξ = η,
we have that the kernel of A∗ → 1 is precisely T ∗. Thus, the twisted Courant algebroid
E defined by Equation (2.5) fits into the exact diagram

T ∗

��

π∗

  AAAAAAAA

A∗ //

��

E
π // T,

1

where the vertical and horizontal rows form exact short sequences. We have used the
notation A∗ for the kernel of E π−→ T since we will see in Section 2.3.2 that it is the
dual of a Lie algebroid.

Now we parameterize the twisted versions of T +T ∗+ 1 by using Čech cohomology.
Let Ω2+1

cl be the sheaf associating to an open set U the group Ω2+1
cl (U) defined in

Section 2.1. Twisted versions are given by the Čech cohomology set H1(M,Ω2+1
cl ) of

equivalence classes of cocycles, which we describe in this section.
To do that, we first prove two lemmas.

Lemma 2.12. Let Ωjcl be the sheaf of closed j-forms. For i ≥ 0 and j ≥ 0 we have

Hi(M,Ωjcl)
∼= Hi+j(M,R).
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Proof. From the short exact sequence of sheaves of abelian groups

0→ Ωjcl → Ωj → Ωj+1
cl → 0,

we obtain the long exact sequence in cohomology,

. . .→ Hi−1(M,Ωj)→ Hi−1(M,Ωj+1
cl )→ Hi(M,Ωj+1

cl )→ Hi(M,Ωj+1)→ . . . . (2.6)

If i − 1 ≥ 1, we have that the first and fourth terms are zero, since Ωj is an acyclic
sheaf, and consequently the second and third terms are isomorphic. Inductively, this
gives the following sequence of isomorphisms

Hi(M,Ωjcl)
∼= Hi−1(M,Ωj+1

cl ) ∼= . . . ∼= H1(M,Ωj+i−1
cl ).

By setting i, j in (2.6) as 1, j + i− 1, we have the sequence

H0(M,Ωj+i−1)→ H0(M,Ωj+i)→ H1(M,Ωj+icl )→ 0,

and hence,

H1(M,Ωj+i−1
cl ) ∼=

Ωj+i(M)

dΩj+i−1(M)
= Hi+j(M,R),

using that H0(M,Ωj+icl ) equals the sections of the sheaf Ωj+icl , i.e., Ωj+icl (M).

When talking about Čech cohomology, we use a good cover {Ui}, i.e., a cover
such that the sets Ui and any multiple intersection is contractible, and consequently
the Čech cohomology group H•({Ui},Ωlcl) with respect to the cover {Ui} equals the
injective limit over refinements lim−→{Vk}H

•({Vk},Ωlcl) = H•(M,Ωlcl), i.e., equals the Čech
cohomology group of the manifold.

We use the usual notation for the intersections Uij = Ui ∩ Uj, Uijk = Ui ∩ Uj ∩ Uk.

Remark 2.13. The isomorphisms of the previous lemma can be explicitly computed by
using the double differential complex of the exterior derivative d and the coboundary
operator δ (see [BT82]). We spell out the isomorphism H2(M,R) ∼= H1(M,Ω1

cl) by using
part of that complex.

∏
Ω2(Ui)

∏
Ω1(Ui)

d

OO

δ
// ∏Ω1(Uij)

∏
Ω0(Ui)

d

OO

δ
// ∏Ω0(Uij)

d

OO

δ
// ∏Ω0(Uijk)

.
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Given a class [F ] ∈ H2(M,R), restrict its representative to the cover {Ui}i∈I , {Fi} ∈∏
Ω2(Ui). By the Poincaré Lemma in Ui, the closed 2-form Fi is given by dAi, where

Ai ∈ Ω1(Ui). Define Aij = Aj − Ai, then the class of {Aij} ∈
∏

Ω1(Uij) defines the
corresponding element in H1(M,Ω1

cl).

Lemma 2.14. The short exact sequence 0 → Ω2
cl

q−→ Ω2+1
cl

p−→ Ω1
cl → 0, where Ω2

cl is
abelian and central in Ω2+1

cl , induces a long exact sequence

H0(M,Ω1
cl)

δ0−→ H1(M,Ω2
cl)→ H1(M,Ω2+1

cl )→ H1(M,Ω1
cl)

δ1−→ H2(M,Ω2
cl).

Using Čech cohomology, the connecting homomorphisms δ0 and δ1 are given by

[{fi}] ∈ H0(M,Ω1
cl) 7→ [{gij = fi ∧ fj}] = 0 ∈ H1(M,Ω2

cl)

[{Aij}]∈H1(M,Ω1
cl) 7→ [{dijk = Aij ∧Ajk +Aij ∧Aki +Ajk ∧Aki}] ∈ H2(M,Ω2

cl).

Proof. For the connecting homomorphism δ0, take a 0-cocycle of closed 1-forms {fi},
i.e., fi : Ui → Ω1

cl(Ui). We find a 0-cocycle in Ω2+1, given by {(0, fi)}, such that p((0, fi)) =

fi. Consider the coboundary of this cocycle, {gij} = {(0, fi)(0,−fj)} = {(fi ∧ fj , fi − fj)},
which equals {(0, 0)}, since fi = fj on Uij by being {fij} a cocycle. We clearly have
p(gij) = 0. Using ker p = im q, we get a 1-cocycle in Ω2

cl, whose class is, by definition of
the connecting homomorphism, δ0([{fi}]). This cocycle is zero, as {gij} = {(0, 0)} and q

is injective. Hence, δ0 = 0.
For δ1, first recall that since Ω2

cl is abelian, the coboundary operator defines a
differential and we can talk of Hi(M,Ω2

cl) also for i ≥ 2. The homomorphism δ1 is
defined as follows. From a 1-cocycle in Ω1

cl, {Aij}, consider the 1-cocycle in Ω2+1 given
by {(0, Aij)}. Its coboundary is given by the maps

eijk = (0, Aij)(0, Ajk)(0, Aki) = (Aij ∧Ajk +Aij ∧Aki +Ajk ∧Aki, Aij +Ajk +Aki).

We have that p({eijk}) = 0 by being {Aij} a cocycle, so there exists a 2-cocycle in Ω2
cl,

{dijk}, such that q({dijk}) = {eijk}. By the injectivity of q, this cocycle is given by

dijk = Aij ∧Ajk +Aij ∧Aki +Ajk ∧Aki, (2.7)

which finishes the proof.

Take a cocycle {(Bij , Aij)} for a good cover {Ui} representing a class ζ ∈ H1(M,Ω2+1
cl ).

As (Bij , Aij)(Bjk, Ajk)(Bki, Aki) = 0, we have that

Bij +Bjk +Bki +Aij ∧Ajk +Ajk ∧Aki +Aij ∧Aki = 0, (2.8)
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Aij +Ajk +Aki = 0. (2.9)

From the latter equation, the cocycle {Aij} represents the projection of ζ to H1(M,Ω1
cl(M)).

Writing Aij = Aj −Ai for Ai ∈ Ω1(Ui), we have that dAi = dAj on the intersections, and
{dAi} globally defines a closed 2-form F on M . On the other hand, using Aij = Aj −Ai,
equation (2.8) becomes

Bij +Bjk +Bki +Ai ∧Aj +Aj ∧Ak +Ak ∧Ai = 0,

and hence {Bij + Ai ∧ Aj} defines a 1-cocycle. By writing Bij + Ai ∧ Aj = Cj − Ci for
Ci ∈ Ω1(Ui) and differentiating, we have

dCj −Aj ∧ F = dCi −Ai ∧ F,

i.e., {dCi − Ai ∧ F} globally defines a 3-form H which is not necessarily closed, but
satisfies dH + F 2 = 0, since d(dCi −Ai ∧ F ) = −dAi ∧ F = −F ∧ F .

Remark 2.15. Note that the 2-forms {Ci} allows us to write

(Bij , Aij) = (Cj , Aj)(Ci, Ai)
−1.

Thus, any cocycle {(Bij , Aij)} determines a closed 2-form F and a 3-form H satis-
fying dH + F 2 = 0. Conversely, for any such forms F,H, a cocycle {(Bij , Aij)} can be
found.

Lemma 2.16. Using the isomorphism of Lemma 2.12, the connecting homomorphism
δ1 : H2(M,R)→ H4(M,R) is given by [F ] 7→ [F ]2.

Proof. We first use the isomorphism H2(M,R) ∼= H1(M,Ω1
cl) as described in Remark

2.13: [F ] ∈ H2(M,R) is locally represented by {Fi = dAi} for some 1-forms Ai, and
{Aij = Aj − Ai} represents the class in H1(M,Ω1

cl). We then apply the connecting
homomorphism as described in (2.7):

dijk = Ai ∧Aj +Aj ∧Ak +Ak ∧Ai.

We finally use the isomorphism H2(M,Ωcl)
∼= H4(M,R). The cocycle {dijk} is the

coboundary of {tij = Ai ∧ Aj}. Take the exterior derivative of {tij} to get {dtij =

dAi ∧Aj −Ai ∧ dAj}, which can be written as {Ai ∧ dAi − dAj ∧Aj} since Ai = Aj in Uij.
Thus, {dtij} is the coboundary of {Ai ∧ dAi}. By taking the exterior derivative we get
the corresponding 0-cocycle of 4-forms, {dAi ∧ dAi}, defining the corresponding class
in H0(M,Ω4

cl).
Since the representative of the element of H2(M,R) is locally given by dAi and the

representative of the element in H4(M,R) is locally given by dAi ∧ dAi, we have that
the map H2(M,R)→ H4(M,R) is [F ] 7→ [F ]2.
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The set H1(M,Ω2+1
cl ), which parameterizes equivalence classes of twisted versions

of T + T ∗ + 1 (as given in Equation (2.5)), is then described as follows.

Proposition 2.17. The non-abelian cohomology pointed set H1(M,Ω2+1
cl ) is a principal

H3(M,R)-bundle over {[F ] ∈ H2(M,R) | [F ]2 = 0}.

Proof. By the long exact sequence in Lemma 2.14,

H0(M,Ω1
cl)

0−→ H3(M,R)→ H1(M,Ω2+1
cl )→ H2(M,R)

[ ]2−−→ H4(M,R),

and using Lemma 2.16, we get the short exact sequence

0→ H3(M,R)→ H1(M,Ω2+1
cl )→ {[F ] ∈ H2(M,R) | [F ]2 = 0} → 0.

The group H3(M,R) = H1(M,Ω2
cl) acts freely and transitively on H1(M,Ω2+1

cl ) and the
quotient of this action is {[F ] ∈ H2(M,R) | [F ]2 = 0}.

Remark 2.18. Recall that the 2-form F defined above for a representative {(Bij , Aij)}
is closed and hence represents a cohomology class [F ] ∈ H2(M,R). The equation
dH + F 2 = 0 is saying that [F ] is in the kernel of δ1 : H2(M,R) → H4(M,R). The
discrepancy in the choice of H is given by a closed form, which defines a cohomology
class in H3(M,R).

2.3.2 Odd exact Courant algebroids

We have seen that a twisted version of T + T ∗ + 1 fits into the exact diagram

T ∗

��

π∗

  AAAAAAAA

A∗ //

��

E
π // T,

1

where the vertical and horizontal rows form exact short sequences. We check now
if any E fitting in the diagram above is actually a twisted version of T + T ∗ + 1, i.e.,
comes from gluing local models of T + T ∗ + 1 with B +A-fields.

We choose an open covering {Ui} of M small enough to have A∗|Ui
∼= (T ∗ + 1)|Ui and

E|Ui
∼= (T + A∗)|Ui . The first isomorphism is equivalent to a splitting 1 → T ∗ over Ui

given by a 1-form A′i on Ui, in such a way that the elements of A∗|Ui are of the form
{ξ + λ + λA′i}ξ+λ∈(T ∗+1)|Ui

. The second isomorphism, E|Ui ∼= (T + A∗)|Ui is equivalent to
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a splitting T|Ui → A∗|Ui
∼= (T ∗ + 1)|Ui . This splitting is then given by a 2-form Bi and

another 1-form A′′i , in such a way that E|Ui consists of the elements

X + (ξ + λ+ λA′i) + (iXBi +A′′i (X) +A′′i (X)A′i) = X + ξ + iXBi +A′′i (X)A′i + λA′i + λ+A′′i (X).

This general element can be identified with

(Ci, Ai)(X + ξ + λ) = X + ξ + iXCi −Ai(X)Ai − 2λAi + λ+Ai(X)

only when A′′i = Ai, A′i = −2Ai and Bi = Ci +Ai ⊗Ai.
This condition is equivalent to saying that the local splittings 1 → T ∗ and T → 1

are given by the same A-field (0, Ai):

T ∗_

��

�
π∗

  AAAAAAAA

A
� //

����

E
π // // T.

rr

4
<

G
PW]c

Ai∼=(0,Ai)oo

�
z

tnid`1

−2Ai∼=(0,Ai)

>>

>
4

)
� �



�

Yet another equivalent way to express this condition is the statement we take as
the definition of an odd exact Courant algebroid.

Definition 2.19. An odd exact Courant algebroid is a Courant algebroid E that fits
into the exact diagram

T ∗

��

π∗

  AAAAAAAA

A∗ //

��

E
π //

  @@@@@@@@ T.

1 A

OO

1

OO

where A is a Lie algebroid of rank n + 1 and all the vertical, horizontal and diagonal
rows form a short exact sequence.

Remark 2.20. Note that as a Lie algebroid, the class of the extension of 1→ A→ T is
parameterized by an element of H2(M,R). This element is represented by {dAi}, i.e.,
it is precisely the cohomology class [F ] ∈ H2(M,R).
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Example 2.21. The concept of an odd exact Courant algebroid is an odd counterpart
of an exact Courant algebroid, which are extensions

0 // T ∗ // E // T // 0

whose equivalence classes are parameterized by H3(M). Given any exact Courant
algebroid E parameterized by γ ∈ H3(M), E + 1 is given the structure of an odd exact
Courant algebroid by taking F = 0 and H such that [H] = γ.

2.3.3 Twisted Courant structure

As a vector bundle, A∗ is isomorphic to T ∗ + 1 and an odd exact Courant algebroid E

is isomorphic to T +T ∗+1. In this section we describe the Courant algebroid structure
that E, or equivalently, the corresponding class ζ ∈ H1(M,Ω2+1

cl ), gives to T + T ∗ + 1 by
untwisting.

Let {(Bij , Aij)} be a representative of ξ in a good cover {Ui}. By Remark 2.15,
we know that there exist 2-forms {Ci} such that (Bij , Aij) = (Cj , Aj)(Ci, Ai)

−1. This
allows us to think of every element (Ci, Ai) as giving an isomorphism between T +

T ∗ + 1|Ui and E|Ui , so that the transition functions in an open set Ui ∩ Uj are precisely
(Cj , Aj)(Ci, Ai)

−1 = (Bij , Aij). We thus see the Courant algebroid E as the bundle
T + T ∗ + 1 with a different Courant algebroid structure.

The metric structure of T + T ∗ + 1 remains unchanged, since we are acting by
orthogonal transformations. However, since Ci and Ai are not closed, the Courant
bracket is not preserved. By using Proposition 2.4, we have that in the open set Ui it
is given by

(Ci, Ai)[(−Ci,−Ai)v, (−Ci,−Ai)w] = [v, w]− iY iX(dCi −Ai ∧ dAi)

− iY iXdAi − 2(λiY dAi − µiXdAi)
(2.10)

for v = X+ ξ+λ,w = Y +η+µ ∈ C∞(T +T ∗+1). We have seen in Section 2.3.1 that {dAi}
globally defines a closed 2-form F and {dCi −Ai ∧ dAi} = {dCi −Ai ∧F} globally defines
a not necessarily closed 3-form H, satisfying dH + F ∧ F = 0. The Courant bracket on
T + T ∗ + 1 is thus given by

[X + ξ + λ, Y + η + µ]F,H =[X + ξ + λ, Y + η + µ] + iX iYH + iX iY F + 2(µiXF − λiY F ), (2.11)

while the Dorfman product is given by

(X+ ξ+λ) ·F,H (Y +η+µ)=(X+ ξ+λ)(Y +η+µ)+ iX iYH+ iX iY F +2(µiXF −λiY F ), (2.12)

25



The group of generalized diffeomorphisms of the Courant algebroid

(T + T ∗ + 1, 〈, 〉, [, ]F,H , π)

consists of the orthogonal transformations of T+T ∗+1 preserving the Courant bracket
[ , ]F,H . It is described by the following proposition.

Proposition 2.22. The group of generalized diffeomorphisms GDiffF,H(M) is an ex-
tension

0→ Ω2+1
F (M)→ GDiffF,H(M)→ DiffF,H(M)→ 0, where

DiffF,H(M) = {ϕ ∈ Diff(M) | there exist B ∈ Ω2
cl(M), A ∈ Ω1

cl(M) with

ϕ∗F − F = dA, ϕ∗H −H = dB + 2A ∧ F −A ∧ dA},

and
Ω2+1
F (M) = {(B,A) ∈ Ω2+1(M) | dA = 0, dB + 2A ∧ F = 0}.

Proof. Similarly to Prop. 2.2 in [Gua11], any element of GDiffF,H(M) can be written
as ϕn (B,A) for unique ϕ, B and A. The action of ϕ ∈ Diff(M) on [ , ]F,H is given by

ϕ∗[ϕ
−1
∗ , ϕ−1

∗ ]F,H = [ , ]ϕ∗−1F,ϕ∗−1H ,

while the action of (B,A) is given by

(B,A)[(−B,−A) , (−B,−A) ]F,H = [ , ]F+dA,H+dB+2A∧F−A∧dA.

The preservation of the Courant bracket is thus equivalent to the conditions stated.

By studying 1-parameter families {ϕt n (Bt, At)} ⊂ GDiffF,H(M), we have that the
Lie algebra gdiff[F,H](M) ⊂ C∞(M)⊕ Ω2(M)⊕ Ω1(M) is given by

gdiff[F,H](M) = {(X, b, a) | LXF = da,LXH = db+ 2a ∧ F}.

Remark 2.23. This agrees with the description of twisted versions of T +T ∗+1 coming
from the general setting of standard Courant algebroids (cf. Section 2 of [CSX13]).
The standard Courant algebroids are described as F ∗+G+F , where F is an integrable
subbundle of TM , G is a bundle of quadratic algebras, the anchor map is the pro-
jection onto F , and the metric and the Courant bracket satisfy certain compatibility
conditions. Under these hypotheses, as proved in Lemma 2.1 of [CSX13], the Dorf-
man product of such an algebroid is a twisted version by three canonical maps ∆, a
connection on G, R, a 2-form with values in G, and H, a 3-form on F . In our case
the integrable distribution F corresponds to T , the bundle G is the trivial bundle 1,
the connection ∆ is trivial, the map R is identified with our 2-form F , and the 3-form
H corresponds to our 3-form H. The compatibility condition is then equivalent to
dH + F 2 = 0.

26



2.4 B-geometry and D-geometry

In this section we see how to relate Bn-geometry with Dn-geometry, i.e., ordinary
generalized geometry.

2.4.1 Dn-geometry as Bn-geometry

The Dn-generalized tangent space T + T ∗ trivially embeds into the Bn-generalized
tangent space T +T ∗+ 1. A section X + ξ ∈ C∞(T +T ∗) is sent to the section X + ξ+ 0 ∈

C∞(T + T ∗). Since

〈X + ξ + 0, X + ξ + 0〉 = iXξ = 〈X + ξ,X + ξ〉Dn ,

[X + ξ + 0, Y + η + 0] = [X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ) = [X + ξ, Y + η]Dn ,

the Dn-generalized tangent space is a Courant subalgebroid (i.e., a subbundle which
is, via restriction, a Courant algebroid) of the Bn-generalized tangent space.

2.4.2 Bn-geometry as Dn+1-geometry

We first embed T+T ∗+1 into T+T ∗+1+1′, with 1′ a rank one trivial bundle. We extend
the metric 〈, 〉 so that it is negative definite on 1′, and 1′ is orthogonal to T + T ∗ + 1.
By a change of basis, we regard T +T ∗+ 1 + 1′ as the bundle T +TS1 +T ∗+T ∗S1, which
corresponds to the usual generalized tangent bundle of the manifold M×S1. We could
equally use M × R, but we will keep to M × S1 for convenience later on.

We denote by ∂
∂θ and dθ, respectively, the sections of TS1 and T ∗S1 such that

〈 ∂∂θ , dθ〉 = 1
2 i ∂

∂θ
dθ = 1

2 . We have that ∂
∂θ + dθ ∈ C∞(1) and ∂

∂θ − dθ ∈ C
∞(1′) are bases of

the trivial bundles 1 and 1′ as C∞(M)-modules.
Via this embedding, a section X+ ξ+λ ∈ C∞(T +T ∗+1) is sent to X+λ ∂

∂θ + ξ+λdθ ∈

C∞(T + TS1 + T ∗ + T ∗S1), where λ is an S1-invariant function. The metric is preserved
by this correspondence:

〈X + ξ + λ(
∂

∂θ
+ dθ), Y + η + µ(

∂

∂θ
+ dθ)〉 =

1

2
(iXη + iY ξ) + λµ = 〈X + ξ + λ, Y + η + µ〉Bn ,

and so is the Courant bracket, as the following lemma shows.

Lemma 2.24. The Dn+1-Courant bracket of X + ξ + λ( ∂∂θ + dθ), Y + η + µ( ∂∂θ + dθ)

corresponds to the Bn-Courant bracket of X + ξ + λ and Y + η + µ.
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Proof. By computing the Courant bracket we have

[X + ξ + λ(
∂

∂θ
+ dθ), Y + η + µ(

∂

∂θ
+ dθ)]

= [X + ξ, Y + η] + [X,µ
∂

∂θ
] + [λ

∂

∂θ
, Y ] + LXµdθ − LY λdθ

+ Lλ ∂
∂θ

(η + µdθ)− Lµ ∂
∂θ

(ξ + λdθ)− 1

2
d(iλ ∂

∂θ
(η + µdθ)− iµ ∂

∂θ
(ξ + λdθ))

= [X + ξ, Y + η] + iXdµ
∂

∂θ
− iY dλ

∂

∂θ
+ iXdµdθ − iY dλdθ + µdλ− λdµ− 1

2
(λµ− µλ)

= [X + ξ, Y + η] + µdλ− λdµ+ (iXdµ− iY dλ)(
∂

∂θ
+ dθ) = [X + ξ + λ, Y + η + µ].

Thus, the Bn-generalized tangent space is a Courant subalgebroid of the Dn+1-
generalized tangent space. In fact, the Bn-generalized tangent space can be obtained
by reduction of the Dn+1-generalized tangent space.

In general, reduction requires an exact Courant algebroid E over a manifold N

where a Lie group G acts freely and properly. Recall that an exact Courant algebroid
is an extension 0→ T ∗ → E → T → 0. The infinitesimal action of G, ρ : Lie(G)→ C∞(T )

must be extended to a bracket-preserving homomorphism ρ : Lie(G)→ C∞(E) satisfying
that π ◦ ρ = ρ and such that ρ, called the extended action, integrates to an action of G
on E. Denote the image of the extended action by K ⊂ E, which is a subbundle of E
by Lemma 3.2 in [BCG07]. The following proposition is a particular case of Theorem
3.3 in [BCG07].

Proposition 2.25. With the notation above, the quotient vector bundle

K⊥

K ∩K⊥

/
G

over N/G has the structure of a Courant algebroid.

In our situation, for a manifold M , consider the manifold N = M × S1 and its
ordinary generalized tangent space E = T + TS1 + T ∗ + T ∗S1. The standard action
of S1 on M × S1 has an infinitesimal action Lie(S1) → C∞(T + TS1) given by the map
λ 7→ λ ∂

∂θ . We consider the extended action Lie(S1)→ C∞(T + TS1 + T ∗ + T ∗S1) given by
λ → λ( ∂∂θ − dθ), which integrates to an action on E. We have that K = span{ ∂∂θ − dθ}.
By Proposition 2.25,

span{ ∂∂θ − dθ}
⊥

span{ ∂∂θ − dθ} ∩ span{ ∂∂θ − dθ}⊥
/S1 = span{ ∂

∂θ
− dθ}⊥/S1
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is a Courant algebroid. The sections of span{ ∂∂θ − dθ}
⊥ are generalized vector fields

X(m, s) + λ(m, s)dθ + ξ(m, s) + λ(m, s)dθ over (m, s) ∈ M × S1. By taking the quotient by
the action of S1 we get X(m) + λ(m) ∂∂θ + ξ(m) + λ(m)dθ, depending only on the point
m ∈M , or equivalently, the S1-invariant section X + ξ + λ( ∂∂θ + dθ). which corresponds
to a section X + ξ + λ of T + T ∗ + 1. By Lemma 2.24, the induced Courant bracket
corresponds to the one defined in Section 2.1.

This reduction procedure provides a way, based on Dn-geometry, to show that the
Bn-generalized tangent space T +T ∗+ 1 has a Courant algebroid structure, as claimed
in Proposition 2.3.

Remark 2.26. The same result applies when we consider a manifold N together with
a R+-action. Since Lie(S1) = Lie(R+) the action and extended action are the same and
span{dθ − ∂

∂θ}
⊥/R+ over N/R+.

2.4.3 Generalized diffeomorphisms

When looking at T+T ∗ inside T+T ∗+1 as in Section 2.4.1, the Dn-group of generalized
diffeomorphisms Diff(M) n Ω2

cl(M) sits inside the Bn-group of generalized diffeomor-
phisms Diff(M) n Ω2+1

cl (M), as Ω2
cl(M) is a central subgroup of Ω2+1

cl (M).
Conversely, if we consider T+T ∗+1 sitting in T+TS1+T ∗+T ∗S1 as in Section 2.4.2, we

have that a B-field for T +T ∗+1 becomes an S1-invariant B-field for T +TS1 +T ∗+T ∗S1.
However, the situation is very different for A-fields. An infinitesimal A-field, A ∈
C∞(so(T + T ∗ + 1)), can be seen as



0 0 0

0 0 −2A

A 0 0


acting on



T

T ∗

1


.

The A-field component acts twice, as T → 1 and as 1 → T ∗. This corresponds to
the element A ∧ ( ∂∂θ + dθ), since for X ∈ C∞(T ), A ∧ ( ∂∂θ + dθ) acts on X by

iX

(
A ∧ (

∂

∂θ
+ dθ)

)
= iXA · (

∂

∂θ
+ dθ), i.e., iXA ∈ C∞(1),

while on λ( ∂∂θ + dθ) acts by

iλ( ∂
∂θ

+dθ)

(
A ∧ (

∂

∂θ
+ dθ)

)
= −A ∧ iλ( ∂

∂θ
+dθ)(

∂

∂θ
+ dθ) = −2λA.
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When we pass to Dn+1-geometry, the element A∧( ∂∂θ+dθ) ∈ C∞(so(T+TS1+T ∗+T ∗S1))

corresponds to the infinitesimal B-field A∧ dθ together with an endomorphism A∧ ∂
∂θ .

This can be represented as the element

0 0 0 0

A 0 0 0

0 −A 0 −A

A 0 0 0


acting on



T

TS1

T ∗

T ∗S1


.

Thus, we see that although T+T ∗+1 is a Courant subalgebroid of T+TS1+T ∗+T ∗S1,
Bn-generalized diffeomorphisms are not simply S1-invariant generalized diffeomor-
phisms. The Bn-group of generalized diffeomorphisms corresponds to the S1-invariant
Dn-generalized diffeomorphisms fixing the element ∂

∂θ−dθ. Equivalence in Bn-geometry
is hence stronger than equivalence in Dn-geometry.

In regard to the twisted versions, one can already see in a letter from Severa to Alan
Weinstein ([Sevrs]) how a reduction of an H-twisted version of T (M × S1) + T ∗(M × S1)

should give a (F,H)-twisted of T + T ∗ + 1.
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Chapter 3

(F,H)-twisted cohomology

Consider the twisted Courant structure on T + T ∗ + 1 given by a closed 2-form F and
a 3-form H such that dH + F 2 = 0, as described in Section 2.3.3. Equivalently, given
a good cover {Ui}, this structure is locally determined by B +A-fields {(Bij , Aij)}, not
uniquely defined, on the intersections Ui ∩ Uj. By Remark 2.15, we know that there
exist 2-forms {Ci}, as well as forms {Ai}, such that (Bij , Aij) = (Cj , Aj)(Ci, Ai)

−1. We
have seen in Section 2.3.1 that the forms dAi and dCi−Ai∧dAi are globally well defined
and recover, respectively, the forms F and H.

In the bundle of differential forms, the differential gets twisted locally by

e−Cie−Aiτd(eCieAiτϕ) = dϕ+ dAi ∧ τϕ+ (dCi −Ai ∧ dAi) ∧ ϕ,

for ϕ ∈ Ω•(M), so it can be written globally as

d+ Fτ +H.

Note that it squares to zero since dH + F 2 = 0 and τ anti-commutes with d and H.
By a similar argument to the one given in Section 2.2, the Lie derivative of ϕ ∈

Ω•(M) with respect to X + ξ + λ is given by

LX+ξ+λ ϕ = (X, dξ + iXH + 2λF, dλ+ iXF ) · ϕ,

which satisfies a Cartan formula for the twisted differential just defined:

Proposition 3.1. Given a generalized vector field v = X + ξ + λ and ϕ ∈ Ω•(M),

(d+ Fτ +H)ivϕ+ iv(d+ Fτ +H)ϕ = Lv ϕ.

The aim of this chapter is to study the cohomology of the differential forms Ω•(M)

together with the differential D = d + Fτ + H. We first state some generalities about
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the method we are using: spectral sequences and exact couples. Since the differentials
arising in the spectral sequence will be related to higher Massey products, we recall
their definition in the second section before actually computing the cohomology in
the third section.

3.1 Spectral sequences via exact couples

A filtered differential graded algebra is a triple (A, d, F ) consisting of a graded algebra
A =

⊕n
j=0A

j, a filtration K = {Kp}p∈Z such that

A ⊇ . . . ⊇ Kp+1 ⊇ Kp ⊇ . . . ⊇ 0,

and a differential d (satisfying d2 = 0) of degree 1 on the grading, d : Aj → Aj+1, that
moreover respects the filtration, i.e., d : Kp → Kp.

