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Abstract. Let E be an elliptic curve over Q and ϱ1, ϱ2 : Gal(H/Q) → GL2(L) be two odd Artin rep-

resentations. We use p-adic methods to investigate the part of the Mordell–Weil group E(H) ⊗ L on

which the Galois group acts via ϱ1 ⊗ ϱ2. When the rank of the group is two, Darmon–Lauder–Rotger

used a dominant triple product p-adic L-function to study this group, and gave an Elliptic Stark Con-

jecture which relates its value outside of the interpolation range to two Stark points and one Stark

unit. Our paper achieves a similar goal in the rank one setting. We first generalize Hsieh’s construction

of a 3-variable balanced triple product p-adic L-function in order to allow Hida families with classical

weight one specializations. We then give an Elliptic Stark Conjecture relating its value outside of the

interpolation range to a Stark point and two Stark units. As a consequence, we give an explicit p-adic

formula for a point which should conjecturally lie in E(H) ⊗ L. We prove our conjecture for dihedral

representations associated with the same imaginary quadratic field. This requires a generalization of

the results of Bertolini–Darmon–Prasanna which we prove in the appendix.
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1. Introduction

Let E be an elliptic curve over Q and ϱ1, ϱ2 : Gal(H/Q)→ GL2(L) be two odd Artin representations

such that det ϱ1 · det ϱ2 = 1. We can consider the part of the Mordell-Weil group E(H) on which the

Galois group Gal(H/Q) acts via ϱ1 ⊗ ϱ2; formally:

E[ϱ1 ⊗ ϱ2] = HomGal(H/Q)(ϱ1 ⊗ ϱ2, E(H)L).

An equivariant version of the Birch–Swinnerton-Dyer conjecture then predicts that the rank of E[ϱ1⊗ϱ2]
is equal to the order of vanishing of the L-function L(ϱE ⊗ ϱ1 ⊗ ϱ2, s) at s = 1, and the leading term

of its Taylor expansion is explicitly related to the elements of E[ϱ1 ⊗ ϱ2]. The goal of this paper is to

investigate the group E[ϱ1⊗ϱ2] using p-adic methods when its rank is 1. We start with a brief summary

before explaining the details.

When E[ϱ1⊗ ϱ2] has rank 2, the analogous question was considered by Darmon, Lauder, and Rotger:
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(1) They prove that there is a p-adic L-function Lϱ1p (ℓ) with an interpolation property which holds

for integers ℓ ≥ 3.1 It is associated with the triple (E, ϱ1, ϱ2), but it is unbalanced — ϱ1 plays a

special role in the construction. [DR14]

(2) They conjecture a special value formula outside of the interpolation range, the rank two Elliptic

Stark Conjecture:

(1.1) Lϱ1p (1) ∼L×

det

(
logE,p(P1,1) logE,p(P1,2)

logE,p(P2,1) logE,p(P2,2)

)
logp(u1)

,

where Pi,j ∈ E(H)L are points in the (ϱ1 ⊗ ϱ2)-isotypic component and u1 ∈ O×
H is a unit in

the Ad0 ϱ1-isotypic component. [DLR15, Conjecture ES]

(3) They prove (1.1) when ϱ1 and ϱ2 are both induced from the same imaginary quadratic field in

which p splits. [DLR15, Theorem 3.3]

When E[ϱ1 ⊗ ϱ2] has rank 1, we achieve the same goals in the present paper:

(1) We prove that there is a p-adic L-function Lbal
p (ℓ) with an interpolation property which holds

for integers ℓ ≥ 2.2 It is associated with the triple (E, ϱ1, ϱ2), but in our case it is balanced —

ϱ1 and ϱ2 play equivalent roles. [Theorem A]

(2) We conjecture a special value formula outside of the interpolation range, the rank one Elliptic

Stark Conjecture:

(1.2) Lbal
p (1) ∼√

L×

logE,p(P )

logp(u1)
1/2 logp(u2)

1/2

where P ∈ E(H)L is a point in the (ϱ1 ⊗ ϱ2)-isotypic component and ui ∈ O×
H is a unit in the

Ad0 ϱi-isotypic component, for i = 1, 2. [Conjecture C]

(3) We prove (1.2) when ϱ1 and ϱ2 are both induced from the same imaginary quadratic field in

which p splits. [Theorem D]

As opposed to the rank two setting, our formula (2) can be rewritten to give a p-adic analytic formula

for a p-adic point:

(1.3) expE,p(Lbal
p (1) · logp(u1)1/2 · logp(u2)1/2) ∈ E(Hp)L

conjecturally lies in E(H)L.

Bertolini, Seveso, and Venerucci have also been studying the rank one group E[ϱ1 ⊗ ϱ2] using a

balanced p-adic L-function3. Their Oberwolfach report [BSV20] conjectures that there is a canonical

multiple Lcan
p of a p-adic L-function Lp whose value at (2, 1, 1) is equal to logE,p(P ). They explain that

special cases of this conjecture have been verified in the CM setting. They give a different expression

for this p-adic L-function using an endoscopic lift to GSp4, and relate its non-vanishing at ℓ = 1 to

the non-vanishing of an appropriate Selmer class. This is the subject of their forthcoming work with

Andreatta [ABSV].

In the rest of the introduction, we will state our results precisely and explain the new ideas which

allow us to achieve these goals.

1.1. Construction of the balanced p-adic L-function. Let f be the normalized weight two modular

form associated with E by the Modularity Theorem, and g, h be the normalized weight one modular

1In general, there is a 3-variable p-adic L-function Lϱ1
p (k, ℓ,m) with an interpolation property when ℓ is dominant. Here,

we take (k, ℓ,m) = (2, ℓ, 1) for simplicity.
2Again, in general, there is a 3-variable p-adic L-function Lbal

p (k, ℓ,m) with an interpolation property when the weights

are balanced. Here, we take (k, ℓ,m) = (2, ℓ, ℓ) for simplicity.
3An algorithmic study of this p-adic L-function, motivated by their work, has been carried out in the PhD thesis of the

first-named author [Dal21].
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forms associated with ϱ1, ϱ2, respectively, by the work of Khare and Wintenberger [KW09a, KW09b].

The analytic properties of the L-function we are interested in are understood in terms of the Garrett

triple product L-function associated with f , g, and h:

L(ϱE ⊗ ϱ1 ⊗ ϱ2, s) = L(f × g × h, s).

Then the completed L-function Λ(f × g × h, s) satisfies a functional equation relating the value at s to

the value at 2−s. The assumption that det ϱ1 det ϱ2 = 1 implies that the global root number ϵ(f×g×h)
is ±1. Since we are interested in the rank one setting, we will assume that:

ϵ(f × g × h) = −1

(see Hypothesis A). Since the global root number is the product of local root numbers

ϵ(f × g × h) =
∏
v

ϵv(f × g × h),

and ϵ∞(f × g × h) = 1, the assumption amounts to the fact that there is an odd number of primes v

such that ϵv(f × g × h) = −1.
Let p ≥ 5 be a prime number. We assume that f , g, h are ordinary and regular at p (see Hypothesis B),

and consider Hida families g, h whose weight one specializations are fixed p-stabilizations gα, hα of g

and h, respectively. Letting gℓ, hm be the weight ℓ, m specializations of g, h, respectively, we note that

ϵ(f × gℓ × hm) =
∏
v

ϵ(f × gℓ × hm) =
∏
v<∞

ϵv(f × gℓ × hm) · ϵ∞(f × gℓ × hm) = −ϵ∞(f × gℓ × hm)

by rigidity of automorphic types. In particular, if the weights (2, ℓ,m) are balanced, i.e. 2 ≤ ℓ < 2 +m,

2 ≤ m < 2 + ℓ, and ℓ+m ≡ 0 (mod 2), we have that

ϵ(f × gℓ × hm) = +1,

and hence we expect that generically the central L-value is non-vanishing:

L(f × gℓ × hm, (ℓ+m)/2) ̸= 0,

and there should be a p-adic L-function interpolating these values divided by appropriate periods. In

comparison, Darmon, Lauder, and Rotger start with ϵ(f × g × h) = +1 in the f -dominant region and

hence obtain ϵ(f × gℓ × hm) = +1 in the g-dominant region, i.e. for ℓ > m+ 2.

There are two known constructions of p-adic L-functions interpolating the central critical L-values in

the balanced region for three Hida families f , g, h. The first construction was due to Greenberg and

Seveso [GS20], and the second more explicit construction was given by Hsieh [Hsi21]. The difference

between the constructions was outlined in the latter paper and it seems that Hsieh’s approach is more

suitable for arithmetic applications, such as the one in the present paper.

However, as observed by the first-named author in [Dal23a, Section 4.4.4], the ramification assump-

tion (3) in [Hsi21, Theorem B] implies that the Hida families g and h cannot both have classical weight

one specializations. In particular, as far as we know, there is no suitable balanced triple product p-adic

L-function to study classical points with weights (2, 1, 1).

Therefore, the first goal of our paper is to extend Hsieh’s construction to a setting where the Hida

families g and h do have classical weight one specializations. The final assumption we make (see Hy-

pothesis C) is:

ϵq(f × g × h) = −1 implies that vq(Ni) ≤ 2,

where N1, N2, N3 are the levels of f , g, h, respectively. This weakens Hsieh’s assumption that vq(Ni) = 1.

Fix an algebraic closure Q of Q and field embeddings of Q into C and Cp.
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Theorem A (Corollary 6.4). Under the above hypotheses, there exist open admissible neighborhoods Ug
and Uh of the classical weight 1 in the weight space, and a (square root) balanced triple product p-adic

L-function Lbal
p : Ug × Uh → Cp, associated with f and the Hida families g and h. It has the following

interpolation property for integers ℓ ∈ Ug and m ∈ Uh such that ℓ,m ≥ 2 and 2− ℓ ≤ m ≤ 2 + ℓ:

Lbal
p (ℓ,m)2 =

Λ(f × gℓ × hm, c)
⟨f, f⟩⟨gℓ, gℓ⟩⟨hm, hm⟩

·
Ebalp (f × gℓ × hm)

Ep(gℓ,Ad) · Ep(hm,Ad)
∈ Q,

where c = (ℓ+m)/2 is the center of the functional equation, and

Ebalp (f × gℓ × hm) = (1− αfβgβhp−c)(1− βfαgβhp−c)(1− βfβgαhp−c)(1− βfβgβhp−c),

Ep(Fk,Ad) = (1− α−2
F χFk

(p)pk−1)(1− α−2
F χFk

(p)pk−2) Fk ∈ {gℓ, hm}

are as in [Hsi21, (1.2)] and [Hsi21, p. 416], respectively.

