
COMPUTATIONAL ASPECTS OF SHIMURA CURVES
(BUILDING BRIDGES 4, BUDAPEST)

DREW SUTHERLAND, JOHN VOIGHT; NOTES BY ALEKSANDER HORAWA

These are notes from a mini course on Computational Aspects of Shimura Curves
taught by Drew Sutherland and John Voight on July 9–10, 2018. It was a part of Building
Bridges: 4th EU/US Summer School on Automorphic Forms and Related Topics, July 9–14,
2018, in Budapest. They were LATEX’ed by Aleksander Horawa (who is the only person
responsible for any mistakes that may be found in them).

This version is from July 15, 2018. Check for the latest version of these notes at

http://www-personal.umich.edu/~ahorawa/index.html

If you find any typos or mistakes, please let me know at ahorawa@umich.edu.

The problem sets for the mini course are available at:

(1) https://www.math.dartmouth.edu/~jvoight/BB/BB1ex.pdf

(2) https://www.math.dartmouth.edu/~jvoight/BB/BB2ex.pdf

1. Lecture 1 (Drew Sutherland)

The first lecture will be a quick review of standard material.

Elliptic curves. There are two possible definitions of elliptic curves.

(1) Smooth projective curve over K (a perfect field) of genus one with distinguished
rational point (E,O). It has a group law.

Q
P

R

P +Q

When char(K) 6= 2, 3, we can write down the equation in the form

y2 = f(x) = x3 + a4x+ a6.
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In general, the equation can be written as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

y2 + h(x)y = h(x)

(2) Abelian variety of dimension 1 (projective algebraic group).

Jacobians. Let X/K be a smooth (geometrically irreducible) projective curve of genus g.
We call such curves nice. Then there is a map

{X/K nice curves} Jac→ {abelian varieties of dimension g over K}.

We define a closed point to be a Gal(K/K)-orbit of X(K). Then

Div(X) := Z[P | P closed point],

so a general divisor can be written as D =
∑

P npP . The degree of P is deg(P ) = #P , and

deg(D) =
∑
P

nP deg(P ).

The coordinate ring of X is

K[X] = K[x1, . . . , xn]/(I(X))

and the function field is

K(X) = Frac(k[X]).

There is a one to one correspondence

{
smooth projective curves X

over K

}
↔
{

function fields K(X)
which are finite extensions of K(x)

}
.

For f ∈ K(X), div(f) =
∑

ordP (f)P . Then deg div(f) = 0. Define

Div0(X) := {D ∈ Div(X) : deg(D) = 0},
Princ(X) := {div f : f ∈ K(X)},

Pic0(X) :=
Div0(X)

Princ(X)
.

If X(K) 6= ∅, then Pic0(X) ∼= Jac(X).

The Abel–Jacobi map for fixed O ∈ X(K) is

X → Jac(X) ∼= Pic0(X)

P 7→ [P −O].

If X = E is an elliptic curve, this map E → Jac(E) is an isomorphism. This shows the
equivalence of the two definitions of an elliptic curve.

Now, suppose K = Q (or a number field embedded in C). If A/K is an abelian variety of
dimension g, A(C) is a compact Lie group, isomorphic to a torus Cg/Λ for Λ ∼= Z2g.
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Definition 1.1. For a torus X = V/Λ (V ∼= Cg, Λ ∼= Z2g), the dual torus is

X∨ = V ∗/Λ∗

where
V ∗ = {f : V → C : f(αv) = αf(v), f(v1 + v2) = f(v1) + f(v2)}

Λ∗ = {f ∈ V ∗ : Im(f(Λ)) ⊆ Z}.

Definition 1.2. A polarization of X is a positive definite Hermitian form H : V × V → C
such that ImH(Λ,Λ) ⊆ Z. It induces an isogeny (surjective morphisms with finite kernel)

φH : X → X∨,

vΛ 7→ (w 7→ H(v, w)Λ∗).

A polarization of an abelian variety A/K is an isogeny φ : A→ A∨.

We have a one-to-one correspondence{
polarized abelian varieties

over C

}
↔ {polarized tori}.

Definition 1.3. A polarization of degree 1 is a principal polarization.

Theorem 1.4. Jacobians are principally polarized abelian varieties.

The focus of this mini course is on principally polarized abelian varieties.

Endomorphism rings and algebras. Let End(A) be the ring of endomorphisms of A
with operations defined by (ψ+ψ)(P ) = φ(P )+ψ(P ), (φψ)(P ) = φ(ψ(P )). We always have
Z ⊆ End(A), since for n ∈ Z we have a map

[n] : A→ A

P 7→ nP.

