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Abstract

Generalized geometry of type B, is the study of geometric structures in
T +T* + 1, the sum of the tangent and cotangent bundles of a manifold
and a trivial rank 1 bundle. The symmetries of this theory include, apart
from B-fields, the novel A-fields. The relation between B,-geometry and

usual generalized geometry is stated via generalized reduction.

We show that it is possible to twist T+7*+1 by choosing a closed 2-form F
and a 3-form H such that dH + F? = 0. This motivates the definition of an
odd exact Courant algebroid. When twisting, the differential on forms gets
twisted by d+Fr+H. We compute the cohomology of this differential, give

some examples, and state its relation with 7-duality when F is integral.

We define B,-generalized complex structures (B,-gcs), which exist both in
even and odd dimensional manifolds. We show that complex, symplectic,
cosymplectic and normal almost contact structures are examples of B,-
gcs. A Bj-ges is equivalent to a decomposition (T+7T*+1)c = L+L+U. We
show that there is a differential operator on the exterior bundle of L + U,
which turns L+ U into a Lie algebroid by considering the derived bracket.

We state and prove the Maurer-Cartan equation for a B,-gcs.

We then work on surfaces. By the irreducibility of the spinor representa-
tions for signature (n+ 1,n), there is no distinction between even and odd
By-gcs, so the type change phenomenon already occurs on surfaces. We

deal with normal forms and L + U-cohomology.

We finish by defining G2-structures on 3-manifolds, a structure with no
analogue in usual generalized geometry. We prove an analogue of the

Moser argument and describe the cone of G3-structures in cohomology.
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Introduction

Generalized geometry is an “approach to differential geometric structures” initiated
by Hitchin in [Hit03] (see also [Hit10al], [Hit10b]|). There, the analysis of a volume
functional led to the study of the geometry of the direct sum of the tangent and
cotangent bundles of a manifold, T + 7*, endowed with a generalization of the Lie
bracket, the Courant bracket.

Naively, one could state that generalized geometry consists of redoing geometry
on this generalized tangent bundle T + 7T*. This bundle comes canonically equipped
with an orientation and a pairing of signature (n,n), so its structure group is SO(n,n).
Together with the Courant bracket, and the projection to T, the generalized tangent
bundle has the structure of a Courant algebroid. Before approaching any structure,
one realizes that the symmetries of our theory have changed: the transformations
preserving both the bracket and the metric are not only the diffeomorphisms, but
also the closed 2-forms, called B-fields. Moreover, the bundle of differential forms
corresponds, up to rescaling, to the spinor bundle for 7+ 7*. Although we will keep
talking about T+7* for the sake of simplicity, it is possible to follow the same program
with a non-trivial extension 7% — E — T, known as an exact Courant algebroid.

A major area of generalized geometry, and also the source of the most illustrative
examples, is generalized complex geometry, developed in [Gua04]. The analogue of
the J-operator of a complex structure is a (generalized) J-operator: an endomorphism
of T+ T* squaring to —1d, which can be defined only on even-dimensional manifolds.
This definition contains as a particular case a usual J-operator T — T, but also a
symplectic form T — T*. Thus, complex and symplectic geometry fit into generalized
complex geometry, after dealing with integrability conveniently. In this respect, a J-
operator is integrable if its Nijenhuis operator vanishes. Equivalently, a generalized
complex structure is given by a maximal isotropic subbundle L c (T + T*)c (the +i-
eigenbundle of 7) such that LNT = 0 which is involutive with respect to the Courant
bracket. The formalism in terms of isotropic subbundles and the fact that maximal

isotropic subspaces are annihilators of pure spinors gives yet another way of describing



generalized complex structures: they are locally given by a differential form of mixed
degree satisfying certain conditions. This is an intuitive way to realize that, since
the spinor representation for a metric of signature (n,n) consists of two half-spinor
irreducible representations, there are two types of generalized complex structures:
even and odd, locally given by even and odd differential forms.

Not only does generalized complex geometry unify complex and symplectic geome-
try, but also introduces a genuinely new structure: there are compact manifolds which
are neither complex nor symplectic, but still admit a generalized complex structure.
The first of these manifolds was found in [CGO7] by performing surgery: 3CP2#19CP2.

A third remarkable phenomenon in generalized geometry is the revival of pre-
viously known but somehow forgotten structures. This is the case of generalized
Kahler structures. Generalized Kéhler geometry was defined ([Gua04|) and shown to
be equivalent to a bihermitian geometry defined in 1984 ([GHR84]). And the state-
ment of this equivalence was indeed followed by many publications about this subject
(see References in [Guald]).

One may actually try to find generalized analogues of any previously known struc-
ture. The relevance that this attempt may have will depend on the outcome: does it
say anything new about known structures?, does it define an interesting new struc-
ture?, is it of any interest for other branches of Mathematics or Theoretical Physics?
Apart from the original generalized Calabi-Yau structures and the successful exten-
sions of complex and Kéahler geometry, there already exist in the literature analogues
to paracomplex ([Wad04]), CR (JLB11]), Sasakian and CRF ([Vai0§]) structures by
using T + T*.

The present thesis goes, though, in a different direction. Adding T* to T was
motivated by the study of a certain functional, but could well have been an arbi-
trary decision justified by the theories obtained. In this sense, adding extra terms
and starting the process again may happen to be a fertile process. For instance, ex-
ceptional generalized geometries involve rather complicated extensions that feature
non-compact exceptional groups and are objects of study because of their suitability
as a language for M-theory within String Theory ([Hul07], [Bar12]).

In this thesis we focus on the simplest possible addition, suggested by Baraglia:
a trivial rank one bundle that we denote by 1. The generalized tangent bundle then
becomes T + T* + 1. It still has a canonical orientation, but the canonical pairing has
signature (n 4+ 1,n), so its structure group is SO(n + 1,n), a real Lie group of Lie type
B,,. Thus, we give the study of T+7*+1 the name of generalized geometry of type B,,

or, for the sake of brevity, B,-geometry. In this sense, generalized geometry of T+ T*
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is referred to as D,-geometry, and classical differential geometry could be referred to
as Ap-geometry.

Chapter [I| deals with the linear algebra of a vector space V @ V* @ R, where one
can observe many of the new features of B,-geometry. First, the orthogonal transfor-
mations preserving a metric of signature (n+1,n) include elements B € A?V* and also
elements A € V*. Second, for the exterior algebra A®V* to become a Clifford module,
we have to define the action of A € R by A -w = A(—1)48%y =: Arw, where w is a pure
degree form in A*V*. The spinor representation then corresponds, up to rescaling, to
the exterior algebra A*V*, and is irreducible, unlike in D,,-geometry.

By-geometry starts in Chapter [2, where we introduce the Courant algebroid T+7*+
1 and see that closed A-fields, i.e., closed 1-forms, do preserve the Courant bracket.
While in D,-geometry, B-fields commute, in B,-geometry, the product of two A-
fields gives a B-field and this product is not abelian. This non-abelianness plays
an important role when parameterizing twisted versions of T+ T* + 1, i.e., Courant
algebroids obtained by gluing local models of T+ 7* + 1. While in D,-geometry
equivalence classes of twisted versions of T+4T* are given by H3(M,R), in B,-geometry

we get a non-trivial extension, denoted by H'(M,Q3%), described by
0— H3(M,R) - H (M, Q%) — {[F] € H*(M,R) | [F]* = 0} — 0.

A global approach to these twisted versions motivates the definition of an odd exact

Courant algebroid as a Courant algebroid E that fits into the exact diagram

where A is a Lie algebroid of rank n + 1 and all the vertical, horizontal and diagonal
rows form a short exact sequence.

For any odd exact Courant algebroid, it is possible to find a closed 2-form F
and a 3-form H satisfying dH + F? = 0 such that the odd exact Courant algebroid is
isomorphic to T+ T* + 1 together with a twisted Courant bracket. This chapter ends
with the answer to the question of how B,,-geometry and D,-geometry relate to each

other. While D,-geometry sits inside B,-geometry in a simple way, B,-geometry is
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obtained from D, i-geometry by the process of generalized reduction introduced in
IBCGO7].

Chapter |3|is devoted to the cohomology coming from a twisted version of T+7* +1.
The differential operator in the bundle of differential forms gets also twisted and
becomes d+ Fr+ H. We compute the cohomology of this differential by using spectral
sequences and matric Massey products, and give some non-trivial examples. We
finish the chapter by showing the relation of this (F, H)-twisted cohomology with T-
duality when F is integral. Chapter [4 develops the theory of B,-generalized complex
geometry. We define a B,,-generalized complex structure (for the sake of brevity, B,-
ges) as a maximal isotropic subbundle L ¢ (T + T* + 1)¢ such that LN L = 0 which
is involutive for the Courant bracket. We have that B,-gcs can be defined both in
even and odd dimensional manifolds. The subbundle L determines a decomposition
L+L*+U = (T+T*+1)c where U is a trivial line bundle generated by a real section u
that acts as a derivation of both L and L*. A B,-gcs is equivalently defined in terms
of an F-operator (Section . This is the best way to see the Poisson structure
that comes with any B,-gcs, for which m7(u) is a Poisson vector field. A B,-gcs can
also be expressed locally in terms of spinors. The fact that there is only one spin
representation makes that B,-gcs are given by differential forms of mixed degree.
The type of a B,-gcs is defined as the least non-zero degree and can increase along a
codimension 2-submanifold. In Section 4.2l we look at extremal minimal and maximal
type and give a description of them. For odd dimensions, n = 2m + 1, we have that
type 0 is equivalent to cosymplectic and type m to normal almost contact, while for
even dimensions, n = 2m, we have equivalences, for type 0 and m, to symplectic and
complex, both together with a 1-form. In Section we deal with the topological
obstructions for the existence of a B,-ges. In Section [£.4] we introduce a way to
construct an odd exact Courant algebroid from a pair of dual Lie algebroids, which
not necessarily form a Lie bialgebroid, together with a compatible derivation. In
Section (4.5 we look at the infinitesimal symmetris of a B,-gcs. This motivates the
definition of a differential on the sections of the exterior bundle A®*(L + U)*, which,
by considering the derived bracket on L + U, turns L + U into a Lie algebroid, as
we described in Section [1.6] Note that L + U is not isotropic, so the restriction of
the Courant bracket does not define a Lie bracket. Chapter |5 mainly deals with the
Maurer-Cartan equation for the deformation of a B,-gcs. We start by deriving some
non-trivial identities involving the Schouten bracket with the Courant bracket. The

Maurer-Cartan equation describes the conditions for eB+4®u[, to be a B,-gcs, where
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L is a Bp-ges, B € C®°(A2L*) and A € ¢*>°(L*). These conditions are

(=" 1

dLA+ ~——[u, Bl + [B, A] = S[u, AN A =0,
1 1

dr,B + i[B’B] + i[u,B} ANA=0,

which can be stated in terms of the Lie algebroid L+ U as
1
dL+U(B+A®u)+§[B+A®U,B+A®u] =0.

Instead of following the path to a Kuranishi deformation space, we just look at the
infinitesimal deformation theory. Unlike in D,-geometry, the infitesimal deformation
theory is not described by a second cohomology of an elliptic complex. The reason
for this is that the equivalence by the action of a real generalized vector field is a
stronger condition than equivalence by dy .y (L* + U), which includes the action of
complex generalized vector fields.

In Chapter [ we look at low dimensions: surfaces and 3-manifolds. One of the main
novelties of B,-geometry with respect to D,-geometry is that type change phenomena
can already occur in surfaces. We first deal with normal forms of Bs-gcs depending
on the type of the points and assuming some genericity conditions. We then move to
the local computation of L-cohomology and L + U-cohomology around a type change
point. We show the relation of By-gcs and meromorphic forms, which allows us to
show that on a compact surface, a Bo-ges with non-degenerate type change points
cannot have only one type change point. We also compute H?(M,L + U) in a simple
example, namely CP! with two type change points. We finish the chapter by making
some considerations about 3-manifolds.

Finally, Chapter [7| deals with a structure that genuinely belongs to Bs-geometry,
a GZ-structure. So far, we have dealt with pure spinors. Dimension 3 is the first
dimension where spinors which are not pure appear. The structure given by a sec-
tion of real non-pure spinors is defined to be a G3-structure, since the stabilizer of
such a spinor is the non-compact real group G3. We characterize these structures,
prove a Moser argument for them, find their cone in the cohomology group and state
their relationship to Bs-generalized Calabi Yau structures. This chapter essentially
corresponds to the previously published work [Rubl3|. The three appendices that
follow just contain some complicated calculations kept aside to ease the reading of
the thesis.

We have focused on several aspects of B,-geometry that are different from ordinary
generalized geometry. There are still more to be discovered. One source will surely be

the B,-version of generalized Kéhler geometry, whose study we leave for future work.



Apart from its own interest, B,-geometry provides the simplest model of a more
general class of Courant algebroids, T+ ad P 4+ T*, where P is a principal bundle over
M. These are, in particular, regular Courant algebroids (JCSX13|) and provide a way
to explore new links to Theoretical Physics. For instance, it has been recently proved
(IGE14]) that there is an equivalence between the equations of motion of Einstein-

Yang-Mills and Heterotic Supergravity and a generalized Ricci flat condition.

vi



Chapter 1

Preliminaries: the linear algebra of
VaV*eR

1.1 The group of symmetries

Let V be a real vector space of dimension n. Consider the vector space V@ V* @ R

endowed with the natural inner product defined by
(X +E+MX +E+N) =ix+ N2,

where X +¢+ ) denotes a general element of Ve V*@R. Note that (X,¢) = (£, X) = Jix¢
and (A, \) = X\2. This inner product has signature (n+1,n), and it is thus preserved by
the Lie group O(n+1,n). We describe its Lie algebra of skew-adjoint transformations,
so(n+1,n), by using block matrices as follows. Take a linear transformation of Vov*oR

given by

SN &S|
S ™
o Q=2

Skew-adjointness of so(n + 1,n) with respect to the inner product implies
<(EX+[3§+7>\)+(BX+F§+C)\)+(AX+Q§+6/\), (X+§+)\)> =0,

for any element X +¢+ X € Vo V*@R. Specializing this equation we get several

constraints:
- From X =0, ¢ =0 we obtain e\ =0, i.e., e = 0.
- From X =0, A = 0 we obtain ¢(8¢) =0, i.e., 3 skew-symmetric.

- From ¢ =0, A = 0 we obtain ix(BX) =0, i.e., B skew-symmetric.



- From X =0 we obtain 3(&(\y)) + Aa& =0, i.e., v = —2a.
- From ¢ =0 we obtain 1(A\CX) +AAX =0, i.e., C = —2A.
- From A = 0 we obtain ¢(EX) + (F&)(X) =0, i.e., F=—-ET.

We thus have that the elements of so(n + 1,n) are matrices

E I} —2«
B —-ET —24 |,
A o 0

where E is an endomorphism of V, B and 3 are skew-symmetric, i.e., B € A2V*,
Ben?V,and AecV*, aecV. Note that we are using the identification of —24: vV — R
with C: R — V*, given by d(1) = —24, and analogously for —2a: V* > Rand v:R — V.

The block matrix decomposition is alternatively expressed by
so(VOV R ZA2(VOV @R) 2 End(V)d A2V @ A2V @V eV
There is a canonical orientation in the vector space V @ V* ® R, since
ALY VS R) 2 A"V @ A"VF @R 2R,

where the last isomorphism is given by (u,v,\) — M u,v) using the natural pairing
between A"V and A"V*. The element 1 € R thus defines a canonical orientation. From
now on, we will talk about SO(n + 1,n) or SO(V @ V* @ R), the group of symmetries
preserving the canonical orientation.

Among the elements of this group of symmetries we find three relevant types:

e B-fields (or the dual g-fields), already present in the symmetries of Vo v*, given

by the exponentiation of B € A2V*:

Id 0 0
exp(B) = B Id 0 |,
0 0 1

e A-fields (or the dual a-fields), a new feature of the linear algebra of Vo vV* @R,

given by the exponentiation of A € V*:

Id 0 0
exp(A) = -A®A Id —24
A 0 1



e GL(V), automorphisms of V. Let the superscript + denote the connected com-
ponent of +1d. By exponentiating an element E € End(V), we get an embedding
of GL*(V) into SO*(V & V* @ R),

et 0 0
exp(E)=| 0 (&)1 0 |,
0 0 0

Correspondingly, the elements in GL™(V) lie in SO~ (V @ V* @ R) in the same
diagonal fashion, and we have an embedding of GL(V) into SO(V & V* @ R).

The combination of B-fields and A-fields gives the B + A-field or (B, A)-transform:

1d 0 0
(B,A):=exp(B+A)=| B-A®A Id —24
A 0 1

which acts on Ve V* @R by
(B,AX +€6+N) =X +E+ixB—2 A —ixyAA+ A +ixA.
The composition law of two of these elements is
(B,A)(B', A= (B+B +AnNA A+ 4.

Note that A-fields do not commute and their product involves a 2-form.

1.2 Maximal isotropic subspaces

Following the agenda of the linear algebra of V@ Vv* for ordinary generalized geometry
(|Gua04]), we look now at the maximal isotropic spaces of V@& V* @ R, since they will
be used to define linear B,,-generalized complex structures in Section . Maximal
isotropic subspaces are subspaces L ¢ V@ V* @R where the metric is null, i.e., {(u,v) =0
for u,v € L, and have the maximal possible dimension among these. Since the metric
has signature (n + 1,n), the maximal dimension possible is n. We describe these
subspaces in the present section. Let 7y, 7+ and ng be the natural projections from
Ve V*eR.

Lemma 1.1. If we have that v = X+&1+ M1, vo = X +&+g belong to the same isotropic
subspace L, then \; = \o. Hence, for any element v, my(v) determines nr(v) and this

defines a map 6 : 7y (L) — R, such that any element of L has the form X + ¢+ 6(X).



Proof. By the isotropy of L, we have that (vy,v1) — 2(v1, v2) + (va,v2) = (A1 — A2)? equals

zero. Therefore, A\; = s ]

Proposition 1.2. Given a subspace W C V, a linear form 6 € W* and ¢ € N2W*, the
subspace
LW, 6,e) ={X +£{+0(X) | X e W, £|W =ixe—ix0d}

1s maximal isotropic. Moreover, any maximal isotropic subspace is of this form.

Proof. To check the isotropy, we calculate the product of two elements:

AX +E+1ix0,Y +n+iyd) =ixn+iyE+2ixdiyd

= ixiyefiy5ix(s+iyi)(€fix(siy5+2ix5iy5 =0.

To check that it is maximal, in the generic element X + ¢ +ixd € L(W,d,¢), X is any
element of the linear subspace W and ¢ € V* is completely determined in W. Thus,
the dimension of L(W,§,¢) is dim W + (n — dim W) = n, and hence maximal.

For the second part, given any maximal isotropic subspace L, define W = /(L)
and ¢ as in Lemma [I.T] If we have X + ¢ +ixd, X + ¢ +ixd € L, their difference ¢ — ¢’
is also in L and must satisfy (Y +n+u, & - €)=Y, ¢ -¢Y=0forany Y +n+ucL,ie.,
¢ —¢ € Ann(my (L)) = Ann(W). Note that W* = V*/ Ann(W) and define ¢ : W — W* by
X — £+ Ann(W), where ¢ is such that X + ¢ +ixd € L. We thus have L = L(W,d,¢). [

Those maximal isotropic subspaces with 6 = 0 correspond to the isotropic sub-
spaces of V@ V*. When furthermore ¢ = 0, we have the subspaces W @ Ann(W). The

following proposition is straightforward to check.
Proposition 1.3. For AcV*, Be N2V* andi: W =V,
(B, A)L(W,d,¢) = exp(B+ A)L(W,0,¢) = L(W,0 +i*A,e + i* AN+ i*B).

Consequently, any isotropic subspace L(W,,¢€) is a (B, A)-transform of L(W,0,0), taking
(B, A) such that i*B =€ and i*A = 6.

1.3 Exterior algebra as spinors

The exterior algebra A®*V* will provide an alternative description of maximal isotropic
subspaces, as we will see in Section [1.3.4] We endow the algebra of differential forms
A*V* with the structure of a Clifford module for the Clifford algebra generated by
V @ V* @R with the inner product defined above,

R(VaeV*eR)

Cli= OV e VT O R) = o R T e T 2 - (YT ET X T e NI
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We first define the involution 7 on the forms A®*V* by

TipE o — o,
where ¢, and ¢_ are respectively the even and odd part of . We define the action
of X+¢6+ M€ VeV @R on ¢ € A*V* by
(X+E+N) - o=ixe+ENp+ AT

When acting twice with the same element we get

(X4+E+N2 o= (X+EX+p+ 2 o +ix(Mre) +EAATY + ATixp + TEA )
= <X+§+)\,X+f+)\><p,
so the action of Vo V* @R extends to an action of the Clifford algebra Cl on A®*V*, and
A*V* becomes a Cl-module. Note that the action of A € R on ¢ € A*V* is defined by
X = Atp. We identify the basis element 1 € R c V@ V* @R with 7, to make clear its
action and to distinguish it from 1 in the field R of the vector spaces V,V* R c V&V*@R.

Note also that 7 commutes with multiplication by even forms and anti-commutes with

multiplication by odd forms.

1.3.1 B + A-fields inside the Clifford algebra

We see now how the Spin group and algebra sit inside the Clifford algebra Cl. Recall
that there exist a map «, with differential dx, defined by

k1 Spin(V & V* @ R) € Cl = SO(V & V* & R)

k(z)(v) =zve™ !, 2 e Spin(V e V*@R),veVaV @R,

di:s0(VaV*®&R)CCl—so(VaV ®&R)
diz(v) =zv—vz =[z,v], z€so(VBV @R, veVaV @R,

where the conjugator and commutator are given by the Clifford product.
We shall see next how the B-fields and the A-fields sit inside the Clifford algebra
and act on A*V*. Let {e;} and {e’} be dual bases of V and V*, respectively. Just as in

the classical case, for ¢! Aed € A2V* C s0(V @ V* @ R) we have de~1(e! Aed) = elel, since

(eleV)e; — ej(e7€’) = (ele; + ejel)ed = e,



and e/e’ vanishes when acting on e, for k # 4,j5. Recall that (ef,e?) = (e;,e;) = 0,
(e; + €' e;+¢') =1 and therefore, ¢ = (e; + €, e; + €')p = (e; + €)% - ¢ = (e'e; + e;e?) - p. We
then have that B = 3 Bije! Aed € s0(V @ V* @ R) corresponds to + 3" Byjele! via dw!

and acts on the exterior algebra by
1 .
B-p= §ZBij6]/\(ei/\<p) =—BAp.
The exponentiation of this action is the action of the B-field
-B Lo
(B,0)-p=exp(B)-p=¢ /\30:(1—B+§B — ) A

For the A-field, take ¢! € V*. As an element of Cl, it satisfies efe; =7 € R ¢ Cl. We

have that ds—1(e?) = —e'r, since
—elre; + ejelt = (ele; + eel)T =T,

and —e'r vanishes when acting on e;, for k # 4. The A-action in the Clifford algebra is

then given by —Ar. By the nilpotency of Ar, the exponentiation of this action is just
(0,4) - o = exp(A) - p = e 4T N p = o — Arp.

Since B and A commute in the Lie algebra, [B, A] = 0, the elements exp(B), exp(A) €
Spin(V @ V* @ R) also commute, as well as their action on any representation. In

particular, exp(B)exp(A)y = exp(A) exp(B)p = exp(B + A)p.

1.3.2 The spinor representation and the Chevalley pairing

We now compare the Cl-module A*V* with the spinor representation for the Spin
group. For an odd-dimensional vector space equipped with a metric of signature
(n + 1,n), the spinor representation is irreducible and can be expressed in terms of a
maximal isotropic subspace L as S = A*L ® (det L*)%7 where det L* = \MATL* = ARL*,

For V@ V* @ R, by taking V* as the maximal isotropic subspace we have that
S=A"V*® (det V)2.

The spinor representation comes equipped with a Sping-invariant bilinear form,
the Chevalley pairing on spinors ([Che54]), which gives an invariant inner product on
A*V* with values in det V*. For the sake of simplicity, we will also refer to A*V* as the
spinor representation.

The pairing for V @ V*, even-dimensional vector space with an (n,n)-metric, is

defined as follows. We denote by T the anti-involution of the Clifford algebra given



by reversing the order of the products, (z122...2,)7 = zy2,_1...2;. This involution
degw

acts as (—1)7 in the forms of degree 2j and 2j + 1, i.e., wT = (=1)("2 “)w. The pairing of
two spinors ¢, € A°V* is given by

(1) = [T A ltop,

and it is invariant by the action of Spiny(V @ V*).

We now try to derive the pairing on V @ V* @ R from the pairing on V¢ V*. As a
vector space, the spinor representation for V& V* @ R is the same as the total spinor
representation for V@ V* ie., A*V*. However, we require the inner product to be
invariant by a bigger group, Sping(V @ V* @ R), which includes not only Sping(V & V*),
but also the A-fields and the a-fields. We check if the pairing we have defined on A®*V*
is invariant by the action of the A-fields.

(exp(A) - p,exp(A) ) = (p = AN (o4 —p—), b — AN (Y — b))
= () + (0, ANV + ANY_) — (Anpyr +Anp_,y).  (1.1)

For dim V = 2m even, the last two terms equal
[y NANY- + eI A=A Ay =L NAND- + oL ANAN Y iop =0,

and the product is indeed invariant under the action of A-fields. Similarly, it is
invariant by the action of a-fields acting by ¢ — ¢ —iq(¢4+ — p—). Therefore, it is
invariant by Sping(V @ V* @ R). Thus, the 2n = 4m-dimensional pairing extends to the
2n + 1 = 4m + 1-dimensional pairing.

However, for dimV odd, the last two terms in equal

[l A(—A) ANy + @I NANY_ — L NANy + T NANY_]iop,
which is not necessarily zero. In the next section we introduce the suitable inner
product.
1.3.3 The Chevalley pairing in odd dimensions

In order to define a pairing when dimV = 2m + 1 is odd, we relate the spinors for a
2n + 1 = 4m + 3-dimensional vector space to the even spinors for a 2n 4+ 2 = 4m + 4-
dimensional vector space. Consider the inclusion of our odd-dimensional vector space
with signature (n + 1,n) in an even dimensional one with signature (n +1,n + 1), and

change the basis to get an isotropic element v and its dual, so that (y,~*) = 1:

VeV *eRrTCVaeV*aRTeRT™ = (VeRY )& (VF @Ry),



where v and its dual ~* are such that 7 =~y ++*, 7% =~ — ~v*.
The spinor representation A*V* is identified with the even half-spinor representa-

tion of the even dimensional vector space via the map

AV* = A (V* B RA)
¢ P et A

The top exterior powers of V and V @ Ry are identified by

p: ATV Ry) - ATV
Ay = 2

We induce a pairing on A*V* from the pairing on A®(V* @ Ry) by
(p,¥)o :=plot + - A7, 4 + Y- A7)
In terms of the odd and even parts, this pairing is given by
(p,9)0 = p( (L +7 A eD) A (4 + 90— A7) tonv*@Rv)

=p< [ AT =y AL Ay — 0} Ay Av]topyv*@]h)

=L Ay — oL Atp_top.
Note that this inner product is different to (o7 A¥)ip = L Ap— + I A¢y. From
now on, we drop the subindex , from the pairing.
1.3.4 Pure spinors and complexification

The annihilator of a spinor ¢ € A*V*, given by
Ly={ueVaeV* &R |u-p=0}
defines an isotropic subspace of V@ V* @R since
2(u, vy = (uv +vu) - ¢ = 0.

Note that any non-zero multiple of ¢ defines the same subspace. When L, is of
maximal dimension, n = dimV, we say that ¢ is a pure spinor.

From Proposition [1.3, we know that any maximal isotropic subspace is given by
(B, A)L(W,0,0), where A € V*, B € A2V* and W ¢ V. When B and A are zero, we
have that L(W,0,0) = W @ Ann(W). This subspace is described in terms of the Clifford
algebra as the annihilator of any element in the line det Ann(W). In general, we have

the following proposition.



Proposition 1.4 (|Chebd|, 111.1.9). The isotropic subspace (B,A)L(W,0,0) is given
by the annihilator of any spinor ¢ in the line (B, A)(det Ann(W)). More concretely, if
{01,...,0,} is a basis for Ann(W), ¢ is given by

p=c(B,A)01 A...\Op,
where ¢ # 0. Any pure spinor is expressed in this way.

We will be interested in maximal isotropic subbundles of the complexification
(Ve V*@R)c. The natural inner product, as well as the previous definitions and

results, extend by complexification. We then have an analogous proposition.

Proposition 1.5. The isotropic subspace (B + iw, A + ioc)L(W,0,0), where A,oc € V*,
B,w € A2V* and W C V¢ is given by the annihilator of any spinor ¢ in the line (B-+iw, A+
io)(det Ann(W)). More concretely, if {01,...,0,} is a basis for Ann(W), o is given by

p=c(B+iw,A+ioc)01 N...\bp,
where ¢ € C*, or equivalently,
o =c(B, A)(iw,ic)01 A ... A O,
for ' =w—ANo. Any pure spinor in A*VE is expressed in this way.

We define the real index of a maximal isotropic subspace L ¢ (V @& V* @ R)c by
r =dim(LNL). Note that LN L is a real subspace, i.e., LNnL=PxCfor PCVaV*OR
and r = dim P.

We will be interested in isotropic subspaces of real index 0. This property can be

expressed by using the following result.

Proposition 1.6 ([Che54], 111.2.4). Both in the real and the complex case, the maz-
1mal isotropic subspaces L = Ann(p) and L' = Ann(y¢’) satisfy LN L' =0 if and only if
(0,¢") #0. Consequently, L = Ann(¢) C (V@ V* @ R)c has real index zero if and only if
(v, ) # 0.

1.4 Linear B,-generalized complex structures.

We define a linear B,-generalized complex structure (linear B,-gcs for the sake of

brevity) in terms of maximal isotropic subspaces.

Definition 1.7. A linear B,-gcs on a vector space V is a maximal isotropic subspace

Lc (VeV*®R)c such that LNnL=0.



Equivalently, by Section [1.3.4 a linear B,-gcs is given by a pure spinor ¢ € A®V¢
satisfying (¢, %) # 0. Any non-zero multiple of ¢ defines the same linear B,-gcs, so a

linear B,-gcs is actually equivalent to a complex line of pure spinors.

1.4.1 The decomposition L & L & U

Given a linear B,-gcs L € (V@ V*@R)c, the subspace L defines a conjugate linear B,-
gcs and L @ L is a complex vector space. By looking at the pairing on (V@ V* @R) as
an SO(n+1,n)-structure on the vector space, we have that L@ L is giving a U(m+1,m)-
structure when n = 2m + 1, as U(m + 1,m) C SO(2m + 2,2m); and a U(m,m)-structure
when n = 2m, as U(m,m) C SO(2m,2m) C SO(2m + 1,2m).

The subspace U := L+ NIT is a real subspace, i.e., U = U. We thus obtain a
decomposition (V@& V* @ R)c = Le& La U. We have that L =~ L* by using the pairing
in (VoV*@R)e: for I € L, 1 — 2(I',1) is an element of L*, and the correspondence is a
bijection since (L)~ =L+ U. As U is real, the pairing on U is non-zero, so there exist
exactly two real elements in U n (V @ V* @ R) whose norm squared is either 1 or —1.