A more general square root balanced triple product p-adic L-function for three Hida families f , g, h

is constructed in Theorem 5.5.

Note that the interpolation property for our triple product p-adic L-function differs from Hsieh [Hsi21,

Theorem B]. The three key differences (which we will expand on momentarily) are:

• Hsieh’s p-adic L-function is defined on the entire weight space.

• Our interpolation property does not involve Gross periods, but rather just the Petersson norms

of the three forms f , gℓ, and hm.

• The Euler factor at p in Hsieh’s p-adic L-function is only Ebalp (f × gℓ × hm) instead of the above

quotient. Indeed, the adjoint Euler factors above are absorbed by the Gross periods.

However, it seems that our p-adic L-function is the correct one for the eventual arithmetic application

in the present work. For example, both the periods and the Euler factor at p closely resemble those

in [DR14] in the unbalanced setting. Moreover, the proof of Theorem D below also only seems to work

with this interpolation property. We expand on the differences in Remark 5.6.

Next, we explain the technical novelty which allows us to loosen the ramification assumption in Hsieh.

Ichino’s formula [Ich08] for the central value of the triple product p-adic L-function is on the quaternion

algebra D ramified at v such that ϵv(f × gℓ × hm) = −1, and utilizes the Jacquet–Langlands transfers

fD, gDℓ , hDm of the three modular forms f , gℓ, hm. Under our assumptions, D is ramified at v =∞ and

at an odd number of finite primes q.

Let q be an odd prime. As observed by Pizer [Piz80a], if D is ramified at q and f is a (twist-minimal)

new cusp form of weight k ≥ 2, level q2, character χ of conductor at most q, then:

dimSDk (q2, χ)[f ] = 2,

i.e. there is a two-dimensional space of quaternionic modular forms for D× which transfer to the same

modular form f (cf. Proposition 3.10). This raises two questions:

(1) For each (ℓ,m), can we choose vectors fD, gDℓ , hDm associated with f , g, h and compute the

associated local integrals in Ichino’s integral representation?

(2) Do there exist Hida families gD, hD associated with the Hida families g, h such that the spe-

cializations gDℓ , hDm recover the choices in question (1)?

We give a positive answer to these questions by introducing “extra Hecke operators” which recover

multiplicity one in the Jacquet–Langlands correspondence.

Proposition B (Proposition 3.14). There exists an operator ⟨ϖDq
⟩ on dimSDk (q2, χ) associated with

a choice of local uniformizer ϖDq
of Dq, commuting with the Hecke operators. For each twist-minimal
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new cusp form f , of weight k ≥ 2, level q2, and character χ of cond(χ) ≤ q:

SDk (q2, χ)[f ] ∼= SDk (q2, χ)[f ]⟨ϖDq ⟩=+
√
χq(q)︸ ︷︷ ︸

dim=1

⊕SDk (q2, χ)[f ]⟨ϖDq ⟩=−
√
χq(q)︸ ︷︷ ︸

dim=1

.

Here, χq is the local component at q of the adèlization of χ.

To answer question (1), we can choose a vector in either of the one-dimensional eigenspaces. Section 2

computes the necessary local integrals in Ichino’s formula. Answering question (2) is then also based on

Proposition B, although it is technical and occupies Sections 3 and 4. We show that for each choice of

sign +1 or −1, there is a one-dimensional space of Hida families on D× associated with the Hida families

on GL2, strengthening the results in [Dal23b]. Theorem 4.23 proves this statement also in the case of

Coleman families. From it, we deduce a control theorem à la Hida, which is the content of Corollary 4.28.

The proof of these results relies on the construction of auxiliary quaternionic eigenvarieties endowed with

closed immersions in the classical cuspidal one. In order to construct an explicit p-adic L-function, we

need to identify quaternionic Hida families with (a slight generalization of the) Λ-adic forms in [Hsi21];

this is done in Proposition 4.26.

Note that our choice of vectors on the quaternion algebra D× is only well-defined up to scalars. We

also restrict ourselves to working with an admissible affinoid in the weight space, instead of proving a

control theorem over the whole weight space. It would be interesting to generalize our control theorem

to the whole weight space and answer the natural questions about Gross periods for the different Hida

families associated with the choice of eigenvalues of the operators ⟨ϖDq ⟩. This could lead to a definition

of an integral p-adic L-function analogous to Hsieh’s.

1.2. The Elliptic Stark Conjecture. Having defined the balanced triple product p-adic L-function

Lbal
p , we turn to studying its value at the BSD point (ℓ,m) = (1, 1) which lies outside of the interpolation

range. We start by introducing the relevant arithmetic objects.

Let us briefly recall our setup: the triple (f, g, h) corresponds to a triple (E, ϱ1, ϱ2) of an elliptic curve

E over Q, and two Artin representation ϱi : Gal(H/Q) → GL(Vi) for two-dimensional L-vector spaces

V1 and V2. Recall that:

E[V1 ⊗ V2] = HomL[Gal(H/Q)](V1 ⊗ V2, E(H)⊗Q L),

and under the rank one assumption, we may choose a basis:

Φ: V1 ⊗ V2 → E(H)⊗Q L,

well-defined up to L×.

We fix an embedding H ↪→ Qur
p and let σp ∈ Gal(H/Q) be the associated Frobenius element. Under

our classicality and regularity assumptions, we have that ϱi(σp) =

(
αi 0

0 βi

)
with αi ̸= βi. Letting V αi

be the αi-eigenspace of Vi, we consider a non-zero element in the one-dimensional subspace vαα ∈ V αα =

V α1 ⊗ V α2 ⊆ V1 ⊗ V2. Finally, we let

Pαα = Φ(vαα) ∈ E(H)⊗ L,

which is well-defined up to L×, but depends on the choice of Frobenius eigenvalues α1 and α2.

Next, we consider the adjoint representations Ad0(ϱi) = Hom0(Vi, Vi). By [DLR15, Proposition 1.5],

the Stark unit group

UH [Ad0 ϱi] = HomL[Gal(H/Q)](Ad0 Vi,O×
H ⊗ L)

is also of rank one, and we may choose a basis:

Ψi : Ad0 Vi → O×
H ⊗ L,
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well-defined up to L×.

The eigenvalues of Ad0 ϱi(σp) are 1, αi

βi
, βi

αi
, and we fix eigenvectors in the αi/βi-eigenspaces:

v
α/β
i ∈ (Ad0 Vi)

αi/βi .

Finally, this defines

ui,α = Ψi(v
α/β
i ) ∈ O×

H ⊗ L,

which is well-defined up to L×, but depends on the choice of Frobenius eigenvalue αi.

Write r(E, ϱgh) for the rank of E[ϱg⊗ϱh] which is, conjecturally on BSD, equal to ords=1L(f×g×h, s).

Conjecture C (Rank one Elliptic Stark Conjecture 6.5). If r(E, ϱgh) > 1, then Lbal
p (1, 1) = 0. If

r(E, ϱgh) = 1, then:

Lbal
p (1, 1)2 ∼L×

logE,p(Pαα)
2

logp(u1,α) logp(u2,α)
,

where

logp : (O×
H)L → Hp ⊗ L p-adic logarithm,

logE,p : E(H)L → Hp ⊗ L p-adic formal group logarithm for E.

Both sides of the equality depend on the same choice of α1 and α2. At first glance, it seems that the

right hand side depends on H and the choices associated with it, but a simple computation reveals that

it does not — see Remark 6.6.

Finally, we prove that this conjecture is true if ϱ1, ϱ2 are both induced from characters of the same

imaginary quadratic field. Let K be an an imaginary quadratic field and p be a prime which splits in K.

Let ψg, ψh be finite order Hecke characters of K such that (ψgψh) ◦NK/Q = 1, and consider the theta

series g = θψg , h = θψh
. Let ψ1 = ψgψh and ψ2 = ψgψ

σ
h . We introduce some explicit assumptions under

which our running hypotheses hold:

(1) ϵq(fK , ψ2) = +1 for all finite primes q of K,

(2) g and h are ordinary and regular,

(3) if ϵq(f × g × h) = −1, then vq(N1) = 1 and vq(N2) = vq(N3) = 2;

Theorem D (Theorem 6.9). Under assumptions (1)–(3) above, Conjecture C is true.

The idea of the proof of this theorem is to factor the triple product p-adic L-function into Rankin–

Selberg and Katz p-adic L-functions (Theorem 6.14). Under our ramification hypotheses, we need a

certain generalization of the result of Bertolini–Darmon–Prasanna [BDP13] on Rankin–Selberg p-adic

L-functions. Indeed, their result holds under the Heegner hypothesis, which is not satisfied under as-

sumption (3) above. We loosen the Heegner hypothesis slightly to include the case of interest to us. We

prove this result in Appendix A.

In Appendix B, we provide a digest of examples to which our conjecture and theorem apply. In future

work, we hope to give numerical evidence for Conjecture C, based on the algorithms in [Dal23a].

1.3. Organization of the paper. The main technical innovation of the paper is the study of extra

operators on the space of quaternionic modular forms, which facilitate our choice of test vectors for the

p-adic L-function. This occupies the first three sections, which consider the local (Section 2), global

(Section 3), and p-adic (Section 4) Jacquet–Langlands transfers. A reader interested in the construction

of the p-adic L-function may proceed directly to Section 5, where we use this choice of test vectors

to generalize Hsieh’s construction. The arithmetic applications are discussed in Section 6, which may

also be read independently of all the previous sections. Appendix A gives generalizations of results

of Bertolini–Darmon–Prasanna which are used the proof of Theorem D, while Appendix B contains

examples.
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2. Local JL correspondence and test vectors

In this section, we consider a finite extension F of Qℓ for ℓ ̸= 2 (which will eventually be Qℓ) and three

local representations π1, π2, π3 of GL2(F ) such that the product of their central characters is trivial.

