
ELLIPTIC CURVES AND FACTORISATION

ALEKSANDER HORAWA

These are the notes for a talk at the Undergraduate Colloquium at Imperial College London.

The aim of the talk is to present a method of factoring numbers using elliptic curves due to
Lenstra [Len87]. It is mostly based on [Kob94, Ch. VI]

1. Elliptic Curves

We first present some basic ideas related to elliptic curves. For a detailed introduction, see
[ST92].

Definition 1. An elliptic curve over R is the set of solution (x, y) ∈ R2 of

y2 = x3 + ax + b

for a, b ∈ R such that 27b2 + 4a3 6= 0, together with a point O called the point at infinity.

Why do we assume that 27b2 + 4a3 6= 0? This means that x3 + ax + b has no repeated
roots, so we can define tangents at every point of the curve (or, as an algebraic geometer
would say, the curve is non-singular).

Examples 2. The following curves are examples of elliptic curves. Note that the graphs are
smooth everywhere.
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However, the following curve are not elliptic curves. Clearly, for both of them 27b2+4a3 = 0.
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y2 = x3 − 3x + 2
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In the first one, we cannot define a tangent at the point (1, 0). In the second one we cannot
define a tangent at (0, 0).

What is the point at infinity, O? This point does not belong to the plane but we think
of it as the direction upwards. That is, if we wish to draw a line through O and any given
point P on the plane, we would simply draw a vertical line through P .

We have defined elliptic curves over R to have nice examples to draw. However, there is no
reason to limit ourselves to R. We can define ellptic curves over any field (e.g. Q, C, Fq).

For example, an elliptic curve over Q is:

E(Q) = {(x, y) ∈ Q | y2 = x3 + ax + b} ∪ {O}

where a, b ∈ Q and 27b2 + 4a3 6= 0.

2. Addition on Elliptic Curves

Why are elliptic curves so important and find so many applications? We can define a non-
trivial addition on them!

Let E be an elliptic curve. Let us think how a line can intersect with the cubic. Using
Bézout’s theorem (i.e. counting the intersection multiplicity), we can show that:

• any non-tangent line through two points on E intersects it at exactly one more point
(this may be O);
• the tangent at O to E does not intersect E at any other point;
• any other line tangent to an elliptic curve intersects the curve at exactly one more

point.

This allows us to naturally define the addition on E.
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(1) The point at infinity O is defined to be the identity (i.e. −O = O and P + O =
O + P = P for any point P ).

(2) The negative −P of P = (x, y) is defined to be (x,−y).
(3) If P 6= Q, then the line through P and Q intersects the curve at another point, say

R. We then define P + Q = −R.

Q

P

R

P + Q

(4) If the line tangent to P intersects the curve at point R, then 2P = −R.

P

R

2P

Why do we not define P + Q equal to R, the third point of intersection? There are several
reasons for this. To name one, we want O to be the identity of the group, i.e. P + 0 = P .
Since the line through P and O is the line through P pointing upwards, it intersects the
cubic at R = −P . Therefore, we need P + O = −R = P .

One can check that this makes E into an abelian group. The only group axiom which is not
obvious from the definition is associativity, which can be shown using projective geometry
or Abel’s Theorem (see [Kir92, Ch. 3]).
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The above definition is geometric in its nature, making in rather involved computationally.
Fortunately, the addition law can be expressed by explicit formulas. Suppose we have P =
(x1, y1) and Q = (x2, y2) on the curve, and we wish to find P+Q = (x3, y3) and 2P = (x4, y4).
By writing down the equation of the line passing through two points checking where it
intersects the curve, one verifies that (see [Kob94, Ch. VI.1] for details):

(1)

x3 =
(
y2−y1
x2−x1

)2
− x1 − x2, y3 = −y1 +

(
y2−y1
x2−x1

)
(x1 − x3),

x4 =
(

3x21+a

2y1

)2
− 2x1, y4 = −y1 +

(
3x21+a

2y1

)
(x1 − x4).

While these formulas may seem complicated, they are very easy to implement in an algorithm.

3. Lenstra’s Factoring Algorithm

Suppose we want to factor n (and that 2 and 3 do not divide n).

The basic idea is to consider the curve E modulo n:

E mod n = E(Z/nZ) = {(x, y) | y2 ≡ x3 + ax + b mod n} ∪ {O}

where a, b ∈ {0, 1, . . . , n− 1} and gcd(27b2 + 4a3) = 1.

Addition can simply be defined by the formulas (1) used modulo n. However, they involve
division, which is not always well-defined modulo n. In fact, division by d is well-defined if
and only if gcd(d, n) = 1.