From the commutative diagram

0 // Kp+1
i // Kp

j // Kp/Kp+1 // 0

0 // Kp+1

d

OO

i // Kp
j //

d

OO

Kp/Kp+1

d

OO

// 0

we get the long exact cohomology sequence in cohomology

. . .→ Hp+q(Kp+1)
i−→ Hp+q(Kp)

j−→ Hp+q(Kp/Kp+1)
k−→ Hp+q+1(Kp+1)→ . . . , (3.1)

where we use again i and j for the maps i∗ and j∗, and k denotes the connecting
homomorphism.

By defining bigraded algebras

Rp,q = Hp+q(Kp), (3.2)

Sp,q = Hp+q(Kp/Kp+1),

we can arrange the long exact cohomology sequence as the commutative diagram

R∗,∗
i // R∗,∗

j

{{xxxxxxxx

S∗,∗

k
ccFFFFFFFF

, (3.3)

i.e., as an exact couple.
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In general, an exact couple (R,S, i, j, k) is given by a pair of bigraded algebras R
and S together with homomorphisms i : R → R, j : R → S and k : S → R such that the
following diagram is exact at each vertex

R
i // R

j

���������

S

k
__???????

,

i.e., such that Im i = Ker j, Im j = Ker k and Im k = Ker i.
As a consequence of the exactness in (3.3), the map d1 := j ◦ k is a differential of

R. We use this fact to define the derived couple of (R,S, i, j, k) as S′ = Ker d1/ Im d1 and
R′ = i(R) = Ker j with maps i′ := i|R′ , j′(i(r)) = j(r) + Im d1 ∈ S′ for i(r) ∈ R′ = i(R), which
is well defined since Ker i = Im j, and k′(s+ Im d1) := k(s) for s+ Im d1 ∈ S′, whose image
lies in R′ since k(s) ∈ Ker j = Im i = R′. The derived couple is proved to be again an
exact couple.

Starting with the exact couple (R∗,∗, S∗,∗, i, j, k) as in (3.2) and (3.3) (where the
bidegrees of i, j, k are, respectively, (−1, 1), (0, 0), (1, 0)) and taking successive derived
couples we obtain a sequence of exact couples

(R∗,∗t , S∗,∗t , it, jt, kt) = ((R∗,∗)(t−1), (S∗,∗)(t−1), i(t−1), j(t−1), k(t−1)),

where the bidegree of the homomorphisms it, jt, kt is (−1, 1), (t − 1, 1 − t) and (1, 0),
respectively. So, dt+1 = j(t) ◦ k(t) defines a differential of bidegree (t, 1 − t) on S∗,∗t+1.
The following result states the relation between these exact couples and a spectral
sequence converging to the cohomology of the differential complex (a proof follows,
for instance, from Theorem 2.6 and Proposition 2.11 in [McC01]).

Theorem 3.2. The collection {S∗,∗t+1, dt+1} defined above is a spectral sequence, i.e., a
collection of differential bigraded algebras, such that the bidegree of dt+1 is (t, 1− t) and
Sp,qt+1 is given by taking Hp,q(S∗,∗t , dt), the cohomology at (p, q) of the bigraded complex.
Moreover, when the filtration K of the algebra A is bounded in the sense that the set
{Kp ∩ An}p∈Z is finite for any n, the spectral sequence converges to the cohomology
H(A, d) in the sense that

Sp,q∞ ∼= Hp+q(Kp, d)/Hp+q(Kp+1, d),

where we regard Hp+q(Kp, d) inside H(A, d).
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3.2 Massey products

The Massey product is defined for three cohomology classes [a1], [a2], [a3] ∈ H•(M) such
that [a1][a2] = [a2][a3] = 0. Let a23 and a12 be forms such that τa1 ∧ a2 = da12 and
τa2 ∧ a3 = da23. Recall that τ(ϕ+ + ϕ−) = ϕ+ − ϕ−, where ϕ+ and ϕ− are the even and
odd parts, respectively, of a form ϕ.

Definition 3.3. Given the conditions and notation above, the Massey product of
[a1], [a2], [a3] is defined as the coset

〈[a1], [a2], [a3]〉 = [τa1 ∧ a23 + τa12 ∧ a3] + ([a1], [a3]) ∈ H•(M)/([a1], [a3]).

The differentials forms involved in defining the Massey product can be arranged
in the matrix  a1 a12 m

a2 a23

a3

 ,

so that the representative m of the Massey product depends only on the first row and
the last column. It is indeed given by m = τa1 ∧ a23 + τa12 ∧ a3. This expression can be
represented as

τa1

**UUUUUUUU τa12

��9999999

a23

a3

(3.4)

where the arrows mean wedge product and we take the sum of the two arrows. Equiv-
alently we can see the elements a12 and a23 as resulting from the diagram

τai
%%LLL
ai i+1

ai+1,

(3.5)

since τai ∧ ai+1 = dai i+1.
We define higher Massey products of cohomology classes [a1], [a2], [a3], [a4] when

there exist:

• forms a12, a23, a34 satisfying diagram (3.5), i.e., such that τa1∧a2 = da12, τa2∧a3 =

da23 and τa3 ∧ a4 = da34,

• and forms a123, a234 satisfying diagram (3.4), i.e., such that τa1 ∧ a23 + τa12 ∧ a3 =

da123, τa2 ∧ a34 + τa23 ∧ a4 = da234.
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In this case, a representative for the Massey product is given by

m = τa1 ∧ a234 + τa12 ∧ a34 + τa123 ∧ a4,

which can be represented by the diagram

τa1

,,YYYYYYYYYYYYYYYY τa12

&&NNNNNNNNNNN τa123

��3
333333333

a234

a34

a4

(3.6)

All the forms involved can be represented in the matrix
a1 a12 a123

a2 a23 a234

a3 a34

a4

 ,

where the entries satisfy the relations expressed by diagrams (3.4) and (3.5).
We introduce the notation ai...i+t in order to talk about arbitrary subindices. As

an illustrative example a1...4 = a1234. With all generality, to define the Massey product
of n cohomology classes [a1], . . . , [an] we need a defining matrix

A =



a1 a12 . . . a1...n−1

a2 . . . a2...n−1 a2...n

. . .
...

...

an−1 an−1 n

an


,

where the representatives satisfy the condition

dai...i+t =

t−1∑
j=0

τai...i+j ∧ ai+j+1...i+t,

which is the generalization of diagrams (3.4) and (3.5). Then, the Massey product
〈[a1], . . . , [an]〉 with defining matrix A is given by the cohomology class of

m =

n−2∑
j=0

τa1...1+j ∧ a2+j...n. (3.7)

Just as for the Massey product for three forms, this class is not uniquely defined
and depends on the defining matrix A.

Definition 3.4. The Massey product of cohomology classes [a1], [a2], . . . , [an] consists
of the set of cohomology classes obtained by (3.7) for all possible defining matrices
A. If there is not a defining matrix, the Massey product is not defined.
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While the Massey product of three cohomology classes is a coset, higher Massey
products do not necessarily form a coset and its indeterminacy is given, in general,
by an element of a so-called matric Massey product ([May69], p. 543).

In the next section, we will only use the cohomology classes given by a particular
defining matrix (determined by the forms F and H).

3.3 The spectral sequence for d + Fτ +H

We use Theorem 3.2 in order to compute the cohomology associated to the differential
d+ Fτ +H.

Consider the graded algebra of differential forms Ω•(M) =
⊕n
j=0 Ωj(M) with the

differential D = d+Fτ +H. Define a filtration by the subalgebras Kp =
⊕

i≥p Ωi(M) for
0 ≤ p ≤ n, Kp = 0 for p < 0 and Kp = Kn for p > n. This filtration is clearly bounded, so
by Theorem 3.2 the cohomology can be computed by means of the spectral sequence.

There are two different cohomology groups playing a role in the long exact se-
quence (3.1) coming from Kp+1

i−→ Kp
j−→ Kp/Kp+1. On the one hand, the differential D

restricts to the filtration {Kp}, so we have

HB(Kp) =
Ker(Kp

D−→ Kp+1)

Im(Kp−1
D−→ Kp)

.

On the other hand, D also defines a differential in the complex Kp/Kp+1, but it is null,
since D(Kp) ⊂ Kp+1. Hence,

HB(Kp/Kp+1) = Kp/Kp+1
∼= Ωp(M).

The long exact cohomology sequence becomes

. . .→ H
p+q
B (Kp+1)

i−→ H
p+q
B (Kp)

j−→ H
p+q
B (Kp/Kp+1)

k−→ H
p+q+1
B (Kp+1)→ . . . , (3.8)

where Ht
B(Kp) = HB(Kp) and Ht

B(Kp/Kp+1) = Ωp(M) for any t. We define an exact
couple by setting Rp,q = HB(Kp) and Sp,q = Ωp(M):

HB(K∗)
i1 // HB(K∗)

j1

yysssssssss

Ω∗(M)

k1
eeKKKKKKKKKK

, (3.9)

where we write i1, j1 for i, j and k1 = k is the connecting homomorphism. The map
d1 := j1 ◦ k1 defines a differential on HB(Kp), which we compute as follows. In the
remainder of this section, for the sake of brevity, we omit the wedge product symbol
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∧ and the brackets when applying the maps it, jt, kt, unless there is a possible confusion.
First, let xp ∈ Ωp(M), we compute k1xp by using the diagram

0 // Kp+1 // Kp

Kp

D

OO

// Ωp(M) // 0.

The element xp ∈ Ωp(M) = Kp/Kp+1 comes from some x = xp+xp+1 +xp+2 + . . . ∈ Kp and
we have that

Dx = dxp + dxp+1 + Fτxp + dxp+2 + Fτxp+2 +Hxp + . . . ∈ Kp.

Further, Dxp belongs to Kp+1. We have that k1xp = [Dx]B ∈ HB(Kp+1). Since k1xp is
independent of the choice of xp+1, xp+2, . . ., we choose xp+1 = xp+2 = . . . = 0 and we have
k1xp = [Dxp]B.

For the differential d1 = j ◦ k we have

d1xp = (j1 ◦ k1)xp = j1[dxp + Fτxp +Hxp]B = dxp,

so d1 is the usual exterior derivative in differential forms. Thus, Ω•(M) together with
the usual differential is the initial page of the spectral sequence coming from taking
successive derived couples.

The second page of the spectral sequence is determined by the derived couple of
diagram (3.9), which consists of i∗1HB(Kp) and the cohomology groups of Ωp(M) with
the usual differential, i.e., Hp(M):

i∗1HB(Kp+1)
i2 // i∗1HB(Kp)

j2

xxrrrrrrrrrr

Hp(M)

k2
ffNNNNNNNNNN

.

The maps are given as follows. Let [xp] ∈ Hp(M), i.e., xp ∈ Ωp(M) such that dxp = 0.
The map k2 is defined by

k2[xp]2 = k1xp = [Dx]B = [Fτxp +Hxp]B ∈ HB(Kp+2),

where we recall that x = xp + xp+1 + . . . ∈ Kp is such that j1x = xp.
Since [Dxp]B ∈ HB(Kp+2) equals i∗1[Dx]B (where the latter [Dx]B is considered as an

element of HB(Kp+1)), we have that

j2[Dx]B = [j1[Dx]B ] = [Fτxp] ∈ Hp+2(M).
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This defines a differential on Hp(M) since

[Fτ(Fτxp)] = [F 2xp] = [−dHxp] = [d(−Hxp)] = 0.

For the third page, we have the cohomology groups for the differential graded
algebra (Hp(M), [τF ]), given by

Hp
F (M) =

Ker([F ] : Hp(M)→ Hp+2(M))

Im([F ] : Hp−2 → Hp(M))
,

where we omit τ since it does not change either the image or the kernel. We thus
have the exact couple

(i∗1)2HB(Kp)
i3 // (i∗1)2HB(KP )

j3

xxqqqqqqqqqqq

Hp
F (M)

k3
ffMMMMMMMMMM

.

We compute the differential on Hp
F (M). Let [[xp]]F ∈ H

p
F (M), i.e., [xp] ∈ Hp(M) such

that [F ][xp] = 0 ∈ Hp+2(M), i.e., Fxp is exact. The map k3 is given by

k3([[xp]]F ) = k2[xp] = k1xp = [Dx]B = [Fτxp + dxp+1 +Hxp + Fτxp+1 +Hxp+1]B ∈ HB(Kp+3),

since xp is closed. As Fxp is exact, we can choose xp+1 so that Fτxp+dxp+1 = 0. Hence,

k3([[xp]]F ) = [Hxp + Fτxp+1 +Hxp+1]B ∈ HB(Kp+3).

Again, we have that [Dx]B equals (i∗1)2[Dx]B, so

j3[Dx]B = [j2[Dx]B ]F = [[j1[Dx]B ]]F = [[Hxp + Fτxp+1]]F .

The differential is thus given by [[xp]]F → [[Hxp + Fτxp+1]]F , where xp+1 is such that
dxp+1 = −Fτxp. This differential can be related to the Massey product 〈[F ], [F ], [xp]〉 as
given in Definition 3.3. Indeed, we have F 2 = d(−H) and Fxp = d(τxp+1), so 〈[F ], [F ], [xp]〉

is the coset represented by [Fτxp+1 +Hxp]. However, if we modify H by a closed form,
the representative is different. We say that the differential is given by the Massey
product 〈[F ], [F ], [xp]〉 provided that we choose a12 = −H, i.e., if the defining matrix is F −H

F τxp+1

xp

 .

On the other hand, the differential can be simply written as [[xp]]F 7→ [[Hxp]]F ,
since [Fτxp+1] = [F ][τxp+1] defines a trivial class in HF (M). It is then easy to check
that the differential squares to zero, since H2 = 0.
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We denote by HF,H(M) the cohomology associated to the complex (HF (M), [[H]]F ),

H
p
F,H(M) =

Ker([[H]]F : H
p
F (M)→ H

p+3
F (M))

Im([[H]]F : Hp−3
F → Hp

F )
=
{[[α]]F | [Hα] = [Fβ] for β ∈ Ωp+1(M)}
{[[Hγ]]F | γ ∈ Ωp−3(M) and [Fγ] = 0}

.

For the fourth page, we have the exact couple

(i∗1)3HB(Kp)
i4 // (i∗1)3HB(KP )

j4

wwppppppppppp

Hp
F,H(M)

k4
ffNNNNNNNNNNN

.

Let [[[xp]]F ]H ∈ H
p
H(M), i.e., such that [Hxp] = [Fβ].

k4[[[xp]]F ]H = . . . = k1xp = [Dx]B ∈ HB(Kp+4).

Choose x = xp + xp+1 + xp+2 such that dxp+1 + Fτxp = 0 and dxp+2 + Fτxp+1 + Hxp = 0,
we then have

k4[[[xp]]F ]H = [Hxp+1 + Fτxp+2 +Hxp+2]B ∈ HB(Kp+4).

As before, [Dx]B = (i∗1)3[Dx]B and the differential is given by

(j4 ◦ k4)[[[xp]]F ]H = j4[Dx]B = [[[Hxp+1 + Fτxp+2]]F ]H .

Note that the class [Fτxp+2] is not necessarily trivial in [F ]-cohomology since xp+2 is
not necessarily closed. This fourth differential is related to the higher Massey product
〈[F ], [F ], [F ], [−τxp]〉, as given in Definition 3.4, with defining matrix

F −H 0

F −H τxp+2

F xp+1

−τxp

 .

In general, one can see that the differentials are related to the higher Massey products
〈[F ], [F ], [xp]〉, 〈[F ], [F ], [F ], [F ], [−τxp]〉, 〈[F ], [F ], [F ], [F ], [−xp]〉, 〈[F ], [F ], [F ], [F ], [F ], [τxp]〉 and
so on. Formally, d2t+s, where s = 0, 1 is related to

〈[F ], . . . , [F ]︸ ︷︷ ︸
2t+s+1

, [(−1)tτs+1xp]〉

where we choose −H in the defining matrix whenever we have τF ∧ F = d(−H).

39



3.4 Examples

There is a large class of manifolds for which higher Massey products are zero: formal
manifolds. Although formality is defined by the equivalence of the minimal model
for the manifold and the minimal model for its cohomology algebra, formality also
corresponds to the uniform vanishing of all higher Massey products. Uniform van-
ishing means that whenever we are finding forms for a defining matrix, we always
make the same choice if the initial data are the same. For instance, when calculat-
ing 〈[a1], [a2], [x]〉, we will take the same form a12 satisfying τa1 ∧ a2 = da12 for any x.
Uniform vanishing is thus a stronger condition than vanishing.

For formal manifolds, the spectral sequence above stops in the third page and the
cohomology of d+ Fτ +H corresponds to the [H]-cohomology of the [F ]-cohomology.

Theorem 3.5. Let M be a formal manifold, the (F,H)-twisted cohomology associated
with the differential d+Fτ+H on Ω•(M), H•(M), corresponds to the cohomology groups

Hp
F,H(M) =

{[[α]]F | α ∈ Ωp(M) and [Hα] = [Fβ] for β ∈ Ωp+1(M)}
{[[Hγ]]F | γ ∈ Ωp−3(M) and [Fγ] = 0}

,

where [.]F denotes the cohomology classes for (Hp(M), [F ]).

In particular, when F = 0 or trivial in cohomology we recover H-twisted cohomol-
ogy, which is equivalent to d+H-cohomology when the manifold is formal.

In order to provide the first examples, we look at low dimensions. In dimension
2, we find non-cohomologically trivial 2-forms F in orientable surfaces. The condition
F 2 = −dH is trivially satisfied. When the surface is connected, H2(M) and H0(M) are
generated by [F ] and [1], respectively. The 0th-cohomology group of [F ]-cohomology
is trivial, since [1] is no longer in the kernel of the differential [F ]. Equivalently, the
2nd cohomology group is trivial, as [F ] is now in the image of [F ]. The only non-
trivial group is H1

F (M), which stays H1(M). The form H does not intervene in the
cohomology and the cohomology for D = d + Fτ + H is just [F ]-cohomology. We thus
obtain

H•(M) = H0(M)⊕H1(M)⊕H2(M)

H•B(M) = 0 ⊕H1(M)⊕ 0.

Consider now a connected orientable 3-dimensional manifold M with a 2-form F

such that [F ] 6= 0. From the orientability and connectedness, we have H3(M) ∼= R and
H0(M) ∼= R. From the existence of F , b2(M) := dimH2(M) > 0, and by Poincaré duality,
b1(M) := dimH1(M) = b2(M) > 0. We have that H1

F (M) ∼= {[δ] ∈ H1(M) | [F ][δ] = 0} =
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Ker([F ]). For H2
F (M), we have that the subspace generated by [F ] is in the image of

the differential [F ], while the kernel stays H2(M). Thus, H2
F (M) = H2(M)/R[F ].

If we choose the form H to be cohomologically trivial, the groups H0(M) and H3(M)

stay the same and we have

H•(M) = H0(M)⊕ H1(M) ⊕ H2(M) ⊕H3(M),

H•B(M) = H0(M)⊕Ker([F ])⊕H2(M)/R[F ]⊕H3(M).

Otherwise, [H] is a generator of H3(M) and the [H]-cohomology kills both [H] in
H3
F (M) ∼= H3(M) and [1] in H0

F (M) ∼= H0(M). The spectral sequence is stable from this
step, and the resulting cohomology is

H•(M) = H0(M)⊕H1(M) ⊕ H2(M) ⊕H3(M),

H•B(M) = 0 ⊕Ker([F ])⊕H2(M)/R[F ]⊕ 0.

3.5 Integrality of F and T -duality

3.5.1 T -duality for circle bundles

We start this section by recalling T -duality for circle bundles ([CG10]). Consider
two tuples (Pj , [Fj ], [Hj ]), j = 1, 2, consisting of an S1-bundle Pj

πj−→ M with Chern
class [Fj ] ∈ H2(M,Z) together with an S1-invariant degree 3 real cohomology class
[Hj ] ∈ H3(Pj). We say that (P1, [F1], [H1]) is T -dual to (P2, [F2], [H2]) when for some
suitable representatives Fj , Hj of the cohomology classes we have that

1. π1 ∗H1 = F2 and π2 ∗H2 = F1, which implies that, for connection forms θj satisfying
dθj = π∗jFj, we have H1 = θ1 ∧ π∗1F2 + h1 and H2 = θ2 ∧ π∗2F1 + h2 for basic forms hj
on Pj,

2. moreover, the basic forms h1 and h2 come from the same form on M , i.e., there
exists h ∈ Ω3(M) such that hj = π∗jh.

These two conditions are equivalent to the usual definition of T -duality, given as
follows. Consider the fibred product P1 ×M P2 with projections P1 ×M P2

pj−→ Pj, i.e.,

P1 ×M P2

p2 %%KKKKKKKKK

p1
zzuuuuuuuuuu

P1

π1
%%JJJJJJJJJJ P2 .

π2
yyssssssssss

M

(3.10)

41



We say that (P1, [H1]) is T − dual to (P2, [H2]) when there exist representatives H1 and
H2 such that

p∗1H1 − p∗2H2 = d(p∗1θ1 ∧ p∗2θ2)

for connection forms θj on Pj. Note that the class [Fj ] in our first definition is redun-
dant information since it is completely determined by Pj. We check the equivalence
between the two definitions by using the fact that p∗1π∗1 = p∗2π

∗
2 (as they are both the

pullback of basic forms):

p∗1H1 − p∗2H2 = p∗1θ1 ∧ p∗1π∗1F2 + p∗1π
∗
1h− p∗2θ2 ∧ p∗2π∗2F1 − p∗2π∗2h

= p∗1θ1 ∧ p∗2π∗2F2 + p∗1π
∗
1h− p∗2θ2 ∧ p∗1π∗1F1 − p∗1π∗1h

= p∗1θ1 ∧ p∗2dθ2 − p∗2θ2 ∧ p∗1dθ1 = d(p∗1θ1 ∧ p∗2θ2).

For simplicity, we use the notation B = p∗1θ1 ∧ p∗2θ2 from now on.
The T -duality of (P1, [F1], [H1]) and (P2, [F2], [H2]) defines a map between the H-

twisted differential complexes of P1 and P2:

T : (Ω•(P1), d+H1)→ (Ω•+1(P2), d+H2)

given by T = (p2 ∗ ◦ e−B ◦ p∗1), i.e.,

ΩS1×S1(P1 ×M P2)

e−B

��

p2 ∗

((QQQQQQQQQQQQ

ΩS1(P1)

p∗1
66mmmmmmmmmmmm

ΩS1(P2)

.

Since d(B) = p∗1H1−p∗2H2, we have that de−B = (−p∗1H1 +p∗2H2)e−B, so for γ ∈ ΩS1(P1),

(d+H2)(p2 ∗ ◦ e−B ◦ p∗1)γ = (p2 ∗ ◦ e−B ◦ p∗1)(d+H1)γ,

i.e. ((d+H2) ◦ T )γ = (T ◦ (d+H1))γ. Since an inverse for T is given by

T−1 := (p1 ∗ ◦ eB ◦ p∗2),

the map T preserves closed and exact forms and descends to a cohomology isomor-
phism

T∗ : H•(P1, d+H1)→ H•+1(P2, d+H2).

Note that T , as well as T−1 increase by 1 the degree of the forms. Since T preserves
S1-invariant forms, we can restrict these isomorphisms:

T : (Ω•S1(P1), d+H1)→ (Ω•+1
S1 (P2), d+H2), (3.11)

T∗ : H•S1(P1, d+H1)→ H•+1
S1 (P2, d+H2).

More information about T -duality can be found in [BEM04] and [CG10].
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3.5.2 (F,H)-cohomology and T -duality

Consider now a manifold M together with a closed 2-form F ∈ Ω2
cl(M) and a 3-form

H ∈ Ω3(M) such that dH + F 2 = 0. The forms F and H determine a twisted odd exact
Courant algebroid structure on T + T ∗ + 1 and an (F,H)-twisted differential complex
with differential d+ Fτ +H.

In what follows, we show how T -duality helps us to understand (F,H)-twisted co-
homology when [F ] is an integral cohomology class. From the condition [F ] ∈ H2(M,Z),
the form F can be understood as the curvature of a connection, given by a connection
1-form θ, on a principal S1-bundle P

π−→ M , i.e., dθ = π∗F . We define an S1-invariant
form on P by H := θ∧π∗F +π∗H. The form H is closed since dθ = π∗F and dH +F 2 = 0.
The tuple (P, [F ], [H]) is T -dual to itself because of π∗H = F (first condition) and the
definition of H (second condition). In this case, diagram (3.10) becomes

P ×M P
p1
p2

// P
π // M .

We describe the map T in (3.11) for an S1-invariant form θ ∧ c + d where c and d are
pullbacks by π∗ of basic forms on M :

T (θ ∧ c+ d) = (p2 ∗ ◦ e−p
∗
1θ∧p∗2θ ◦ p∗1)(θ ∧ c+ d)

= (p2 ∗ ◦ e−p
∗
1θ∧p∗2θ)(p∗1θ ∧ p∗1c+ p∗1d)

= p2 ∗(p
∗
1θ ∧ p∗1c+ p∗1d− p∗1θ ∧ p∗2θ ∧ p∗1d)

= θ ∧ (−d) + c.

Notice that this map is also given by the Clifford action of the generalized vector field
X − θ, where X is a vertical vector field such that iXθ = 1,

(X − θ) · (θ ∧ c+ d) = c− θ ∧ d = θ ∧ (−d) + c.

We state now the relation between the (F,H)-differential d+Fτ +H on M and the
twisted differential d + H on P . For the sake of simplicity, we omit at this point the
wedge products and the pullbacks, since only π∗ is relevant. Hence, we write H as
H + θF , and when we write (θτ + 1)γ, we really mean (θτ + 1)π∗γ.

Proposition 3.6. For any form γ ∈ Ω•(M),

(θτ + 1)(d+ Fτ +H)γ = (d+H + θF )(θτ + 1)γ.
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Proof. The left-hand side is

θτdγ + θτ(Fτγ) + θτ(Hγ) + dγ + Fτγ +Hγ.

Using d(θτγ) = dθτγ + θτdγ and reordering we get

d(θτγ) + θFγ +Hθτγ + dγ +Hγ,

which equals the right-hand side.

As a consequence γ ∈ Ω•(M) belongs to Ker(d + Fτ + H) (resp. Im(d + Fτ + H)) if
and only if (θτ + 1)γ belongs to Ker(d + H + θF ) (resp. Im(d + H + θF )). Thus, (F,H)-
twisted cohomology corresponds to H + θF -twisted cohomology on a particular class
of elements: {θτγ + γ}γ∈Ω•(M) ⊂ Ω•(P ).

The forms θτγ+γ can be described in terms of the T -duality map as the S1-invariant
forms fixed by the endomorphism τT . Indeed, since

τT (θ ∧ c+ d) = τ(θ ∧ (−d) + c) = θ ∧ τd+ τc,

a form θ∧ c+ d is fixed by τT if and only if c = τd. This implies the following theorem.

Theorem 3.7. When F is integral, the (F,H)-cohomology of M is isomorphic to the
τT -invariant part of the S1-invariant cohomology of d+H + θF on P .

This is another instance where we see that Bn-geometry is not merely S1-invariant
Dn-geometry.

Example 3.8. As an application of the previous theorem, we look at manifolds of the
form G/S1, where G is a non-abelian Lie group with an S1-action and a bi-invariant
metric 〈 , 〉. We define the forms H and F as follows. First, consider the bi-invariant
3-form of G associated to the metric: H(X,Y, Z) = 〈[X,Y ], Z〉 ∈ Ω3

cl(G). Let π : G→ G/S1

be the projection to the base. The curvature of this S1-bundle is given by F = π∗H ∈

Ω2
cl(G/S

1), which corresponds to integrating H along the fibres. Take a connection
1-form θ ∈ Ω1(G) such that dθ = π∗F . Consider the form H − θ ∧ π∗F ∈ Ω3(G), which
satisfies π∗(H − θ ∧ π∗F ) = 0, so there exists H ∈ Ω3(G/S1) such that H − θ ∧ π∗F = π∗H.
The forms F and H satisfy dH + F 2 = 0, since

π∗(dH + F 2) = d(H − θ ∧ π∗F ) + π∗F ∧ π∗F = −dθ ∧ π∗F + π∗F ∧ π∗F = 0.

Thus, by Theorem 3.7, the (F,H)-twisted cohomology of G/S1 is isomorphic to the
τT -invariant part of the S1-invariant cohomology of d + H + θ ∧ F = d + H on G. By
Theorem 5.2 in [Fer13], the d + H-cohomology of G vanishes, so the (F,H)-twisted
cohomology of G/S1 vanishes too.
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Chapter 4

Bn-generalized complex geometry

4.1 Bn-generalized complex structures

We define almost Bn-generalized complex structures as follows.

Definition 4.1. An almost Bn-generalized complex structure (or, for the sake of
brevity, almost Bn-gcs) on an odd exact Courant algebroid E over M is a maximal
isotropic subbundle L ⊂ E ⊗ C such that L ∩ L = 0. An almost Bn-gcs on the Courant
algebroid T + T ∗ + 1 is called an almost Bn-gcs on M .

In terms of the structure group of the odd exact Courant algebroid E, an almost
Bn-gcs on E is equivalent to a reduction to

- U(m+ 1,m) ⊂ SO(2m+ 2, 2m+ 1), when dimM = 2m+ 1 is odd,

- U(m,m) ⊂ SO(2m+ 1, 2m), when dimM = 2m is even.

Thus, the reduced group depends on the parity of the dimension of M .

Example 4.2. For dimM even, an almost Dn-gcs on an exact Courant algebroid E′,
which is equivalent to a maximal isotropic subbundle L ⊂ E′C such that L ∩ L = 0,
also defines an almost Bn-gcs L ⊂ (E′ + 1)C, given by the same subbundle. More
concretely, on an even-dimensional manifold M , for E′ = T + T ∗, given any almost
complex structure J on M , one can define an almost Dn-gcs on M , and hence an
almost Bn-gcs on M , by taking LJ = T(0,1) ⊕ T ∗(1,0), where the (1, 0) and (0, 1) subindices
denote, respectively, the +i and −i-eigenbundles of J on both TC and T ∗C.

