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Abstract. We prove the motivic action conjecture for the base change to real quadratic
fields of weight one newforms with odd, squarefree level and solvable projective image.

1. Introduction

The motivic action conjecture, introduced by Akshay Venkatesh and his collabora-
tors [PV21; Ven19; HV19], predicts a precise relationship between the rationality of con-
tributions of automorphic forms to cohomology and certain motivic cohomology groups. A
concrete instance of this phenomenon [Hor23] is that logarithms of Stark units should be
factors of rationality for coherent cohomology classes associated with weight one Hilbert
modular forms. We prove this conjecture for certain Hilbert modular forms over real qua-
dratic fields which arise as base change of weight one newforms. Historically, such Hilbert
modular forms in higher weight were studied by Doi and Naganuma using the converse
theorem [DN69]. Later, they were realized as theta lifts from SL2 to O(V ) for a suitable
quadratic space V of signature (2, 2) by Kudla [Kud78] (see Section 2.6).
Let F be a real quadratic field of discriminant D > 0, and f be a Hilbert modular form

of parallel weight one for F . There is a line bundle ω, the Hodge bundle, on the Hilbert
modular surface X defined over Q, such that f ∈ H0(X,ω) ⊗Q Q(f), where Q(f) is the
number field generated by the Hecke eigenvalues of f . Considering the higher cohomology
of ω, there are natural classes (5.2):

ω1
f , ω

2
f ∈ H1(X,ω)⊗Q C

associated with f . We are interested in the rationality properties of ω1
f , ω

2
f .

The Galois representation associated with f is an odd Artin representation

ϱf : Gal(L/F ) → GL2(Q(f))

for some number field L. The associated conjugation action of Gal(L/F ) on traceless 2×2
matrices over Q(f) gives rise to the representation

Ad0 ϱf : Gal(L/F ) → GL3(Q(f)).

Stark conjectured [Sta75] that there are units u11, u12, u21, u22 ∈ O×
L ⊗ZQ(f) such that the

second derivative of the Artin L-function at s = 0 is expressed in terms of their logarithms:

L(2)(Ad0 ϱf , 0) ∼Q(f)× detRf for Rf :=

(
log |u11| log |u12|
log |u21| log |u22|

)
,
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where a ∼Q(f)× b if there exists λ ∈ Q(f)× such that a = λb. He proved it when Ad0 ϱf
has rational traces (loc. cit.).

The motivic1 action conjecture for Hilbert modular forms relates the rationality of ω1
f , ω

2
f

to the regulator matrix Rf .

Conjecture A ([Hor23]). The following coherent cohomology classes associated with f are
rational:

log |u22|ω1
f − log |u12|ω2

f

detRf

,
− log |u21|ω1

f + log |u11|ω2
f

detRf

∈ H1(X,ω)⊗Q Q(f).

Theorem B (Theorem 5.5). Let f be the quadratic base change of a weight one newform
f0 ∈ S1(N,χ0). Suppose D,N are odd, squarefree, co-prime to each other, and f0 has
projective image not isomorphic to A5. Then Conjecture A is true. Explicitly, there are
units uf0 associated with Ad0 ϱf0 and uFf0 associated with the quadratic twist Ad0 ϱf0 ⊗ χF
such that:

ω1
f + ω2

f

log |uf0|
,
ω1
f − ω2

f

log |uFf0|
∈ H1(X,ω)⊗Q(f).

Remark 1.1.

(1) The conditions that D,N are odd and squarefree are technical, and can be removed
with some additional calculations of the Fourier expansion in Section 4.1. The
condition that D,N are co-prime is a bit more subtle to remove.

(2) If f0 has projective image A5, then Theorem B also holds assuming Stark’s conjec-
ture for Ad0ϱf0 and Ad0 ϱf0 ⊗ χF .

For Hilbert modular forms f of higher weight, Michael Harris [Har90] defined period
invariants ν1f , ν

2
f ∈ C by requiring that ωjf/ν

j
f be rational in the appropriate coherent

cohomology group. These give periods of rationality for Rankin–Selberg, triple product,
and Asai L-functions of Hilbert modular forms; for example, the coherent cohomology
classes ωjf/ν

j
f were recently interpolated p-adically to construct an Asai p-adic L-function

for Hilbert modular forms [GLZ23].
This raised the natural question: are any multiples of ω1

f , ω
2
f rational in coherent coho-

mology for a weight one Hilbert modular form f? Theorem B finally settles this question.

Corollary C (Corollary 5.14). Under the assumptions of Theorem B, no multiple of ω1
f

or ω2
f belongs to H1(X,ω)⊗Q Q.

We refer to Section 5.4 for more details.

1.1. Sketch of proof. The classes ω1
f , ω

2
f give a complex basis of the f -isotypic component

H1(X,ω)f ⊗ C and we are interested in the rational structure H1(X,ω)f on this vector
space. Using the non-trivial element in Gal(F/Q), we can define an involution s∗ on
H1(X,ω) which preserves the f -isotypic components if f comes from base change from Q.

1These Stark unit groups are simple examples of motivic cohomology groups which are predicted to play
a similar role in a more general story [PV21; HP23].
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This breaks H1(X,ω)f into two 1-dimensional spaces H1(X,ω)±f where the superscript ±
means s∗ = ±1. Over C, s∗ω1

f = ω2
f , and hence our task is to show that:

η+ :=
ω1
f + ω2

f

log |uf0|
∈ H1(X,ω)+f(1.1)

η− :=
ω1
f − ω2

f

log |uFf0|
∈ H1(X,ω)−f .(1.2)

Serre duality pairs H1(X,ω)+f with H1(X,ω)−f and we check that η+ pairs rationally

with η−. This shows that η+ is rational if and only if η− is, and hence reduces Theo-
rem B to proving that η− is rational.

We construct the quadratic base change f of a weight one modular form f0 explicitly
as a theta lift. We then use this explicit construction to give a rationality criterion for
H1(X,ω)−f by integrating the cohomology class against a linear combination of Hirzebruch–

Zagier divisors. The statement below implies that η− ∈ H1(X,ω)−f .

Theorem D (see Theorem 4.11 and Corollary 5.10). There exists a linear combination of
cycle integrals along Hirzebruch-Zagier divisors that define an associated functional

C : H1(X,ω)f → Q(f),

such that CC : H1(X,ω)f ⊗ C → C satisfies CC(η−) ∈ Q(f)× and CC(η+) = 0.

The linear combination above is naturally phrased in terms of weighted cycle as in
[Kud97]. The associated functional appears in the Fourier expansion of the theta lift of
f to a scalar multiple r0 of f0 through a standard unfolding process. The key point is
to compute this scalar r0, which depends on the Schwartz function φ defining the theta
function. In fact, there is a family of functionals, whose generating series maps f to r0f0.

It is not difficult to show that r0 is a Q×
-multiple of the ratio ⟨f,f⟩

⟨f0,f0⟩ . However, it is

rather tricky to show that the associated functional C takes values in Q(f). The functional
C appearing in the Fourier expansion involves certain linear combination of connected
components of the weighted cycle, which are then defined over certain extensions of Q.
It turns out that the Galois action on the components and the coefficients compensate
each other, giving us C(η−) ∈ Q(f). This phenomenon seems to only appear when f0 has
non-trivial nebentypus, in particular for odd weight.

Remark 1.2. Theorem D is the analogue of the following period relation proved by
Oda [Oda82, Section 16]. Suppose that F has a fundamental unit ϵ ∈ O×

F with ϵ1 > 0,
ϵ2 < 0 (i.e. NF/Q(ϵ) = −1), and f be a Hilbert modular form of parallel weight k ≥ 2 and
level one. Then Oda proved:∫

SL2(Z)\H
f(ϵ1z, ϵ2z)y

k dxdy

y2
=

{
0 f is not a Doi–Naganuma lift

c ⟨f,f⟩
⟨f0,f0⟩ f is the Doi–Naganuma lift of f0
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for some c ∈ Q×. Note that the Hirzebruch–Zagier divisor here is simply the diagonally
embedded modular curve, and

ω2
f =

[
f(ϵ1z1, ϵ2z2)y

2dx2dy2
y22

]
.

Remark 1.3. The first-named author had previously obtained numerical evidence for the
conjecture by restricting to diagonally embedded modular curves [Hor23, Section 6]. In that
case, the restriction was non-zero on η+ and zero on η−, and one could numerically verify
the first restriction is rational (with many digits of accuracy). Somewhat surprisingly,
the Hirzebruch–Zagier divisors studied in this paper have the opposite property — the
restrictions are non-zero on η− and zero of η+. As a roundabout consequence, we do obtain
the rationality of η+, but our proof is genuinely different than the numerical verification.

1.2. Potential generalizations. We end the introduction by explaining what we expect
to happen for general quadratic base change. Suppose F/F0 is a quadratic extension of
totally real fields. Starting with a Hilbert modular form f0 of parallel weight one for F0,
one can again construct its base change f to F as a theta lift. For each subset of the places
of F , J ⊆ {1, . . . , d}, we have a cohomology class:

ωJf ∈ H |J |(X,ω)f ⊗ C,

where X is a Hilbert modular variety for F and ω is the Hodge bundle on X. The unit
group Uf has rank d = 2d0, and we expect jth exterior power of the d× d Stark regulator
matrix Rf to predict the rationality in Hj(XC, ω)f [Hor23, Conjecture 4.17].
The methods of this paper should give results about rationality in middle degree coherent

cohomology, i.e. Hd0(XC, ω)f . The non-trivial element σ of Gal(F/F0) acts on the set of
infinite places of F , and it is natural to consider the subspace

V C
0 = span{ωJf | |J | = d0, J ∩ Jσ = ∅} ⊆ Hd0(X,ω)f ⊗ C

of dimension 2d0 within the
(
2d0
d0

)
-dimensional space. Restriction of classes in Hd0(XC, ω)f

to Shimura subvarieties associated with F0 can only be non-zero for elements in V C
0 . The

motivic action conjecture predicts that this subspace is rational, i.e. V C
0 = (V0)C for a

rational subspace V0 ⊆ Hd0(X,ω)f . The swap map s∗ preserves V0, breaking it up into
2d0−1-dimensional isotypic components V0 = V +

0 ⊕ V −
0 , paired with each other under Serre

duality. Finally, the analogue of Theorem D would give rise to 2d0−1 functionals on V −
0

which take rational values on the expected basis of V0. More concretely, assuming the
subspace V0 ⊆ Hd0(X,ω)f is rational, we would hope to prove that

ωJf + ωJ
σ

f

detRf0

,
ωJf − ωJ

σ

f

detRF
f0

∈ Hd0(X,ω)f

for any J with |J | = d0 and J ∩ Jσ = ∅, where Rf0 and RF
f0

are the d0 × d0 regulator

matrices for Ad0 ϱ0 and Ad0 ϱ0⊗χF/F0 , respectively. We hope to pursue this generalization
in future work.
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The core idea behind our approach is that if an automorphic form is obtained by theta
lifting from a smaller group, then one can give a rationality criterion for coherent coho-
mology by considering the theta lift back. The same strategy also led to the proof of the
motivic action conjecture for Siegel modular forms in special cases [HP23]. It would be
interesting to explore other instances of this phenomenon.
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2. Preliminaries

In this section, we recall preliminaries on automorphic forms, and their theta lifts.

2.1. Notation. For a ring R and any N ∈ N, we denote RN := R⊗Z
∏

p|N prime Zp ⊂ R̂ :=

R ⊗ Ẑ. Similarly for a ∈ R, we write aN := a ⊗ 1 ∈ RN ⊂ R̂. Throughout the paper, F
will be a totally real field of degree d with different d, ring of integers O, and adeles AF .
Apart from Section 2.2, d will be 2, i.e. F will be real quadratic. In that case, let D > 0
for the discriminant of F , which we assume is odd throughout for simplicity.

For a compact open subgroup U ⊂ Ô×, we define the associated narrow class group

(2.1) Cl+F (U) := A×
F/F

×URd
>0.

We omit F and + in then notation when F = Q. For an algebraic group G defined over
Q, we use [G] to denote the quotient G(Q)\G(A).