Note that End(A) means endomorphisms defined over K. There could, of course, be more
endomorphisms defined over extensions of K. We write

End0(A) = End(A)⊗Z Q,
which is a Q-algebra of finite dimension.

Fix a polarization φ : A → A∨. Then φ−1 ∈ Hom(A∨, A) ⊗Z Q. The Rosati involution is
defined as

α† := φ−1 ◦ α∨ ◦ φ.

It is positive definite: TrEnd0(A)/Q(αα†) > 0 for any α ∈ End0(A) \ {0}.

Let A be a simple abelian variety (not a product of smaller dimension abelian varieties).
Then D := End(AK) is a division algebra over Q. Let F be the center of D (which is a
number field). Let F 0 ⊆ F be the fixed field of the Rosati involution.

Then the degree [D : F ] is d2 for some d ∈ Z, e0 = [F : F 0] ∈ {1, 2}, and F 0 is totally real.
Let e = [F : Q].
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Theorem 1.5 (Albert’s classification). Suppose char(k) = 0 and let g = dimA. Then there
are four types of endomorphism rings of abelian varieties:

e0 d D ⊗Q R constraint
I D = F = F 0 1 1 Re e|g
II F = F 0 1 2 M2(R)e 2e|g
III F = F 0 1 2 He 2e|g
IV F 6= F 0 2 ∗ Md(C)e/2 1

2
ed2|g

Example 1.6. Throughout this example, (n) means this case defines a subspace of dimen-
sion n in the moduli space.

When g = 1, there are two possible cases: I R (1), II C (0).

When g = 2, all cases are technically possible, but case III does not appear for other reasons.
For the other cases, we have: I R (3) or R2 (2), II M2(R) (1), IV M2(C) (0).

Torsion subgroups. Fix an abelian variety A/K of dimension g. The n-torsion subgroup
of A is

A[n] = {P ∈ A(K) : nP = 0}.
When char(K) - n, A[n] ∼= (Z/nZ)2g (which is easy to see in characteristic 0).

The n-torsion field K(A[n]) is the minimal (Galois) extension L/K such that A[n] = A(L)[n].

There is a Weil pairing en : A[n]× A∨[n]→ µn(K) which is bilinear, non-degenerate, skew-
symmetric, and Galois-equivariant. Given a polarization, we may view this as a map
en : A[n]× A[n]→ µn(K).

If P is a point of order n,

{Q ∈ A[n] : en(P,Q) = 1} ∼= (Z/nZ)g.

Theorem 1.7 (Mordell–Weil). If A is an abelian variety over a number field K, then A(K)
is a finitely-generated abelian group. In particular, it is isomorphic to

Zr ⊕ A(K)tors︸ ︷︷ ︸
finite

.

Hyperelliptic curves. Suppose char(K) 6= 2. A hyperelliptic curve C is a degree 2 cover
C → P1. It has a model y2 = f(x).1 Note that

g(C) =

⌊
deg(f)− 1

2

⌋
and assume g(C) ≥ 2.

The cover is given by

C → P1,

(x, y) 7→ x.

1In characteristic 2, the general equation is y2 + h(x)y = f(x) with deg h ≤ g, deg f ≤ 2g + 2.
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Assume that deg(f) is odd for simplicity. Then there is only one point at infinity, which we
denote by ∞. We then have a hyperelliptic involution P 7→ P given by (x, y) 7→ (x,−y).2

A divisor D =
∑
nPP is effective if nP ≥ 0. We may write it as

D = P1 + · · ·+ Pn

with possible repetitions.

Definition 1.8. An effective divisor is semi-reduced if Pi 6= Pj for i 6= j. If D is semi-reduced
and degD ≤ g then D is reduced.

Definition 1.9. An affine divisor has no points at infinity.

Theorem 1.10 (Mumford). Every divisor class in Pic0(C) can be uniquely represented by
[D − n∞] where D is a reduced rational affine divisor and n = degD ≤ g.

Remark 1.11. This theorem holds more generally (replacing n∞ byD∞, a divisor supported
at infinity), but this is the statement we will need for deg(f) odd.

Definition 1.12 (Mumford representation). Let D = P1 + · · ·+Pn be a semi-reduced affine
divisor where Pi = (xi, yi) ∈ C(K). Then

u(x) =
∏

(x− xi) ∈ K[x]

is a monic polynomial. Let v ∈ K[x] satisfy deg v < deg u such that v(xi) = yi (with
approporiate multiplicity).