Definition 4.3. We say that an almost Bn-gcs L ⊂ E ⊗ C is integrable when L is
involutive with respect to the Courant bracket, i.e., when [L,L] ⊂ L is satisfied, or,
equivalently, with respect to the Dorfman product. An integrable almost Bn-gcs is
called a Bn-gcs.
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Involutivity with respect to the Courant bracket is equivalent to involutivity with
respect to the Dorfman product.

Example 4.4. In Example 4.2, the Bn-gcs on T + T ∗+1 is integrable if and only if the
original Dn-gcs on T + T ′ is, as the restriction of the Courant bracket of Bn-geometry
gives the Courant bracket of Dn-geometry. For the concrete example LJ , this means
that J is integrable.

We give now an example not based on Dn-geometry.

Example 4.5. A cosymplectic structure on a 2m + 1-dimensional manifold M , in the
sense of [Lib59] and [Li08], is given by a closed 1-form σ and a closed 2-form ω such
that σ ∧ ωn is a volume form. Given a cosymplectic structure on a manifold M , the
subbundle

L = (−iω,−iσ)TC = {X − i iXω − σ(X)σ − iσ(X)}X∈TC ,

where (−iω,−iσ) is an imaginary B + A-field, defines an almost Bn-gcs on M . First,
L is isotropic since it is the (−iω,−iσ)-transform of an isotropic subbundle, and it is
maximal isotropic as its rank is n. Second,

L ∩ L = (−iω,−iσ)TC ∩ (iω, iσ)TC = (−iω,−iσ)
(
TC ∩ (2iω, 2iσ)TC

)
= 0.

Since, as Ker(σ ∧ ωm) = 0, every element in (2iω, 2iσ)TC has a non-zero component in
T ∗C. Moreover, the Bn-gcs L is integrable as [(−iω,−iσ)TC, (−iω,−iσ)TC] ⊂ (−iω,−iσ)TC

by Proposition 2.4 and the fact that ω and σ are closed. Cosymplectic structures will
appear again in Section 4.2.2.

Remark 4.6. When necessary, we use the fact that any odd exact Courant algebroid
E is isomorphic to (T + T ∗ + 1, 〈 , 〉, [ , ]F,H , π) for some F ∈ Ω2

cl(M), H ∈ Ω3(M) such
that dH + F 2 = 0. The twisted Courant bracket is given by Equation (2.11) and the
differential in forms becomes d+Fτ+H. Thus, an almost Bn-gcs on E can be regarded
as a maximal isotropic subbundle L of T + T ∗ + 1 such that L∩L = 0 and is integrable
when it is involutive for the twisted Courant bracket [ , ]F,H .

4.1.1 Local description: spinors

In this section we make use of Remark 4.6. Thanks to the relation between pure
spinors and maximal isotropic subspaces described in Section 1.3.4, on a point x ∈M ,
an almost Bn-gcs is given by the annihilator of a pure spinor ϕ ∈ (∧•T ∗C)x such that,
by Proposition 1.6, (ϕ,ϕ) 6= 0. This spinor can be expressed, by Proposition 1.5, as

ϕ = (−B,−A)(−iω,−iσ)θ1 ∧ . . . ∧ θk = ceB+Aτ ei(ω+στ)θ1 ∧ . . . ∧ θk, (4.1)
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where A, σ ∈ T ∗x , B,ω ∈ ∧2T ∗x , and θi ∈ T ∗C,x. Any non-zero multiple of ϕ describes the
same Bn-gcs at x. By (ϕ,ϕ) 6= 0 we have the condition

(eB+Aτ ei(ω+στ)θ1∧ . . .∧θk, eB+Aτ e−i(ω+στ)θ1∧ . . .∧θk) = (e2i(ω+στ)θ1∧ . . .∧θk, θ1∧ . . .∧θk) 6= 0,

as the linear transformations eB+Aτ , ei(ω+στ) preserve the Chevalley pairing.
When dimM is even, this condition is equivalent to ωm−k∧θ1∧. . .∧θk∧θ1∧. . .∧θk 6= 0,

which is precisely the condition for ϕ = ceB+iωθ1 ∧ . . . ∧ θk to define an almost Dn-gcs
on x ∈M . We thus have that, pointwise, any almost Bn-gcs on even dimensions is the
(0,−A− iσ)-transform of an almost Dn-gcs.

When dimM is odd, the condition (ϕ,ϕ) 6= 0 is equivalent to

σ ∧ ωm−k ∧ θ1 ∧ . . . ∧ θk ∧ θ1 ∧ . . . ∧ θk 6= 0. (4.2)

When k = 0 we recover a linear version of a cosymplectic structure, as globally defined
in Example 4.5. In other words, Kerσ is endowed with a linear symplectic structure.
By setting k = m, we encounter its complex analogue: a 1-form σ and a complex
m-form Ω such that σ ∧ Ω ∧ Ω 6= 0, i.e., a linear complex structure on Kerσ. Global
versions of these structures will be addressed in Section 4.2.4.

Remark 4.7. Note that a spinor can be written in several ways. For a cosymplectic
structure (Example 4.5), we have

ϕ = c(−iω,−iσ)1 = cei(ω+στ)1 = cei(ω+σ).

Recall that (−iω,−iσ) = exp(−iω + iσ) is a complex B + A-field, whereas ei(ω+σ) means
the usual exponentiation

ei(ω+σ) =

∞∑
j=0

(i(ω + σ))∧j

j!
,

and ei(ω+στ)1 denotes ei(ω+στ) ∧ 1.

The fact that non-zero multiples of ϕ define the same isotropic space motivates
the following definitions.

Definition 4.8. The canonical bundle of a Bn-gcs L is the complex line subbundle
K ⊂ ∧•T ∗C such that at any point x ∈M , Kx = Cϕx for ϕx satisfying Lx = Ann(ϕx).

Example 4.9. In Example 4.2, the canonical bundle of the Bn-gcs is the same as the
one of the corresponding Dn-gcs. In Example 4.5, the canonical bundle of the Bn-gcs
is given by Cei(ω+σ).
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Definition 4.10. The type of an almost Bn-gcs on a point x ∈ M is the least non-
zero degree of a non-vanishing section of K at x. Thus, if the almost Bn-gcs at x is
presented by a spinor ϕ, the type of the Bn-gcs or the type of ϕ is the integer k in
Equation (4.1).

Note that the canonical bundle K does not necessarily have a global non-zero
section. In a sufficiently small neighbourhood, it is always possible to take a non-zero
section, so every Bn-gcs is locally given by a spinor. However the type of this spinor
does not have to be constant. Actually, the canonical bundle K comes equipped with
a map to C defined by the projection to the degree zero component, K ⊂ ∧•T ∗C →
∧0T ∗C

∼= C. This projection defines an element of C∞(K∗), i.e., a section of the anti-
canonical bundle. The zero-locus of this section consists of the points which are not
of type 0 and is called the type change locus.

On the other hand, just as, at a point, two spinors giving the same Bn-gcs differ
by multiplication by a non-zero constant, locally, they differ by multiplication by a
non-vanishing function.

We will discuss integrability in terms of spinors in Section 4.1.3.

4.1.2 Structure of L+ L+ U

For any Bn-gcs L on an odd exact Courant algebroid E we have that L is closed under
the Courant bracket, which becomes a Lie bracket thanks to the isotropy of L. Thus,
L is endowed with the structure of a Lie algebroid.

Definition 4.11. A Lie algebroid (L, [ , ], π) over a manifold M is a smooth vector
bundle endowed with a Lie bracket on sections of L (i.e., [ , ] : C∞(L)× C∞(L)→ C∞(L)

is skew symmetric and satisfies the Jacobi identity) and an anchor map π : L → TM

(morphism of vector bundles), such that the Leibniz identity is satisfied, [X, fY ] =

f [X,Y ] + π(X)(f)Y, for X,Y ∈ C∞(L) and f ∈ C∞(M).

Given its relevance, we give a global version of the decomposition L+L+U described
in Section 1.4 for a linear Bn-gcs.

For a Bn-gcs L ⊂ EC, the subbundle L, also isotropic, maximal and involutive,
defines a conjugate Bn-gcs, whereas U := L⊥ ∩ L⊥ is a real subbundle, i.e., U = U . We
thus obtain a decomposition EC = L+L+U . We have that L ∼= L∗ by using the pairing
in EC: for l′ ∈ L, l 7→ 2〈l′, l〉 is an element of L∗, and the correspondence is a bijection
since (L)⊥ = L + U . The subbundle L + L is complex, hence orientable. Since E, and
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hence EC, is orientable, the subbundle U must be orientable as well. Moreover, U is
trivial, for it is a line bundle.

As U is real, the metric on U is non-zero, so there exist exactly two real global
sections u ∈ C∞(U) whose norm squared is either 1 or −1. By looking at the reduced
structure group of T+T ∗+1, we have that for dimM odd, 〈u, u〉 = −1, since u corresponds
to the extra negative direction in SO(2m + 2, 2m + 1) with respect to U(m + 1,m) ⊂

SO(2m + 2, 2m). For dimM even, 〈u, u〉 = 1, as U(m,m) ⊂ SO(2m, 2m) ⊂ SO(2m + 1, 2m).
Thus, 〈u, u〉 = (−1)n. The two possible sections u are opposite to each other. At this
point, we make use of Remark 4.6: we study the action of any of these two sections
u on the canonical bundle K. We work locally: K is trivialized by a spinor ϕ, i.e.,
L = Ann(ϕ). For a section l ∈ C∞(L), we have that l · u · ϕ = −u · l · ϕ = 0 by the
orthogonality of U and L, so L = Ann(u · ϕ), i.e., u · ϕ = λϕ for some non-vanishing
function λ. Since u2 · ϕ = 〈u, u〉ϕ = (−1)nϕ and u · u · ϕ = λ2ϕ, we have that λ2 = (−1)n.
Hence, for dimM odd, λ = ±i, and for dimM even, λ = ±1. Moreover, by continuity,
λ must be the same globally, so this gives a criterion to distinguish between the two
sections.

Definition 4.12. We define u ∈ C∞(U) to be the unique real section such that u·ϕ = iϕ

for n odd, and u ·ϕ = ϕ for n even. As a consequence, we have that the norm squared
of u is 〈u, u〉 = (−1)n.

We thus have that a Bn-gcs determines a decomposition EC = L + L + U and
a distinguished element u ∈ U . We look now at the genuinely global objects: the
Courant bracket and the Dorfman product.

Lemma 4.13. The infinitesimal action of u on EC (Dorfman product) preserves L

and hence defines a derivation of the Lie algebroid L.

Proof. The Dorfman product by any element defines a derivation of EC, so we just
have to check that u preserves L. From the properties of the Dorfman product (Re-
mark 2.8), for l, l′ ∈ C∞(L) we have that

π(l)〈u, l′〉 = 〈lu, l′〉+ 〈u, ll′〉

By the orthogonality of U and L and the involutivity of L, this identity becomes
〈lu, l′〉 = 0. Thus, lu is orthogonal to L, so it is a section of L+U . Analogously we have

0 = π(l)〈u, u〉 = 〈lu, u〉+ 〈u, lu〉 = 2〈lu, u〉,

as 〈u, u〉 = (−1)m is constant, so 〈lu, u〉 = 0. Hence, lu is orthogonal to both U and L, so
lu ∈ C∞(L). Since, by orthogonality, lu = −ul, we have that ul ∈ C∞(L).
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Similarly, u preserves L, so it defines a derivation of L. For elements l ∈ L, l′ ∈ L,
both derivations are related by

π(u)〈l, l′〉 = 〈ul, l′〉+ 〈l, ul′〉 = 〈[u, l], l′〉+ 〈l, [u, l′]〉,

since, by the orthogonality of U to L and L, the Dorfman product ul and the Courant
bracket [u, l] coincide.

On the other hand, for f ∈ C∞(M) and l ∈ C∞(L), the action of fu on L (similarly
on L) no longer defines a derivation, since it may have a component in U :

(fu)l = f(ul)− π(l)(f)u.

Also note that the restriction of the Courant bracket to L⊥ = L + U and L
⊥

= L + U

does not define a Lie bracket on L⊥ and L, as [u, fu] = π(u)(f)u + (−1)nDf , where Df
may have components in L, L and U .

The restriction of the Courant bracket in Bn-geometry to sections of (T + T ∗)C ⊂

(T + T ∗ + 1)C gives the Courant bracket in Dn-geometry. However, this is not the case
when one considers the decomposition L+ L+ U , as the following lemma shows.

Lemma 4.14. The Courant bracket of two elements e, e′ ∈ C∞(L + L) may have a
component in U . Namely,

〈u, [e, e′]〉 =
1

2

(
〈[u, e], e′〉 − 〈[u, e′], e〉

)
. (4.3)

The equivalent expression for the Dorfman product is

〈u, ee′〉 = 〈ue, e′〉.

Proof. By applying (C4) twice:

0 = π(e)〈e′, u〉 = 〈[e, e′] +D〈e, e′〉, u〉+ 〈e′, [e, u]〉,

0 = π(e′)〈e, u〉 = 〈[e′, e] +D〈e, e′〉, u〉+ 〈e, [e′, u]〉.

The difference of these two expressions gives

0 = 2〈[e, e′], u〉+ 〈e′, [e, u]〉 − 〈e, [e′, u]〉,

from where the first identity follows. The second one is easier to prove since, by (D3),

〈u, ee′〉 = e〈u, e′〉 − 〈eu, e′〉 = 〈ue, e′〉.

In the previous lemma, the first identity easily follows from the second one, which
was much easier to prove. From now on, we will often use the Dorfman product to
derive identities which can then be formulated in terms of the Courant bracket.
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4.1.3 Integrability in terms of spinors

In this section we make use of Remark 4.6 again. When looking at a Bn-gcs as a
subbundle L, integrability is equivalent to involutivity. We describe what integrability
means in terms of the spinor that gives the Bn-gcs locally.

Just as shown in Equation (1.2) for a linear Bn-gcs, the canonical bundle K (Def-
inition 4.8) induces a filtration of Ω•C(M):

K0 = K ⊂ K1 = Cl1 ·K ⊂ ... ⊂ K2n+1 = Cl2n+1 ·K = Ω•C(M), (4.4)

where Kj is the subbundle of Ω•C(M) annihilated by products of j sections of L, and
Clj is the subbundle of Cl((T + T ∗ + 1)C) generated by products of k elements.

We now express the integrability condition of the structure in terms of a pure
spinor ϕ locally defined, i.e., a local section of K, ϕ : W → K, where W is an open set
of M . We use the isomorphism E ∼= T + T ∗ + 1 (Remark 4.6) with dF,H instead of d.
Recall that the type of ϕ is not necessarily constant.

Proposition 4.15. The almost Bn-gcs locally given by a spinor ϕ is integrable if and
only if there exist a complex generalized vector field X + ξ + λ ∈ C∞(W, (T + T ∗ + 1)C)

such that
dF,Hϕ = (X + ξ + λ) · ϕ.

Proof. Let e1, e2 ∈ C∞(W,L). By the twisted version of Formula (2.4),

[e1, e2]F,H · ϕ = [[dF,H , e1·], e2·]ϕ = e2 · e1 · dF,Hϕ.

Thus, L|w is involutive if and only if dF,Hϕ is annihilated by any product of two
sections of L|W , i.e., belongs to K1 = K0 + (L + L + U) ·K0. Since K0 = U ·K0, dϕ can
then be expressed as (X + ξ+λ) ·ϕ for X + ξ+λ ∈ C∞(L+L+U) = C∞((T +T ∗+ 1)C).

As a consequence, a closed spinor always satisfies the integrability condition, which
motivates the following definition.

Definition 4.16. A Bn-Calabi Yau structure on a manifold M is given by a pure
spinor ϕ ∈ ∧•T ∗ such that (ϕ,ϕ) 6= 0 and dϕ = 0.

In the next proposition we see that if the type of a Bn-gcs on M is everywhere 0,
then it is a Bn-Calabi-Yau.

Proposition 4.17. Given a Bn-gcs on M , if the projection K → ∧0T ∗C vanishes
nowhere, the Bn-gcs is globally given by the (B,A)-transform of a spinor ei(ω+σ) with
ω ∈ Ω2

cl(M) and σ ∈ Ω1
cl(M).
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Proof. Suppose that the Bn-gcs at a point is given by both ϕ = eB+Aτ ei(ω+σ) and
ψ = c′eB

′+A′τ ei(ω
′+σ′). Since there exists λ ∈ C∗ such that ϕ = λψ, we must have c′ = λ

and hence, A = A′, B = B′, σ = σ′ and ω = ω′. Thus, the forms A, B, σ and ω are
globally defined.

Write ϕ = exp(−C)1 = eC1 for C = B + i(ω+A∧ σ) + (A+ iσ)τ . From the integrability
of the Bn-gcs, there exists a generalized vector field u ∈ C∞((T + T ∗ + 1)C) such that
dϕ = u · ϕ, i.e.,

d(eC1) = u · eC1.

By acting with exp(C) we get

exp(C)d(eC1) = e−Cd(eC1) = exp(C)(u · eC1) = (eCu) · 1,

so the RHS only has degrees 0 and 1. By similar calculations to the ones at the
beginning of Chapter 3, the LHS is (d+ Fτ +H)1 for complex forms

F = −d(A+ iσ), H = −d(B + i(ω +A ∧ σ))− (A+ iσ) ∧ d(A+ iσ),

and the LHS has degree at least 2. Consequently, the LHS vanishes, and A, σ, B and
ω are closed.

Thus, ϕ is the (−B,−A)-transform of ei(ω+σ) with ω and σ closed forms.

We will talk more about Calabi-Yau structures in Section 7.4.
Finally, we describe Bn-gcs pointwise.

Proposition 4.18. Given an isomorphism E ∼= T + T ∗ + 1 as in Remark 4.6, we have
that pointwise:

• A B2m-gcs of type k is, up to A-field, the (0, iσ)-transform of a D2m-gcs of type
k, i.e., the direct sum of a complex structure of complex dimension k and a
symplectic structure of real dimension 2m− 2k.

• A B2m+1-gcs of type k is, up to (B,A)-field, the direct sum of a complex structure
of complex dimension k and a symplectic structure of real dimension 2m − 2k,
both defined on the kernel of a 1-form.

Proof. The first part is a Bn-version of Theorem 3.6 in [Gua11], while the second
follows from the condition (4.2).
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4.1.4 F-operators and Poisson structures

There is yet another equivalent way to describe a Bn-gcs. Just as the J -operator for
a Dn-gcs, there is an F-operator for Bn-gcs, a global version of the endomorphism F
in Section 1.4. The operator F is defined first on EC = L + L + U as multiplication
by i on L, multiplication by −i on L, identically 0 on U , and extended linearly. By
definition, the operator is real, so it restricts to E and gives an element of C∞(so(E)),
i.e., 〈Fv, w〉 = −〈v,Fw〉, satisfying F3 + F = 0. Actually, since L is maximal isotropic,
any orthogonal endomorphism f of E satisfying f3 +f = 0 with maximal rank at every
point, defines an F-operator. We use the same notation, namely F , for the operator
on E and on EC.

More concretely, an F-operator satisfies the condition F2v = −v + (−1)n〈v, u〉u for
v ∈ C∞(E) or C∞(EC), where u is the globally defined vector field that generates U ,
the 0-eigenbundle of F . Moreover, we have that F and the Dorfman product of u
commute: for e = eL + eL + eU ∈ C∞(L+ L+ U) we have that

uF(e) = u(ieL − ieL) = i(ueL)− i(ueL) = F(ueL) + F(ueL) + F(uu) = F(ue) (4.5)

Remark 4.19. The condition satisfied by F is a generalized analogue of the definition
of an almost-contact structure in the sense of [Bla76] or strict almost-contact structure
in the sense of [BG08] (strict refers to the fact that there are contact manifolds that are
not almost-contact in the classical sense, like Rn+1×RP 2). An almost-contact structure
is given by a tuple (Y, ξ,Φ) consisting of a vector field Y , a 1-form ξ and Φ ∈ End(T )

(tensor of type (1, 1)) satisfying iY ξ = 1 and Φ2 = − Id +Y ⊗ξ (as a consequence, Φ(Y ) = 0

and ξ ◦ Φ = 0). We do not focus on this approach since it is the non-integrability of
an almost-contact structure what gives a contact structure. This is why contact
geometry does not initially fit in Bn-generalized complex geometry (it does, though,
in Dn+1-geometry on M × S1, as shown in [IPW05]).

The integrability of L is stated as

[C∞(L), C∞(L)] ⊂ C∞(L) = C∞((L+ U)⊥).

Since the subbundles L and L+ U are given in terms of F as follows:

L = {Fe− iF2e}e∈EC , L+ U = {e− iFe}e∈EC , (4.6)

we have that, for e, e′, e′′ ∈ C∞(EC),

〈[Fe− iF2e,Fe′ − iF2e′], e′′ − iFe′′〉 = 0, (4.7)
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which is equivalent to

〈[Fe,Fe′]− [F2e,F2e′], e′′〉 − 〈[F2e,Fe′] + [Fe,F2e′],Fe′′〉 = 0, (4.8)

This expression can be further simplified, for which we first prove that it is ten-
sorial.

Lemma 4.20. The LHS of expression (4.7), and hence of (4.8), is tensorial.

Proof. For the tensoriality on e, we replace e by fe and we get f times the LHS of
(4.7) plus the extra terms

〈−π(Fe′ − iF2e′)(f)(Fe− iF2e) + 〈Fe− iF2e,Fe′ − iF2e′〉Df, e′′ − iFe′′〉.

The coefficient of Df is zero, since it is the pairing between two sections of L. We
then have left the inner product of an element of L with an element of L + U , which
is zero by orthogonality. On the other hand, the tensoriality on e′ follows from that
on e and the skew-symmetry of the Courant bracket. Finally, the tensoriality on e′′

is straightforward.

Proposition 4.21. The Bn-gcs associated to an F-operator is integrable if and only
if, for e, e′, e′′ ∈ C∞(EC),

〈[Fe,Fe′]− [e, e′], e′′〉+ 〈[e,Fe′] + [Fe, e′],Fe′′〉 = 0, (4.9)

or, equivalently,
− [Fe,Fe′] + [e, e′] + F [e,Fe′] + F [Fe, e′] = 0. (4.10)

Proof. From the tensoriality proved in the previous lemma, we can assume that eU :=

πU (e) and e′U := πU (e′) are both equal to u. We have that F2(e) = −e+eU , F2(e′) = −e′+e′U
and F2(e′′) = −e′′+ e′′U , where e′′U = πU (e′′). Substituting in (4.8), we get Equation (4.9)
plus the extra terms

〈[eU , e′] + [e, e′U ], e′′〉+ 〈[eU ,Fe′] + [Fe, e′U ],Fe′′〉.

We show that these extra terms are zero. By the skew-symmetry of F , they can be
written as

〈[eU , e′] + [e, e′U ]−F [eU ,Fe′]−F [Fe, e′U ], e′′〉.

Write e = eL + eL∗ + eU , for eL = πL(e) and eL∗ = πL∗(e). We have that Fe = ieL − ieL∗ ,
and [Fe, e′U ] = i[eL, e

′
U ] − i[eL∗ , e

′
U ]. By using the hypothesis e′U = u, we have that

[eL, e
′
U ] ∈ C∞(L) and [eL∗ , e

′
U ] ∈ C∞(L∗), so

F [Fe, e′U ] = F(i[eL, e
′
U ]− i[eL∗ , e′U ]) = −[eL, e

′
U ]− [eL∗ , e

′
U ] = −[e, e′U ].
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Analogously, F [eU ,Fe′] = −[eU , e
′], so we have that the extra terms vanish.

The equivalent expression in the statement of the lemma comes from the fact that
F is skew-symmetric.

The operator F allows us to identify a Poisson structure in any Bn-generalized
complex manifold. We first state a lemma that will be useful in this proof.

Lemma 4.22. Given an odd exact Courant bracket E, and sections ξ, η ∈ C∞(T ∗),
e, e′ ∈ C∞(EC), we have that

• [ξ, η] = 0,

• π([e, e′]) = [π(e), π(e′)],

• uξ = Lπ(u)ξ,

• [ξ, e] = [ξ, πe] ∈ C∞(T ∗),

• π([ξ, e]) = 0,

• π(uπ(e)) = π(ue).

Proof. We make use of Remark 4.6, i.e., the isomorphism E ∼= T +T ∗+ 1. The Lemma
follows directly from the expression of the twisted Courant bracket in Formula (2.11)
and the twisted Dorfman bracket in Formula (2.12)

Proposition 4.23. Given an F-operator on an odd exact Courant algebroid E, the
map P = πT ◦ F|T ∗ : T ∗ → T defines a Poisson structure on the manifold M .

Proof. In this proof, we will omit the brackets and any subindices for the maps πT ,
FT ∗ and P .

The antisymmetry of P comes from the fact that F ∈ C∞(so(E)): for ξ, η ∈ C∞(T ∗),

〈Pξ, η〉 = 〈πFξ, η〉 = 〈Fξ, η〉 = −〈ξ,Fη〉 = −〈ξ, πFη〉 = −〈ξ, Pη〉.

For the integrability of P , expressed as [P, P ] = 0 in terms of the Schouten bracket,
we claim that, for ξ, η, ζ ∈ C∞(T ∗),

[P, P ](ξ, η, ζ) = 〈[Pξ, Pη], ζ〉+ 〈[Pξ, η], P ζ〉+ 〈[ξ, Pη], P ζ〉, (4.11)

where the bracket on the RHS denotes the Courant bracket on T + T ∗. The formal
definition of the Schouten bracket will be given in Section 5.1, and the proof of this
identity will follow from Proposition B.1.

Let e = ξ, e′ = η and e′′ = ζ be sections of T ∗. The integrability of F , Equation
(4.9), becomes

〈[Fξ,Fη]− [ξ, η], ζ〉+ 〈[ξ,Fη] + [Fξ, η],Fζ〉 = 0.

55



We apply the properties of Lemma 4.22, so we have [ξ, η] = 0,

〈[Fξ,Fη], ζ〉 = 〈[πFξ, πFη], ζ〉 = 〈[Pξ, Pη], ζ〉,

〈[ξ,Fη],Fζ〉 = 〈[ξ, πFη],Fζ〉 = 〈[ξ, πFη], πFζ〉 = 〈[ξ, Pη], P ζ〉,

and analogously, 〈[Fξ, η],Fζ〉 = 〈[Pξ, η], P ζ〉. The resulting equation is precisely (4.11).

Proposition 4.24. The vector field π(u) is a Poisson vector field for P = πT ◦ F|T ∗.

Proof. We have to prove that Lπ(u)P = 0, i.e., for ξ, η ∈ C∞(T ∗),

(Lπ(u)P )(ξ, η) = Lπ(u)(P (ξ, η))− P (Lπ(u)ξ, η)− P (ξ,Lπ(u)η) = 0. (4.12)

Note first that, by applying Lemma 4.22 and the fact that F and u commute (Equation
(4.5)),

〈uPξ, η〉 = 〈π(u(πFξ)), η〉 = 〈π(uFξ), η〉 = 〈π(Fuξ), η〉 = 〈Puξ, η〉.

By applying this identity and the property (D3), we have that

Lπ(u)(P (ξ, η)) = π(u)(2〈Pξ, η〉) = 2〈uPξ, η〉+ 2〈Pξ, uη〉

= 2〈Puξ, η〉+ 2〈Pξ, uη〉 = P (uξ, η) + P (ξ, uη)

= P (Lπ(u)ξ, η) + P (ξ,Lπ(u)η),

from where Equation (4.12) follows.

Remark 4.25. The F-operator could have been used to define the type of a Bn-gcs
without using the isomorphism of E with a twisted version of T +T ∗+ 1. Analogously
to Definition 3.5 in [Gua11], the type is given by

1

2
dimR T

∗ ∩ FT ∗.

4.2 Extremal cases of Bn-gcs on M

In this section we study Bn-gcs on M , for n = 2m or n = 2m+ 1, which are of constant
type 0 or m at every point.
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4.2.1 Type 0 and dimM even: symplectic plus 1-form

If the type is 0 at every point, by Proposition 4.17, we have that a Bn-gcs is globally
given by a spinor

ϕ = (−B,−A)ei(ω+σ) = eB+iω′+A+iσ,

where ω is symplectic and there is no condition on the closed 1-form σ. This can be
interpreted in two ways:

• a type 0 B2m-gcs is the (0,−A− iσ)-transform (complex A-transform) of a type 0

D2m-gcs eB+iω seen as a B2m-gcs,

• a type 0 B2m-gcs is the (−B,−A)-transform of the B2m-gcs given by ϕ = ei(ω+σ).

We use the latter statement and describe the structure given by ϕ = ei(ω+σ). We
start by finding the element u satisfying u · ϕ = ϕ. By looking at the degree 0 and 1

components, this condition implies, for u = X + ξ + λ,

iσ(X) + λ = 1,

i iXω + ξ − λiσ = iσ,

so λ = 1, σ(X) = 0, ξ = 0 and iXω = 2σ. By defining Z ∈ C∞(T ) such that iZω = σ, we
have that u = 2Z + 1 satisfies u · ϕ = ϕ and has norm 1. On the other hand,

Ann(ei(ω+σ)) = Ann((−iω,−iσ)1) = (−iω,−iσ) Ann(1) = (−iω,−iσ)TC,

so we have

L = Ann(ϕ) = {X − i iXω + σ(X)σ − iσ(X)}X∈TC ,

L = Ann(ϕ) = {X + i iXω + σ(X)σ + iσ(X)}X∈TC ,

U =L⊥ ∩ L∗⊥ = C(2Z + 1).

We now write the operator F in terms of T + T ∗ + 1. Since F is i on L and −i on
L∗, by taking linear combinations we have

F(X + σ(X)σ) = iXω + σ(X),

F(iXω + σ(X)) = −X − σ(X)σ,

F(2Z + 1) = 0.
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From the first equation, F(Z) = σ, and then from the third, F(1) = −2σ. From
the second F(iXω) = −X + σ(X)σ, which can be rewritten as F(η) = −ω−1(η) + η(Z)σ.
Finally, from the first equation, F(X) = iXω − σ(X)Z + σ(X). In matrix form, we have Z ⊗ σ −ω−1 0

ω −σ ⊗ Z −2σ

σ 0 0

 .