We classify when ϵ(π1 ⊗ π2 ⊗ π3) = −1 and in all cases when c(π1), c(π2), c(π3) ≤ 2, we compute the

relevant local triple product integrals on a definite quaternion algebra over F . The new contribution of

this section is the computations of these local integrals when c(πi) = 2 for some i.

Throughout this section, we often work with Weil–Deligne representations σi = σ(πi) associated with

πi via the Local Langlands Correspondence [BH06]. Their triple product ϵ- and L-factors agree with the

automorphic ones [HK04, Proposition 2.1].

For completeness, we briefly recall the explicit Local Langlands Correspondence [BH06, Chapter 8]

for ℓ ̸= 2. For a character χ of K×, for a local field K, we write ξ = ξ(χ) for the associated character of

WK via Class Field Theory.

(1) If π = π(χ1, χ2) is a principal series representation, then σ(π) = ξ(χ1)⊕ ξ(χ2) is reducible.

(2) If π = St⊗χ is a twist of the Steinberg representation, then σ(π) = Sp(2) ⊗ ξ(χ) is a twist of

the special representation.

(3) If π = πψ is supercuspidal, associated with an admissible pair (K,ψ), where K/F is a quadratic

extension and ψ is a character of K×, then σ(π) = IndWF

WK
(ξ(ψ)∆−1

ψ ) for a character ∆ψ defined

in [BH06, Section 34.4]. Then c(π) = 2 if and only if π has depth 0 (or level 0), i.e. K is

unramified over F and ψ has conductor 1 (level 0). In this case ∆ψ is the unramified quadratic

character of K×.

The representations in (2) and (3) are called discrete series.

2.1. Local ϵ-factors and L-factors. The following proposition classifies all cases when ϵ(σ1⊗σ2⊗σ3) =
−1.

Proposition 2.1 (Prasad). Let σ1, σ2, σ3 be three Weil–Deligne representations of WF such that the

product of their determinants is trivial. Then ϵ(σ1 ⊗ σ2 ⊗ σ3) = −1 if and only if there is a reordering

{σ′
1, σ

′
2, σ

′
3} = {σ1, σ2, σ3} such that one of the following holds:

(1) σ′
i
∼= Sp(2)⊗ det(σ′

i) for i = 1, 2, 3;

(2) σ′
1
∼= Sp(2)⊗ det(σ′

1), σ
′
2 is irreducible and σ′

3
∼= (σ′

2)
∨ ⊗ det(σ′

1)
−1;

(3) there is a quadratic extension K/F and characters ξ1, ξ2, ξ3 such that σ′
i = IndWF

WK
ξi is irreducible

(so ξσi ̸= ξi) and either ξ1ξ2ξ3 = 1 or ξ1ξ2ξ
σ
3 = 1 or ξ1ξ

σ
2 ξ3 = 1 or ξ1ξ

σ
2 ξ

σ
3 = 1.

https://people.maths.ox.ac.uk/horawa/Iwasawa2019-Rotger.pdf
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Proof. These results are contained in [Pra90, Section 8]. See [Pra90, Proposition 8.6] for (1) and [Pra90,

Proposition 8.5] (2). For completeness, we compute ϵ(σ1 ⊗ σ2 ⊗ σ3) for σi = IndWF

WK
ξi; the other

possibilities are dealt with similarly. First, note that:

σ1 ⊗ σ2 ⊗ σ3 ∼=
(
IndWF

WK
(ξ1ξ2)⊗ σ3

)
⊕
(
IndWF

WK
(ξ1ξ

σ
2 )⊗ σ3

)
and hence by standard properties of ϵ-factors:

ϵ(σ1 ⊗ σ2 ⊗ σ3) = ϵ
(
IndWF

WK
(ξ1ξ2)⊗ σ3

)
ϵ
(
IndWF

WK
(ξ1ξ

σ
2 )⊗ σ3

)
= ξK/F (−1)ϵ(σ3|WK

⊗ ξ1ξ2) · ξK/F (−1)ϵ(σ3|WK
⊗ ξ1ξσ2 )

= ϵ(σ3|WK
⊗ ξ1ξ2) · ϵ(σ3|WK

⊗ ξ1ξσ2 )

= det(σ3)(−1)ϵ(σ3|WK
⊗ ξ1ξ2) · det(σ3)(−1)ϵ(σ3|WK

⊗ ξ1ξσ2 ),

where ξK/F is the quadratic character of WF associated with K/F . Tunnell’s Theorem [Pra90, Theorem

8.2] shows that det(σ3)(−1)ϵ(σ3|WK
⊗ξ1ξ2) = −1 if and only if (ξ1ξ2)

−1 = ξ3 or (ξ1ξ2)
−1 = ξσ3 . Therefore,

ϵ(σ1 ⊗ σ2 ⊗ σ3) = −1 if and only if condition (3) holds after reordering. ■

We make the following symplifying hypothesis.

Hypothesis 2.2. For all i, the conductor c(πi) of πi is at most 2.

In particular, if σ = IndWF

WK
χ, then K/F is unramified, the conductor c(χ) of χ is 1, and χσ ̸= χ.

Next, we record the L-factors in each of the cases when ϵ(σ1 ⊗ σ2 ⊗ σ3) = −1.

Proposition 2.3. We have that:

L(σ1 ⊗ σ2 ⊗ σ3, s) =


ζF (s+ 3)ζF (s+ 2)2 case (1)

ζF (2s+ 2) case (2)

ζF (2s) case (3)

Proof. In case (1), note that:

Sp(2)⊗ Sp(2)⊗ Sp(2) ∼= Sp(4)⊕ Sp(2)| · | ⊕ Sp(2)| · |

and L(Sp(m), s) = ζℓ(s+m− 1). Part (2) follows from

L(Sp(2)⊗ σ ⊗ σ∨, s) = L(σ ⊗ σ∨, s+ 1)

and [GJ78, Corollary 1.3], because σ ∼= σ⊗η for an unramified quadratic character η. For (3), note that:

σ1 ⊗ σ2 ⊗ σ3 ∼= IndWF

WK
(χ1χ2χ3)⊕ IndWF

WK
(χ1χ2χ

σ
3 )⊕ IndWF

WK
(χ1χ

σ
2χ3)⊕ IndWF

WK
(χ1χ2χ

σ
3 ).

Under the assumption that ϵ(σ1⊗ σ3⊗ σ3) = −1, exactly one of these characters is trivial and the other

characters are ramified. This shows that:

L(σ1 ⊗ σ2 ⊗ σ3) = ζK(s) = ζF (2s),

because K/F is unramified. ■

We will also need the adjoint L-factors.

Proposition 2.4. We have that:

Ad(Sp(2)⊗ ξ) ∼= Sp(3)| · |,

Ad(IndWF

WK
(χ)) ∼= IndWF

WK
(χ/χσ)⊕ χK/F ,

and hence:

L(Ad(Sp(2)⊗ ξ), s) = ζF (s+ 1),
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L(Ad(IndWF

WK
(ξ))) = L(χK/F , s) =

ζF (2s)

ζF (s)
.

2.2. Local Jacquet–Langlands correspondence. In cases when ϵ(π1 ⊗ π2 ⊗ π3) = −1, the local

integral should be non-vanishing on the non-split quaternion algebra D over F (cf. [Pra90, Theorem

1.2]). In this section, we briefly summarize the local Jacquet–Langlands correspondence following [BH06,

Chapter 13].

The local Jacquet–Langlands correspondence is a bijection

JL: Repds(GL2(F ))→ Rep(D×)

between discrete series representations of GL2(F ) and irreducible smooth admissible representations of

D×. For π = St⊗χ, we have that:

JL(St(2)⊗ χ) = χ ◦ ν,

where ν : D× → F× is the reduced norm.

For supercuspidal representations, an explicit description of the correspondence is given in [BH06,

Section 56]. We only describe it here for supercuspidal representations of conductor two, i.e. π = πψ for

the unramified quadratic extension K of F and character ψ of K× of conductor 1 such that ψσ ̸= ψ.

Recall that ∆ψ is the unramified quadratic character of K× in this case. We then have that:

• πψ ⊗∆ψ
∼= πψ,

• under the local Langlands correspondence, the corresponding representation ofWF is IndWF

WK
(ξ(ψ)∆ψ).

We describe the representation

πDψ = JL(πψ)

explicitly. Let OD be a maximal order of D and ϖD ∈ OD be a uniformizer. We will assume that

ϖ2
D = ϖF for a uniformizer ϖF of F . There is a filtration on O×

D

(2.1) UaD =

O
×
D a = 0

1 +ϖa
DOD a ≥ 1.

Given an unramified character ψ of K×, we may extend it to a character Ψ of K×U1
D by letting U1

D act

trivially. Then:

πDψ
∼= c-IndD

×

F×U1
D
Ψ.

Let π be a smooth irreducible representation of D×, which is automatically finite-dimensional because

D×/F× is compact. Thus π|Ua
D

= 1 for a ≫ 0. We define the conductor c(π) of π to be a + 1 where

a is the smallest integer such that π|Ua
D
= 1. Note that under the assumption that ψ has conductor 1,

πDψ has conductor two. For completess, we verify that all representations of D× of conductor two are

obtained this way, following [Car84].

Note that ϖK = ϖF because K/F is an unramfied quadratic extension, and k = OK/ϖKOK is a

quadratic extension of f = OF /ϖFOF . Finally, since d = OD/ϖOD is also a quadratic extensions of f ,

it is isomorphic to k. By definition, a representation of conductor two factors through

(2.2) D×/U1
D
∼= d× ⋊ ⟨ϖD⟩.