By looking at the structure group of the vector space V@ V* @ R, we have that
for dimV odd, (u,u) = —1, since u corresponds to the extra negative direction in
SO(2m +2,2m +1) with respect to U(m +1,m) C SO(2m+2,2m). Whereas for dim V' even,
(u,u) =1, as U(m,m) C SO(2m,2m) € SO(2m + 1,2m). Thus (u,u) = (=1)dmV,

The two possible elements « are opposite to each other. We study the action of
any of these two elements v on the spinor ¢. For an element [ € L, we have that
l-u-p=—u-l-9=0 by the orthogonality of U and L, so L = Ann(u - ¢), i.e., u-¢ = \p
for some non-zero A. Since u?- ¢ = (u,u)p = (—1)"p and u-u- ¢ = \2p, we have that
A2 = (=1)™. Hence, for dimV odd, A = +i, and for dimV even, A = +1.

Definition 1.8. We define u € U to be the unique real element such that v - ¢ = ip

for n odd, and - ¢ = ¢ for n even.

As a consequence of the definition, the norm squared of w is (u,u) = (-=1)". We
thus have that a linear B,-gcs determines a decomposition (Ve V*@R)c =Lo Lo U

and a distinguished element u € U.

1.4.2 The F-operator of a linear B,-gcs

The fact that the B,-gcs L is equivalent to the decomposition L + L + U gives yet
another way to describe the B,-gcs: a linear F-operator. A linear F-operator is an

orthogonal endomorphism F € so(V @ V* @ R) such that 73 + F = 0 and F has rank 2n
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(which is maximal given the property 72+ F = 0). The equivalence with a B,-gcs is
as follows. Consider the operator F on (V @ V* @ R)c. Since the eigenvalues of F are
+i and 0, we have a decomposition L+ L+U (recall that the eigenspaces for conjugate
eigenvalues are conjugate). By the hypothesis on the rank of F, the subspace U is

one-dimensional, and L, L are of dimension n. By the orthogonality of F, for ,I’ € L,
<lvl/> = <]:la}-l/> - <Zl72l/> = 7<lvl/>,

and L is isotropic. Finally, as U corresponds to a real eigenvalue, U is a real subspace.

1.4.3 The filtration associated to a linear B,-gcs

Moreover, any linear B,-gcs defines a filtration of A*VE. Let K, = Cy be the complex

line generated by the spinor ¢. On the other hand, let
Cl=CcCl=WVaeV*eR) ccClc...cCP =Cl(VeV*aR)c)

be the filtration associated to the Clifford algebra CI(V @ V* @ R)¢), where CI* is
generated by products of k elements. The action of this filtration on ¢ determines a
filtration

Ko=K,C K =CllpC...C Kopy1 = CP"p = AV (1.2)

Furthermore, L annihilates K1, so K1 = (L+U)-y, and similarly K; equals AJ(Z+U)-,
since it is annihilated by A/L. In particular, U fixes every K;, and u acts as (—1)71d

when n is even, and (—1)7i1d when n is odd.
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Chapter 2

Basics on B,,-generalized geometry

2.1 The Courant algebroid 7'+ 7™ + 1

We introduce our main object of study, the B,-generalized tangent bundle and use
the linear algebra of Chapter [1| to state its main properties.

Let M be a differentiable manifold of dimension » with tangent bundle T and
cotangent bundle 7*. Let 1 denote the trivial bundle of rank 1 over M. Define the B,-
generalized tangent bundle by TeT*®1. For the sake of simplicity we use the notation
T+T*+1 instead of TeoT*®1. The sections of this bundle are called generalized vector

fields and are naturally endowed with a signature (n + 1,n) inner product given by
1
(X +EHAY 0+ p) = 5 (ixn +ivE) + A,

where X + ¢+ )\ Y +n+ u denote now sections of T4+ T* 4+ 1, i.e., X+ 64+ NY +n+pc
C®(T +T* +1). Together with the canonical orientation on T + 7T* + 1, this endows
T + T* + 1 with the structure of an SO(n + 1,n)-bundle. We introduce a bracket on
C®(T+T*+1) via

X464 XY+ p] = [X, Y]+ Lygn — Ly€ — sdlixn — ive) 21)

+ pdX\ — Adp + (ixdp — iy dA),
and we shall show that (T +7* +1,(,),[,],7), where = is the canonical projection to T,

is a Courant algebroid in the following sense.

Definition 2.1 (JLWX97]). A Courant algebroid (E,(-,-),[-,-],7) over a manifold M
consists of a vector bundle £ — M together with a non-degenerate symmetric bilinear
form (-,-) on E, a skew-symmetric bracket [-,-] on the sections C>*°(E) and a bundle

map «: E — TM such that the following properties are satisfied
(CL): [, [w,w']] = [[v,w], w'] + [w, [o,w']] = FD(([v, w], ') + {[w, '], v) + ([, 0], w)),
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(C2): w(fv,w]) = [n(v), 7(w)],

(C3): [v, fu] = flo,w] + (x(v) f)w — (v,w) D,

(C4): m(v)(w,w') = ([v,w] + D{v,w),w') + (w, [v,w'] + D{v,w’),
(C5): moD =0, and consequently, (Df, Dg) = 0,

for any v,w,w’ € T(E), f,g € C®°(M), where D :C>®(M) — C*®(E) is defined by

1
(Df,v) = 57()(f).
In the case of T + T* + 1, the map D is given by the usual exterior derivative
d:C®(M) — C®(T*) C C°(T + T* + 1), since (df,v) = $7(v)(f).
Remark 2.2. By using the notation [v, f] = w(v)f, the properties (C3) and (C4) are

easier to remember:

[v,fw} = ['Uu f]w +f[v,w] - <U7U/>df,

[1), <waw/>} - <[Ua w] + D<’U3w>’w/> + <wa [vvwl] + D(v,w’)).

Proposition 2.3. The tuple (T+T* +1,(-,-),[-,-],7) defined above has the structure of

a Courant algebroid.

Proof. A direct proof of these properties is found in Section of the Appendices.
However, we refer to Section [2.4] where a proof based on a reduction process from

ordinary generalized geometry is indicated after Lemma [2.24] O]

Since the structure group of 7+ 7* + 1, SO(n + 1,n), is of Lie type B,,, we will refer
to the geometry arising from 7+ 7* + 1 as B,-geometry. Correspondingly, since the
structure group of T+ T* with the natural pairing is SO(n,n), of Lie type D, we will
use the term D,-geometry to refer to ordinary generalized geometry.

We use the linear algebra of Section to describe the symmetries of T+ 7* + 1.

The infinitesimal orthogonal transformations of 7'+ T* + 1 are given by the elements

E —2a
B —E' —2A | €C®(o(T+T+1))
A « 0

such that E € End(T), 8 € A’T, B € A’°T*, the B-field already present in D,-geometry,
a €T and A € T*, the A-field which will be relevant in B,,-geometry. The exponentia-
tion of a B + A-field gives the element

1
(B,A):=exp(B4+A)=| B-A®A 1 —2A | eC®SOT+T"+1)),
A 1
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which acts by
(B,AX +€6+N) =X +E+ixB—20A —ixA- A+ A +ixA
The composition law of these elements in C®(SO(T + T* + 1)) is
(B,A)(B' A= (B+B +ANA A+ A).
Their action on the Courant bracket is given by the following result.

Proposition 2.4. Let (B, A) € C*°(SO(T + T* +1)). For generalized vector fields v =
X+E&+Xand w=Y +n+pu, we have

(B, A)v, (B, Ayw] = (B, A)[v,w] + iyix (dB + A A dA) — 2iyixdA- A

+ Zy’Ldi + 2(/\ZydA - .l“XdA)

In particular, the action of (B, A) commutes with the Courant bracket if and only if A

and B are closed.
Proof. See Proposition in the Appendices. O
The proposition above motivates the definition of the group
Q2FH(M) = {(B,A) € C®°(SO(T + T* + 1)) | B € Q4 (M), A € QY(M)}.
The group Q2 (M) is a central subgroup in Q%™ (M), so Q% (M) is the central extension
1 — Q2(M) — Q2P M) — QL (M) — 1.

Proposition 2.5. The group of orthogonal transformations of T +T* + 1 preserving
the Courant bracket is Diff(M) x Q21 (M) =: GDiff(M), called the group of generalized
diffeomorphisms of M. The product of two elements (f x (B, A)),(gx (B', A")) € GDiff(M)

15 given by

(f % (B,A))o(gx (B A") = fgx (¢°B,g"A)(B', &)
=fgx (¢*B+B +g"ANA g"A+ A)).
We describe goiff(M), the Lie algebra of GDiff(M), by differentiating the action of
a smooth one-parameter family of generalized diffeomorphisms F; = f; x (B, A¢) such

that Fyo Fy = Fiys and Fy = id. By Proposition and F;o Fy; = Fy. s we have the three

equations
ft4s = fro fs, Aprs = As + [1 As, Biys = Bs+ fiBi + 5 A¢ N As.
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The first equation says that {f;} is a one-parameter subgroup of diffeomorphisms
of M. Let X be the corresponding vector field.

From the second equation,

dA; d d dA;

2 =2 (A =—  (Ag+ frA) = =t
dt |t=s dt|t:0( t+s) dt|t:o( st iAo =1 dt [t=0"

so we get A; = [! ffa ds, where a = 44t From the third equation,
g 0/s dt |t=0

dBi d dBy

dAy
_— = — B = . —
dt |t=s dt\t:O( trs) = iy |t=0

T3 1o

S0 By = [{(fib— ffa A As)ds, where b= %u:o and A, depends on a.

Hence, the one-parameter subgroup depends on two integrations, as opposed to
the single integration for a generalized vector field in D,-geometry.

Using the convention LxY = f%‘ o ft+Y for the Lie derivative of a vector field Y,

we see that the infinitesimal action of the one-parameter subgroup {F;} is

_ﬁ\t—oFt*(Y—i_n"’_”) =Lx (Y +n+p)—iyb+2ua —iya,

which only depends on the action of (X,b,a) (see Section for details). We thus
make the identification

QIFf(M) = C®(T) @ Q% (M) & QL (M).

An element of goiff(M) is given by (X,b,A) € C®(T) & Q%(M) ® QL (M) acting on
C®(T+T*+1) by

(X,b,0)(Y +n+pu) = Lx (Y +n+p) —iyb+ 2ua — iya. (2.2)

The action of (X,b,a) is compatible with the inner product and the Courant bracket

in the sense that for v,w € T+ T* + 1 we have
X (v, w) = ((X,b,a)v,w) + (v, (X, b, a)w),

(X, b,a)[v,w] = [(X, b, a)v, w] + [v, (X, b, a)uw].

Conversely, given an infinitesimal generalized diffeomorphism (X, b,a), we can inte-
grate it to a one-parameter subgroup of generalized diffeomorphisms F; = f; x (B, A¢)
where f; is the one-parameter subgroup associated to X, 4; = fot f¥a ds and By =
Jo(fb— fra A Ag)ds.

Remark 2.6. It is also possible to integrate a time-dependent infinitesimal generalized
diffeomorphism. From (Xi,b:,at), we get By = fg(f;*bs + f¥as A Ag)ds and A; = fg frasds,

using a method analogous to that used to show Proposition 2.3 in [Gualll.
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Using the map from C*°(T + T* + 1) to goiff(M) given by
X+E+ X — (X, dg,dN),
we introduce the Dorfman product of two generalized vector fields.

Definition 2.7. For X + ¢+ X € C°(T + T* + 1), the action of (X,d¢,d\) € goiff(M) on a
section Y +n+pu of T+T*+1 gives an action of generalized vector fields on generalized

vector fields, known as the Dorfman product:
(X +E+ MY +n+p) = [X,Y]+ Lxn +ixdp —iyde + 2udX — iy-d\ € CO(T +T* +1).

Remark 2.8. The Dorfman product is not skew-symmetric, but it satisfies the Jacobi
and Leibniz identities and is a derivation with respect to the metric. It satisfies, for
v,w,w € C*®(E) and f € C®(M),

(D1): w(ww') = (vw)w’ + w(vw'),
(D2): 7(vw) = [x(v), m(w)],

(D3): v(fw) = m(v)(f)w + f(vw),
(D4): 7(v)(w,w') = (vw,w') + (w, vu'),
(D5): vw +wv = 2D (v, w).

In fact, the skew-symmetrization of the Dorfman product is the Courant bracket
defined in Equation . We have denoted it by the juxtaposition vw for the sake
of simplicity. The usual notation for the the Dorfman product is v ow or even [v,w],
and it is sometimes called Courant bracket and used to define a Courant algebroid

structure, as in [Gualll.

2.2 Differential forms as spinors

By Section [I.3] the differential forms Q*(M) are a Clifford module over the algebra
C®(CYT +T* + 1)) with an action defined by

(X+E+ N -o=ixe+ N0+ ATy,

where ¢ € Q*(M) and 7p = oy — p_ for the even ¢, and odd ¢_ parts of . Thus, 7
defines an involution of Q*(M). As in Section [1.3] the action defined above satisfies
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the Clifford condition (X +&+X)?- o= (X +£+ )\ X + £+ Vg, as 7 anticommutes with
interior and exterior products.

Similarly, the action of B, A € C*®(so(T +T* +1)) on Q*(M) via the (rescaled) spinor
representation « : C*°(Spin(T + T* + 1)) — C®°(Aut(A*T*M)) is given by the Lie algebra
action k«(B)e = —B A ¢, k«(A)p = —A A Tp, and the Lie group action by

ﬂ(eXPB)SDZSD*B/\sDJrBQ/\cer...:efB/\go, /i(epr)ap:go—A/\T@:e*AT/\gp,

The Lie derivative of a spinor with respect to a generalized vector field X + ¢ + A,
as in Definition of the Dorfman product, is given by mapping the vector field to
the infinitesimal generalized diffeomorphism (X,d¢,d\) € goiff(M) and differentiating

the action of the one-parameter subgroup {F;} to which it integrates:

d
Lyieiap = —%t:OFt*w =Lxp+dENp+drTe.

The Lie derivative of a spinor satisfies a Cartan formula, where the interior product

is replaced by the Clifford action.
Proposition 2.9. For v e C®(T +T*+1) and ¢ € Q*(M),

Lyp =d(v- @) +v-dp. (2.3)
Proof. Let v =X + ¢+ A. We then have

A(X+E+N) @)+ (X +E+N) do=dixe+dENp)+ AT — o) +dAA (9T — o)

+ixdp+ENde+ Ao — Mo = Lxp+dENp+dA(eT —p-) =Lxieiae = Lug.
]

The exterior bundle A*T*M is endowed with an SO(T + T* + 1)-invariant pairing
with values in A"T*M, as described in Section[I.3.3] For tk T = dim M odd, the pairing
is given by

(p,9) = [‘Pl Ny — 901,- I ¢—]topy
while for rk T = dim M even, it is given by

(@71/)) = [(101 A ¢+ + SOI A <P—]top7

usually referred to as Mukai pairing.
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Example 2.10. In the case of 3-manifolds,

(p,9) = [QDE- N — 901 A 7/’+}top
= [(wo — w2) A (Y1 +93) — (1 — 93) A (Yo + ¥2)]top
= o3 + Yow3 — p1 NP2 — Y1 A w2,
and, in particular, (¢, ¢) = 2(p%p3 — ! Ap?), thus defining a quadratic form of signature
(4,4).

Remark 2.11. Following [KS04], the spinor action can be used to define the Courant
bracket of two generalized vector fields ej,e; € C°(T + T* + 1) as the only section
le1, e2] € C°(T +T* + 1) such that

[61’ 62] P = Hda €1~], 62']410 Vp € Q.(M)7 (24)

where the bracket on the right-hand side is the commutator. This formula will be
relevant in Chapter

2.3 Twisted versions

In classical generalized geometry, a twisted version of the generalized tangent space
is obtained by gluing local models of T+ T* in an open covering {U;} by using closed

2-forms {B;} satisfying the cocycle condition, B;; + B + By, = 0. The resulting space

(2

E= H(TJrT*)Ui/v ~w if mpp(v) € Up, mpp(w) € Uj,w = Byj(v)
is an extension E of T by T*,

0—=T*—=E—T—0,

which inherits the metric since 2-forms are orthogonal transformations. Equivalently,
since E is isomorphic to T + T*, the twisted version can be regarded as T + T* with a

twisted Courant bracket. This twisted bracket is given by

where H is global closed 3-form H € Q3 (M). In both cases, the twisted versions up
to isomorphism are parameterized by the first cohomology group with coefficients on
the sheaf 02, which is shown to be isomorphic to H3(M,R).
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2.3.1 Twisting via cocycles

We now define a twisted version of B,,-generalized geometry by gluing local models

of T+ T* +1. Given a 1-cocycle {(B;;, 4;;)} in an open covering {U;}, consider

E = H(T+T* + 1)|U¢/U ~w if 7 (v) € Up, mpyr(w) € Uj,w = (B, Aij) (v) (2.5)

2

The vector bundle E is topologically isomorphic to T+7T*+1. Moreover, E inherits
a metric and a Courant bracket from the local models (T + T* +1)y,. The metric
remains the same as in T+ T* + 1, since the (B;;, A;;) are orthogonal transformations.
The new Courant bracket is discussed in Section from a different perspective.

On the bundle E there is a well-defined projection to T, since the projection to
T, mp(v), remains unchanged by the action of (B;j, 4;;), mr(v) = mp((Bij, Aij)v). Let
A* C E be the kernel of the projection E = T. The elements of A* can be expressed
as equivalence classes [¢ + ). Let = : T+ T* +1 — 1 be the projection to 1. Since
m1(E+X) = m1((Bij, Aij)(€+A)) = A, there is a well defined map 4* — 1, given by [£+A] — .
The kernel of this map consists of classes [¢] for ¢ € T*. Since, [¢] =[] only when ¢ =5,
we have that the kernel of A* — 1 is precisely T*. Thus, the twisted Courant algebroid
E defined by Equation fits into the exact diagram

T*

where the vertical and horizontal rows form exact short sequences. We have used the
notation A* for the kernel of £ ™ T since we will see in Section [2.3.2] that it is the
dual of a Lie algebroid.

Now we parameterize the twisted versions of T+ 7* +1 by using Cech cohomology.
Let 9% be the sheaf associating to an open set U the group 9% (U) defined in
Section Twisted versions are given by the Cech cohomology set H'(M,Q2) of
equivalence classes of cocycles, which we describe in this section.

To do that, we first prove two lemmas.

Lemma 2.12. Let QZI be the sheaf of closed j-forms. For i >0 and j >0 we have

H (M, ) = H™(M,R).
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Proof. From the short exact sequence of sheaves of abelian groups
O%Qilﬁgj %QZI—H%O,
we obtain the long exact sequence in cohomology,
oo HTY ML Q) — H7Y M) - B, Q)Y - HY(ML QY — (2.6)

If i —1>1, we have that the first and fourth terms are zero, since @/ is an acyclic
sheaf, and consequently the second and third terms are isomorphic. Inductively, this

gives the following sequence of isomorphisms
HY(M, Q) = H- WM,y = o2 Y (v, 7.
By setting 4,j in (2.6) as 1,j +i — 1, we have the sequence

HO(M, 741 o HO(M, Q7)) — HY (M, 97) 0,

and hence, .
1 +i—1\ ~ QJH(M) _ rritg
H (M, )Zm—fql J(M,R),
using that HO(M,Q7") equals the sections of the sheaf 7, i.e., Q7 (M). O

When talking about Cech cohomology, we use a good cover {U;}, i.e., a cover
such that the sets U; and any multiple intersection is contractible, and consequently
the Cech cohomology group H*({U;},QL) with respect to the cover {U;} equals the

injective limit over refinements lim i) H*({Vi}, QL) = H*(M, ), i.e., equals the Cech

{
cohomology group of the manifold.

We use the usual notation for the intersections Us; = U; N Uj, Uy, = Uy NU; N Uy,

Remark 2.13. The isomorphisms of the previous lemma can be explicitly computed by
using the double differential complex of the exterior derivative d and the coboundary
operator § (see [BT82]). We spell out the isomorphism H?(M,R) = H'(M, Q) by using
part of that complex.
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Given a class [F] € H?(M,R), restrict its representative to the cover {U;};cr, {F;} €
[19%(U;). By the Poincaré Lemma in U;, the closed 2-form F; is given by dA;, where
A; € QY(U;). Define A;; = A; — A;, then the class of {4;;} € [[Q}(U;;) defines the

corresponding element in H(M,QL).

Lemma 2.14. The short exact sequence 0 — Q% 4, Qilﬂ LN Ql — 0, where Q2 is

abelian and central in Q%™ induces a long exact sequence
HO(M,Qly) = H' (M, Q%) — H'(M Q%Y — H (M, Q}) 2 H*(M,92).
Using Cech cohomology, the connecting homomorphisms &y and 61 are given by
[{fi}] € HO(M. QL) = [{gij = fi A ;3] =0 € HY(M,Q2)
{Ai;HeHY (M, QL) — [{dijr = Aij A Aji + Aij AN A + Ajp A A }] € H2(M,Q2).

Proof. For the connecting homomorphism §y, take a 0-cocycle of closed 1-forms {f;},
ie., fi: U — QL (U;). We find a 0-cocycle in Q**1, given by {(0, f;)}, such that p((0, f;)) =
fi- Consider the coboundary of this cocycle, {g;;} = {(0, fi)(0,—f;)} ={(fi A f5. i — [3)},
which equals {(0,0)}, since f; = f; on U;; by being {fi;} a cocycle. We clearly have
p(gi;) = 0. Using kerp = imq, we get a 1-cocycle in Q%, whose class is, by definition of
the connecting homomorphism, §y([{f;}]). This cocycle is zero, as {g;;} = {(0,0)} and ¢
is injective. Hence, §p = 0.

For ¢y, first recall that since Q2 is abelian, the coboundary operator defines a
differential and we can talk of H'(M,Q?%) also for i > 2. The homomorphism §; is
defined as follows. From a 1-cocycle in QY, {4;;}, consider the 1-cocycle in Q>*1 given

by {(0,4;;)}. Its coboundary is given by the maps
eij = (0, 435)(0, Ajr) (0, Api) = (Aij A Ay + Aij A A + Ajie N A, Aij + Aji + Agg).

We have that p({e;;x}) = 0 by being {A;;} a cocycle, so there exists a 2-cocycle in 02,
{d;jr}, such that ¢({d;;}) = {e;jx}. By the injectivity of ¢, this cocycle is given by

which finishes the proof. n

Take a cocycle {(B;;, A;;)} for a good cover {U;} representing a class ¢ € H'(M, Q4™).
As (BZ]7AZ])(B]k7Ajk)(Bkl7Akl) =0, we have that

Bl‘j + Bjk + By; + Aij N Ajk; + Ajk N A + Aij N A =0, (28)
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From the latter equation, the cocycle {4;;} represents the projection of ¢ to H (M, Ql,(M)).
Writing 4;; = A; — A4; for A; € Q1(U;), we have that dA; = dA; on the intersections, and
{dA;} globally defines a closed 2-form F on M. On the other hand, using 4;; = A; — 4;,
equation (2.8) becomes

Bz'j-‘rBjk-i-Bki—l—Ai/\Aj+Aj/\z4k+Ak/\Ai=0,

and hence {B;; + 4; A A;} defines a 1-cocycle. By writing B;; + A; A Aj = C; — C; for
C; € Q1(U;) and differentiating, we have

de—Aj/\FZdCi—Ai/\F,

i.e., {dC; — A; A F} globally defines a 3-form H which is not necessarily closed, but
satisfies dH + F? = 0, since d(dC; — A; NF) = —dA; N\F = —F AF.

Remark 2.15. Note that the 2-forms {C;} allows us to write
(Bij, Aij) = (Cj, Aj)(Cy, A) ™1

Thus, any cocycle {(B;;,4;;)} determines a closed 2-form F and a 3-form H satis-
fying dH + F? = 0. Conversely, for any such forms F, H, a cocycle {(B;;, 4;;)} can be

found.

Lemma 2.16. Using the isomorphism of Lemmal[2.19, the connecting homomorphism
61 : H*(M,R) — HY(M,R) is given by [F] s [F]?.

Proof. We first use the isomorphism H2(M,R) = H'(M,Q!,) as described in Remark
2.13; [F] € H*(M,R) is locally represented by {F; = dA;} for some 1-forms 4;, and
{A;; = A; — A;} represents the class in H'(M,QL). We then apply the connecting
homomorphism as described in (2.7)):

dijk:Ai/\Aj+Aj/\Ak+Ak/\Ai.

We finally use the isomorphism H2(M,Q.,) = H*(M,R). The cocycle {d;;;} is the
coboundary of {t;; = 4; A A;}. Take the exterior derivative of {t;;} to get {dt;; =
dA; NAj — A; NdA;j}, which can be written as {A; A dA; — dA; A Aj} since A; = Aj in Uy;.
Thus, {dt;;} is the coboundary of {4; A dA;}. By taking the exterior derivative we get
the corresponding 0-cocycle of 4-forms, {dA; A dA;}, defining the corresponding class
in HO(M,Q4).

Since the representative of the element of H?(M,R) is locally given by dA4; and the
representative of the element in H4(M,R) is locally given by dA4; A dA;, we have that
the map H?(M,R) — H*(M,R) is [F] — [F]2. O
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The set H'(M,Q2%), which parameterizes equivalence classes of twisted versions

of T+ T* +1 (as given in Equation ([2.5))), is then described as follows.

Proposition 2.17. The non-abelian cohomology pointed set H' (M, le“) 18 a principal
H3(M,R)-bundle over {[F] € H*(M,R) | [F]?> = 0}.

Proof. By the long exact sequence in Lemma [2.14],
HOM, Q) S H3(M,R) - HY (M, Q%) — H*(M,R) 11N H*(M,R),
and using Lemma [2.16 we get the short exact sequence
0— H3(M,R) - H (M, Q%) — {[F] € H*(M,R) | [F]* = 0} — 0.

The group H3(M,R) = H'(M,Q%) acts freely and transitively on H'(M,Q%) and the
quotient of this action is {[F] € H?(M,R) | [F]? = 0}. O

Remark 2.18. Recall that the 2-form F defined above for a representative {(B;;, A;;)}
is closed and hence represents a cohomology class [F] € H?(M,R). The equation
dH + F? = 0 is saying that [F] is in the kernel of ¢, : H?(M,R) — H*(M,R). The
discrepancy in the choice of H is given by a closed form, which defines a cohomology
class in H3(M,R).

2.3.2 0dd exact Courant algebroids

We have seen that a twisted version of T+ T* + 1 fits into the exact diagram

T*

where the vertical and horizontal rows form exact short sequences. We check now
if any F fitting in the diagram above is actually a twisted version of T+ T* + 1, i.e.,
comes from gluing local models of T+ 7* + 1 with B + A-fields.

We choose an open covering {U;} of M small enough to have Ay = (T + 1), and
By, = (T + A*)y,. The first isomorphism is equivalent to a splitting 1 — T* over U;

given by a 1-form A, on U;, in such a way that the elements of Ay, are of the form

{E+ 2+ )\Ag}&/\e(T*H)‘U.. The second isomorphism, Ejy, = (T + A*)y, is equivalent to
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a splitting Tjy, — Al = (T + )y, This splitting is then given by a 2-form B; and

another 1-form A7, in such a way that Ej;;, consists of the elements
X+ (E+XNFNAD + (ixB; + ANX) + Al (X)AL) = X +€+ixB; + AV (X) AL+ NAL + )\ + AV (X).
This general element can be identified with

(Ciy A)(X +E+N) =X +E+ixC; — Aj(X)A; — 204, + A+ A;(X)

only when A = 4;, A, = —24; and B; = C; + 4; ® A;.
This condition is equivalent to saying that the local splittings 1 — 7* and T — 1
are given by the same A-field (0, 4;):

Yet another equivalent way to express this condition is the statement we take as

the definition of an odd exact Courant algebroid.

Definition 2.19. An odd exact Courant algebroid is a Courant algebroid E that fits

into the exact diagram

where A is a Lie algebroid of rank n + 1 and all the vertical, horizontal and diagonal

rows form a short exact sequence.

Remark 2.20. Note that as a Lie algebroid, the class of the extension of 1 — A — T is
parameterized by an element of H?(M,R). This element is represented by {d4;}, i.e.,
it is precisely the cohomology class [F] € H?(M,R).
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Example 2.21. The concept of an odd exact Courant algebroid is an odd counterpart

of an exact Courant algebroid, which are extensions

0 T* E T 0

whose equivalence classes are parameterized by H3(M). Given any exact Courant
algebroid E parameterized by v € H3(M), E + 1 is given the structure of an odd exact
Courant algebroid by taking F =0 and H such that [H] = 7.

2.3.3 Twisted Courant structure

As a vector bundle, A* is isomorphic to 7* +1 and an odd exact Courant algebroid E
is isomorphic to T+7T*+1. In this section we describe the Courant algebroid structure
that E, or equivalently, the corresponding class ¢ € H'(M, Qzl* 1), gives to T+T*+1 by
untwisting.

Let {(Bi;,Aij)} be a representative of ¢ in a good cover {U;}. By Remark ,
we know that there exist 2-forms {C;} such that (B;;, A;;) = (C;, A;)(Ci, 4;)~ 1. This
allows us to think of every element (C;, 4;) as giving an isomorphism between T +
T* + 1)y, and Ejy,, so that the transition functions in an open set U; NU; are precisely
(Cj,A)(Ci, A))~Y = (Byj, Aij). We thus see the Courant algebroid E as the bundle
T+ T* +1 with a different Courant algebroid structure.

The metric structure of T + T* + 1 remains unchanged, since we are acting by
orthogonal transformations. However, since C; and A; are not closed, the Courant
bracket is not preserved. By using Proposition [2.4] we have that in the open set U; it
is given by

(Ci, Ai)[(=Cs, = Aj)v, (=Cy, = Aj)w] = [v, w] —iyix (dC; — A; A dA;) (2.10)
—iyixdA; — 2(NiydA; — pixdA;)
for v=X+&+N\w=Y+n+pecC®T+T*+1). We have seen in Section [2.3.1] that {dA;}
globally defines a closed 2-form F and {dC; — A; AdA;} = {dC; — A; A F} globally defines
a not necessarily closed 3-form H, satisfying dH + F A F = 0. The Courant bracket on
T +T* +1 is thus given by

X +E+NY +n+ppa=[X +E+NY +n+p] +ixiyH +ixiyF +2(uixF — Ny F), (2.11)
while the Dorfman product is given by

(X +E4+N) g (Y +n+p) =X +E+ N +n+p) +ixiy H+ixiy F+2(pix F— iy F), (2.12)
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The group of generalized diffeomorphisms of the Courant algebroid
(T + T + 1, <a >7 [7]F,H77r)

consists of the orthogonal transformations of 7+7* +1 preserving the Courant bracket

[, 17 It is described by the following proposition.

Proposition 2.22. The group of generalized diffeomorphisms GDiff p (M) is an ex-
tension
0 — Q3 (M) — GDiff p fy (M) — Diff o gy (M) — 0, where
Diff o 7 (M) = { € Diff(M) | there exist B € Q% (M), A € QL (M) with
©'F—F=dA,0*"H— H=dB+2ANF — ANdA},
and
QM) = {(B,A) € Q*TH(M) | dA=0,dB +2A A F = 0}.