The Poisson structure is just the inverse of the symplectic structure.

Example 4.26. All the type 0 B2m-gcs are, up to (B,A)-transform, symplectic manifolds
together with a closed 1-form, which may be zero.

4.2.2 Type 0 and dimM odd: cosymplectic structure

We have seen in Proposition 4.17 that a type 0 Bn-gcs on a 2m+1-dimensional manifold
M is the (B,A)-transform of a cosymplectic structure. We study such a structure in
more detail.

A cosymplectic structure is given by closed forms ω ∈ Ω2(M) and σ ∈ Ω(M) such
that σ ∧ ωm is a volume form. There is a Reeb vector field Y ∈ C∞(TM) canonically
associated to the pair (σ, ω) such that ω(Y ) = 0 and σ(Y ) = 1.

The Bn-gcs associated to a pair (σ, ω) is described by the pure spinor

ϕ = exp(i(ω + σ)) = exp(iω) + iσ exp(iω),

or, equivalently, by the subbundles

L = Ann(ϕ) = {X − i iXω + σ(X)σ − iσ(X)}X∈TC ,

L∗ = Ann(ϕ) = {X + i iXω + σ(X)σ + iσ(X)}X∈TC ,

U =L⊥ ∩ L∗⊥ = C(Y − σ).

Note that u = Y − σ satisfies u ·ϕ = iϕ and has norm −1. It can be found as in Section
4.2.1.

We now write the operator F in terms of T + T ∗ + 1. Since F is i on L and −i on
L∗, we have

F(X + σ(X)σ) = ω(X) + σ(X),

F(ω(X) + σ(X)) = −X − σ(X)σ,

F(Y − σ) = 0.
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From the first equation, F(X) = ω(X) for X ∈ Kerσ, and F(Y + σ) = 1. From this latter
equation and the third equation, F(Y ) = 1

2 and F(σ) = 1
2 . From the second equation,

F(1) = −Y − σ and hence F(ω(X)) = −X + Y σ(X). This latter equation, together with
F(σ) = 1

2 , determines the second column. In particular, the component T ∗ → T , which
is a Poisson structure, is completely determined by π(ω(X)) = −X+σ(X)Y and π(σ) = 0,
since σ ∧ ωm is a volume form.

The operator F is thus given by the matrix 0 π −Y
ω 0 −σ
1
2σ

1
2Y 0

 .

The Poisson structure π acting on a 1-form α is alternatively described by the
equation

iπ(α)(σ ∧ ωm) = mσ ∧ ωm−1 ∧ α.

Again, the 1-form α is uniquely determined since σ ∧ ωm is a volume form.
We have that, up to (B,A)-transforms, B2m+1-gcs of type 0 are equivalent to cosym-

plectic structures.

Example 4.27. The product M × S1 of a 2m-dimensional symplectic manifold (M,ω)

and a circle, with angular form dθ, has a B2m+1-gcs of type 0 globally given by the
spinor ϕ = exp(i(ω + dθ)).

4.2.3 Type m and dimM even: complex plus 1-form

We first look at two local spinors defining the same B2m-gcs of type m. They are
related by a local function f :

(B,A− iσ)Ω = f(B′, A′ − iσ′)Ω′.

By looking at the degree m part we have that Ω = fΩ′ and then σ = σ′, A = A′, B = B′,
since Ω ∧ γ = Ω ∧ γ′ for real forms γ, γ′ implies γ = γ′. Thus the 1-form σ is globally
defined, while Ω is defined up to non-zero scalar multiples.

As (ϕ,ϕ) 6= 0, we have that Ω ∧ Ω 6= 0, so Ω defines an almost complex structure J
on the manifold M .

We look at the annihilator of ϕ: sections X + ξ + λ ∈ C∞(EC) such that

iXΩ = 0,

(−1)mλΩ + (−1)miσ(X)Ω− (−1)miσ ∧ iXΩ = 0,

ξ ∧ Ω + (−1)2m+1ifσ ∧ Ω = 0,

(−1)miξ ∧ σ ∧ Ω = 0.
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These are sections of

L = {X − iσ(X)}X∈T(0,1) ⊕ T
∗
(1,0) = (0,−iσ)(T(0,1) ⊕ T ∗(1,0)),

where (1, 0) and (0, 1) denote, respectively, the +i and −i eigenspaces for J.
From the involutivity of L, we have

[(0,−iσ)(T(0,1) ⊕ T ∗(1,0)), (0,−iσ)(T(0,1) ⊕ T ∗(1,0))] ⊂ (0,−iσ)(T(0,1) ⊕ T ∗(1,0)),

so, by looking at the projection to T , [T(0,1), T(0,1)] ⊂ T(0,1) for the Lie bracket, i.e., J is
integrable.

Let σ(0,1) be the (0, 1)-component of σ with respect to J. Define ξ := −iσ(0,1)+iσ(0,1) =

(J∗)−1(σ), which satisfies 2ξ ∧Ω = 2(−1)miσ ∧Ω. We have that u = (−1)m(2ξ+ 1) satisfies
u · ϕ = ϕ and 〈u, u〉 = 1. We then have subbundles

L = (0, iσ)(T(1,0) ⊕ T ∗(0,1)),

U = C((−1)m(2ξ + 1)),

where u = −Y + σ satisfies u · ϕ = ϕ.

By similar arguments to Section 4.2.1, we have that F(ξ) = σ, F(1) = −2σ and the
F-operator is given by  −J 0

J∗ −2σ

σ 0

 .

Any B2m-gcs of type m, up to (B,A)-transform, is a complex manifold together
with a 1-form.

4.2.4 Type m and dimM odd: normal almost contact

By the same arguments as in the previous section, up to (B,A)-transform, a type m
Bn-gcs on a 2m+ 1-dimensional manifold M is locally given by

ϕ = (0,−iσ)Ω = Ω + iστΩ = Ω + (−1)miσ ∧ Ω,

where σ is a real 1-form globally defined and Ω is a complex m-form, defined up to
non-zero multiples, satisfying σ∧Ω∧Ω 6= 0, i.e., Ω defines an almost complex structure
on the subbundle Ker(σ) ⊂ T .

The annihilator of ϕ is given by the generalized vector fields X + ξ + f satisfying

iXΩ = 0,

(−1)mfΩ + (−1)miσ(X)Ω− (−1)miσ ∧ iXΩ = 0,

ξ ∧ Ω + (−1)2m+1ifσ ∧ Ω = 0,

(−1)miξ ∧ σ ∧ Ω = 0.
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Define Y ∈ C∞(T ) to be the vector field satisfying iY Ω = 0, σ(Y ) = 1. We then have
that

L = Ann(ϕ) = (Ker(Ω) ∩Ker(σ))⊕AnnT ∗(Ω)⊕ C(Y + σ − i),

and consequently

L = Ann(ϕ) = (Ker(Ω) ∩Ker(σ))⊕AnnT ∗(Ω)⊕ C(Y + σ − i),

U =L⊥ ∩ L∗⊥ = C(Y − σ).

Note that u = Y − σ satisfies u ·ϕ = iϕ and has norm −1. Note also that Ω or any of its
multiples define the same subbundles.

The complex m-form Ω on Ker(σ) is equivalent to an endomorphism J satisfying
J2 = − Id. By the definition of Y , T = Ker(σ) ⊕ RY , so we can extend J to an en-
domorphism F by setting F|Ker(σ) = J, and F (Y ) = 0. This new operator satisfies
F 2 = − Id +Y ⊗ σ, so it actually defines an almost-contact structure, as defined in
Remark 4.19. The F-operator is then given by −F −Y

F ∗ −σ
1
2σ

1
2Y 0

 . (4.13)

Conversely, any almost-contact structure defines such an F-operator, and hence an
almost B2m+1-gcs of type m.

For the integrability, we look this time at the F-operator. The T -component of
Equation (4.10) for sections e = X, e′ = Z ∈ C∞(T ) gives

−F 2[X,Z]− [FX,FZ] + F [FX,Z] + F [X,FZ] = 2dσ(X,Z)Y,

which is, following [Bla10] (p.81), the condition for normality of the almost contact
structure. Normality is equivalent to the integrability of the corresponding almost
complex structure on M × R.

Remark 4.28. Normal almost contact structures also appear in [IPW05] as Dn+1-
geometry, as one should expect. Bn-geometry has indeed enough space to accommo-
date them, unlike for contact structures.

Remark 4.29. We look at the possible relation of almost contact structures, or type
m B2m+1-gcs up to (B,A)-transforms, with CR-structures. We have a globally defined
real 1-form σ and a locally defined complex form Ω, defined up to non-zero multiples.
These data give a polarized CR-structure in the sense of [Mee12]. On the one hand,
a CR-structure is determined by σ and σ ∧Ω, or any non-zero multiple. On the other
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hand, giving Ω locally gives a complement to the CR-distribution, i.e., a polarization.
However, there are two main differences with polarized CR-structures. First, in a
polarized CR-structure, any non-zero multiple of the form σ give the same structure,
unlike in the B2m+1-gcs, where different 1-forms σ define different structures (notice
that the subbundle C(Y + σ − i) depends on σ). Second, in a polarized CR-structure,
the form σ is not necessarily globally defined.

Example 4.30. Any odd-dimensional sphere S2m+1 admits a B2m+1-gcs of type m, as it
admits a normal almost contact structure ([SH62]). We describe its F-operator. On
the one hand, the sphere S2m+1 is defined inside Cm+1 by considering

S2m+1 = {(z1, . . . , zm+1) ∈ Cm+1 | |z1|2 + . . .+ |zm+1|2 = 1}.

Let i : S2m+1 → Cm+1 be this inclusion and let Cm+1 have real coordinates (x1, . . . , x2m+2)

and complex structure J. On the other hand, consider the action of R+ on (Cm+1 \{0})

given by λ · (z1, . . . , zm+1) = (λz1, . . . , λzm+1), for λ ∈ R+ and (z1, . . . , zm+1) ∈ Cm+1. For
each orbit there is a representative (z1, . . . , zm+1) such that |z1|2 + . . . + |zm+1|2 = 1, so
we get an isomorphism

(Cm+1 \ {0})/R+ ∼= S2m+1,

and we have a projection π : Cm+1 \ {0} → S2m+1.

The F-operator of the B2m+1 is given by the matrix in (4.13) with

σ =
1

2

m+1∑
j=1

(xj+m+1dxj − xjdxj+m+1),

Y (p) =
1

2
J~p,

F = −dπ ◦ J ◦ di,

where ~p denotes the vector joining the origin with the point p.

Remark 4.31. A more interesting approach in order to provide B2m−1-gcs would be
generalized reduction from an invariant D2m-gcs, in the same way that an invariant
D2m-gcs, i.e., preserved by the extended action, reduces to a D2(m−a)-gcs ([BCG07]).
For instance, this process would give that a circle bundle over any projective variety
admits a B2m−1-gcs of type m. Take a complex projective manifold X ∈ CPm and
consider its cone p−1(X) ⊂ Cm, where p : Cm → CPm. This cone inherits a complex
structure from Cm, hence it admits a D2m-gcs. The cone p−1(X) is a C∗-bundle over
X. By regarding C∗ as S1 × R+, we define an R+-action on p−1(X) in such a way that
p−1(X)/R+ is an S1-bundle. The reduction of the D2m-gcs would give a B2m−1-gcs of
type m on p−1(X)/R+.
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4.3 Topological obstructions to the existence of Bn-
gcs

The topological obstruction to the existence of a Bn-gcs over M depends on the parity
of dimM and is given by the following proposition.

Proposition 4.32. An almost Bn-gcs on an odd exact Courant algebroid E over M
exists,

• on an odd dimensional manifold M , if and only if the bundle T + 1 admits a
complex structure.

• on an even dimensional manifold M , if and only if T admits a complex structure,
i.e. M admits an almost complex structure.

Proof. Since we are looking at a purely topological condition, we can assume, by
Remark 4.6, that E ∼= T + T ∗ + 1. The twisted Courant bracket does not intervene in
the proof.

We use the decomposition (T + T ∗ + 1)C = L + L + U . Let n = 2m + 1 or n = 2m.
The complex subbundle L + L has U(m + 1,m) or U(m,m) as its structure group. By
choosing a metric, the structure group can be further reduced to its maximal compact
subgroup U(m + 1) × U(m) or U(m) × U(m). This further reduction corresponds to the
choice of complex subbundles C+ and C− such that L + L = C+ + C− and the metric
is positive (resp. negative) definite on C+ (resp. C−).

In the odd dimensional case (reduction to U(m+ 1,m)), C+ has real rank 2m+ 2 =

n + 1. The map πT+1 : C+ → T + 1 has trivial kernel since T ∗ is isotropic and hence
defines an isomorphism. This isomorphism endows T + 1 with a complex structure.
Conversely, by regarding T + 1 as T (M × S1), a complex structure on T + 1 defines an
S1-invariant almost complex structure on M × S1. This S1-invariant structure gives an
S1-invariant almost Dn-gcs on M × S1. By the reduction process described in 2.4, M
admits an almost Bn-gcs.

In the even dimensional case, the subbundle C− has rank n. The map πT ∗ : C− → T ∗

has trivial kernel, because the inner product on T + 1 is non-negative, so it is an
isomorphism, endowing T ∗, and by duality T , with a complex structure. Thus, M
admits an almost complex structure. For the converse, any almost complex structure
J on M defines an almost Dn-gcs, and hence an almost Bn-gcs, by Example 4.2.
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4.4 Courant bracket in terms of L + L∗ + U

In this section we use the isomorphism L∗ ∼= L, as we will make extensive use of the
duality. We present formulas for the Dorfman product and the Courant bracket in
terms of the induced Lie brackets on L and L∗, their Lie algebroid differentials and
Lie derivatives, and the action of the unit section u as a derivation of both L and L∗.

Although it might be a bit confusing, we use the notation X,Xi, Y ∈ C∞(L), ξ, η ∈
C∞(L∗). We recall that in a Lie algebroid L, as defined in Definition 4.11, the sections
of the exterior algebra ∧•(L∗) are endowed with a differential operator dL : C∞(∧kL∗)→

C∞(∧k+1L∗) defined by

dLϕ(X0, X1, . . . , Xk) =

k∑
i=0

(−1)iπ(Xi)
(
ϕ(X0, X1, . . . , X̂i, . . . Xk)

)
(4.14)

+
∑
i<j

(−1)i+jϕ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . Xk),

where ξ ∈ C∞(∧kL∗), Xi ∈ C∞(L), and X̂i denotes that Xi is missing. Moreover, the Lie
derivative by a vector field X, LX : C∞(∧kL∗)→ C∞(∧kL∗), is defined by

(LXξ)(X1, . . . , Xk) =π(X)(ξ(X1, . . . , Xk))−
k∑
i=1

ξ(X1, . . . , [X,Xi], . . . , Xk), (4.15)

where ϕ ∈ C∞(∧kL∗), X,Xi ∈ C∞(L). They satisfy the Cartan formula LXξ = dL(ξ(X)) +

iXdLξ. The differential d∗ : C∞(∧kL)→ C∞(∧k+1L) and the Lie derivative Lξ are defined
analogously and also satisfy LξX = d∗(ξ(X)) + iξd∗X.

The Dorfman product of sections of L is the Lie bracket on L, and analogously for
L∗. For X ∈ C∞(L) and ξ ∈ C∞(L∗), we look at the L, L∗ and U components of Xξ and
ξX. First,

〈Xξ, Y 〉 = π(X)(〈ξ, Y 〉)− ξ(XY ) = (LXξ)(Y ),

and analogously, 〈ξX, η〉 = (LξX)(η). Second,

〈Xξ, η〉 = −〈ξX, η〉+ d∗(ξ(X))(η) = −(LξX)(η) + d∗(ξ(X))(η) = −(iξd∗X)(η),

and analogously, 〈ξX, Y 〉 = −(LXξ)(Y ) + dL(ξ(X))(Y ) = −(iXdLξ)(Y ). Finally,

〈Xξ, u〉 = X〈ξ, u〉 − 〈ξ,Xu〉 = 〈uX, ξ〉,

and analogously, 〈ξX, u〉 = 〈uξ,X〉. Summarizing, as 〈u, u〉 = (−1)n,

Xξ = LXξ − iξd∗X + (−1)n〈uX, ξ〉u,

ξX = LξX − iXdLξ + (−1)n〈uξ,X〉u.
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Note that uu = 0 since uu+uu = 2D〈u, u〉 = 0, where D is the differential of the Courant
algebroid. The products involving fu, gu ∈ C∞(U), with f, g ∈ C∞(M), are

X(gu) = π(X)(g)u− g(uX), (fu)X = −X(fu) + 2D〈fu,X〉 = −π(X)(f)u+ f(uX),

η(gu) = π(η)(g)u− g(uη), (fu)η = −η(fu) + 2D〈fu, η〉 = −π(η)(f)u+ f(uη),

(fu)(gu) = f((π(u)(g))u) + g((fu)u) = fπ(u)(g)u− gπ(u)(f)u+ 2(−1)ngDf.

Note that the product Xξ has a non-trivial component in U , (−1)n〈uX, ξ〉u, so L+L∗

is not closed under the Dorfman product. In other words, L+L∗ inside L+L∗+U does
not have the structure of Courant algebroid, unlike the L + L∗ = EC of Dn-geometry.
However, for e = X + ξ, e′ = X ′ + ξ′ ∈ C∞(L+ L∗), we will use the notation

ee′ = (ee′)L+L∗ + 〈ue, e′〉,

since the L+ L∗-component, namely,

(ee′)L+L∗ = ([X,X ′] + LξX
′ − iξ′d∗X) + ([ξ, ξ′] + LXξ

′ − iX′dξ), (4.16)

coincides with the definition of Dorfman product for the double of a Lie bialgebroid
(L,L∗) ([LWX97]). By skew-symmetrization, and using the notation 〈e1, e2〉− = ξ1(X2)−

ξ2(X1), we get the Courant bracket

[e1, e2] =([X1, X2] + Lξ1X2 − Lξ2X1 − d∗〈e1, e2〉−)

+ ([ξ1, ξ2] + LX1
ξ2 − LX2

ξ1 + d〈e1, e2〉−), (4.17)

which coincides with the one in [LWX97] too.
We thus have, for e+ fu, e′ + gu ∈ C∞(L+ L∗ + U):

(e+ fu)(e′ + gu) = (ee′)L+L∗ + f(ue′)− g(ue) + 2(−1)ngDf (4.18)

+
(
fπ(u)(g)− gπ(u)(f) + π(e)g − π(e′)f + (−1)n〈ue, e′〉

)
u.

The corresponding Courant bracket is

[e+ fu, e′ + gu] = [e, e′]L+L∗ + f [u, e′]− g[u, e] + (−1)n(gDf − fDg) (4.19)

+

(
fπ(u)(g)− gπ(u)(f) + π(e)(g)− π(e′)(f) +

(−1)n

2
(〈[u, e], e′〉 − 〈[u, e′], e〉)

)
u.
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4.4.1 Future work: the odd double of L, L∗ and a derivation

In Dn-geometry, a Dn-gcs L gives a decomposition (T + T ∗)C = L + L, where L = L∗.
The Lie algebroids L and L are not only dual to each other, but they form a Lie
bialgebroid (L,L), i.e., a pair of dual Lie algebroids such that the differential of L is a
derivation of the Schouten bracket of L ∼= L∗ and viceversa:

dL[ξ, η] = [dLξ, η] + [ξ, dLη],

d∗[X,Y ] = [d∗X,Y ] + [X, d∗Y ],

for sections X,Y ∈ C∞(L), ξ, η ∈ C∞(L∗). Conversely, starting with a Lie bialge-
broid (L,L∗), its double L + L∗ is endowed with the structure of a Courant algebroid
([LWX97]).

In Bn-geometry, a Bn-gcs L gives a decomposition (T + T ∗ + 1)C = L + L + U . We
still have that L and L ∼= L∗ are dual to each other. We wonder if they necessarily
form a bialgebroid. If that were the case, L + L∗ would be a Courant algebroid with
the Courant bracket given by the projection to L + L∗. Their sections would satisfy
the property (D2), i.e., for v, w ∈ C∞(L+ L∗),

π((vw)L+L∗) = [π(v), π(w)].

On the other hand, these same sections v, w are also sections of L+L∗ +U , which is a
Courant algebroid, so

π((vw)L+L∗+U ) = [π(v), π(w)].

The difference between these two expressions is

〈uv,w〉π(u) = 0,

so, either the derivation u vanishes, or π(u) = 0. As a first observation, since neither of
these conditions is satisfied in several of the Bn-gcs studied, we have produced several
examples of pairs of dual Lie algebroids which are not Lie bialgebroids. Secondly, the
condition π(u) = 0 implies 〈u, u〉 ≥ 0, so it can be satisfied only when the manifold is
even dimensional.

Given a Bn-gcs L such that EC = L + L∗ + U , the brackets and the differentials
satisfy the compatibility condition

dL[ξ, η] = [dLξ, η] + [ξ, dLη] + (−1)n[u, ξ] ∧ [u, η],

for η, ξ ∈ C∞(L∗), and similarly for d∗ and X,Y ∈ C∞(L).
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This suggests that given a pair of dual Lie bialgebroids L,L∗ and a suitable deriva-
tion (which we define below as a Courant derivation), it is possible to define an odd
exact Courant algebroid structure on L+L∗+U , where U is a trivial rank one bundle.

Definition 4.33. Let L and L∗ be dual Lie algebroids. We define a Courant derivation
(ϕ,X0) of L and L∗ as a pair of derivations ϕL of L and ϕL∗ of L∗ and a vector field
X0 ∈ C∞(T ) satisfying

• 〈ϕL(l), l′〉+ 〈l, ϕL∗(l′)〉 = π(X0)〈l, l′〉,, for l ∈ C∞(L), l′ ∈ C∞(L∗),

• dL[ξ, η] = [dLξ, η] + [ξ, dLη] + (−1)nϕL(ξ) ∧ ϕL(η), for ξ, η ∈ C∞(L∗),

• and similarly for d∗ and the bracket of L.

For the sake of simplicity, we denote both ϕL and ϕL∗ as ϕ.

Theorem 4.34. Let L and L∗ be a pair of dual Lie algebroids, and (ϕ,X0) a Courant
derivation. Denote by U a trivial rank one bundle over M . The bundle L+L∗+U has
the structure of an odd exact Courant algebroid, which is uniquely determined by the
conditions:

• the Courant bracket in L and L∗ is given by the Lie bracket of L and L∗,

• L and L∗ are isotropic, the pairing between L and L∗ is half of the pairing given
by the duality, and the pairing between U and L+ L∗ is given by 〈U,L+ L∗〉 = 0,

• the pairing on U has signature (−1)n, and for the section u ∈ C∞(U) of U such
that 〈u, u〉 = (−1)n, the anchor map is given by π(u) = X0 and its action by the
Dorfman product (or Courant bracket) on L and L∗ is given by ϕ.

Remark 4.35. By the properties of a Courant algebroid, the Dorfman product is then
given, for e+ fu, e′ + gu ∈ C∞(L+ L∗ + U), by

(e+ fu)(e′ + gu) = (ee′)L+L∗ + f(ϕ(e′))− g(ϕ(e)) + 2(−1)ngDf

+
(
fX0(g)− gX0(f) + π(e)g − π(e′)f + (−1)n〈ϕ(e), e′〉

)
u,

while the corresponding Courant bracket is

[e+ fu, e′ + gu] = [e, e′]L+L∗ + fϕ(e′)− gϕ(e) + (−1)n(gDf − fDg)

+

(
fX0(g)− gX0(f) + π(e)(g)− π(e′)(f) +

(−1)n

2
(〈ϕ(e), e′〉 − 〈ϕ(e′), e〉)

)
u.

The main remaining question is whether, given a pair of dual Lie algebroids L, L∗

there always exist a Courant derivation and in this case, whether it is unique.
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4.5 Infinitesimal symmetries of a Bn-gcs

In this section we make use of Equation 4.18 to describe the infinitesimal symmetries
of a Bn-gcs. We define infinitesimal symmetries as follows.

Definition 4.36. An infinitesimal symmetry of a Bn-gcs L on an odd exact Courant
algebroid E is a section v ∈ C∞(E) such that vC∞(L) ⊂ C∞(L) for the Dorfman product.

By the decomposition EC = L + L + U , a section v ∈ C∞(E) can be written as
v = v0,1 + v0,1 + v0u, where v0,1 ∈ L and v0 ∈ C∞(M) is a real function. By integrability
of L, v0,1C∞(L) ⊂ C∞(L). We then have to study when v0,1 + v0u fixes L. Consider an
arbitrary section e1,0 ∈ C∞(L). By Equation (4.18), we have that

(v0,1 + v0u)e1,0 = (v0,1e1,0)L+L∗ + v0(ue1,0) + [−π(e1,0)(v0) + (−1)n〈uv0,1, e1,0〉]u.

Since the term v0(ue1,0) belongs to L, the L∗-component of the RHS is the L∗-component
of (v0,1e1,0)L+L∗ , which, by Equation (4.16), equals −ie1,0dLv0,1. The condition for the
L∗-component to vanish is

dLv
0,1 = 0.

Finally, for the U-component, we have −π(e1,0)(v0) = −dLv0(e1,0) and (−1)n〈uv0,1, e1,0〉 =

(−1)n

2 (uv0,1)(e1,0), so the U-component vanishes if and only if

dLv
0 − (−1)n

2
(uv0,1) = 0.

This suggests defining a differential operator C∞(L∗ +U)→ C∞(∧2L∗ +L∗ ⊗U)) in such
a way that v ∈ C∞(E) is a symmetry if v0,1 +v0u, its projection to L+U , is dL+U -closed.
Since U is self-dual, we write dL+U : C∞((L+ U)∗)→ C∞(∧2(L+ U)∗), which is given by

dL+U : v0,1 + v0u 7→ dLv
0,1 + (dLv

0 − (−1)n

2
(Luv0,1)) ∧ u.

On the other hand, we define a differential C∞(M) → C∞(L∗ + U) by considering the
projection of Df to L∗ + U . The projection to L∗ is given by dLf and the projection
to U is given by

〈Df, u〉
〈u, u〉

u =
(−1)n

2
[u, f ]u =

(−1)n

2
(Luf)u.

We define dL+U on functions by

dL+Uf = dLf +
(−1)n

2
(Luf)u.

We check that d2
L+U = 0 on C∞(M). Since d2

L = 0 and LudLf = dL(Luf), we have

dL+U (dLf +
(−1)n

2
(Luf)u) = d2

Lf +

(
dL

(
(−1)n

2
Luf

)
− (−1)n

2
(LudLf)

)
∧ u = 0.

The element dL+Uf ∈ C∞(L∗ + U) uniquely determines a real section of E, which is
called a Hamiltonian symmetry.
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Definition 4.37. A Hamiltonian symmetry of a Bn-gcs L on an odd exact Courant
algebroid E is a section

dLf + dLf +
(−1)n

2
(Luf)u ∈ C∞(E),

where f ∈ C∞(M) is any real function.

By identifying the symmetries sym(L) with Ker(dL+U ) and the Hamiltonian sym-
metries ham(L) with Im(dL+U ), we see that they are complex vector spaces that fit in
the short exact sequence

0→ ham(L)→ sym(L)→ H1(M,L+ U)→ 0,

where by H1(M,L+ U) we mean, for now, Ker(dL+U )/ Im(dL+U ).

4.6 The Lie algebroid L + U and its cohomology

The existence of a differential dL+U on C∞(M) and C∞(L∗ +U) motivates its extension
to the exterior bundle ∧•(L+ U)∗ by

dL+U (a+ b ∧ u) = dLa+

(
dLb+

(−1)k+n

2
(Lua)

)
∧ u,

for a+ b ∧ u ∈ C∞(∧k(L+ U)∗). This operator squares to zero and satisfies

dL+U (α ∧ β) = dL+Uα ∧ β + (−1)|α|α ∧ dL+Uβ,

where |α| denotes the degree of α ∈ C∞(∧|α|(L+ U)∗).
Although L+ U is not a Lie algebroid with the restriction of the Courant bracket

of EC, there must be a derived bracket coming from dL+U which turns L + U into a
Lie algebroid. Recall that the derived bracket of a differential d on a Lie algebroid A

is given by
i[X,Y ] = [[d, iX ], iY ], (4.20)

where X,Y ∈ C∞(A) and iX : C∞(∧kA∗)→ C∞(∧k−1A∗).

Proposition 4.38. The derived bracket [ , ]L+U on L+U is determined by the identities

• [l, l′]L+U = [l, l′],

• [u, l]L+U = 1
2Lul = 1

2 [u, l],

• [fu, gu]L+U = 1
2 (fLug − gLuf)u,
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where l, l′ ∈ C∞(L), f, g ∈ C∞(M) and the bracket on the RHS of the equations is the
Courant bracket.

Proof. For l, l′ ∈ C∞(L), all the terms involving u vanish and we get the usual Courant
bracket, which restricted to L is a Lie bracket.

For l ∈ C∞(L), having in mind that we are using the pairing 〈 , 〉 for the isomorphism
U∗ ∼= U and hence iuu = 〈u, u〉 = (−1)n, we have, for e+ u ∈ C∞(L+ U),

(e+ u)[u, l]L+U = −iudL+U (e(l))− iliudL+U (e+ u)

= iu

(
(−1)n

2
Lu(e(l)) ∧ u

)
− iliu

(
− (−1)n

2
Lue ∧ u

)
=

1

2
Lu(e(l))− 1

2
(Lue)(l) =

1

2
(Lul)(e),

since π(u)〈e, l〉 = 〈ue, l〉+ 〈e, ul〉.
Finally, for fu, gu ∈ C∞(U), we have

(e+ u)([fu, gu]L+U ) = ifudL+U (igu(e+ u))− iguifudL+U (e+ u)− igudL+U (ifu(e+ u))

= ifudL+U ((−1)g)− igu(− (−1)n

2
Lue(−1)nf)− igu(dL+U ((−1)nf))

= f
(−1)n

2
Lug − 0− g (−1)n

2
Luf =

(−1)n

2
(fLug − gLuf).