Note that ϖDODϖ−1
D = OD because the maximal order OD ⊆ D is unique, and hence conjugation by

ϖD preserves d×. Moreover, ϖ2
D = ϖF is in the center F× of D× and hence acts trivially. In particular,

we have a subgroup: d× × ⟨ϖF ⟩ ⊆ d× ⋊ ⟨ϖD⟩.
Next, observe that a character ψ of K× which is trivial on U1

D corresponds precisely to a character

of k× × ⟨ϖF ⟩. Therefore, we may identify πDψ with the inflation of the induction Ind
d×⋊⟨πD⟩
d××⟨ϖF ⟩ ψ. This

representation is reducible unless ψϖD ̸= ψ. Altogether, we get the following result.
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Proposition 2.5. Suppose π is an smooth irreducible representation of D× and that c(π) = 2. Then

there is a character ψ of d× × ⟨ϖF ⟩ with ψϖD ̸= ψ such that:

π = InfD
×

D×/U1
D
Ind

d×⋊⟨ϖD⟩
d××⟨ϖF ⟩ ψ.

In particular, π is two-dimensional and in the basis corresponding to the decomposition above, we have:

π(x) =

(
ψ(x)

ψϖD (x)

)
, x ∈ d× × ⟨ϖF ⟩,

π(ϖD) =

(
1

ψ(ϖF )

)
.

Finally, if ω is the central character of π, then ψ|F× = ω and the last equality may be written:

π(ϖD) =

(
1

ω(ϖF )

)
.

Proof. The first claim then follows from [Car84, Section 5.1]. The rest of the proposition is immediate.

■

We identify the representation πDψ with the one described explicitly in Proposition 2.5.

2.3. Local integral for zero, two, and three supercuspidal representations of level ℓ2. Let

π1, π2, π3 be irreducible admissible representations of GL2(F ) with central characters ωi which satisfy

ω1ω2ω3 = 1. Let σ1, σ2, σ3 be corresponding representations ofWF such that det(σ1) det(σ2) det(σ3) = 1.

As above, let D be the non-split quaternion algebra over F , and πDi be the Jacquet–Langlands transfer

of πi to D
×.

Prasad [Pra90, Theorem 1.4] proves that there exists a non-zero trilinear form on πD1 ⊗ πD2 ⊗ πD3 if

and only if ϵ(σ1 ⊗ σ2 ⊗ σ3) = −1. There is a natural trilinar form:

(2.3) I ′v(ϕ) =

∫
F×\D×

⟨π(g)ϕ, ϕ̃⟩ dg ϕ ∈ πD1 ⊗ πD2 ⊗ πD3

and the goal of this section is to choose vectors ϕ and compute I ′v(ϕ) ̸= 0 explicitly when ϵ(σ1⊗σ2⊗σ3) =
−1 and c(σi) ≤ 2. Here, ⟨−,−⟩ is a pairing between πD1 ⊗πD2 ⊗πD3 and its contragredient representation,

and ϕ̃ is the vector dual to ϕ under this pairing. Recall that there were three cases (1)–(3) outlined in

Proposition 2.1 and we will treat each of them separately.

Remark 2.6. As far as we know, these are the first such results when one of the components of π1×π2×π3
is supercuspidal and ϵ(π1 ⊗ π2 ⊗ π3) = −1 so the trilinear form is on the quaternion algebra D×. When

ϵ(π1 ⊗ π2 ⊗ π3) = +1, the trilinear form is on GL2 and Dimitrov–Nyssen [DN10] show how to choose

vectors in π1 × π2 × π3 when at least one component is not supercuspidal.

2.3.1. Case (1): zero supercuspidal representations. Suppose πi = St(2)⊗ ωi for i = 1, 2, 3. Then:

πDi = ωi ◦ ν : D× → C×

is one-dimensional and we choose any non-zero vectors ϕi ∈ πDi .

Proposition 2.7. For characters ω1, ω2, ω3 of F× such that ω1ω2ω3 = 1 and any non-zero vectors

ϕi ∈ πDi , we have that
I ′v(ϕ)

⟨ϕ, ϕ̃⟩
= 2µ(O×

D)

for ϕ = ϕ1 × ϕ2 × ϕ3.

Proof. See the proof of [Woo12, Proposition 4.5]. ■
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2.3.2. Case (2): two supercuspidal representations. Consider representations π1, π2, π3 of GL2(F ) such

that:

(1) π1, π2 are supercuspidal, π3 = St⊗ω3 is a twist of the Steinberg representation,

(2) the product ω1 · ω2 · ω3 of their central characters it trivial,

(3) ϵ(π1 ⊗ π2 ⊗ π3) = −1, i.e. π∨
1 = π2 ⊗ ω−1

3 .

We assume that π1, π2 have conductor 2 and let πDi be the representation of D× corresponding to πi

for i = 1, 2, 3 under the the Jacquet–Langlands correspondence. Then:

(1) πD1 = πψ for some character ψ of d× × ⟨ϖF ⟩ such that ψ|F× = ω1,

(2) πD2
∼= πψ−1 ⊗ ω−1

3 ,

(3) πD3
∼= ω3 ◦ ν.

Proposition 2.8. Let π1, π2, π3 be as above, ϵi ∈ {±1} for i = 1, 2, and

(1) ϕϵii ∈ πDi non-zero such that πDi (ϖD)ϕ
ϵi
i = ϵi

√
ωi(ℓ)ϕ

ϵi
i (cf. Proposition 2.5),

(2) ϕ3 ∈ πD3 nonzero.

Then for ϕϵ = ϕϵ11 × ϕ
ϵ2
2 × ϕ3, we have that:

I ′v(ϕ
ϵ)

⟨ϕϵ, ϕ̃ϵ⟩
= (1 + ϵ1ϵ2

√
ω3(ℓ))

µ(O×
D)

2
.

Proof. We simplify the notation throughout the proof and write πi = πDi . We compute, using the above

description of the local representations:

I ′v(ϕ
ϵ) =

∫
F×\D×

⟨π(g)ϕϵ, ϕ̃ϵ⟩ dg

=

∫
O×

D

⟨π(g)ϕϵ, ϕ̃ϵ⟩ dg +
∫

O×
D

⟨π(g)π(ϖD)ϕ
ϵ, ϕ̃ϵ⟩ dg D× = F×O×

D ∪ϖDF
×O×

D

= (1 + ϵ1ϵ2
√
ω1(ℓ)ω2(ℓ)ω3(ℓ))

∑
x∈d×

⟨π(x)ϕϵ, ϕ̃ϵ⟩µ(U1
D)

= (1 + ϵ1ϵ2
√
ω3(ℓ))µ(U

1
D)
∑
x∈d×

⟨π(x)ϕϵ, ϕ̃ϵ⟩

Finally, for x ∈ d×, we have that:

π1(x)ϕ
ϵ1
1 =

ψ(x) + ϵ1ψ
ϖD (x)

2
ϕ+1 +

ψ(x)− ϵ1ψϖD (x)

2
ϕ−1 ,

π2(x)ϕ
ϵ2
2 =

(
ψ−1(x) + ϵ2ψ

−1,ϖD (x)

2
ϕ+2 +

ψ−1(x)− ϵ2ψ−1,ϖD (x)

2
ϕ−2

)
ω3(Nd/kx)

−1,

π3(x)ϕ3 = ω3(Nd/kx)ϕ3.

We hence obtain ∑
x∈d×

π(x)ϕϵ = S++ϕ
++ + S+−ϕ

+− + S−+ϕ
−+ + S−−ϕ

−−

for:

S++ =
1

4

∑
x∈d×

(ψ(x) + ϵ1ψ
ϖD (x))(ψ−1(x) + ϵ2ψ

−1,ϖD (x)),

=
1

4
|d×|(1 + ϵ1ϵ2)

S+− =
1

4

∑
x∈d×

(ψ(x) + ϵ1ψ
ϖD (x))(ψ−1(x)− ϵ2ψ−1,ϖD (x))

=
1

4
|d×|(1− ϵ1ϵ2),
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S−+ =
1

4

∑
x∈d×

(ψ(x)− ϵ1ψϖD (x))(ψ−1(x) + ϵ2ψ
−1,ϖD (x))

=
1

4
|d×|(1− ϵ1ϵ2),

S−− =
1

4

∑
x∈d×

(ψ(x)− ϵ1ψϖD (x))(ψ−1(x)− ϵ2ψ−1,ϖD (x))

=
1

4
|d×|(1 + ϵ1ϵ2).

This shows that: ∑
x∈d×

π(x)ϕϵ =
1

2
|d×|(ϕϵ + ϕ−ϵ)

and hence:

I ′v(ϕ
ϵ) = (1 + ϵ1ϵ2

√
ω3(ℓ))

µ(O×
D)

2
⟨ϕϵ + ϕ−ϵ, ϕ̃ϵ⟩ = (1 + ϵ1ϵ2

√
ω3(ℓ))

µ(O×
D)

2
⟨ϕϵ, ϕ̃ϵ⟩.

The rest of the results follow. ■

2.3.3. Case (3): three supercuspidal representations. We next consider the case of three twist-minimal

supercuspidal representations π1, π2, π3 of GL2(F ) conductor 2 such that ω1 · ω2 · ω3 = 1; according to

Proposition 2.5:

(2.4) πDi = ψDψi

where ψσi ̸= ψi and we note that

(2.5) ψ1ψ
ϖD
1 ψ2ψ

ϖD
2 ψ3ψ

ϖD
3 = 1.

Proposition 2.1 (3) classifies when ϵ(π1 ⊗ π2 ⊗ π3) = −1. We compute the local integrals associated

with all possible choices of vectors ϕ±i ∈ πDi = πDψi
as in Proposition 2.8 and check that I ′v(ϕ) ̸= 0 for

some ϕ exactly when ϵ(π1 ⊗ π2 ⊗ π3) = −1.

Proposition 2.9. Let π1, π2, π3 be as above. For ϵ ∈ {±1}3 let ϕϵ = ϕϵ11 ×ϕ
ϵ2
2 ×ϕ

ϵ3
3 ∈ πD = πD1 ×πD2 ×πD3 .

Then:
I ′v(ϕ

ϵ)

⟨ϕϵ, ϕ̃ϵ⟩
= (1 + ϵ1ϵ2ϵ3)

µ(O×
D)

4
.