Proof. Similarly to Prop. 2.2 in [Gualll, any element of GDiffz (M) can be written
as ¢ x (B, A) for unique ¢, B and A. The action of ¢ € Diff (M) on [, ]p g is given by

eeloit o ImE =15 lpr—1p 11

while the action of (B, A) is given by

(B,A)[(=B,-A) ,(—B,=A) lr g =, |F+dA,H+dB+2ANF— ANdA-

The preservation of the Courant bracket is thus equivalent to the conditions stated.
O

By studying 1-parameter families {¢; x (B, 4¢)} C GDiffp (M), we have that the
Lie algebra goiffyp, (M) C C°°(M) & Q*(M) & Q' (M) is given by

gaiff[F’H}(M) ={(X,b,a) | LxF =da,LxH =db+2a A F}.

Remark 2.23. This agrees with the description of twisted versions of 74 T* 41 coming
from the general setting of standard Courant algebroids (cf. Section 2 of [CSX13]).
The standard Courant algebroids are described as F*+G+ F, where F is an integrable
subbundle of TM, G is a bundle of quadratic algebras, the anchor map is the pro-
jection onto F, and the metric and the Courant bracket satisfy certain compatibility
conditions. Under these hypotheses, as proved in Lemma 2.1 of [CSX13|, the Dorf-
man product of such an algebroid is a twisted version by three canonical maps A, a
connection on G, R, a 2-form with values in G, and #, a 3-form on F. In our case
the integrable distribution F corresponds to T, the bundle G is the trivial bundle 1,
the connection A is trivial, the map R is identified with our 2-form F, and the 3-form
H corresponds to our 3-form H. The compatibility condition is then equivalent to
dH + F? = 0.
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2.4 B-geometry and D-geometry

In this section we see how to relate B,-geometry with D,-geometry, i.e., ordinary

generalized geometry.

2.4.1 D,-geometry as B,-geometry

The D,-generalized tangent space T + T* trivially embeds into the B,-generalized
tangent space T+ T* +1. A section X +¢& € C®(T +T*) is sent to the section X +¢+0 ¢
C®(T +T*). Since

(X+E+0, X +64+0)=ixE=(X+6,X +8)p,,

1. )
(X +E+0,Y +0+0] = [X, Y]+ Lxn — Ly& — gdlixn —iy§) = [X +&Y +lp,,

the D,-generalized tangent space is a Courant subalgebroid (i.e., a subbundle which

is, via restriction, a Courant algebroid) of the B,,-generalized tangent space.

2.4.2 B,-geometry as D, -geometry

We first embed T+7T*+1 into T+7T*+1+1’, with 1/ a rank one trivial bundle. We extend
the metric (,) so that it is negative definite on 1/, and 1’ is orthogonal to T+ T* + 1.
By a change of basis, we regard T+7* +1+1’ as the bundle 7+ TS + 7% 4+ 7*S!, which
corresponds to the usual generalized tangent bundle of the manifold M x S'. We could
equally use M x R, but we will keep to M x S! for convenience later on.

We denote by % and df, respectively, the sections of TS! and 7*S! such that
(&5,d0) = %i%de = 1. We have that & +do € ¢>(1) and & — df € €>(1') are bases of
the trivial bundles 1 and 1" as ¢*°(M)-modules.

Via this embedding, a section X +&+\ € Co(T+T*+1) is sent to X + A2 +¢+\db €
C®(T +TS' + T* + T*S1), where X is an S'-invariant function. The metric is preserved
by this correspondence:

0 0 1
<X+§+/\(%+d9)>Y+n+u(%+d9)>=5(l’x?7+iY§)+)\M=<X+§+)\,Y+77+M>Bn,

and so is the Courant bracket, as the following lemma shows.

Lemma 2.24. The D,y1-Courant bracket of X + &+ A& +df), Y +n + u(F + do)
corresponds to the By,-Courant bracket of X + &+ X and Y +n+ p.
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Proof. By computing the Courant bracket we have
[X+£+/\(g+d9) Y +n+ (g+d0)]
ag =T T MG
0 0
=[X+&Y +9]+ [X,u%] + [A%, Y]+ Lxpdd — Ly AdO

1
F Ly o 0+ pdd) — £, 0 (€+Ad6) — Sd(iy o (n+udf) — i, 5 (€ + Ad6))
20 Hae 2 20

fZ‘ 5
Hag

0 0 1
=[X+&Y +9]+ iXdu% - iyd)\% +ixdudd — iy dAdf + pd) — Adp — 5()\# — pA)

0
:[X+§,Y+n]+ud>\f>\du+(ixdufiyd/\)(%erﬂ): (X +E+ MY +n+ p).

]

Thus, the B,-generalized tangent space is a Courant subalgebroid of the D, ;-
generalized tangent space. In fact, the B,-generalized tangent space can be obtained
by reduction of the D, i-generalized tangent space.

In general, reduction requires an exact Courant algebroid E over a manifold N
where a Lie group G acts freely and properly. Recall that an exact Courant algebroid
is an extension 0 — 7* — E — T — 0. The infinitesimal action of G, p: Lie(G) — C>(T)
must be extended to a bracket-preserving homomorphism p : Lie(G) — C*(FE) satisfying
that mop =p and such that p, called the extended action, integrates to an action of G
on E. Denote the image of the extended action by K ¢ E, which is a subbundle of £
by Lemma 3.2 in [BCGOT7|. The following proposition is a particular case of Theorem
3.3 in [BCGOT].

Proposition 2.25. With the notation above, the quotient vector bundle

KL
KnK+t / ¢
over N/G has the structure of a Courant algebroid.

In our situation, for a manifold M, consider the manifold N = M x S! and its
ordinary generalized tangent space E = T 4 TS! + T* + T*S!. The standard action
of 8! on M x S! has an infinitesimal action Lie(S!) — C>(T + TS') given by the map
A A%, We consider the extended action Lie(S!) — ¢*(T + TS! + T* + T*S!) given by
A = A2 — df), which integrates to an action on E. We have that K = span{%; — df}.
By Proposition [2.25]

span{% — do}t
Span{% —do}n span{% —do}+

/St = span{% —doyt /st

28



is a Courant algebroid. The sections of span{; — ¢} are generalized vector fields
X (m,s) + X(m, s)dd + £(m, s) + A(m, s)dd over (m,s) € M x S!. By taking the quotient by
the action of S' we get X (m) + A(m)#&; + &(m) + A(m)df, depending only on the point
m € M, or equivalently, the S'-invariant section X + ¢ + )\(% +df). which corresponds
to a section X + ¢+ X of T+ 7% + 1. By Lemma [2.24] the induced Courant bracket
corresponds to the one defined in Section [2.1]

This reduction procedure provides a way, based on D,-geometry, to show that the
Bp-generalized tangent space T+ T* +1 has a Courant algebroid structure, as claimed

in Proposition [2.3]

Remark 2.26. The same result applies when we consider a manifold N together with
a Rt-action. Since Lie(S') = Lie(R*) the action and extended action are the same and
span{df — Z}+/R* over N/R¥.

2.4.3 Generalized diffeomorphisms

When looking at T+7* inside T+7*+1 as in Section [2.4.1] the D,-group of generalized
diffeomorphisms Diff(M) x Q% (M) sits inside the B,-group of generalized diffeomor-
phisms Diff (M) x Q4 (M), as Q2 (M) is a central subgroup of Q% (M).

Conversely, if we consider T+7*+1 sitting in T+7S'+T*+T*S! as in Section[2.4.2] we
have that a B-field for T+7* 41 becomes an S'-invariant B-field for T+ 7S +7* 4 T*S!.
However, the situation is very different for A-fields. An infinitesimal A-field, A €
C>®(s0(T +T* + 1)), can be seen as

0 0 0 T
acting on

0 0 —24A T*

A 0 0 1

The A-field component acts twice, as T — 1 and as 1 — T*. This corresponds to
the element A A (Z + df), since for X € C®(T), AN (& +df) acts on X by

‘ 9 0 o -
ix (A/\(ae+d0)> —ZxA‘(%-i-dQ), Le., ixAeC>®(1),

while on \(%; + df) acts by
) A 4 df) | = —ANi 4 df) = —2)\A
I\ Ztdo) | AN (% +df) | =—AN Z/\(%ﬂle)(% +df) = —2)A.
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When we pass to D,,+1-geometry, the element AA(F+df) € C(so(T+TS!+T*+T*Sh))
corresponds to the infinitesimal B-field A A df together with an endomorphism A A 2.

This can be represented as the element

0 0 0 0 T
A 0 0 0 acting on EEN
0 —A 0 —A ke
A ] o 0 | o TSt

Thus, we see that although 7+7*+1 is a Courant subalgebroid of T4+ 7S'+7*+7T*S!,
Bp-generalized diffeomorphisms are not simply S'-invariant generalized diffeomor-
phisms. The B,-group of generalized diffeomorphisms corresponds to the S!'-invariant
Dy-generalized diffeomorphisms fixing the element % —df. Equivalence in B,-geometry
is hence stronger than equivalence in D,,-geometry.

In regard to the twisted versions, one can already see in a letter from Severa to Alan
Weinstein ([Sevrs|) how a reduction of an H-twisted version of T(M x S') + T*(M x St)
should give a (F, H)-twisted of T+ T* 4 1.
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Chapter 3

(F, H)-twisted cohomology

Consider the twisted Courant structure on 7+ 7* + 1 given by a closed 2-form F and
a 3-form H such that dH + F? = 0, as described in Section [2.3.3] Equivalently, given
a good cover {U;}, this structure is locally determined by B+ A-fields {(B;;, 4;;)}, not
uniquely defined, on the intersections U; N U;. By Remark [2.15] we know that there
exist 2-forms {C;}, as well as forms {4;}, such that (B;;,A;;) = (Cj, 4,)(C;, 4;)~t. We
have seen in Section [2.3.1] that the forms d4; and dC; — A; AdA; are globally well defined
and recover, respectively, the forms F and H.

In the bundle of differential forms, the differential gets twisted locally by
e_C"e_A”d(eCieA”(p) =dp+dA; AT+ (dC; — A; AdA;) A g,
for ¢ € Q*(M), so it can be written globally as
d+ Fr+ H.

Note that it squares to zero since dH + F? = 0 and 7 anti-commutes with d and H.
By a similar argument to the one given in Section [2.2] the Lie derivative of ¢ €
Q°*(M) with respect to X + ¢+ )\ is given by

Ly eirg = (X,dé +ix H + 2\F,dA +ixF) - ¢,
which satisfies a Cartan formula for the twisted differential just defined:
Proposition 3.1. Given a generalized vector field v= X + £+ X and p € Q*(M),
(d+ F1 4 H)iyp +iy(d+ Fr+ H)p = Ly .

The aim of this chapter is to study the cohomology of the differential forms Q°®(M)
together with the differential D = d+ Fr + H. We first state some generalities about
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the method we are using: spectral sequences and exact couples. Since the differentials
arising in the spectral sequence will be related to higher Massey products, we recall
their definition in the second section before actually computing the cohomology in
the third section.

3.1 Spectral sequences via exact couples

A filtered differential graded algebra is a triple (4,d, F) consisting of a graded algebra
A=@j_( A/, afiltration K = {KP},cz such that

AD..DKPIDOKPD ... D0

)

and a differential 4 (satisfying d? = 0) of degree 1 on the grading, d: A7 — A7+ that
moreover respects the filtration, i.e., d: KP — KP.

From the commutative diagram

0*>Kp+11*>“Kp*]> p/Kpt1 —=0

{

00— Kpt1 Z‘*>K;04]>’ p/Kpt1 —=0
we get the long exact cohomology sequence in cohomology
o HPYY(K ) S HPTUK,) L HPTUK, [ Kyp) B HPFO (K ) — (3.1)

where we use again i and j for the maps i* and j*, and k¥ denotes the connecting
homomorphism.

By defining bigraded algebras

RPY = HPHI(K), (3.2)

SPa — Hp+q(Kp/Kp+1),

we can arrange the long exact cohomology sequence as the commutative diagram

R** R** (33)

i.e., as an exact couple.
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In general, an exact couple (R, S,i,7j,k) is given by a pair of bigraded algebras R
and S together with homomorphisms i: R — R, j: R — S and k: S — R such that the

following diagram is exact at each vertex

i R,
S
i.e., such that Imi = Kerj, Imj = Kerk and Imk = Keri.
As a consequence of the exactness in (3.3]), the map d; := j ok is a differential of

R. We use this fact to define the derived couple of (R, S,i,j,k) as S’ = Kerd;/Imd; and
R’ =i(R) = Kerj with maps ¢’ := ip/, 5'(i(r)) = j(r) + Imd; € §' for i(r) € R' = i(R), which

R

is well defined since Keri = Imj, and &'(s + Imd;) := k(s) for s +Imd; € S, whose image
lies in R’ since k(s) € Kerj = Imi = R’. The derived couple is proved to be again an
exact couple.

Starting with the exact couple (R** S** i j,k) as in (3.2) and (where the
bidegrees of i,j,k are, respectively, (—1,1),(0,0),(1,0)) and taking successive derived

couples we obtain a sequence of exact couples
(R:’*, S?*,it,jt, kt) _ ((R*,*)(tfl)v (S*,*)(tfl)vZ-(tfl)’j(tfl), k(tfl))’

where the bidegree of the homomorphisms i, ji, k is (=1,1), (t — 1,1 —¢) and (1,0),
respectively. So, dii1 = j® o k) defines a differential of bidegree (¢,1 —t) on ;7.
The following result states the relation between these exact couples and a spectral
sequence converging to the cohomology of the differential complex (a proof follows,

for instance, from Theorem 2.6 and Proposition 2.11 in [McC01]).

Theorem 3.2. The collection {S;}},diy1} defined above is a spectral sequence, i.e., a
collection of differential bigraded algebras, such that the bidegree of dyy1 1s (t,1—t) and
S is given by taking HP(S;", dy), the cohomology at (p,q) of the bigraded complez.
Moreover, when the filtration K of the algebra A is bounded in the sense that the set
{KP N A"} ez is finite for any n, the spectral sequence converges to the cohomology

H(A,d) in the sense that
SB1 = gPH(K,, d)/HPT (K1, d),

where we regard HP4(Kp,d) inside H(A,d).

33



3.2 Massey products

The Massey product is defined for three cohomology classes [a1], [a2], [a3] € H*(M) such
that [a1][as] = [a2][as] = 0. Let ags and a2 be forms such that ra; A ay = dajp and
Tag A ag = dagz. Recall that 7(py +¢-) = oy — o, where ¢ and p_ are the even and

odd parts, respectively, of a form .

Definition 3.3. Given the conditions and notation above, the Massey product of

[a1], [a2], [ag] is defined as the coset

([a1], [a], [as]) = [ra1 A ag3 + a1z A ag] + ([a1], [as]) € H®*(M)/([a1], [a3])-

The differentials forms involved in defining the Massey product can be arranged

in the matrix
ar a2 m

az a3 ’
as

so that the representative m of the Massey product depends only on the first row and
the last column. It is indeed given by m = ra; Aag3z + 7a12 Aag. This expression can be
represented as
Tal _Taiz (3.4)
a23
as
where the arrows mean wedge product and we take the sum of the two arrows. Equiv-
alently we can see the elements ajo and as3 as resulting from the diagram
Ta; il (3.5)
AN
Ait1s
since Ta; A a;y1 = da; j11.
We define higher Massey products of cohomology classes [a1], [a2], [a3], [as] When

there exist:

o forms ajs, ass, ass satisfying diagram (3.5)), i.e., such that ra; Aag = daya, Taghas =

dasgs and Taz A ag = dasy,

e and forms ajo3, agsy satisfying diagram (3.4)), i.e., such that a3 Aagg +Taja Nag =

da123, Tao N agq + Tas3 N ay = dagsy.
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In this case, a representative for the Massey product is given by
m = Ta1 N\ ag3q4 + 7012 N\ a3z4 + 7a123 N\ aq,
which can be represented by the diagram

Tay _Taiz  Ta123 (3.6)
a234
a34
a4

All the forms involved can be represented in the matrix

ar a2 a123
az a3 G234
az  as4
a4
where the entries satisfy the relations expressed by diagrams ({3.4) and (3.5)).
We introduce the notation a; ;. in order to talk about arbitrary subindices. As

an illustrative example a1 4 = aj234. With all generality, to define the Massey product

of n cohomology classes [a1],...,[an] We need a defining matrix
ar a2 ... Gl.n—1
a ... @2.pn—-1 Q2.n
A= :
an—1 an—1n
an,
where the representatives satisfy the condition
t—1
da;. i+t = Z T itj N Qi 41, itts
=0
which is the generalization of diagrams ({3.4]) and (3.5). Then, the Massey product
{[a1], ..., [an]) With defining matrix A is given by the cohomology class of
n—2
m = Z TA1.. 145 N\ A244..n- (37)
=0

Just as for the Massey product for three forms, this class is not uniquely defined

and depends on the defining matrix A.

Definition 3.4. The Massey product of cohomology classes [a1], [az], - - ., [an] consists
of the set of cohomology classes obtained by (3.7 for all possible defining matrices
A. If there is not a defining matrix, the Massey product is not defined.
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While the Massey product of three cohomology classes is a coset, higher Massey
products do not necessarily form a coset and its indeterminacy is given, in general,
by an element of a so-called matric Massey product ([May69], p. 543).

In the next section, we will only use the cohomology classes given by a particular

defining matrix (determined by the forms F and H).

3.3 The spectral sequence for d + Fr+ H

We use Theorem in order to compute the cohomology associated to the differential
d+ Fr+ H.

Consider the graded algebra of differential forms Q*(M) = @7_, /(M) with the
differential D = d+ Fr+ H. Define a filtration by the subalgebras K, = @,, (M) for
0<p<n, K,=0for p<0and K, = K, for p > n. This filtration is clearly bounded, so
by Theorem the cohomology can be computed by means of the spectral sequence.

There are two different cohomology groups playing a role in the long exact se-
quence coming from K, ; AN K, ER Kp/Kpt1. On the one hand, the differential D

restricts to the filtration {K,}, so we have

 Ker(Kp 25 Kpi1)

Im(Kp_1 2 K,)

HB(Kp)

On the other hand, D also defines a differential in the complex K,/K,;1, but it is null,

since D(K,) C Kp;1. Hence,
Hp(Kp/Kpi1) = Kp/Kp1 = QP (M).
The long exact cohomology sequence becomes
o HEFUK, ) S HETU(K) D HEFU(K, [ Kyy) & BETN (K ) — (3.8)

where HY(K,) = Hp(Kp) and HYL(K,/Kpi1) = QP(M) for any t. We define an exact
couple by setting RP'? = Hp(K),) and SP7 = QP(M):

Hp(K.) i Hp(K.) | (3.9)

(M)

where we write i1,j; for 4,5 and k; = k is the connecting homomorphism. The map
dy := j1 o k1 defines a differential on Hp(Kp), which we compute as follows. In the

remainder of this section, for the sake of brevity, we omit the wedge product symbol
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A and the brackets when applying the maps iy, ji, k¢, unless there is a possible confusion.

First, let z, € QP(M), we compute kjz, by using the diagram

0*>Kp+1 *>Kp

E

Kp — QP(M) — 0.

The element z, € QP(M) = K, /Kp4+1 comes from some z = z, + 2pi1 +2pi2+... € K, and

we have that
Dz = dxp +drpy1 + Frap +dopro + Fraopio + Hrp + ... € K.

Further, Dz, belongs to K,y;. We have that kjz, = [Dz|g € Hg(Kp41). Since kjzp is
independent of the choice of z, 41, 2p42, ..., we choose zp11 = 2,42 = ... = 0 and we have
kizp = [Dxp)p.

For the differential d; = j o k we have

dizp = (j1 0 k1)zp = j1ldzp + Frap + Haplp = dxp,

so d; is the usual exterior derivative in differential forms. Thus, Q*(M) together with
the usual differential is the initial page of the spectral sequence coming from taking
successive derived couples.

The second page of the spectral sequence is determined by the derived couple of
diagram (3.9, which consists of it Hg(kK,) and the cohomology groups of QP(M) with
the usual differential, i.e., HP(M):

i1Hp(Kpt1) = itHp(Kp) .

The maps are given as follows. Let [z,] € HP(M), i.e., z, € QP(M) such that dz), = 0.
The map ks is defined by

kolrplo = k12p = [Da]g = [Frap + Hrplp € Hp(Kpi2),

where we recall that z =z, + 2,41 +... € K, is such that jiz = z).
Since [Dzp)p € Hp(Kpi2) equals i [Dz]p (where the latter [Dz]p is considered as an

element of Hp(Kp+1)), we have that
jlDa]p = [j1[Da]p] = [Frap] € HPY2(M).
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This defines a differential on H,(M) since
[Fr(Frap)] = [F2xp] = [~dHzp| = [d(—Hwp)] = 0.
For the third page, we have the cohomology groups for the differential graded
algebra (HP(M), [rF]), given by

_ Ker([F]: HP(M) — HPTZ(M))

HeM) = =L (FT - v = P0))

where we omit  since it does not change either the image or the kernel. We thus

have the exact couple

(if)*Hp (Kp) = (if)*Hp(Kp) -
HE.(M)
We compute the differential on H7.(M). Let [[zp]]p € HR(M), ie., [xp] € HP(M) such
that [F][z,] = 0 € HPT2(M), i.e., Fa, is exact. The map k3 is given by
k3([[zpllp) = kalepl = k1xp = [Dz]p = [Frap + drpi1 + Hrp + Frapey + Heplp € Hp(Kpy3),

since z, is closed. As Fz), is exact, we can choose zp41 so that Frap+dz,y1 = 0. Hence,

ks([[zpllF) = [Hrp + Frapi1 + Hepylp € Hp(Kp+3).
Again, we have that [Dz]g equals (i})*[Dz]g, so

js[Dz]p = [j2[Dz]|lr = [j1[D2]BllF = [[Hxp + Frap]]p.

The differential is thus given by [[zp]]p — [[Hzp + Frapii1]lp, where zpiq is such that
dzpt1 = —Frxzp. This differential can be related to the Massey product ([F], [F], [zp]) as
given in Definition[3.3} Indeed, we have F2 = d(—H) and Fz, = d(r2p+1), S0 ([F], [F], [z])
is the coset represented by [Frzp 1+ Hzp). However, if we modify H by a closed form,
the representative is different. We say that the differential is given by the Massey
product ([F], [F],[zp]) provided that we choose a13 = —H, i.e., if the defining matrix is
F —-H
F TIp+1
Zp
On the other hand, the differential can be simply written as [[zp]lr — [[Hzp)F,
since [Frapi1] = [F][rxps1] defines a trivial class in Hp(M). It is then easy to check

that the differential squares to zero, since H? = 0.
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We denote by Hp (M) the cohomology associated to the complex (Hp(M), [H]]F),

a o < KerllHlLe - HEQD = HEP() _ {[lal)r | [Ha] = [Fp) for § € 0P+ (M))
FRH Im([[H]p : HL > — HD) {[(H]F | v € @=3(M) and [Fy] =0}

For the fourth page, we have the exact couple

(i3 Hp(Kp) (i1 Hp(Kp) -
X /
HY, 1 (M)
Let [[[zp]]plm € HY (M), i.e., such that [Hzp] = [FB].

kalllzpllFlg = ... = kizp = [Dx]p € Hp(Kpt4).

Choose z = zp + zp 41 + zpt2 such that dw, 1 + Frap =0 and dapyo + Frape + Hap = 0,

we then have

kalllzpllpln = [Hopp1 + Frapio + Hapyolp € Hp(Kpya).

As before, [Dz|p = (i})3[Dz]p and the differential is given by

(Ja o ka)[[[zpllFla = jalDx]p = [[[Hrpt1 + Frapio]lrly-

Note that the class [Frz,y9] is not necessarily trivial in [F]-cohomology since z,2 is
not necessarily closed. This fourth differential is related to the higher Massey product
([F), [F), [F], [~T=p)), as given in Definition with defining matrix

F —-H 0
F  —-H 7op00
Fopn
—Txp

In general, one can see that the differentials are related to the higher Massey products
<[F]7 [F]v [xPD? <[F]7 [F]v [F}v [F}, [—TCUPD, <[FL [F}v [F]v [F]v [_xp]>; <[F}v [F]v [F]» [F]» [F]v [Tpr and

so on. Formally, dosys, where s = 0,1 is related to

([F), - [FL (1) )

2t+s+1

where we choose —H in the defining matrix whenever we have 1F A F = d(—H).
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3.4 Examples

There is a large class of manifolds for which higher Massey products are zero: formal
manifolds. Although formality is defined by the equivalence of the minimal model
for the manifold and the minimal model for its cohomology algebra, formality also
corresponds to the uniform vanishing of all higher Massey products. Uniform van-
ishing means that whenever we are finding forms for a defining matrix, we always
make the same choice if the initial data are the same. For instance, when calculat-
ing ([a1], [a2], [z]), we will take the same form a;o satisfying ra; A ag = dajo for any z.
Uniform vanishing is thus a stronger condition than vanishing.

For formal manifolds, the spectral sequence above stops in the third page and the

cohomology of d + Fr + H corresponds to the [H]-cohomology of the [F]-cohomology.

Theorem 3.5. Let M be a formal manifold, the (F, H)-twisted cohomology associated
with the differential d+Fr+H on Q*(M), H*(M), corresponds to the cohomology groups

wr,apy - {lellr Lo € 92(M) and [Ho] = [F§] for 5 € 7+ (0))
BT {[[HA]F | v € @p=3(M) and [F~y] = 0} ’

where [ denotes the cohomology classes for (HP(M), [F)).

In particular, when F =0 or trivial in cohomology we recover H-twisted cohomol-
ogy, which is equivalent to d + H-cohomology when the manifold is formal.

In order to provide the first examples, we look at low dimensions. In dimension
2, we find non-cohomologically trivial 2-forms F in orientable surfaces. The condition
F? = —dH is trivially satisfied. When the surface is connected, H?(M) and H°(M) are
generated by [F] and [1], respectively. The Oth-cohomology group of [F]-cohomology
is trivial, since [1] is no longer in the kernel of the differential [F]. Equivalently, the
2nd cohomology group is trivial, as [F] is now in the image of [F]. The only non-
trivial group is H} (M), which stays H!(M). The form H does not intervene in the
cohomology and the cohomology for D =d + Fr + H is just [F]-cohomology. We thus

obtain

H*(M) = H"(M)® H (M) ® H*(M)
HY(M) =0 @ HY (M) ®0.
Consider now a connected orientable 3-dimensional manifold M with a 2-form F
such that [F] # 0. From the orientability and connectedness, we have H3(M) = R and

HO(M) = R. From the existence of F, by(M) := dim H?>(M) > 0, and by Poincaré duality,
bi(M) := dim H'(M) = by(M) > 0. We have that HL(M) = {[5] € H'(M) | [F][6] = 0} =
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Ker([F])). For H%Z(M), we have that the subspace generated by [F] is in the image of
the differential [F], while the kernel stays H?(M). Thus, H%(M) = H*(M)/R[F].
If we choose the form H to be cohomologically trivial, the groups H(M) and H?(M)

stay the same and we have
H*(M)=H'M)® HY (M) @ H*M) & H3(M),
HY(M) = HO(M) ® Ker([F]) ® H*(M)/R[F] & H3(M).

Otherwise, [H] is a generator of H3(M) and the [H]-cohomology kills both [H] in
H3.(M) = H3(M) and [1] in H%(M) = H(M). The spectral sequence is stable from this
step, and the resulting cohomology is

H*(M)=H'(M)o HY(M) ® H*(M) o H3(M),

HY(M)= 0  @Ker([F])® H*(M)/R[F|® 0.

3.5 Integrality of F' and T-duality

3.5.1 T-duality for circle bundles

We start this section by recalling T-duality for circle bundles (JCG10]). Consider
two tuples (P}, [F}],[H;]), j = 1,2, consisting of an S'-bundle P; 5, M with Chern
class [F;] € H?(M,Z) together with an S!-invariant degree 3 real cohomology class
[H;] € H3(P;). We say that (P, [Fy],[H1]) is T-dual to (P»,[F],[Hs]) when for some

suitable representatives F;, H; of the cohomology classes we have that

1. m «Hi = F» and my . Hy = Fy, which implies that, for connection forms 6, satisfying
dfj = i Fj, we have Hy =01 Am{Fy 4+ hy and Hy = 63 A5 F) + hy for basic forms h;

on P,

2. moreover, the basic forms h; and hy come from the same form on M, i.e., there
exists h € Q3(M) such that h; = th.

These two conditions are equivalent to the usual definition of T-duality, given as

follows. Consider the fibred product Py x ; P» with projections Py x y; Py 2% Pj, i.e.,

Pr xp Py (3.10)

/ R
P, P, .
X %
M
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We say that (P, [Hy]) is T — dual to (P, [Hz]) when there exist representatives H; and
H, such that

piH1 — p3Ha = d(pi61 A p302)
for connection forms 6; on P;. Note that the class [F}] in our first definition is redun-
dant information since it is completely determined by P;. We check the equivalence
between the two definitions by using the fact that pir; = pin} (as they are both the
pullback of basic forms):
p1H1 — p3Ha = pi01 Apimi Fa + pimih — p30a A psm3 ) — pamsh
= p161 A pams Py + pimih — paba A pini F1 — pimih
= pi61 Apydfa — 30 Apidfy = d(p1fh A p3ba).
For simplicity, we use the notation B = p{6; A p5f, from now on.
The T-duality of (Py,[F1],[H1]) and (P, [Fs],[Hs]) defines a map between the H-
twisted differential complexes of P; and Py:
T:(Q°(Py),d+ Hy) — (T (P),d + Hy)

given by T = (pg,0e B opi), l.e.,

e B

y

Qg1 g1 (P1 X Po)

/ P2«

Qg1 (Py) Qg1 (P2)
Since d(B) = p} Hy — p3Ha, we have that de™8 = (—p}{Hy +psHa)e B, so for v € Qqi (Py),
(d+ Ha)(p2x 0 e B opi)y = (p2s 0 e Bopi)(d+ H)y,
i.e. ((d+ Hs)oT)y= (T o(d+ Hy))y. Since an inverse for T is given by
Tl = (p1.oePop}),

the map T preserves closed and exact forms and descends to a cohomology isomor-
phism
Ty : H*(Py,d + Hy) — H*TY(Py,d + Ha).

Note that T, as well as 7! increase by 1 the degree of the forms. Since T preserves

Sl-invariant forms, we can restrict these isomorphisms:
T: (0% (P1),d+ Hy) = (% (P2), d + Ha), (3.11)
T.: H% (Py,d + Hy) — He ' (Py,d + Hy).

More information about T-duality can be found in [BEMO04| and [CGI0].

42



3.5.2 (F, H)-cohomology and T-duality

Consider now a manifold M together with a closed 2-form F € Q%(M) and a 3-form
H € Q3(M) such that dH + F? = 0. The forms F and H determine a twisted odd exact
Courant algebroid structure on 7+ 7T* + 1 and an (F, H)-twisted differential complex
with differential d + Fr + H.

In what follows, we show how T-duality helps us to understand (F, H)-twisted co-
homology when [F] is an integral cohomology class. From the condition [F] € H?*(M,Z),
the form F can be understood as the curvature of a connection, given by a connection
1-form 6, on a principal S'-bundle P 5 M, i.e., df = 7*F. We define an S'-invariant
form on P by H := 6 An*F +7*H. The form H is closed since df = n*F and dH + F? = 0.
The tuple (P,[F],[H]) is T-dual to itself because of =,.H = F (first condition) and the
definition of H (second condition). In this case, diagram becomes

PxyP z; P—"> M.