Then the Mumford representation of D is [u, v]. The condition on u and v is u|v2 − f .

Remark 1.13. The Mumford representation allows one to efficiently implement addition of
divisors on a computer. This is widely used in cryptography.

Remark 1.14. In the Mumford representation −[u, v] = [u. − v]. Therefore, the 2-torsion
points in Jac(C) ∼= Pic0(C) have Mumford representation [v, 0].

2. Lecture 2: John Voight

The main reference for this lecture and more details is John Voight’s book http://quatalg.

org

Recall that modular curves parameterize elliptic curves with level structure. The goal of this
lecture is to describe the following analog of this:

Shimura curves parametrize abelian surfaces with potential quaternionic
multiplication (PQM).

We first briefly recall the situation for elliptic curves. There is a bijection

SL2(Z)\h↔ {elliptic curves over C}/ ∼=
SL2(Z)τ 7→ [C/(Zτ + Z)] = [Eτ ].

2The points of a hyperellptic cruve do not form a group, so we write P instead of −P as in the case of
elliptic curves.

http://quatalg.org
http://quatalg.org
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The j-invariant defines a map

SL2(Z)\H → A1(C) = C

and in fact

{j ∈ F} ↔ {elliptic curves over F}/ ∼=F .

We can add level structure:

Γ0(N)\h↔ {(E,C) | C ≤ E[N ], C ∼= Z/NZ}/ ∼=

Γ0(N)τ 7→
[(
Eτ ,

1

N

)]
.

Here

Γ0(N) =

{(
∗ ∗
0 ∗

)
mod N

}
≤ SL2(Z),

Γ1(N) =

{(
1 ∗
0 1

)
mod N

}
≤ SL2(Z).

Let F be a field, charF 6= 2. A quaternion algebra over F

B =

(
a, b

F

)
= F ⊕ Fi⊕ Fj ⊕ Fij

with

i2 = a, j2 = b, ij = −ji.

Example 2.1. We have that(
1, 1

F

)
∼= M2(F ),

(
−1,−1

R

)
∼= H 6= M2(R)

We have the standard involution

B → B

t+ xi+ yj + zij = α 7→ α = t− xi− yj − zij.
the reduced trace

trd : B → F

α 7→ α + α,

and reduced norm

nrd: B → F

α 7→ αα.

For a place v, over Qv (which is either R or Qp), there is a unique division algebra over Qv,
up to isomorphism.

We say that B over Q is ramified at v if Bv = B ⊗Q Qv is a division algebra (otherwise,
Bv
∼= M2(Qv)). Let

Ram(B) = {v | B is ramified at v}
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and
disc(B) =

∏
p∈Ram(B)
p6=∞

p.

Theorem 2.2 (Classification). The map

{quaternion algebras over Q}/ ∼=↔ {positive squarefree integers}
[B] 7→ discB

is bijective. Moreover, # Ram(B) is finite and even.

In particular, ∞ ∈ Ram(B) if and only if #{p | disc(B)} is odd. In this case, B is called
definite.

Example 2.3. Consider B =
(
−1,3
Q

)
. Clearly, Ram(B) ⊆ {2, 3,∞}. We check that

B ⊗Q R =

(
−1, 3

R

)
∼=
(
−1, 1

R

)
∼= M2(R).

Hence either Ram(B) = {2, 3} or Ram(B) = ∅. We see that

B ⊗Q Q3 6∼= M2(Q3)

because
(−1

3

)
= −1. Therefore,

Ram(B) = {2, 3}
and so discB = 6. This is the quaternion algebra with the smallest discriminant (not equal
to 1), so it will come up as an example a lot.

With this notation set up, we can present a more thorough overview. Let B be an indefinite
quaternion algebra over Q. We take it to be indefinite so that it embeds into M2(R), giving
an action on H. We do this with analogy to the classical case. The undefined terms in the
diagram will be defined shortly and the details will be completed.

Classical case Our case

M2(Q) B M2(R)

M2(Z) O SL2(R)

SL2(Z) O1 = {γ ∈ O : nrd(γ) = 1}

ι∞

Then O1 acts on H via the embedding ι∞. Recall that Eτ = C/(Zτ + Z). In our case, we
define Aτ = C2/ι∞(O)

(
τ
1

)
.