Remark 4.39. The fact that a non-isotropic subbundle of a Courant algebroid becomes
a Lie algebroid by modifying the bracket is studied in the theory of pseudo-Dirac
structures introduced in [LB14].

Once we know that L+ U is a Lie algebroid, we deal with the Lie algebroid coho-
mology of dL+U . We can see this cohomology as the hyper-cohomology of the double
complex

C∞(M)
dL //

(−1)n

2
(Lu )∧u

��

C∞(L∗)
dL //

− (−1)n

2
(Lu )∧u

��

. . . dL // C∞(∧kL∗)
dL //

(−1)k+n

2
(Lu )∧u

��

. . .

C∞(U)
dL

// C∞(L∗ ∧ U)
dL
// . . .

dL
// C∞(∧kL∗ ∧ U)

dL
// . . .

We compute the principal symbol of dL+U in the next proposition.

Proposition 4.40. The principal symbol of dL+U ,

s : T ∗ ⊗ ∧k(L+ U)∗ → ∧k+1(L+ U)∗
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is given by
sξ(a+ b ∧ u) = i

(
ξ0,1 ∧ a+ (ξ0,1 ∧ b+ (−1)kξ0a) ∧ u

)
,

where ξ = ξ0,1 + ξ0,1 + ξ0u ∈ T ∗.

Proof. We use the characterization, for P a differential operator of degree t,

sdψu = lim
λ→∞

λ−te−iλψP [ueiλψ].

We consider the expression dL+U (eiλψ(a + b ∧ u)) and look at the top-degree terms on
λ:

dL+U (eiλψ(a+b∧u)) = iλeiλψdLψ∧a+eiλψdLa+
(
iλeiλψdLψ∧b+eiλψdLb+

(−1)k+n

2
(Lu(eiλψa))

)
∧u.

Since Lu(eiλψa) = (Lueiλψ)a+ eiλψLua, and (Lueiλψ) = 2〈d(eiλψ), u〉, the top-degree terms
on λ are

iλeiλψdLψ ∧ a+
(
iλeiλψdLψ ∧ b+

(−1)k+n

2
〈iλeiλψdψ, u〉a

)
∧ u.

For ξ ∈ T ∗, take ψ such that dψ = ξ = ξ0,1 + ξ0,1 + ξ0u, so that dLψ = ξ0,1 and 〈dψ, u〉 =

(−1)nξ0. The symbol is thus given by

ξ 7→ i
(
ξ0,1 ∧ a+ (ξ0,1 ∧ b+ (−1)kξ0a ∧ u

)
.

Since the symbol sξ is zero if and only ξ0,1 and ξ0 are zero, i.e., if and only if ξ ∈ T ∗

is zero, we have the following proposition.

Proposition 4.41. Given a Bn-gcs L on an odd exact Courant algebroid E, the com-
plex H•(M,L+ U) for the differential dL+U is elliptic.

When π(u) = 0, we have that (Lub) = 0 for all b ∈ C∞(∧•(L + U)∗). The differential
then becomes

dL+U (a+ b ∧ u) = dLa+ dLb ∧ u,

and consequently
Hk(M,L+ U) ∼= Hk(M,L)⊕Hk−1(M,L).

In other words, the cohomology group consists of two copies of the cohomology for L
shifted by one degree. This applies to Dn-gcs on an even-dimensional manifold seen
as a Bn-gcs, since U ∼= 1⊗C, u = 1, so π(u) = 0. Namely, for the examples in Section 3.2
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of [Gua11] we have the following. For a complex structure J on M seen as a Bn-gcs,
dL = ∂ and we get a sum of Dolbeault complexes:

Hk(M,LJ + U) =
⊕
p+q=k

Hp(M,∧qT 1,0)⊕
⊕

p+q=k−1

Hp(M,∧qT 1,0).

For a symplectic structure on M seen as a Bn-gcs, L+U is the image of T + 1 by iω, so

Hk(M,Lω + U) ∼= Hk(M,T + 1) ∼= Hk(M,C)⊕Hk−1(M,C).
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Chapter 5

Deformation theory of Bn-generalized
complex structures

5.1 The Schouten and Courant brackets

A Bn-generalized complex structure (Bn-gcs) on an odd exact Courant algebroid E is
given by a maximal isotropic subbundle L ⊂ EC such that L ∩ L = 0 and [L,L] ⊂ L. By
the isotropy, the Courant bracket restricted to L is a Lie bracket and the subbundle L
has the structure of a Lie algebroid. This Lie bracket can be extended to a Schouten
bracket on the sections of the exterior algebra ∧•L as follows.

Definition 5.1. The Schouten bracket is the only bracket

[ , ] : C∞(∧kL)× C∞(∧mL)→ C∞(∧k+m−1L),

extending the Lie bracket (when k = m = 1), acting on functions f ∈ C∞(M) by
[X, f ] = π(X)(f) for X ∈ C∞(L), and satisfying the following properties, for Z ∈ C∞(∧aL),
Z ′ ∈ C∞(∧bL) and Z ′′ ∈ C∞(∧cL):

(S1): [Z,Z ′] = −(−1)(a−1)(b−1)[Z ′, Z],

(S2): [Z, [Z ′, Z ′′]] = (−1)(a−1)(b−1)(c−1)[[Z,Z ′], Z ′′] + (−1)(a−1)[Z ′, [Z,Z ′′]],

(S3): [Z,Z ′ ∧ Z ′′] = [Z,Z ′] ∧ Z ′′ + (−1)(a−1)b)Z ′ ∧ [Z,Z ′′].

Actually, the algebra of sections C∞(∧•L) together with the exterior product and
the Schouten bracket has the structure of a so-called Gerstenhaber algebra (see, for
instance, [KS95] for definition and properties).

We prove now several formulas relating the Courant bracket between elements of
L and L∗ to the Schouten bracket on L and L∗ and the canonical pairing. We will
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make use of the decomposition EC = L+ L+ U , and of the identity

dLη(X,Y ) = [X, η(Y )]− [Y, η(X)]− η([X,Y ]). (5.1)

By the properties in Definition 5.1, we have, for f, g ∈ C∞(M) and v ∈ C∞(L) or
C∞(L∗),

[f, g] = 0 [v, f ] = π(v)(f), (5.2)

and consequently, by (S3),
[gv, f ] = g[v, f ]. (5.3)

Lemma 5.2. For η ∈ C∞(L∗) and X,Y ∈ C∞(L), we have

〈[η,X], Y 〉 =
1

2

(
η([X,Y ])− [X, η(Y )] +

1

2
[Y, η(X)]

)
=

1

2

(
− dLη(X,Y )− 1

2
[Y, η(X)]

)
. (5.4)

Analogously, for X ∈ C∞(L) and η, µ ∈ C∞(L∗) we have

〈[X, η], µ〉 =
1

2

(
[η, µ](X)− [η, µ(X)] +

1

2
[µ, η(X)]

)
. (5.5)

Proof. Since Y is orthogonal to U , 〈[η,X], Y 〉 = 〈[η,X]L+L∗ , Y 〉. By using formulas (4.17)
and (4.15), we have

〈[η,X], Y 〉 = 〈−LXη +
1

2
D(η(X)), Y 〉 =

1

2

(
− LXη(Y ) + 〈D(η(X)), Y 〉

)
=

1

2

(
−[X, η(Y )] + η([X,Y ]) +

1

2
[Y, η(X)]

)
.

The second identity follows from applying (5.1), and the third identity follows from
the first one by duality.

Lemma 5.3. For η, µ ∈ C∞(L∗), X ∈ C∞(L) and f, g ∈ C∞(M), we have

〈[fη, gµ], X〉 =
1

2

(
fg[η, µ](X)− g[µ, f ]η(X) + f [η, g]µ(X)

)
.

Proof. By using (C3) for fη and then µ, we have

〈[fη, gµ], X〉 = 〈[fη, g]µ+ g[fη, µ], X〉 = 〈f [η, g]µ+ g[f, µ]η + fg[η, µ], X〉,

from where the result follows.
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Let B ∈ C∞(∧2L∗) and A ∈ C∞(L∗). In this chapter, we will denote iXB and iXA

by B(X) and A(X), respectively. Write B as a sum of decomposable forms ∑β∈S β ∧ β′

for some set S of 1-forms, which we omit from now on for the sake of simplicity. The
Schouten bracket [B,A] satisfies

[B,A] =
∑

[β,A] ∧ β′ − [β′, A] ∧ β,

by linearity and the property (S3).
When applying B to a vector field we get B(X) =

∑
(β(X)β′−β′(X)β). We introduce

the following notation for this expression:

∑
β
−←−→β′

β(X)β′ :=
∑

(β(X)β′ − β′(X)β).

Using this notation we have these two expressions for [B,A](X,Y ):

[B,A](X,Y ) =
∑

β
−←−→β′

(
[β,A](X)β′(Y )− [β,A](Y )β′(X)

)
(5.6)

=
∑

β
−←−→β′

(
β(X)[β′, A](Y )− β(Y )[β,A](X)

)
. (5.7)

In the following lemma we relate the Schouten bracket of forms B and A with the
Lie bracket on L and the canonical pairing of L and L∗.

Lemma 5.4. Let B ∈ C∞(∧2L∗), A ∈ C∞(L∗) and X,Y ∈ C∞(L). The Schouten bracket
[B,A] satisfies

[B,A](X,Y ) = [B(X), A(Y )]− [B(Y ), A(X)]− 2〈[B(X), Y ] + [X,B(Y )], A〉.

Proof. We write B as ∑β∈S β ∧ β′ and develop the terms on the right-hand side.

[B(X), A(Y )] =
∑

β
−←−→β′

[β(X)β′, A(Y )] =
∑

β
−←−→β′

β(X)[β′, A(Y )]. (by (5.2))

Analogously,
[−B(Y ), A(X)] = −

∑
β
−←−→β′

β(Y )[β′, A(X)].
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For the last addend we have

−2〈[B(X), Y ], A〉 = −2
∑

β
−←−→β′

〈[β(X)β′, Y ], A〉

= −2
∑

β
−←−→β′

〈
[β(X), Y ]β′ + β(X)[β′, Y ] +

1

2
β′(Y )D(β(X)), A

〉
(by (C3))

=
∑

β
−←−→β′

(
−β(X)A([β′, Y ])− 1

2
β′(Y )[A, β(X)]

)

=
∑

β
−←−→β′

(
−β(X)A([β′, Y ]) +

1

2
β(Y )[A, β′(X)]

)
.

Analogously,

−2〈[X,B(Y )], A〉 =
∑

β
−←−→β′

(
β(Y )A([β′, X])− 1

2
β(X)[A, β′(Y )]

)
.

Overall, the RHS is∑
β
−←−→β′

(
β(X)

(
[β′, A(Y )]−A([β′, Y ])− 1

2
[A, β′(Y )]

)
(5.8)

− β(Y )
(

[β′, A(X)]−A([β′, X])− 1

2
[A, β′(Y )]

))
.

From Equation (5.5), A([β′, Y ]) = 2〈[β′, Y ], A〉 = −[β′, A](Y ) + [β′, A(Y )] − 1
2 [A, β′(Y )], and

analogously for A([β′, X]). Equation (5.8) then becomes, by Equation (5.6),∑
β
−←−→β′

(
β(X)[β′, A](Y )− β(Y )[β′, A](X)

)
= [B,A](X,Y ),

as we wanted to prove.

Similarly, we can prove the following lemma.

Lemma 5.5. An alternative identity for the Schouten bracket [B,A] is

1

2
[B,A](X,Y ) = 〈[B(X), A], Y 〉+ 〈[X,A], B(Y )〉 − 1

4
[B(Y ), A(X)].

Proof. We use B =
∑
β ∧ β′ for the three addends of the right-hand side,∑

β
−←−→β′

〈[β(X)β′, A], Y 〉 =
∑

β
−←−→β′

1

2

(
[β(X), A]β′(Y ) + β(X)[β′, A](Y )

)
, (by (C3))

∑
β
−←−→β′

β(Y )〈[X,A], β′〉 =
∑

β
−←−→β′

β(Y )
1

2

(
[A, β′](X)− [A, β′(X)] +

1

2
[β′, A(X)]

)
, (by (5.5))

−
∑

β
−←−→β′

1

4
[B(Y ), A(X)] = −

∑
β
−←−→β′

1

4
β(Y )[β′, A(X)].
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After cancellations, adding all the terms gives

1

2

∑
β
−←−→β′

(
β(X)[β′, A](Y )− β(Y )[β′, A](X)

)
=

1

2
[B,A](X,Y ). (by 5.7)

The unit section u ∈ C∞(U) is a symmetry both of L and L∗, so it extends to a
derivation of ∧2L∗. For β ∧ β′ ∈ C∞(∧2L∗) we have

[u, β ∧ β′] = [u, β] ∧ β′ − [u, β′] ∧ β.

Given B ∈ C∞(∧2L∗), write it as ∑β ∧ β′. The action of u is given by

[u,B] =
∑(

[u, β] ∧ β′ − [u, β′] ∧ β
)

=
∑

β
−←−→β′

[u, β] ∧ β′. (5.9)

Note that, strictly speaking, we should use the Dorfman product, for the infinitesimal
action, but, since U ⊥ L∗, uβ = [u, β].

Lemma 5.6. For B ∈ C∞(∧2L∗) and X,Y ∈ C∞(L) we have

1

2
[u,B](X,Y ) = 〈[u,B(X)], Y 〉+ 〈[u,X], B(Y )〉.

Proof. The right-hand side equals, by applying (C3) and reorganizing,

〈[u,B(X)], Y 〉+ 〈[u,X], B(Y )〉 =
∑

β
−←−→β′

(
〈[u, β(X)β′], Y 〉+ 〈[u,X], β(Y )β′〉

)
=

∑
β
−←−→β′

( 〈
[u, β(X)]β′ + β(X)[u, β′], Y

〉
+ β(Y )〈[u,X], β′〉

)

=
1

2

∑
β
−←−→β′

(
β′(Y )[u, β(X)] + β(X)[u, β′](Y ) + β(Y )β′([u,X])

)

=
1

2

∑
β
−←−→β′

(
β(X)[u, β′](Y ) + β(Y )β′([u,X])− β(Y )[u, β′(X)]

)
,

which, by using [u, β′(X)] = [u, β′](X) + β′([u,X]), equals

1

2

∑
β
−←−→β′

(
β(X)[u, β′](Y )− β(Y )[u, β′](X)

)
=

1

2
[u,B](X,Y ).

77



5.2 Maurer-Cartan equation

Given a Bn-gcs L, such that L ∩ L = 0, and consequently L ∩ (L + U) = 0, we deform
it within the Grassmanian of maximal isotropic subbundles. If the deformed Bn-gcs
L′ has zero intersection with L + U , the projection L′

πL−−→ L has zero kernel and L′ is
hence given by the graph of a map L → L + U , or equivalently, two maps B′ : L → L,
A : L→ U . Write A(X) = A(X)u for some A ∈ C∞(L∗). The isotropy of L′ means

0 = 〈X +B′(X) +A(X)u, Y +B′(Y ) +A(Y )u〉 =
1

2

(
B′(X,Y ) +B′(Y,X)

)
+ (−1)nA(X)A(Y ).

By writing B = B′ + (−1)nA ⊗ A and using the isomorphism L ∼= L∗, we have that B
defines a section of ∧2L∗. The Bn-gcs L is given by

L′ = {X +B(X)− (−1)nA(X)A+A(X)u}X∈L = eB+AL,

where the last equality is motivated by the fact that B and A act as a B +A-field for
the decomposition L+L+U ∼= L+L∗+U . We check this. As in Section 2.1, the action
of A is not linear: A acts on X giving A(X)u, and A acts again on A(X)u giving

−2〈A, A(X)u〉 = −2A(X)A〈u, u〉 = −(−1)n2A(X)A ∈ C∞(L∗).

Hence, the exponentiated action of A on X is indeed given by

X 7→ X − (−1)nA(X)A+A(X)u.

We also want L′ = eB+AL to have real index zero. For L′ ∩ L′ to be non-empty, we
need non-zero elements X,Y ∈ C∞(L) such that

X +B(X)− (−1)nA(X)A+A(X) = B(Y )− (−1) +A(Y )A+ Y +A(Y ).

By using the notation B(Z) = B(Z) and A(Z) = A(Z) for Z ∈ C∞(L∗), this equation
implies

X = B(Y )− (−1)nA(Y )A = B(B(X))− (−1)nB(A(X)A)− (−1)nA(X)A,

or, equivalently

(Id−B ◦B + (−1)nB ◦ (A⊗A) + (−1)nA⊗A)(X) = 0,

so X is in the kernel of an endomorphism of L. By choosing B and A small enough, we
can make this endomorphism invertible. Thus, in a sufficiently small neighbourhood
around zero, eB+AL defines a new almost Bn-gcs.
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Recall the analogous situation in Dn-geometry. Deformations of a Dn-gcs L are
given by the graph of B ∈ C∞(∧2L∗). Since any two form is an isometry, eBL is again
isotropic, and in a sufficiently small neighbourhood of B, eBL has real index zero. For
eBL to be integrable, we must have that the Courant bracket of any two sections of
eBL lies again in eBL, i.e., is orthogonal to eBL. This can be expressed as

〈[X +B(X), Y +B(Y )], Z +B(Z)〉 = 0,

where X,Y, Z ∈ C∞(L). This is the Maurer-Cartan equation for Dn-gcs, and by Propo-
sition B.1 in Appendix B, we have that it is equivalent to dLB + 1

2 [B,B] = 0.
We return to Bn-geometry, where the deformation of a Bn-gcs L is given by the

action of eB+A with B ∈ C∞(∧2L∗) and A ∈ C∞(L∗ ⊗ U). The integrability condition
for eB+AL is [eB+AL, eB+AL] ⊂ eB+AL. Belonging to eB+AL is characterized by being
orthogonal not only to eB+AL but also to

eB+AU = C{−(−1)n2A+ u}.

This gives two equations, for X,Y, Z ∈ C∞(L):

〈[X +B(X)− (−1)nA(X)A+A(X)u,

Y +B(Y )− (−1)nA(Y )A+A(Y )u],

Z +B(Z)− (−1)nA(Z)A+A(Z)u〉 = 0, (5.10)

〈[X +B(X)− (−1)nA(X)A+A(X)u,

Y +B(Y )− (−1)nA(Y )A+A(Y )u],

− (−1)n2A+ u〉 = 0. (5.11)

The rest of this section is devoted to rewrite these equations in a simpler way. Many
technical calculations have been put in Appendix B, to which will refer. However, a
few of them have been left in the proofs, as an example of the techniques used.

Yet another identity that we will use is that for v ∈ C∞(L+ L∗) and f ∈ C∞(M):

〈[v, fu], u〉 = (−1)n[v, f ], (5.12)

since, by U ⊥ L+ L∗,

〈[v, fu], u〉 = 〈[v, f ]u+ f [v, u]− 〈v, u〉Df, u〉 = 〈[v, f ]u, u〉 = (−1)n[v, f ].
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Proposition 5.7. The second equation, (5.11), is equivalent to

(−1)n
(
dLA+ [B,A]− 1

2
[u,A] ∧A

)
+

1

2
[u,B] = 0

Proof. We use the notation “(AiBj) :” for indicating the sum of terms where the form
A appears i times and the form B appears j times.
•(A0B0): 〈[X,Y ], u〉 = 0 by [X,Y ] ∈ L ⊥ U .
•(A1B0): By direct calculations, using (5.12) and (5.1),

〈[X,Y ],−(−1)n2A〉+ 〈[X,A(Y )u], u〉+ 〈[A(X)u, Y ], u〉 =

− (−1)nA([X,Y ]) + (−1)n[X,A(Y )]− (−1)n[Y,A(X)] =

(−1)n([X,A(Y )]− [Y,A(X)]−A([X,Y ])) = (−1)ndLA(X,Y ).

•(A0B1): By Equation (4.3), we have

〈[B(X), Y ], u〉 =
1

2

(
〈[u,B(X)], Y 〉 − 〈[u, Y ], B(X)〉

)
,

〈[X,B(Y )], u〉 =
1

2

(
〈[u,X], B(Y )〉 − 〈[u,B(Y )], X〉

)
.

Regrouping the terms and applying Lemma 5.6 we get

〈[B(X), Y ], u〉+ 〈[X,B(Y )], u〉 =
1

4
[u,B](X,Y )− 1

4
[u,B](Y,X) =

1

2
[u,B](X,Y ).

•(A2B0): By Lemma B.4 (multiplied by −(−1)n), these terms add up to

− (−1)n

2
([u,A] ∧A)(X,Y ).

•(A1B1): We have

〈[B(X), A(Y )u] + [A(X)u,B(Y )], u〉+ 〈[B(X), Y ] + [X,B(Y )],−2(−1)nA〉 =

(−1)n
(

[B(X), A(Y )]− [B(Y ), A(X)]− 2〈[B(X), Y ] + [X,B(Y )], A〉
)
,

which is, by Lemma 5.4,
(−1)n[B,A](X,Y ).

•(A0B2): 〈[B(X), B(Y )], u〉 = 0 by L∗ ⊥ U .
•(A3B0): By Lemma B.3, the overall contribution of these terms is zero.
•(A2B1): By orthogonality of L∗ and U , and [U,L∗] ⊂ U + L∗ ⊥ L∗, we have that

〈[B(X),−(−1)nA(Y )A]+[−(−1)nA(X)A,B(Y )], u〉+〈[B(X), A(Y )u]+[A(X)u,B(Y )],−2(−1)nA〉 = 0.

•(A1B2): By the isotropy of L∗, 〈[B(X), B(Y )],−2(−1)nA〉 = 0.
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•(A0B3): There are no terms.
The only remaining terms are:
•(A4B0): By [U,L∗] ⊂ U + L∗ = (L∗)⊥,

〈[−(−1)nA(X)A,A(Y )u] + [A(X)u,−(−1)nA(Y )A],−2(−1)nA〉 = 0.

•(A5B0): By the isotropy of L∗,

〈[−(−1)nA(X)A,−A(Y )A],−2(−1)nA〉 = 0.

Proposition 5.8. The first equation, (5.10), is equivalent to

1

2

(
dLB +

1

2
[B,B]

)
+

(−1)n

2

(
dLA+ [B,A]

)
∧A+

1

2
[u,B] ∧A = 0,

which, combined with Proposition 5.7, reduces to

dLB +
1

2
[B,B] +

1

2
[u,B] ∧A = 0.

Proof. We use the notation (AiBj) from Proposition 5.7. We know from the Maurer-
Cartan equation for Dn-geometry (Proposition B.1), that (A0B1) = 1

2dLB, (A0B2) =

1
4 [B,B], while (A0B0) and (A0B3) are zero.

We study all the terms that involve A ∈ L∗ ⊗ U .
•(A1B0): By [U,L] ⊂ U + L = L⊥, 〈[A(X), Y ], Z〉+ 〈[X,A(Y )], Z〉+ 〈[X,Y ],A(Z)〉 = 0

•(A1B1): On the one hand, by (C3) and Lemma 5.6,

〈[A(X)u, Y ], B(Z)〉+ 〈[A(X)u,B(Y )], Z〉 = A(X)〈[u, Y ], B(Z)〉+A(X)〈[u,B(Y )], Z〉

=
1

2
A(X)[u,B](Y,Z).

Analogously,

〈[X,A(Y )u], B(Z)〉+ 〈[B(X), A(Y )u], Z〉 = −1

2
A(Y )[u,B](X,Z).

The remaining terms correspond to A(Z) times (A0B1) in Proposition 5.7, so we obtain
1
2A(Z)[u,B](X,Y ). Overall, we have 1

2 ([u,B] ∧A)(X,Y, Z).
•(A1B2): By [U,L∗] ⊂ U + L∗ = (L∗)⊥ and [L∗, L∗] ⊂ L∗ ⊥ U , we have that

〈[A(X)u,B(Y )] + [B(X), A(Y )u], B(Z)〉+ 〈[B(X), B(Y )], A(Z)u〉 = 0

•(A2B0): By Lemma B.5, the contribution of these terms is

− (−1)n

2
(dA ∧A)(X,Y, Z).
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•(A2B1): By Lemma B.6, the contribution of these terms is

(−1)n

2

(
[B,A] ∧A)(X,Y, Z)

)
.

•(A2B2): It is zero by the isotropy of L∗.
•(A3B0): By Lemma B.7, the overall contribution of these terms is zero.
•(A3B1): All the terms are zero by [U,L∗] ⊂ U + L∗ = (L∗)⊥ and [L∗, L∗] ⊂ L∗ ⊥ U .
•(A4B0): By Lemma B.8, the overall contribution of these terms is zero.
•(A4B1): It is zero by the isotropy of L∗.
•(A5B0): All the terms are zero by [U,L∗] ⊂ U +L∗ = (L∗)⊥ and [L∗, L∗] ⊂ L∗ ⊥ U .

Summarizing, the Maurer-Cartan equation consists of the two equations

dLA+
(−1)n

2
[u,B] + [B,A]− 1

2
[u,A] ∧A = 0

dLB +
1

2
[B,B] +

1

2
[u,B] ∧A = 0 (5.13)

These equations can be alternatively written in terms of the differential dL+U and
the Lie bracket [ , ]L+U defined in Section 4.6.

Theorem 5.9. The Maurer-Cartan equation (5.13) is equivalent to

dL+U (B +A ∧ u) +
1

2
[B +A ∧ u,B +A ∧ u]L+U = 0. (5.14)

Proof. First, by the definition of dL+U we have

dL+U (B +A ∧ u) = dLB + (dLA+
(−1)n

2
[u,B]) ∧ u.

Second, by (S3) and Proposition 4.38,

[B,A ∧ u]L+U + [A ∧ u,B]L+U = 2[B,A ∧ u]L+U = 2[B,A]L+U ∧ u+ 2[u,B]L+U ∧A

= 2[B,A] ∧ u+ [u,B] ∧A.

Finally, again by (S3) and Proposition 4.38,

[A ∧ u,A ∧ u]L+U = [A ∧ u,A]L+U ∧ u−A ∧ [A ∧ u, u]L+U

= −[A,A ∧ u]L+U ∧ u+ [u,A ∧ u]L+U ∧A

= −A ∧ [A, u]L+U ∧ u+ [u,A]L+U ∧ u ∧A

= −2[u,A]L+U ∧A ∧ u = −[u,A] ∧A ∧ u.
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5.3 Infinitesimal deformation theory

In this section we state the Bn version of some definitions and results from Section
5 in [Gua11]. These will show that the Lie algebroid cohomology H2(M,L+ U) is the
infinitesimal deformation space of a Bn-gcs L.

Let W be an open ball centred at zero in a finite-dimensional vector space. A
smooth family of deformations of a Bn-gcs L is defined as a smooth map

(B,A)L : W → C∞(∧2L∗)× C∞(L∗ ⊗ U)

such that (B,A)L(0) = (0, 0), and (B,A)L(w)L := eB+AL is a Bn-gcs for any w ∈ W . We
say that two deformations (B,A)L, (B′,A′)L are equivalent when there exist a family
of Courant automorphisms F : W → Aut(EC) such that F0 = IdEC and Fw((B,A)L(w)L) =

(B,A′)L(w)L. It suffices, just as in Dn-geometry, to consider equivalence by families
of Courant automorphisms given by the time-1 flow F 1

e of a family of generalized
vector fields e : W → C∞(E). As seen in Section 2.1, the flow F te(w) satisfies that
− d
dt |t=0

F te(w)y = e(w)y, where e(w)y is the Dorfman product. If the 1-jet of e(w) is
sufficiently small, the deformation F 1

e(w)(B,A)LL can be written as (B′,A′)LL.

Proposition 5.10. Under these conditions,

F 1
e (B,A)L = (B,A)L + dL+U (e0,1 + e0u) +R((B,A)L, e),

where e = e0,1 + e0,1 + e0u ∈ C∞(L+ L∗ + U) and R is of order O(t2).

Proof. We adapt the proof of Proposition 5.4 in [Gua11]. We omit the point w ∈ W .
We compute the first terms of the Taylor expansion of F 1

te(s(B,A)L) around (0, 0). First,
F 1

0·e(0 · (B,A)L) = 0. Second,

∂F 1
te(s(B,A)L)

∂s |(0,0)
=
∂(s(B,A)L)

∂s |(0,0)
= (B,A)L.

And third, for y, z ∈ C∞(L),

∂F 1
te(s(B,A)L)

∂t |(0,0)
(y, z) = 〈−e0,1y, z〉+ 〈−(e0u)y, z〉 = dLe

0,1(y, z) + 0,

while for y ∈ C∞(L) and z0u ∈ C∞(U) we have

∂F 1
te(s(B,A)L)

∂t |(0,0)
(y, z0u) = 〈−e0,1y, z0u〉+ 〈−(e0u)y, z0u〉. (5.15)

By Equation (4.18),

〈−e0,1y, z0u〉 = −〈(−1)n〈Lue0,1, y〉u, z0u〉 = −z0〈Lue0,1, y〉 = −z0 1

2
(Lue0,1)(y),

〈−(e0u)y, z0u〉 = 〈π(y)e0u, z0u〉 = (−1)nz0π(y)(e0) = (−1)nz0dLe
0(y).
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So (5.15) becomes
(

(dLe
0 − (−1)n

2 (Lue0,1))⊗ u
)

(y, z0u). Summarizing,

∂(B,A)L(s, t)

∂t (0,0)
= dLe

0,1 + ((dLe
0 − (−1)n

2
(Lue0,1))⊗ u) = dL+U (e0,1 + e0u).

The Taylor expansion is

F 1
te(s(B,A)L) = s(B,A)L + tdL+U (e0,1 + e0u) + r(s, t, (B,A)L, e).

The remainder r is smooth and quadratic, i.e., of order O(s2, st, t2) at zero. Defining
R((B,A)L, e) := r(1, 1, (B,A)L, e), which is of order O(t2), gives the result.

The linearization of the Maurer-Cartan equations (5.13) is given by

dLB = 0 dLA+
(−1)n

2
[u,B] = 0,

or, using the differential dL+U ,

dL+U (B + A) = 0.