Proof. Once again, we simplify the notation to write πi = πDi etc. We proceed as in the proof of

Proposition 2.8:

I ′v(ϕ
ϵ) =

∫
F×\D×

⟨π(g)ϕϵ, ϕ̃ϵ⟩ dg

=

∫
O×

D

⟨π(g)ϕϵ, ϕ̃ϵ⟩ dg +
∫

O×
D

⟨π(g)π(ϖD)ϕ
ϵ, ϕ̃ϵ⟩ dg D× = F×O×

D ∪ϖDF
×O×

D

= (1 + ϵ1ϵ2ϵ3
√
ω1(ℓ)ω2(ℓ)ω3(ℓ))

∑
x∈d×

⟨π(x)ϕϵ, ϕ̃ϵ⟩µ(U1
D)

= (1 + ϵ1ϵ2ϵ3)µ(U
1
D)
∑
x∈d×

⟨π(x)ϕϵ, ϕ̃ϵ⟩.

Next, we need to compute
∑
x∈d×

⟨π(x)ϕϵ, ϕ̃ϵ⟩. For x ∈ d× and i = 1, 2, 3:

πi(x)ϕ
ϵi
i =

ψi(x) + ϵiψ
ϖD
i (x)

2
ϕ+i +

ψi(x)− ϵiψϖD
i (x)

2
ϕ−i .
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Therefore:

π(x)ϕϵ =
∑

η∈{±1}3

sηϵϕ
η,

sηϵ =
1

8

3∏
i=1

(ψi(x) + ϵiηiψ
ϖD
i (x))

=
1

8

∑
δ∈{0,1}3

(ϵ1η1)
δ1(ϵ2η2)

δ2(ϵ3η3)
δ3ψ

ϖ
δ1
D

1 (x)ψ
ϖ

δ2
D

2 (x)ψ
ϖ

δ3
D

3 (x).

and hence:

⟨π(x)ϕϵ, ϕ̃ϵ⟩ = sϵϵ⟨ϕϵ, ϕ̃ϵ⟩ =
1

8

∑
δ∈{0,1}3

ψ
ϖ

δ1
D

1 (x)ψ
ϖ

δ2
D

2 (x)ψ
ϖ

δ3
D

3 (x)⟨ϕϵ, ϕ̃ϵ⟩.

Altogether, we have that:∑
x∈d×

⟨π(x)ϕϵ, ϕ̃ϵ⟩

⟨ϕϵ, ϕ̃ϵ⟩
=

1

8
· |d×| ·

∣∣∣∣{δ ∈ {0, 1}3 ∣∣∣∣ ψϖδ1
D

1 ψ
ϖ

δ2
D

2 ψ
ϖ

δ3
D

3 = 1

}∣∣∣∣ .
Without loss of generality, suppose that ψ1ψ2ψ3 = 1. We claim that then:

S =

{
δ ∈ {0, 1}3

∣∣∣∣ ψϖδ1
D

1 ψ
ϖ

δ2
D

2 ψ
ϖ

δ3
D

3 = 1

}
= {(0, 0, 0), (1, 1, 1)}.

By assumption, (0, 0, 0) ∈ S and by equation (2.5) also (1, 1, 1) ∈ S. To verify that S cannot be larger,

suppose without loss of generality that (1, 0, 0) ∈ S, i.e. ψϖ1
1 ψ2ψ3 = 1. Then ψϖ1

1 = ψ1, but this

contradicts the admissibility of the pair (K,ψ1). ■

Remark 2.10. It would be interesting to treat the case of supercuspidal representations of higher

conductor as well, but this would take us too far afield from the ultimate arithmetic goals of the paper.

3. Global JL correspondence and test vectors

We are ready to study the global consequences of Section 2. We focus our attention on quaternionic

modular forms with level structure given by orders which are residually inert at the primes where

the quaternion algebra ramifies; the local theory considered in the previous section allows a precise

understanding of such forms.

From now on, D denotes a quaternion algebra over Q (and not a local quaternion algebra as in the

previous section). For simplicity of exposition, until Section 3.6, we restrict ourselves to the case where

the quaternion algebra is ramified exactly at one odd prime ℓ and at infinity. However, everything we

state in this section generalizes to any definite quaternion Q-algebra (see also Remark 3.15); in particular,

the results in Section 3.6 and Sections 4–6 deal with the general situation.

For any place v of Q, we denote Dv = D ⊗Q Qv, where we understand Q∞ to be R. Similarly, for

any order R ⊂ D and any finite place v, we denote Rv = R ⊗Z Zv. As a last piece of notation, we set

D(A) = D ⊗Q A, for A the adèles of Q, D̂ = D ⊗Q Af , for Af the finite adèles, and R̂ = R ⊗Z Ẑ, for Ẑ
the profinite completion of the integers.

3.1. A remark on the structure of quaternion algebras at ramified primes. We begin by re-

calling a general formalism to deal with definite quaternion algebras over a local field, which will make

our exposition clearer and independent of the choices of the uniformizers. Most of the content of this

section can be found in [Voi21, Section 13]. Let Dℓ be a quaternion division algebra over Qℓ and let

Qℓ(ϖℓ) and Qℓ2 be, respectively, one of the two ramified quadratic extension of Qℓ and the unique un-

ramified quadratic one; as Dℓ is division, there exists embeddings of these two fields in Dℓ. Consider

νℓ : Dℓ −→ Qℓ to be the reduced norm map at ℓ. We extend the ℓ-adic valuation vℓ of Qℓ, to the division
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algebra: wℓ =
1
2 · vℓ ◦ νℓ. We fix

ODℓ
= {x ∈ Dℓ | wℓ(x) ∈ Zℓ}

and denote by ϖDℓ
∈ ODℓ

a uniformizer of Dℓ, namely an element in ODℓ
with valuation wℓ(ϖDℓ

) = 1/2;

it is not difficult to notice that one can take ϖDℓ
= ϖℓ. Therefore, we can decompose the division algebra

Dℓ as

(3.1) Dℓ = Qℓ2 ⊕ϖℓQℓ2 .

Denoting by ϖQℓ2
the uniformizer of Qℓ2 , we can further write

(3.2) Dℓ = Qℓ ⊕ϖQℓ2
Qℓ ⊕ϖℓQℓ ⊕ϖQℓ2

ϖℓQℓ,

with the condition ϖQℓ2
ϖℓ = ϖℓϖQℓ2

= −ϖℓϖQℓ2
.

3.2. Residually inert orders. We briefly recall the definition of residually inert (at ℓ) orders in D. The

interested reader may consult [Voi21, Section 24.3], [HPS89a] and [Piz80b] for a more detailed exposition.

Definition 3.1. Let N be a positive integer prime to ℓ. We say that an order R ⊂ D of level Nℓ2 is

• residually split at the prime q | N if Rq is an Eichler order of level qvalq(N);

• residually inert at ℓ (also known as special or Pizer order) if there exists a ramified quadratic

extension Qℓ(ϖℓ)/Qℓ, such that Rℓ is conjugate to

Oℓ + {x ∈ Dℓ | νℓ(x) ∈ ℓZℓ} = Oℓ +ϖDℓ
ODℓ

,

where Oℓ is the ring of integers of Qℓ(ϖℓ).

In order to shorten the notation, we call such a global order a Pizer order of level Nℓ2, however, we

remark that these orders are a type of basic orders and we point to [Voi21, Remark 24.5.7] for a complete

discussion on the different terminologies for such orders.

Remark 3.2.

• If the order has level Nℓ, then the local order at ℓ is no longer residually inert, but it is the

unique maximal order in Dℓ. In particular, an order R of level Nℓ2 is contained in an Eichler

order of level Nℓ.

• Adding a subscript ℓ at the notation of Section 2, we notice that, by equation (2.1), R×
ℓ ⊇ U1

Dℓ

with quotient F×
ℓ . The quotient in equation (2.2) recovers the observations in [Piz80b, proofs of

Propositions 1.8 and 9.26].

For any prime q ̸= ℓ, we fix a Qq-linear isomorphism ιq : Dq
∼= M2(Qq); up to changing this isomor-

phism, we may assume that

(3.3) ιq(Rq) =

{
γ ∈M2(Zq)

∣∣∣∣∣ γ ≡
(
∗ ∗
0 ∗

)
(mod NM2(Zq))

}
.

At the ramified prime ℓ, we assume that Rℓ = Oℓ+ϖDℓ
ODℓ

. For the rest of this section, we fix R to be

a Pizer order of level Nℓ2, and advise the reader that every time we pick a Pizer order, we are implicitly

assuming the above identifications. We also introduce the following notation

(3.4) U1(R) =

{
r = (rq) ∈ R̂×

∣∣∣∣∣ ιq(rq) ≡
(
∗ ∗
0 1

)
(mod NM2(Zq)), for q | N and rℓ ∈ 1 +ϖDℓ

Rℓ

}
.

It is not difficult to notice that it is an open compact subgroup of B̂× (cf. also [Dal23b, Lemma 2.1.3]).

3.3. Lifting characters. Let χ be a Dirichlet character of conductor C, for C | Nℓ. Every such

character can be lifted to a character of R̂×; for simplicity we consider the case of ℓ odd. A similar
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construction works for ℓ = 2 and a precise recipe is provided in [HPS89a, Section 7.2] as we focus on the

odd case. Let q be a prime and let χq be the q-component of the character χ. We define the lift χ̃q of

χq to R×
q as follows:

(1) If q | Nℓ, but q ∤ C, we set χ̃q(r) = 1 for any r ∈ R×
q .

(2) If q | N and q | C, we set χ̃q(r) = χq(d) for any r ∈ R×
q such that ιq(r) =

(
a b
c d

)
;

(3) If q = ℓ > 2 and ℓ | C, we fix, once and for all, an odd character εℓ with cond(εℓ) = ℓ. For every

even character ϕℓ of cond(ϕℓ) = ℓ, we fix, once and for all, a character γℓ with cond(γℓ) = ℓ and

such that γ2ℓ = ϕℓ. As remarked in [HPS89a, Section 7.2], the particular choice of εℓ and γℓ is

not important, but the fact that a certain choice is fixed once and for all is crucial.

(a) We first extend εℓ to R
×
ℓ via the composition:

O×
ℓ (Oℓ/ϖDℓ

Oℓ)× (Zℓ/ℓZℓ)×

R×
ℓ = (Oℓ +ϖDℓ

ODℓ
)× Qp

×
.