For a quadratic extension K/Q, we will write χK for the associated quadratic character
of Q.
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2.2. Adelic Hilbert modular forms. We first recall adelic Hilbert modular form (see
[Shi78, §1, 2], [Gar90]). Denote GF := ResF/QGL2 with center ZF = ResF/QGm ⊂ GF . We
omit F from the notation when it is Q. Denote K∞ = SO2(R)d ⊂ GF (R) the maximal

compact. For open compact K ⊂ GF (Q̂), we have the decomposition

(2.2) GF (A) =
⊔
ξ∈Ξ

GF (Q)ξKGF (R)+

for a finite subset Ξ ⊂ GF (Q̂) satisfying

(2.3) A×
F =

⊔
ξ∈Ξ

F× det(ξ) det(K)Rd
>0,

where GF (R)+ ∼= (GL2(R)+)d is the subgroup of GF (R) ∼= GL2(R)d with positive determi-
nant. This decomposes GF (Q)\GF (A)/K into cosets

(2.4) [GF ]/K := GF (Q)\GF (A)/K =
⊔
ξ

Γξ\GF (R)+

with Γξ := GF (Q)+ ∩ ξKξ−1, GF (Q)+ := GF (Q) ∩GF (R)+. The class group Cl+F (det(K))
acts simply transitively on Ξ. We will choose Ξ to contain the identity, and use it as a
base point to identify the sets Ξ ∼= Cl+F (det(K)). If det(K) = Ô×, then Cl+F (det(K)) is the
narrow class group Cl+F of F . Similarly, if we denote G1,F := ResF/QSL2 ⊂ GF , then there
is a finite set Ξ′ ⊂ Ξ such that

(2.5) GF (A) =
⊔
ξ′∈Ξ′

ZF (A)GF (Q)G1,F (A)ξ′K

and A×
F = ⊔ξ∈Ξ′(A×

F )
2F× det(ξ′) det(K). The subset of Cl+F (det(K)) corresponding to

Ξ′ ⊂ Ξ consists of representatives of Cl+F (det(K))/Cl+F (det(K))2.
On AF , let db be the Haar measure self-dual with respect to the additive character

ψF := ψ ◦ NmF/Q, where ψ = ⊗p≤∞ψp is the additive character of Q\A normalized with
ψ∞(x) = e(x) := e2πix. It is the product of local measures dbv over finite places v of F .

With respect to dbv, the valuation ring Ov of Fv, the completion F at v, has volume |d|1/2v .
On A×

F , we normalize the Haar measure d×a =
∏

v≤∞ d×av such that d×av = mv
dav
|a|v with

mv = (1− 1/qv)
−1 and qv = |Ov/ϖv| for v < ∞, and d×a∞ = da∞

|a|∞ . Then O×
v has volume

1 with respect to d×av.
Let dg =

∏
v≤∞ dgv be the Haar measure on GF (A) = G(AF ) = ⊗v≤∞G(Fv) normalized

such that the subgroup SL2(Ov) ⊂ G(Fv) has volume 1 with respect to dgv for all finite

places v of F . At the infinite places, we have dg∞ =
∏

1≤j≤d dµ(zj)
dθj
2π

in the coordinate

g = (gzjkθj) ∈ SL2(R)d ∼= G1,F (R), where for z = x + iy ∈ H, gz = n(x)m(
√
y) =

( 1 x
1 )
(√

y

1/
√
y

)
, dµ(z) = dxdy

y2
, and kθ =

(
cos θ sin θ
− sin θ cos θ

)
∈ SO2(R).

Let k1, . . . , kd be integers satisfying kj ≡ k1 mod 2. An automorphic form of weight
(k1, . . . , kd), level K and central character χ : F×\AF → C is a function f : [GF ]/K → C
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right K∞-equivariant with respect to the character (θ1, . . . , θd) 7→ ei
∑

j kjθj and satisfying

(2.6) ρ(z)f = χ(z)f

for all z ∈ ZF (A), where we have a left action on f given by

(2.7) (ρ(g)f)(g′) := f(gg′).

for any g′ ∈ GF (A). This right action induces an action of the Lie algebra gld2 of GF (R) ∼=
GL2(R)d. For 1 ≤ j ≤ d, denote Lj, Rj ∈ sld2,C ⊂ gld2,C the element whose j-th component
is given by

(2.8) L =
1

2

(
1 −i
−i −1

)
, R =

1

2

(
1 i
i −1

)
respectively, and other components are 0. Their actions on f correspond to the lowering
and raising operator in the j-th variable. We say f is holomorphic, resp. anti-holomorphic,
in the j-th variable if Ljf , resp. Rjf , vanishes. We call it (anti-)holomorphic if it is
(anti-)holomorphic for all 1 ≤ j ≤ d.
If χ is unitary, then |f | is automorphic of weight 0, level K and trivial central character.

Furthermore, if |f | is in L2([GF ]/ZF (A)), e.g. f is a cusp form, then we define the Petersson
norm of f to be

(2.9) ∥f∥2Pet :=
∫
GF (Q)\GF (A)/ZF (A)

|f(g)|2dg, ∥f∥21,Pet :=
∫
G1,F (Q)\G1,F (A)

|f(g)|2dg,

Using the decomposition (2.5), we can rewrite

(2.10) ∥f∥2Pet :=
∑
ξ′∈Ξ′

∥ρ(ξ′)f∥21,Pet.

In particular if Ξ′ has size 1, i.e. Cl+F (det(K)) has odd cardinality, then ∥f∥2Pet := ∥f∥21,Pet.
The decomposition (2.4) shows that f corresponds to a tuple of classical Hilbert modular

forms on
∏

ξ∈Ξ Γξ\Hd. We denote f ♭(z) = (f ♭ξ(z))ξ∈Ξ the classical Hilbert modular form

associated to f for z = (zj)1≤j≤d ∈ Hd. If f is a holomorphic cusp form, then it has the
Fourier expansion

(2.11) f ♭ξ(z) =
∑

ν∈F, ν≫0

cν,ξ(f)e(Tr(νz)).

The function f ♭ξ satisfies the defining property

(2.12) f(γg) = f ♭ξ(g∞ · i)
∏

1≤j≤d

j(g∞,j, i)
−kj , j(( a bc d ) , z) = (cz + d)(ad− bc)−1/2

for γ ∈ GF (Q), g = (gf , g∞) ∈ ξKGF (R)+. We omit ξ from the notation when it corre-
sponds to the different ideal d and Ξ has size 1.

Similarly for a classical modular form f0, we use f#
0 to denote its adelization. For

example when F = Q and f0 ∈ Sk(N,χ0), then f
#
0 satisfies (see [Kud03, Prop. 1.4])

(2.13) f#
0 (γgκ) = χ0(κ)f

#
0 (g)
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for all γ ∈ GL2(Q), g ∈ GL2(A) and

(2.14) κ ∈ K0(N) := {γ ∈ GL2(Ẑ) : γ ≡ ( ∗ ∗
0 ∗ ) mod N}.

Here we also used χ0 = ⊗p≤∞χ0,p : Q×\A× → C× to denote the associated idelic character,
and define χ0(κ) := χ0(a) for κ = ( a ∗

∗ ∗ ). It is easy to check that

(2.15)
√
v
k
cm(f0)e

−2πmv =

∫
Q\A

f#
0 (n(b)m(

√
v))ψ(−mb)db

for any m ∈ Q.

2.3. Connected components of adelic Hilbert modular surfaces. Let F/Q be a real
quadratic field. In this section, we recall the adelic Hilbert modular surfaces associated with
a suitable subgroup H ⊂ GF . They are call geometric in the literature as the associated
Shimura variety has good moduli interpretation.

Denote G̃ = GL2 and H̃ = GF ×Gm. Define the embedding

(2.16) d : Gm → GL2, α 7→
(
1

α

)
.

On G̃× H̃, we have the character

(2.17) ν : G̃× H̃ → Gm, ν(g̃, (h, a)) = det(g)Nm(det(h)/a),

and are interested in the subgroup

(2.18) R := {(g̃, h̃) ∈ G̃× H̃ : ν(g̃) = ν(h̃)}.

It contains G×H, where G := ker ν ∩G = SL2 and

H := GF ×ResF/QGm Gm ⊂ ker ν ∩ H̃.(2.19)

Through projection to the first factor, we view H as a subgroup of GF . Note R ∼= G⋊ H̃
via the map (g̃, h) 7→ (g, h), where

(2.20) g := g̃ · d(ν(g̃)−1).

In addition, we also denote

(2.21) H1 := ResF/QSL2 ⊂ H ⊂ GF .

For an open compact subgroup K ⊂ H(Q̂), we can form the Shimura variety XK . It is
defined over Q and its C-points are

(2.22) XK(C) = H(Q)\(D×H(Q̂)/K),

where D = H2∪ (H−)2 is the symmetric space associated to H/ZH and ZH ⊂ H the center.
As in (2.5), we can write

(2.23) H(A) =
⊔
δ∈∆

H(Q)H1(A)δKZH(R)
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for a finite subset ∆ ⊂ H(Q̂) satisfying

Q̂× =
⊔
δ∈∆

Q× det(δ) det(K).

We identify the sets ∆ ∼= Cl(det(K)) = Q̂×/Q× det(K), and let the latter acts the former
by left multiplication. This leads to a decomposition into components

(2.24) XK =
⊔
δ∈∆

X1,K,δ,

where X1,K,δ is the geometrically irreducible Shimura variety associated to H1 and open

compact subgroup 2 Kδ := δKδ−1 ∩ H1(Q̂) ⊂ H1(Q̂). It is important to know that this
decomposition is defined over the abelian extension EK/Q determined by the reciprocity
map

(2.25) Cl(det(K)) ∼= Gal(EK/Q), a 7→ σ−1
a .

The Galois group Gal(EK/Q) acts on the set {X1,K,δ : δ ∈ ∆} through [Kud97, (1.10),
(1.11)]

(2.26) Xσ
1,K,δ

∼= X1,K,σ ·δ.

So decomposition (2.24) can be rewritten as

(2.27) XK
∼=

⊔
σ∈Gal(EK/Q)

Xσ
1,K1

, X1,K1 := X1,K,1.

2.4. Weil representation. Let F be a real quadratic field of discriminant D > 0 as in
the previous section. We recall the Weil representation ω = ωψ for the similitude groups
associated with the following quadratic space (see [HK92, §5], [Rob96]). For A ∈ Q>0, let
V = V (A) be the quadratic space

(2.28) V =

{(
a ν
ν ′ b

)
: a, b ∈ Q, ν ∈ F

}
with the quadratic form Q = Q(A)(λ) = A · det(λ). We will write (a, b, ν) to represent(
a ν
ν ′ b

)
∈ V , and can decompose V into the direct sum of the subspaces

(2.29) V0 := {(0, 0, ν) : ν ∈ F} ∼= F, V1 := {(a, b, 0) : a, b ∈ Q} ∼= Q2.

The group H̃ acts on λ ∈ V via λ 7→ a−1·γλ(γ′)t for (γ, a) ∈ H(Q), giving rise to H̃ → GOV

and H ∼= GSpinV → SOV with H1
∼= SpinV . The GSpin-Shimura variety attached to V is

just XK in (2.22).

Let ω = ⊗v≤∞ωv = ωψ,V be the Weil representation on S(V (A)) = S(V̂ ) ⊗ S(V (R)),
with V̂ := V (Q̂), of (G × H)(A) associated to V . Following [HK92, §5], we extend it to

2In particular, K1 = K ∩H1(Q̂).
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R(Q)\R(A) by setting3

(2.30) ω(g, h̃)φ := ω(g1)L(h̃)φ, (L(h̃)φ)(x) := |ν(h̃)|−1φ(h̃−1 · x)

for φ ∈ S(V (A)). Also note that

(2.31) L(z̃)φ = χV (a)ω(m(aNm(z)−1))φ

for any z̃ = (z, a) ∈ Gm(AF ) × Gm(A) ∼= Z(H̃(A)) as χV (Nm(z)) = 1. This allows us to
define the theta function

(2.32) θ(g, h̃, φ) :=
∑

x∈V (Q)

(ω(g, h̃)φ)(x)

on R(Q)\R(A), which satisfies the relation

(2.33) θ(g1g2, h̃1h̃2, φ) = θ(g1, h̃1, ω(g2, h̃2)φ)

for all (gi, h̃i) ∈ R(A) [HK92, Lemma 5.1.7].