Let F = Q, D = disc(B) ∈ Z. Let O ⊆ B be an order: a subring, finitely-generated as a
Z-module, containing a Q-basis of B. Equivalently, O is a Z-span of a Q-basis of B which
is closed under multiplication.
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Example 2.4. Note that M2(Z) ⊆ M2(Q) is a maximal order. If a, b ∈ Z \ {0}, then
O = Z + Zi+ Zj + Zk is an order, but it need not be maximal.

Example 2.5 (discB = 6). A maximal order is

O = Z + Zi+ Zj + Z
(

1 + i+ j + ij

2

)
︸ ︷︷ ︸

k

,

where k2 − k − 1 = 0.

Let B/Q be indefinite. Then ι∞ : B ↪→ B ⊗Q R ∼= M2(R). Let B1 = {γ ∈ B× : nrd(γ) =
1} = ker nrd ≤ B× and define O1 = O ∩ B1. Then B1 ↪→ SL2(R) acts on H by fractional
linear transformations,

Let Γ1(O) = ι∞(O1)/{±1} ≤ PSL2(R). It is a Fuchsian group, a discrete subgroup acting
properly on H. Then

Y 1(O) := Γ1(O)\H
is a good complex 1-orbifold. It is compact if and only if B 6∼= M2(Q). Otherwise:

X1(O) := Y 1(O) ∪ {cusps}
is a compactification.

Example 2.6 (discB = 6). We present a schematic diagram of the 1-orbifold Y 1(O) in
our recurring discriminant 6 example. The points with non-trivial stabilizers are in the four
corners are we write down the stabilizer groups at these points.

Z/2Z

Z/2Z

Z/3Z

Z/3Z
• •

••

For comparison, we present the corresponding diagram for the classical modular curve for
SL2(Z).
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Z/2Z Z/3Z

◦

• •

To a point τ ∈ H, we associate

Λτ = ι∞(O)

(
τ

1

)
⊆ C2,

which is a lattice. (Note that O ∼= Z4 as abelian groups.) Then

Aτ := C2/Λτ

and we have a natural map iτ : O ↪→ End(Aτ ). Then Aτ is a complex torus of dimension 2
with endomorphisms by O.

A principal polarization on O is an element µ ∈ O such that µ2 +D = 0, where D = discB.
Every maximal order has a principal polarization.

Example 2.7 (discB = 6). A principal polarization is µ = 3i+ ij = −1 + 2i− j + 2k. One
easily checks that µ2 + 6 = 0.

The involution

B → B

α 7→ α∗ := µ−1αµ

is positive (Tr(α∗α) > 0 for any α ∈ B \ {0}).

Example 2.8. For M2(R), α∗ = αT and we see that Tr(α∗α) = 2(a2 + b2 + c2 + d2) > 0

where α =

(
a b
c d

)
6= 0.

Then µ induces a principal polarization (and hence a Riemann form) on Aτ .
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Theorem 2.9. The map

Y 1(O)↔

 (A, ι) principally polarized
complex abelian surfaces

with QM ι by (O, µ)


/
∼=

Γτ 7→ [(Aτ , ιτ )]

is a bijection. Here, QM by (O, µ) means the diagram

B End(A)⊗Q

B End(a)⊗Q

ι

∗ †

ι

commutes.

Theorem 2.10 (Shimura, Deligne). There exists a nice curve X1
Q defined over Q and a

holomorphic map

ϕ : H → X1
Q(C)

that induces a biholomorphism

ϕ : Γ1\H → X1
Q(C).

Remark 2.11. This map is the analog of the j-invariant j : H → P1(C). (The curve X1
Q is

just P1
Q.)

Example 2.12 (discB = 6, Baba–Granath). The curve X1
Q in this case is defined by the

equation x2 + 3y2 + z2 = 0 in P2. Note that X1
Q(R) = ∅ in this case.

The last statement is true in more generally.

Theorem 2.13 (Ogg, Shimura). If B is a division algebra, there are no real points on X1
Q.

Therefore, the study of rational points on Shimura curves is void in the global case.

3. Lecture 3 (Drew Sutherland)

Galois representations. Let A be an abelian variety of dimension g over a number field
K. Then

A[n] ∼= (Z/n/Z)2g.

We write GK = Gal(K/K). We then have a natural Galois representation

ρA,n : GK → Aut(A[n]) ⊆ GL2g(Z/nZ).

The image of the representation is smaller than GL2g(Z/nZ) because of the Weil pairing.
More specifically, there is a basis for A[n] such that

ρA,n(σ)tΩρA,n(γ) = λΩ for Ω =

(
0 −Ig
Ig 0

)
and σ(ζn) = ζλn .