We describe the map 7 in (3.11]) for an S'-invariant form 6 A ¢ + d where ¢ and d are
pullbacks by 7* of basic forms on M:

T(OAc+d) = (poy o e PIONP0 op})(0Ac+d)
= (pa« 0 e PIOPI0) (530 A pie + pid)
= p2«(p10 A plc+ pid — pi0 A p36 A pid)

=0AN(—d)+ec.

Notice that this map is also given by the Clifford action of the generalized vector field

X — 6, where X is a vertical vector field such that ix6 =1,
(X—=0)-OAnc+d)=c—0Nd=0N(-d)+c.

We state now the relation between the (F, H)-differential d + Fr+ H on M and the
twisted differential d + H on P. For the sake of simplicity, we omit at this point the
wedge products and the pullbacks, since only =* is relevant. Hence, we write H as

H +60F, and when we write (67 + 1)y, we really mean (67 + 1)7*~.

Proposition 3.6. For any form v € Q*(M),

Or+1)(d+Fr+H)y=(d+ H+0F)(0r +1)y.
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Proof. The left-hand side is
Ordy + Or(Frv) + 07(H~) + dy + Fry + H.
Using d(077) = dfrv + 07dy and reordering we get
d(07v) + 0F~ + HOr~ + dvy + H~,
which equals the right-hand side. O]

As a consequence v € Q*(M) belongs to Ker(d + Fr + H) (resp. Im(d+ Fr + H)) if
and only if (47 + 1)y belongs to Ker(d + H + 0F) (resp. Im(d + H + 6F)). Thus, (F, H)-
twisted cohomology corresponds to H + 0F-twisted cohomology on a particular class
of elements: {07y + 7} cqe(ar) € Q°(P).

The forms 67+~ can be described in terms of the T-duality map as the S'-invariant

forms fixed by the endomorphism 7. Indeed, since
TT@Nc+d)=7OAN(=d)+c)=0ANTd+ Tc,
a form 0 Ac+d is fixed by 77T if and only if ¢ = 7d. This implies the following theorem.

Theorem 3.7. When F s integral, the (F, H)-cohomology of M 1is isomorphic to the
rT-invariant part of the S'-invariant cohomology of d+ H + 0F on P.

This is another instance where we see that B,-geometry is not merely S!'-invariant
Dy-geometry.
Example 3.8. As an application of the previous theorem, we look at manifolds of the
form G/S!, where G is a non-abelian Lie group with an S'-action and a bi-invariant
metric (, ). We define the forms H and F as follows. First, consider the bi-invariant
3-form of G associated to the metric: H(X,Y,Z) = ([X,Y],Z) € Q%(G). Let 7: G — G/S*
be the projection to the base. The curvature of this S'-bundle is given by F = 7. H €
0% (G/sY), which corresponds to integrating H along the fibres. Take a connection
I-form 6 € Q'(G@) such that 4 = 7*F. Consider the form H — 6 A 7. F € Q3(G), which
satisfies m.(H — 0 A m.F) = 0, so there exists H € Q3(G/S') such that H — 0 A7n*F = 7*H.
The forms F and H satisfy dH + F? =0, since

7 (dH +F?) =d(H —OANT*F) + n*F A7*F = —d0 Am*F + 7*F Am*F = 0.

Thus, by Theorem [3.7] the (F, H)-twisted cohomology of G/S! is isomorphic to the
rT-invariant part of the S!-invariant cohomology of d+ H + 6 AF =d+ H on G. By
Theorem 5.2 in [Ferl3|, the d + H-cohomology of G vanishes, so the (F, H)-twisted

cohomology of G/S! vanishes too.
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Chapter 4

Bj,-generalized complex geometry

4.1 B,-generalized complex structures

We define almost B,-generalized complex structures as follows.

Definition 4.1. An almost B,-generalized complex structure (or, for the sake of
brevity, almost B,-gcs) on an odd exact Courant algebroid E over M is a maximal
isotropic subbundle L ¢ E® C such that LNL =0. An almost B,-gcs on the Courant
algebroid T+ T* + 1 is called an almost B,-gcs on M.

In terms of the structure group of the odd exact Courant algebroid E, an almost

Bp-gcs on E is equivalent to a reduction to
- Um+1,m) C SO(2m +2,2m + 1), when dim M = 2m + 1 is odd,
- U(m,m) C SO(2m + 1,2m), when dim M = 2m is even.

Thus, the reduced group depends on the parity of the dimension of M.

Example 4.2. For dim M even, an almost D,-gcs on an exact Courant algebroid E,
which is equivalent to a maximal isotropic subbundle L c E{. such that LNnL = 0,
also defines an almost B,-gcs L C (E' + 1)¢, given by the same subbundle. More
concretely, on an even-dimensional manifold M, for E' = T + T*, given any almost
complex structure J on M, one can define an almost D,-gcs on M, and hence an
almost By,-ges on M, by taking L; = T(g 1) DT ) where the (1,0) and (0,1) subindices

denote, respectively, the +i and —i-eigenbundles of J on both T and T¢.

Definition 4.3. We say that an almost B,-gcs L ¢ E ® C is integrable when L is
involutive with respect to the Courant bracket, i.e., when [L,L] C L is satisfied, or,
equivalently, with respect to the Dorfman product. An integrable almost B,-gcs is

called a B,-gcs.

45



Involutivity with respect to the Courant bracket is equivalent to involutivity with

respect to the Dorfman product.

Ezample 4.4. In Example [1.2] the B,-gcs on T+ T * +1 is integrable if and only if the
original D,-gcs on T + T is, as the restriction of the Courant bracket of B,,-geometry
gives the Courant bracket of D,-geometry. For the concrete example L;, this means

that J is integrable.
We give now an example not based on D,-geometry.

Ezxample 4.5. A cosymplectic structure on a 2m + 1-dimensional manifold M, in the
sense of [Lib59| and [Li0§], is given by a closed 1-form ¢ and a closed 2-form w such
that o Aw™ is a volume form. Given a cosymplectic structure on a manifold M, the
subbundle

L = (—iw, —io)Tc = {X —iixw — o(X)o —io(X)} xer

where (—iw,—io) is an imaginary B + A-field, defines an almost B,-gcs on M. First,
L is isotropic since it is the (—iw, —io)-transform of an isotropic subbundle, and it is

maximal isotropic as its rank is n. Second,

LNT = (—iw, —io)Te N (iw,i0)Te = (—iw, —io) (TC N (2iw, 2ia)T@> —0.
Since, as Ker(o A w™) = 0, every element in (2iw,2i0)Tc has a non-zero component in
T¢. Moreover, the B,-gcs L is integrable as [(—iw, —io)T¢, (—iw, —io)T¢] C (—iw, —io)T¢
by Proposition and the fact that w and o are closed. Cosymplectic structures will
appear again in Section [£.2.2]

Remark 4.6. When necessary, we use the fact that any odd exact Courant algebroid
E is isomorphic to (T'+ T* + 1,(, ),[, |pu,m) for some F € Q% (M), H € Q3(M) such
that dH + F? = 0. The twisted Courant bracket is given by Equation and the
differential in forms becomes d+ Fr+ H. Thus, an almost B,-gcs on E can be regarded
as a maximal isotropic subbundle L of T+ T* + 1 such that LNL = 0 and is integrable

when it is involutive for the twisted Courant bracket [, ]p .

4.1.1 Local description: spinors

In this section we make use of Remark Thanks to the relation between pure
spinors and maximal isotropic subspaces described in Section on a point x € M,
an almost B,-gcs is given by the annihilator of a pure spinor ¢ € (A*Tf), such that,

by Proposition [1.6] (¢,%) # 0. This spinor can be expressed, by Proposition [1.5] as
¢ = (=B, —A)(—iw, —ic)0y A... A0 = ceBTATHWoT)g A A6y, (4.1)
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where A,o € T}, B,w € AT}, and 0, € T¢ .. Any non-zero multiple of ¢ describes the

same B,-gcs at z. By (¢,%) # 0 we have the condition

(eBTAT WA g A NGy, eBTATe WG A L AL = (20 AL NG, LA . AE) £ 0,
as the linear transformations 5447 ¢iw+o7) preserve the Chevalley pairing.

When dim M is even, this condition is equivalent to w™ * A0 A.. . AOLAOLA. .. A # 0,
which is precisely the condition for ¢ = ceB+0; A ... A 6), to define an almost D,-gcs
on x € M. We thus have that, pointwise, any almost B,-gcs on even dimensions is the
(0, —A —io)-transform of an almost D,,-gcs.

When dim M is odd, the condition (¢, %) # 0 is equivalent to
TAGTTR NG AL NG ABLA L A #0. (4.2)

When k = 0 we recover a linear version of a cosymplectic structure, as globally defined
in Example [£.5] In other words, Kero is endowed with a linear symplectic structure.
By setting k¥ = m, we encounter its complex analogue: a 1-form o and a complex
m-form Q such that o AQAQ # 0, i.e., a linear complex structure on Kero. Global

versions of these structures will be addressed in Section [4.2.4]

Remark 4.7. Note that a spinor can be written in several ways. For a cosymplectic
structure (Example |4.5)), we have

Y= C(—iw, —iU)l = Cei(w+UT)1 = cei(w""o')_

Recall that (—iw,—io) = exp(—iw + i0) is a complex B + A-field, whereas ¢/“9) means

the usual exponentiation

i(wto) _ - (i(w + U))/\j
e jgo i :

and ew+oT)1 denotes elwtoT) A 1.

The fact that non-zero multiples of ¢ define the same isotropic space motivates

the following definitions.

Definition 4.8. The canonical bundle of a B,,-gcs L is the complex line subbundle

K C A*T¢ such that at any point z € M, K, = Cyp, for ¢, satisfying L, = Ann(pz).

Ezample 4.9. In Example [£.2] the canonical bundle of the B,-gcs is the same as the
one of the corresponding D,,-ges. In Example [4.5] the canonical bundle of the B,-gcs

is given by Cei(wto),
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Definition 4.10. The type of an almost B,-gcs on a point z € M is the least non-
zero degree of a non-vanishing section of K at x. Thus, if the almost B,-gcs at z is
presented by a spinor ¢, the type of the B,-gcs or the type of ¢ is the integer k in
Equation (4.1).

Note that the canonical bundle K does not necessarily have a global non-zero
section. In a sufficiently small neighbourhood, it is always possible to take a non-zero
section, so every Bj,-gcs is locally given by a spinor. However the type of this spinor
does not have to be constant. Actually, the canonical bundle K comes equipped with
a map to C defined by the projection to the degree zero component, K c A*TE —
AYTg = €. This projection defines an element of ¢>°(K*), i.e., a section of the anti-
canonical bundle. The zero-locus of this section consists of the points which are not
of type 0 and is called the type change locus.

On the other hand, just as, at a point, two spinors giving the same B,-gcs differ
by multiplication by a non-zero constant, locally, they differ by multiplication by a
non-vanishing function.

We will discuss integrability in terms of spinors in Section [.1.3]

4.1.2 Structure of L + L+ U

For any B,-gcs L on an odd exact Courant algebroid E we have that L is closed under
the Courant bracket, which becomes a Lie bracket thanks to the isotropy of L. Thus,

L is endowed with the structure of a Lie algebroid.

Definition 4.11. A Lie algebroid (L,[, ],7) over a manifold M is a smooth vector
bundle endowed with a Lie bracket on sections of L (i.e., [,]:C%(L) x C**(L) — C>°(L)
is skew symmetric and satisfies the Jacobi identity) and an anchor map = : L — TM
(morphism of vector bundles), such that the Leibniz identity is satisfied, [X,fY] =
fIX,Y]+7(X)(f)Y, for X,Y € C®(L) and f € C>®(M).

Given its relevance, we give a global version of the decomposition L+L+U described
in Section for a linear B,-gcs.

For a Bj,-gcs L c Ec¢, the subbundle L, also isotropic, maximal and involutive,
defines a conjugate B,-gcs, whereas U := L+ NI is a real subbundle, i.c., T = U. We
thus obtain a decomposition Ec = L+ L+U. We have that L = L* by using the pairing
in Ec: for I € T, 1 — 2(I',1) is an element of L*, and the correspondence is a bijection

since (L)+ = L+ U. The subbundle L + L is complex, hence orientable. Since E, and
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hence Eg, is orientable, the subbundle U must be orientable as well. Moreover, U is
trivial, for it is a line bundle.

As U is real, the metric on U is non-zero, so there exist exactly two real global
sections u € C*°(U) whose norm squared is either 1 or —1. By looking at the reduced
structure group of T+7*+1, we have that for dim M odd, (u,u) = —1, since u corresponds
to the extra negative direction in SO(2m + 2,2m + 1) with respect to U(m + 1,m) C
SO(2m + 2,2m). For dim M even, (u,u) = 1, as U(m,m) C SO(2m,2m) C SO(2m + 1,2m).
Thus, (u,u) = (—=1)". The two possible sections u are opposite to each other. At this
point, we make use of Remark [1.6} we study the action of any of these two sections
u on the canonical bundle K. We work locally: K is trivialized by a spinor ¢, i.e.,
L = Ann(p). For a section I € C*°(L), we have that |- u-¢ = —u-1-¢p = 0 by the
orthogonality of U and L, so L = Ann(u - ¢), i.e., u-¢ = A\p for some non-vanishing
function . Since u?- ¢ = (u,u)p = (—=1)"p and u-u- ¢ = X\%p, we have that \? = (—-1)".
Hence, for dim M odd, A = +i, and for dim M even, A = £1. Moreover, by continuity,
A must be the same globally, so this gives a criterion to distinguish between the two

sections.

Definition 4.12. We define u € C*(U) to be the unique real section such that u-p =iy
for n odd, and u-¢ = ¢ for n even. As a consequence, we have that the norm squared

of u is (u,u) = (=1)™.

We thus have that a B,-gcs determines a decomposition Ec = L + L + U and
a distinguished element v € U. We look now at the genuinely global objects: the

Courant bracket and the Dorfman product.

Lemma 4.13. The infinitesimal action of uw on Ec (Dorfman product) preserves L

and hence defines a derivation of the Lie algebroid L.

Proof. The Dorfman product by any element defines a derivation of E¢, so we just
have to check that u preserves L. From the properties of the Dorfman product (Re-
mark , for 1,1’ € ¢>°(L) we have that

(1) (u, 'y = (u, Uy + (u, 11

By the orthogonality of U and L and the involutivity of L, this identity becomes

(lu,1"y = 0. Thus, lu is orthogonal to L, so it is a section of L+ U. Analogously we have
0=m(l)(u,uw) = (lu,u) + (u,lu) = 2(lu, u),

as (u,u) = (—1)™ is constant, so (lu,u) = 0. Hence, [u is orthogonal to both U and L, so

lu € C*°(L). Since, by orthogonality, iu = —ul, we have that ul € C>°(L). [

49



Similarly, « preserves L, so it defines a derivation of L. For elements I € L, I’ € T,

both derivations are related by
w(u) (1, 7) = (ul, 7y + {1y ull) = ([u, 1, 7) + {4, [u, ),

since, by the orthogonality of U to L and L, the Dorfman product ul and the Courant
bracket [u,!] coincide.

On the other hand, for f € ¢>*(M) and I € (L), the action of fu on L (similarly
on L) no longer defines a derivation, since it may have a component in U:

(fu)l = f(ul) = =(D)(f)u-

Also note that the restriction of the Courant bracket to Lt = L+ U and T- =L + U
does not define a Lie bracket on Lt and I, as [u, fu] = =(u)(f)u + (=1)"Df, where Df
may have components in L, L and U.

The restriction of the Courant bracket in B,-geometry to sections of (T + T*)¢ C
(T +T* +1)¢ gives the Courant bracket in D,-geometry. However, this is not the case

when one considers the decomposition L + L + U, as the following lemma shows.

Lemma 4.14. The Courant bracket of two elements e,e’ € C*(L + L) may have a
component in U. Namely,

(e, = 5 (sl ) = ([ €1,€))- (4.3)

The equivalent expression for the Dorfman product is
(u, e¢!) = (ue, ).
Proof. By applying (C4) twice:
0=n(e)(e,u) = (fe, '] + Dle, '), u) + (¢, e, u]),
0= 7(e')(e,u) = ([¢, €] + Die, ey, u) + {e, [¢, u]).
The difference of these two expressions gives
0=2([e,e'],u) + (¢, [e, u]) — (e, [/, ul),
from where the first identity follows. The second one is easier to prove since, by (D3),
(u,e€’) = elu, &) — (eu, e’} = (ue, ).
O

In the previous lemma, the first identity easily follows from the second one, which
was much easier to prove. From now on, we will often use the Dorfman product to

derive identities which can then be formulated in terms of the Courant bracket.
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4.1.3 Integrability in terms of spinors

In this section we make use of Remark again. When looking at a B,-gcs as a
subbundle L, integrability is equivalent to involutivity. We describe what integrability
means in terms of the spinor that gives the B,,-gcs locally.

Just as shown in Equation for a linear B,-gcs, the canonical bundle K (Def-
inition induces a filtration of Q(M):

Ko=KCKy=Cl' K C..CKopp1 =CP*" K = Q%(M), (4.4)

where K; is the subbundle of Q% (M) annihilated by products of j sections of L, and
CV is the subbundle of CI((T + T* + 1)¢) generated by products of k elements.

We now express the integrability condition of the structure in terms of a pure
spinor ¢ locally defined, i.e., a local section of K, ¢ : W — K, where W is an open set
of M. We use the isomorphism E = 7 + 7* + 1 (Remark with dp g instead of d.

Recall that the type of ¢ is not necessarily constant.

Proposition 4.15. The almost B,-gcs locally given by a spinor o is integrable if and
only if there exist a complex generalized vector field X + &+ X € CO(W,(T + T* + 1)¢)
such that

dpge=(X+&+A) .
Proof. Let e1,ey € C**(W, L). By the twisted version of Formula ([2.4]),
le1,e2lp i - ¢ = [[dr i, e1-], e2:lo = ex-e1-dp .

Thus, Ly, is involutive if and only if dp ¢ is annihilated by any product of two
sections of Ly, i.e., belongs to Ky = Ko + (L + L +U) - Ko. Since Ko = U - Ky, dp can
then be expressed as (X +&+\) ¢ for X +{+A€C®(L+L+U) =C®(T+T*+1)¢). O

As a consequence, a closed spinor always satisfies the integrability condition, which

motivates the following definition.

Definition 4.16. A B,-Calabi Yau structure on a manifold M is given by a pure
spinor ¢ € A*T* such that (¢,%) # 0 and dyp = 0.

In the next proposition we see that if the type of a B,-gcs on M is everywhere 0,
then it is a B,-Calabi-Yau.

Proposition 4.17. Given a Bp-gcs on M, if the projection K — AYTE wvanishes
nowhere, the Bn-gcs is globally given by the (B, A)-transform of a spinor /@) with
w € Q% (M) and o € QL(M).
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Proof. Suppose that the B,-gcs at a point is given by both ¢ = eBtA7¢iwto) and
Y = B AW ) - Since there exists A € C* such that ¢ = Ay, we must have ¢ = A
and hence, A = A", B =B, 0 = ¢ and w = «’. Thus, the forms A, B, ¢ and w are
globally defined.

Write ¢ = exp(—C)1 = ¢eC1 for C = B+i(w+AAo)+ (A+io)r. From the integrability
of the B,-gcs, there exists a generalized vector field v € C>®°((T + T* + 1)¢) such that
dp=u-p,i.e.,

d(e€1) = u-e“1.

By acting with exp(C) we get
exp(C)d(e€1) = e7Cd(eC1) = exp(C)(u- e€1) = (%u) - 1,

so the RHS only has degrees 0 and 1. By similar calculations to the ones at the
beginning of Chapter (3 the LHS is (d + Fr + H)1 for complex forms

F=—d(A+io), H=—dB+ilw+ANa)) — (A+io) Ad(A+ic),

and the LHS has degree at least 2. Consequently, the LHS vanishes, and A, o, B and
w are closed.

Thus, ¢ is the (—B, —A)-transform of ¢/“*9) with w and ¢ closed forms. O

We will talk more about Calabi-Yau structures in Section [T.4]

Finally, we describe B,-gcs pointwise.

Proposition 4.18. Given an isomorphism E=T +T*+1 as in Remark[{.6, we have

that pointwise:

o A By,-gcs of type k is, up to A-field, the (0,ic)-transform of a Day,-gcs of type
k, i.e., the direct sum of a complex structure of complex dimension k and a

symplectic structure of real dimension 2m — 2k.

e A Bg,,i1-gcs of type k is, up to (B, A)-field, the direct sum of a complex structure
of complex dimension k and a symplectic structure of real dimension 2m — 2k,
both defined on the kernel of a 1-form.

Proof. The first part is a By-version of Theorem 3.6 in |[Guall], while the second
follows from the condition (4.2)). O
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4.1.4 F-operators and Poisson structures

There is yet another equivalent way to describe a B,-gcs. Just as the J-operator for
a Dy-gcs, there is an F-operator for B,-gcs, a global version of the endomorphism F
in Section [1.4 The operator F is defined first on Ec = L+ L + U as multiplication
by i on L, multiplication by —i on L, identically 0 on U, and extended linearly. By
definition, the operator is real, so it restricts to E and gives an element of C*®(so(E)),
ie., (Fo,w) = —(v, Fuw), satisfying 73 + F = 0. Actually, since L is maximal isotropic,
any orthogonal endomorphism f of E satisfying f3 + f = 0 with maximal rank at every
point, defines an F-operator. We use the same notation, namely F, for the operator
on £ and on Eg.

More concretely, an F-operator satisfies the condition F?v = —v + (—=1)"(v,u)u for
v € C®(E) or C®(E¢), where u is the globally defined vector field that generates U,
the 0-eigenbundle of F. Moreover, we have that F and the Dorfman product of u

commute: for e =ey, + ey +ey € C°(L+ L+ U) we have that
uF(e) = u(ier, —iep) = i(uer,) — i(uep) = F(uer,) + F(uep) + F(uu) = F(ue) (4.5)

Remark 4.19. The condition satisfied by F is a generalized analogue of the definition
of an almost-contact structure in the sense of [Bla76| or strict almost-contact structure
in the sense of [BGO§| (strict refers to the fact that there are contact manifolds that are
not almost-contact in the classical sense, like R"*1xRP?). An almost-contact structure
is given by a tuple (Y,¢,®) consisting of a vector field Y, a 1-form ¢ and ® € End(T)
(tensor of type (1,1)) satisfying iy-¢ = 1 and 2 = —1d +Y ®¢ (as a consequence, ®(Y) = 0
and ¢o® = 0). We do not focus on this approach since it is the non-integrability of
an almost-contact structure what gives a contact structure. This is why contact
geometry does not initially fit in Bj,-generalized complex geometry (it does, though,

in D, 1-geometry on M x S!, as shown in [IPWO05]).

The integrability of L is stated as
[C(L),C™(L)] € C(L) = C®((L + U)*).
Since the subbundles L and L + U are given in terms of F as follows:
L={Fe—iF?}eche, L+U={e—iFe}ecp,, (4.6)
we have that, for e, e/, e” € C®(Eg),
([Fe—iF%e, Fe' —iF%e), " —iFe") =0, (4.7)
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which is equivalent to
([Fe, Fe'l — [F2e, F2¢'), ") — ([F?e, Fe'] 4 [Fe, F2e'), Fe"') = 0, (4.8)

This expression can be further simplified, for which we first prove that it is ten-

sorial.
Lemma 4.20. The LHS of expression (4.7), and hence of (4.8]), is tensorial.

Proof. For the tensoriality on e, we replace e by fe and we get f times the LHS of
(4.7) plus the extra terms

(—n(Fe' —iF2e)(f)(Fe —iF?e) + (Fe — iF2e, Fe' —iF2\Df,e" —iFe").

The coefficient of Df is zero, since it is the pairing between two sections of L. We
then have left the inner product of an element of L with an element of L + U, which
is zero by orthogonality. On the other hand, the tensoriality on ¢’ follows from that
on e and the skew-symmetry of the Courant bracket. Finally, the tensoriality on e”

is straightforward. O

Proposition 4.21. The B,-gcs associated to an F-operator is integrable if and only
if, for e, " € C*®(Eg),

([Fe, Fe'l — le,€'],€") + (le, Fe'] + [Fe, '], Fe') = 0, (4.9)
or, equivalently,
— [Fe, Fe] + [e, €] + Fle, Fe'] + F|Fe,e'] = 0. (4.10)

Proof. From the tensoriality proved in the previous lemma, we can assume that ey :=
Ty (e) and ef; == my(e’) are both equal to u. We have that 72(e) = —e+ey, F2(e') = —¢'+e};
and F2(e") = —€" +¢f;, where e, = mi(¢”). Substituting in (4.8)), we get Equation (4.9)

plus the extra terms
<[6U7 6/] + [ea e/U]a e”> + <[6U7]:e/] + [‘Fev e,U]vj:ell>'

We show that these extra terms are zero. By the skew-symmetry of 7, they can be
written as

(lev, €] + le, ey) — Fley, Fe') — F|Fe, ey, €”).
Write e = ep, +ep+ + ey, for ef, = mr(e) and e« = 7+ (e). We have that Fe = iey, —iep«,
and [Fe,ep] = iler,e] — ilers,ey]. By using the hypothesis e, = u, we have that

ler,ep] € C(L) and [ep+, ep] € C(L*), so
'F[‘Fe’e/U] = 'F(i[eLﬂe/U] - i[eL*ve,U]) = _[eLaegj] - [6L*,€,U] = _[eae/U]‘
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Analogously, Fley, Fe'] = —[er,€'], so we have that the extra terms vanish.
The equivalent expression in the statement of the lemma comes from the fact that
F is skew-symmetric.

]

The operator F allows us to identify a Poisson structure in any B,-generalized

complex manifold. We first state a lemma that will be useful in this proof.

Lemma 4.22. Giwen an odd evact Courant bracket E, and sections &,n € C®(T*),
e,e’ € C®(Eg), we have that

o [5’77] =0, i [fae] = [Svﬂ-e] € COO(T*)7
o m([e.e']) = [m(e), m(e)], o 7([,€e]) =0,
o ul =Ly, o 7(urn(e)) = w(ue).

Proof. We make use of Remark [£.6] i.e., the isomorphism E =7 +7*+1. The Lemma
follows directly from the expression of the twisted Courant bracket in Formula ([2.11])
and the twisted Dorfman bracket in Formula (2.12) O

Proposition 4.23. Given an F-operator on an odd exact Courant algebroid E, the

map P =mp o Fip« : T* = T defines a Poisson structure on the manifold M.

Proof. In this proof, we will omit the brackets and any subindices for the maps =,
]:T* and P.
The antisymmetry of P comes from the fact that F € C®(so(E)): for &,n € C>®(T*),

(P&,m) = (nF&,m) = (F&n) = —(§, Fn) = —(§,nFn) = —(&, Pn).

For the integrability of P, expressed as [P, P] = 0 in terms of the Schouten bracket,
we claim that, for ¢,n,¢ € C>®(T*),

[P, P(&,1,€) = ([P€, Pn], C) + ([P€, ], PC) + ([€, Pn], PC), (4.11)

where the bracket on the RHS denotes the Courant bracket on T + T*. The formal
definition of the Schouten bracket will be given in Section [5.1} and the proof of this
identity will follow from Proposition

Let e = ¢, ¢ = np and ¢’ = ¢ be sections of T*. The integrability of F, Equation

(4.9), becomes
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We apply the properties of Lemma [£.22] so we have [¢, 7] =0,

(F& Fnl, Q) = ([nF& nFnl,¢) = ([P, Pnl, (),
(& Fnl, FC) = ([& mFn], FC) = ([§, 7 Fn], wFC) = (€, Pnl, PC),

and analogously, ([F¢,n], F¢) = ([P, 1], P¢). The resulting equation is precisely (4.11)).

O
Proposition 4.24. The vector field n(u) is a Poisson vector field for P =y o Fips.
Proof. We have to prove that £.)P =0, i.e., for &7 € C®(T),
(LrwyP)EN) = Loy (P(E;m) = P(L(u)&m) — P&, Laguyn) = 0. (4.12)

Note first that, by applying Lemma and the fact that F and v commute (Equation
(#.5)),

(uPg,m) = (w(u(rFE)),n) = (w(uFE),n) = (r(Fu),n) = (Pu,n).

By applying this identity and the property (D3), we have that

m(u)(2(PE,m)) = 2(uP&,n) + 2(PE, un)
2(Pu&,m) + 2(P§, un) = P(u&,n) + P(&,un)

P(£7‘(‘(U,)£7 n) + P(¢, Ew(u)n)a

£7r(u) (P(&m))

from where Equation (4.12)) follows. O

Remark 4.25. The F-operator could have been used to define the type of a B,-gcs
without using the isomorphism of E with a twisted version of T+ T* +1. Analogously

to Definition 3.5 in [Guall], the type is given by

1
5 dimg T A FT*.

4.2 Extremal cases of B,-gcs on M

In this section we study B,-gcs on M, for n = 2m or n = 2m + 1, which are of constant

type 0 or m at every point.
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4.2.1 Type 0 and dim M even: symplectic plus 1-form

If the type is 0 at every point, by Proposition [4.17, we have that a B,-gcs is globally

given by a spinor
©=(—B, _A)ei(w-‘ra) _ eB—i—io.z’—&-A—&-ia7

where w is symplectic and there is no condition on the closed 1-form o. This can be

interpreted in two ways:

e a type 0 Bay,-gcs is the (0, —A —io)-transform (complex A-transform) of a type 0

Do, -gcs eBTiw geen as a Bo,-gcs,
e a type 0 By,-gcs is the (—B, —A)-transform of the By,,-gcs given by ¢ = eil@to),

We use the latter statement and describe the structure given by ¢ = e/@t9), We
start by finding the element u satisfying - = ¢. By looking at the degree 0 and 1

components, this condition implies, for v = X + ¢ + X,

ioc(X)+ =1,

tixw+ €& — Mo =io,

soA=1,0(X)=0,&=0and ixw = 20. By defining Z € ¢>(T) such that izw = o, we
have that v =27 + 1 satisfies u- ¢ = ¢ and has norm 1. On the other hand,

Ann(e'@t9)) = Ann((—iw, —io)1) = (—iw, —ic) Ann(1) = (—iw, —io)Tg,
so we have

L=Anm(p) ={X —iixw+o(X)o —ioc(X)} xerp
L=Am(p) ={X +iixw+ (X))o +io(X)} xer,
U=Lt*nL**=C(2Z+1).

We now write the operator F in terms of T+ 7% + 1. Since F is i on L and —i on

L*, by taking linear combinations we have

F(X +0(X)o) =ixw+o(X),
Flixw+o(X))=-X —o(X)o,

F(2Z 4+1) = 0.
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From the first equation, F(Z) = o, and then from the third, 7(1) = —20. From
the second F(ixw) = —X + o(X)o, which can be rewritten as F(n) = —w=(n) + n(Z)o.
Finally, from the first equation, F(X) =ixw — o(X)Z + o(X). In matrix form, we have

Z®oc —w il 0
w —o®Z —20
o 0 0

The Poisson structure is just the inverse of the symplectic structure.