For an even, integral lattice L ⊂ V with dual L∨, denote SL ⊂ S(V̂ ) the finite dimen-

sional subspace spanned by Char(L̂ + µ) for µ ∈ L̂∨/L̂ ∼= L∨/L with L̂ := L⊗ Ẑ. On SL,
we have the following bilinear pairing

(2.34) ⟨ϕ, φ⟩ :=
∑

x∈L̂∨/L̂

ϕ(x)φ(x).

2.5. Weighted cycle. In this section, we follow [Kud97] and recall weighted cycles on
Hilbert modular surface XK attached to the group H ∼= GSpinV for V from (2.28).
For x ∈ V (Q), we denote its stabilizer by Hx ⊂ H. It is isomorphic to GSpin(x⊥),

which is B× for a quaternion algebra B over Q. If Q(x) > 0, then Hx gives rise to the

natural special cycle Z(x, h,K) on XK for any h ∈ H(Q̂) and open compact K ⊂ H(Q̂).
Its C-points are the image of the map (see (2.4) in [Kud97])

(2.35) Hx(Q)\Dx ×Hx(Q̂)/Kx,h → XK(C), Hx(Q)(z, hx)Kx,h 7→ H(Q)(z, hxh)K

with Dx the symmetric space for Hx and Kx,h := Hx(Q̂)∩ hKh−1. The cycle Z(x, h,K) is
defined over Q [Kud97, §2].

Recall we have the subgroup H1 ⊂ H defined in (2.21). In the decompositions (2.24)
and (2.27), suppose δKδ−1 = K for all δ ∈ ∆. We define the natural special cycle

(2.36) Z1(x, h,K1) := Z(x, h,K) ∩X1,K1 ,

which is defined over EK and the Galois action on Z1(x, h,K)’s is the same as in (2.26).
In particular

(2.37) Z1(x, h,K1)
σδ ∼= Z(x, h,K) ∩X1,K,δ

∼= Z(x, hδ−1, K) ∩X1,K1

3The exponent in (5.1.1) of [HK92] should be −mn/4 instead of −mn/2, in order for (5.1.10) in loc.
cit. to hold.
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for all δ ∈ ∆ ∼= Cl(det(K)). Its C-points are given as in (2.35) with Hx, H and K replaced
by H1,x := Hx ∩H1, H1 and Kδ respectively. Using (2.24) and (2.27), we can write

(2.38) Z(x, h,K1) =
⊔
δ∈∆

Z1(x, h,K1)
σδ ⊂ XK/EK

.

For a K1-invariant Schwartz function φ ∈ S(V̂ ) and x0 ∈ V with m := Q(x0) > 0, there

is a finite set S(φ, x0) ⊂ H(Q̂) such that [Kud97, (5.4)]

(2.39) suppφ ∩ Vm(Q̂) =
⊔

s∈S(φ,x0)

K1 · s−1 · x0,

where Vm := {x ∈ V : Q(x) = m} ⊂ V . The weighted cycle

(2.40) Z1(m,φ,K1) :=
∑

s∈S(φ,x0)

φ(s−1 · x0)Z1(x0, s,K1)

is defined over EK , and independent of the choice of x0 or S(φ, x0). If x′0 = γ · x0 for
γ ∈ H1(Q), then we can choose

(2.41) S(φ, x′0) = {γ · s : s ∈ S(φ, x0)}.

2.6. Theta lifts. Let V = V (A) be the same as in (2.28), and denote V (A) = V (R)⊕ V̂ ,

where V̂ := V (Q̂). We now describe the choice of the archimedean component of the
Schwartz function.

In the orthogonal basis {X+, Y +, X−, Y −} of the quadratic space V (R) =M2(R), where

(2.42) Z+ := X+ + iY + :=

(
1 i
−i 1

)
, Z− := X− + iY − :=

(
−1 i
i 1

)
,

For ϵ = ±1, δ ∈ {+,−}, define the following polynomials on V (R) =M2(R)

(2.43) pδ,ϵ(λ) := (−i) · A−1(λ,X−δ − iδϵY −δ) = (−i) · (a− δb+ iϵ(ν + δν ′))

with λ = ( a ν
ν′ b ) ∈ V (R).4 From these polynomials, we can construct the following Schwartz

function on V (R)

(2.44) φδ,ϵ∞ (λ) = pδ,ϵ(λ)e−2πQ+(λ) ∈ S(V (R)),

where Q+(λ) := Q(λZ+) − Q(λZ−) = A
2
· (a2 + b2 + ν2 + (ν ′)2). With respect to K∞,

this Schwartz function is right equivariant with weight (δϵ, ϵ). For g = gτ ∈ SL2(R) with
τ = u+ iv ∈ H, we have explicitly

(2.45) φ∞,τ (λ) := (ω∞(gτ )φ∞)(λ) = ve(Q(λ)u)φ∞(
√
vλ).

To φ ⊂ S(V̂ ) and ϵ = ±1, δ ∈ {+,−}, we associate the following theta function for
(g, h) ∈ R(A) and τ ∈ H

(2.46) θδ,ϵ(g, h;φ) := θ(g, h;φ⊗ φδ,ϵ∞ ).

4We will sometimes slightly abuse notation and use δ to mean ±1.
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It is modular of weight −δ in g and weight (δϵ, ϵ) in h. Using computations in the Fock
model of ω∞ (see Section 4.1 in [BLY25]), we have5

Rθ1,1(g, h, φ)
·
= R1θ

−1,1(g, h, φ)
·
= R2θ

−1,−1(g, h, φ),

L1θ
1,1(g, h, φ)

·
= Lθ−1,1(g, h, φ)

·
= L2θ

−1,−1(g, h, φ).
(2.47)

In GF (R) ⊂ H̃(R), we have the following two elements

(2.48) w1 := (( 1
−1 ) , (

1
1 )) , w2 := (( 1

1 ) , (
1
−1 ))

that do not lie in H(R), whereas (d(−1), wi) ∈ R(R). Furthermore, we have

(2.49) Rj(ρ(wj)f) = ρ(wj)(Ljf)

for automorphic form f on GF and j = 1, 2. The following observation of their effect on
the theta function θδ,ϵ will be crucial for us later.

Proposition 2.1. Let θδ,ϵ be as in (2.46) and wj as in (2.48). Then

(2.50) θδ,ϵ(gd(−1), hw1;φ) = θ−δ,ϵ(g, h;φ), θδ,ϵ(gd(−1), hw2;φ) = θ−δ,−ϵ(g, h;φ)

for all ϵ = ±1, δ ∈ {±}, (g, h) ∈ R(A) and φ ∈ S(V̂ ).

Proof. By definition, we have the following identity

(ω(d(−1), w1)φ
δ,ϵ
∞ )(λ) = (L(w1)φ

δ,ϵ
∞ )(λ) = φδ,ϵ∞ (w1 · λ) = φ−δ,ϵ

∞ (λ)(2.51)

for any λ = ( a ν
ν′ b ) ∈ V (R), since w1λ = ( a ν

−ν′ −b ) and

pδ,ϵ(( a ν
−ν′ −b )) = (−i) · (a+ δb+ iϵ(ν − δν ′)) = p−δ,ϵ(( a ν

ν′ b ))

by (2.43). Similarly, ω(d(−1), w2)φ
δ,ϵ
∞ = φ−δ,−ϵ

∞ . As a result of (2.33), we obtain (2.50). □

Let f0 ∈ S1(N,χ0) be a holomorphic elliptic modular form with adelization f#
0 : G(A) →

C. For φ ∈ S(V̂ ), we define the theta lift Φ(h; f0, φ) of f0 by

(2.52) Φ(h; f0, φ) = Φ(h; f#
0 , φ) :=

∫
[G]

f#
0 (gd(ν(h)))θ1,1(gd(ν(h)), h;φ)dg.

for h ∈ H(A). It is left H(Q)-invariant since

Φ(γh; f0, φ) =

∫
[G]

f#
0 (gd(ν(γh)))θ1,1(gd(ν(γh)), γh;φ)dg

=

∫
[G]

f#
0 (g′d(ν(h)))θ1,1(g′d(ν(h)), h;φ)dg

= Φ(h; f0, φ)

for γ ∈ H(Q) with g′ = γ−1gγ ∈ G(A). It is easy to verify that

(2.53) Φ(h; ρ(g1)f0, φ) = Φ(h; f0, ω(g
−1)φ).

for any g ∈ G(Q̂).

5Here,
·
= means equality up to multiplication by non-zero constant.



MOTIVIC ACTION CONJECTURE FOR DOI–NAGANUMA LIFTS 13

Similarly given a Hilbert cusp form f of weight (1, 1), we define its theta lift

(2.54) I(g; f, φ) :=

∫
[H1]

f(h1h)θ1,1(g, h1h;φ)dh1

for g ∈ G̃(A) with h ∈ H̃(A) satisfying ν(h) = g. It is easy to see that

(2.55)

∫
[G]

I(g; f, φ)f#
0 (g)dg =

∫
[H1]

Φ(h; f0, φ)f(h)dh.

Lemma 2.2. If f0, resp. f , is holomorphic, then its theta lift Φ, resp. I, is holomorphic.

Proof. This follows directly from (2.47) and Stokes’ theorem. □

3. Hecke equivariance of Doi–Naganuma lifts

In this section, we define Hecke operators in G̃(A) and H̃(A), and show that the theta
lift from Section 2.6 intertwines the actions in a suitable way. Such result are known in
the literature as generalizations of the Eichler commutation relation [Eic74]. For Hecke
operators on G × H, the relation is worked out by Rallis in the representation language
[Ral82]. For our purpose, it is necessary to work with Hecke operators on similitude groups,
which does not seem to be in the literature. Therefore, we give the detailed proof here, in
a rather classical way that transfers all the actions to the Schwartz function.

In the notation before, let f be an automorphic form of parallel weight k, level N on
G̃(A) = GL2(AF ), and p a prime of F such that it is co-prime to DN and f is right
H̃(Zp)-invariant, with p the rational prime below p. For Kp-biinvariant ϕ ∈ C(H̃(Qp)),
where Kp := GL2(Op) with Op the valuation ring of Fp, the associated Hecke operator Tϕ
is defined by

(3.1) (Tϕf)(h) :=
∫
H̃(Qp)

f(hh̃−1)ϕ(h̃)dh̃.

If ϕ = Char(Kpϖd(1/ϖ)Kp) withϖ ∈ Op a uniformizer, we denote Tϕ by Tp. It is explicitly
given by

(3.2) (Tpf)(h) =
∑

β∈d(ϖ)Kpd(ϖ−1))∩Kp\Kp

f(h(ϖd(1/ϖ)β)−1).

In addition, we also have the diamond operator

(3.3) (⟨p⟩f)(h) := f(hϖ−1).

Suppose F has narrow class number 1 and f has weight (k, k). Then it is easy to verify
that

(3.4) (Tpf)
♭ = Nm(p)1−k/2Tλf

♭, (⟨p⟩f)♭ = ⟨λ⟩f ♭,

where p = (λ) and Tλ, ⟨λ⟩ are the classical Hecke and diamond operators. It turns out
that the action of Tp on the theta lift Φδ,ϵ defined in (2.52) is compatible with the Hecke
operator on the input.
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Proposition 3.1. Let f0 ∈ S1(N,χ0) and p be a prime of F above rational p co-prime

to ADN . For φ = φ(p) ⊗ ϕ ∈ S(V̂ ) with φ(p) ∈ S(⊗p̸=ℓ<∞Vℓ) and ϕ = Char(L) with
L :=M2(Op) ∩ Vp, we have

TpΦ
δ,ϵ(h; f0, φ) =

{
Φδ,ϵ(h; Tpf0, φ) if t = 1,

Φδ,ϵ(h; (T 2
p − 2p⟨p⟩)f0, φ) if t = 2,

⟨p⟩Φδ,ϵ(h; f0, φ) = Φδ,ϵ(h; ⟨q⟩f0, φ),
(3.5)

where q = |Op/ϖ| = pt.

Remark 3.2. The second equation in (3.5) is a special case of the relation

(3.6) Φδ,ϵ(hz; f0, φ) = Φδ,ϵ(h; ρ(Nm(z))f0, φ)

for any z ∈ ZF (A), which follows from (2.31).