This motivates the following definition.
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Definition 3.1. Let R be any ring. The group of symplectic similitudes is

GSp2g(R) = {M ∈ GL2g(R) : M tΩM = λΩ for λ ∈ Rx}.
The symplectic group is the kernel of the map M 7→ λ(M):

Sp2g(R) = {M ∈ GSp2g(R) : λ(M) = 1}.

Choosing compatible bases of A[n], we get a representation

ρA : GK → GSp2g(Ẑ) = lim←−
n

GSp2g(Z/nZ)

where
Ẑ = lim←−

n

Z/nZ.

We have a natural map

πn : GSp2g(Ẑ)→ GSp2g(Z/nZ)

and ρA is defined by the property ρA,n = πn ◦ ρA.

Then ρA is a continuous homomorphism of topological groups.

Remark 3.2. For g = 1, GSp2 = GL2.

Having restricted the image to GSp2g, it is natural to ask when ρA is surjective (or has image
with finite index).

Theorem 3.3 (Serre’s open image theorem). For a non-PCM elliptic curve E/K, Im ρE is

open in GL2(Ẑ) ∼=
∏

` GL2(Z`).

Therefore, for `� 0, Im ρE contains GL2(Z`). Writing

ρA,`∞ : GK → GSp(Z`)
for the analogous representation, we see that ρE,`∞ is surjective (when E is an elliptic curve
without PCM) for all sufficiently large `.

Conjecture. There is an Nd such that for any non-PCM elliptic curve E over K of degree
d, imφE,`∞ = GL2(Z`) for all ` > Nd. Moreover, for d = 1, Nd = 37.

There is some numerical and theoretical reasons to conjecture that N1 = 37. It is enough to
consider the mod ` image. The possible normal subgroups are:

• Borel

{(
∗ ∗
0 ∗

)}
: this was addressed by Mazur by proving that non-CM elliptic

curves do not have an `-isogeny for ` > 37,

• the normalizer of a split Cartan

{(
∗ 0
0 ∗

)}
∼= (F×` )2: this case was solved even for

` > 13,
• the normalizer of a non-split Cartan ∼= F×`2 : this is a big open problem,
• a few exceptional groups: this case is also known for ` > 13.

Generalizing this to abelian varieties, Serre proved that if End(AK) = Z and dimA is 2, 6,

or odd, then im ρA is open in GSp2g(Ẑ).
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Absolute Frobenius. Let p ∈ Z and pick a prime ideal q above p in Z. Let Fq = Z/q.
Then Fq

∼= Fp and

Gal(Fq/Fp) ∼= Ẑ.
The decompositiion group is

Dq = {σ ∈ GQ : σ(q) = q}.
Each σ ∈ Dq acts on Fq = Z/q via σ(x+ q) = σ(x) + q.

We get a surjective homomorphism

Dq → Gal(Fq/Fp).
An absolute Frobenius element Frobp is any preimage in Dq of the Frobenius automorphism
x 7→ xp. It is well-defined up to the action by the inertia subgroup

Iq = {σ ∈ GQ : σ(x) ≡ x mod q for all x ∈ Z}.
For any finite extension L/Q, we have that Frobp |L = Frobq∩L defined in the normal way.

Theorem 3.4. If L/Q is a finite extension in which p is unramified, the conjugacy class of
Frobp |L is uniquely determined.

Remark 3.5. Everything above applies to number fields other than Q: replace Q by K and
replace p by a prime p of K.

Let p ⊆ OK be a prime of good reduction for A/K. If p does not divide n, then p is
unramified in K(A[n]). Then

ρA,n(Frobp) = πAp|A[n] ∈ GSp2g(Z/nZ).

where πAp : Ap → Ap is the Frobenius endomorphism induced by x 7→ x#Fp where Fp = OK/p.

Therefore, the characteristic polynomial of ρA,n(Frobp) is the characteristic polynomial of
πAp modulo n.

Zeta functions. Let X be a smooth projective curve over Fq. Then

ZX(T ) = exp

(∑
n≥1

#X(Fqn)
T n

n

)
=

L(T )

(1− T )(1− qT )
.

Then L(T ) ∈ Z[T ] has degree 2g and the roots α have |α| = q−1/2. Then

L(T ) = qgT 2q + a1q
g−1T 2g−1 + · · ·+ agT

g + ag−1T
g−1 + · · ·+ a1T + 1

where
a1 = −Tr πJac(X),

the trace of Frobenius acting on the Jacobian of X. In general, the characteristic polynomial
of πX = πJac(X) (acting on the Tate module) is T 2gL(T−1).