Thus, infinitesimally, deformations of a Bn-gcs are dL+U -closed. Proposition 5.10 is
saying that two such infinitesimal deformations are equivalent if and only if they
differ by dL+U (e0,1 + e0), where e0,1 is an arbitrary section of L but e0 must be a real
function. This is a strictly stronger condition that differing by dL+U (L + U). Thus,
the infinitesimal deformation space does not coincide with H2(M,L + U), unlike in
Dn-geometry.
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Chapter 6

Bn-complex geometry in low
dimensions

In this chapter we study Bn-gcs for surfaces and 3-manifolds. We focus on how these
structures look locally, depending on the type and up to generalized diffeomorphisms.
In some cases, we will be able to give a normal form. Moreover we deal with the
L+ U-cohomology around a non-degenerate type change point of a B2-gcs and, as an
example, we compute the dimension of H2(L+ U) for a particular type change B2-gcs
on CP1.

Recall that, locally, a Bn-gcs on a manifold M is given by a complex differential
form ρ of mixed degree such that (ρ, ρ) 6= 0 and which is moreover pure. Purity is an
empty condition up to dimension 2, and for dimension 3 it is just (ρ, ρ) = 0. Recall
also that the type of ρ is the least non-zero degree, whose possible values are integers
between 0 and dimM

2 .
As an example, and for the sake of completeness, before dealing with dimension

two and three, we first discuss the one-dimensional case. A B1-gcs on the circle S1

has only one possible type: type 0. By Proposition 4.17, up to (B,A)-transform, such
a structure is globally given by a spinor ρ = 1 + iσ. From (ρ, ρ) 6= 0, we have that σ
is a nowhere vanishing 1-form. We can choose coordinates in S1 in such a way that
ρ = 1 + idθ. Actually, in this case we can easily go a bit further. Given another B1-gcs
ρ = 1 + iσ′, we have that ρ is related to ρ′ by a generalized diffeomorphism if and only
if the volume of ρ and ρ′ is the same. Thus, B1-gcs up to generalized diffeomorphisms
are parameterized by R×. If we look at an analogue to the Teichmuller space, we
should only consider B1-gcs up to diffeomorphisms connected to the identity and
exact A-fields. Let ρ = ρ0 + ρ1 be a B1-gcs. We have that ρ0 must be constant and
non-zero, so we can take ρ = 1 + a + ib, for real 1-forms a, b. Non-degeneracy means
that b is non-vanishing and so, up to diffeomorphism, is kdθ for k 6= 0, where 2kπ is
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the integral of b along the circle. By taking the orientation on S1 defined by ρ, we
have that k > 0. Finally, an exact A-field changes a by a+df , so its integral is the only
invariant. Thus, up to generalized diffeomorphisms connected to the identity, the
period of a+ ib defines the structure and the Teichmuller space is the upper half-plane
R× iR+ ⊂ C.

6.1 Surfaces

In Dn-geometry, the spinor representation of the generalized tangent space T + T ∗

is reducible and splits into two half-spinor representations. This corresponds to the
decomposition ∧evT ∗ + ∧oddT ∗. As a consequence, Dn-gcs are either even or odd: the
type of a Dn-gcs may be different depending on the point, but the parity of the type
is preserved. Looking at D2-gcs on surfaces is just looking at either symplectic (type
0) or complex (type 1) geometry. We first observe type change phenomena within
Dn-geometry in 4-manifolds, where the type may jump from 0 to 2.

The situation in B2-geometry is completely different. Since there is only one spinor
representation, the parity is not preserved and we can have type change phenomena
already on surfaces. The type of a B2-gcs may increase at some points. Actually a
B2-gcs on a surface can be globally of type 1, globally of type 0, or almost everywhere
of type 0 with a codimension 2 submanifold where it is of type 1, i.e., a finite (by
compactness) collection of points where the type jumps to 1. We start by studying
locally these three scenarios.

6.1.1 Around a type 0 point

For a point of type 0, there exists a neighbourhood where the type is everywhere 0. In
this neighbourhood, by Proposition 4.17, the B2-gcs is given, up to (B,A)-transform,
by ρ = 1 + iσ + iω. The condition (ρ, ρ) 6= 0 gives that ω is symplectic, while the
integrability of ρ gives that σ is closed.

If σ is non-vanishing, we can choose coordinates (x, y) such that ρ = 1+ idy+ idx∧dy.
A different way of presenting this B2-gcs is by acting with (0, dx) so that we get
1 + dx + idy = 1 + dz, where dz is a complex structure. Although dz is complex, the
structure 1 + dz is still everywhere symplectic.

In the case that σ vanishes in a non-degenerate way, we will not be able to find a
normal form, but we can give an accurate description. First, we take a neighbourhood
centred at the origin of R2 where we can write σ = df . By the degeneracy of σ, f has
a non-degenerate critical point at the origin. We can still modify 1 + idf + iω by
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acting with diffeomorphisms, so the question is to choose coordinates for pairs (f, ω),
where f has a non-degenerate critical point at the origin and ω is symplectic, up to
diffeomorphism. This was studied in [CdVV79] when the Hessian of f at the origin

H(f)(x1, x2) =
1

2

∂2f

∂x2
1

(0, 0)x2
1 +

∂2f

∂x1 ∂x2
(0, 0)x1x2 +

1

2

∂2f

∂x2
2

(0, 0)x2
2,

is non-degenerate as a quadratic form. This is the case in our situation, since σ = df

vanishes in a non-degenerate way. The statement in [CdVV79] can be adapted to our
situation as follows.

Proposition 6.1. Let ρ = 1 + idf + iω be a B2-gcs such that f has a non-degenerate
critical point. Then:

• If the Hessian of f is definite, there exist coordinates p, q such that the B2-gcs is
given by

1 + id(g(p2 + q2)) + idp ∧ dq,

for g a non-zero differentiable real function. Two of these structures are equiv-
alent if they have the same germ of g|[0,+∞) at 0.

• If the Hessian of f is indefinite, there exist coordinates p, q such that the B2-gcs
is given by

1 + id(g(p2 − q2)) + idp ∧ dq,

for g a non-zero differentiable real function. Two of these structures are equiv-
alent if they have the same infinite order jet of g at 0.

We do not deal with f having a degenerate critical point. We just mention, as an
extremal case, that if f is constant around the origin, df = 0 and the B2-gcs is given
by 1 + iω, or in some coordinates, 1 + idx ∧ dy.

6.1.2 Type 1 B2-gcs

If a B2-gcs on a connected manifold is of type 1 in an open set, then it has to be of
type 1 everywhere, as the type change locus is a codimension 2 submanifold.

This structure is locally given by a spinor with no degree zero component, so we
have ρ = ρ1+ρ2. From (ρ, ρ) 6= 0, we get that ρ1∧ρ1 6= 0, so ρ1 defines a complex structure.
We can choose local coordinates (x, y) in such a way that ρ1 = dz for dz = dx+ idy. By
acting with a closed A-field (0, df), we will not be always able to get rid of the degree
2 part ρ2. In conclusion, the B2-gcs is locally given by dz + ρ2, and this structure is
equivalent to dz+ρ′2 if and only if ρ2 and ρ′2 differ by dz∧df , where f is a real function.
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6.1.3 Around a generic non-degenerate type change point

We describe now how a B2-gcs around a type change point m looks like. In a suf-
ficiently small neighbourhood, which we omit for the sake of brevity, the Bn-gcs is
given by a spinor ρ = ρ0 + ρ1 + ρ2 such that

• ρ0(m) = 0 and is non-zero outside m,

• (ρ, ρ) 6= 0,

• ρ is integrable, i.e., dρ = v · ρ for a local v ∈ C∞(EC).

We assume, moreover, the generic condition that the point m is non-degenerate as a
zero of the section of K∗, or, equivalently:

• dρ0(m) is non-zero.

The integrability of ρ outside m is equivalent to the integrability of 1 + ρ1/ρ0 + ρ2/ρ0.
Since the degree 0 component is constant, by Proposition 4.17, integrability corre-
sponds to d(1 + ρ1/ρ0 + ρ2/ρ0) = 0, i.e. d(ρ1/ρ0) = 0. By continuity, this condition is
equivalent to the integrability of ρ.

From (ρ, ρ) 6= 0 at m, we have that ρ1 ∧ ρ1 6= 0 at m and hence ρ1 ∧ ρ1 6= 0 in some
neighbourhood of m, where we will work from now on. Thus, ρ1 defines a complex
structure around m, and the closed form ρ1/ρ0 must be a meromorphic differential
with a pole. This pole is simple since dρ0(m) has maximal rank. Hence, there exist
coordinates such that m corresponds to (0, 0), and ρ1/ρ0 is kdz/z for some k ∈ C∗, which
is the period of the form ρ1/ρ0 around the origin divided by 2πi. Note that k is an
invariant of the B2-gcs, since acting by (B,A) gives the period of ρ1−ρ0Aρ0

, which equals
the period of ρ1/ρ0.

We have just seen how the B2-gcs becomes ρ = z + kdz + hdz ∧ dz, where h is a
complex function. We now study if we can reduce the degree 2 component by acting
with a closed B +A-field. Write z = x+ iy and k = |k|eiθ = |k|(a+ ib), with a = cos θ and
b = sin θ for θ ∈ [0, 2π]. We have, for some complex function v, that

ρ = x+ iy + |k|(a+ ib)(dx+ idy) + (v1 + iv2)dx ∧ dy.

Let an arbitrary closed B +A-field be given by

B′ = Bdx ∧ dy A′ = d

(
f

|k|

)
=
fx
|k|
dx+

fy
|k|
dy,
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for functions B and f . The action of B′ +A′ on the degree 2 component of ρ yields

(v1 + bfx + afy − xB) + i(v2 − afx + bfy − yB).

For this to be zero we need f and B such that(
b a

−a b

)(
fx

fy

)
=

(
xB

yB

)
−

(
v1

v2

)
.

This equation is equivalent to(
fx

fy

)
=

(
b −a
a b

)(
xB

yB

)
+

(
w1

w2

)
,

where w1, w2 are the θ+ π
2 -rotation of v1, v2. This system is solvable in f if and only if

fxy = fyx, i.e.,
bxBy − aB − ayBy + w1y = aB + axBx + byBx + w2x,

or, equivalently,

2aB + a(xBx + yBy) + b(yBx − xBy) = w1y − w2x,

which can be written, by multiplying by x2 + y2, as
(

(ax+ by)∂x + (−bx+ ay)∂y

)(
(x2 + y2)B

)
= (x2 + y2)(w1y − w2x), (6.1)

or, equivalently, in polar coordinates,

(ar∂r − b∂θ)(r2B) = w1y − w2x.

By Appendix C, this equation is solvable for a 6= 0. In this case, we get rid of ρ2

and the B2-gcs is equivalent to ρ′ = ρ′0 + ρ′1. By applying again the above argument
about the meromorphic differential, ρ is diffeomorphic to z+k dz, where k is not purely
imaginary.

6.1.4 Cohomology around generic type change points

By Section 6.1.3, a B2-gcs around a generic type change point is equivalent to an open
set of C containing the origin, which we omit for the sake of brevity, with a B2-gcs
given by the spinor ρ = z + 1

kdz for some k ∈ C∗. We use 1
k instead of k in order to

make the calculations simpler.
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In order to compute the L-cohomology and the L+U-cohomology of this structure,
we first describe frames for L and L∗, the element u, its action on C∞(∧•L∗), and the
differential dL. Define

∂∨z = (−(kz)2∂z + dz + kz), ∂∨z = (−(kz)2∂z + dz + kz).

We have that

L = span(2∂z , ∂
∨
z ),

L = L∗ = span(2∂z , ∂
∨
z ),

u = 2(kz∂z + kz∂z)− 1.

For the pairing, the frames of L and L∗ satisfy the relations

〈2∂z , ∂∨z 〉 = 1, 〈2∂z , ∂∨z 〉 = 1, 〈2∂z , 2∂z〉 = 0, 〈∂∨z , ∂∨z 〉 = kkzz = |kz|2,

while u is orthogonal to both L and L∗ and satisfies 〈u, u〉 = 1. We compute now the
action of u on C∞(∧•L∗). In this section we use the notation Lu for the infinitesimal
action of u that we denoted by u· in Section 4.5. Its action on a function f is given by

Luf = u · f = 2kzfz + 2kzfz .

Its action on C∞(L∗) is determined by

Lu2∂z = [2kz∂z , 2∂z ] = −2k(2∂z),

Lu∂
∨
z = [2kz∂z ,−(kz)2∂z ] + L2kz∂z

dz + i2kz∂z
d(kz) = 2k∂∨z .

And finally, the action of u on C∞(∧2L∗) is given by

Lu(2∂z ∧ ∂∨z ) = (Lu(2∂z)) ∧ ∂∨z + 2∂z ∧ (Lu∂
∨
z ) = 2(k − k)(2∂z ∧ ∂∨z ).

We do the same for the differential dL. For a function f ∈ C∞(M), dLf is the
projection of df to L. Since df = fzdz + fzdz, we have that

df = fz∂
∨
z + fz∂

∨
z + (kzfz + kzfz)u+ (−k2z2fz − 2|kz|2fz)∂z + (−k2

z2fz − 2|kz|2fz)∂z ,

so
dLf = (−k

2

2
z2fz − |kz|2fz)(2∂z) + fz∂

∨
z .

For an element a2∂z+b∂∨z ∈ C
∞(L∗), where a, b are complex functions, its differential

lies in C∞(∧2L∗), so it is of the form dL(a2∂z + b∂∨z ) = g(2∂z ∧ ∂∨z ) for some function g.
This function satisfies

g = dL(a2∂z + b∂∨z )(∂∨z , 2∂z).
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We compute g by using the formula

dLϕ(l, l′) = π(l)(ϕ(l′))− π(l′)(ϕ(l))− ϕ([l, l′]).

Since [2∂z , ∂
∨
z ] = 0, we have

dL(a2∂z + b∂∨z )(∂∨z , 2∂z) = π(∂∨z )(b)− π(2∂z)(a+ kkzzb)

= −k2z2bz − 2(a+ kkzzb)z

= −k2z2bz − 2az − 2kkzzbz − 2kkzb,

so
dL(a2∂z + b∂∨z ) =

(
− k2z2bz − 2(a+ kkzzb)z

)
(2∂z ∧ ∂∨z ).

One can check at this point, by elementary but tedious calculations, that dLdLf = 0

and dL(u · f) = u · (dLf).

L-cohomology

We describe now the cohomology of the complex (C∞(∧•L), dL). For H0(L), we look at
functions f such that dLf = 0, i.e.,

−k
2

2
z2fz − |kz|2fz = 0, fz = 0.

By plugging the second equation into the first, we have that fz must be zero. Since
fz is also zero, we have that f must be constant, so H0(L) = C[1] ∼= C.

For H1(L) we look at η = a2∂z + b∂∨z ∈ C
∞(L∗), for complex functions a and b, such

that dLη = 0, i.e., such that

− k2z2bz − 2(a+ kkzzb)z = 0, (6.2)

modulo dLf , for a complex function f . In other words, we want to find the constraints
for the existence of f such that

a = −k
2

2
z2fz − |kz|2fz , b = fz . (6.3)

Two obvious constraints are a(0) = 0 and az(0) = 0. We shall show that these are
sufficient. First, we can always find f such that the latter equation is satisfied.
Moreover, f is determined up to the addition of a holomorphic function. With b = fz,
Equation 6.2 says that

a+ |kz|2b+
k2

2
z2fz =: h(z), (6.4)
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is a holomorphic function. As a(0) = az(0) = 0, we can write h(z) = z2gz(z) for a holo-
morphic function g(z). By replacing our initial choice of f with f − 2

k2
g, we have that

both equations in (6.3) are satisfied and a(0) = az(0) are indeed sufficient conditions.
Thus, H1(L) ∼= C2 and we can see it in terms of a basis as:

H1(L) = C[(2∂z)]⊕ C[z(2∂z)].

Finally, for H2(L), we look at C∞(∧2L∗) modulo dL(a2∂z+b∂∨z ). We see that any element
of C∞(∧2L∗), g(2∂z ∧∂∨z ), belongs to the image of dL, by setting a such that az = −g and
b = 0. Consequently, H2(L) = 0.

L+ U-cohomology

We finally deal with L+ U-cohomology. The differential dL+U for the B2-gcs given by
z + 1

kdz can be computed explicitly, as we will do in Remark 6.2. However, we use its
formula in terms of dL and the infinitesimal action of u so we can make use of the
L-cohomology.

For H0(L+ U), let g be a function such that dL+Ug = 0, i.e., such that dLg = 0 and
Lug = 0. From the first condition, as we saw in L-cohomology, g is constant. The
second condition is then trivially satisfied, so H0(L+ U) = C[1] ∼= C.

For H1(L+ U), let c+ fu ∈ C∞(L∗ + U) be such that dL+U (c+ fu) = 0, i.e., such that

dLc = 0, dLf −
1

2
Luc = 0.

We want to find a complex function g such that c+ fu = dL+Ug, i.e.,

c = dLg, f =
1

2
Lug.

First, write c = a(2∂z) + b∂∨z , which is dL-closed. By looking at the (2∂z)-component of
dLf − 1

2Luc = 0, we have

−k
2

2
z2fz − |kz|2fz + ka = 0,

so a(0) = az(0) = 0. These are, as we saw for H1(L), the conditions for the existence of
a function g such that dLg = c. The condition dLf − 1

2Luc = 0 becomes dL(f − 1
2Lug) = 0,

which means f − 1
2Lug is a constant. This constant must be zero, and this is the only

constraint. The class representing this constraint is [u], so that

H1(L+ U) = C[u] ∼= C.
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For H2(L+U), let α+β ∧u ∈ C∞(∧2(L+U)∗), with α ∈ C∞(∧2L∗), β ∈ C∞(L∗), be such
that dL+U (α+ β ∧ u) = 0, i.e.,

dLα = 0,

dLβ +
1

2
Luα = 0.

Since H2(L) = 0, α = dLγ for some γ ∈ C∞(L∗), defined up to addition of a dL-closed
section of L∗. Since dL and Lu commute, from the second equation we have that
β + 1

2Luγ is closed for dL and hence defines a class in H1(L).
We want to know the obstruction to have c+ fu ∈ C∞(L∗ + U) such that

dLc = α,

dLf −
1

2
Luc = β.

From before, we have that α = dLγ, so c must be γ + e, where e ∈ C∞(L∗) is dL-closed.
The second equation is then written as

dLf −
1

2
Lue = β +

1

2
Luγ.

The RHS is dL-closed, as we have seen above, so it defines a class in H1(L), which is
generated by [2∂z ] and [z(2∂z)]. We can still choose a dL-closed e ∈ C∞(L∗). We must
check if −1

2Lue can represent [2∂z ] or [z(2∂z)]. Let e = 2g(2∂z). For e to be dL-closed, g
must be a holomorphic function. Then,

1

2
Lue =

1

2
Lu(2g(2∂z)) = (Lug)(2∂z) + g(Lu)(2∂z) = 2kzgz(2∂z) + g(−2k)(2∂z) = 2k(zgz − g)(2∂z).

By choosing g = 1
k , we get −1

2Lue = 2∂z. Thus, [2∂z ] was a generator in L-cohomology,
but [2∂z ∧ u] becomes trivial in L + U-cohomology. On the other hand, the generator
[z(2∂z) ∧ u] is not trivial, since 2k(zgz − g) = −z would imply gzz = − 1

2kz . Thus we have
H2(L+ U) = C[z(2∂z) ∧ u] ∼= C.

For H3(L + U), let β ∧ u ∈ C∞(∧2L∗ ⊗ U) be such that dLβ = 0, i.e., β is dL-closed.
Since H2(L) = 0, we can find γ ∈ C∞(L∗) such that dLγ = β, so dL+U (γ ∧ u) = β ∧ u, and
β ∧ u is dL+U -exact. Consequently H3(L+ U) = 0.

Summarizing this section, around a type change point:

H0(L) = C[1], H1(L) = C[2∂z ]⊕ C[z(2∂z)], H2(L) = 0,

H0(L+ U) = C[1], H1(L+ U) = C[u], H2(L+ U) = C[z(2∂z) ∧ u], H3(L+ U) = 0.
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Remark 6.2. We give explicit formulae for the differential dL+U on C∞(∧•(L + U)∗).
This differential is determined by the differential dL and the action of u. Altogether,
for a function f ∈ C∞(M), we have

dL+Uf =
(
− k2

2
z2fz − 2|zk|2fz

)
(2∂z) + fz∂

∨
z + (kzfz + kzfz)u.

For an element a2∂z + b∂∨z + gu ∈ C∞(L∗ + U), we have

dL+U (a2∂z + b∂∨z + gu) =(−k2z2bz − 2(a+ kkzzb)z)(2∂z ∧ ∂∨z )

+
(

(−k2z2gz − 2|kz|2gz)∂z + gz∂
∨
z

− (kzaz + kzaz)2∂z + ka(2∂z)− (kzbz + kzbz)∂
∨
z − kb∂

∨
z

)
∧ u.

Reorganizing the terms we get

dL+U (a2∂z + b∂∨z + gu) =(−k2z2bz − 2(a+ kkzzb)z)(2∂z ∧ ∂∨z )

+
(
− k2

2
z2gz − |kz|2gz − kzaz − kzaz + ka

)
(2∂z ∧ u)

+
(
gz − kzbz − kzbz − kb

)
(∂∨z ∧ u).

Finally, for an element h(2∂z ∧ ∂∨z ) + (p2∂z + q∂∨z ) ∧ u ∈ C∞(∧2(L+ U)∗), we have

dL+U (h(2∂z ∧ ∂∨z ) + (p2∂z + q∂∨z ) ∧ u)

=
(

(kzhz + kzhz) + (k − k)h+ (−k2z2qz − 2(p+ kkzzq)z)
)

(2∂z ∧ ∂∨z ) ∧ u

=
(

(kzh)z − k2z2qz + (kzh)z − 2kh− 2(p+ kkzzq)z

)
(2∂z ∧ ∂∨z ) ∧ u.

Again, elementary, although tedious, calculations give that dL+UdL+Uf = 0 and

dL+UdL+U (a2∂z + b∂∨z + gu) = 0.

6.1.5 Type change B2-gcs on surfaces

The existence of a B2-gcs on a surface S implies that the surface must be orientable
as, by Proposition 4.32, S admits an almost complex structure. On the other hand,
assuming that the type change points are non-degenerate, the existence of a point of
type 0 implies that the type is 0 almost everywhere. In order to see this, note that
the type change locus is the zero locus of the section of K∗ defined by the projection
K → ∧0T ∗ ∼= C, and, hence, the type can be 1 only in a set of isolated points. This set
of points is moreover finite when the surface is compact.

Let L be a type-change B2-gcs on a surface S. We have seen in Section 6.1.3 that
around the type change points, with L given by ρ = ρ0 +ρ1 +ρ2, the quotient ρ1

ρ0
defines
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a meromorphic form with a pole. These forms can be put together to define a global
meromorphic form, as ρ and ρ′ define the same B2-gcs if and only if ρ = fρ′ for some
non-zero f ∈ C∞(M). By assuming non-degeneracy on the type change points, this
form has only simple poles, which correspond to the points of type 1. By Stokes’
theorem, a meromorphic form on a compact surface with only simple poles must have
at least two poles. This proves the following proposition.

Proposition 6.3. A B2-gcs on a surface determines a meromorphic form with no
zeroes, and poles on the type change points. In particular, if the surface is compact
with non-degenerate type change points, the B2-gcs cannot have only one type change
point.

A B2-gcs on a compact surface S with non-degenerate type change points deter-
mines a finite collection of points Z = {x1, . . . , xl} ⊂ S, l 6= 1, together with a set of
complex numbers Z ′ = {k1, . . . , kl} and a symplectic structure on M \ Z. They satisfy
that the B2-gcs is locally described, up to (B,A)-equivalence, by z+kjdz (plus possibly
a degree 2 component when kj is purely imaginary) around xj, and by 1 + iω around
any point outside Z. Moreover, by Stokes’ Theorem, we have k1 + . . .+ kl = 0.

On the other hand, we see how the generalized vector field u associated to a
B2-gcs reflects the properties of the B2-gcs. Recall that u gives, by projection to
T , a Poisson vector field πT (u). By looking at the local expressions of u, the vector
field πT (u) vanishes only in two situations: type-change points, and points of type 0

(symplectic + 1-form) where the 1-form vanishes. Moreover, the vector field πT (u)

has closed concentric orbits around a type change point if and only if the invariant k
associated to that point is purely imaginary, case in which we cannot get rid of the
degree 2-component of the local spinor.

6.1.6 Example: L+ U-cohomology of dz
z on CP1

One of the simplest example of a type change B2-gcs is the meromorphic form on
CP1 ∼= C ∪ {∞} given by dz

z on C and by −dww on C∗ ∪ {∞}, for w = 1
z . We compute the

L+U-cohomology for this example by using the Mayer-Vietoris sequence. In order to
do this, we need to know the effect of restricting L + U-cohomology of a ball around
a type change point to an annulus that no longer contains the type change point.

Lemma 6.4. Let V ⊂ C2 be a ball containing the origin with a B2-gcs given by z+ 1
kdz.

Let W = C2 \ 1
2V , in such a way that V ∩W is an annulus around the origin. The maps

H1(V,L+ U)→ H1(V ∩W,L+ U)
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H2(V,L+ U)→ H2(V ∩W,L+ U)

have trivial kernel and 1-dimensional image.

Proof. The B2-gcs on V ∩W is a symplectic structure, so

H1(V ∩W,L+ U) ∼= H1(V ∩W,C)⊕H0(V ∩W,C) ∪ u,

where we use the notation H0(V ∩W,C) ∪ u to keep track of the fact that this is an
element in the first group of L+ U-cohomology. The only generator of H1(V,L+ U) is
[u], which restricted to V ∩W gives [1] ∪ u ∈ H0(V ∩W,C) ∪ u.

In order to deal with H2(V ∩ W,L + U), where the structure is equivalent to a
symplectic one, we need to understand better the isomorphisms

H2(V ∩W,L+ U) ∼= H2(V ∩W,L)⊕H1(V ∩W,L) ∪ u ∼= H2(V ∩W,C)⊕H1(V ∩W,C) ∪ u.

In the annulus V ∩W , the B2-gcs is given by the spinor 1+k dzz which is a B+A-transform
of 1 by (0,−k dzz ):

1 + k
dz

z
= (0,−kdz

z
)1.

The subbundle L then equals (0,−k dzz )TC, and the L-cohomology is just the (0,−k dzz )-
transform of the usual de Rham cohomology H1(V ∩W,C), so we expect it to be 1-
dimensional in the annulus. In terms of the complex basis, the generator of H1(V ∩W,C)

is given by [dzz ].
Since the group H2(V,L+ U) is generated by [z(2∂z) ∧ u] ∼= [z(2∂z)] ∪ u, we just have

to look at the map H2(V,L + U) → H1(V ∩W,C) ∪ u. The generator [z(2∂z)] ∪ u can be
seen as an element of the usual De Rham cohomology by pre-acting with (0,−k dzz ):

〈z(2∂z), (0,−k
dz

z
)X〉 = 〈z(2∂z), X +

k2

z2
iXdz dz −

k

z
iXdz〉 =

2k2

z
iXdz

Thus, [z(2∂z)∧ u] corresponds to [2k2 dz
z ]∪ u, whose restriction to V ∩W is a multiple of

the generator of H1(V ∩W,C).

Proposition 6.5. Let L be the B2-gcs on CP1 given by dz
z and −dww . We have that the

dimensions of H0(CP1, L+U), H1(CP1, L+U) and H2(CP1, L+U) are, respectively, 1, 1

and 2.

Proof. Take V = C and W = C∗ ∪ {∞}. From the Mayer-Vietoris sequence for L + U-
cohomology we have

. . .→ H1(V,L+ U)⊕H1(W,L+ U)
β−→ H1(V ∩W,L+ U)

∂−→
∂−→ H2(CP1, L+ U)

α−→ H2(V,L+ U)⊕H2(W,L+ U)
γ−→ H2(V ∩W,L+ U).
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To the right of H2(CP1, L + U), we have that H2(CP1, L + U) maps onto the image of
α, which is the kernel of H2(V,L + U) ⊕ H2(W,L + U) → H2(V ∩W,L + U). To the left
of H2(CP1, L + U), the kernel of α is the image of ∂, which is, in turn, isomorphic to
H1(V ∩W,L+ U) over Ker(∂), or equivalently, over Im(β). We thus have

0→ H1(V ∩W,L+ U)

Imβ
→ H2(M,L+ U)→ Ker(γ)→ 0. (6.5)

We have that V ∩W = C∗, hence homotopic to a circle, and the restriction of the
B2-gcs to V ∩W is a symplectic structure plus a 1-form. From the end of Section 4.5,

H1(V ∩W,L+ U) ∼= H1(V ∩W,C)⊕H0(V ∩W,C) ∼= C⊕ C

H2(V ∩W,L+ U) ∼= H2(V ∩W,C)⊕H1(V ∩W,C) ∼= 0⊕ C.

By the proof of Lemma 6.4, both H2(V,L+U) and H2(W,L+U) map onto the generator
of H2(V ∩W,L+U), so Ker(γ) is 1-dimensional. Analogously, H1(V,L+U) and H1(W,L+U)

both map onto H0(V ∩W,C) ⊂ H1(V ∩W,L+U), so Imβ is 1-dimensional. The sequence
(6.5) becomes

0→ C→ H2(M,L+ U)→ C→ 0,

and hence dimH2(CP1, L+ U) ∼= C2.
By analogous calculations H1(CP1, L+ U) ∼= C and H0(CP1, L+ U) ∼= C.

6.1.7 Meromorphic 1-forms on a Riemann surface

In the previous section, we have seen that a type-changing B2-gcs on a compact surface
defines a meromorphic 1-form. In this section we see how any meromorphic 1-form
determines a B2-gcs after acting with a suitable imaginary B-field.

Given a meromorphic 1-form η with zeroes and poles on a Riemann surface, it is
possible to define a B2-Calabi Yau structure by perturbing the form around the zeroes,
but keeping all the original information around the poles. Recall that a B2-Calabi
Yau structure is a B2-gcs globally given by a spinor.