∼=
εℓ

ε̃ℓ

(b) If χℓ is even, let γℓ be the square root character associated with it, as above. We define

χ̃ℓ(r) = γℓ(νℓ(r)), for any r ∈ R×
ℓ . Clearly, χ̃ℓ(r) = χ̃ℓ(r

′) if r ≡ r′ (mod ϖDℓ
ODℓ

).

(c) If χℓ is odd, then χℓ = εℓ · χ′
ℓ, with χ

′
ℓ even. We then define χ̃ℓ = ε̃ℓχ̃′

ℓ.

Definition 3.3. We denote the lift of χ to R̂× by χ̃, defined as χ̃ =
∏
q|C

χ̃q.

Recall that we can define the adèlization of χ,

(3.5) χA : Q×\A×/R+(1 +N Ẑ)× −→ C×,

as the unique finite order Hecke character such that χA((1, . . . , 1, q, 1, . . .)) = χ(q)−1; then χq(q) = χ(q)−1

if q ∤ N .

Remark 3.4.

(1) The restriction of χ̃ to Z recovers the starting character χ. At any prime q away from ℓ, the lifting

process of each local component χq consists exactly in the adèlization of its inverse, (χ−1
q )A.

(2) The lifting process can be constructed compatibly with the inclusion of Pizer orders R ⊇ R′,

with R′ Pizer order of level N ′ℓ2, N | N ′.

(3) By construction, the character χ̃ is trivial on U1(R). More precisely, it is a character of

(R̂/δ(R))×, for δ(R) the different ideal of R̂ (cf. [HPS89a, Sections 7.1-7.2]).

3.4. Forms on definite quaternion algebras. In this section we recall the various notions of quater-

nionic forms and their explicit relations. We fix an odd prime p ̸= ℓ and an absolute closure of Qp, which
we denote by Qp.

3.4.1. Quaternionic modular forms. Let A be a commutative ring and consider the space of polynomials

in two variables, A[X,Y ]. We endow this module with the action of invertible matrices GL2(A) given by

(3.6) γ · P (X,Y ) = P ((X,Y ) · γ) ,

for any γ ∈ GL2(A) and P ∈ A[X,Y ]. For any m ∈ Z≥0 we define the submodule of homogeneous

polynomials of degree m and denote it by Lm(A); the GL2(A)-action descends to an action on Lm(A).

In the following, the ring A will be an algebra over the ring of integers of a finite extension of Qp, for
example, Qp.

Definition 3.5 (Quaternionic modular forms). Let R be a Pizer order of level Nℓ2, and assume that

p | N . Let A be a Zp-algebra and fix an A-valued Dirichlet character χ with conductor C | Nℓ. A
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quaternionic modular form for D×, of weight k ∈ Z≥2, level structure R, and character χ, is a continuous

function φ : D̂× −→ Lk−2(A), such that

φ(dd̂zr) = (χA)
−1(z) χ̃(r) z2−kp (r−1

p · φ(d̂)),

for d ∈ D×, d̂ ∈ D̂×, z ∈ A×
f , and r ∈ R̂×. Here χ̃ is the lifting constructed in Definition 3.3. We denote

the space of quaternionic modular forms by SDk (R,χ,A).

Note that, for z ∈ A×
f ∩ R̂×, χ̃(z) = (χA)

−1(z), and that φ is right-invariant under U1(R)
(p), i.e. away

from p. The space SDk (R,χ,A) inherits a right-action of GL2(Zp) given by φ|γ(d̂) = γ−1 · φ(d̂).
As defined, quaternionic modular forms are not the classical quaternionic modular forms considered

in [HPS89a], which are (non-unitarized) automorphic forms on D. In order to clarify the situation, as

well as making explicit certain actions on the space of quaternionic modular forms (see Section 3.5), we

recall the definition of automorphic forms and algebraic quaternionic modular forms, highlighting their

relations with quaternionic modular forms.

3.4.2. Automorphic forms on D×. Fix an isomorphism ι : Qp ∼= C and let Ψ∞ : D∞ = D⊗QR ↪→M2(C)

be an embedding such that ι(ιp(d)) = Ψ∞(d), for any d ∈ D× ⊂ D×
p

ιp∼= GL2(Qp). For any k ≥ 2, let

(3.7) ρu∞,k : D×
∞ −→ Aut(Lk−2(C))

be the unitarized representation defined by

(3.8) ρu∞,k(d∞)(P (X,Y )) = |νD∞(d∞)|
k−2
2 Ψ∞(d∞) · P (X,Y ).

Definition 3.6 (Automorphic forms on D×). Let R and χ be as above. We define the space ADk (R,χ)
of automorphic forms on D×, of weight k, level R, and character χ, as the vector space of continuous

functions ϕ : D(A)× −→ Lk−2(C), such that

ϕ(dxd∞rz) = (χA)
−1(z) χ̃(r) ρu∞,k(d

−1
∞ ) (ϕ(x)) ,

for d ∈ D×, d∞ ∈ D×
∞, z ∈ A×, and r ∈ R̂×.

There is a correspondence between quaternionic modular forms and automorphic forms. Precisely, to

each φ ∈ SDk (R,χ) we associate the automorphic form Φ(φ) ∈ ADk (R,χ) defined as

(3.9) Φ(φ)(d) = ρu∞,k(d
−1
∞ )
(
ι
(
dp · φ(df )

))
,

for any d ∈ D(A)×, with finite part df ∈ D̂×, and components dp and d∞, respectively at p and infinity.

3.4.3. Algebraic quaternionic modular forms. In order to construct the p-adic L-function in the following

Section 5, we need Hida families of quaternionic modular forms. We define them in Section 4.2, similarly

to [Hsi21, Definition 4.1], and for this purpose we should introduce algebraic quaternionic modular forms.

Consider the Iwasawa algebra Λ = ZpJ1+pZpK. For any z ∈ 1+pZp, we denote by [z]Λ the group-like

element of Λ determined by z. For r ≥ 1, let RNℓ2pr be a sequence of nested Pizer orders on level Nℓ2pr

contained in the nested sequence of Eichler order RNpr . We consider the finite set

(3.10) Xr = D×\D̂×/U1(RNℓ2pr ),

and let O[Xr] be the finitely generated O-module spanned by divisors on Xr. The Iwasawa algebra Λ

acts Zp-linearly on O[Xr] via

(3.11) [z]Λ · x = x (1, . . . , 1, ( z 0
0 z ) , 1, . . .),

for x ∈ Xr, z ∈ 1 + pZp and (1, . . . , 1, ( z 0
0 z ) , 1, . . .) the adèle with p-th component ( z 0

0 z ).
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Definition 3.7 (Algebraic quaternionic modular forms). Let χ be a Dirichlet character of conductor

dividing Nℓpr. We define the space of algebraic quaternionic modular forms of level RNℓ2pr , weight k

and character χ as the finite Λ-module

SDk (RNℓ2pr , χ) =

{
f ∈ Homcts(O[Xr], Lk−2(Qp))

∣∣∣∣∣ f(xzr) = (χA)
−1(z)χ̃(r)f(x)

for all z ∈ A×
f , r ∈ R̂

×
Nℓ2pr

}
.

Recall that any φ ∈ SDk (RNℓ2pr , χ) is not U1(RNℓ2pr )-invariant but only U1(RNℓ2pr )
(p)-invariant. The

relation between SDk (RNℓ2pr , χ) and SDk (RNℓ2pr , χ) is made clear via the association

(3.12) SDk (RNℓ2pr , χ) ∋ φ(x) 7−→ f(x) = xp · φ(x) ∈ SDk (RNℓ2pr , χ).

Remark 3.8. We will define Hecke operators on SDk (RNℓ2pr , χ) momentarily (cf. Section 3.5.1). For

now, let us mention that the Λ-action on the space of quaternionic modular forms SDk (RNℓ2pr , χ) takes

the form of

(3.13) [z]Λ · φ(x) = z · φ(x(1, . . . , 1, ( z 0
0 z ) , 1, . . .)) = (χA,p)

−1(z)φ(x),

In other words, we can think of the Λ-action as a diamond operator at the prime p.

3.5. Operators on quaternionic modular forms.

3.5.1. Hecke operators. As in the usual setting of classical modular forms, one can define Hecke operators

acting on the space of quaternionic modular forms. These are easily defined taking into account the adèlic

description of these forms; for any prime q ̸= ℓ, let ςq ∈ A×
f be the element characterized by ςq,q = q and

1 at other places. Let A be again a Zp-algebra and let φ ∈ SDk (RNℓ2 , χ,A). For any d̂ ∈ D̂×, the Hecke

operator Tq is determined by

(3.14) Tqφ(d̂) =



φ
(
d̂
(
1 0
0 ςq

))
+

∑
a∈Z/qZ

φ
(
d̂ ( ςq a0 1 )

)
for each prime q ∤ Nℓ2,

φ|( 1 0
0 p

) (d̂ ( 1 0
0 ςp

))
+

∑
a∈Z/qZ

φ|( p a0 1 )

(
d̂ ( ςp a0 1 )

)
for q = p and p ∤ N,

while the Hecke operator Uq is

(3.15) Uqφ(d̂) =



∑
a∈Z/qZ

φ
(
d̂ ( ςq a0 1 )

)
for q | N,

∑
a∈Z/pZ

φ|( p a0 1 )

(
d̂ ( ςp a0 1 )

)
for q = p and p | N.

Remark 3.9.

(1) In the case of a definite quaternion algebra, one can express the action of quaternionic Hecke

operators via Brandt matrices. Via these matrices we can also define Hecke operators for the

primes of ramification for the quaternion algebra. As Hecke operators are compatible with the

Jacquet–Langlands correspondence (up to a sign at ℓ), applied to forms which are new at ℓ, Uℓ

will be the zero-operator. We refer the interested reader to [Eic73], [Piz77], [Piz80b] and [HPS89b]

for their precise definition.