A key fact is that ZX(T ) is determined by #X(Fqn) for 1 ≤ n ≤ g.

For a smooth projective curve over a number field, we define the L-function via an Euler
product

L(X, s) =
∏
p

Lp(N(p)−s)−1
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(one also needs to define Lp(T ) for primes of bad reduction).

Let A/K be a QM abelian surface with QM by O. Let p be a prime of K which is good
for A. Since O ⊆ End(Ap) and π ∈ End(Ap), End0(Ap) contains O and a splitting of the
characteristic polynomial of π.

Albert’s classification 1.5 shows that

End0(Ap)⊗Q R ∼=

{
M2(C) ordinary reduction

M2(H) supersingular reduction

and hence

Ap ∼ E2 for some elliptic curve E/Fp

and LA(T ) = LE(T )2. However, for different p, the eliptic curve E is different.3 Therefore,
these abelian surfaces are sometimes called fake elliptic curves.

For E/Q, we have that

ker ρE,n = {σ ∈ Gσ : σ|Q(E[n]) = 1},
im ρE,n = Gal(Q(E[n])/Q) ⊆ GL2(Z/nZ).

Typically, im(ρE,n = GL2(Z/nZ)), but not always.

(1) If E has extra level n structure, for example a rational point of order n, then

im ρE,n ⊆
{(

1 ∗
0 ∗

)}
⊆ GL2(Z/nZ).

(2) If E has extra endomorphisms, End(E) = O where O is an imaginary quadratic
order in K, then Gal(K(E[n])/K) is abelian, so

im ρE,n 6= GL2(Z/nZ) for any n > 1.

Let E/K be an elliptic curve with CM by O. Then E[n] is a free Z/nZ-module of rank 2.
In fact, more is true.

Lemma 3.6. The n-torsion E[n] is a free O/nO module of rank 1.

Proof. Fix C/Λ ∼= E(C) so that E[n] ∼= 1
n
Λ/Λ asO/nO-modules. Since C/Λ is anO-module,

OΛ = Λ. For any prime ideal p of O, p|n,(
1

n
Λ/Λ

)
⊗O (O/p) ∼=

1

n
Λ/p

1

n
Λ.

We have that

O/nO ∼=
∏
p|n

O/pe,

so

E[n] ∼=
∏
p|n

1

n
Λ/pe

1

n
Λ.

Let I be the fractional O-ideal 1
n
Λ. Then I/peI is a free O/pe-module of rank 1. �

3This is discussed further in the exercises.
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Corollary 3.7. The image is im ρE ⊆ GL1(Ô) ∼= Ô× ⊆ GL2(Ẑ). Here Ô = lim←−
n

O/nO.

Also,

im ρE,p = (O/p)× ∼=


(F×p )2 if p is split,

F×p2 if p is inert,

F×p if p is ramified.

Now, suppose that A/K is a QM abelian surface with QM by O (an order in a quaternion
algebra).

Lemma 3.8. The n-torsion A[n] is a free O/nO-module of rank 1.

Proof. Follow the proof of Lemma 3.6 in the CM case. Now the torus is C2/Λ and p|n is a
two-sided O-ideal. �

Corollary 3.9. The image is im ρA ⊆ GL1(Ô) ∼= Ô× ⊆ GSp4(Ẑ). Also,

im ρE,p = (O/pO)× ∼=

{
GL2(Z/pZ) if p is unramified,

exercise if p is ramified.

Suppose A/K is a QM abelian surface with a rational point P of order n. Then A[n] is an
O-module so A(K)[n] must contain OP (a cyclic O-module). If n is coprime to disc(O),
then OP ∼= (Z/nZ)2 ⊆ A(K)[n].

4. Lecture 4 (John Voight)

The goal of this lecture is to work explicitly with Shimura curves.

(1) Fundamental domains.
(2) Equations using power series expansions of modular forms.

4.1. Fundamental domains. Let Γ ≤ PSL2(R) be a Fuchsian group such that Y (Γ) = Γ\H
has finite hyperbolic area.

Definition 4.1. A fundamental domain ◊ ⊆ H for Γ satisfies:

(1) the closure of the interior of ◊ is ◊,
(2) Γ◊ = H,
(3) int(◊) ∩ int(γ◊) = ∅ for all γ ∈ Γ, γ 6= 1,
(4) µ(∂◊) = 0.