Example 4.26. All the type 0 Bo,,-gcs are, up to (B, A)-transform, symplectic manifolds

together with a closed 1-form, which may be zero.

4.2.2 Type 0 and dim M odd: cosymplectic structure

We have seen in Proposition [d.17that a type 0 B,-gcs on a 2m+1-dimensional manifold
M 1is the (B, A)-transform of a cosymplectic structure. We study such a structure in
more detail.

A cosymplectic structure is given by closed forms w € Q?(M) and ¢ € Q(M) such
that o Aw™ is a volume form. There is a Reeb vector field Y € ¢>(TM) canonically
associated to the pair (o,w) such that w(Y) =0 and o(Y) = 1.

The B,-gcs associated to a pair (o,w) is described by the pure spinor
¢ = exp(i(w + 0)) = exp(iw) + io exp(iw),
or, equivalently, by the subbundles

L=Ann(p) ={X —iixw+o(X)o—io(X)}xer,,
L*=Am(p) ={X +iixw+o(X)o+io(X)} xere,
U=L*nL*=CY -o).

Note that v =Y — ¢ satisfies u- ¢ = ip and has norm —1. It can be found as in Section
4211
We now write the operator F in terms of T+ 7% + 1. Since F is i on L and —i on

L*, we have

F(X +0(X)o) =w(X) +o(X),
Fw(X)+o(X))=—-X —0(X)o,

FY —0o)=0.
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From the first equation, F(X) = w(X) for X € Kero, and F(Y +0) = 1. From this latter
equation and the third equation, F(Y) = 3 and F(o) = 3. From the second equation,
F(1) = =Y — o and hence F(w(X)) = —X + Yo(X). This latter equation, together with
F(o) = 1, determines the second column. In particular, the component 7% — T, which
is a Poisson structure, is completely determined by 7(w(X)) = —X +0(X)Y and 7 (o) = 0,
since o Aw™ is a volume form.
The operator F is thus given by the matrix
0 T -Y
w 0 —o
%0 %Y 0
The Poisson structure = acting on a 1-form « is alternatively described by the
equation

in(a) (0 AW™) =mo A W™ A

Again, the 1-form « is uniquely determined since o A w™ is a volume form.
We have that, up to (B, A)-transforms, Bs,,11-gcs of type 0 are equivalent to cosym-

plectic structures.

Example 4.27. The product M x S! of a 2m-dimensional symplectic manifold (M,w)
and a circle, with angular form df, has a Bs,,+1-gcs of type 0 globally given by the
spinor ¢ = exp(i(w + db)).

4.2.3 Type m and dim M even: complex plus 1-form

We first look at two local spinors defining the same Bs,,-gcs of type m. They are
related by a local function f:
(B,A—io)Q = f(B, A —ioc").

By looking at the degree m part we have that Q = fQ' and then o =0, A= 4', B=B,
since Q Ay = QA+ for real forms v,7 implies v = /. Thus the 1-form o is globally
defined, while Q is defined up to non-zero scalar multiples.
As (¢,%) # 0, we have that Q A Q # 0, so Q defines an almost complex structure J
on the manifold M.
We look at the annihilator of ¢: sections X + ¢ + A € C*°(E¢) such that
ixQ =0,
(—1)™AQ + (—=1)™io(X)Q — (—1)™io AixQ =0,
EAQ+ (1) Hife AQ =0,

(=D)™iEATAQ=0.
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These are sections of

L=A{X —io(X)}xer,,, ® (10 = (0, —i0)(Tio,1) © I(1 0))s

where (1,0) and (0,1) denote, respectively, the +i and —i eigenspaces for J.

From the involutivity of L, we have

[(0, *iU)(T(O,l) ® T(*l,o))v (0, —io) (T(D,l) ® T(*I,O))} C (0, —io) (T(O,l) ® T(*Lo))a

so, by looking at the projection to T, [T(g 1), T(0,1)] C T(0,1) for the Lie bracket, i.e., J is
integrable.

Let o(g 1) be the (0,1)-component of ¢ with respect to J. Define ¢ := —igg 1y+io(g 1) =
(J*)~ (o), which satisfies 2¢ AQ = 2(—1)™ioc A Q. We have that v = (—1)™(2¢ + 1) satisfies
u-p = and (u,u) = 1. We then have subbundles

L =(0,i0)(T(1,0) ® T(p1)):
U=C((-D™2+1)),
where v = Y + o satisfies u- ¢ = .

By similar arguments to Section [£.2.1], we have that F(¢) = o, F(1) = —20 and the

F-operator is given by

—J 0
J* 20
o 0

Any By,,-gcs of type m, up to (B, A)-transform, is a complex manifold together

with a 1-form.

4.2.4 Type m and dim M odd: normal almost contact

By the same arguments as in the previous section, up to (B, A)-transform, a type m
Bp-gcs on a 2m + 1-dimensional manifold M is locally given by
©=(0,—-i0)Q2=Q+icTQ =Q+ (-1)™ic A Q,

where o is a real 1-form globally defined and Q is a complex m-form, defined up to
non-zero multiples, satisfying c AQAQ # 0, i.e., Q defines an almost complex structure
on the subbundle Ker(o) C T.
The annihilator of ¢ is given by the generalized vector fields X + ¢ + f satisfying
ixQ =0,
(=)™ fQ + (=1)Mio(X)Q — (—1)™io AixQ =0,
EANQ4+ (1) lhifonQ =0,

(—D)™iEANTAQ=0.
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Define Y € ¢>°(T) to be the vector field satisfying iyQ = 0, o(Y) = 1. We then have
that
L = Ann(p) = (Ker(2) NKer(o)) ® Annp«(Q) & C(Y + o —4),

and consequently

L =Amn(p) = (Ker(Q) NKer(c)) ® Anng+ (Q) & C(Y + o — 1),

U=L*nL** =C(Y -o).

Note that v = Y — o satisfies u-¢ = i and has norm —1. Note also that Q or any of its
multiples define the same subbundles.

The complex m-form © on Ker(o) is equivalent to an endomorphism J satisfying
J? = —1d. By the definition of Y, T = Ker(s) ® RY, so we can extend J to an en-
domorphism F by setting Fige(,) = J, and F(Y) = 0. This new operator satisfies
F? = —1d+Y ® 0, so it actually defines an almost-contact structure, as defined in
Remark [£.19] The F-operator is then given by

—-F -Y
F* —c |. (4.13)
%0‘ %Y 0

Conversely, any almost-contact structure defines such an F-operator, and hence an
almost Ba,,+1-gcs of type m.

For the integrability, we look this time at the F-operator. The T-component of
Equation for sections e = X, ¢’ = Z € C>°(T) gives

—~F%[X, 7] - [FX,FZ] + F[FX,Z) + F|X,FZ] = 2do(X, Z)Y,

which is, following [Blal0] (p.81), the condition for normality of the almost contact
structure. Normality is equivalent to the integrability of the corresponding almost

complex structure on M x R.

Remark 4.28. Normal almost contact structures also appear in [[IPWO05] as D, 1-
geometry, as one should expect. B,-geometry has indeed enough space to accommo-

date them, unlike for contact structures.

Remark 4.29. We look at the possible relation of almost contact structures, or type
m Bam+1-g¢s up to (B, A)-transforms, with CR-structures. We have a globally defined
real 1-form o and a locally defined complex form ©, defined up to non-zero multiples.
These data give a polarized CR-structure in the sense of [Meel2]. On the one hand,

a CR-structure is determined by ¢ and o A Q, or any non-zero multiple. On the other
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hand, giving Q locally gives a complement to the CR-distribution, i.e., a polarization.
However, there are two main differences with polarized CR-structures. First, in a
polarized CR-structure, any non-zero multiple of the form o give the same structure,
unlike in the By, 1-ges, where different 1-forms o define different structures (notice
that the subbundle C(Y + o —4) depends on o). Second, in a polarized CR-structure,

the form o is not necessarily globally defined.

Ezample 4.30. Any odd-dimensional sphere $?™+1 admits a Ba,,11-ges of type m, as it
admits a normal almost contact structure ([SH62]). We describe its F-operator. On

the one hand, the sphere $?™+! is defined inside C™*! by considering
S2mHl — Lz, zmg) € C 2 P+ zm P =10

Let 4 : 82m+1 5 ¢™*! be this inclusion and let C™+! have real coordinates (z1, ..., z2m12)
and complex structure J. On the other hand, consider the action of R* on (C™*1\ {0})
given by A (z1,...,2my1) = (M\21,. .., Azma1), for X € RT and (21,...,2,.1) € C™TL. For
each orbit there is a representative (z1,...,2z,11) such that |22 +... 4 [zme1|? = 1, SO
we get an isomorphism

(C™ I\ {0})/RT == §7m

and we have a projection 7 : C™*1\ {0} — §2m+1,

The F-operator of the By, 11 is given by the matrix in (4.13)) with

1 m+1
o= 5 Z (xj+m+1dxj - xjd‘rj+m+1)’
j=1
1

F = —dmroJodi,

where 5 denotes the vector joining the origin with the point p.

Remark 4.31. A more interesting approach in order to provide B, 1-gcs would be
generalized reduction from an invariant Ds,,-gcs, in the same way that an invariant
Dapm-gcs, i.e., preserved by the extended action, reduces to a Dy(,,_q)-gcs ([BCGOT]).
For instance, this process would give that a circle bundle over any projective variety
admits a Bo,,_1-gcs of type m. Take a complex projective manifold X € CP™ and
consider its cone p~!1(X) c C™, where p : C™ — CP™. This cone inherits a complex
structure from C™, hence it admits a Ds,,-gcs. The cone p~1(X) is a C*-bundle over
X. By regarding C* as S! x Rt we define an R*-action on p~1(X) in such a way that
p~1(X)/RT is an S'-bundle. The reduction of the D,,,-gcs would give a Bs,,_1-gcs of
type m on p~1(X)/R*.
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4.3 Topological obstructions to the existence of B,,-
gcs

The topological obstruction to the existence of a B,-gcs over M depends on the parity

of dim M and is given by the following proposition.

Proposition 4.32. An almost B,-gcs on an odd exact Courant algebroid E over M

exists,

e on an odd dimensional manifold M, if and only if the bundle T + 1 admits a

complex structure.

e on an even dimensional manifold M, if and only if T admits a complex structure,

1.e. M admits an almost complex structure.

Proof. Since we are looking at a purely topological condition, we can assume, by
Remark [£.6] that £ =T +7* + 1. The twisted Courant bracket does not intervene in
the proof.

We use the decomposition (T+ T* +1)c = L+ L+U. Let n =2m+1 or n = 2m.
The complex subbundle L + L has U(m + 1,m) or U(m,m) as its structure group. By
choosing a metric, the structure group can be further reduced to its maximal compact
subgroup U(m + 1) x U(m) or U(m) x U(m). This further reduction corresponds to the
choice of complex subbundles C* and ¢~ such that L+ L = C* + C~ and the metric
is positive (resp. negative) definite on C* (resp. C7).

In the odd dimensional case (reduction to U(m +1,m)), C* has real rank 2m + 2 =
n+1. The map npy; : Ct — T + 1 has trivial kernel since T* is isotropic and hence
defines an isomorphism. This isomorphism endows T+ 1 with a complex structure.
Conversely, by regarding T+ 1 as T(M x S'), a complex structure on 7 + 1 defines an
Sl-invariant almost complex structure on M x S'. This S'-invariant structure gives an
Sl-invariant almost D,-gcs on M x S'. By the reduction process described in [2.4] M
admits an almost By,-gcs.

In the even dimensional case, the subbundle ¢~ has rank n. The map =y« : O~ — T*
has trivial kernel, because the inner product on T + 1 is non-negative, so it is an
isomorphism, endowing T*, and by duality 7, with a complex structure. Thus, M
admits an almost complex structure. For the converse, any almost complex structure
J on M defines an almost D,-gcs, and hence an almost B,-gcs, by Example 4.2l O
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4.4 Courant bracket in terms of L + L* + U

In this section we use the isomorphism L* = L, as we will make extensive use of the
duality. We present formulas for the Dorfman product and the Courant bracket in
terms of the induced Lie brackets on L and L*, their Lie algebroid differentials and
Lie derivatives, and the action of the unit section u as a derivation of both L and L*.

Although it might be a bit confusing, we use the notation X, X;,Y € C®(L), &1 €
C>®(L*). We recall that in a Lie algebroid L, as defined in Definition [4.11], the sections
of the exterior algebra A®(L*) are endowed with a differential operator dy, : C>®(A*L*) —
C®(AFHLL*) defined by

k
dL‘p(XOaXh s 7X]€) :Z(il)zﬂ-(Xl) (QO(X()le) s aXia s Xk)) (414)
1=0
+ Z(—l)l+jg0([X“X]], X07 ce 7X’L'7 AR Xj: s Xk)a
i<j

where ¢ € C®(AFL*), X; € C®(L), and X; denotes that X; is missing. Moreover, the Lie
derivative by a vector field X, Ly : C®°(AFL*) — C*®(AFL*), is defined by

k

(Lx&)(X1,...,Xy) =n(X)(&(X1,..., X)) — Zg(Xl, XX X, (4.15)
=1

where ¢ € C®(AFL*), X, X; € ¢>®(L). They satisfy the Cartan formula Lx¢ = dy(6(X)) +
ixdré. The differential d, : C°(A¥L) — ¢>(AF1L) and the Lie derivative L¢ are defined
analogously and also satisfy LeX = d.(§(X)) +igdsX.

The Dorfman product of sections of L is the Lie bracket on L, and analogously for
L*. For X € C>°(L) and ¢ € C*°(L*), we look at the L, L* and U components of X¢ and
¢X. First,

(X&,Y) = n(X)((§,Y)) = £(XY) = (Lx)(Y),

and analogously, (€X,n) = (L¢X)(n). Second,
(X&m) = —(€X,n) + du(§(X))(n) = —(Le X)(n) + dx(§(X))(n) = —(igds X)(n),
and analogously, (£X,Y) = —(Lx&)(Y) + d(€(X))(Y) = —(ixdz€)(Y). Finally,
(X& u) = X(§u) — (& Xu) = (uX,§),
and analogously, (£X,u) = (ué, X). Summarizing, as (u,u) = (—1)",
X€=Lx&—iedi X + (—=1)"(uX, €)u,

€X = LeX —ixdp€ + (—1)"(u, X )u.
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Note that uu = 0 since vu+uu = 2D{u,u) = 0, where D is the differential of the Courant
algebroid. The products involving fu,gu € C*®(U), with f,g € C*°(M), are
X(gu) = m(X)(9)u —g(uX),  (fu)X ==X (fu) +2D(fu,X) = —7(X)(f)u + f(uX),

n(gu) = m(n)(g)u — g(un), (fun = —n(fu) +2D(fu,n) = —m(n)(f)u + f(un),

(fu)(gu) = f((m(u)(9)w) + g((fu)u) = fr(u)(g)u — gm(u)(flu+2(=1)"gDf.

Note that the product X¢ has a non-trivial component in U, (-1)*(uX, £)u, so L+ L*
is not closed under the Dorfman product. In other words, L+ L* inside L+ L*+U does
not have the structure of Courant algebroid, unlike the L + L* = E¢ of D,-geometry.

However, for e = X +¢,¢/ = X/ +¢ € C®(L + L*), we will use the notation
e’ = (e¢') 1+ + (ue, ),
since the L + L*-component, namely,
(ee) e = (X, X1+ Le X' —igdi X) + ([, + Lx & — ixdf), (4.16)

coincides with the definition of Dorfman product for the double of a Lie bialgebroid
(L, L*) (JLWXO97]). By skew-symmetrization, and using the notation (e1,e2)_ = &1 (X2)—
&(X1), we get the Courant bracket

le1, ea] =([X1, Xo] + L¢, Xo — Lg, X1 — dufe1, e2)—)

+ ([€1, 6] + Lx, €0 — Lx,€1 + deq, ea)), (4.17)

which coincides with the one in [LWX97] too.
We thus have, for e + fu,e’ + gu € C®(L + L* + U):

(e + fu)(e +gu) = (e¢') 4+ + f(ue) — glue) + 2(~1)"gDf (4.18)
+ (fr)(g) = gr()(f) + m(e)g = 7(€)f + (~1)" ue, ) )u.

The corresponding Courant bracket is

e+ fu ¢ + gu] = [e,€] 41+ + flu,€'] — glu,e] + (—1)"(gDf — fDg) (4.19)

+ () - gr)) + 7o) = 7)) + T (el ) - (e ) w
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4.4.1 Future work: the odd double of L, L* and a derivation

In D,-geometry, a D,-gcs L gives a decomposition (T + T*)c = L + L, where L = L*.
The Lie algebroids L and L are not only dual to each other, but they form a Lie
bialgebroid (L, L), i.e., a pair of dual Lie algebroids such that the differential of L is a

derivation of the Schouten bracket of T = L* and viceversa:

dL [6777] = [dLé.?"ﬂ + [57 dL’r]L

du[X,Y] = [d X, Y] + [X, d.Y],

for sections X,Y € C>®(L), &n € C®(L*). Conversely, starting with a Lie bialge-
broid (L, L*), its double L + L* is endowed with the structure of a Courant algebroid
(JEWX97]).

In B,-geometry, a B,-gcs L gives a decomposition (T +7T* +1)c = L+ L+ U. We
still have that L and L = L* are dual to each other. We wonder if they necessarily
form a bialgebroid. If that were the case, L + L* would be a Courant algebroid with
the Courant bracket given by the projection to L + L*. Their sections would satisfy
the property (D2), i.e., for v,w € C®(L + L*),

7((vw)pyr+) = [m(v), T(w)].

On the other hand, these same sections v, w are also sections of L + L* + U, which is a
Courant algebroid, so

m((vw) L4 pe4v) = [(0), 7 (w)].

The difference between these two expressions is

s0, either the derivation u vanishes, or =(u) = 0. As a first observation, since neither of
these conditions is satisfied in several of the B,-gcs studied, we have produced several
examples of pairs of dual Lie algebroids which are not Lie bialgebroids. Secondly, the
condition 7(u) = 0 implies (u,u) > 0, so it can be satisfied only when the manifold is
even dimensional.

Given a Bj-gcs L such that Ec = L + L* + U, the brackets and the differentials
satisfy the compatibility condition

dL[gvm - [dLga 7]] + [f>dL77] + (71)”‘[“;5} A [Uﬂ?]v

for n, ¢ € c>°(L*), and similarly for d. and X,Y € C>°(L).

66



This suggests that given a pair of dual Lie bialgebroids L, L* and a suitable deriva-
tion (which we define below as a Courant derivation), it is possible to define an odd

exact Courant algebroid structure on L+ L* +U, where U is a trivial rank one bundle.

Definition 4.33. Let L and L* be dual Lie algebroids. We define a Courant derivation
(p,Xp) of L and L* as a pair of derivations ¢; of L and ¢y« of L* and a vector field
Xp € C(T) satisfying

o (or(D, I+ (L, or+(I) = 7(Xo){I,I'),, for 1 € C>(L),I' € C®(L*),
® dp[§,n] = [dr& ] + (& dnl + (=1)"pL(§) A pr(n), for & n e C>(L7),
e and similarly for d. and the bracket of L.

For the sake of simplicity, we denote both ¢; and ¢« as .

Theorem 4.34. Let L and L* be a pair of dual Lie algebroids, and (¢, Xo) a Courant
derivation. Denote by U a trivial rank one bundle over M. The bundle L+ L* +U has
the structure of an odd exact Courant algebroid, which is uniquely determined by the

conditions:
o the Courant bracket in L and L* is given by the Lie bracket of L and L*,

e L and L* are isotropic, the pairing between L and L* is half of the pairing given

by the duality, and the pairing between U and L+ L* is given by (U, L+ L*) =0,

e the pairing on U has signature (—1)", and for the section u € C®(U) of U such
that (u,u) = (—=1)", the anchor map is given by w(u) = Xo and its action by the
Dorfman product (or Courant bracket) on L and L* is given by .

Remark 4.35. By the properties of a Courant algebroid, the Dorfman product is then
given, for e+ fu,e’ + gu € C*°(L + L* + U), by

(e + fu)(e’ + gu) = (e€') L1+ + f(p(e) = glp(e)) +2(=1)"gDf

+ (£ Xo(9) = 9Xo(f) + m(e)g = 7(e)f + (~1)"{p(e), ') Ju,

while the corresponding Courant bracket is

e+ fu, e’ + gu] = [e, ']+ 1 + fo(e') — gp(e) + (=1)" (gD f — fDg)

+ <on(g) — 9Xo(f) +m(e)(g) — m(e)(f) + 5 ({«o(e), ) = <90(€/>76>)> u.

The main remaining question is whether, given a pair of dual Lie algebroids L, L*

there always exist a Courant derivation and in this case, whether it is unique.
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4.5 Infinitesimal symmetries of a B,-gcs

In this section we make use of Equation to describe the infinitesimal symmetries

of a B,-gcs. We define infinitesimal symmetries as follows.

Definition 4.36. An infinitesimal symmetry of a B,,-gcs L on an odd exact Courant
algebroid E is a section v € C*°(FE) such that «C>(L) c ¢*°(L) for the Dorfman product.

By the decomposition Ec = L+ L + U, a section v € C®(E) can be written as
v =101 901 40 where v0! € T and +° € (M) is a real function. By integrability
of L, v0.1¢>°(L) c ¢>(L). We then have to study when v%! 4 v9% fixes L. Consider an
arbitrary section !0 € ¢>(L). By Equation (4.18)), we have that

(00! 4+ Ou)et 0 = (el Ly e 4+ 00 (ue0) + [—w(e0) (00) + (=1)" (w1, e 0)]u.
Since the term v%(ue!0) belongs to L, the L*-component of the RHS is the L*-component
of (v%1eb0) ;. 1., which, by Equation (4.16]), equals —i.1,0d;v%!. The condition for the
L*-component to vanish is
dpo®! =0.
Finally, for the U-component, we have —r(e!9)(29) = —d0%(e!9) and (=1)™ (uv?1t, e10) =

#(uvo,l)(el,O)’ so the U-component vanishes if and only if

_1\n
dpo — ( 21) (1) = 0.

This suggests defining a differential operator C*>(L* + U) — C®(A?L* + L* ® U)) in such
a way that v € C°(E) is a symmetry if v%! +1%, its projection to L+U, is dr,,y-closed.

Since U is self-dual, we write dy, 7 : C°((L + U)*) — C®(A%(L + U)*), which is given by

—1\n
dryy - 0Ot 4+ 0O s dp ot 4 (dp® — ( 2) (Lyo®h)) Au.

On the other hand, we define a differential ¢>°(M) — C*>°(L* + U) by considering the
projection of Df to L* + U. The projection to L* is given by d;f and the projection

to U is given by
(=n"

L T
We define d;, ¢y on functions by
dptuf=dpf+ ﬂ(Luf)u-

2
We check that d? ;=0 on ¢>(M). Since df =0 and Lydyf = dp(L.f), we have

dnotdns + S W = &5+ (4 (S L) - S Cudnn) nu—o

The element dy yf € C°(L* + U) uniquely determines a real section of E, which is

called a Hamiltonian symmetry.
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Definition 4.37. A Hamiltonian symmetry of a B,-gcs L on an odd exact Courant

algebroid E is a section

0 +dpf + S L e e (m),

where f € C>°(M) is any real function.

By identifying the symmetries sym(L) with Ker(d; ) and the Hamiltonian sym-
metries ham(L) with Im(d;, ), we see that they are complex vector spaces that fit in

the short exact sequence
0 — ham(L) —» sym(L) —» H' (M, L+ U) — 0,

where by H'(M, L + U) we mean, for now, Ker(dy, )/ Im(dr 7).

4.6 The Lie algebroid L + U and its cohomology

The existence of a differential d; .y on C>°(M) and C*®(L* + U) motivates its extension
to the exterior bundle A*(L + U)* by

(71)k+n

dL+U(a+bAu) =dra+ (dLb+ (Lua)> Au,

for a +bAwu e C®(AF(L 4+ U)*). This operator squares to zero and satisfies

dLJrU(a A ,6) = dL+Ua AB+ (—1)'0401 A dLJrU,B,

where |a| denotes the degree of a € C®(AlY(L 4+ U)*).
Although L + U is not a Lie algebroid with the restriction of the Courant bracket
of E¢, there must be a derived bracket coming from dy,; which turns L + U into a
Lie algebroid. Recall that the derived bracket of a differential d on a Lie algebroid A
is given by
ix,y) = lld ix],iv], (4.20)

where X,Y € C®(A4) and iy : CO(AFA*) = C®°(AF~14%),

Proposition 4.38. The derived bracket |, |p.y on L+U is determined by the identities
o [,Iprv =[],
o [wipiv =5 Lul = 3w,
o [fu,gulriv = 3(fLug — gLuf)u,
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where 1,1 € C®(L), f,g € C®°(M) and the bracket on the RHS of the equations is the

Courant bracket.

Proof. For 1,I" € (L), all the terms involving u vanish and we get the usual Courant
bracket, which restricted to L is a Lie bracket.
For 1 € ¢>°(L), having in mind that we are using the pairing (, ) for the isomorphism

U* =2 U and hence iyu = (u,u) = (—1)", we have, for e +u e C>®(L + U),

(e +u)[u,l|L4+v = —iudryu(e(l)) — iiudrv(e +u)
(=" (=D
=iy ( 5 Ly(e(D) A u) — Gy (— 5 Lyen u)

1 1 1
= §Lu(e(l)) - i(Lue)(l) = §(Lul)(e)7

since m(u){e,l) = (ue,l) + (e, ul).

Finally, for fu,gu € C*®(U), we have

(e +u)([fu, gulLyv) = ipudr+v(igule +u)) —iguipudriu(e +u) — igudryu(ipy(e + u))

= i ((~1)9) ~ ign(— R Le(~1)" ) ~ gl (-1 )

_ L =nn = =y
=f D) Lug—O—g D) Luf— D) (fLug_gLuf)

]

Remark 4.39. The fact that a non-isotropic subbundle of a Courant algebroid becomes
a Lie algebroid by modifying the bracket is studied in the theory of pseudo-Dirac

structures introduced in [LB14].

Once we know that L + U is a Lie algebroid, we deal with the Lie algebroid coho-
mology of dy .. We can see this cohomology as the hyper-cohomology of the double

complex
d d d d
CoO(M) ——=—> C°(L¥) L L Coo(/\kL*)—L>...
D% (L )Au ~ W ) U (L, YA

o0 S C([L* e ..y poopkTx o ...
c>(U) o O (LT AU) T CR(NLFAU) —-
We compute the principal symbol of dy,;; in the next proposition.
Proposition 4.40. The principal symbol of dj .y,

s:T* @ AF(L + U)* =AML+ U)
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15 given by
sela+bAu) = i(§0’1 Aa+ (9T Ab+ (=1)Fe%) A u),

where & = €01 4 01 4 €0y € T,
Proof. We use the characterization, for P a differential operator of degree t,
= li )\—t —’LA’L@P A .
sgpu = lim A™%e [ue]
We consider the expression dy_y(¢*%(a +bAw)) and look at the top-degree terms on

Al

(_1)k+n

dr 1 (e (a+bAw)) = ixe™ dppra+e ™ dpa+ (i)\ei/\d’de/\b—l—ew‘deb—l—i(Lu(ei’\wa)))/\u.

Since Ly (e*a) = (Lye?)a+ M Lya, and (Lye™) = 2(d(e*¥),u), the top-degree terms
on A are
A A (=DFF™ i
N M dp A a+ (Mez Yy A b4 S (iredy, u>a) A

For ¢ € T*, take ¢ such that dy = ¢ = €01 4 ¢01 4 €O, so that dpy = €01 and (dy, u) =
(—1)7¢%. The symbol is thus given by
£ i(50,1 Aa+ (EOT Ab+ (—1)F0%n u)
O

Since the symbol s is zero if and only ¢%! and ¢ are zero, i.e., if and only if ¢ € T*

is zero, we have the following proposition.

Proposition 4.41. Given a B,-gcs L on an odd exact Courant algebroid E, the com-
plex H*(M,L +U) for the differential d; .y is elliptic.

When 7(u) =0, we have that (L,b) =0 for all b € C>*(A®*(L + U)*). The differential
then becomes

dL+U(a +bAu)=dpa+drbAu,

and consequently
H¥(M,L+U) =~ H*(M, L) H* Y (M, L).

In other words, the cohomology group consists of two copies of the cohomology for L
shifted by one degree. This applies to D,-gcs on an even-dimensional manifold seen

as a Bp-ges, since U 2 1®C, u =1, so n(u) = 0. Namely, for the examples in Section 3.2
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of [Guall] we have the following. For a complex structure J on M seen as a By,-gcs,

d;, = 0 and we get a sum of Dolbeault complexes:

HY M, L;+U)= @ HP(M ATYO)e @ HP(M ATH).
pt+q=k p+q=k—1

For a symplectic structure on M seen as a B,-gcs, L+ U is the image of T+1 by iw, so

HY(M, L, + U) = HEY(M, T +1) = H*(M,C) ® H*1(M, C).
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Chapter 5

Deformation theory of Bj-generalized
complex structures

5.1 The Schouten and Courant brackets

A B,-generalized complex structure (B,-gcs) on an odd exact Courant algebroid E is
given by a maximal isotropic subbundle L ¢ E¢ such that LnL =0 and [L,L] c L. By
the isotropy, the Courant bracket restricted to L is a Lie bracket and the subbundle L
has the structure of a Lie algebroid. This Lie bracket can be extended to a Schouten

bracket on the sections of the exterior algebra A®L as follows.

Definition 5.1. The Schouten bracket is the only bracket
[ ) ] : COO(/\kL) X COO(/\mL) — COO(/\ki-‘r’rn—lL)7

extending the Lie bracket (when k¥ = m = 1), acting on functions f € C*(M) by
(X, f] = 7(X)(f) for X € C>°(L), and satisfying the following properties, for Z € C>°(A%L),
Z' € C®(APL) and Z" € C®(ACL):

(S1): (2,2 = —(-1)@= D=7/ 7],
(82): (2,7, 2"] = (-1 DO=DeD(Z, 7], 2" + (-1)l*=D[Z, 7, 2"],
(S3): (2,2 NZ") = 2,21\ Z" + (1) e=D) 2/ A (7,27,

Actually, the algebra of sections C*®(A®L) together with the exterior product and
the Schouten bracket has the structure of a so-called Gerstenhaber algebra (see, for
instance, [KS95| for definition and properties).