For example, 7 ≡ 2 mod 5, so 7/2 ≡ 1 mod 5, we can divide by 2 modulo 5. However, 1 6≡ 4
mod 6. even though 2 ≡ 8 mod 6, we cannot divide by 2 modulo 6.

If you know some ring theory, you can immediately see that d has to be a unit in the ring
Z/nZ.

The intuition behind the algorithm is the following. After we add two points P and Q in
E mod n and we get d in the denominator, then gcd(d, n) 6= 1 if and only if we have hit O,
the point at infinity. However, gcd(d, n)|n, so there is a chance we have found a divisor of n
(unless gcd(d, n) = n). The formal statement of this and the proof can be found in [Kob94,
Prop. VI.3.1].

Below we present Lenstra’s method for factorisation of integers following [Kob94, Ch. VI.3].
A detailed explanation can be found in [Len87, Sec. 2].

Algorithm 3 (Lenstra).

(1) Choose a curve E = {y2 = x3 + ax + b} with a, b ∈ Z and a point P = (x, y) on it.
(2) Let d = gcd(4a3 + 27b2, n). If 1 < d < n, then we have found a proper divisor and

we are done. If d = n, then go back to (1). Otherwise, proceed to (3).
(3) Choose a bound B and a bound C, and let k be the product of powers of primes not

exceeding B which are less than C, that is

k =
∏
l≤B

lαl
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where l is prime and lαl ≤ C.
(4) Attempt to compute kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

working modulo n. If you complete the

calculation, go back to (1) and choose a different pair (E,P ). If the calculation fails,
it was impossible to find the inverse of x1 − x2 or 2y1 in one of the partial sums, i.e.
we have a denominator x which is not coprime to n. Then d = gcd(x, n) is either a
proper divisor of n (in which case we are done) or n itself (in which case we go back
to (1) and choose a different pair (E,P )).

For this algorithm to work effectively, we firstly need an efficient way of computing kP
mod n. There are a few methods to approach this. For example, using the formulas (1),
we can easily compute (2i)P mod n = 2(2(. . . (2P ) . . .)) mod n and add points. Therefore,
to compute kP , we just need to express k in binary. However, it will be faster to write
kP =

∏
l≤B lαlP , and express each of the lαl in binary, and then do the computation.

The other issue is the choice of a, b, and a point P on E in step (1). In general, one could
vary a, x, y, and set b = y2 − x3 − ax to ensure P lies on E.

Example 4. We show how the algorithm works in practice by factorising n = 35. We choose
y2 = x3 − x + 1 as the elliptic curve with the point P = (1, 1) on it.
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The point 8P =
(
19
25
,−103

125

)
is not well-defined modulo 35. Therefore, we obtain d =

gcd(25, 35) = 5, a divisor of 35.

Remark 5. According to [Len87, Sec. 2], this is one of the fastest known factoring methods.
However, Lenstra’s method is substantially faster, if n has a prime factor much smaller
than

√
n.

4. Comparison to Pollard’s p− 1 Method

While Lenstra’s factorisation algorithm at first glance looks very surprising, it is actually
a very natural idea. In fact, it is the analog of Pollard’s p − 1 method, a known factoring
algorithm, with the group Z/pZ replaced by E mod p.

We start by recalling the idea of Pollard’s p − 1 method. Fermat’s Little Theorem says for
a prime p 6 | a and any K ∈ N, we have

aK(p−1) ≡ 1 mod p.

Moreover, if p is a divisor of n and x ≡ 1 mod p, then

gcd(x− 1, n) = p.

To find a divisor of n, we choose an a, a large k, and compute gcd(ak− 1, n). If for a divisor
p, p− 1|k, then gcd(ak − 1, n) 6= 1 will be a divisor of n.

Lenstra’s method uses the same idea for the group E mod p instead of Z/pZ. The analog of
Fermat’s Little Theorem is, of course:

(Kap)P = 0 mod p

where ap = |E mod p|.

Note that Pollard’s p− 1 method will fail if for each prime divisor p of n, p− 1 has a large
prime factor. The reason Lenstra’s algorithm avoids this problem is that ap will vary for
different choices of elliptic curves.

Theorem 6 (Hasse’s Bound). Let p be prime, q = pr, and aq be the number of Fq-points on
an elliptic curve defined over Fq. Then

aq = q + 1− tq,

where |tq| ≤ 2
√
q.

If for some prime p|n, the number p+ 1− tp has no large prime factors, the method is likely
to yield a divisor of n, and otherwise not. The advantage is that if for a chosen pair (E,P )
the method fails, then we simply choose a different pair (E ′, P ′) and try again.
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