Proof. For r ∈ Z/qZ, we define the following Schwartz functions in SL
ϕr := Char(q−1Lr), Lr := {λ ∈ L− pL : det(λ) ≡ r mod q} ⊂ L.(3.7)

The coset in (3.2) has size q + 1 and is given by

(3.8) d(ϖ)Kpd(ϖ
−1)) ∩Kp\Kp

∼= Γ0(p)\SL2(O) ∼= {n−(j) : j ∈ Op/p} ∪ {w} =: B,

where w = ( −1
1 ) , n−(j) =

(
1 0
j 1

)
. We set ϕ̃ := L(ϖ−1d(ϖ))ϕ and need to evaluate

(3.9)
∑
β∈B

L(β−1ϖ−1d(ϖ))ϕ =
∑
β∈B

ω(β−1)ϕ̃

This is because

Φδ,ϵ(h(ϖd(1/ϖ)β)−1; f0, ϕ) = Φδ,ϵ(h; ρ(d(1/p))f0,L(β−1ϖ−1d(ϖ))ϕ)

We first treat the case q = p, i.e. p = pp′ is split. Then Fp
∼= Qp identifies Vp ∼=

M2(Qp), Kp
∼= GL2(Zp), under which d(ϖ) ∈ H(Qp) and ϕ become (d(p), 1) ∈ GL2(Qp)

2

and Char(M2(Zp)) respectively. Then ϕ̃ = p−1Char
((

p−1Zp p−1Zp

Zp Zp

))
and we claim that

(3.10)
∑
β∈B

L(β−1ϖ−1d(ϖ))ϕ =
∑
β∈B

ω(β−1)ϕ̃ = (ϕ0 + (p+ 1)ϕ)/p.

Indeed the left hand side has support on L, is locally constant with respect to translation
by L. Therefore it is contained in SL. Furthermore, it is invariant with respect to K1,p :=
SL2(Zp)2 ⊂ H1(Qp). The subspace of such function is spanned by ϕr and ϕ, which are
orthogonal with respect to the pairing in (2.34). So we can write

∑
β∈B

ω(β−1)ϕ̃ =
∑

r∈Z/pZ

〈∑
β∈B ω(β

−1)ϕ̃, ϕr

〉
⟨ϕr, ϕr⟩

ϕr +

〈∑
β∈B

ω(β−1)ϕ̃, ϕ

〉
ϕ

= |B| ·

 ∑
r∈(Z/pZ)×

⟨ϕ̃, ϕr⟩
(p2 − 1)p

ϕr +
⟨ϕ̃, ϕ0⟩

(p2 − 1)(p+ 1)
ϕ0 + ⟨ϕ̃, ϕ⟩ϕ
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It is easy to see that ⟨ϕ̃, ϕ⟩ = 1/p and

⟨ϕ̃, ϕr⟩ =

{
p2−1
p

if r = 0,

0 otherwise.

Applying |B| = p+ 1 then gives us (3.10), and we can write

(3.11) (TpΦ
δ,ϵ)(h; f0, φ) = Φδ,ϵ(h; ρ(d(p−1))f0, φ

(p) ⊗ (ϕ0 + (p+ 1)ϕ)/p).

On the other hand, we have

(3.12) Tpf#
0 =

∑
β∈B

ρ(β−1p−1d(p))f#
0 .

Applying Equation (2.53), we have

Φδ,ϵ(h; Tpf0, φ) =
∑
β∈B

Φδ,ϵ(h; ρ(β−1p−1d(p))f0, φ) =
∑
β∈B

Φδ,ϵ(h; ρ(p−1d(p))f0, ω(β)φ)

= (p+ 1)Φδ,ϵ(h; ρ(p−1d(p))f0, φ).

Now since ρ(κ)f0 = f0 for any κ ∈ SL2(Zp) ⊂ G(A), we have

Φδ,ϵ(h; ρ(p−1d(p))f0, φ) = Φδ,ϵ(h; ρ(w−1d(p−1)w)f0, φ) = Φδ,ϵ(h; ρ(d(p−1))f0, φ)

Similarly for any j ∈ Qp, we have

Φδ,ϵ(h; ρ(p−1d(p))f0, φ) = Φδ,ϵ(h; ρ(p−1d(p)n(j))f0, φ)

= Φδ,ϵ(h; ρ(n(j/p)m(p−1)d(p−1))f0, φ) = Φδ,ϵ(h; ρ(d(p−1))f0, ω(m(p)n(−j/p))φ).

Averaging this over j ∈ Z/pZ gives us

Φδ,ϵ(h; ρ(p−1d(p))f0, φ) = Φδ,ϵ(h; ρ(d(p−1))f0, φ
(p) ⊗ (ϕ0 + ϕ)/p2).

Putting these together give us (3.5).
For the case p = p is inert, we have ϖ = p, q = p2. In addition to the Schwartz function

in (3.7), we define

ϕ′ := Char(
1

p
L) = ϕ+

∑
r∈Z/pZ

ϕp,r,

ϕp,r := Char(
1

p
Lp,r), Lp,r := {λ : λ ∈ L− pL, det(λ) ≡ r mod p} ⊂ L− pL.

(3.13)

for r ∈ Z/pZ. Then ϕ̃ = q−1Char(
(
p−2Zp p−1O
p−1O Zp

)
∩ Vp) and the analogue of (3.10) is

q
∑
β∈B

ω(β−1)ϕ̃ = ϕ0 + (q + 1)ϕ + ϕp,0 + (p+ 1)
∑

r∈(Z/pZ)×
ϕp,r

= ϕ0 + (q − p)ϕ.+ (p+ 1)ϕ′ − pϕp,0

(3.14)

So we have

(3.15) (TpΦ
δ,ϵ)(h; f0, φ) = q−1Φδ,ϵ(h; ρ(d(q−1))f0, φ

(p)⊗ (ϕ0+(q−p)ϕ+(p+1)ϕ′−pϕp,0)).
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On the other hand, we have

Φδ,ϵ(h; T 2
p f0, φ) = (p+ 1)Φδ,ϵ(h; ρ(p−1d(p))(Tpf0), φ)

= (p+ 1)Φδ,ϵ(h; ρ(d(q−1))f0, φ
(p) ⊗ (pϕ− p−2ϕ′)),

Φδ,ϵ(h; ⟨p⟩f0, φ) = −p−2Φδ,ϵ(h; ρ(d(q−1))f0, φ
(p) ⊗ ϕ′).

Using the action ω(m(p))ϕ = −p−2ϕ′ and the right, resp. left, SL2(Zp)-invariance of f0,
resp. ϕ, one can deduce that

Φδ,ϵ(h; ρ(d(q−1))f0, φ
(p) ⊗ ϕp,0) = Φδ,ϵ(h; ρ(d(q−1))f0, φ

(p) ⊗ ((−p2 + p− 1)ϕ+ 1
p
ϕ′)

Φδ,ϵ(h; ρ(d(q−1))f0, φ
(p) ⊗ ϕ0) = Φδ,ϵ(h; ρ(d(q−1))f0, φ

(p) ⊗ (p4ϕ− ϕ′)).

Putting these together into (3.15) gives (3.5) for e = 2. □

Using Equation (2.55) and the adjointness of Hecke operator with respect to the Peters-
son inner product, we have the following corollary.

Corollary 3.3. Given a Hilbert cusp form f of level N , weight (1, 1) and prime p with
norm q = pt co-prime to ANm(N )D, we have

(3.16) (Tq − 2p⟨p−1⟩)I(g0, f, φ) = I(g0, Tpf, φ).

4. Fourier expansions of Doi-Naganuma lifts

In this section, we will describe the data for our theta lift. Throughout, V = V (D) is the
same as in (2.28), with odd D > 0, the discriminant of a real quadratic field F . We fix
a normalized newform f0 ∈ S1(N,χ0) with N square-free and co-prime to 2D. Denote by
f : [GF ] → C its base-change, normalized with c1,d(f) = 1. It is right K(N, d)-equivariant
with character χ := χ0 ◦ NmF/Q, where

(4.1) K(N, d) := {γ ∈ GL2(Ô) : γ ≡ ( ∗ ∗
0 ∗ ) mod N, det(γ) ≡ 1 mod d}

is an open compact subgroup of GL2(Ô) and χ(( α ∗
∗ ∗ )) := χ(α).

4.1. Schwartz function. We start with the Schwartz function. For a character χ of
(Z/pZ)×, let gχ :=

∑
j∈(Z/pZ)× χ(j)e(j/p) be its Gauss sum. Define φp ∈ S(Vp) by

(4.2)

φp =


Char(Z2

p ⊕Op) if p ∤ DN,
1

gχ0,p

∑
j∈(Z/pZ)×

χ0,p(j)
(
Char( j

p
+ Zp)− 1

p
Char(p−1Zp)

)
⊗ Char(pZp ⊕Op) if p | N,

1
gχF,p

p(p−1)

∑
h∈GL2(Op/dp)

χF,p(det(h))Char(h · ((1
p
, 0, 0) + Z2

p ⊕ d−1
p )) if p | D.

In the case p | D, denote L := Z2
p⊕d−1

p with the quadratic form Q(a, b, ν) = p(ab−Nm(ν)).
For µ ∈ L∨/L, the intersection supp(φp)∩L+µ is non-empty if and only if µ is an isotropic
vector, i.e. Q(µ) = 0 ∈ Q/Z and µ ̸= 0. Since D is odd, we have GL2(Op/dp) ∼= GL2(Z/pZ)
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acting on L∨/L ∼= (1
p
Z/Z)3 ∼= Sym2(Z/pZ) by conjugation and scaling by determinant. The

set of isotropic vectors in are given by

{d
p
(1, 0, 0) : d ∈ (Z/pZ)×} ∪ {d

p
(j2, 1, j) : j ∈ Z/pZ, d ∈ (Z/pZ)×},

since it is acted on by GL2(Z/pZ) transitively and the stabilizer of (1
p
, 0, 0) is generated by

( 1 1
0 1 ) and the center. So we can explicitly write

(4.3) φp =
∑

d∈(Z/pZ)×
χF,p(d)

Char(d
p
(1, 0, 0) + L) +

∑
j∈Z/pZ

Char(d
p
(j2, 1, j) + L)


when p | D.

It is now easy to check that φp satisfies the following result.

Lemma 4.1. The Schwartz function φ = ⊗p<∞φp defined in (4.2) satisfies

(4.4) ωf (κ, h)φ = χ0(κ)χ(h)φ,

for all κ ∈ K0(N) ⊂ SL2(Ẑ) ⊂ G(Q̂) and h ∈ K(N, d) ⊂ GL2(Ô).

Proof. We check this claim locally. When p ∤ DN , the Schwartz function φp is spherical
and the claim is clear. When p | D, we have ωp(κ)φp = φp for all κ ∈ SL2(Zp) since φp is
an invariant vector [LZ25, §5.1]. When p | N and κ = m(a) ∈ K0(N) ∩ SL2(Zp), we have

(ωp(κ)φp)(x) = φp(ax) = χ0,p(a)φp(x).

This proves the claim for κ ∈ K0(N). The claim for h ∈ K(N, d) follows easily by
substitution. This completes the proof. □

Now let ℓ = (1, 0, 0), ℓ′ = (0, 1/D, 0) ∈ V ⊂ Vp be isotropic vectors, which satisfy
(ℓ, ℓ′) = D. They give the following partial Fourier transform

(4.5) F(φ)(η, ν) =

∫
A
φ(aℓ+ η1ℓ

′ + (0, 0, ν))ψ(aη2)da

for φ ∈ S(V (A)) and η = (η1, η2) ∈ A2. This linearizes the symplectic part of the Weil
representation on V1 ⊂ V , i.e.

(4.6) F(ω1(g)φ)(η, ν) = F(φ)(η · g, ν)

for all g ∈ G(A). Furthermore, Poisson summation gives us

(4.7) θ(g, h, φ) =
∑
x∈V

(ω(g, h)φ)(x) =
∑

η∈Q2, ν∈V0

F(ω(g, h)φ)(η, ν).

If φ = ⊗p≤∞φp, then F(φ) =
∏

p≤∞Fp(φp), where Fp is the Fourier transform on S(Vp)
defined similarly as in (4.5).

We record the partial Fourier transforms of the Schwartz functions φp defined in (4.2).
This will be used in Section 4.3 when we compute the Fourier expansion of the theta lift.
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Proposition 4.2. Let φp be defined as in (4.2). Then its partial Fourier transform as
defined in (4.5) is given by

(4.8) Fp(φp)(η, ν) =



Char(Z2
p ⊕Op)(η, ν) if p ∤ DN,

χ0,p(−η2)Char(pZp ⊕ Z×
p ⊕Op)(η, ν) if p | N,

χF,p(−η2)Char(pZp ⊕ Z×
p ⊕ d−1

p )(η, ν)

+ 1
gχF,p

∑
d∈(Z/pZ)×
j∈Z/pZ

χF,p(d)e(−dj2η2
p

)

×Char((pZp + d)⊕ Zp ⊕ (d−1
p + dj

p
))(η, ν) if p | D.