Consider the differential form of mixed degree ρ = 1 +η. Outside the zeros and the
poles of η, the form ρ defines a B2-gcs, since η is closed. However, that is not the case
either on the zeros of η, as (ρ, ρ) = 0, nor on the poles of η, where ρ is not well defined.

First, we extend ρ to the poles of η. In a suitable chart around a pole, ρ looks
like 1 + k dz

zt
, where t is the order of the pole. The B2-gcs given by zt + kdz extends the

previous one, since it is a multiple of it. Note that we get a non-degenerate generic
type change point if and only if t = 1. This process is uniquely determined by the
form η.
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And second, in a sufficiently small open neighbourhood around a zero of η, we act
by a suitable imaginary non-vanishing B-field iB supported on a compact neighbour-
hood inside the open neighbourhood. If, in a suitable chart, ρ is given by 1 + kztdz for
some t > 0, choose B such that B > |k|2|z|2t. The perturbed (1 + iB)ρ is locally given
by (1 + iB)(1 + kztdz) and satisfies (ρ, ρ) 6= 0, i.e., defines a B2-gcs, as B is closed.

The action around all the zeroes can be put together in a single 2-form B in such
a way that

(1 + iB)(1 + η)

defines a B2-gcs, which is indeed a B2-Calabi Yau structure. Since B is supported
only around the zeroes of η, it does not affect the rest of the points. Note, though,
that the choice of B is not unique.

6.2 3-manifolds

In this section we make some considerations about B3-gcs. We start by showing that
the behaviour is very different to B2-gcs by finding a normal form around a type 0

point. Recall that this was not possible for B2-gcs (Section 6.1.1
Let L be a B3-gcs on a 3-manifold M . Let m ∈M be a point of type 0 for L. Since

being type 0 is an open condition, there exists a neighbourhood of m where L is of
type 0. By Proposition 4.17, L is equivalent to the annihilator of ρ = 1 + iσ + iω + ρ3,
where σ is a closed 1-form and ω is a closed 2-form. By the purity of ρ, (ρ, ρ) = 0, we get
ρ′3 = −σ∧ω, so the spinor becomes 1+iσ+iω−σ∧ω. Moreover, by the condition (ρ, ρ) 6= 0,
the 3-form a ∧ ω is a non-vanishing 3-form. This proves the following proposition.

Proposition 6.6. A B3-gcs around a type 0 point is equivalent to a neighbourhood of
the origin in R3 with the B3-gcs given, in local coordinates (q, r, s) of R3, by the spinor

ρ = 1 + idq + idr ∧ ds− dq ∧ dr ∧ ds.

6.2.1 The B3-gcs z + dz + idr ∧ dz

We look at z + dz + idr ∧ dz as an example of a type change B3-gcs. In this case, the
subbundles and the derivation u are given by

L = span(∂z , z∂r − idz, z∂z + i∂r + idr − 1)

L = span(∂z , z∂r + idz, z∂z − i∂r − idr − 1)

u = iz∂z − iz∂z + ∂r − dr
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Note that u is real, u · ρ = iρ and 〈u, u〉 = −1.
We look now at the integrability of the B3-gcs in terms of ρ. We see that the

generalized vector field v = −i∂r satisfies dρ = v · ρ. We modify v so it has a real
projection to L + L∗. First, we have 〈v, u〉 = i

2 , so πU (v) = − i
2u. The field v + i

2u is a
section of L+ L∗. In order to compute πL∗(v + i

2u), we first observe that

v +
i

2
=

1

2

(
− z∂z − i∂r − idr + z∂z

)
=

1

2

(
− (z∂z + i∂r + idr − 1) + z∂z − 1

)
,

so πL∗(v + i
2u) = πL∗(−1

2 ). By

−1

2
=

1

4

(
z∂z + i∂r + idr − 1

)
− 1

4
z∂z +

1

4

(
z∂z + i∂r − idr − 1

)
− 1

4
z∂z ,

we have
πL∗(−

1

2
) =

1

4

(
z∂z + i∂r − idr − 1

)
− 1

4
z∂z .

dρ =
(
− 1

2

)
· ρ+

1

2
ρ.

6.2.2 Type change locus on 3-manifolds

Type change in D4-geometry were first studied in detail in [CG07] and [Tor12].
Non-degenerate type change can only occur in even D4-gcs along codimension 2-
submanifolds which are moreover elliptic curves, i.e., the type change locus is a col-
lection of tori.

The equivalent statement for B3-gcs is that type change occurs along a collection
of circles. This fact opens many interesting questions: could these circles be knotted?,
is there any constraint on the number of circles?, is there any constraint on the way
they are linked to each other?

We give an interesting example in this respect. Consider S3 ⊂ C2 given by

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}.

The action of S1 = {eiθ}θ∈R on S3 given by eiθ · (z1, z2) = (eiθz1, e
iθz2) exhibits S3 as the

Hopf fibration, with fibre S1 and base S2. The projection to S2 is given by

p : (z1, z2) 7→ (|z1|2 − |z2|2, 2Re(z1z2), 2Im(z1z2)).

For a point m = p(z1, z2) ∈ S2, the preimage p−1(m) consists of {(eiθz1, e
iθz2)}θ∈R, which

is a circle. Moreover, any two of these circles are linked.
The type change D4-gcs z1z2 + dz1 ∧ dz2 reduces to a B3-gcs structure on S3, given

by the same spinor. The type change locus of this B3-gcs consists of the points where
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z1z2 = 0, i.e., consists of the circles {z1 = 0, |z2| = 1} and {z2 = 0, |z1|2 = 1}, which are
the fibres over the points (−1, 0, 0), (1, 0, 0) ∈ S2 respectively. We thus see that the type
change locus consists of two circles, which are moreover linked, since they are fibres
of the Hopf fibration.
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Chapter 7

G2
2-structures on 3-manifolds

In Dn-geometry, for a manifold M of dimension n = 2m, a generalized Calabi-Yau
structure is defined in [Hit03] as a global complex closed form ϕ that is either even or
odd which is a pure spinor and satisfies (ϕ, ϕ̄) 6= 0. This structure defines a reduction
of SO(2m, 2m) to the stabilizer of the spinor field, SU(m,m).

In Bn-geometry, for a 3-manifold, we pointwise have a seven-dimensional general-
ized tangent space with an inner product of signature (4, 3). Its space of spinors is
eight-dimensional and equipped with a signature (4, 4) inner product. In this setting,
pure spinors correspond to null spinors with respect to the inner product, while non-
pure spinors correspond to non-null spinors. Moreover, up to scalar multiplication,
there are only two orbits under the action of Spin(4, 3): the null ones and the non-null
ones. Hence, all non-null spinors have isomorphic stabilizers. While the stabilizer of
a non-zero spinor in Spin(7) is the compact exceptional Lie group G2, for the group
Spin(4, 3), the stabilizer of a non-null spinor is its non-compact real form G2

2 ⊂ GC
2 .

The study of the structure given on a 3-manifold by a section of ∧•T ∗M consisting of
closed non-null spinors motivates the following definition.

Definition 7.1. A G2
2-generalized structure on a 3-manifold M is an everywhere non-

null section of the real spinor bundle, ρ ∈ Ω•(M), such that dρ = 0. For the sake of
brevity, we call them G2

2-structures.

Remark 7.2. Given a section ρ ∈ Ω•(M) consisting of closed null spinors, its annihilator
Ann(ρ) ⊂ T +T ∗+ 1 defines an integrable real Dirac structure, i.e., a maximal isotropic
subbundle of T+T ∗+1 involutive with respect to the Courant bracket. The involutivity
is a consequence of the closeness of ρ, as in Proposition 1 of [Hit03].
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7.1 Existence of G2
2-structures

From the non-nullity condition we have that (ρ, ρ) = 2(ρ0ρ3 − ρ1 ∧ ρ2) defines a volume
form on M , so G2

2-structures only exist over orientable manifolds. In fact, given any
volume form ω, c + ω defines a G2

2-structure for any constant c 6= 0. Since ρ is closed,
the function ρ0 must be a constant.

From now on, M will denote a compact orientable 3-manifold. Let GDiff+(M) be the
group of orientation-preserving generalized diffeomorphisms, as defined in Proposition
2.5.

Proposition 7.3. Up to GDiff+(M)-equivalence, a G2
2-structure ρ with ρ0 6= 0 on M

1. is of the form c+ ω for c 6= 0 and ω a volume form, and

2. is completely determined by the cohomology classes

([ρ0], [(ρ, ρ)]) ∈ (H0(M,R) \ {0})⊕ (H3(M,R) \ {0}).

Proof. Let ρ = ρ0 + ρ1 + ρ2 + ρ3 be a G2
2-structure with ρ0 6= 0. It is equivalent, by the

action of the closed B +A-field
(
−ρ1ρ0 ,−

ρ2
ρ0

)
to

ρ0 +
1

ρ0
(ρ0ρ3 − ρ1 ∧ ρ2) = ρ0 +

1

2ρ0
(ρ, ρ),

which is of the form c + ω for c 6= 0 and ω a volume form, as stated in the first part.
By Moser’s theorem ([Mos65]), any two volume forms in the same cohomology class
are diffeomorphic.

We deal now with the existence of G2
2-structures with ρ0 = 0.

Proposition 7.4. If a compact 3-manifold is endowed with a G2
2-structure such that

ρ0 = 0, then it is diffeomorphic to the mapping torus of a symplectic surface by a
symplectomorphism. Conversely, any such mapping torus can be endowed with a G2

2-
structure with ρ0 = 0.

Proof. From ρ0 = 0 and (ρ, ρ) 6= 0 we get ρ1 ∧ ρ2 6= 0, so we have nowhere vanishing
closed 1-forms and 2-forms ρ1 and ρ2. We can perform a small deformation on ρ1 to
give it rational periods (as shown for instance in [Tis70]). A suitable multiple has
integral periods and defines a fibration π : M → S1. To define π, take a base point
m ∈ M and let π(x) = e

2πi
∫
c(t) ρ1dt where c(t) is any curve joining m and x. Let X be

the unique vector field satisfying iXρ2 = 0 and iXρ1 = 1 (so it is transversal to the
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fibration, dπ(X) 6= 0). Integrate the vector field X to a one-parameter subgroup of
diffeomorphisms {ft} such that f0 = id. Let S be the fibre over the point m ∈ M . By
the transversality, we have that M is diffeomorphic to the mapping torus of f1, i.e.,
the manifold

S × [0, 1]

{(x, 0) ∼ (f1(x), 1)}x∈S
.

The diffeomorphism is given by [(y, t)] 7→ ft(y) ∈ M . Furthermore, LXρ2 = d(iXρ2) = 0,
so f∗t ρ2 = ρ2 and the fibres have a symplectic structure given by the restriction of
ρ2, which is closed and non-degenerate in every fibre ft(S). Thus, S is a symplectic
manifold and f1 is a symplectomorphism.

For the second part, let Mf be the mapping torus of an orientable surface (S, ω) by
a symplectomorphism f . We define a 2-form ρ2 on Mf as the form which is fibrewise
ω. The form ρ2 is well defined since f∗ω = ω. Let ρ1 be the pullback of a non-vanishing
1-form over the circle. The form ρ1 + ρ2 then defines a G2

2-structure on Mf .

Lemma 7.5. The mapping torus of an orientable surface S by an orientation-preser-
ving diffeomorphism is diffeomorphic to the mapping torus of S by a symplectomor-
phism.

Proof. Let f be the orientation-preserving diffeomorphism and let ω be a volume
form of the surface S. The 2-forms f∗ω and ω have the same volume and hence
define the same cohomology class in H2(S,R). We apply Moser’s argument ([Mos65])
to the family ωt = tω + (1 − t)f∗ω, so we get a family of diffeomorphisms {ϕt}, with
ϕ0 = id, such that ϕ∗tωt = ω. Then, we have that (ϕ1 ◦ f)∗ = ϕ∗1f

∗ω = ω, i.e., ϕ1 ◦ f is
a symplectomorphism, and {ϕt ◦ f} defines a diffeotopy between f and ϕ1 ◦ f which
makes the mapping torus of f diffeomorphic to the mapping torus of ϕ1 ◦ f .

The following theorem is a consequence of the two previous results.

Theorem 7.6. A compact 3-manifold M admits a G2
2-structure with ρ0 = 0 if and

only if M is the mapping torus of an orientable surface by an orientation-preserving
diffeomorphism.

Remark 7.7. From a G2
2-structure with ρ0 = 0 on a 3-manifoldM we define a symplectic

structure on M×S1 by ρ2+ρ1∧dθ, where dθ denotes the usual 1-form on S1 and we really
mean the pullbacks of forms on M and S1 to M × S1. More generally, the condition
that a 3-manifold M fibres over the circle is equivalent to the existence of a symplectic
structure on M × S1, as addressed in [FV11].
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Remark 7.8. After acting by a generalized diffeomorphism, a G2
2-structure ρ with

ρ0 = 0 can be written as ρ1 + ρ2. This is a co-symplectic structure on the 3-manifold
in the sense of [Lib59]. In this context, statements similar to the ones in this section
have been obtained in [Li08].

7.2 Deformation of G2
2-structures

Inspired by the Moser argument for symplectic geometry, we study whether a small
perturbation of a G2

2-structure (on a compact 3-manifold M) within its cohomology
class may change the G2

2-structure up to equivalence by

GDiff0(M) = {f n (B,A) ∈ GDiff(M) | f ∈ Diff0(M), B and A are exact}.

Let ρ0, ρ1 ∈ Ω•(M) be two G2
2-structures representing the same cohomology class,

ρ1 − ρ0 = dϕ, and sufficiently close to have that each form ρt = ρ0 + t(ρ1 − ρ0) is a
G2

2-structure, i.e., (ρt, ρt) 6= 0, for 0 ≤ t ≤ 1. We would like to have a one-parameter
family of generalized diffeomorphisms {Ft} such that F ∗t ρ

t = ρ0, making equivalent
all the G2

2-structures between ρ0 and ρ1. We will be looking for {Ft} coming from a
time-dependent generalized vector field {Xt + ξt +λt}. By differentiating F ∗t ρt = ρ0 and
using Cartan’s formula, we have

0 =
d

dt
[F ∗t ρ

t] = F ∗t

[
dρt
dt

+ LXt+ξt+λtρ
t
]

= F ∗t [dϕ+ d((Xt + ξt + λt) · ρt)] = 0.

So, in order to find such generalized vector fields it will suffice to solve the equation
d((Xt + ξt + λt) · ρt)) = d(−ϕ), or equivalently, to solve the equation (Xt + ξt + λt) · ρt = −ϕ

where we are allowed to modify ϕ by the addition of a closed form depending on t.
This latter equation corresponds to ϕ being in the image of the Clifford product of
the sections of the rank 7 vector bundle T + T ∗ + 1 by ρt. The spinor ρt defines a map
T+T ∗+1→ ∧•T ∗M . Since ρt is non-null, this map is injective (the annihilator of a non-
null spinor is trivial). From the antisymmetry of the Clifford product with respect
to the pairing, (vm · ρtm, ρtm)m = 0, where vm and ψm lie over m ∈ M , and the image is
{ρt}⊥ = {ψ ∈ ∧•T ∗M | (ρt, ψ) = 0}. Thus, ρt defines an isomorphism between the rank 7

vector bundles T+T ∗+1 and {ρt}⊥. Consequently, for the equation (Xt+ξt+λt)·ρt = −ϕ

to have a solution and then apply the Moser argument, we must have ϕ ∈ C∞({ρt}⊥).

Proposition 7.9. Any sufficiently small perturbation {ρt} within the cohomology class
of a G2

2-structure ρ0 such that ρ0
0 6= 0 is equivalent to ρ0 under the action of the group

GDiff0(M).
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Proof. We have that ρt0 = ρ0
0 6= 0. Since we can add any closed form to ϕ, we can

arbitrarily modify its degree 3 part. The Moser argument applies by setting ϕt3 =

− 1
ρ00

(ρt, ϕo + ϕ1 + ϕ2), so that we have (ρt, ϕt) = 0.

When ρ0 = 0, the result remains true but involves some technicalities.

Lemma 7.10. Let ρ be a G2
2-structure with ρ0 = 0 and [ρ1] ∈ H1(M,Q). There exists

an operator R : Ω•(M)→ Ω•cl(M) such that ϕ+Rϕ ∈ C∞({ρ}⊥).

Proof. By considering a multiple of ρ we can consider [ρ1] ∈ H1(M,Z). By Proposition
7.4, M fibres over the circle with fibre S. First, define the constant c = [(ρ, ϕ)]/[ρ1 ∧ ρ2].
Add the closed form cρ2 to ϕ; then the cohomology class of (ρ, ϕ + cρ2) is trivial.
Thus, (ρ, ϕ + cρ2) = dα for some 2-form α. Choose a metric on M . Using the Hodge
decomposition, the codifferential d∗ and the Green operator G, we may take α =

d∗G(ρ, ϕ′). Integrate α over the fibres to get a function g on the circle. Since ρ1∧ρ2 6= 0,
the fibres are homologous and ρ2 is closed, then

∫
S ρ2 = c′ 6= 0 for any fibre S. Let

f = g/c′. The 2-form α0 = α− fρ2 has zero integral along the fibres. The metric on M

induces a metric on any fibre S, for which we define the codifferential d∗S, harmonic
operator HS and Green operator GS such that

α0|S = HSα0|S + dS(d∗SGSα0|S) + d∗S(dSGSα0|S).

For degree reasons, dSGSα0|S = 0, and from
∫
S α0|S = 0, HSα0|S = 0. We then have,

over each fibre S, α0|S = dSβ where β = d∗SGSα0|S. Since the metric on M determines a
smoothly varying family of metrics over the fibres, we have a globally smooth 1-form
β such that α0 − dβ is zero restricted to a fibre.

Let X be the vector field transversal to the fibration such that iXρ1 = 1, and let
γ = −iX(α0 − dβ). We have that α0 − dβ = γ ∧ ρ1. By differentiating this expression we
get

dα = d(α0 + fρ2) = df ∧ ρ2 + ρ1 ∧ dγ.

Define Rϕ = cρ2 + df + dγ ∈ Ω•cl(M). Since c, f and γ have been uniquely defined, R

defines an operator on differential forms. We have by construction that (ρ, ϕ+Rϕ) = 0,
i.e., ϕ+ Rϕ ∈ C∞({ρ}⊥).

Let Qϕ ∈ C∞(T + T ∗ + 1) be the unique generalized vector field such that Qϕ · ρ =

−(ϕ+ Rϕ). Thus Q defines an operator Ω•(M)→ C∞(T + T ∗ + 1).

Proposition 7.11. Any sufficiently small perturbation {ρt} within the cohomology
class of a G2

2-structure ρ0 such that ρ0
0 = 0 is equivalent to ρ0 by GDiff0(M).
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Proof. When [ρ0
1] ∈ H1(M,Q), we use Lemma 7.10 to produce an operator Rt for each

ρt and we define ϕt = ϕ+ Rtϕ, so that (ρt, ϕt) = 0 and the Moser argument applies.
For the general case, we prove an analogous result in a neighbourhood of a G2

2-
structure with rational degree 1 part and use a density argument. We drop the
superindex t for the sake of brevity. Consider ρ + λβ, with λ > 0 and β ∈ Ω•cl(M) such
that β0 = 0. We want to solve the equation v · (ρ + λβ) = −ϕ up to addition of closed
forms. To do that, consider

(v0 + λv1 + λ2v2 + . . .) · (ρ+ λβ) = −(ϕ+ Rϕ+ λγ1 + λ2γ2 + . . .), (7.1)

for closed forms γi. We solve it iteratively, starting with v0 · ρ = −ϕ + Rϕ, which
has solution v0 = Qϕ. We then have v1 · ρ = −(Qϕ · β + γ1). We define the operator
P : Ω•(M) → Ω•(M) by Pϕ = Qϕ · β and consider γ1 = RPϕ. The equation becomes
v1 ·ρ = −(Pϕ+RPϕ), whose solution is v1 = QPϕ. For j ≥ 2 we have vj ·ρ = −vj−1 ·β+γj =

−Pjϕ+ γj. By taking γj = RPjϕ, the solution is given by vj = QPjϕ. We thus obtain a
formal solution of (7.1) by

Q(ϕ+ λPϕ+ λ2P2ϕ+ . . .) · (ρ+ λβ) = −ϕ+ R(ϕ+ λPϕ+ λ2P2ϕ+ . . .).

To see the convergence of the series ϕ+
∑∞
j=1 λ

jPjϕ for λ sufficiently small, we consider
Sobolev spaces Hs(T + T ∗ + 1) and Hs(∧•(M)) with norms || ||s. Since the operator Q is
defined in terms of the Green operator and integration over the fibres, it is bounded,
and so is the operator P. For s sufficiently large and any β such that ||v · β||s ≤ ||v||s,
there exists some constant Cs such that ||Pϕ||s ≤ Cs||ϕ||s.

Take λ such that 0 < λ < 1
2Cs

. Then, ϕ +
∑∞
j=1 λ

jPjϕ is a Cauchy sequence and
converges to a form Φ ∈ Hs(∧•(M)). Equation (7.1) becomes u · (ρ + λβ) = −(ϕ + RΦ)

and a solution is given by QΦ ∈ Hs(T + T ∗ + 1).
We have that for any ρ such that [ρ1] ∈ H1(M,Q), there exists a neighbourhood

for which there is a solution in Hs(T + T ∗ + 1). Since ϕ ∈ Ω•(M) belongs to Hs(∧•(M))

for any s, we have that the solution belongs to Hs for any s. Thus, the series defines
Φ ∈ C∞(∧•(M)), we have that QΦ ∈ C∞(T +T ∗+1) is a solution of u ·ρt = −ϕ up to closed
forms, and the Moser argument applies. Since there exists a solution in an open
neighbourhood of any rational form, by density of the rational forms, there exists a
solution for any closed form ρ and the Moser argument applies.

We summarize Propositions 7.9 and 7.11 in the following theorem.

Theorem 7.12. Any sufficiently small perturbation {ρt} within the cohomology class
of a G2

2-structure ρ0 is equivalent to ρ0 by GDiff0(M).
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7.3 The cone of G2
2-structures

Inspired by the cones of Kähler and symplectic structures inside the second cohomol-
ogy group of a manifold, we raise a similar question for G2

2-structures on compact
3-manifolds. What are the cohomology classes [ρ] ∈ H•(M,R) which have a representa-
tive in Ω•(M,R) defining a G2

2-structure compatible with the orientation of M? From
the homogeneity of the condition (ρ, ρ) > 0, it is clear that these elements form an
open cone in H•(M,R).

Consider a mixed degree cohomology class [ρ] ∈ H•(M,R) satisfying [ρo][ρ3]−[ρ1][ρ2] >

0 ∈ H•(M,R). In the case that [ρ0] 6= 0, i.e., ρ0 6= 0, consider a non-vanishing form ω

representing the degree 3 class [ρoρ3 − ρ1 ∧ ρ2]. Define ρ′ = ρ0 + ρ1 + ρ2 + 1
ρ0

(ω + ρ1 ∧ ρ2),
which satisfies (ρ′, ρ′) = 2ω and is thus a G2

2-structure representing [ρ]. Note that ρ
itself is not necessarily a G2

2-structure.
On the other hand, for a class [ρ] with [ρ0] = 0, i.e., ρ0 = 0, the condition [(ρ, ρ)] =

−2[ρ1][ρ2] > 0 must be satisfied. Moreover, [ρ1] and [ρ2] must be represented by non-
vanishing forms. From Theorem 5 in [Thu86], the set of cohomology classes C1 in
H1(M,R) which can be represented by a non-singular closed 1-form constitutes an
open set described as follows. Define the norm X for ω ∈ H2(M,R) as the infimum
of the negative parts of the Euler characteristics of embedded surfaces defining ω,
and extend this definition to H1(M,R) using Poincaré duality. Namely, the norm of a
1-form ϕ in M is

||ϕ||X = min{χ−(S) | S ⊂M properly embedded surface dual to ϕ},

where χ−(S) = max{−χ(S), 0}. The unit ball for this norm is a polytope called the
Thurston ball BX . The set of 1-cohomology classes C1 represented by non-vanishing
1-forms consists of the union of the cones on some open faces, so-called fibred faces,
of the Thurston ball, minus the origin.

For each element α = [a] ∈ C1, given by a non-singular a, take h ∈ H2(M,R) such
that h∪α > 0. Lemma 2.2 in [FV12] ensures that we can always find a representative
Ω of the class h, such that Ω ∧ a > 0. Hence, if we define

C = {(α, β) ∈ C1 ⊕H2(M,R) | α ∪ β < 0},

we have that the cone of G2
2-structures with ρ0 = 0 in H•(M,R) is given by C⊕H3(M,R).

To sum up, we have the following theorem.

Theorem 7.13. The cone of G2
2-structures, or G2

2-cone, is given by

{[ρ] ∈ H•(M,R) | [ρ0] 6= 0 and [ρ0][ρ3]− [ρ1][ρ2] > 0}
⋃(

C ⊕H3(M,R)
)
.
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7.4 G2
2-structures and B3-Calabi Yau structures

By Definition 4.16, a B3-Calabi Yau structure on a 3-manifold is given by a pure
spinor ρ ∈ Ω•C(M) such that dρ = 0 and (ρ, ρ̄) 6= 0. By taking real and imaginary parts,
Reρ and Imρ, this condition gives

dReρ = dImρ = 0

(Reρ,Reρ) + (Imρ, Imρ) 6= 0.

In dimension 3, since the spinor representation has dimension 8, the purity of the
spinor is equivalent to (ρ, ρ) = 0, or equivalently,

(Reρ,Reρ)− (Imρ, Imρ) = 0

(Reρ, Imρ) = 0.

The last three equations imply (Reρ,Reρ) = (Imρ, Imρ) 6= 0 and (Reρ, Imρ) = 0. Thus, the
real and imaginary parts of a B3-gcs give two orthogonal G2

2-structures Reρ, Imρ of the
same norm, whose integrability is assured by the integrability of ρ.

Equivalently, given any two orthogonal G2
2-structures ρa and ρb of the same length,

the form ρa + iρb defines a B3-Calabi Yau structure.
Note that a B3-Calabi Yau structure defines a reduction of the structure group to

SU(2, 1), which fits into SU(2, 1) ⊂ G2
2 ⊂ SO(4, 3). This is a non-compact version of the

inclusion SU(3) ⊂ G2 ⊂ SO(7).
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Appendix A

Some proofs about T + T ∗ + 1

A.1 Equivariance of the Courant bracket

Recall that the Courant bracket of X + ξ + λ, Y + η + µ ∈ C∞(T + T ∗ + 1) is given by

[X + ξ + λ, Y + η + µ] = [X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ) + µdλ− λdµ+ (iXdµ− iY dλ).

Note that we have the classical Courant bracket [X + ξ, Y + η] together with a form
(µdλ− λdµ) and a function (iXdµ− iY dλ).

Let v = X + ξ+λ and w = Y + η+µ. Since the action of a 2-form B does not involve
terms in λ and µ, we have, from Dn-geometry, that

[eBv, eBw] = eB [v, w] + iY iXdB.

To study the action of an A-field, we use Table A.1, where we omit the column
corresponding to [X,Y ] since it is zero in all the cases. The terms [−iXAA,−iY AA],
[−iXAA,−2µA+ iY A] and [−2λA+ iXA,−iY AA] are clearly zero.

The sum of all the terms of the table is:
− 2iX(dµ)A+ 2iY (dλ)A+ iXd(iY A)− iY d(iXA) + iY d(iXA)A− iXd(iY A)A

+ iXAiY dA− iY AiXdA+ 2λiY dA− 2µiXdA

Since i[X,Y ]A = [LX , iY ]A = iXd(iY A)− iY d(iXA)− iY iXdA, this sum equals

− 2(iXdµ− iY dλ)A+ i[X,Y ]A+ iY iXdA− i[X,Y ]A ·A

− iY iXdA ·A+ iXAiY dA− iY AiXdA+ 2(λiY dA− µiXdA).

We use iY iX(A ∧ dA) = iXAiY dA− iY AiXdA+ iY iXdA ·A to write it as

− 2(iXdµ− iY dλ)A− i[X,Y ]AA+ i[X,Y ]A

+ iY iX(A ∧ dA)− 2iY iXdA ·A+ iY iXdA+ 2(λiY dA− µiXdA).

The second line is zero when dA = 0, so we get the invariance of the Courant
bracket by closed 1-forms, [eAv, eAw] = eA[v, w], or [(0, A)v, (0, A)w] = (0, A)[v, w].
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Since B-fields and A-fields commute, the action of a general element exp(B + A) =

(B,A) is then given by the following result.

Proposition A.1. Let (B,A) ∈ C∞(SO(T + T ∗ + 1)). For sections v = X + ξ + λ and
w = Y + η + µ, we have

[(B,A)v, (B,A)w] = (B,A)[v, w]+iY iX(dB+A∧dA)−2iY iXdA ·A+iY iXdA+2(λiY dA−µiXdA).

A.2 Courant algebroid axioms

In this section we provide a direct proof of the Courant algebroid axioms of Definition
2.1 for T + T ∗ + 1.

Proposition A.2. For v, w,w′ ∈ C∞(T + T + 1),

[[v, w], w′] + [[w,w′], v] + [[w′, v], w] =
1

3
D
(
〈[v, w], w′〉+ 〈[w,w′], v〉+ 〈[w′, v], w〉

)
.

Proof. By linearity, it is equivalent to show that the identity holds in each of the
following cases:

• v, w,w′ ∈ C∞(T + T ∗). This is the identity for classical generalized geometry
(Proposition 2 in [Hit10b]).

• v = λ,w = µ,w′ = ν ∈ C∞(1). Each term at the LHS is 0 since [λ, µ] = λdµ−µdλ and
[µdλ− λdµ, ν] = 0. The terms at the RHS are also 0 since 〈[λ, µ], µ〉 is the pairing
of a 1-form with a function.

• v = X + ψ,w = Y + η ∈ C∞(T + T ∗), w′ = ν ∈ C∞(1). For the LHS we have

[[X + ξ, Y + η], ν] = i[X,Y ]dν = iXd(iY dν)− iY d(iXdν)

[[Y + η, ν], X + ξ] = −iXd(iY dν)

[[ν,X + ξ], Y + η] = iY d(ixdν),

i.e., the sum is 0. For the RHS we have three interior products of sections of
T + T ∗ with an element of 1, which makes all of them 0.