We prove now several formulas relating the Courant bracket between elements of

L and L* to the Schouten bracket on L and L* and the canonical pairing. We will
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make use of the decomposition Ec = L+ L + U, and of the identity
dpn(X,Y) = [X,n(Y)] = [V, n(X)] = n([X, Y]). (5.1)

By the properties in Definition [5.I} we have, for f,g € ¢>(M) and v € ¢>(L) or
(L"),

[f,9] =0 [v, [T =7 (v)(f), (5.2)

and consequently, by (S3),
lgv, f] = glv, f]. (5.3)

Lemma 5.2. ForneC®(L*) and X,Y € C®(L), we have
(10, X],Y) =
(= dun(x,¥) = Vo). (5.4)
Analogously, for X € ¢®(L) and n, € C(L*) we have
(Ui = 5 (194100 = B0+ 5lan(X]) (5.5)

Proof. Since Y is orthogonal to U, ([n, X],Y) = ([n, X]p 41+, Y). By using formulas (4.17))
and (4.15), we have

(10, X1,Y) = (~Lyxn + 3 DG(X)),¥) = 5 ( = Ln(¥) + (D@(X), V)

- % (—[X,n(Y)} +n([X,Y]) + %[Y, n(x)}) _

The second identity follows from applying (5.1]), and the third identity follows from
the first one by duality. O

Lemma 5.3. For n,ueC>®(L*), X € C®(L) and f,g € C>°(M), we have

(Ifn,gu, X) = %(fg[n, pl(X) = glp, fIn(X) + f[n,g]u(X))-

Proof. By using (C3) for fn and then u, we have

(Ifn,gu, X) = ([fn, gl + glfn, pl, X) = (fn, glp + glfs uln + fgn, ul, X),

from where the result follows. O

74



Let B € ¢>®°(A2L*) and A € ¢>*(L*). In this chapter, we will denote ixB and ixA
by B(X) and A(X), respectively. Write B as a sum of decomposable forms 3~ 5.5 8’
for some set S of 1-forms, which we omit from now on for the sake of simplicity. The
Schouten bracket [B, A] satisfies

[B,A]=>_[B,AIAB — B, A] A B,

by linearity and the property (S53).
When applying B to a vector field we get B(X) = Y (3(X)p'—B'(X)B). We introduce

the following notation for this expression:

> BX)B =D (B(X)B - B(X)P).
B«—p’

Using this notation we have these two expressions for [B, A](X,Y):

B, AIX,Y) = > ([8,AX)F () = [8,A(V)8'(X)) (5.6)
Be—p'

= Y (BB, A) - BB 4)()). (5.7)
Be—p!

In the following lemma we relate the Schouten bracket of forms B and A with the

Lie bracket on L and the canonical pairing of L and L*.

Lemma 5.4. Let B € C®(A\’L¥), A€ C®(L*) and X,Y € C®(L). The Schouten bracket
[B, A] satisfies

(B, A|(X,Y) = [B(X), A(Y)] = [B(Y), A(X)] = 2([B(X), Y] + [X, B(Y)], 4).
Proof. We write B as Y558 A 8" and develop the terms on the right-hand side.

[BX),AY)] = Y [BX)8.AY) = Y BX)E,AY). (by (5-2))
B p! B+—p'

Analogously,

[-B(Y),A(X)] =~ Y BY)[F,AX)].
Be—p’
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For the last addend we have

“2([B(X), Y] 4) = 2 3 (B(X)8, Y], A)
Be—p’
=2 3 (1800, Y)8' + B[ Y] + 58 (V)D(BX)), 4)  (by (C3))
Be—p’

= ¥ (-o04v) - 380 )1A,5x)))

[4,8'(V)]) (5.8)

From Equation (5.5), A([8",Y]) = 2([8,Y], 4) = —[8, A](Y) + [8/, A(Y)] - 5[4,5'(Y)], and
analogously for A([#’, X]). Equation then becomes, by Equation (/5.6),

> (BEO.AIY) = BY)IE AIX)) = [BLAI(X.Y),
Be—p’

as we wanted to prove. O
Similarly, we can prove the following lemma.

Lemma 5.5. An alternative identity for the Schouten bracket [B, A] is

SIBAIX,Y) = ([B(X), 4], Y) +{[X, 4], BOV) — 1[BY), A(X)].

Proof. We use B=>33Apg for the three addends of the right-hand side,

> (Be0s ALy = 3 (B0, 418 () + 6, A, (by (C3))
Be—p’ Be—p'

> B ALY = 3 5005 (148160 - (4.5 01+ 1840 ) (by E))
Be—p’ Be—p'
= Y BOIAK) = 3 (B AX)]

Be—p’ Be—p'
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After cancellations, adding all the terms gives

5 3 (BOOEAY) - BOIE, AIX)) = 5B, ALK, V), (by
Be—p’
[]

The unit section v € C*®(U) is a symmetry both of L and L*, so it extends to a
derivation of A2L*. For B A B € C®°(A2L*) we have

[uaﬂ/\ﬁ/] = [uaﬂ] /\B/ - [U,B/] /\/B

Given B € C®(A2L*), write it as Y. A . The action of v is given by

[, B] =3 ([, BIA B — [, B1A8) = 3 [wBA8. (5.9)
Be—p'
Note that, strictly speaking, we should use the Dorfman product, for the infinitesimal
action, but, since U L L*, uB = [u, f].

Lemma 5.6. For B € C*(A2L*) and X,Y € C*®(L) we have

S0 BICGY) = (fu, BOYLY) + ([, X, BOY)).

Proof. The right-hand side equals, by applying (C3) and reorganizing,

(1 BOOLY) + (s XLBW)) = 35 ((u BEORLY) + (1 X),5(1)8)
_ BEB (([u,ﬁ(X)]ﬁ’+5(X)[u,6’],Y> +B(Y)<[U7X],ﬁ’>)
Be—p!
% S (B0 BEO]+ BOOW, F1Y) + B8 ([u, X))
Be—p’
=2 S0 (8OO ) + BB (1w, X)) — B, B/ (X)),
Be—p’

which, by using [u, #(X)] = [u, #)(X) + #([u, X]), equals

1
2

5 (5O A - B, FIX))
B«—p’

[u, B](X,Y).
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5.2 Maurer-Cartan equation

Given a Bj-gcs L, such that LNL = 0, and consequently LN (L + U) = 0, we deform
it within the Grassmanian of maximal isotropic subbundles. If the deformed B,-gcs
L’ has zero intersection with I + U, the projection L’ =% L has zero kernel and L/ is
hence given by the graph of a map L — L + U, or equivalently, two maps B": L — L,
A:L—U. Write A(X) = A(X)u for some A € C*(L*). The isotropy of L’ means

0=(X+B(X)+AX)u,Y + B'(Y) + AY)u) = % (B’(X, Y)+ B'(Y, X)) + (=1)"A(X)A(Y).

By writing B = B’ + (-1)"A® A and using the isomorphism L = L*, we have that B
defines a section of A2L*. The B,-gcs L is given by

L' = {X + B(X) — (~1)"A(X)A+ A(X)u} xep, = eBHAL,

where the last equality is motivated by the fact that B and A act as a B + A-field for
the decomposition L+L+U = L+ L*+U. We check this. As in Section [2.1] the action

of A is not linear: A acts on X giving A(X)u, and A acts again on A(X)u giving
—2(A, A(X)u) = —2A(X)Alu, u) = —(—1)"2A(X)A € C®(LY).
Hence, the exponentiated action of A on X is indeed given by
X3 X — (“1)"A(X)A + A(X)u.

We also want L' = eBHAL to have real index zero. For I’ N L’ to be non-empty, we

need non-zero elements X,Y € C>°(L) such that

X+ B(X) - (-1)"A(X)A+ AX) = BY) — (1) + AM)A+Y + A(Y).

By using the notation B(Z) = B(Z) and A(Z) = A(Z) for Z € C*(L*), this equation
implies

X =B(Y) - (-1)"AY)A=B(B(X)) - (-1)"B(A(X)4) — (-1)"A(X)A4,
or, equivalently

(Id-BoB+(~1)"Bo(A® A) + (-1)"A® A)(X) = 0,

so X is in the kernel of an endomorphism of L. By choosing B and A small enough, we
can make this endomorphism invertible. Thus, in a sufficiently small neighbourhood

around zero, eBTAL defines a new almost B,-gcs.
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Recall the analogous situation in D,-geometry. Deformations of a D,-gcs L are
given by the graph of B € C*°(A2L*). Since any two form is an isometry, ePL is again
isotropic, and in a sufficiently small neighbourhood of B, e®L has real index zero. For
eBL to be integrable, we must have that the Courant bracket of any two sections of

eBL lies again in ¢PL, i.e., is orthogonal to e®L. This can be expressed as
((X+B(X),Y+B(Y)],Z+B(2)) =0,

where XY, Z € ¢>°(L). This is the Maurer-Cartan equation for D,,-gcs, and by Propo-
sition in Appendix , we have that it is equivalent to d; B + (B, B] = 0.

We return to B,-geometry, where the deformation of a B,-gcs L is given by the
action of eBT4 with B € ¢®(A2L*) and A € C®(L* ® U). The integrability condition
for eBHAL is [eBHAL, eBHAL] ¢ BHAL. Belonging to eBHAL is characterized by being

orthogonal not only to e#+AL but also to
PHAU = C{—(-1)"24 + u}.
This gives two equations, for X,Y,Z € C*°(L):

(X +B(X)—-(-1)"A(X)A+ A(X)u,
Y +BY)-(—1)"AY)A + A(Y)ul,

Z+B(Z) - (-1)"A(Z)A+ A(Z)u) =0, (5.10)

([X + B(X) — (-1)"A(X)A 4+ A(X)u,
Y 4+ B(Y) — (—=1)"A(Y)A + A(Y)u),
—(=1)"24+u)=0. (5.11)

The rest of this section is devoted to rewrite these equations in a simpler way. Many
technical calculations have been put in Appendix [B] to which will refer. However, a
few of them have been left in the proofs, as an example of the techniques used.

Yet another identity that we will use is that for v € C*°(L + L*) and f € C>®°(M):

([v, ful,w) = (~1)"[v, f], (5.12)

since, by U L L + L*,

([v, ful,u) = ([v, flu+ flv,u] = (v, ) Df,u) = (v, flu, u) = (=1)"[v, f].
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Proposition 5.7. The second equation, (5.11)), is equivalent to

(—1)”(dLA LB, A - =[u, A] A A) + %[u,B] =0

_1
2
Proof. We use the notation “(A?B7) :” for indicating the sum of terms where the form
A appears i times and the form B appears j times.
o(A°BY): ([X,Y],u)=0Dby [X,Y]€L LU.
o(A'BY%): By direct calculations, using and (5.1)),

(X, Y], =(=1)"24) + (X, AYV)u], u) + ([A(X)u, Y], u) =
- (=D"AXY]) + (D)X, AY)] = (D)"Y, AX)] =
(=D)"(X, A(Y)] = [V, A(X)] = A(IX, Y])) = (=1)"dLA(X,Y).

¢(A°B'): By Equation (4.3)), we have

(1BX). Y] ) = 5 ([ BOOLY) =~ ([, Y], BX))),

(1, B ) = 5 ([ X), BO) — (, B, X))
Regrouping the terms and applying Lemma [5.6) we get
(IBX), Y], w)+ (X, B ) = lu BIXY) = 1l BI(Y X) = 5w, B(X,Y).
¢(A2BY%): By Lemma (multiplied by —(—1)"), these terms add up to

—(_;)n([u,A] AA)(X,Y).

o(A'BY): We have

([B(X), AY)u] + [A(X)u, BY)], u) + ([B(X), Y] + [X, B(Y)], =2(-1)"4) =

(—1)" ([BOX), AY)] - [BOY), A(X)] - 2([B(X), Y] + [X, B(Y)], 4)),

which is, by Lemma [5.4]
(_1>n[Ba A] (Xa Y)

o(A°B?): ([B(X),B(Y)],u) =0 by L* L U.
o(43BY%): By Lemma [B.3] the overall contribution of these terms is zero.
¢(A2B'): By orthogonality of L* and U, and [U,L*] c U + L* 1 L*, we have that

([BX), =(=1)"AY)AJ+[-(-1)"A(X) A, BY)], ) H([B(X), A(Y )u] +[A(X)u, B(Y)], —2(—-1)"A) = 0.
o(A'B?): By the isotropy of L*, ([B(X), B(Y)],—2(—1)"A) = 0.
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¢(A°B3): There are no terms.
The only remaining terms are:
o(A*BY): By [U,L*] Cc U 4 L* = (L*)*,

([-(—1D)"AX)A, AV )u] + [A(X)u, —(—1)"A(Y)A], —2(—1)" A) = 0.
¢(A5BY%): By the isotropy of L*,

([~(~1)"A(X)A, —A(Y)A], —2(—1)" A) = 0.

Proposition 5.8. The first equation, (5.10)), is equivalent to

%(dLBJr %[B,B]) + #(dﬁu (B.A) A A+ %[U,B] AA=0,

which, combined with Proposition reduces to
1 1
dr,B + §[B7B] + §[u’B] ANA=0.

Proof. We use the notation (A*B7) from Proposition [5.7 We know from the Maurer-
Cartan equation for D,-geometry (Proposition , that (A°B') = 1d; B, (A°B?) =
1B, B], while (4°B°) and (A°B3) are zero.

We study all the terms that involve A € L* @ U.

o(A1BY: By [U,L] C U+ L =LY, (A(X),Y],2) + (X, A(Y)], Z) + (X, Y], A(Z)) = 0

o(A'BY): On the one hand, by (C3) and Lemma [5.6]

([A(X)u, Y], B(Z)) + ([A(X)u, B(Y)], Z) = A(X)([u, Y], B(Z)) + A(X)([u, B(Y)], Z)

= S A, BI(Y, 2).
Analogously,
(X, A(Y)u], B(Z)) + ([B(X), A(Y)u], Z) = —%A(Y)[U’B](X’ Z).

The remaining terms correspond to A(Z) times (A°B') in Proposition 5.7}, so we obtain
LA(Z)[u, B(X,Y). Overall, we have i ([u, B] A A)(X,Y, Z).
o(A'B?): By [U,L*] c U + L* = (L*)+ and [L*,L*] ¢ L* L U, we have that

([A(X)u, BY)] + [B(X), A(Y)u], B(2)) + ([B(X), B(Y)], A(Z)u) = 0

(A2BY%): By Lemma [B.F] the contribution of these terms is

- (*21)” (dANA)(X,Y, Z).
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o(A2B"): By Lemma [B.6] the contribution of these terms is

#([B,A]/\A)(X,Y,Z))

): It is zero by the isotropy of L*.
): By Lemma [B.7], the overall contribution of these terms is zero.
): All the terms are zero by [U,L*] c U 4+ L* = (L*)*+ and [L*,L*] c L* L U.
A*BY%): By Lemma [B.8] the overall contribution of these terms is zero.
): It is zero by the isotropy of L*.
): All the terms are zero by [U,L*] c U+ L* = (L*)* and [L*,L*] c L* LU. O

Summarizing, the Maurer-Cartan equation consists of the two equations

drA+ (_Ql)n[u,B] +[B, 4] — %[U,A] NA=0

dLB + 5B B]+ 5w B A A=0 (5.13)

These equations can be alternatively written in terms of the differential dy . and

the Lie bracket [, |4y defined in Section [4.6]

Theorem 5.9. The Maurer-Cartan equation (5.13) is equivalent to

dL+U(B+A/\u)+%[B+A/\U,B+A/\U]L+U:O. (5.14)

Proof. First, by the definition of d;,; we have

dpru(B+AAu)=dB+ (dp A+ (_21) [u, B]) A u.
Second, by (S3) and Proposition

[B,ANupru + [ANu, BlLyu = 2[B, ANulpyu = 2[B, Alru Au+2[u, Blpu A A

=2[B, Al Au+ [u, B] A A.
Finally, again by (S3) and Proposition |4.38,

[A/\U,A/\U]L+U= [A/\U,A]L+U/\U—A/\[A/\u,u]L+U
:7[A,A/\U]L+U/\u+[U,A/\U]L+U/\A
:—A/\[A,U]L+U/\u—|—[u,A]L+U/\u/\A

= 2Mu, Alpru NANu=—[u,A]ANANu.
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5.3 Infinitesimal deformation theory

In this section we state the B,, version of some definitions and results from Section
5 in |[Guall]. These will show that the Lie algebroid cohomology H?(M, L +U) is the
infinitesimal deformation space of a B,-gcs L.

Let W be an open ball centred at zero in a finite-dimensional vector space. A

smooth family of deformations of a B,-gcs L is defined as a smooth map
(B,A)f, : W — C®(A2L*) x C®(L* @ U)

such that (B,A)r(0) = (0,0), and (B,A)r(w)L := eBTAL is a B,-ges for any w e W. We
say that two deformations (B,A)r, (B',A"); are equivalent when there exist a family
of Courant automorphisms F : W — Aut(E¢) such that Fy = Idg. and F,,((B,A)(w)L) =
(B,A")(w)L. It suffices, just as in D,-geometry, to consider equivalence by families
of Courant automorphisms given by the time-1 flow E! of a family of generalized
vector fields e : W — C*®(E). As seen in Section , the flow Fg(w) satisfies that
_%uzoFé(w)y = e(w)y, where e(w)y is the Dorfman product. If the 1-jet of e(w) is
sufficiently small, the deformation F! (B ,A);L can be written as (B’,A’);L.

e(w)

Proposition 5.10. Under these conditions,
F}(B,A)L = (B,A) +dpyu(e”! + %) + R((B,A) L, ¢),
where e = 01 + €01 4 &y e C°(L 4+ L* + U) and R is of order O(t2).

Proof. We adapt the proof of Proposition 5.4 in |[Gualll]. We omit the point w € W.
We compute the first terms of the Taylor expansion of FL(s(B,A)r) around (0,0). First,
Fj.(0-(B,A))=0. Second,

OFL(s(B,A)r) d(s(B,A)r)
67 = —-— = B A .
s 10,0) 95 1(0,0) (B, A)r

And third, for y,z € C*®°(L),

OFL(s(B,A)L)
ot 1(0,0)

(y,2) = (=ePly, 2) + (—(u)y, 2) = dpe®! (y,2) +0,

while for y € ¢>°(L) and 2% € ¢>*(U) we have

OFL(s(B,A)L)
ot 1(0,0)

By Equation (4.18),

(y, 2%u) = (—e% 1y, 20u) + (—(eu)y, 20u). (5.15)

ol

<_60,1y,20u> = _<(_1)n<LueO,1’y>u’Z0 > = _ZO<LU6071>y> =z §(Lu60’1)(y)’

(=(u)y, 2%u) = (w(y)e®u, 2%u) = (=1)" 1 (y)(e") = (~1)"="d(y).
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So ((5.15)) becomes ((dLeO — EDN(1L,e0h)) ®u) (y, 2%). Summarizing,

(B, A)L(S, t)

= 0,1 0_ ﬂ 0,1 _ 0,1 0
ot ©00) dre™ +((de 5 (Lue™?)) @ u) = dpyp(eh +eu).

The Taylor expansion is
Ftle(s(Bv A)L) = S(B7 A)L + tdL—O—U(eO,l + eou) + ’I’(S, t, (Bv A)Lv 6).

The remainder r is smooth and quadratic, i.e., of order O(s?,st,t?) at zero. Defining
R((B,A)r,e) :=r(1,1,(B,A)r,e), which is of order O(t?), gives the result. O

The linearization of the Maurer-Cartan equations (5.13)) is given by

(=n"
dr,B=0 dr A+ 5 [U,B]ZO,

or, using the differential dr,,
driy(B+A)=0.

Thus, infinitesimally, deformations of a B,-gcs are dy ., -closed. Proposition is
saying that two such infinitesimal deformations are equivalent if and only if they
differ by dr (%! + €%), where €¥! is an arbitrary section of L but ¢ must be a real
function. This is a strictly stronger condition that differing by dj (L + U). Thus,
the infinitesimal deformation space does not coincide with H?(M,L + U), unlike in

Dy-geometry.
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Chapter 6

Bj,-complex geometry in low
dimensions

In this chapter we study B,-gcs for surfaces and 3-manifolds. We focus on how these
structures look locally, depending on the type and up to generalized diffeomorphisms.
In some cases, we will be able to give a normal form. Moreover we deal with the
L + U-cohomology around a non-degenerate type change point of a By-gcs and, as an
example, we compute the dimension of H?(L + U) for a particular type change Bo-gcs
on CP!.

Recall that, locally, a B,-gcs on a manifold M is given by a complex differential
form p of mixed degree such that (p,p) # 0 and which is moreover pure. Purity is an
empty condition up to dimension 2, and for dimension 3 it is just (p,p) = 0. Recall
also that the type of p is the least non-zero degree, whose possible values are integers
between 0 and 4

As an example, and for the sake of completeness, before dealing with dimension
two and three, we first discuss the one-dimensional case. A Bi-gcs on the circle S!
has only one possible type: type 0. By Proposition [£.17], up to (B, A)-transform, such
a structure is globally given by a spinor p = 1 +io. From (p,p) # 0, we have that o
is a nowhere vanishing 1-form. We can choose coordinates in S! in such a way that
p=1+1idf. Actually, in this case we can easily go a bit further. Given another B;-gcs
p=1+i0’, we have that p is related to p’ by a generalized diffeomorphism if and only
if the volume of p and /' is the same. Thus, B;-gcs up to generalized diffeomorphisms
are parameterized by R*. If we look at an analogue to the Teichmuller space, we
should only consider Bi-gcs up to diffeomorphisms connected to the identity and
exact A-fields. Let p = pg + p1 be a Bj-ges. We have that py must be constant and
non-zero, so we can take p = 1+ a + b, for real 1-forms a,b. Non-degeneracy means

that b is non-vanishing and so, up to diffeomorphism, is kd# for k # 0, where 2kr is
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the integral of b along the circle. By taking the orientation on S!' defined by p, we
have that k£ > 0. Finally, an exact A-field changes a by a+df, so its integral is the only
invariant. Thus, up to generalized diffeomorphisms connected to the identity, the
period of a+ib defines the structure and the Teichmuller space is the upper half-plane
R x iRt c C.

6.1 Surfaces

In D,-geometry, the spinor representation of the generalized tangent space T + T*
is reducible and splits into two half-spinor representations. This corresponds to the
decomposition AST* + A%%T*  Ag a consequence, D,-gcs are either even or odd: the
type of a D,,-gcs may be different depending on the point, but the parity of the type
is preserved. Looking at Do-gcs on surfaces is just looking at either symplectic (type
0) or complex (type 1) geometry. We first observe type change phenomena within
D,-geometry in 4-manifolds, where the type may jump from 0 to 2.

The situation in By-geometry is completely different. Since there is only one spinor
representation, the parity is not preserved and we can have type change phenomena
already on surfaces. The type of a Bs-gcs may increase at some points. Actually a
Bs-ges on a surface can be globally of type 1, globally of type 0, or almost everywhere
of type 0 with a codimension 2 submanifold where it is of type 1, i.e., a finite (by
compactness) collection of points where the type jumps to 1. We start by studying

locally these three scenarios.

6.1.1 Around a type 0 point

For a point of type 0, there exists a neighbourhood where the type is everywhere 0. In
this neighbourhood, by Proposition [£.17] the By-gcs is given, up to (B, A)-transform,
by p = 1+ i0 +iw. The condition (p,p) # 0 gives that w is symplectic, while the
integrability of p gives that o is closed.

If & is non-vanishing, we can choose coordinates (z,y) such that p = 1+idy+idz Ady.
A different way of presenting this Bs-gcs is by acting with (0,dz) so that we get
1+ dx +idy = 1+ dz, where dz is a complex structure. Although dz is complex, the
structure 1+ dz is still everywhere symplectic.

In the case that o vanishes in a non-degenerate way, we will not be able to find a
normal form, but we can give an accurate description. First, we take a neighbourhood
centred at the origin of R? where we can write ¢ = df. By the degeneracy of o, f has

a non-degenerate critical point at the origin. We can still modify 1 + idf + iw by
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acting with diffeomorphisms, so the question is to choose coordinates for pairs (f,w),
where f has a non-degenerate critical point at the origin and w is symplectic, up to
diffeomorphism. This was studied in [CAVVT79| when the Hessian of f at the origin

10°f
2 833%

9% f
0x1 0o

19°f 2
(Oa 0)$1ZE2 + 5@(070)1727

H(f)(x1,22) = (0,0)2F +

is non-degenerate as a quadratic form. This is the case in our situation, since o = df
vanishes in a non-degenerate way. The statement in [CAVVT79| can be adapted to our

situation as follows.

Proposition 6.1. Let p = 1+ idf +iw be a Ba-gcs such that f has a non-degenerate

critical point. Then:

e [f the Hessian of f is definite, there exist coordinates p,q such that the By-gcs is
given by
1+1id(g(p* + ¢*)) + idp A dg,

for g a non-zero differentiable real function. Two of these structures are equiv-

alent if they have the same germ of gj 10y at 0.

o [f the Hessian of f is indefinite, there exist coordinates p,q such that the By-gcs
s given by

1 +id(g(p® — ¢*)) +idp A dg,

for g a non-zero differentiable real function. Two of these structures are equiv-

alent if they have the same infinite order jet of g at 0.

We do not deal with f having a degenerate critical point. We just mention, as an
extremal case, that if f is constant around the origin, df = 0 and the By-gcs is given

by 1 +iw, or in some coordinates, 1 + idz A dy.

6.1.2 Type 1 By-gcs

If a Bo-gcs on a connected manifold is of type 1 in an open set, then it has to be of
type 1 everywhere, as the type change locus is a codimension 2 submanifold.

This structure is locally given by a spinor with no degree zero component, so we
have p = p;+po. From (p,p) # 0, we get that p;Apr # 0, S0 p; defines a complex structure.
We can choose local coordinates (z,y) in such a way that p; = dz for dz = dz +idy. By
acting with a closed A-field (0,df), we will not be always able to get rid of the degree
2 part ps. In conclusion, the By-ges is locally given by dz + pg, and this structure is

equivalent to dz+p), if and only if pp and g}, differ by dz Adf, where f is a real function.
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6.1.3 Around a generic non-degenerate type change point

We describe now how a Bs-ges around a type change point m looks like. In a suf-
ficiently small neighbourhood, which we omit for the sake of brevity, the B,-gcs is

given by a spinor p = pg + p1 + p2 such that
e po(m) =0 and is non-zero outside m,

e (p,p) #0,
e p is integrable, i.e., dp = v - p for a local v € C*®(Eg).

We assume, moreover, the generic condition that the point m is non-degenerate as a

zero of the section of K*, or, equivalently:
® dpy(m) 1s non-zero.

The integrability of p outside m is equivalent to the integrability of 1+ p1/pg + p2/p0-
Since the degree 0 component is constant, by Proposition [£.17] integrability corre-
sponds to d(1+ p1/po + p2/po) = 0, i.e. d(p1/po) = 0. By continuity, this condition is
equivalent to the integrability of p.

From (p,p) # 0 at m, we have that p; Apy # 0 at m and hence p; A p7 # 0 in some
neighbourhood of m, where we will work from now on. Thus, p; defines a complex
structure around m, and the closed form p;/py must be a meromorphic differential
with a pole. This pole is simple since dpy(m) has maximal rank. Hence, there exist
coordinates such that m corresponds to (0,0), and p1/pg is kdz/z for some k € C*, which
is the period of the form p;/py around the origin divided by 27i. Note that k is an
invariant of the Bs-gcs, since acting by (B, A) gives the period of pl;%A, which equals
the period of p1/pg.

We have just seen how the Bs-gcs becomes p = 2 + kdz + hdz A dz, where h is a
complex function. We now study if we can reduce the degree 2 component by acting
with a closed B + A-field. Write z = z + iy and k = |k|e?’ = |k|(a + ib), with a = cos# and

b=sinf for ¢ € [0,27]. We have, for some complex function v, that
p=x+ iy + |k|(a +ib)(dz + idy) + (v1 + iva)dz A dy.

Let an arbitrary closed B + A-field be given by
f

B' = Bdx N dy Al =d (|k> = —dzr + ==dy,
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for functions B and f. The action of B’ + A’ on the degree 2 component of p yields
(v1 +bfz +afy —aB) +i(va — afe +bfy —yB).
For this to be zero we need f and B such that
b a f= \ [ =B [ w
—a b fy B yB vy |
This equation is equivalent to
(2 )- () Ga)()
fy a b yB wa

where wy, wy are the 6 + Z-rotation of vy, ve. This system is solvable in f if and only if

Joy = fyz, 1.€.,

bxBy — aB — ayBy + w1y = aB + ax By + by By + way,
or, equivalently,
2aB + a(xBy + yBy) + b(yBy — xBy) = w1y — wag,
which can be written, by multiplying by z2 + 42, as
((ax +by)Or + (—bx + ay)ay) ((x2 + yQ)B) = (22 + y2)(w1y — wag), (6.1)
or, equivalently, in polar coordinates,
(ard, — bdy)(r’B) = Wiy — Wog.

By Appendix [C] this equation is solvable for a # 0. In this case, we get rid of py
and the Bs-gcs is equivalent to p' = pfj + p}. By applying again the above argument
about the meromorphic differential, p is diffeomorphic to z+k dz, where k is not purely

imaginary.

6.1.4 Cohomology around generic type change points

By Section[6.1.3] a Bs-ges around a generic type change point is equivalent to an open
set of C containing the origin, which we omit for the sake of brevity, with a Bs-gcs
given by the spinor p = 2 + fdz for some k € C*. We use 7 instead of k in order to

make the calculations simpler.
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In order to compute the L-cohomology and the L+U-cohomology of this structure,
we first describe frames for L and L*, the element u, its action on C>*(A®*L*), and the
differential d;,. Define

0Y = (~(k2)20. + dz + ), 0 = (~(F2)20: + 4z + F2).
We have that

L = span(20z,07),
L = L* = span(29,,dY),
u=2(k20, + kz0z) — 1.
For the pairing, the frames of L and L* satisfy the relations

(20,,0Y) =1, (205,0Y) =1, (20,,205) =0, (0Y,0Y) = kk2z = |kz|?,

while u is orthogonal to both L and L* and satisfies (u,u) = 1. We compute now the
action of v on C*®(A®L*). In this section we use the notation L, for the infinitesimal

action of u that we denoted by u- in Section [4.5 Its action on a function f is given by
Lof =u-f=2kzfs + 2Kz s
Its action on C*°(L*) is determined by
L,20, = [2k20.,20,] = —2k(20,),
L0y = [2k20z, —(K2)205) + Lz dZ + gz d(kZ) = 280
And finally, the action of u on C*®(A%L*) is given by
Ly (202 A OY) = (Lyy(202)) A 0Y + 20, A (LydY) = 2(k — k)(20, A OY).

We do the same for the differential d;. For a function f € C¢>*(M), drf is the
projection of df to L. Since df = f.dz + f=dz, we have that

df = 10 + f20) + (kzfs + F2fz)u+ (—k222F, — 20k22 )0 + (—k 22 fz — 2|k2|£.)0s,

SO
2

k
dif = (=5 2% f = k2] f2) (20:) + fz0% -
For an element 420, +b8Y € C>°(L*), where a,b are complex functions, its differential
lies in €*°(A2L*), so it is of the form dy (a20, + b0Y) = g(20, A 8Y) for some function g.
This function satisfies

g =dp(a20, + b@;)(@!,?@;).
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We compute g by using the formula

dre(ll) = 7)) = 7(l) (1)) = (L, 1))
Since [20,,0Y] = 0, we have

dp,(a20; + 037 (9 ,20z) = m(9) (b) — m(20z)(a + kk=Zb)
= —k?2%b, — 2(a + kkzzb)z

= —k?2%b, — 2az — 2kk2zbs — 2kkzb,

SO
dr (a20; + bdY) = ( — k222b, — 2(a + kézzb)g) (20. A Y).

One can check at this point, by elementary but tedious calculations, that dyd; f =0
and dr(u- f) = u- (dr.f).

L-cohomology

We describe now the cohomology of the complex (C*°(A®L),dr,). For H(L), we look at
functions f such that d;f =0, i.e.,
2

k
e~ P g =0, fz=0.

By plugging the second equation into the first, we have that f, must be zero. Since
f= is also zero, we have that f must be constant, so H°(L) = C[1] = C.