Remark 4.3. When η = (0, η2), we have

(4.9) Fp(φp)(η, ν) =


Char(Zp ⊕Op)(η2, ν) if p ∤ DN,
χ0,p(−η2)Char(Z×

p ⊕Op)(η2, ν) if p | N,
χF,p(−η2)Char(Z×

p ⊕ d−1
p )(η2, ν) if p | D.

This implies that F(φ)(ηr, ν) = χ0(r)χF (r)F(φ)(η, ν) for any r ∈ Ẑ×. Also for p | N ,
Zp × {0} does not intersect the support of φp.

Proof. When p ∤ D, i.e. in the first 2 cases, we can write φp = φ1,p⊗Char(Op), where φ1,p ∈
S(V1,p). Then Fp(φp) = Fp(φ1,p)⊗Char(Op) with Fp(φ1,p) =

∫
Qp
φ1,p(aℓ+ η1ℓ

′)ψp(aη2)da.

When p ∤ DN , we have φ1,p = Char(Z2
p) = Fp(φ1,p). When p | N , we have

gχ0,pFp(φ1,p)(η) = Char(pZp)(η1)
∑

j∈(Z/pZ)×
χ0,p(j)

(∫
j
p
+Zp

ψp(aη2)da−
1

p

∫
p−1Zp

ψp(aη2)da

)

= Char(pZp)(η1)
∑

j∈(Z/pZ)×
χ0,p(j)

(
e(−η2j

p
)Char(Zp)− Char(pZp)

)
(η2)

= Char(pZp ⊕ Z×
p )(η)χ0,p(−η2)gχ0,p .

Here we have used e(−η2j
p
)Char(Zp)(η2) − Char(pZp)(η2) = e(−η2j

p
)Char(Z×

p )(η2). When

p | D, we use (4.3) to obtain

gχF,p
Fp(φp)(η, ν) =

∑
d∈(Z/pZ)×

χF,p(d)


Char(pZp)(η1)Char(d−1

p )(ν)

∫
d
p
+Zp

ψp(aη2)da

+ Char(d+ pZp)(η1)
∑

j∈Z/pZ

Char(dj
p
+ d−1

p )(ν)

∫
dj2

p
+Zp

ψp(aη2)da


=

∑
d∈(Z/pZ)×

χF,p(d)e(−dη2
p
)Char(pZp ⊕ Zp ⊕ d−1

p )(η, ν)

+
∑

d,j∈(Z/pZ)×
χF,p(d)e(−dj2η2

p
)Char((d+ pZp)⊕ Zp ⊕ (dj

p
+ d−1

p ))(η, ν).

This finishes the proof. □
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4.2. Lifting identification. The goal of this section is to identify the theta lifts of f ,
resp. f0, with f0, resp. f .

Lemma 4.4. For i = 1, 2, let fi ∈ S1(Ni, χi) be normalized newforms with Fourier coeffi-
cients {ai(n) : n ≥ 1} and associated Galois representations ϱi : G := Gal(L/Q) → GL2(C)
for some number field L. If every conjugacy class of G contains Frobp for a prime p such
that a1(p) = a2(p), χ1(p) = χ2(p), then f1 = f2.

Proof. Under the assumption, we have ϱ1 ∼= ϱ2, which implies f1 = f2. □

Now let f0 ∈ S1(N,χ0) be a normalized newform. For a real quadratic field F = Q(
√
D)

with fundamental discriminant D, denote f : [H] → C the normalized base-change of f0
to F of weight (1, 1) and character χ(α) = χ0(Nm(α)) for α ∈ A×

F . Let ϱf and Q(f), resp.
ϱf0 and Q(f0), denote the Artin representation associated with f , resp. f0, and number
field generated by the Fourier coefficients of f , resp. f0. Then ϱf is just the restriction of

ϱf0 to Gal(F/F ) ⊂ Gal(Q/Q), from which it is clear that Q(f) ⊂ Q(f0). In general, the
latter is at most a quadratic extension of the former. In the following case, they turn out
to be the same.

Lemma 4.5. Suppose D and N are co-prime. Then Q(f) = Q(f0).

Proof. Let L/Q be the fixed field of the kernel of ϱf0 . Then L and F are disjoint since
they are ramified at primes dividing N and D respectively. By the Chebotarev density
theorem, every conjugacy class in Gal(L/Q) contains Frobp with p splits in F . In that
case, the trace of ϱf (Frobp) = ϱf0(Frobp) is contained in Q(f). Since Q(f0) is generated
by Tr(ϱf0(C)) over conjugacy classes C ⊂ Gal(L/Q), we obtain Q(f0) ⊂ Q(f). □

For φ ∈ S(V̂ ), we have the following result.

Proposition 4.6. There exists constants r = r(φ), r0 = r0(φ) in C such that

(4.10) Φ1,1(h; f0, φ) = r · f(h), I(g; f, φ) = r0 · f#
0 (g).

Furthermore, we have

(4.11) r0∥f0∥21,Pet = r∥ρ(ξ)f∥21,Pet,
for all ξ ∈ H(A).

Remark 4.7. Since f0, f are normalized, the constants r0, r are the first Fourier coefficients
of I(τ ; f, φ) and Φ(z, z′; f0, φ) respectively.

Proof. For the first identity in (4.10), note both sides are holomorphic by (2.47), and
eigenforms of Hecke operators Tp with the same eigenvalue for all but finitely many primes
p. By strong multiplicity one, they generate isomorphic automorphic representations.
Furthermore, the right hand side is a newform of level N , whereas the left hand side also
has level N . So both sides agree up to scalar. For the second equality, write the left hand
side as linear combinations of (scales of) newforms. Both sides have the same eigenvalue
under Tp for almost all primes that split in F . Since (D,N) = 1, the field F is fixed by
the Galois representations associated to the newforms appearing on the left and right hand
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sides. Applying Chebotarev density theorem and Lemma 4.4 tells us that these newforms
are all the same, namely f0.

Finally, Equation (4.11) is a direct consequence of (4.10) as

r0∥f0∥2 = ⟨I(g; f, φ), f0(g)⟩ = ⟨f(h),Φ1,1(h; f0, φ)⟩ = r∥f∥2. □

4.3. Unfolding I. We compute the constant r = r(φ) from Proposition (4.6) with φ de-
fined in (4.2). The procedure is standard via changing the model of the Weil representation.
A similar case can be found in §4.2 of [BLY25].

Starting with (4.6) and (4.7), for h ∈ H1(A) and φ∞ ∈ S(V̂ ), we have

Φ1,1(h; f0, φ
∞) =

∫
[G]

f#
0 (g)

∑
η∈Q2,ν∈V0

F(ω0(g)ω(h)φ)(η · g, ν)dg,

where φ := φ∞ ⊗ φ1,1
∞ ∈ S(V (A)). Since there exists γ ∈ H1(Q), h′ ∈ H1(A) with h′p = 1

such that h = γh′, we have

F(ω0(g)ω(h)φ)(0, 0, ν) = F(ω0(g)ω(h
′)φ)(0, 0, ν) = 0

for all g, ν by (4.8). Therefore the term η = (0, 0) in the summation above does not
contribute. The other terms is the (N(Q)\G(Q))-orbit of (0, 1). Writing g = n(b)m(a)κkθ
and unfolding this gives us

Φ1,1(h; f0, φ
∞) =

1

2

∑
ν∈V0

∫
(Q\A)×A×

ψ(bQ0(ν))|a|χF (a)

×
∫
K

f#
0 (n(b)m(a)κ)F(ω(κ)ω(h)φ)(0, a−1, aν)dκdb

d×a

|a|2
.

The factor 1
2
is the volume of PSO2(R).

Suppose from now on h = hz ∈ H1(R). Then it is not involved in the integral over

κ ∈ K ⊂ G(Q̂). Using f#
0 (gκ) = χ0(κ)f

#
0 (g) and Lemma 4.1, we can write∫

K

f#
0 (n(b)m(a)κ)F(ω(κ)φ)(0, a−1, aν)dκ

= vol(K0(N))
∑

κ∈K/K0(N)

f#
0 (n(b)m(a)κ)F(ω(κ)φ)(0, a−1, aν)

= vol(K0(N))
∑
N ′|N

∑
0≤j≤N ′−1

f#
0 (n(b)m(a)(n(j)w)N ′)F(ω0((n(j)w)N ′)φ)((0, a−1)wN ′ , aν).

Here we have parametrized K/K0(N) by6 {(n(j)w)N ′ : N ′ | N, 0 ≤ j ≤ N ′ − 1} as N
is square-free. If N ′ > 1, i.e. there exists p | N ′, then ((0, a−1)w, ν) = (−a−1, 0, ν) is

6For γ ∈ G(Q) and M ∈ N, we use γM ∈ G(Q̂) to denote the element, whose component at p is γ if
p | M and 1 otherwise.
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outside the support of Fp(ω0,p(n(j)w)φp) by (4.8). Therefore the corresponding summand
vanishes, and only N ′ = 1 contributes. That means

Φ1,1(h; f0, φ
∞)

vol(K0(N))
=

1

2

∑
ν∈V0

∫
A×

∫
Q\A

ψ(bQ0(ν))f
#
0 (n(b)m(a))dbF(ω(h)φ)(0, a−1, aν)χF (a)

da

|a|2

=
∑

ν∈V0,α∈Q>0

∫
R>0

∫
Q\A

ψ(bQ0(ν))f
#
0 (n(α−2b)m(r))dbF(ω(h)φ)(0, (αr)−1, αrν)

dr

r2

=
∑
ν∈d−1

F

α−1∈N−DNN
αν∈d−1

F

c−α2Q0(ν)(f0)χ
♭
0(−α)χ♭F (α)

∫
R>0

re2πα
2Q0(ν)r2F∞(ω(h)φ1,1

∞ )(0, (αr)−1, αrν)
dr

r2

In the second step, we have used A× = Q×(Ẑ×R>0), Remark 4.3 and Equation (2.13) to

obtain invariance in the integral over Ẑ×. Since α and −α give the same contribution, we
receive a factor of 2. In the last step, we applied Equation (2.15) and Remark 4.3.

It was computed in [BLY25, (4.18), (4.19)] that

F∞(ω(h)φ1,1
∞ )(0, r, ν) =

√
y1y2e(r(x1ν

′ + x2ν))F∞(φ1,1
∞ )(0, r

√
y1y2, ν

√
y2/y1)

= (ry1y2 + νy2 + ν ′y1)e(r(x1ν
′ + x2ν))e

−π(r2y1y2+ν2y2/y1+(ν′)2y1/y2).

Substituting in this expression gives us the following Fourier expansion for h ∈ H1(R)
Φ1,1(h; f0, φ

∞)

vol(K0(N))
=

∑
ν∈d−1

F ,ν≫0

e(ν ′z1 + νz2)
∑

d|
√
Dν, gcd(d,DN)=1

(χ0χF )(−d)cDNm(ν/d)(f0).(4.12)

From this, we obtain the following result.

Proposition 4.8. Let r = r(φ∞) be the constant in Proposition 4.6. Then r ∈ Q(f0)
×.

Proof. Since D and N are co-prime, we can find a prime p of F in same narrow class as d
such that p ∤ DN and cp(f0) ̸= 0, where p = Nm(p). Writing p = d(ν) with ν ∈ F× totally
positive, we obtain

r · cν,O(f) = cν,O(Φ
1,1) = cp(f0) ∈ Q(f0)

×.

Since f is normalized with c1,O(f) ∈ Q(f) and Q(f) ⊂ Q(f0), we have r ∈ Q(f0)
×. □

4.4. Unfolding II. Now, we will take f to be the base change of f0, and unfold the theta
integral I(g; f, φ) from (2.54).

For x ∈ V (Q), recall that H1,x ⊂ H1 is the subgroup stabilizing x defined in Section
2.5. If x = 0, this is just H1. If Q(x) = 0 but x ̸= 0, then let γ ∈ GF (Q) be such that
x = γ · ( a 0

0 0 ) for some a ∈ Q×, and

(4.13) B ∩H1
∼= H1,x, g 7→ γgγ−1.