(2) We define an Atkin–Lehner operator in Definition 3.18, following [Piz80b]. One can find quater-

nionic analogues of the local Atkin–Lehner operators in Section 9 of loc. cit. and [Piz77]. For

what concerns diamond operators, they can be defined as in [Hsi21, Section 4.4].
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(3) The first-named author wishes to remark that the definition of the Uℓ operator provided in [Dal23b]

is not correctly stated. As above, one should use Brandt matrices to define it and not the invo-

lution obtained by multiplication with an element of norm ℓ in D×
ℓ . This definition is correct for

Eichler orders, as it coincides (up to a sign) with the Atkin–Lehner operator. The proofs and

results contained in loc. cit. are unfazed by this misstated definition.

3.5.2. Multiplicity two. A peculiar property of Pizer orders of level Nℓ2 is the failure of multiplicity one

for Hecke-eigenspaces of quaternionic modular forms. This phenomenon has been extensively studied in

both [Piz80b] and [HPS89b], and it can be summarized in the following proposition.

Proposition 3.10 (Pizer, Hijikata–Pizer–Shemanske). Let f ∈ Sk(Γ1(Nℓ
2), χ)new be a Hecke-eigenform,

twist-minimal at ℓ. Suppose that the ℓ-component of χ has conductor cond(χℓ) ≤ ℓ. There is an isomor-

phism of Hecke-eigenspaces

SDk (RNℓ2 , χ,Qp(f))[f ] = Sk(Nℓ
2, χ)[f ]⊕2.

In particular, the Hecke-eigenspace SDk (RNℓ2 , χ,Qp(f))[f ] is two-dimensional.

Remark 3.11. The Jacquet–Langlands correspondence associates to any automorphic representation

πD of D×(A) an automorphic representation π of GL2(A). By Strong Multiplicity One for GL2 and

its inner forms, there cannot be two different automorphic representations πD and π′
D of D×(A) that

correspond to the same automorphic representation π of GL2(A). Proposition 3.10 is therefore about

automorphic forms, i.e. elements of πD and π.

For GL2(A), there is a well-known theory of newforms: there is a compact open subgroup Kπ ⊆
GL2(Af ) such that dimπKπ

f = 1. This is no longer the case for D×(A); in fact, underlying Proposi-

tion 3.10 is the fact that dimπ
R×

Nℓ2

D,f = 2, which was observed locally at the prime ℓ in Proposition 2.5.

3.5.3. An extra operator. Using the methods of Section 2, we can define an extra operator acting on

the space of A-valued quaternionic modular forms SDk (RNℓ2 , χ,A); its nature is local, arising from the

structure of the order at the prime of ramification ℓ.

With a slight change of notation from Section 2, let ϖD be the element in D̂× defined as

(3.16) ϖD = (1, . . . , 1, ϖDℓ
, 1, . . .) ,

for ϖDℓ
a quaternionic uniformizer of Dℓ/Qℓ; note that NQℓ(ϖDℓ

)/Qℓ
(ϖDℓ

) = ϖQℓ
for a uniformizer of

Qℓ. We will choose ϖDℓ
so that ϖ2

Dℓ
= ℓ. Equivalently, we are fixing our chosen ramified quadratic

extension Qℓ(ϖDℓ
) to be Qℓ(

√
ℓ). Notice that one can fix another choice of uniformizer and, mutatis

mutandis, all the results in this section and in Section 4 are similarly obtained.

Definition 3.12. We define the operator ⟨ϖDℓ
⟩ on the space SDk (RNℓ2 , χ,A) as

⟨ϖDℓ
⟩φ(d̂) = φ

(
d̂ϖD

)
.

Proposition 3.13.

(1) Iterating ⟨ϖDℓ
⟩ twice, one has

⟨ϖDℓ
⟩2 φ(d̂) = φ

(
d̂ (1, . . . , 1, ϖ2

D,ℓ, 1, . . .)
)
= χN (ℓ)−1φ(d̂).

(2) The operator ⟨ϖDℓ
⟩ commutes with the Hecke-operators.

Proof. We notice that (1, . . . , 1, ℓ, 1, . . .) ∈ A×
f , and

χ−1
A (ℓ) = 1 = χ−1

ℓ,A ((1, . . . , 1, ℓ, 1, . . .))χ−1
N,A ((ℓ, . . . , ℓ, 1, ℓ, . . .)) ,

hence

χ−1
ℓ,A ((1, . . . , 1, ℓ, 1, . . .)) = χN,A ((ℓ, . . . , ℓ, 1, ℓ, . . .)) = χ−1

N (ℓ).
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Both statements follow now from the definitions of ⟨ϖDℓ
⟩, quaternionic modular forms, and Hecke

operators away from ℓ. ■

The choice of the notation ⟨ϖDℓ
⟩ is justified by the above proposition; this extra operator is closer to

a diamond operator than a replacement for the Hecke operator at ℓ. Let us remark that χ−1
N evaluated

at ℓ coincides with the evaluation at the same integer of the adèlization of the character χℓ; this follows

by the definition of the adèlization as the rational elements not prime to the conductor are mapped to 1.

Proposition 3.14. Let f ∈ Sk(Γ1(Nℓ
2), χ)new be a Hecke-eigenform, twist-minimal at ℓ. As above,

suppose that the ℓ-component of χ has conductor cond(χℓ) ≤ ℓ. The two-dimensional Hecke-eigenspace

SDk (RNℓ2 , χ,A)[f ] decomposes into one-dimensional eigenspaces under the action of ⟨ϖDℓ
⟩,

SDk (RNℓ2 , χ,A)[f ] = SDk (RNℓ2 , χ,A)[f ]
⟨ϖDℓ

⟩=+
√
χ−1
N (ℓ) ⊕ SDk (RNℓ2 , χ,A)[f ]

⟨ϖDℓ
⟩=−
√
χ−1
N (ℓ).

Proof. Let πf be the automorphic representation associated with f and consider πf,ℓ its local compo-

nent at ℓ. By definition of automorphic forms, the quaternionic modular forms in SDk (RNℓ2 , χ,A)[f ]

correspond to (semi-)invariant vectors in the automorphic representation πDf , obtained as the Jacquet–

Langlands transfer of πf . In other words, we can identify SDk (RNℓ2 , χ,A)[f ] with the space (πDf )R
×

of

(semi-)invariant vectors. By definition, the action of the operator ⟨ϖDℓ
⟩ is local on the representation

πDf,ℓ and it acts as the local uniformizer ϖDℓ
. Since the representation πDf,ℓ is a twist-minimal smooth

representation of D×
ℓ of conductor 2, we can apply Proposition 2.5 and conclude the proof. Notice that

the central character of πf is (up to the archimedean component) the adèlization of the character χ,

thus, the central character of πf,ℓ at ℓ coincides with χA,ℓ ((1, . . . , 1, ℓ, 1, . . .)) = χ−1
N (ℓ). ■

Remark 3.15.

(1) The result of Lemma 3.14 depends only on the local representation at ℓ, more precisely, on its

automorphic type and its minimal conductor.

(2) The local automorphic type, the conductor and the twist-minimality property are rigid in p-adic

Hida families of modular forms (see [FO12, Lemma 2.14] and [Hsi21, Remark 3.1]).

(3) If one considers more general quaternion algebras, the multiplicity will be given by∏
ℓ∈Ram(D)−{∞}:

condℓ(π)=ℓ
2

2.

Therefore, considering a ⟨ϖDℓ
⟩-operators for each ℓ ∈ Ram(D) − {∞}, one can recover multi-

plicity one for quaternionic modular forms.

(4) In the case χ = 1, one can define a whole set of operators, defining a dihedral group of order

2(ℓ+ 1), as in [Piz80b, Section 9]. Among these, by our analysis in Section 2, one can recognize

the operator ⟨ϖDℓ
⟩, the Atkin–Lehner operator, and a few mysterious others arising from the

local structure of the order. The indefinite setting has been studied in [dVP13].

Our analysis is partially motivated by the explicit work of Pizer [Piz80b], where the study of Pizer

orders is addressed with a more elementary flavor; in particular, the above lemma provides a more

explicit take on the conductor ℓ2 case of the statements contained in [HPS89b, Section 9]. Moreover,

if the central character is trivial, we recover the setting studied by Pizer. Even though the authors of

loc. cit. observed and studied the higher multiplicity phenomenon without addressing how to recover

one-dimensional eigenspaces, their explicit work has been a key input for our results. It also helped us

to implement the operator ⟨ϖDℓ
⟩ in Pizer’s setting in magma [BCP97]. Our implementation can be found

at [1] and we use it to compute a first example below.
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Example 3.16. With the above notations, take ℓ = 7 and let f ∈ S2(Γ0(7
2))new, be the unique newform

of level of level 72 and trivial character. In [HPS89b, Example 10.5], the authors compute that the f -

eigenspace of quaternionic modular forms of weight 2, level 72 and trivial character, is generated by two

forms, namely φ1 and φ2, whose values on the ideal classes are

φ1 ←→ (1,−1, 0, 0)t, φ2 ←→ (0, 0, 1,−1)t.

Since the character is trivial, the eigenvalues of the operator ⟨ϖDℓ
⟩ are ±1. Our implementation in

magma yields the action of the ⟨ϖDℓ
⟩-operator as

⟨ϖD7⟩φ1 = φ1, ⟨ϖD7⟩φ2 = −φ2.

Thus, we decompose

SD2 (R72)
new[f ] =

(
SD2 (R72)

new[f ]
)⟨ϖD7

⟩=+1 ⊕
(
SD2 (R72)

new[f ]
)⟨ϖD7

⟩=−1
,

for
(
SD2 (R72

)new
[f ])⟨ϖD7

⟩=+1 = ⟨φ1⟩ and
(
SD2 (R72)

new[f ]
)⟨ϖD7

⟩=−1
= ⟨φ2⟩.

For completeness, we conclude this section with an observation on the action of the operator ⟨ϖDℓ
⟩

on forms which are ℓ-new but not twist-minimal at the same prime.

Lemma 3.17. The ⟨ϖDℓ
⟩-eigenvalue on the space SDk (Npnℓ2, χ) is ±

√
χA,Npn(ℓ)−1.