For H'(L) we look at n = a20, + bdY € C*(L*), for complex functions a and b, such
that d;n =0, i.e., such that

— k22%b, — 2(a + kkzzb)z = 0, (6.2)

modulo dy, f, for a complex function f. In other words, we want to find the constraints
for the existence of f such that
2

a= —%zzfz - |kz\2fg, b= fz (6.3)

Two obvious constraints are a(0) = 0 and a,(0) = 0. We shall show that these are
sufficient. First, we can always find f such that the latter equation is satisfied.
Moreover, f is determined up to the addition of a holomorphic function. With b = £,
Equation [6.2f says that

a+ |kz|?b + %2z2fz =: h(z), (6.4)
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is a holomorphic function. As a(0) = a,(0) = 0, we can write h(z) = 22g.(z) for a holo-
morphic function g(z). By replacing our initial choice of f with f — Zg, we have that
both equations in (6.3) are satisfied and a(0) = a.(0) are indeed sufficient conditions.

Thus, H'(L) = C? and we can see it in terms of a basis as:
H'(L) = C[(20,)] & C[2(20.)].

Finally, for H%(L), we look at ¢*>*(A2L*) modulo dj,(a20,+b0Y). We see that any element
of C®(A2L*), g(20. A 0Y), belongs to the image of dj,, by setting a such that az = —g and
b= 0. Consequently, H?(L) = 0.

L + U-cohomology

We finally deal with L + U-cohomology. The differential d; . for the By-gcs given by
z+ 3dz can be computed explicitly, as we will do in Remark . However, we use its
formula in terms of d; and the infinitesimal action of v so we can make use of the
L-cohomology.

For H(L 4 U), let g be a function such that d; ;g =0, i.e., such that drg =0 and
L,g = 0. From the first condition, as we saw in L-cohomology, ¢ is constant. The
second condition is then trivially satisfied, so H(L + U) = C[1] = C.

For HY(L +U), let ¢+ fu € C®(L* + U) be such that d; y(c+ fu) =0, i.e., such that

1
dLC:O, def ELUCZO'

We want to find a complex function g such that ¢+ fu=dp yg, i.e.,

1

¢ =dyg, f = 3Lug.

First, write ¢ = a(29.) 4+ b8Y, which is d;-closed. By looking at the (29.)-component of
drf — $Lyc =0, we have

—'“;z?fz — [kz* fz + ka = 0,

s0 a(0) = a,(0) = 0. These are, as we saw for H'(L), the conditions for the existence of
a function g such that dg = c. The condition dy f — 1Lyc = 0 becomes dy (f — 3Lyg) = 0,
which means f — JL,g is a constant. This constant must be zero, and this is the only

constraint. The class representing this constraint is [u], so that

HYL+U)=Clu]=C.
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For H2(L+U), let a+BAu € C®(A?(L+U)*), with a € C>®(A2L*), 8 € C*°(L*), be such
that drp(a+8Au) =0, ie.,

dLa = 0,

1

Since H%(L) = 0, a = dpy for some v € ¢®(L*), defined up to addition of a dr-closed
section of L*. Since d; and L, commute, from the second equation we have that
B+ Ly is closed for d;, and hence defines a class in H(L).

We want to know the obstruction to have ¢ + fu € C>°(L* + U) such that

drc=a,

1
de - §Luc = ﬂ

From before, we have that a = dv, so ¢ must be v+ e, where e € C>*(L*) is dy-closed.

The second equation is then written as
dpf - Lye =B+ 11
L) =5 u€ = 9 u’Y-

The RHS is dy-closed, as we have seen above, so it defines a class in H'(L), which is
generated by [20,] and [2(20,)]. We can still choose a dy-closed e € C>®°(L*). We must
check if —1L,e can represent [20.] or [2(20,)]. Let e =2¢(29). For e to be dj-closed, g

must be a holomorphic function. Then,

A Lue = 5L (29(202)) = (Lug)(20) +(Lu)(20:) = 2kz0:(20:) + g(~2k)(20:) = 2k(zg: — 6)(20%).
By choosing g = }, we get —3Lye = 20,. Thus, [20,] was a generator in L-cohomology,
but [20, A u] becomes trivial in L + U-cohomology. On the other hand, the generator
[2(20,) A ] is not trivial, since 2k(zg. — g) = —= would imply g.. = —5. Thus we have
H%(L 4 U) = C[2(28,) Au] = C.

For H3(L +U), let BAu € C®(A2L* ® U) be such that d; 3 = 0, i.e., 8 is dp-closed.
Since H?(L) =0, we can find v € ¢>°(L*) such that d;y = 3, S0 dr (v Au) = B Au, and
B Awuis dr,p-exact. Consequently H3(L +U) = 0.

Summarizing this section, around a type change point:

HO(L) = C[1], HY(L) = C[20,] & C[2(28,)], H*(L) =0,

HYL+U)=C[1], HY(L+U)=Cly], H?(L+U) =C[2(20,) Au], H3L+U)=0.
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Remark 6.2. We give explicit formulae for the differential d; . on C®(A*(L + U)*).
This differential is determined by the differential d; and the action of . Altogether,

for a function f € ¢>°(M), we have
2

diruf = ( - %z2fz — 2|zk|2fg) (20,) + fz0Y + (kzfs + kZfz)u.

For an element 429, + bdY + gu € C*°(L* +U), we have

dp10(a28, + b2Y + gu) =(—k?2%b, — 2(a + kkzzb)z) (20, A 8Y)
+ ((—kzzzgz - 2|kz[*g)0: + gz0¢

— (kzay + kZaz)20; + ka(20,) — (kzby + kzbz)0y — Eb&;/) Au.
Reorganizing the terms we get

dr+17(a20; + b2y + gu) =(—k?2%b, — 2(a + kk2zb)z)(20, A 0Y)
2

+ ( - %z2gz — |kz2gz — kza, — kzaz + k‘a) (20, A w)

+ (g2 = kzbs — Fzbz — Fb) (0 ).
Finally, for an element h(20, A 0Y) + (20: + qd¥) Au € C®(A3(L + U)*), we have

A4 (h(202 AOY) + (9202 + q0Y) Au)
= ((kehs + Fzhs) + (F — )b+ (~K22g. — 2(p + Kk=7)=) ) (20: A BY) Au

= ((k2h) = K220 + (Rzh)z — 2kh — 2(p + KR2Zq)z ) (20 A OY) M.
Again, elementary, although tedious, calculations give that djyd ¢y f =0 and

dL+UdL+U(a23Z + b@%/ + gu) = 0.

6.1.5 Type change Bj-gcs on surfaces

The existence of a By-gcs on a surface S implies that the surface must be orientable
as, by Proposition [£.32] S admits an almost complex structure. On the other hand,
assuming that the type change points are non-degenerate, the existence of a point of
type 0 implies that the type is 0 almost everywhere. In order to see this, note that
the type change locus is the zero locus of the section of K* defined by the projection
K — A0T* = C, and, hence, the type can be 1 only in a set of isolated points. This set
of points is moreover finite when the surface is compact.

Let L be a type-change Bs-gcs on a surface S. We have seen in Section that
around the type change points, with L given by p = pg+ p1 + p2, the quotient b defines

94



a meromorphic form with a pole. These forms can be put together to define a global
meromorphic form, as p and p’ define the same By-gcs if and only if p = fp’ for some
non-zero f € C>*°(M). By assuming non-degeneracy on the type change points, this
form has only simple poles, which correspond to the points of type 1. By Stokes’
theorem, a meromorphic form on a compact surface with only simple poles must have

at least two poles. This proves the following proposition.

Proposition 6.3. A By-gcs on a surface determines a meromorphic form with no
zeroes, and poles on the type change points. In particular, if the surface is compact
with non-degenerate type change points, the By-gcs cannot have only one type change

point.

A Bs-ges on a compact surface S with non-degenerate type change points deter-
mines a finite collection of points Z = {xy,...,2;} € S, | # 1, together with a set of
complex numbers Z’ = {ki,...,k} and a symplectic structure on M \ Z. They satisfy
that the By-gcs is locally described, up to (B, A)-equivalence, by z+k;dz (plus possibly
a degree 2 component when k; is purely imaginary) around =z;, and by 1+ iw around
any point outside Z. Moreover, by Stokes’ Theorem, we have ky + ... +k = 0.

On the other hand, we see how the generalized vector field u associated to a
Bs-ges reflects the properties of the Bs-ges. Recall that « gives, by projection to
T, a Poisson vector field 77 (u). By looking at the local expressions of u, the vector
field 7r(u) vanishes only in two situations: type-change points, and points of type 0
(symplectic + 1-form) where the 1-form vanishes. Moreover, the vector field mr(u)
has closed concentric orbits around a type change point if and only if the invariant k
associated to that point is purely imaginary, case in which we cannot get rid of the

degree 2-component of the local spinor.

6.1.6 Example: L + U-cohomology of % on CP!

One of the simplest example of a type change Bs-gcs is the meromorphic form on
CP! = CU {oo} given by £ on C and by —4% on C* U {0}, for w= 1. We compute the
L + U-cohomology for this example by using the Mayer-Vietoris sequence. In order to
do this, we need to know the effect of restricting L + U-cohomology of a ball around

a type change point to an annulus that no longer contains the type change point.

Lemma 6.4. Let V c C2 be a ball containing the origin with a By-gcs given by z+ 1dz.

Let W =C2\1v, in such a way that VW is an annulus around the origin. The maps
HYV,L+U) = HY (VW,L+U)
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HX(V,L+U) = H*(VAW,L+U)
have trivial kernel and 1-dimensional image.

Proof. The By-gcs on V NW is a symplectic structure, so
H'\VAW,L+U)2HY (VnW,C)e H'(VNW,C)Uu,

where we use the notation HO(V nW,C) Uu to keep track of the fact that this is an
element in the first group of L + U-cohomology. The only generator of H(V,L 4+ U) is
[u], which restricted to V nW gives [1]Uu € HY(V NW,C) U w.

In order to deal with H?(V nW,L 4 U), where the structure is equivalent to a

symplectic one, we need to understand better the isomorphisms
HYX VAW, L+U) 2 H> VAW, L) H'(VNW,L)Uu= H>(VNW,C) & H (VN W,C) Uw.

In the annulus VNW, the By-ges is given by the spinor 14449 which is a B+ A-transform
of 1 by (0, —k%):

d d
1+ 52 = (0, k)1
z z

The subbundle L then equals (0, -k%)T¢, and the L-cohomology is just the (0, k% )-
transform of the usual de Rham cohomology H'(V N W,C), so we expect it to be 1-
dimensional in the annulus. In terms of the complex basis, the generator of H'(VnW,C)
is given by [£].

Since the group H?(V,L +U) is generated by [2(20.) A u] = [2(20,)] Uu, we just have
to look at the map H?(V,L+U) — H' (VN W,C) Uu. The generator [2(20.)] Uu can be

seen as an element of the usual De Rham cohomology by pre-acting with (0, —k%):

2 2 2
2(20.), (0.~ kP X) = (220.). X + M indzds — Fivds) = Pz
z 2 z 2
z

Thus, [2(20,) Au] corresponds to [2k%92] Uu, whose restriction to V N W is a multiple of
the generator of H'(V nW,C). O

Proposition 6.5. Let L be the By-gcs on CP! given by < and —2“. We have that the

dimensions of H(CP', L +U), H'(CP',L +U) and H*(CP',L+U) are, respectively, 1, 1
and 2.

Proof. Take V = C and W = C* U {co}. From the Mayer-Vietoris sequence for L + U-

cohomology we have

S HW Ly e H WL+ L B Wwvaw.L+u) S

9 qACP L+ U) S HA(V, L+ U) & HXW,L+U) L H2(V AW, L +U).
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To the right of H?(CP!, L + U), we have that H?(CP',L + U) maps onto the image of
o, which is the kernel of H*(V,L +U)@® H>(W,L +U) — H>(VNW,L+U). To the left
of H?(CP!, L + U), the kernel of « is the image of 9, which is, in turn, isomorphic to
HY(V nW, L+ U) over Ker(d), or equivalently, over Im(3). We thus have

HYVAW,L+U)

0— Tm 3

— H?*(M,L +U) — Ker(y) — 0. (6.5)

We have that V. n W = C*, hence homotopic to a circle, and the restriction of the
By-ges to VN W is a symplectic structure plus a 1-form. From the end of Section 4.5

H VAW, L+U)=H'(VAW,C)® H(VNW,C)2CaC

H) VAW, L+U) 2 H>(VAW,C)a H (VNW,C)~0&C.

By the proof of Lemma [6.4] both H?(V, L+U) and H?(W, L+U) map onto the generator
of H2(VNW, L+U), so Ker(v) is 1-dimensional. Analogously, H'(V, L+U) and HY(W, L+U)
both map onto H*(VnW,C) c HY(VNW,L+U), so Im 3 is 1-dimensional. The sequence

(6.5) becomes

0—C— H*(M,L+U)—C —0,

and hence dim H2(CP!, L + U) = C2.
By analogous calculations H'(CP!,L + U) = C and H(CP!,L + U) = C. ]

6.1.7 Meromorphic 1-forms on a Riemann surface

In the previous section, we have seen that a type-changing Bs-gcs on a compact surface
defines a meromorphic 1-form. In this section we see how any meromorphic 1-form
determines a By-gcs after acting with a suitable imaginary B-field.

Given a meromorphic 1-form n with zeroes and poles on a Riemann surface, it is
possible to define a Bo-Calabi Yau structure by perturbing the form around the zeroes,
but keeping all the original information around the poles. Recall that a By-Calabi
Yau structure is a Bs-ges globally given by a spinor.

Consider the differential form of mixed degree p = 141. Outside the zeros and the
poles of 5, the form p defines a By-gcs, since 7 is closed. However, that is not the case
either on the zeros of n, as (p,p) = 0, nor on the poles of n, where p is not well defined.

First, we extend p to the poles of 5. In a suitable chart around a pole, p looks
like 1+ k‘i—f, where ¢t is the order of the pole. The Bs-gcs given by 2! + kdz extends the
previous one, since it is a multiple of it. Note that we get a non-degenerate generic
type change point if and only if + = 1. This process is uniquely determined by the

form .

97



And second, in a sufficiently small open neighbourhood around a zero of , we act
by a suitable imaginary non-vanishing B-field iB supported on a compact neighbour-
hood inside the open neighbourhood. If, in a suitable chart, p is given by 1+ kz!dz for
some t > 0, choose B such that B > |k|?|z|*. The perturbed (1 +iB)p is locally given
by (1+iB)(1 + kz'dz) and satisfies (p,p) # 0, i.e., defines a Bo-gcs, as B is closed.

The action around all the zeroes can be put together in a single 2-form B in such
a way that

(1+iB)(1+n)
defines a By-gcs, which is indeed a By-Calabi Yau structure. Since B is supported

only around the zeroes of 5, it does not affect the rest of the points. Note, though,

that the choice of B is not unique.

6.2 3-manifolds

In this section we make some considerations about Bs-gcs. We start by showing that
the behaviour is very different to Bs-ges by finding a normal form around a type 0
point. Recall that this was not possible for By-ges (Section m

Let L be a Bs-gcs on a 3-manifold M. Let m € M be a point of type 0 for L. Since
being type 0 is an open condition, there exists a neighbourhood of m where L is of
type 0. By Proposition L is equivalent to the annihilator of p =1 +io + iw + p3,
where ¢ is a closed 1-form and w is a closed 2-form. By the purity of p, (p, p) = 0, we get
py = —oAw, so the spinor becomes 1+io+iw—oAw. Moreover, by the condition (p, p) # 0,

the 3-form a Aw is a non-vanishing 3-form. This proves the following proposition.

Proposition 6.6. A Bs-gcs around a type 0 point is equivalent to a neighbourhood of

the origin in R3 with the Bs-gcs given, in local coordinates (q,r,s) of R3, by the spinor
p=141idq+idr ANds —dg N dr Ads.

6.2.1 The Bs-gcs z +dz + tdr Ndz

We look at z + dz +idr A dz as an example of a type change Bs-gcs. In this case, the

subbundles and the derivation « are given by

L = span(9z, 20, —idz, 205 + 10y + idr — 1)
L = span(9s, 20, + idz, 205 — i0y — idr — 1)

u =120, — 1205 + Op — dr
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Note that u is real, u-p=1ip and (u,u) = —1.

We look now at the integrability of the Bs-gcs in terms of p. We see that the
generalized vector field v = —id, satisfies dp = v-p. We modify v so it has a real
projection to L + L*. First, we have (v,u) = &, s0 my(v) = —4u. The field v+ fu is a
section of L + L*. In order to compute mp+(v + u), we first observe that

(3

1 . . _ 1 . . _
v+§:§(fzazfzarfzdr+z&z) :5(7(25‘2+28T+zdr71)+28571),

SO (v + %u) = WL*(—%)- By

1 1 . . 1_ 1/_ . . 1
—5= 1(282 + 10y + idr — 1) - 128;+ Z(zag+28,« —idr — 1) — Zzﬁz,

we have

1 1/ . . 1
7TL*(—§) = 1(2’8;—!— i0p — idr — 1) - zzaz.

6.2.2 Type change locus on 3-manifolds

Type change in Dy-geometry were first studied in detail in [CGO07| and [Torl2].
Non-degenerate type change can only occur in even Dy-gcs along codimension 2-
submanifolds which are moreover elliptic curves, i.e., the type change locus is a col-
lection of tori.

The equivalent statement for Bs-gcs is that type change occurs along a collection
of circles. This fact opens many interesting questions: could these circles be knotted?,
is there any constraint on the number of circles?, is there any constraint on the way
they are linked to each other?

We give an interesting example in this respect. Consider $? ¢ C2? given by
8% = {(21,22) € C* | |z1* + | 22> = 1}.

The action of S! = {e??}ycr on 83 given by e . (21, 29) = (€921, € 2y) exhibits S? as the

Hopf fibration, with fibre S' and base S2. The projection to S? is given by
P (21,22) = (|21 — |22/%, 2Re(2172), 2Im(21 72)).

For a point m = p(z1, 22) € $2, the preimage p—!(m) consists of {(¢?z1,e"25)}gcr, Which
is a circle. Moreover, any two of these circles are linked.
The type change D4-gcs 2129 + dz1 A dzp reduces to a Bs-ges structure on S3, given

by the same spinor. The type change locus of this Bs-gcs consists of the points where
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2129 = 0, 1.e., consists of the circles {z; = 0,|2%| = 1} and {z3 = 0,|21|?> = 1}, which are
the fibres over the points (—1,0,0), (1,0,0) € S? respectively. We thus see that the type
change locus consists of two circles, which are moreover linked, since they are fibres

of the Hopf fibration.
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Chapter 7

G%-structures on 3-manifolds

In D,-geometry, for a manifold M of dimension n = 2m, a generalized Calabi-Yau
structure is defined in [Hit03| as a global complex closed form ¢ that is either even or
odd which is a pure spinor and satisfies (¢, @) # 0. This structure defines a reduction
of SO(2m,2m) to the stabilizer of the spinor field, SU(m,m).

In B,-geometry, for a 3-manifold, we pointwise have a seven-dimensional general-
ized tangent space with an inner product of signature (4,3). Its space of spinors is
eight-dimensional and equipped with a signature (4,4) inner product. In this setting,
pure spinors correspond to null spinors with respect to the inner product, while non-
pure spinors correspond to non-null spinors. Moreover, up to scalar multiplication,
there are only two orbits under the action of Spin(4,3): the null ones and the non-null
ones. Hence, all non-null spinors have isomorphic stabilizers. While the stabilizer of
a non-zero spinor in Spin(7) is the compact exceptional Lie group Gs, for the group
Spin(4,3), the stabilizer of a non-null spinor is its non-compact real form G3 c GS.
The study of the structure given on a 3-manifold by a section of A*T*M consisting of

closed non-null spinors motivates the following definition.

Definition 7.1. A G3-generalized structure on a 3-manifold M is an everywhere non-
null section of the real spinor bundle, p € Q*(M), such that dp = 0. For the sake of

brevity, we call them G%-structures.

Remark 7.2. Given a section p € Q*(M) consisting of closed null spinors, its annihilator
Ann(p) C T+ T* +1 defines an integrable real Dirac structure, i.e., a maximal isotropic
subbundle of T+7T*41 involutive with respect to the Courant bracket. The involutivity

is a consequence of the closeness of p, as in Proposition 1 of [Hit03].

101



7.1 Existence of G3-structures

From the non-nullity condition we have that (p, p) = 2(pop3 — p1 A p2) defines a volume
form on M, so G3-structures only exist over orientable manifolds. In fact, given any
volume form w, ¢+ w defines a G2-structure for any constant ¢ # 0. Since p is closed,
the function py must be a constant.

From now on, M will denote a compact orientable 3-manifold. Let GDiff ™ (M) be the

group of orientation-preserving generalized diffeomorphisms, as defined in Proposition

2.5
Proposition 7.3. Up to GDiff*(M)-equivalence, a G3-structure p with py #0 on M
1. is of the form c+w for c#0 and w a volume form, and

2. 1s completely determined by the cohomology classes
([pol. [(p, p)]) € (HO(M,R)\ {0}) ® (H?(M,R) \ {0}).

Proof. Let p = po+ p1 + p2 + p3 be a GZ-structure with py # 0. It is equivalent, by the
action of the closed B + A-field (—p—;, —Z—g) to

1 1
po + —(pop3 — p1 A p2) = po+ —(p, p),
£0 2p0

which is of the form ¢+ w for ¢ # 0 and w a volume form, as stated in the first part.
By Moser’s theorem ([Mos65]), any two volume forms in the same cohomology class

are diffeomorphic. O
We deal now with the existence of G3-structures with pg = 0.

Proposition 7.4. If a compact 3-manifold is endowed with a G%-structure such that
po = 0, then it is diffeomorphic to the mapping torus of a symplectic surface by a
symplectomorphism. Conversely, any such mapping torus can be endowed with a G3-

structure with py = 0.

Proof. From py = 0 and (p,p) # 0 we get p1 A p2 # 0, so we have nowhere vanishing
closed 1-forms and 2-forms p; and ps. We can perform a small deformation on p; to
give it rational periods (as shown for instance in [Tis70]). A suitable multiple has
integral periods and defines a fibration = : M — S!'. To define =, take a base point

27 fc(t) p1dt

m € M and let n(z) = e where c(t) is any curve joining m and z. Let X be

the unique vector field satisfying ixps = 0 and ixp; = 1 (so it is transversal to the
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fibration, dr(X) # 0). Integrate the vector field X to a one-parameter subgroup of
diffeomorphisms {f;} such that fy =id. Let S be the fibre over the point m € M. By
the transversality, we have that M is diffeomorphic to the mapping torus of £, i.e.,

the manifold
S x [0,1]

{(2,0) ~ (f1(2); D)}oes
The diffeomorphism is given by [(y,t)] — fi(y) € M. Furthermore, £xps = d(ixp2) = 0,

so ffpa = p2 and the fibres have a symplectic structure given by the restriction of
p2, which is closed and non-degenerate in every fibre f.(S). Thus, S is a symplectic
manifold and f; is a symplectomorphism.

For the second part, let M; be the mapping torus of an orientable surface (S,w) by
a symplectomorphism f. We define a 2-form p, on My as the form which is fibrewise
w. The form py is well defined since f*w = w. Let p; be the pullback of a non-vanishing

1-form over the circle. The form p; + pp then defines a G3-structure on Mj. O

Lemma 7.5. The mapping torus of an orientable surface S by an orientation-preser-
ving diffeomorphism s diffeomorphic to the mapping torus of S by a symplectomor-

phism.

Proof. Let f be the orientation-preserving diffeomorphism and let w be a volume
form of the surface S. The 2-forms f*w and w have the same volume and hence
define the same cohomology class in H?(S,R). We apply Moser’s argument (|[Mos65])
to the family w; = tw + (1 — t)f*w, so we get a family of diffeomorphisms {y;}, with
¢o = id, such that ¢fw; = w. Then, we have that (¢ 0 f)* = ¢} ffw = w, ie., p10f is
a symplectomorphism, and {¢; o f} defines a diffeotopy between f and ¢; o f which
makes the mapping torus of f diffeomorphic to the mapping torus of ;o f. O

The following theorem is a consequence of the two previous results.

Theorem 7.6. A compact 3-manifold M admits a G3-structure with py = 0 if and
only if M 1s the mapping torus of an orientable surface by an orientation-preserving

diffeomorphism.

Remark 7.7. From a GZ-structure with py = 0 on a 3-manifold M we define a symplectic
structure on M xS' by ps+4p1 Adf, where df denotes the usual 1-form on S' and we really
mean the pullbacks of forms on M and S to M x S!. More generally, the condition
that a 3-manifold M fibres over the circle is equivalent to the existence of a symplectic
structure on M x S1, as addressed in [EV11].
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Remark 7.8. After acting by a generalized diffeomorphism, a G3-structure p with
po = 0 can be written as p; + po. This is a co-symplectic structure on the 3-manifold
in the sense of [Lib59]. In this context, statements similar to the ones in this section
have been obtained in [Li08].

7.2 Deformation of G3-structures

Inspired by the Moser argument for symplectic geometry, we study whether a small
perturbation of a G%-structure (on a compact 3-manifold M) within its cohomology

class may change the G2-structure up to equivalence by
GDiffo(M) = {f x (B, A) € GDiff(M) | f € Diffo(M), B and A are exact}.

Let p° p! € Q*(M) be two GZ-structures representing the same cohomology class,
pt — p% = dp, and sufficiently close to have that each form p! = p° + t(p! — p°) is a
G3-structure, i.e., (pf,pt) # 0, for 0 < ¢ < 1. We would like to have a one-parameter
family of generalized diffeomorphisms {F;} such that Fyp! = p°, making equivalent
all the GZ-structures between p® and p'. We will be looking for {F;} coming from a
time-dependent generalized vector field {X; + & + \¢}. By differentiating Fjpt = p° and

using Cartan’s formula, we have

d * * d *
0= %[Ft Pl =F % +Lx, g0 | = Filde +d(Xe + &+ ) - p')] = 0.

So, in order to find such generalized vector fields it will suffice to solve the equation
d(Xe+ &+ M) - ph)) = d(—p), or equivalently, to solve the equation (X;+& + M) -pl = —¢
where we are allowed to modify ¢ by the addition of a closed form depending on t.
This latter equation corresponds to ¢ being in the image of the Clifford product of
the sections of the rank 7 vector bundle T+ 7* + 1 by p'. The spinor p' defines a map
T+T*+1— A*T*M. Since p! is non-null, this map is injective (the annihilator of a non-
null spinor is trivial). From the antisymmetry of the Clifford product with respect
to the pairing, (vp, - pt,, pt,)m = 0, where v, and 4, lie over m € M, and the image is
{p'}+ = { € A*T*M | (p*,7p) = 0}. Thus, p' defines an isomorphism between the rank 7
vector bundles T+7*+1 and {p*}+. Consequently, for the equation (X;+&+M\)-pf = —¢

to have a solution and then apply the Moser argument, we must have ¢ € C*®({p!}1).

Proposition 7.9. Any sufficiently small perturbation {p'} within the cohomology class
of a G3-structure p° such that pf) # 0 is equivalent to p° under the action of the group
GDiffo(M).
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Proof. We have that pf = pJ # 0. Since we can add any closed form to ¢, we can

arbitrarily modify its degree 3 part. The Moser argument applies by setting ¢} =

*ﬁo(ﬂt,% + ¢1 + p2), so that we have (p', p*) = 0. O
0

When pg = 0, the result remains true but involves some technicalities.

Lemma 7.10. Let p be a G%-structure with py =0 and [p1] € HY(M,Q). There exists
an operator R : Q*(M) — Q%(M) such that ¢ + Ry € C*°({p}*).

Proof. By considering a multiple of p we can consider [p1] € H'(M,Z). By Proposition
[7.4] M fibres over the circle with fibre S. First, define the constant ¢ = [(p, )]/[p1 A p2]-
Add the closed form cps to ¢; then the cohomology class of (p,¢ + cpo) is trivial.
Thus, (p,¢ + cp2) = da for some 2-form a. Choose a metric on M. Using the Hodge
decomposition, the codifferential d* and the Green operator G, we may take a =
d*G(p,¢'). Integrate a over the fibres to get a function g on the circle. Since p; Aps # 0,
the fibres are homologous and py is closed, then [qp2 = ¢ # 0 for any fibre 5. Let
f=g/c. The 2-form oy = a — fps has zero integral along the fibres. The metric on M
induces a metric on any fibre S, for which we define the codifferential ¥, harmonic

operator Hg and Green operator Gg such that
ags = Hsagg + ds(dsGsagg) + ds(dsGsag|s)-

For degree reasons, dsGsag g = 0, and from [gagg = 0, Hsagg = 0. We then have,
over each fibre S, ags = ds8 where 8 = d5Gsagg. Since the metric on M determines a
smoothly varying family of metrics over the fibres, we have a globally smooth 1-form
3 such that ag — dj is zero restricted to a fibre.

Let X be the vector field transversal to the fibration such that iyxp; = 1, and let
v = —ix(ag —dB). We have that ag —dB =~ A p;. By differentiating this expression we
get

da = d(ag + fp2) = df A p2+ p1 Ady.

Define Ry = cpy + df + dy € Q% (M). Since ¢, f and v have been uniquely defined, R
defines an operator on differential forms. We have by construction that (p, o +Ryp) =0,
i.e., ¢+ Ry € C®({p}). O

Let Qp € (T +T* + 1) be the unique generalized vector field such that Qp-p =
—(¢+Ryp). Thus Q defines an operator Q*(M) — C®(T +T* +1).

Proposition 7.11. Any sufficiently small perturbation {p'} within the cohomology
class of a G%-structure p° such that p3 = 0 is equivalent to p° by GDiffo(M).
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Proof. When [p9] € H'(M,Q), we use Lemma to produce an operator R; for each
ot and we define ' = ¢ + Ry, so that (pf,p") = 0 and the Moser argument applies.
For the general case, we prove an analogous result in a neighbourhood of a G2%-
structure with rational degree 1 part and use a density argument. We drop the
superindex ¢ for the sake of brevity. Consider p+ A8, with A > 0 and g € Q2 (M) such
that 3y = 0. We want to solve the equation v - (p + A\3) = —¢ up to addition of closed

forms. To do that, consider
(vg + Av1 + X2va4+..) - (p+A8) = —(9 +Rp + A1 4+ A2y +...), (7.1)

for closed forms v;. We solve it iteratively, starting with vy -p = —¢ + Rep, which
has solution vy = Qp. We then have vy -p = —(Qp - 8+ v1). We define the operator
P:Q*(M) — Q*(M) by Py = Qp -3 and consider v; = RPyp. The equation becomes
v1-p = —(Pp+RPy), whose solution is v; = QPy. For j > 2 we have vj-p = —v;_1-f+7; =
—PJp + ;. By taking ~; = RPJ¢, the solution is given by v; = QP7¢. We thus obtain a
formal solution of by

Qe+ Po+ N2P2o+ .. ) (p+A3) = —p+ R(p+ \Pp+ A2P%p +...).