If m = −Q(x) ∈ Nm(F×), then there exists γ ∈ GF (Q) ⊂ H̃(Q) such that x = γ ·( √
D

−
√
D

)
. In that case,

(4.14) SL2
∼= H1,x, g 7→ γgγ−1.
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If m ̸∈ Nm(F×), then H1,x/F
∼= SL2/F .

Suppose x ∈ V (Q) is a positive vector. For any function ϕ : [H1] → C, we define its
cycle integral associated with H1,x by

(4.15) σx(ϕ) :=

∫
[H1,x]

ϕ(h′)dh′

along the Shimura subvariety obtained from H1,x ⊂ H1. It is easy to check that

(4.16) σγ·x(ϕ) = σx(ρ(γ
−1)ϕ)

for any γ ∈ H1(Q) and ϕ. First, we state a few lemmas needed for the unfolding process.

Lemma 4.9. Recall wj ∈ H̃(R) from (2.48) and denote fj := ρ(wj)f . For any x ∈ V (Q)
with m = Q(x) ̸= 0, the following functions on H1(R)

(4.17) Σx,1(f, h) :=
(h · Z+, x)

2
√
D|m|

σx(ρ(h)f1), Σx,2(f, h) :=
(h · Z+, x)

2
√
D|m|

σx(ρ(h)f2)

are constant, which we denote by Σx,j(f). If m < 0, this is identically 0. Otherwise, we
have

(4.18) Σx,j(f) = σx(ρ(hx)fj) =

∫
[Hx]

fj(h
′hx)dh

′,

where hx ∈ H1(R) satisfies x = hx · (
√
m/D ( 1

−1 )).

Proof. Denote h1,x ⊂ h1 = sl22 the Lie algebras of H1,x(R) ⊂ H1(R) = SL2(R)2. Choose

h∞ ∈ H1(R) such that h−1
∞ · x =

√
|m|/D

(
0 1

−sgn(m) 0

)
. Then sl2 ∼= h1,x ⊂ sl22 via A 7→

h∞(A,A)h−1
∞ . It is easy to check that Σx,j(f, h∞) is right K∞ = SO2(R)2-invariant. Since

f is holomorphic, Equation (2.49) gives us RjΣx,j = L3−jΣx,j = 0 for j = 1, 2, where Lj, Rj

are the raising and lowering operators in sl22,C = h1,C defined in (2.8). Since Σx,j is left

H1,x(R)-invariant, it is annihilated by h1,x,C, Rj, L3−j, so
2
2,C, which generate h1,C. Therefore

it is independent of H1(R).
For the second claim, notice

(h · Z+, x) = (Z+, h−1 · x) = (1 + sgn(m))
√
D|m|,

which is zero for m < 0. The last claim follows easily after substitution. □

Lemma 4.10. For any x ∈ V (R) with Q(x) = m ̸= 0, we have

(4.19)

∫
Hx(R)\H1(R)

e−2πvQ+(h−1x)dh =
1

mv
e−2πmv.

Proof. After translation by h, we can suppose x =
√

|m|/D
(

1
−sgn(m)

)
. Then SL2(R) ∼=

Hx(R)\H1(R) via g 7→ (g, 1). The measure dh = dg is dµ(z) dθ
2π

when g = gzκθ. Direct
calculation gives

2πvQ+(gzκθx) =
πvm

y
(|z|2 + 1).
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Therefore, we have ∫
Hx(R)\H1(R)

e−2πvQ+(h−1x)dh =

∫
H
e−

πvm
y

(|z|2+1)dµ(z),

which yields (4.19) after standard calculations. □

Now we are ready to start the unfolding process. Take g∞ = gτ = n(u)m(
√
v) ∈

SL2(R), g0 = g∞ ( 1
−1 ) ∈ G(R) ⊂ G(A), and h0 = wj ∈ H(R). Then ν(h0) = ν(g0) and

v−1I(g0; f, φ) = v−1

∫
[H1]

f(hwj)θ1,1(g∞ ( 1
−1 ) , hwj;φ)dh

=
∑

x∈H1(Q)\V (Q)

e(−Q(x)u)
∫
H1,x(A)\H1(A)

φ((h∞)−1x)(L(wj)φ1,1
∞ )(

√
vh−1

∞ · x)σx(ρ(h)fj)dh∞dh∞.

When x = 0, the function φ1,1
∞ , hence integrand, vanishes identically. On V (Q)− {0}, the

group H1(Q) = SpinV (Q) acts transitively. For each m ∈ Q, we then choose xm ∈ V (Q)

with Q(xm) = m. As in Section 2.5, we can find a finite subset S(φ, xm) ⊂ H(Q̂) satisfying
(2.39) and rewrite the unfolding as

v−1I(g0; f, φ) = vol(K)
∑
m∈Q

s∈S(φ,xm)

e(−mu)φ(s−1 · x)

×
∫
Hxm (R)\H1(R)

(L(wj)φ1,1
∞ )(

√
vh−1

∞ xm)σxm(ρ(s, h∞)fj)dh∞.

To simplify the integral above, we can apply (2.51) and Lemmas 4.9, 4.10 to obtain∫
Hxm (R)\H1(R)

(L(wj)φ1,1
∞ )(

√
vh−1

∞ xm)σxm(ρ(s, h∞)f1)dh∞

=

∫
Hxm (R)\H1(R)

φ
−1,−(−1)j
∞ (

√
vxm)σxm(ρ(s, h∞)f1)dh

=

∫
Hxm (R)\H1(R)

iD−1(h−1
∞ · xm, X+ + (−1)jiY +)e−4πvQ+(h−1

∞ xm)σx(ρ(s, h∞)f)dh

= (−1)j+1
√
D|m|Σxm,j(ρ(s)f)

∫
Hxm (R)\H1(R)

e−2πvQ+(h−1
∞ xm)dh

=
(−1)j+1

√
D√

mv
Σxm,j(ρ(s)f)e

−2πmv.

By (4.16) and (2.41), the following sum

Cm,j(f ;φ) :=
√
D/|m|

∑
s∈S(φ,xm)

φ(s−1xm)Σxm,j(ρ(s)f)(4.20)

is independent of the choice of xm. Putting these together gives us the following result.
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Theorem 4.11. In the notations above, we have

r0(φ)f0(−τ) = I(g0; f, φ) =
∑

m∈Q>0

(−1)j+1Cm,j(f ;φ)e(−mτ)

for j = 1, 2. In particular, we have r0(φ) = C1,1(f ;φ) = −C1,2(f ;φ).

Proof. The first equality is simply Proposition 4.6, plus the relation f#
0 (g0) = f0(−τ). The

second equality follows from the deductions preceding Theorem 4.11. □

5. Motivic action conjecture

In this section, we deduce from Theorem 4.11 the motivic action conjecture for Doi–
Nagunuma lifts of weight one modular forms (Theorem 5.5).

5.1. Statement of the conjecture. We start by briefly recalling the statement of the
motivic action conjecture for Hilbert modular forms of weight one over real quadratic fields
F/Q, formulated in [Hor23]. We keep the notation of Section 2.

Let f be an adelic Hilbert modular form for GF of weight (1, 1) and levelK1(N). Assume
that f is a normalized eigenform and write E := Q(f) ⊆ C for the number field generated
by the Hecke eigenvalues of f . Associated to a level K = K1(N), there is a Shimura
variety X := XK defined over Q, together with a Hodge bundle ω, such that f defines
an E-rational section [f ] ∈ H0(X,ω) ⊗ E. In fact, H0(X,ω) has an action of the Hecke
operators, and if we let H0(X,ω)f be the f -isotypic component of H0(X,ω) ⊗Q E, then
H0(X,ω)f is 1-dimensional, spanned by [f ].

The point of the motivic action conjecture is to consider the higher coherent cohomol-
ogy group H1(X,ω). Since the variety X is not proper, we consider a suitable toroidal
compactification Xtor defined over Q. The line bundle ω admits two natural extensions
ωsub and ωcan to Xtor, and we define the Q-vector space:

(5.1) H1(X,ω) := Im(H1(X,ωsub) → H1(X,ωcan)),

as in [Har90; Hor23]. It again admits a Hecke action and we consider the f -isotypic
component H1(X,ω)f , an E-vector space. Associated with wj ∈ GF (R) (defined in (2.48)),
there are automorphic forms fj(g) := f(g · wj) for j = 1, 2, which give rise to a natural
basis of this cohomology group over C:

(5.2) ωjf := [fj] ∈ H1(XC, ω)f ∼= H1(X,ω)f ⊗E C

(c.f. [Har90], where ω is denoted E1,1). Very roughly, the motivic action conjecture now
predicts that the rationality of these classes is related to certain Stark units.

Let ϱf : GalF → GL2(C) be the Artin representation associated with f [DS74; RT83].
This representation is odd and clearly has traces in E, and this means it can be defined
over E. Then the trace zero adjoint representation Ad0 ϱ : GalF → GL3(E) is obtained
from the conjugation action of GalF on traceless matrices. Since Ad0 ϱf factors through a
finite quotient, there is a finite Galois extension L/F such that

(5.3) Ad0 ϱ : Gal(L/F ) → GL3(E).
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(In fact, Ad0 ϱ might be defined over a smaller field than the field E of Fourier coefficients
of f , but we extend it here to E for convenience.)

Definition 5.1. The Stark unit group associated with f is

Uf := HomE[Gal(L/F )](Ad
0 ϱ,O×

L ⊗Z E).

Given the two embeddings F ↪→ R, we extend them to embeddings τ1, τ2 : L ↪→ C, and
get two associated complex conjugation automorphisms c1, c2 ∈ Gal(L/F ).

Proposition 5.2 ([Hor23, Cor. 2.13]). There is a natural decomposition

Uf ∼= ((Ad0 ϱf )
c1)∨ ⊕ ((Ad0 ϱf )

c2)∨

into 1-dimensional vector spaces ((Ad0 ϱf )
ci)∨.

For i = 1, 2, consider a vector vi ∈ Ad0 ϱf such that ϱf (ci)vi = vi, well-defined up to E×.
Moreover, for each φj ∈ Uf lying in the line ((Ad0 ϱf )

c1)∨ in the above decomposition, we
get a unit:

uij = φj(vi) ∈ O×
L ⊗Z E.

We obtain the matrix of logarithms of these units Rf := (log |uij|)i,j and Stark’s conjec-
ture predicts that

L(Ad0 ϱf , 1) ∼E×
π2d

f
1/2
ϱ

detRf ,

where fϱ is the conductor of Ad0 ϱf (c.f. [Hor23, Prop. 2.17]).
The motivic action conjecture is then the following.

Conjecture 5.3 ( [Hor23, Conjecture 4.17] ). An E-basis of H1(X,ω)f is given by

R−1
f ·

(
ω1
f

ω2
f

)
.

Explicitly, the basis is:

log |u22|ω1
f − log |u12|ω2

f

detRf

,(5.4)

− log |u21|ω1
f + log |u11|ω2

f

detRf

.(5.5)

5.2. Conjecture for base change forms. Now, suppose that f0 is a weight one modular
form and f is a base change of f0, i.e. ϱf = ϱf0 |GF

. Then the unit group Uf is

Uf ∼= Hom(Ad0 ϱ0,O×
L ⊗ E)⊕ Hom(Ad0 ϱ⊗ χF ,O×

L ⊗ E).

We fix φ0 ∈ Hom(Ad0 ϱ0,O×
L ⊗ E) and φF0 ∈ Hom(Ad0 ϱ0 ⊗ χF ,O×

L ⊗ E), together with
v0 ∈ (Ad0 ϱ0)

c, and define
uf0 := φ0(v0), u

F
f0

:= φF0 (v0).

One can then check that:

(5.6) Rf =

(
1 −1
1 1

)(
log |uf0| 0

0 log |uFf0|

)(
1 −1
1 1

)−1
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(c.f. [Hor23, Corollary 6.5]). In particular, Conjecture 5.3 has the following form.

Conjecture 5.4 ([Hor23, Conjecture 6.7]). An E-basis of H1(XQ, ω)f is given by:

ω1
f + ω2

f

log |uf0|
,
ω1
f − ω2

f

log |uFf0|
.

Our goal is to prove this conjecture.