Definition 4.2. Let z0 ∈ H be such that StabΓ(z0) = {1}. The Dirichlet domain for Γ at
z0 is

◊ = ◊(Γ; z0) = {z ∈ H : ρ(z, z0) ≤ ρ(γz, z0) for all γ ∈ Γ},
where ρ is the hyperbolic metric.



COMPUTATIONAL ASPECTS OF SHIMURA CURVES 15

Then
◊ =

⋂
γ∈Γ

H(γ; z0)

where
H(γ; z0) = {z ∈ H : ρ(z, z0) ≤ ρ(γz, z0) = ρ(z, γ−1z0)}.

Theorem 4.3. The Dirichlet domain ◊(Γ; z0) is a connected, convex, locally finite (for any
K ⊆ H compact, γK ∩ ◊ 6= ∅ for only finitely many γ) fundamental domain for Γ with
geodesic boundary.

The isomorphism

ϕ : H ∼→ D = {z ∈ C : |z| < 1},

z 7→ z − z0

z − z0

= w.

takes the action Γ on H to an action of ϕ∗(Γ) ⊆ PSU(1, 1) ≤ GL2(C) on D.

For γ ∈ Γ, let I(γ) = {w ∈ C : |cw + d| = 1} if γ =

(
a b
c d

)
∈ φ(Γ). This is the isometric

cicle.

We need to decide whether ρ(w, 0) is smaller, bigger, or the same as ρ(γw, 0). This is
determined by whether w belongs to ext(I(γ)), I(γ), or int(I(γ)), respectively. Therefore,

◊(Γ; 0) =
⋂

γ∈Γ\{1}

cl ext I(γ).

If Γ0 := StabΓ(z0) 6= {1}, then

◊ =
⋃
γ0∈Γ0

γ0◊′,

where ◊′ is the intersection ◊ with the part of the semicircle spanned by the angle
2π

#Γ0

. In

that case, ◊′ is a fundamental domain for Γ.

Definition 4.4. A side of ◊ is a geodesic segment of ◊ ∩ γ◊, γ ∈ Γ \ {1} except with the
convention that if L = ◊ ∩ γ◊ for γ2 = 1, we say that γ fixes the midpoint by L and we
doubt it.

Theorem 4.5. The group Γ is generated by the side pairing elements

{γ ∈ Γ : ◊ ∩ γ◊} 6= ∅
and relations can be read off from the vertices.

Remark 4.6. There is, of course, a specific description of how the relations are read off
from the vertices, but we omit this here.

Example 4.7 (discB = 6). We go back to our main example where discB = 6. Recall that
Γ = Γ1(O) = ι∞(O1)/{±1} ⊆ PSL2(R). Here

ϕ(z) = w =
z − i
z + i

.
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For γ = t+ xi+ yj + zij ∈ O1,

ϕ∗(γ) =

(
t− ix

√
3(y − iz)√

3(y + iz) t+ ix

)
Then I(γ) is a circle with radius

1

|c|
=

1√
3(y2 + z2)

and center
−d
c

=
−(t+ ix)√
3(y + iz)

, unless

y2 + z2 = 0 whence γ ∈ {±1,±i} = 〈i〉, the stabilizer of 0.

To try to find the fundamental domain, we find circles I(γ) with biggest radii, i.e. the smallest
value of y2 + z2.

The smallest possible value would be y2 + z2 = 1
4
, but this case is ruled out by the parity

condition on y and z. The next smallest possiblity is y2 + z2 = 1
2
. After a short calculation,

we see that the possiblities are

γ = ±3

2
± 1

2
i± 1

2
j ± 1

2
ij,

γ = ±1

2
± 3

2
i± 1

2
j ± 1

2
ij.

This allows one to draw a picture of the fundamental domain for this group. We omit this
here, however, and refer the reader to the book.

Then Γ = 〈γ1, γ2, γ3 | γ2
1 = γ3

2 = γ3
3 = (γ3γ2γ1)2 = 1〉. One can rewrite it by setting

γ4 = γ3γ2γ1 to get the nicer presentation:

Γ = 〈γ1, γ2, γ3, γ4 | γ2
1 = γ3

2 = γ3
3 = γ2

4 = γ4γ3γ2γ1 = 1〉.

We remark that Γ is an index four subgroup of a triangle group4. This is also visible on the
picture which can be divided into 8 triangles.