To see the convergence of the series ¢+ 322, MP7¢ for A sufficiently small, we consider
Sobolev spaces Hy(T + T* + 1) and Hg(A®*(M)) with norms || ||s. Since the operator Q is
defined in terms of the Green operator and integration over the fibres, it is bounded,
and so is the operator P. For s sufficiently large and any 3 such that |jv- 3||s < ||v]]s,
there exists some constant Cs such that ||Py||s < Cs|lo||s-

Take X\ such that 0 < X < % Then, ¢+ 3772, MPip is a Cauchy sequence and
converges to a form ® € Hy(A*(M)). Equation becomes u - (p + A8) = —(¢ + R®P)
and a solution is given by Q® € Hg(T + T* + 1).

We have that for any p such that [p;] € H'(M,Q), there exists a neighbourhood
for which there is a solution in Hs(7T + 7* + 1). Since ¢ € Q*(M) belongs to Hg(A*(M))
for any s, we have that the solution belongs to Hs for any s. Thus, the series defines
® € C°(A*(M)), we have that Q@ € C®(T+T*+1) is a solution of u-p' = —p up to closed
forms, and the Moser argument applies. Since there exists a solution in an open

neighbourhood of any rational form, by density of the rational forms, there exists a

solution for any closed form p and the Moser argument applies. n
We summarize Propositions and in the following theorem.

Theorem 7.12. Any sufficiently small perturbation {pt} within the cohomology class
of a G3-structure p° is equivalent to p° by GDiffo(M).
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7.3 The cone of G3-structures

Inspired by the cones of Kahler and symplectic structures inside the second cohomol-
ogy group of a manifold, we raise a similar question for G3-structures on compact
3-manifolds. What are the cohomology classes [p] € H®*(M,R) which have a representa-
tive in Q°(M,R) defining a G3-structure compatible with the orientation of M7 From
the homogeneity of the condition (p,p) > 0, it is clear that these elements form an
open cone in H*(M,R).

Consider a mixed degree cohomology class [p] € H*(M,R) satisfying [po][p3]—[p1]lp2] >
0 € H*(M,R). In the case that [pg] # 0, i.e., pg # 0, consider a non-vanishing form w
representing the degree 3 class [pop3 — p1 A p2]. Define p' = pg + p1 + p2 + p%(w + p1 A p2),
which satisfies (¢/,p') = 2w and is thus a G3-structure representing [p]. Note that p
itself is not necessarily a G3-structure.

On the other hand, for a class [p] with [pg] = 0, i.e., pp = 0, the condition [(p, p)] =
—2[p1]lp2] > 0 must be satisfied. Moreover, [p1] and [p3] must be represented by non-
vanishing forms. From Theorem 5 in [Thu86|, the set of cohomology classes C; in
H'(M,R) which can be represented by a non-singular closed 1-form constitutes an
open set described as follows. Define the norm X for w € H?(M,R) as the infimum
of the negative parts of the Fuler characteristics of embedded surfaces defining w,
and extend this definition to H'(M,R) using Poincaré duality. Namely, the norm of a

1-form ¢ in M is
llollx = min{x_(S) | S ¢ M properly embedded surface dual to ¢},

where x_(9) = max{—x(5),0}. The unit ball for this norm is a polytope called the
Thurston ball By. The set of 1-cohomology classes ¢y represented by non-vanishing
1-forms consists of the union of the cones on some open faces, so-called fibred faces,
of the Thurston ball, minus the origin.

For each element a = [d] € C1, given by a non-singular a, take h € H?(M,R) such
that hUa > 0. Lemma 2.2 in [FV12] ensures that we can always find a representative

Q of the class h, such that Q Aa > 0. Hence, if we define
C={(a,8) €Cy®H*(M,R)| aUS <0},

we have that the cone of G2-structures with pp = 0 in H*(M,R) is given by C® H3(M,R).

To sum up, we have the following theorem.

Theorem 7.13. The cone of G3-structures, or G3-cone, is given by

{lo) € H*(MR) | [po] 0 and [po]lps] ~ [p]lp] > 0} (C @ HP(M.R) ).
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7.4 G3-structures and Bs-Calabi Yau structures

By Definition 4.16, a Bs-Calabi Yau structure on a 3-manifold is given by a pure
spinor p € Q% (M) such that dp =0 and (p, p) # 0. By taking real and imaginary parts,

Rep and Imp, this condition gives
dRep = dlmp =0

(Rep, Rep) + (Imp, Imp) # 0.

In dimension 3, since the spinor representation has dimension 8, the purity of the

spinor is equivalent to (p,p) = 0, or equivalently,
(Rep, Rep) — (Imp, Imp) =0

(Rep,Imp) = 0.

The last three equations imply (Rep, Rep) = (Imp,Imp) # 0 and (Rep,Imp) = 0. Thus, the
real and imaginary parts of a Bs-gcs give two orthogonal G3-structures Rep, Imp of the
same norm, whose integrability is assured by the integrability of p.

Equivalently, given any two orthogonal G3-structures p, and p, of the same length,
the form p, + ip, defines a Bs-Calabi Yau structure.

Note that a B3-Calabi Yau structure defines a reduction of the structure group to
SU(2,1), which fits into SU(2,1) ¢ G3 ¢ SO(4,3). This is a non-compact version of the
inclusion SU(3) C G2 € SO(7).
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Appendix A

Some proofs about 7'+ T* + 1

A.1 Equivariance of the Courant bracket

Recall that the Courant bracket of X + £+ X, Y +n+p e C®(T +T* +1) is given by
1
[X+E+ANY +n+p =X, Y]+ Lxn— LyE— §d(ix’r] — iy &) + pd\ — Adp + (ixdp — iy d)).

Note that we have the classical Courant bracket [X + ¢, Y + 5] together with a form
(udX — Mdp) and a function (ixdu — iy-d)).
Let v=X+¢+ X and w=Y +n+p. Since the action of a 2-form B does not involve

terms in A and p, we have, from D,-geometry, that

[ePv, ePw] = ePlv, w] + iyixdB.

To study the action of an A-field, we use Table [A.I| where we omit the column
corresponding to [X,Y] since it is zero in all the cases. The terms [—-ix A A, —iy A A],
[—ixAA, —2uA+iy Al and [-2)\A +ix A, —iy A A] are clearly zero.

The sum of all the terms of the table is:

— 2ix(dp)A + 2iy (AN A+ ixd(iy A) —iyd(ix A) + iyd(ix A)A —ixd(iy A) A
+ixAiydA — iy AixdA + 2 iy dA — 2uixdA
Since ijx y1A = [Lx,iy]A = ixd(iy A) —iyd(ix A) —iyixdA, this sum equals
— 2ixdp — iy dN)A + iy y) A+ iyixdA — iy A- A
—iyixdA- A+ixAiydA — iy AixdA + 2Ny dA — pixdA).
We use iyix(AAdA) =ixAiydA —iy AixdA +iyixdA- A to write it as
—2(ixdp — iy d\)A —ix y]AA+ifx yA
Fiyix(AAdA) — 2iyixdA- A+ iyixdA + 2Ny dA — pixdA).

The second line is zero when dA = 0, so we get the invariance of the Courant

bracket by closed 1-forms, [ev, eAw] = e4[v, w], or [(0, A)v, (0, A)w] = (0, A)[v, w].
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Since B-fields and A-fields commute, the action of a general element exp(B + A) =

(B, A) is then given by the following result.

Proposition A.1. Let (B,A) € C®(SO(T +T* +1)). For sections v =X + &+ X and
w=Y +n+u, we have

(B, A)v, (B, A)w] = (B, A)[v,w]+iyix(dB+ANdA)—2iyixdA-A+iyixdA+2(NiydA—pixdA).

A.2 Courant algebroid axioms

In this section we provide a direct proof of the Courant algebroid axioms of Definition
for T+ T* + 1.

Proposition A.2. For v,w,w’ € C®(T +T + 1),
o, wl, ')+ [fw,w), o] + '], w] = 3D (o0, ) + {fw, 0], 0) + (! 0], w))-

Proof. By linearity, it is equivalent to show that the identity holds in each of the

following cases:

o v w,w € C®(T + T*). This is the identity for classical generalized geometry
(Proposition 2 in [Hit10b]).

o v=\w=pw =vel®(1). Each term at the LHS is 0 since [\, ] = Adp — pdX and
[d)\ — Adp,v] = 0. The terms at the RHS are also 0 since ([\, ], p) is the pairing

of a 1-form with a function.

e v=X+Pw=Y+neC®T+T*), w =vecC>(1). For the LHS we have

X+ &Y +n],v] =ixyjdv = ixd(iydv) —iyd(ixdv)
(Y +n,v], X + ] = —ixd(iydv)

(v, X +&1.Y +n] = iyd(izdv),

i.e., the sum is 0. For the RHS we have three interior products of sections of

T + T* with an element of 1, which makes all of them 0.

¢ v =X+EeC®T+T), w=pw =v e C®1). This requires some more of
calculations. Both LHS and RHS equal

%(Vd(iXd/J/) - ,ud(iXdy)) — %((Z‘Xdy)dﬂ _ (ixd,u)dy).
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]

Proposition A.3. Forv, w sections of T+T*+1, such that =p(w) = X, and f € C*°(M),
we have that
[’U, fw] = f[’U,’LU] + (Xf)w - (an)df

Proof. As in the previous lemma, we split the proof into four cases:

e v =X +¢& w=Y +n corresponds to the result for classical generalized geometry

(|Gual4], Prop. 3.18).
e v=\ w=Y+n Wehave [v,w] = —ipyd\ = f(—iyd)).
e v=X+¢& w=p. We have [v,w] =ix(fu) = fizdu.
o v=2X\ w=ypu We have [v,w] = fud\ — Md(fu) = f(ud\ — \dp) — df \p.
]

Proposition A.4. For v, w, w' sections of T +T* + 1, such that np(v) = X, we have
that
X{w,w'y = ([v,w] + d{v,w),w") + (w, [v,w'] + d{v,w)).

Proof. When v, w and ' are sections of T+ 7%, we have Prop. 3.18 in [Gua04|. By

linearity, it suffices to show it for the following cases:
¢ v=X+¢+ N, w=pu, w =v. The RHS is
(ixdp + pdXh — Xdp + d(Ap),v) + (g, ixdv + vd\ — My + d(Av)) = vixdp + pixdv.
For the LHS we have

X(w) =vX(p) + pX ) =vixdu + pixdv.

¢ v=X+Eé4+ N w=Y +n, w =v. The LHS is zero, as (w,w’) = 0. For the RHS we
have —puiyd\ + piyd\ = 0.

e v=)\Nw=Y+n, w =7Z+6. In this case, X = 0 and the LHS is zero. The RHS
consists of two interior products of a section of 7'+ 7* with a section of 1, which
always vanish:

(—iyd\, Z 4 0) + (Y +1,—izd\) = 0.
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Propositions [A.2] [A.3] [A.4] together with the properties
7([v, w]) = [7(v), 7(w)] (Df,Dg) =0

are the axioms of Courant algebroid. Thus, T+ 7% +1, with the projection onto 7T, the

canonical pairing and the Courant bracket, becomes a Courant algebroid, as claimed
in Proposition [2.3

A.3 Integration of a one-parameter group of diffeo-
morphisms

We give more details of the infinitesimal action of a one-parameter subgroup of gen-
eralized diffeomorphisms {F;} = {f; x (B, A¢)} on a generalized vector field. The forms

By and A; satisfy

_ a4, 4B
dt |t=0 dt [t=0"

Ao =0, By =0.

The infinitesimal action Fy (Y +n+ p) corresponds to

_4d
dt [t=0

d ftx » 1
=0 I N B —Ai®@A 1 24 n
ft A 1 I
_%uzoft*y LxY
= | ~Fumofi lyvBe—ivAc® At —2udd) | = | —iyb+ 0+ Lxn+2pua |,
~ ol iy At p) —iya+Lxp

where we are using that for w a form, and w; a time dependent form, we have

d —1x
- =L
dt\tzoft “ X
d —1% _ d d —1%
dt|t=0ft Y= fo*dt\tzowt + dt|t=0ft 0

so, when wy = 0, we just have %\t:oft*wt = %u:o”t'
We thus recover, Equation (2.2), i.e.,

(X,b,0) - Y+n4+p)=LxY +n+p) —iyb+2ua —iya.
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Appendix B

Lemmas for the Maurer-Cartan
equation

This appendix contains results used to prove the Maurer-Cartan equation in Section
(.2l For the sake of convenience, we copy here some identities and results from
Chapters [4] and [o] that we will use.

For two elements e, e’ € C*°(L + L),

(s fer ) = 5 (1w €1, €) = (s 1,€))- (£3)
For e+ fu,e’ + gu € C®°(L + L* + U),
e+ fu,e’ + gu] = [e,e'|Ly L= + flu, €] = glu,e] + (=1)"(¢Df — fDg) (4.19)
+ () - gr)() + 7o)~ 7)) + T (el )~ (e ) w
For X,Y € C®(L), n,u € C(L*), f,q € C®(M),
dn(X,Y) = [X,n(Y)] = [Y,n(X)] = n([X, Y]),
lgv. f) = glo. 7,

5 (= dn(x,¥) = (), 63
1 1
(i) = 5 (1106) = a0 + 5lan(X] ) E3)

Lemma p.4. Let B € C>(A2L*), A € ¢>(L*) and X,Y € ¢>®(L). The Schouten bracket
[B, A] satisfies

(B, A|(X,Y) = [B(X), A(Y)] = [B(Y), A(X)] = 2([B(X), Y] + [X, B(Y)], 4)
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Lemma [B.5] An alternative identity for the Schouten bracket [B, A] is
%BMWXJU=QMX%MJU+QXALMY»—%BW%MXH
The first presentation of the Maurer-Cartan equation consists of the two equations
(X +B(X)—- (-1)"A(X)A+ A(X)u,

Y + B(Y) — (“1)"A(Y)A + A(Y )],
Z+B(Z) - (-)"A(Z)A+ A(Z)u) =0, (5.10)

for X,Y,Z e Cc>°(L).

We start with the results now.

Proposition B.1. For B € C®(A2L*) and X,Y,Z € C*(L) we have
2A[X+B(X),Y+B(Y),Z+B(Z))=d;B+ %[B,B]

Proof. The expression ([X + B(X),Y + B(Y)], Z + B(Z)) is clearly skew-symmetric in X
and Y. It is also skew-symmetric on X and Z by (C4), as

0=n(X +BX))Y +B(Y),Z+ B(2))
=(X+ B(X),Y +B(Y),Z+ B(Z))+ (X + B(X),Z+ B(Z)],Y + B(Y)).

Consequently, it is skew-symmetric on X, Y and Z.

By applying distributivity in 2([X 4+ B(X),Y + B(Y)],Z + B(Z)) we get eight terms,
which we study depending on the number of times that B appears.

With no B we have only one term 2([X,Y], Z), which is zero since L is isotropic.
With three B we have again only one term 2([B(X), B(Y)], B(Z)), which is zero again
by the isotropy of L*.

With one B we have:

2A[B(X),Y], 2) + 2([X, B(Y)], 2) + 2([X, Y], B(Z)).

By writing B =" 8 A 8" and expanding the expression, all the resulting terms have a
factor which is g or g’ acting on X, Y or Z. We look at the terms involving g/(2):
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- From 2([X, Y], B(2)), we get —4'(2)3([X, Y]).
- From 2([B(X), Y], 2), we get §(2)[3(X),Y].
- And from 2([X, B(Y)], Z), we get 8(Z)[X,B(Y)].
These add up to
8'(2)(IX,B(Y)] - [, B(X)] = B(X, Y))) = B(2)dpA(X,Y).

On the other hand, d;,B =d; (> 8AB) =>(drBAB — B AdLB). The terms with g/(Z)
in d;B(X,Y, Z) are precisely d;8(X,Y)5'(Z). By skew-symmetry,

2A[B(X),Y],Z)+2([X,B(Y)],Z)+2([X,Y]|,B(Z)) =d;B(X,Y, Z).

Looking at the terms involving g/(X) or 5/(Y) would have made the calculations more
complicated.

We pass now to the terms with two B:
2([X, B(Y)], B(2)) + 2([B(X), Y], B(Z2)) + 2([B(X), B(Y)], Z).

We write B=>Y.8A3" and B =Y v A+ for the two instances that B appears in each
addend. With this notation, all the terms contain 8 or g/, and v or 4/, acting on two
elements from X, Y, Z. We look at the terms involving 8'(X)+'(Z):

- From 2([X, B(Y)], B(2)), we get 8/(X)}(DB(Y),"(2)) = 5[v, BY)]B'(X)Y(2).
- From 2([B(X),Y], B(Z)), we get 2([3,Y],7)8'(X)¥'(Z) =~([8,Y])B'(X)"'(Z).
- From 2([B(X), B(Y)], Z), we get —[8,7(Y)]8 (X) (2).
Adding all these terms and then using Equation (5.5)), we have
( =Y, 8]) = [B.A(Y)] + %[%B(Y)])ﬁ’(X)v’(Z) = —[8.NY)B(X)Y(2).

On the other hand,

(B, B] = [ZBAB’,ZVAV’} = Y BAABAY,

B8’

Since, 5 and v run over the same set, the terms of [B, B](X,Y, Z) with a factor 3/ (X)+/(2)
are —2[3,7](Y)3' (X)y/(Z). Hence, by skew-symmetry

2[X, BY)), B(2)) + 2([B(X), Y], B(2)) + 2([B(X), ()], Z) =

2[B7B]7

and the result follows. O]
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We move now to lemmas relating the action of A € L* ® U to the Courant bracket
and the metric. Depending on the situation we will make use of the notation A € L*®@U
or A e C>®(L). Recall that A(X) = A(X)u. We first observe that for X,Y,Z € C*(L), we
have

(A, Y1, 2) + (X, A(Y)], 2) + (X, Y], A(2)) = 0, (B.1)

since [U,L] cU + L = L*.
In the proofs below we will use that for X € ¢>°(L) and f € C®(M), [X, f] = =(X)(f)
while [X, fu] = [X, flu+ f[X, u].

Lemma B.2. Let AcC®(L*) and X,Y € C®(L), we have
([A(X)A, Y] + [X, A(Y)A], A) = 0.
Proof. By (C3) and then (5.3),
([A(X)A, Y], A) = A(X)([A, Y], 4) + iA(Y)[A,A(X)] = i(A(X)[A, A(Y)] + AY)[A4, A(X)])-

Analogously, (X, A(Y)A], A) = —1 (A(X)[A, AY)]+A(Y)[A, A(X)]), and the result follows.
O

So far, we have dealt with sections of L+ L* ¢ L+L*+U. From now on, the lemmas

will involve the U-component.

Lemma B.3. The sum of the terms in imwvolving three times A € C*(L*) and

zero times B € C®(A2L*) is zero.

Proof. On the one hand, by applying (5.12)) and ([5.3)), we have

(=D AX) A AY)u] + [A(X)u, =(=1)"AY)A], u) = —([A(X) A, A(Y)] + [A(X), A(Y)A])
= —(AX)[A4, A(Y)] = A(Y)[A, A(X)]).

On the other hand, by applying (4.19),

([AX)u, A(Y)u], =2(=1)"4) = =2(=1)"((-=1)"(A(Y) D(A(X)) — A(X)D(A(Y))), A)
= —(A(Y)[A, A(X)] = A(X)[A, A(Y))),

which is the opposite to the previous terms. The remaining terms are

([~(~ 1) A(X)A, Y], ~2(=1)" A) + ([X, —(~1)"A(Y) A], ~2(~1)" 4)
— 2 (([A(X)A, Y], 4) + ([X, A(Y)A], 4)) =0,

by Lemma [B.2] The overall contribution of (43B9) is thus zero. O
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Lemma B.4. For Ac L* and X,Y € C*®°(L) we have

([AX)A, Y], u) + (X, AYV) AL w) — (=1)" ([A(X)u, AY)u], u)
+ ([A(X)u, Y], 24) + (X, A(Y)u], 24) = %([u,A] NA)X,Y)

Proof. We have that

([AX)A Y] u) = %(([MA(X)A],Y} - ([u,Y],A(X)A)} (by (E3))
= LA AY) + AV A - AX) A YD) (by (C3))
- %(A(X)[u, A(Y)]+ AY) [, AX)] — 24(X) A([u, V).

Analogously, ([X, A(Y)A],u) = —1 (A(Y)[u, AX)] + AX)[u, AY)] — 24(Y) A([u, X])).
The sum of the two first addends is then

— 5 (A0, YD) — A Al X)), (B.2)
On the other hand, by using (C3) and (5.3)),

(=(=D)"AX)u, A(Y)u], u) = — (—U"(([A(X)u, A(Y)]u, u) + <A(Y)[A(X)u,u}7U>)
)

_2 ( — AX)[u, A(Y)] + AY)[u, A(X)]). (B.3)
And finally, from (C3) and U L L+ L*,
([A(X)u, Y],24) + (X, A(Y )], 24) = (AX)A([u, Y]) = AX)A([u, X))).

Adding together the latter equation, (B.2), (B.3), and using [u, A(X)] = [u, A](X) +
A([u, X)), we get

5 (A0, A1) = AL, AJV)) = 5[, Al A A)Y(X, ).

Lemma B.5. For AeC®(L*®U) and X,Y,Z € C*°(L), we have

(="
2

(dLANA)X,Y, Z) = ([AX), A(Y)], Z) + ([A(X), Y], A(2)) + (X, A(Y)], A(Z))

— (1" ((AX)A, Y], 2) + (X, A(Y)AL Z) + (X, Y], A(2)4) )
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Proof. We look at the RHS. For the first addend, we have, by (4.19)),

For the second addend, we have, by (C3),
([AX),Y],A(2)) = ([AX), Y]u, A(Z)u) + (A(X)[u, Y], A(Z)u) = (-1)" A(Z)[A(X), Y],

since [u,Y] € C*(L) is orthogonal to A(Z)u € C*>*(U). Analogously, for the third addend
of the first line of the RHS we have

(X, A, A(2)) = =(=1)"A(Z)[A(Y), X].

We move to the terms inside the bracket of the second line of the RHS. The first
addend is, by (C3) and (j5.4),

([AX)A, Y], Z) = ([A(X),Y]A, Z) + A(X)([A, Y], 2) + %A(Y)@(A(X))aZ)

_ 1 ([A(X), Y]A(Z) + A(X) ( —dLA(Y,2)

; Z,AY)) + 3AXZ A,

!
2
By skew-symmetry, the second addend is

—5 (M0, X14(2) + A0 (- 4408 2) - §12,400)) + JACOZ AT,

For the third addend we have 14(Z)A([X,Y]). The result follows from regrouping all
the terms and using the identity (5.1)):

dA(X,Y) = [X, A(Y)] = [V, A(X)] = A([X, YY)

Lemma B.6. For B € C°(A2L*), A€ C®(L*), X,Y,Z € C®(L),

E (18,41 A 0)(X,¥,2)) == (-1 A0 A, BV 2) -+ (BX), ~(-1" (V) 4], 2)

+([=(
+ ([BX), A(Y)u], A(Z)w) + ([A(X)u, BY)], A(Z)u)
+([B(X), Y], =(=1)"A(2)A4) + ([X, B(Y)], =(-1)" A(2) 4)
+ ([A(
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Proof. We look at the RHS. The terms where Z is not acted on by B or A are
([(=D"AX)A, B(Y)], Z) = *(*1)"(<[A(X),B(Y)]A,Z> + (A(X)[A, B(Y)], Z>)7

((B(X), =(=1)"A(Y) 4], Z) = —(—U”(([B(X%A(Y)]AZ) + <A(Y)[B(X)7A]7Z>)-

The terms where Z is acted on by B are

(1" A(X)A, Y], B(Z)) = —(~1)" (<A<X>[A, Y], B(Z)) + LA(v)(D(A(X)), B<Z>>)

2
(X, =(=1)"A(Y)A], B(2))

(1" (AW AL BE)) - ACODAE). B(2)
([ACX)u, A(Y ), B(2)) = (~1Y"A(Y)D(A(X)) ~ A(X)D(A(Y). B(Z)

Grouping the terms where A(X) appears and it is not inside a bracket, we have
—(-1)™A(X) times

(1A, B 2) + (A, Y], BUZ) + L (D(A(Y), B(2)) =
- (18041, 2) 4 . 41 B(2)) - {152), 40

which is —1[B, A](Y, Z) by Lemma . We thus get #[B, A](Y, Z)A(X). Analogously,
we get —#[B,A}(X, Z)A(Y). There are two terms we have not used yet:

—(=D)™(A(X), BY)]A, Z) — (=1)"([B(X), A(Y)]4, Z).

Added to the terms ([B(X), A(Y)u], A(Z)u) + ([A(X)u, B(Y)], A(Z)u) from Equation ,

we get

C% a(z) (1B(x), AV)] - [BO). AX))). (B.4)

The only remaining terms are ([B(X),Y], —(—1)"A(2)A)+([X, B(Y)], —(—1)"A(Z) A), which
equal

—(=D"A@Z)([B(X), Y]+ [X, B(Y)], A).

Adding this equation to (B.4) we get

7(721)71 A(Z)([B(X% AY)] +[A(X), BY)] = 2([B(X), Y] + [X, B(Y)], A)),

which is, by Lemma [5.4],
B, Axv)A2).
Overall, we have

(=n"
2

(IB. A1(X, V) A(Z) + [B, A(Y, Z)A(X) + B, A|(Z, X)A(Y)) = (_21)" (1B.AIA A)(X,Y, 2)).

]
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Lemma B.7. The sum of the terms in Equation involving three times A €

C®(L*) and zero times B € C*°(A2L*) is zero.

Proof. On the one hand, we have some terms that equal A(Z) times (42B°) in Propo-
sition [5.7] so we get —(—1)"A(Z)([u, A] A A)(X,Y). On the other hand, the remaining

terms are
(-1)" ( — {JA) A, A(Y yu] + [A(X)u, AY)AL Z ) + ([A(X)u, Y]+ [X, A(Y )], A(Z)A>).

For the first addend inside the bracket we have

([A(X)A W AY), 2) = - A, A + AX) [, 4], 2) = 20 (A(2), 4000 + [, 41(2)).
and analogously,
()" A, AW 4], 2) = =28 (A + [, 21(2)).

On the other hand, the second term is

AlZ2)

> (AC)A(u, Y]) = AY)A([u, X))

By adding the last three expressions and using the identity [u, A(X)] = [u, A}(X) +
A([u, X]) we get

(=D)"A(Z)(AY)[u, A|(X) = A(X)[u, A](Y)) = (=1)"A(Z)([u, A] A A)(X,Y).
O

Lemma B.8. The sum of the terms in Equation involving four times A €

C>®(L*) and zero times B € C°(A2L*) is zero.

Proof. First we look at the terms involving —(—1)"4 - A and two 1-forms A:

— (=D)" ({[A(X)A, AV )u], A(Z)u) + ([A(X)u, AY) A, A(Z)u) + ([A(X)u, A(Y)ul, A(Z2)A))

_ 7@ (A1, AYV)] - AY)[A, AX)))

From the terms involving —(—1)"4 - A twice, we first look at

([~ (=) AX)A, ~(~1)"A(Y)A] Z) = (([AX)A, A )A + [AX)A, AJA(Y), 2))
1

= 5 (AX)AZ) (A, AW + A AZ)[AX), 4)),
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which is exactly the opposite of the terms above. Finally,

([(F(=D"AX)A, Y], =(=1)"A(2)A) + (X, = (=1)"A(Y)A], = (-1)"A(2) A)

= A(Z) (([A(X)A, Y]+ [X, A(Y) 4], A))
— A(Z) (<[A,Y]A(X) + %A(Y)D(A(X)), A) + (I, AJA(Y) - %A(X)D(A(Y)), A>)
= 4(2) (ACO((14.Y1.4) = {14.A0)]) - 40 (14, X],4) - J14,4x)]) ) =0,

since ([A, X], A) = 2[4, A(X)] by (5.5). Thus, the overall contribution is zero.
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Appendix C

Solving a linear PDE with a
singularity

Let 6 € [0,2n], a = cosf, b =sinf. Let g: R? — R be a real function such that ¢(0,0) = 0.

In this appendix we show how to solve the partial differential equation

(az + by) fo(2,y) + (—bz + ay) fy(z,y) = g(z,y), (C.1)

which has a singular behaviour at (0,0), since the coefficients of the equation vanish.

The value at any point (z,y) of a differentiable function R? — R vanishing at the
origin is recovered by integrating its derivative along a path joining the origin with
(z,y). Indeed, let v : (—o00,0) be a path such that lim;—,_ v(t) = (0,0) and ~v(0) = (z,y),
we have

0
/_ %(g o)(t)dt = g(v(0)) — lim g(y(t)) = g(x,y) — ¢(0,0) = g(x,y).

t——o0

By choosing v to be a characteristic curve of the PDE (C.1)) and using the chain
rule, we shall find a solution to ((C.1)).

The characteristic curves are given by the solutions to the system of ODE
@&\ [ a b x
V5 (t) -b a y )

. b . . . . .
The matrix ab has eigenvalues ¢ and e~ with eigenvectors (1,i) and (1, —i),
— a

so the general solution is
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By setting the initial conditions (y1(0),v2(0)) = (z,y), we get the solution

( n(t) ) _a—iy g ( ! ) Ly ( ! )
~2(t) 2 ) 2 —i
1 ( et 4 et _i(ee“’t_ee*wt) ) ( z )
D) i(ee“’t _ ee_iet) et | et y

For ¢ ¢ (~5.3), we have that lim (1(t),%(t) = (0,0), while for ¢ ¢ (g%ﬂ)
t£$1oo(71 (t),72(t)) = (0,0). However for 6 = +%, the solution (vi(t),72(¢)) does not tend to
(0,0), as the solution is a circle centred at (0,0) passing through (z,y).

Assume v € (— z g), so we can use —oco and 0 as the limits of integration.

Applying the chain rule for this choice of v we get

0 0
sa) = [ Gaonit= [ Vo) 0
0

/Oow(v(t))(_“b b)(y)

0
— (@ +09)s + (b +ap)dy) [ (goa(e)r
It remains to check that f_ooo(goy)(t)dt converges, which is a consequence of g being
differentiable and vanishing at 0. In order to see it, we perform a logarithmic change
of variable t = log s:
0 1,0 1o
[ o= [ aoloss)y [ lgooke),
oo 0 S 0 5
for (o1(s),02(s)) = o(s) := y(log(s)). As g is differentiable and vanishes at 0, we have
that g(x,y) = xg1(x,y) + ygo(x,y) for some differentiable functions g¢1,g.. Our integral
then becomes
(o 1 (oo 1
A (g :)(8) ds :/0 U(g SJ)(S) ds :/0 (0—18(8)91(0—(5)) + 0-28(8)92(0_(5)))&9.

a1(s) o1(s)

The terms are are bounded, as the limit when ¢t — 0 is bounded by L’Hopital’s

rule, so the integral exists and is finite, thus finishing the proof.

Remark C.1. For the application of this method to Section we just need one
more observation. Since the coefficients of the PDE are homogeneous linear polyno-

mials, if
lim g(x,y)
(@.y)—(0,0) 22 + y?

is finite, we have that
i [z, y)
1m
(2.9)—(0,0) 72 + ¢

is also finite.
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Quick reference

The Courant bracket [X + &+ N Y + 17+ ul:

Y n I
X [X,Y] Lxn— 3d(ixn) ixdp
¢ || —Ly&+ 3d(iye) 0 0
A —iydA 0 ud\ — Adu
The B action:
X §
0] iyB
X | E+ixB | A
The A action:
X ¢ A
0 —9A ixA
0 CixA-A 0
X [ €—20M—ixA-A| A fixA
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