Theorem 5.5. Suppose f0 is a modular form of square-free level N co-prime to 2D, and
let f be the base change of f0 to F = Q(

√
D). Then:

(1) An E-basis of H1(XQ, ω)f is given by:

ω1
f + ω2

f

⟨f0, f0⟩
,
ω1
f − ω2

f

⟨f,f⟩
⟨f0,f0⟩

.

(2) If the projective image of ϱ0 is A5, assume Stark’s Conjecture [Sta75] for Ad0 ϱ and
Ad0 ϱ⊗ χF . Then Conjecture 5.4 is true.

5.3. Proof of Theorem 5.5. The proof of the theorem will proceed in 3 steps:

(1) There is a rational involution s : X → X (the swap map) which allows to decompose
the 2-dimensional E-vector spaceH1(X,ω)f into two 1-dimensional E-vector spaces
H1(X,ω)±f such that

η+ :=
ω1
f + ω2

f

⟨f0, f0⟩
∈ H1(X,ω)+f ⊗ C,(5.7)

η− :=
ω1
f − ω2

f

⟨f,f⟩
⟨f0,f0⟩

∈ H1(X,ω)−f ⊗ C.(5.8)

The goal is then to prove that η+ and η− are both rational.
(2) Theorem 4.11 implies that η− is rational.
(3) One then uses Serre duality (Proposition 5.12) to check that η+ is rational.

We start by introducing the swap map. For any Q-algebra R, we have a map GF (R) →
GF (R) induced by the non-trivial Galois element σ ∈ Gal(F/Q) via the following diagram:

Spec(R⊗Q F ) Spec(R⊗Q F )

GL2,F

g

(1⊗σ)∗

s(g)

This gives a map s : GF → GF of algebraic groups, which induces a map at the level of
Shimura varieties.

Proposition 5.6. Let X be the open Hilbert modular surface of level Γ1(NOF ) for an
integer N . Then the swap map s induces a map s : X → X which defined over Q. Moreover,
there is a choice of toroidal compactification X ↪→ Xtor such that s extends to a map
s : Xtor → Xtor defined over Q. Moreover, s∗ω = ω and hence s∗ωsub ∼= ωsub and s∗ωcan ∼=
ωcan.
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Proof. First, note that s(Γ1(NOF )) = Γ1(NOF ), so s induces a map XC → XC. As
in [DR80, §5], recall that X is a moduli space of polarized abelian varieties with OF -
multiplication with Γ0(NOF )-level structure, i.e. an O-linear immersion αN : O⊗µN ↪→ A.
Then the map s induces the following map on moduli:

(A/S, ι, λ, αN) 7→ (A/S, ισ, λ, ασN),

where ισ(x) = ι(xσ) and ασN(x⊗ ζ) = αN(x
σ ⊗ ζ). Since this is clearly rational, the map s

induces a rational map s : X → X.
Consider the minimal compactification of X(C) ↪→ X(C)∗, obtained by adding the

finitely many cusps Γ1(NOF )\P1(F ). The action of s extends to the natural Galois action
of σ on Γ1(NOF )\P1(F ). For each c ∈ Γ1(NOF )\P1(F ):

(1) if cσ = c, then choose any admissible polyhedral cone decomposition for c,
(2) if cσ ̸= c, then choose any admissible polyhedral cone decomposition Σ for c, and

then the associated polyhedral cone decomposition Σσ for cσ. .

This gives rise to a toroidal compactification

Xtor

X X∗

π

We extend s : X → X to a map s : Xtor → Xtor by defining:

(1) if cσ = c, then s|π−1(c) = 1π−1(c),
(2) if cσ ̸= c, then s|π−1(c) : π

−1(c) → π−1(cσ) is the natural map induced by σ.

This gives a rational map s : Xtor → Xtor, as required. In that notation of [Har90], it
is easy to check that s∗E(k1,k2;r) = E(k2,k1;r), and s∗ω = ω follows from the identification
ω ∼= E(1,1;1). □

We next observe that the swap map switches ω1
f and ω2

f for a base change form f .

Lemma 5.7. In general, s∗ω1
f = ω2

s∗f . Moreover, for a base change form f , s∗f = f , so

s∗ω1
f = ω2

f .

Proof. Note that sR(w1) = w2 under the map sR : G(R) → G(R). Therefore, s∗[f1] = [s∗f1]
and s∗f1(g) = f(s(w1g)) = f(w2s(g)) = (s∗f)2(g). Finally, if f is a base change form, then
by Proposition 4.6, Φ1,1(h, f0, φ) = r ·f(h) and we note that s∗Φ1,1(h, f0, φ) = Φ1,1(h, f0, φ)
by (2.52). □

Since s∗ defines an involution on H1(X,ω)f for a base change form f , we can define:

(5.9) H1(X,ω)±f = {η ∈ H1(X,ω)f | s∗η = ±η}.

Corollary 5.8. The space H1(X,ω)±f ⊗ C is spanned by ω1
f ± ω2

f . In particular,

dim(H1(X,ω)±f ) = 1.
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Next, we want to use use Theorem 4.11 to get an E-rational functional on H1(X,ω)−f .
Recall the weighted cycle (2.40):

Zs := Z1(x0, s,K1), s ∈ S(φ, x0)(5.10)

Z1(φ) :=
√
D · Z1(1, φ,K1) :=

√
D

∑
s∈S(φ,x0)

φ(s−1 · x0)Zs.(5.11)

whose components Zs are defined over EN := Q(ζN) and whose coefficients are in the field

of values of
√
D · φ.

We now fix the choice of φ in (4.2) (or indeed its complex conjugate which is what we
will eventually use). Note that:

(5.12) φ =
∏
p|N

1

gχ0,p

·
∏
p|D

1

gχF,p

· φ0,

where φ0 has values in E0 = Q(χ0). By definition, gχ0,p ∈ E0,N := E0EN for all p|N .
The Gauss sums for p|D were computed by Gauss:

(5.13) gχF,p
=

{√
p p ≡ 1 mod 4,

i
√
p p ≡ 3 mod 4,

Under our assumption that D is odd, there is an even number of primes p ≡ 3 mod 4
dividing D, and hence

√
D ·

∏
p|D

1
gF,p

∈ Q×. Altogether, this shows that
√
D · φ has values

in E0,N . In summary,

(5.14) Z1(φ) ∈ Div(XQ(ζN ))⊗Z E0,N .

Lemma 5.9. For φ as in (4.2), the divisor Z1(φ) is invariant under the diagonal action
of Gal(E0,N/E0) ∼= Gal(EN/EN ∩ E0) ⊆ Gal(EN/Q) ∼= (Z/NZ)×.

Proof. Recall that action of σδ ∈ Gal(EN/Q) on the connected components of the cycle is:

Z1(X, h,K1)
σδ = Z1(x0, hδ

−1, K1)(5.15)

by Equations (2.26) and (2.36).

It is enough to compute the Galois action on φp for p|N . Taking δa =

(
a 0
0 1

)
for a ∈ Z

representing a class in (Z/NZ)×, we see from (4.2) that

(5.16) ϖp(δ
−1
a x) = χ0(a)φp(x).

Therefore, for σa ∈ Gal(EK/E0) ⊆ (Z/NZ)×, we have

φp(δ
−1
a x)σa = (χ0(a)φp(x))

σa

= χ0(a)φp(x)
σ.

Since gσχ0,p
= χ0(a)gχ0,p and the values of φp are otherwise E0-rational, this gives:

(5.17) φp(δ
−1
a x)σa = χ0(a)χ0(a)φp(x) = φp(x).
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Altogether, this gives that:

Z1(φ)
σa =

∑
s∈S(φ,x0)

(
√
Dφ(s−1x0))

σaZ1(X, s,K1)
σa

=
∑

s∈S(φ,x0)

√
Dφ(s−1x0)

σaZ1(X, sδ
−1
a , K1) (5.15)

=
∑

s′∈S(φ,x0)

√
Dφ(δ−1

a s′−1x0)
σaZ1(X, s

′, K1) s′ = sδ−1
a

=
∑

s′∈S(φ,x0)

√
Dφ(s′−1x0)Z1(X, s

′, K1) (5.17)

= Z1(φ),

completing the proof. □

For any s ∈ S(φ, x0), we write ιs : Zs ↪→ XEN
for the embedding, and observe that

ι∗(ω) ∼= Ω1
Zs
. Lemma 5.9 (applied to φ instead of φ) immediately gives the following

corollary.

Corollary 5.10. The functional

Cφ : H1(XC, ω)f → C

η 7→
√
D

∑
s∈S(φ,x1)

φ(s−1 · x0)
∫

Z1(x0,s,K1)

ι∗s(η),

is E-rational, i.e. it is the base change of a functional

Cφ : H1(X,ω)f → E.

Finally, Theorem 4.11 gives the following rationality statement.

Corollary 5.11. We have that:

Cφ
(
η+
)
= 0,(5.18)

Cφ
(
η−
)
∈ E×.(5.19)

Therefore:

(5.20) η− ∈ H1(X,ω)−f ⊆ H1(X,ω)f .

Proof. Note that Cφ(ωjf ) = C1,j(f ;φ) by definition of C1,j(f ;φ) in (4.20) and Lemma 4.9.
Therefore, the two Equations (5.18) and (5.19) follow from Theorem 4.11 together with
Proposition 4.6 and Proposition 4.8.

Finally, since H1(X,ω)−f is 1-dimensional and η− ∈ H1(X,ω)−f ⊗ C, there is a constant

c− ∈ C× such that c− · η− ∈ H1(X,ω)−f . Then c− · Cφ(η−) = Cφ(c− · η−) ∈ E× which

together with (5.19) gives c− ∈ E×, so η− ∈ H1(X,ω)−f . □
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To complete the proof of Theorem 5.5, it remains to prove the rationality of η+. There
is a Serre duality pairing ⟨−,−⟩SD : H1(X,ω)×H1(X,ω) → Q which we can use to prove
the following.

Proposition 5.12 ([Hor23, Prop. 5.14]). There is an alternating pairing

⟨−,−⟩ : H1(X,ω)f ×H1(X,ω)f → Q(f)

such that ⟨ω1
f , ω

2
f⟩ = ⟨f, f⟩. In particular, the decomposition H1(X,ω)f = H1(X,ω)+f ⊕

H1(X,ω)−f is a polarization with respect to this pairing.

Corollary 5.13. We have that

η+ ∈ H1(X,ω)+f ⊆ H1(X,ω)f .

Proof. Recall that η− ∈ H1(X,ω)−f by (5.20). Since H1(X,ω)+f ⊗C is 1-dimensional, there

is a constant c+ ∈ C× such that c+ · η+ ∈ H1(X,ω)+f . Therefore, c
+⟨η+, η−⟩ ∈ E×. On the

other hand:

⟨η+, η−⟩ =

〈
ω1
f + ω2

f

⟨f0, f0⟩
,
ω1
f − ω2

f

⟨f,f⟩
⟨f0,f0⟩

〉
= −2

showing that c+ ∈ E×, and hence η+ ∈ H1(X,ω)+f . □

With these ingredients in place, we are ready to prove Theorem 5.5.

Proof of Theorem 5.5. Part (1) is Equation (5.20) in Corollary 5.11 together with Corol-
lary 5.13.

For part (2), we first use the well-known relationship between the Petersson norm of
a Hilbert modular form f and the adjoint L-function. For example, by [HT93, Theorem
7.1]7:

(5.21) ⟨f, f⟩ ∼Q× π−2d ·
√
D · L(f,Ad, 1).

In fact, there is even a completely explicit formula for the rational constant, but we omit
it here. This gives:

⟨f, f⟩ ∼Q× π−4 ·
√
D · L(f,Ad, 1)(5.22)

⟨f0, f0⟩ ∼Q× π−2 · L(f0,Ad, 1)(5.23)

Next, we want to use Stark’s conjecture for Ad0 ϱ0 and Ad0 ϱ0 ⊗ χF to connect this to
logarithms of units. We need to consider the different possibilities for the projective image
of ϱ0:

7The factor of
√
D comes from a difference in normalization of measures. Indeed, [HT93] use the

normalizations of [Hid91, Section 4], where the additive measure gives Ov volume 1 instead of |d|1/2v . C.f.
also [IP21, Prop. 6.6] where the same normalization is used.
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• Suppose ϱ0 has dihedral projective image, i.e. f0 is associated with a character χ of
a quadratic extension K/Q. Then Ad0 ϱ0 ∼= IndQ

K(χ/χ
c) ⊕ χK . If K is imaginary

quadratic, then the unit group Uf0 is associated with the character χ/χc of K and
the unit group UF

f0
is associated with a character of the third intermediate extension

between Q andKF ; in either case, the conjecture was proved by Stark [Sta80]. IfK
is real quadratic, the conjecture for both Ad0 ϱ0 and Ad0 ϱ0 ⊗ χK follows from the
class number formula.