4.2. Modular forms. Riemann’s theorem says that any Riemann surface is an algebraic
curve over C. To prove it, one needs to write down enough holomorphic functions on this
Riemann surface to embed it into projective space. One way of producing them is by taking
quotient of differential forms. Modular forms are functions that transform in the same way
as differential forms.

Assume that Y (Γ) = X(Γ) is compact, so it has no cusps.

Definition 4.8. A modular form of weight k ∈ 2Z≥0 for Γ is a holomorphic map f : H → C
such that

f(γz) = (cz + d)kf(z) for all γ =

(
a b
c d

)
∈ Γ ≤ PSL2(R).

The vector space of weight k modular forms for Γ is denoted Mk(Γ).

Since Y (Γ) has no cusps, we do not have Fourier expansions for these modular forms. How-
ever, we may write down a regular Taylor expansion of f(z) considered as a function of w

4Triangle groups are Fuchsian groups whose fundamental domains are obtained by reflecting a triangle
along one of its sides. They are particularly easy to work with.
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on the unit disc:

f(z) = (1− w)k
∞∑
n=0

bnw
n ∈Mk(Γ).

Example 4.9. The modular form

f(z) = q
∞∏
n=1

(1− qn)2(1− q11n)2 ∈ S2(Γ0(11))

at z0 = −9+
√
−7

2
(a CM point) has expansion

f(z) = c0(1− w)2(1−Θw +
5

2!
(Θw)2 − 123

3!
(Θ2)3 − · · · )

where Θ = −4+2
√
−7

11
πΩ2, where Ω ≈ 0.500491 is the Chowla-Selberg period.

In general,

f(z) ≈ fN(z) = (1− w)k
N∑
n=0

bnw
n,

valid for |w| ≤ ρ to precision ε > 0. Here, ρ is the radius of any circle containing the
fundamental domain ◊ ⊆ D.

For w 6∈ ◊, |w| ≤ ρ, there is a γ ∈ Γ such that w′ = γw ∈ ◊. Let z ∈ H correspond to w
and z′ ∈ H′ correspond to w′. Then

fN(z′) ≈ f(z′) = (cz + d)kf(z) ≈ (cz + d)kfN(z).

Therefore,

(1− w′)k
N∑
n=0

bn(w′)n ≈ (cz + d)k(1− w)k
N∑
n=0

bnw
n.

The bn’s are unknown but the rest of the things involved here are known. For example,
having picked any w, to get w′, we can repeatedly apply generators of Γ to w until we reach
the fundamental domain. If ◊ is a Dirichlet domain, any of the generators obtained by
Theorem 4.5 bring the elements closer to the fundamental domain.

This gives a numerical method to compute the bn’s.

When Γ ≤ ∆ and ∆ is a triangle group, one can certify the output of this procedure as
rigorous. Otherwise, this is an open problem.

Theorem 4.10 (Valence formula, Shimura). The dimension of the space of weight k modular
forms for Γ is

dimCMK(Γ) =


1 if k = 0

g if k = 2

(k − 1)(g − 1) +
∑r

i=1

⌊
k
2

(
1− 1

ei

)⌋
if k ≥ 4

where Γ has signature (g; e1, . . . , er): genus g, orders of stabilizers e1, . . . , er, and no cusps.
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Example 4.11 (discB = 6). In this case, sig(Γ) = (0; 2, 2, 3, 3), so

dimMk(Γ
1) =


1 if k = 0

0 if k = 2

1− k + 2
⌊
k
4

⌋
+ 2

⌊
k
3

⌋
if k ≥ 4.

We make a table with some of the dimensions and generators5:

k 0 2 4 6 8 10 12 · · · 24
dim 1 0 1 1 1 1 3 · · · 5

generators 1 − f4 g6 f 2
4 f4g6 f 4

3 , g
2
6, h12 · · · (∗)

We can produce 6 new function in M24(Γ1) from the lower weights

f 7
4 , f

3
4 g

2
6, f

3
4h12, g

4
6, g

2
6h12, h

2
12,

so they are linearly dependent! Working out the linear dependence, we obtain:

M(Γ) =
⊕

k∈2Z≥0

∼=
C[x4, x6, x12]

(x6
4 + 3x4

6 + x2
12)
.

This gives
Y (Γ) = X(Γ) ∼= ProjM(Γ) ⊆ P(4, 6, 12) ↪→ P2

with the embedding into P2 given by

z 7→
(
f 3

4 (z) : g2
6(z) : h12(z)

)
.

5We do not explicitly write down what f4, g6, h12 are here; they can be treated as the remaining generator
in each case. They are written down in the book.
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