• v = X + ξ ∈ C∞(T + T ∗), w = µ,w′ = ν ∈ C∞(1). This requires some more of
calculations. Both LHS and RHS equal

1

2

(
νd(iXdµ)− µd(iXdν)

)
− 1

2

(
(iXdν)dµ− (iXdµ)dν

)
.
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Proposition A.3. For v, w sections of T+T ∗+1, such that πT (w) = X, and f ∈ C∞(M),
we have that

[v, fw] = f [v, w] + (Xf)w − (v, w)df

Proof. As in the previous lemma, we split the proof into four cases:

• v = X + ξ, w = Y + η corresponds to the result for classical generalized geometry
([Gua04], Prop. 3.18).

• v = λ, w = Y + η. We have [v, w] = −ifY dλ = f(−iY dλ).

• v = X + ξ, w = µ. We have [v, w] = iX(fµ) = fixdµ.

• v = λ, w = µ. We have [v, w] = fµdλ− λd(fµ) = f(µdλ− λdµ)− dfλµ.

Proposition A.4. For v, w, w′ sections of T + T ∗ + 1, such that πT (v) = X, we have
that

X〈w,w′〉 = 〈[v, w] + d〈v, w〉, w′〉+ 〈w, [v, w′] + d〈v, w′〉〉.

Proof. When v, w and w′ are sections of T + T ∗, we have Prop. 3.18 in [Gua04]. By
linearity, it suffices to show it for the following cases:

• v = X + ξ + λ, w = µ, w′ = ν. The RHS is

(iXdµ+ µdλ− λdµ+ d(λµ), ν) + (µ, iXdν + νdλ− λdν + d(λν)) = νiXdµ+ µiXdν.

For the LHS we have

X(µν) = νX(µ) + µX(ν) = νiXdµ+ µiXdν.

• v = X + ξ + λ, w = Y + η, w′ = ν. The LHS is zero, as 〈w,w′〉 = 0. For the RHS we
have −µiY dλ+ µiY dλ = 0.

• v = λ, w = Y + η, w′ = Z + θ. In this case, X = 0 and the LHS is zero. The RHS
consists of two interior products of a section of T +T ∗ with a section of 1, which
always vanish:

〈−iY dλ, Z + θ〉+ 〈Y + η,−iZdλ〉 = 0.
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Propositions A.2, A.3, A.4 together with the properties

π([v, w]) = [π(v), π(w)] 〈Df,Dg〉 = 0

are the axioms of Courant algebroid. Thus, T +T ∗+1, with the projection onto T , the
canonical pairing and the Courant bracket, becomes a Courant algebroid, as claimed
in Proposition 2.3.

A.3 Integration of a one-parameter group of diffeo-
morphisms

We give more details of the infinitesimal action of a one-parameter subgroup of gen-
eralized diffeomorphisms {Ft} = {ftn (Bt, At)} on a generalized vector field. The forms
Bt and At satisfy

a =
dAt
dt |t=0

, b =
dBt
dt |t=0

, A0 = 0, B0 = 0.

The infinitesimal action − d
dt |t=0

Ft ∗(Y + η + µ) corresponds to

− d

dt |t=0

 ft ∗
f−1 ∗
t

f−1 ∗
t


 1

Bt −At ⊗At 1 −2At

At 1


 Y

η

µ



=


− d
dt |t=0

ft ∗Y

− d
dt |t=0

f−1 ∗
t (iY Bt − iY At ⊗At + η − 2µAt)

− d
dt |t=0

f−1 ∗
t (iY At + µ)

 =

 LXY
−iY b+ 0 + LXη + 2µa

−iY a+ LXµ

 ,

where we are using that for ω a form, and ωt a time dependent form, we have

− d

dt |t=0
f−1 ∗
t ω = LXω

d

dt |t=0
f−1 ∗
t ωt = f0 ∗

d

dt |t=0
ωt +

d

dt |t=0
f−1 ∗
t ω0,

so, when ω0 = 0, we just have d
dt |t=0

ft ∗ωt = d
dt |t=0

ωt.
We thus recover, Equation (2.2), i.e.,

(X, b, a) · (Y + η + µ) = LX(Y + η + µ)− iY b+ 2µa− iY a.
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Appendix B

Lemmas for the Maurer-Cartan
equation

This appendix contains results used to prove the Maurer-Cartan equation in Section
5.2. For the sake of convenience, we copy here some identities and results from
Chapters 4 and 5 that we will use.

For two elements e, e′ ∈ C∞(L+ L),

〈u, [e, e′]〉 =
1

2

(
〈[u, e], e′〉 − 〈[u, e′], e〉

)
. (4.3)

For e+ fu, e′ + gu ∈ C∞(L+ L∗ + U),

[e+ fu, e′ + gu] = [e, e′]L+L∗ + f [u, e′]− g[u, e] + (−1)n(gDf − fDg) (4.19)

+

(
fπ(u)(g)− gπ(u)(f) + π(e)(g)− π(e′)(f) +

(−1)n

2
(〈[u, e], e′〉 − 〈[u, e′], e〉)

)
u.

For X,Y ∈ C∞(L), η, µ ∈ C∞(L∗), f, g ∈ C∞(M),

dLη(X,Y ) = [X, η(Y )]− [Y, η(X)]− η([X,Y ]), (5.1)

[gv, f ] = g[v, f ], (5.3)

1

2

(
− dLη(X,Y )− 1

2
[Y, η(X)]

)
, (5.4)

〈[X, η], µ〉 =
1

2

(
[η, µ](X)− [η, µ(X)] +

1

2
[µ, η(X)]

)
. (5.5)

Lemma 5.4. Let B ∈ C∞(∧2L∗), A ∈ C∞(L∗) and X,Y ∈ C∞(L). The Schouten bracket
[B,A] satisfies

[B,A](X,Y ) = [B(X), A(Y )]− [B(Y ), A(X)]− 2〈[B(X), Y ] + [X,B(Y )], A〉
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Lemma 5.5. An alternative identity for the Schouten bracket [B,A] is

1

2
[B,A](X,Y ) = 〈[B(X), A], Y 〉+ 〈[X,A], B(Y )〉 − 1

4
[B(Y ), A(X)]

The first presentation of the Maurer-Cartan equation consists of the two equations

〈[X +B(X)− (−1)nA(X)A+A(X)u,

Y +B(Y )− (−1)nA(Y )A+A(Y )u],

Z +B(Z)− (−1)nA(Z)A+A(Z)u〉 = 0, (5.10)

〈[X +B(X)− (−1)nA(X)A+A(X)u,

Y +B(Y )− (−1)nA(Y )A+A(Y )u],

− (−1)n2A+ u〉 = 0, (5.11)

for X,Y, Z ∈ C∞(L).
We start with the results now.

Proposition B.1. For B ∈ C∞(∧2L∗) and X,Y, Z ∈ C∞(L) we have

2〈[X +B(X), Y +B(Y )], Z +B(Z)〉 = dLB +
1

2
[B,B]

Proof. The expression 〈[X +B(X), Y +B(Y )], Z +B(Z)〉 is clearly skew-symmetric in X

and Y . It is also skew-symmetric on X and Z by (C4), as

0 = π(X +B(X))〈Y +B(Y ), Z +B(Z)〉

= 〈[X +B(X), Y +B(Y )], Z +B(Z)〉+ 〈[X +B(X), Z +B(Z)], Y +B(Y )〉.

Consequently, it is skew-symmetric on X, Y and Z.
By applying distributivity in 2〈[X + B(X), Y + B(Y )], Z + B(Z)〉 we get eight terms,

which we study depending on the number of times that B appears.
With no B we have only one term 2〈[X,Y ], Z〉, which is zero since L is isotropic.

With three B we have again only one term 2〈[B(X), B(Y )], B(Z)〉, which is zero again
by the isotropy of L∗.

With one B we have:

2〈[B(X), Y ], Z〉+ 2〈[X,B(Y )], Z〉+ 2〈[X,Y ], B(Z)〉.

By writing B =
∑
β ∧ β′ and expanding the expression, all the resulting terms have a

factor which is β or β′ acting on X, Y or Z. We look at the terms involving β′(Z):
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- From 2〈[X,Y ], B(Z)〉, we get −β′(Z)β([X,Y ]).

- From 2〈[B(X), Y ], Z〉, we get β′(Z)[β(X), Y ].

- And from 2〈[X,B(Y )], Z〉, we get β′(Z)[X,β(Y )].

These add up to

β′(Z)
(

[X,β(Y )]− [Y, β(X)]− β([X,Y ])
)

= β′(Z)dLβ(X,Y ).

On the other hand, dLB = dL(
∑
β ∧ β′) =

∑
(dLβ ∧ β′ − β ∧ dLβ′). The terms with β′(Z)

in dLB(X,Y, Z) are precisely dLβ(X,Y )β′(Z). By skew-symmetry,

2〈[B(X), Y ], Z〉+ 2〈[X,B(Y )], Z〉+ 2〈[X,Y ], B(Z)〉 = dLB(X,Y, Z).

Looking at the terms involving β′(X) or β′(Y ) would have made the calculations more
complicated.

We pass now to the terms with two B:

2〈[X,B(Y )], B(Z)〉+ 2〈[B(X), Y ], B(Z)〉+ 2〈[B(X), B(Y )], Z〉.

We write B =
∑
β ∧ β′ and B =

∑
γ ∧ γ′ for the two instances that B appears in each

addend. With this notation, all the terms contain β or β′, and γ or γ′, acting on two
elements from X, Y , Z. We look at the terms involving β′(X)γ′(Z):

- From 2〈[X,B(Y )], B(Z)〉, we get β′(X)〈Dβ(Y ), γ′(Z)γ〉 = 1
2 [γ, β(Y )]β′(X)γ′(Z).

- From 2〈[B(X), Y ], B(Z)〉, we get 2〈[β, Y ], γ〉β′(X)γ′(Z) = γ([β, Y ])β′(X)γ′(Z).

- From 2〈[B(X), B(Y )], Z〉, we get −[β, γ(Y )]β′(X)γ′(Z).

Adding all these terms and then using Equation (5.5), we have(
− γ([Y, β])− [β, γ(Y )] +

1

2
[γ, β(Y )]

)
β′(X)γ′(Z) = −[β, γ](Y )β′(X)γ′(Z).

On the other hand,

[B,B] =
[∑

β ∧ β′,
∑

γ ∧ γ′
]

=
∑

β
−←−→β′

γ
−←−→γ′

[β, γ] ∧ β′ ∧ γ′,

Since, β and γ run over the same set, the terms of [B,B](X,Y, Z) with a factor β′(X)γ′(Z)

are −2[β, γ](Y )β′(X)γ′(Z). Hence, by skew-symmetry

2〈[X,B(Y )], B(Z)〉+ 2〈[B(X), Y ], B(Z)〉+ 2〈[B(X), B(Y )], Z〉 =
1

2
[B,B],

and the result follows.
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We move now to lemmas relating the action of A ∈ L∗ ⊗ U to the Courant bracket
and the metric. Depending on the situation we will make use of the notation A ∈ L∗⊗U

or A ∈ C∞(L). Recall that A(X) = A(X)u. We first observe that for X,Y, Z ∈ C∞(L), we
have

〈[A(X), Y ], Z〉+ 〈[X,A(Y )], Z〉+ 〈[X,Y ],A(Z)〉 = 0, (B.1)

since [U,L] ⊂ U + L = L⊥.
In the proofs below we will use that for X ∈ C∞(L) and f ∈ C∞(M), [X, f ] = π(X)(f)

while [X, fu] = [X, f ]u+ f [X,u].

Lemma B.2. Let A ∈ C∞(L∗) and X,Y ∈ C∞(L), we have

〈[A(X)A, Y ] + [X,A(Y )A], A〉 = 0.

Proof. By (C3) and then (5.5),

〈[A(X)A, Y ], A〉 = A(X)〈[A, Y ], A〉+
1

4
A(Y )[A,A(X)] =

1

4

(
A(X)[A,A(Y )] +A(Y )[A,A(X)]

)
.

Analogously, 〈[X,A(Y )A], A〉 = −1
4

(
A(X)[A,A(Y )]+A(Y )[A,A(X)]

)
, and the result follows.

So far, we have dealt with sections of L+L∗ ⊂ L+L∗+U . From now on, the lemmas
will involve the U-component.

Lemma B.3. The sum of the terms in (5.11) involving three times A ∈ C∞(L∗) and
zero times B ∈ C∞(∧2L∗) is zero.

Proof. On the one hand, by applying (5.12) and (5.3), we have

〈[−(−1)nA(X)A,A(Y )u] + [A(X)u,−(−1)nA(Y )A], u〉 = −([A(X)A,A(Y )] + [A(X), A(Y )A])

= −(A(X)[A,A(Y )]−A(Y )[A,A(X)]).

On the other hand, by applying (4.19),

〈[A(X)u,A(Y )u],−2(−1)nA〉 = −2(−1)n〈(−1)n(A(Y )D(A(X))−A(X)D(A(Y ))), A〉

= −(A(Y )[A,A(X)]−A(X)[A,A(Y )]),

which is the opposite to the previous terms. The remaining terms are

〈[−(−1)nA(X)A, Y ],−2(−1)nA〉+ 〈[X,−(−1)nA(Y )A],−2(−1)nA〉

= 2 (〈[A(X)A, Y ], A〉+ 〈[X,A(Y )A], A〉) = 0,

by Lemma B.2. The overall contribution of (A3B0) is thus zero.
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Lemma B.4. For A ∈ L∗ and X,Y ∈ C∞(L) we have

〈[A(X)A, Y ], u〉+ 〈[X,A(Y )A], u〉 − (−1)n〈[A(X)u,A(Y )u], u〉

+ 〈[A(X)u, Y ], 2A〉+ 〈[X,A(Y )u], 2A〉 =
1

2
([u,A] ∧A)(X,Y )

Proof. We have that

〈[A(X)A, Y ], u〉 =
1

2

(
〈[u,A(X)A], Y 〉 − 〈[u, Y ], A(X)A

)
〉 (by (4.3))

=
1

4

(
A(X)[u,A](Y ) +A(Y )[u,A(X)]−A(X)A([u, Y ])

)
(by (C3))

=
1

4

(
A(X)[u,A(Y )] +A(Y )[u,A(X)]− 2A(X)A([u, Y ])

)
.

Analogously, 〈[X,A(Y )A], u〉 = −1
4

(
A(Y )[u,A(X)] +A(X)[u,A(Y )]− 2A(Y )A([u,X])

)
.

The sum of the two first addends is then

− 1

2

(
A(X)A([u, Y ])−A(Y )A([u,X])

)
. (B.2)

On the other hand, by using (C3) and (5.3),

〈−(−1)n[A(X)u,A(Y )u], u〉 =− (−1)n
(
〈[A(X)u,A(Y )]u, u〉+ 〈A(Y )[A(X)u, u], u〉

)
+A(X)〈D(A(Y )), u〉

=−A(X)[u,A(Y )] +A(Y )
(
− [A(X), u]

− 〈D(A(X)), u〉
)

+A(X)〈D(A(Y )), u〉

=
1

2

(
−A(X)[u,A(Y )] +A(Y )[u,A(X)]

)
. (B.3)

And finally, from (C3) and U ⊥ L+ L∗,

〈[A(X)u, Y ], 2A〉+ 〈[X,A(Y )u], 2A〉 =
(
A(X)A([u, Y ])−A(Y )A([u,X])

)
.

Adding together the latter equation, (B.2), (B.3), and using [u,A(X)] = [u,A](X) +

A([u,X]), we get

−1

2

(
A(Y )[u,A](X)−A(X)[u,A](Y )

)
=

1

2
([u,A] ∧A)(X,Y ).

Lemma B.5. For A ∈ C∞(L∗ ⊗ U) and X,Y, Z ∈ C∞(L), we have

(−1)n

2
(dLA ∧A)(X,Y, Z) = 〈[A(X),A(Y )], Z〉+ 〈[A(X), Y ],A(Z)〉+ 〈[X,A(Y )],A(Z)〉

− (−1)n
(
〈[A(X)A, Y ], Z〉+ 〈[X,A(Y )A], Z〉+ 〈[X,Y ], A(Z)A〉

)
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Proof. We look at the RHS. For the first addend, we have, by (4.19),

〈[A(X),A(Y )], Z〉 = 〈[A(X)u,A(Y )u], Z〉

= (−1)n〈(A(Y )D(A(X))−A(X)D(A(Y )), Z〉 =
(−1)n

2
(A(Y )[Z,A(X)]−A(X)[Z,A(Y )]) .

For the second addend, we have, by (C3),

〈[A(X), Y ],A(Z)〉 = 〈[A(X), Y ]u,A(Z)u〉+ 〈A(X)[u, Y ], A(Z)u〉 = (−1)nA(Z)[A(X), Y ],

since [u, Y ] ∈ C∞(L) is orthogonal to A(Z)u ∈ C∞(U). Analogously, for the third addend
of the first line of the RHS we have

〈[X,A(Y )],A(Z)〉 = −(−1)nA(Z)[A(Y ), X].

We move to the terms inside the bracket of the second line of the RHS. The first
addend is, by (C3) and (5.4),

〈[A(X)A, Y ], Z〉 = 〈[A(X), Y ]A,Z〉+A(X)〈[A, Y ], Z〉+
1

2
A(Y )〈D(A(X)), Z〉

=
1

2

(
[A(X), Y ]A(Z) +A(X)

(
− dLA(Y,Z)− 1

2
[Z,A(Y )]

)
+

1

2
A(Y )[Z,A(X)]

)
,

By skew-symmetry, the second addend is

−1

2

(
[A(Y ), X]A(Z) +A(Y )

(
− dLA(X,Z)− 1

2
[Z,A(X)]

)
+

1

2
A(X)[Z,A(Y )]

)
.

For the third addend we have 1
2A(Z)A([X,Y ]). The result follows from regrouping all

the terms and using the identity (5.1):

dA(X,Y ) = [X,A(Y )]− [Y,A(X)]−A([X,Y ]).

Lemma B.6. For B ∈ C∞(∧2L∗), A ∈ C∞(L∗), X,Y, Z ∈ C∞(L),

(−1)n

2

(
[B,A] ∧A)(X,Y, Z)

)
=〈[−(−1)nA(X)A,B(Y )], Z〉+ 〈[B(X),−(−1)nA(Y )A], Z〉

+ 〈[−(−1)nA(X)A, Y ], B(Z)〉+ 〈[X,−(−1)nA(Y )A], B(Z)〉

+ 〈[B(X), A(Y )u], A(Z)u〉+ 〈[A(X)u,B(Y )], A(Z)u〉

+ 〈[B(X), Y ],−(−1)nA(Z)A〉+ 〈[X,B(Y )],−(−1)nA(Z)A〉

+ 〈[A(X)u,A(Y )u], B(Z)〉.
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Proof. We look at the RHS. The terms where Z is not acted on by B or A are

〈[−(−1)nA(X)A,B(Y )], Z〉 = −(−1)n
(
〈[A(X), B(Y )]A,Z〉+ 〈A(X)[A,B(Y )], Z〉

)
,

〈[B(X),−(−1)nA(Y )A], Z〉 = −(−1)n
(
〈[B(X), A(Y )]A,Z〉+ 〈A(Y )[B(X), A], Z〉

)
.

The terms where Z is acted on by B are

〈[−(−1)nA(X)A, Y ], B(Z)〉 = −(−1)n
(
〈A(X)[A, Y ], B(Z)〉+

1

2
A(Y )〈D(A(X)), B(Z)〉

)
〈[X,−(−1)nA(Y )A], B(Z)〉 = −(−1)n

(
〈A(Y )[X,A], B(Z)〉 − 1

2
A(X)〈D(A(Y )), B(Z)〉

)
〈[A(X)u,A(Y )u], B(Z)〉 = (−1)n〈A(Y )D(A(X))−A(X)D(A(Y )), B(Z)〉

Grouping the terms where A(X) appears and it is not inside a bracket, we have
−(−1)nA(X) times

〈[A,B(Y )], Z〉+ 〈[A, Y ], B(Z)〉+
1

2
〈D(A(Y )), B(Z)〉 =

−
(

[B(Y ), A], Z〉+ 〈[Y,A], B(Z)〉 − 1

4
[B(Z), A(Y )]

)
,

which is −1
2 [B,A](Y,Z) by Lemma 5.5. We thus get (−1)n

2 [B,A](Y,Z)A(X). Analogously,
we get − (−1)n

2 [B,A](X,Z)A(Y ). There are two terms we have not used yet:

−(−1)n〈[A(X), B(Y )]A,Z〉 − (−1)n〈[B(X), A(Y )]A,Z〉.

Added to the terms 〈[B(X), A(Y )u], A(Z)u〉+〈[A(X)u,B(Y )], A(Z)u〉 from Equation (5.10),
we get

(−1)n

2
A(Z)

(
[B(X), A(Y )]− [B(Y ), A(X)]

)
. (B.4)

The only remaining terms are 〈[B(X), Y ],−(−1)nA(Z)A〉+〈[X,B(Y )],−(−1)nA(Z)A〉, which
equal

−(−1)nA(Z)〈[B(X), Y ] + [X,B(Y )], A〉.

Adding this equation to (B.4) we get

(−1)n

2
A(Z)

(
[B(X), A(Y )] + [A(X), B(Y )]− 2〈[B(X), Y ] + [X,B(Y )], A〉

)
,

which is, by Lemma 5.4,
(−1)n

2
[B,A](X,Y )A(Z).

Overall, we have

(−1)n

2

(
[B,A](X,Y )A(Z)+[B,A](Y,Z)A(X)+[B,A](Z,X)A(Y )

)
=

(−1)n

2

(
[B,A]∧A)(X,Y, Z)

)
.

120



Lemma B.7. The sum of the terms in Equation (5.10) involving three times A ∈

C∞(L∗) and zero times B ∈ C∞(∧2L∗) is zero.

Proof. On the one hand, we have some terms that equal A(Z) times (A2B0) in Propo-
sition 5.7, so we get −(−1)nA(Z)([u,A] ∧ A)(X,Y ). On the other hand, the remaining
terms are

(−1)n
(
−
〈

[A(X)A,A(Y )u] + [A(X)u,A(Y )A], Z
〉

+
〈

[A(X)u, Y ] + [X,A(Y )u], A(Z)A
〉)

.

For the first addend inside the bracket we have

〈[A(X)A, u]A(Y ), Z〉 = −A(Y )〈[u,A(X)]A+A(X)[u,A], Z〉 =
A(Y )

2

(
A(Z)[u,A(X)] + [u,A](Z)

)
,

and analogously,

〈−(−1)n[A(X)u,A(Y )A], Z〉 = −A(X)

2

(
[u,A(Y )] + [u,A](Z)

)
.

On the other hand, the second term is

A(Z)

2

(
A(X)A([u, Y ])−A(Y )A([u,X])

)
.

By adding the last three expressions and using the identity [u,A(X)] = [u,A](X) +

A([u,X]) we get

(−1)nA(Z)(A(Y )[u,A](X)−A(X)[u,A](Y )) = (−1)nA(Z)([u,A] ∧A)(X,Y ).

Lemma B.8. The sum of the terms in Equation (5.10) involving four times A ∈

C∞(L∗) and zero times B ∈ C∞(∧2L∗) is zero.

Proof. First we look at the terms involving −(−1)nA ·A and two 1-forms A:

− (−1)n (〈[A(X)A,A(Y )u], A(Z)u〉+ 〈[A(X)u,A(Y )A], A(Z)u〉+ 〈[A(X)u,A(Y )u], A(Z)A〉)

= −A(Z)

(
[A(X)A,A(Y )] + [A(X), A(Y )A] +

1

2
(A(Y )[A,A(X)]−A(X)[A,A(Y )])

)
= −A(Z)

(
A(X)[A,A(Y )] +A(Y )[A(X), A] +

1

2
A(Y )[A,A(X)]− 1

2
A(X)[A,A(Y )]

)
= −A(Z)

2

(
A(X)[A,A(Y )]−A(Y )[A,A(X)]

)
From the terms involving −(−1)nA ·A twice, we first look at

〈[−(−1)nA(X)A,−(−1)nA(Y )A], Z〉 =
(
〈[A(X)A,A(Y )]A+ [A(X)A,A]A(Y ), Z〉

)
=

1

2

(
A(X)A(Z)[A,A(Y )] +A(Y )A(Z)[A(X), A]

)
,
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which is exactly the opposite of the terms above. Finally,

〈[−(−1)nA(X)A, Y ],−(−1)nA(Z)A〉+ 〈[X,−(−1)nA(Y )A],−(−1)nA(Z)A〉

= A(Z) (〈[A(X)A, Y ] + [X,A(Y )A], A)〉

= A(Z)

(〈
[A, Y ]A(X) +

1

2
A(Y )D(A(X)), A

〉
+
〈

[X,A]A(Y )− 1

2
A(X)D(A(Y )), A

〉)
= A(Z)

(
A(X)

(
〈[A, Y ], A〉 − 1

4
[A,A(Y )]

)
−A(Y )

(
〈[A,X], A〉 − 1

4
[A,A(X)]

))
= 0,

since 〈[A,X], A〉 = 1
4 [A,A(X)] by (5.5). Thus, the overall contribution is zero.
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Appendix C

Solving a linear PDE with a
singularity

Let θ ∈ [0, 2π], a = cos θ, b = sin θ. Let g : R2 → R be a real function such that g(0, 0) = 0.
In this appendix we show how to solve the partial differential equation

(ax+ by)fx(x, y) + (−bx+ ay)fy(x, y) = g(x, y), (C.1)

which has a singular behaviour at (0, 0), since the coefficients of the equation vanish.
The value at any point (x, y) of a differentiable function R2 → R vanishing at the

origin is recovered by integrating its derivative along a path joining the origin with
(x, y). Indeed, let γ : (−∞, 0) be a path such that limt→−∞ γ(t) = (0, 0) and γ(0) = (x, y),
we have ∫ 0

−∞

∂

∂t
(g ◦ γ)(t)dt = g(γ(0))− lim

t→−∞
g(γ(t)) = g(x, y)− g(0, 0) = g(x, y).

By choosing γ to be a characteristic curve of the PDE (C.1) and using the chain
rule, we shall find a solution to (C.1).

The characteristic curves are given by the solutions to the system of ODE(
γ′1(t)

γ′2(t)

)
=

(
a b

−b a

)(
x

y

)
.

The matrix
(

a b

−b a

)
has eigenvalues eiθ and e−iθ with eigenvectors (1, i) and (1,−i),

so the general solution is(
γ1(t)

γ2(t)

)
= c1e

eiθt

(
1

i

)
+ c2e

e−iθt

(
1

−i

)
.
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By setting the initial conditions (γ1(0), γ2(0)) = (x, y), we get the solution(
γ1(t)

γ2(t)

)
=
x− iy

2
ee
iθt

(
1

i

)
+
x+ iy

2
ee
−iθt

(
1

−i

)

=
1

2

(
ee
iθt + ee

−iθt −i(eeiθt − ee−iθt)
i(ee

iθt − ee−iθt) ee
iθt + ee

−iθt

)(
x

y

)

For θ ∈
(
−π2 ,

π
2

)
, we have that lim

t→−∞
(γ1(t), γ2(t)) = (0, 0), while for θ ∈

(
π
2 ,

3π
2

)
,

lim
t→+∞

(γ1(t), γ2(t)) = (0, 0). However for θ = ±π2 , the solution (γ1(t), γ2(t)) does not tend to
(0, 0), as the solution is a circle centred at (0, 0) passing through (x, y).

Assume γ ∈
(
− π

2 ,
π
2

)
, so we can use −∞ and 0 as the limits of integration.

Applying the chain rule for this choice of γ we get

g(x, y) =

∫ 0

−∞

∂

∂t
(g ◦ γ)(t)dt =

∫ 0

−∞
∇g(γ(t)) · γ′(t)dt∫ 0

−∞
∇g(γ(t))

(
a b

−b a

)(
x

y

)

= ((ax+ by)∂x + (−bx+ ay)∂y)

∫ 0

−∞
(g ◦ γ(t))dt.

It remains to check that
∫ 0
−∞(g◦γ)(t)dt converges, which is a consequence of g being

differentiable and vanishing at 0. In order to see it, we perform a logarithmic change
of variable t = log s:∫ 0

−∞
(g ◦ γ)(t)dt =

∫ 1

0

(g ◦ γ)(log s)

s
ds =

∫ 1

0

(g ◦ σ)(s)

s
ds,

for (σ1(s), σ2(s)) = σ(s) := γ(log(s)). As g is differentiable and vanishes at 0, we have
that g(x, y) = xg1(x, y) + yg2(x, y) for some differentiable functions g1, g2. Our integral
then becomes∫ 1

0

(g ◦ σ)(s)

s
ds =

∫ 1

0

σ(g ◦ σ)(s)

s
ds =

∫ 1

0

(σ1(s)

s
g1(σ(s)) +

σ2(s)

s
g2(σ(s))

)
ds.

The terms are σ1(s)
s ,

σ1(s)
s are bounded, as the limit when t→ 0 is bounded by L’Hôpital’s

rule, so the integral exists and is finite, thus finishing the proof.

Remark C.1. For the application of this method to Section 6.1.4, we just need one
more observation. Since the coefficients of the PDE are homogeneous linear polyno-
mials, if

lim
(x,y)→(0,0)

g(x, y)

x2 + y2

is finite, we have that
lim

(x,y)→(0,0)

f(x, y)

x2 + y2

is also finite.
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Quick reference

The Courant bracket [X + ξ + λ, Y + η + µ]:

Y η µ

X [X,Y ] LXη − 1
2d(iXη) iXdµ

ξ −LY ξ + 1
2d(iY ξ) 0 0

λ −iY dλ 0 µdλ− λdµ

The B action:

X ξ λ

0 iXB 0

X ξ + iXB λ

The A action:

X ξ λ

0 −2λA iXA

0 −iXA ·A 0

X ξ − 2λA− iXA ·A λ+ iXA
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