• If ϱ0 has solvable projective image which is not dihedral (i.e. A4 or S4), then Ad0 ϱ0
and Ad0 ϱ0 ⊗ χF both have rational traces, and the conjecture was proved by
Stark [Sta75].

• If ϱ0 has projective image A5 (the only non-solvable case), then Ad0 ϱ0 does not
have rational traces and we have to assume the Stark’s conjecture in this case.

In all cases, under the assumptions of (2), we obtain:

L(1,Ad0 ϱ0) ∼E×
π2

f
1/2

Ad0 ϱ0

· log |uf0|,(5.24)

L(1,Ad0 ϱ0 ⊗ χF ) ∼E×
π2

f
1/2

Ad0 ϱ0
|D|1/2

· log |uFf0|.(5.25)

Moreover, we have that L(f,Ad, 1) = L(1,Ad0 ϱ0) · L(1,Ad0 ϱ0 ⊗ χF ). Combining this
with Equations (5.23) and (5.28) gives:

⟨f0, f0⟩ ∼E×
1

f
1/2

Ad0 ϱ

· log |uf0|,(5.26)

⟨f, f⟩
⟨f0, f0⟩

∼E×
1

f
1/2

Ad0 ϱ

· log |uFf0|.(5.27)

Since [Hor23, Prop. 5.8] shows that fAd0 ϱ is a square, this completes the proof. □

5.4. Consequence for period invariants of Hilbert modular forms. Using Theo-
rem 5.5, we are able to answer an old question raised by Michael Harris’ work on period in-
variant of Hilbert modular forms [Har90]. For a Hilbert modular form f of weight (k1, k2; r)
with k1 ≡ k2 ≡ r mod 2, there are similar coherent cohomology classes ωif ∈ H1(XC, Ei)f
for some rational line bundles Ei. Under the assumption that ki ≥ 2, it turns out that
dimH1(XC, Ei)f = 1, and Harris defines νif ∈ C×, well-defined up to E×, as the constant
such that:

ωif
νif

∈ H1(X, Ei)f .

These period invariants play a crucial role in the algebraicity of Rankin–Selberg and triple
product L-functions of Hilbert modular forms. In special cases, they are related to CM
periods and Shimura’s periods [Har94]; see [Hor23, Remark 4.11] for further discussion.

This raises the natural question: for k1 = k2 = 1, is any multiple of ωif rational?
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Corollary 5.14. Suppose f is the base change of a weight one modular form f0 of square-
free level co-prime to D whose Galois representation does not have projective image A5.
Then no multiple of ω1

f or ω2
f is Q-rational.

Proof. Suppose that λ · ω1
f is Q-rational for some λ ∈ C. Then s∗(λ · ω1

f ) = λ · ω2
f is

rational. Therefore, λ(ω1
f +ω2

f ), λ(ω
1
f −ω2

f ) ∈ H1(X,ω)f ⊗Q(f) Q, and comparing this with
Theorem 5.5 gives:

λ ∼Q× log |uf0|−1, λ ∼Q× log |uFf0 |
−1,

and hence

log |uf0| ∼Q× log |uFf0|.
We claim this is impossible. Since the level of f0 is co-prime to D, ϱf0 is factors through
a finite Galois extension L/Q linearly independent from F/Q. Moreover, χF corresponds
to the non-trivial map Gal(F/Q) → {±1} ⊆ Q×. Consider a basis u1, . . . , ur of O×

L and
extend it to a basis u1, . . . , ur, v1, . . . , vs of O×

LF . Then, writing the unit groups additively
and E for the field of definition of Ad0 ϱ,

uf0 =
∑

aiui ui ∈ E×,

uFf0 =
∑

biui +
∑

cjvj bj, cj ∈ E×.

Writing σ ∈ Gal(F/Q) for the non-trivial element, note that σuFf = −uFf , while σui = ui,
which shows that cj ̸= 0 for some j. On the other hand:

log |uf0| =
∑

ai log |ui| ui ∈ E×,

log |uFf0| =
∑

bi log |ui|+
∑

cj log |vj| bj, cj ∈ E×.

If µ log |uf0 | = log |uFf0| for some µ ∈ Q×
, then∑

(µai − bi) log |ui| −
∑

cj log |vj| = 0,

which shows that cj = 0 for all j by Baker’s linear independence of logarithms. This
contradiction shows that log |uf0| ̸∼Q× log |uFf0 |, and hence proves the corollary. □

5.5. Explicit example. In this section, we work out an explicit example of our result.
More specifically, we will work out the identities (5.26) and (5.27) to show how the first
part of Theorem 5.5 implies the second in a special case. This also gives a concrete example
of Corollary 5.14.

Let F = Q(
√
D) where D > 0 is a fundamental discriminant. For (5.26), we will

use (5.23) directly. For (5.27), we combine (5.21) with (5.23) to get the formula:

⟨f, f⟩
⟨f0, f0⟩

∼Q×
|D|1/2

π2

L(f,Ad, 1)

L(f0,Ad, 1)
.(5.28)

Now, Artin formalism gives the factorization:

(5.29) L(f,Ad, s) = L(f0,Ad, s) · L(Ad0 ϱ0 ⊗ χF , s),
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where χF is the quadratic character associated with F/Q. Therefore,

(5.30)
⟨f, f⟩
⟨f0, f0⟩

∼Q×
|D|1/2

π2
L(Ad0 ϱ0 ⊗ χF , 1).

Therefore, computing an explicit version of (5.27) amounts to finding a formula for L(Ad0 ϱ0⊗
χF , 1).

We now specialize to the example of complex cubic fields as in [Hor23, §2.5]. Let M/Q
be an imaginary quadratic extension with class number three, so that its class field L is
an S3 extension of Q. Let K = L(123) be the associated complex cubic field.

L

M K

Q

3
2

2
3

We take ϱ0 to be the unique irreducible representation of S3, which gives rise to a weight
one modular form f0. Note that ϱ0 = IndLMχ for the non-trivial character χ of C3, and
explicitly f = θχ.
Then Stark observed that uf0 = ϵ, the generator of unit group of the cubic field K. Since

ϱ0 = Indχ, Ad0 ϱ0 = Ind(χ)⊕ χM . Then one can check that:

(5.31) L(Ad0 ϱ0, s) = L(χ, s)
ζM(s)

ζ(s)
=
ζK(s)ζM(s)

ζ(s)2
.

We recall the class number formula: for a number field K,

(5.32) Ress=1ζK(s) =
2r1 · (2π)r2 · RegK · hK

wK ·
√
|DK |

.

Then we obtain:

(5.33) L(Ad0 ϱ0, 1) =
6π2

|DM |
log |ϵ|.

Example 5.15. Let M = Q(
√
−23). Then ϵ is a root of x3 − x − 1. Combining (5.23)

with (5.33) gives:

(5.34) ⟨f0, f0⟩ =
1

4π2
· 23
24

· 6π
2

23
log |ϵ| = 1

16
log |ϵ|.

In Stark’s classical normalization of the Petersson, this gives the identity [Sta75, pp. 91]

⟨f0, f0⟩Stark = 3 log |ϵ|,
because

⟨f0, f0⟩Stark = 2 · [PSL2(Z) : Γ0(23)] · ⟨f0, f0⟩ = 16 · 3 · ⟨f0, f0⟩.
(Here, we have included the rational constants which were left implicit in (5.23) to recover
Stark’s result on the dot.)
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Alternatively, in this example, we could have used the formula

L(Ad0 ϱ0, s) =
ζL(s)

ζK(s)

and observe that RegL = 3Reg2K = 3 log |ϵ|2. Indeed, the unit group of L is generated by
ϵ ∈ O×

K and a unit δ ∈ O×
L such that NL/Kδ = ϵ. For embeddings σ1, σ2, σ3 : L ↪→ C, the

regulator is:

det

(
2 log |σ1(ϵ)| 2 log |σ2(ϵ)|
2 log |σ1(δ)| 2 log |σ2(δ)|

)
= 2det

(
2 log |ϵ| − log |ϵ|
log |ϵ| log |ϵ|

)
= 3 log |ϵ|2.

Next, we would like to understand the L-function L(Ad0 ϱ0⊗χF , s) in terms of Dedekind
ζ-functions. We have a bigger diagram of fields:

FL

FM FK L

E F M K

Q

3
2

2

2 2
3

2

3

2

2

2

2

2
3

where E is the other intermediate field between FM and Q.
Recalling that Ad0 ϱ0 = ϱ0 ⊕ χM , we have Ad0 ϱ0 ⊗ χF = ϱ0 ⊗ χF ⊕ χE. One then check

that:

L(Ad0 ϱ0 ⊗ χF , s) = L(ϱ0 ⊗ χF , s) ·
ζE(s)

ζ(s)
.

To get a formula for L(ϱ0 ⊗ χF , s), we observe that

ζFL(s)

ζK(s) · ζFK(s)
=
ζM(s) · L(ϱ0 ⊗ χF , s) · ζE(s)

ζ(s)3

and rearrange this to get

(5.35) L(Ad0 ϱ0 ⊗ χF , s) =
ζFL(s)

ζK(s) · ζFK(s)
· ζ(s)3

ζM(s)ζE(s)
· ζE(s)
ζ(s)

=
ζFL(s)ζ(s)

2

ζK(s)ζFK(s)ζM(s)
.

In fact, there is a simpler formula. Since:

ζK(s) = L(ϱ0, s) · ζ(s),
ζKF (s) = L(ϱ0 ⊗ χF , s) · L(ϱ0, s) · ζF (s),
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we see that

(5.36) L(Ad0 ϱ0 ⊗ χF , s) = L(ϱ0 ⊗ χF , s) ·
ζE(s)

ζ(s)
=
ζFK(s)ζ(s)

ζK(s)ζF (s)
· ζE(s)
ζ(s)

=
ζFK(s)ζE(s)

ζK(s)ζF (s)
.

Example 5.16. Let M = Q(
√
−23) and F = Q(

√
5). We record the relevant quantities:

r1 r2 h w |D|
FK 2 2 1 2 53 · 232
K 1 1 1 2 23
F 2 0 1 2 5
E 0 1 2 2 5 · 23

Then by Equation (5.36), we get

(5.37) L(Ad0 ϱ0 ⊗ χF , 1) =

22·(2π)2·1
2·5·

√
5·23 · 20·(2π)1·2

2·
√
5·23

21·(2π)1·1
2·
√
23

· 22·(2π)0·1
2·
√
5

· RegFK
RegK RegF

=
(2π)2

5 ·
√
5 · 23

· RegFK
RegK RegF

The unit group of FK is generated by three units: ϵK , ϵF and a third unit δ such that
NKF/Kδ = −1. For three embeddings σ1, σ2, σ3 : FK ↪→ C, the regulator is

RegFK = det

log |σ1(ϵK)| log |σ2(ϵK)| 2 log |σ3(ϵK)|
log |σ1(ϵF )| log |σ2(ϵF )| 2 log |σ3(ϵF )|
log |σ1(δ)| log |σ2(δ)| 2 log |σ3(δ)|


= det

 log |ϵK | log |ϵK | − log |ϵK |
log |ϵF | − log |ϵF | 2 log |ϵF |

log |σ1(δ)| − log |σ1(δ)| 2 log |σ3(δ)|


= log |ϵK | log |ϵF | det

 1 1 −1
1 −1 2

log |σ1(δ)| − log |σ1(δ)| 2 log |σ3(δ)|


= 4RegK ·RegF ·(log |σ1(δ)/σ3(δ)|)

Finally, we get from (5.28) that:

(5.38)
⟨f, f⟩
⟨f0, f0⟩

∼Q×

√
D

π2

4π2

5
√
5 · 23

RegFK
RegK RegF

∼Q×
RegFK

RegK RegF
∼Q× log

∣∣∣∣σ1(δ)σ3(δ)

∣∣∣∣ .

Data sharing is not applicable to this article.
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