Proof. Once again, looking at the local description. If πℓ is an admissible irreducible representation of

D×
ℓ of conductor 1, then it is (inflated from) a character πℓ : ⟨ϖDℓ

⟩ → C×. In particular, it is determined

by πℓ(ϖDℓ
) and once again πℓ(ϖ

2
ℓ
) = π(ϖQℓ

)2 = χ(ϖQℓ
)2. ■

3.5.4. Λ-action and operators. Recall the notation introduced in Section 3.4.3; equation (3.13) shows

that the Λ-action commutes with Hecke operators and also with the ⟨ϖDℓ
⟩-operators. Considering the

Λ-action on quaternionic modular forms is critical for ensuring the necessary properties of the morphisms

between eigenvarieties we construct in Section 4.1. More precisely, we make use of the relation

(3.17) ⟨ϖDℓ
⟩2 φ = χA,ℓ(ℓ) [⟨ℓ⟩]Λ · φ,

for ⟨ℓ⟩ ∈ 1 + pZp the image of ℓ under the projection ⟨·⟩ : Z×
p −→ 1 + pZp.

3.6. Pairings. We introduce here the general setting we deal with in Sections 4 and 5. Let D be a

definite quaternion algebra over Q; it is ramified at an odd number of primes ℓ ||disc(D), for disc(D) the

discriminant of D. We denote by RN+,N− a fixed Pizer order of level N+N−, with N− = N sp
− N sc

− , such

that

(N+, disc(D)) = 1, (N sp
− , N sc

− ) = 1, N sp
− ||disc(D), N sc

− ||disc(D)2.(3.18)

We will occasionally simplify this notation to RN = RN+,N− where N = N+N−. The notation refers

to the local factors of the corresponding representations of GL2(A): they are special at primes dividing

N sp
− and supercuspidal at primes dividing N sc

− . As discussed above, we need the extra operator ⟨ϖDℓ
⟩ at

primes ℓ|N sc
− . We remark that (N sp

− )2N sc
− = discD2. Moreover, we fix χ to be a Dirichlet character of

conductor c | N+N−, and a weight k ∈ Z≥2.

3.6.1. The quaternionic Petersson product. We recall here the definition of the Petersson product be-

tween quaternionic modular forms; our definition extends the one provided in [Hsi21, Section 4.2]. Fol-

lowing [GS20, Section 2.1], we consider the p-adic norm form Np : D
×\D̂× −→ Z×

p given by

(3.19) Np(−) =
(
|νAf

(−)|Af
νAf

(−)
)
p
,

for (−)p : A×
f −→ Q×

p , the projection to the p-component. In other words, Np is defined as the p-

component of the normalization of the reduced norm by the adèlic absolute value. With the notation of
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[Hsi21, Section 4.2], we denote the p-adic cyclotomic character by εcyc; this is the character

εcyc : Q+\A×
f −→ Z×

p

a 7→
(
|a|Af

a
)
p
= |a|Af

ap.(3.20)

Therefore, Np = εcyc ◦ νAf
, as the quaternion algebra D is definite.

We consider the pairing

(3.21) (−,−)N+,N− : SDk (RN+,N− , χ)× SDk (RN+,N− , χ
−1) −→ Qp,

given by

(3.22) (φ1, φ2)N+,N− =
∑

[x]∈D×\D̂×/R̂×
N+,N−

Np(x)
k−2

#ΓN+,N−(x)
⟨φ1(x), φ2(x)⟩k−2,

where ΓN+,N−(x) = (D× ∩ xR̂×
N+,N−

x)Q×/Q× and

(3.23) ⟨−,−⟩k−2 : Lk−2(Qp)× Lk−2(Qp) −→ Qp

is the paring defined by

(3.24) ⟨XiY k−2−i, XjY k−2−j⟩k−2 =

(−1)i
(
k−2
i

)−1
if i+ j = k − 2,

0 if i+ j ̸= k − 2.

For any g ∈ GL2(Qp), let ḡ = det(g)g−1 be its image under the canonical involution on GL2(Qp). Given

such g and any P, Q ∈ Lk−2(Qp), we have:

(3.25) ⟨g · P,Q⟩k−2 = ⟨P, ḡ ·Q⟩k−2.

That implies that the pairing (−,−)N+,N− is well defined, as

Np(xr)
k−2⟨φ1(xr), φ2(xr)⟩k−2 = Np(x)

k−2νp(rp)
k−2⟨r−1

p · φ1(x), r
−1
p · φ2(x)⟩k−2

= νp(rp)
k−2νp(r

−1
p )k−2Np(x)

k−2⟨φ1(x), φ2(x)⟩k−2(3.26)

= Np(x)
k−2⟨φ1(x), φ2(x)⟩k−2,

for r ∈ R̂×
N+,N−

and [x] ∈ D×\D̂×/R̂×
N+,N−

.

Definition 3.18. With the notation of Section 3.1 (cf. also [Piz80b, Section 9]), let τDN+,N−
∈ D̂× the

element determined by

τDN+,N−,q =



1 if q ∤ N+N−,

ι−1
q

((
0 1

−qvq(N+N−) 0

))
if q | N+,

1 if q | N sp
− ,

ϖQℓ2
if q = ℓ | N sc

− .

We define the Atkin–Lehner operator

[τDN+,N−
] : SDk (RN+,N− , χ) −→ SDk (RN+,N− , χ

−1),

as

[τDN+,N−
]φ(x) = τDN+,N−,p · φ(xτ

D
N+,N−

)χA(ν(x)).

Lemma 3.19. The Atkin-Lehner operator is a well-defined involution.
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Proof. It is easy to notice that the level of [τDN+,N−
]φ is still RN+,N− , but we need to check that its

character is χ−1. Given r ∈ R̂×
N+,N−

, we compute

([τDN+,N−
]φ)(xr) = τDN+,N−,p · φ(x r τ

D
N+,N−

)χA(ν(x))χA(ν(r)).

We must only check the primes ℓ | N sc
− , as the local behavior at the other primes is the one of the usual

Atkin–Lehner operator. Let ℓ be such a prime. With the formalism of Section 3.1, we note that, for

r = x+ϖQℓ2
y +ϖDℓ

z ∈ R×
ℓ , with x, y ∈ Zℓ and z ∈ ODℓ

,

rϖQℓ2
= xϖQℓ2

+ϖQℓ2
yϖQℓ2

+ϖDℓ
zϖQℓ2

= ϖQℓ2
(x− yϖQℓ2

) +ϖDℓ
zϖQℓ2

.

Therefore, rϖQℓ2
≡ ϖQℓ2

r (mod ϖDℓ
ODℓ

), hence χ̃ℓ(r ϖQℓ2
) = χ̃ℓ(ϖQℓ2

r). As

ϖQℓ2
RN+,N−,ℓ = RN+,N−,ℓϖQℓ2

we deduce that the operator is well defined, and inverting the character. We conclude noticing that

[τDN+,N−
][τDN+,N−

]φ(x) = (τDN+,N−,p
)2 · φ

(
x(τDN+,N−

)2
)
, and

(τDN+,N−,q)
2 =



1 if q ∤ N+N−,

−qvq(N+N−) if q | N+,

1 if q | N sp
− ,

ϖ2
Qℓ2

if q = ℓ | N sc
− .

Therefore, (τDN+,N−,q
)2 ∈ Zq, for each q. ■

Proposition 3.20. The pairing

⟨−,−⟩N+,N− : SDk (RN+,N− , χ)× SDk (RN+,N− , χ) −→ Qp

defined by ⟨φ1, φ2⟩N+,N− = (φ1, [τ
D
N+,N−

]φ2)N+,N− is perfect and equivariant for both the action of the

Hecke operators and of ⟨ϖDℓ
⟩.

Proof. The Hecke-equivariance follows exactly as in [Hsi21, Section 4.2] from [Hid06, Lemma 3.5]. Since

ℓ2|| disc(D), it is not difficult to compute that ΓN+,N−(x) = ΓN+,N−(xϖDℓ
). Writing temporarily X =

D×\D̂×/R̂×
N+,N−

, we have that:

(⟨ϖDℓ
⟩φ1, φ2)N+,N− =

∑
[x]∈X

Np(x)
k−2

#ΓN+,N−(x)
⟨φ1(x), τ

D
N+,N−,p · φ(xτ

D
N+,N−

)χA(ν(x))N+,N−⟩k−2

=
∑

[x]∈X

χ−1
A (ν(ϖDℓ

))Np(x)
k−2

Np(ϖDℓ
)k−2 #ΓN+,N−(x)

⟨φ1(x), τ
D
N+,N−,p · φ(xϖ

−1
Dℓ
τDN+,N−

)χA(ν(x))N+,N−⟩k−2

= χ−1
A (ν(ϖDℓ

))
∑

[x]∈X

Np(x)
k−2

#ΓN+,N−(x)
⟨φ1(x), τ

D
N+,N−,p · φ(xτ

D
N+,N−,pϖDℓ

ν(ϖDℓ
)−1)χA(ν(x))N+,N−⟩k−2

= (φ1, ⟨ϖDℓ
⟩φ2)N+,N−

where the second equality is obtained by the substitution x 7→ xϖ−1
Dℓ

, and we have used Np(ϖDℓ
)k−2 = 1

and ϖ−1
Dℓ
τDN+,N−,p

= τDN+,N−,p
ϖDℓ

(−ϖ−2
Dℓ

) = τDN+,N−,p
ϖDℓ

ν(ϖDℓ
)−1. ■

3.6.2. Automorphic and quaternionic pairings. Let χA be the adèlization of χ and RN+,N− a Pizer

order in D of level N+N−, we denote by AD2 (RN+,N− , χA) the space of scalar-valued (i.e. weight 2)

automorphic forms of level R̂N+,N− and character χA. For any two such forms f ∈ AD2 (RN+,N− , χA) and

f ′ ∈ AD2 (RN+,N− , χ
−1
A ), we define the pairing

(3.27) ⟨f, f ′⟩ =
∫
A×D×\D(A)×

f(x) f ′(x) dx
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for dx the Tamagawa measure on A×\D(A)×.
Let φ ∈ SDk (RN+,N− , χ,Qp) be a quaternionic modular form of weight k and character χ, and let

u be a polynomial in Lk−2(C). We can define the matrix coefficient Φu(φ) ∈ AD2 (RN+,N− , χ
−1
A ) as

Φu(φ)(x) = ⟨Φ(ϕ)(x), u⟩k−2, for any x ∈ D(A)× (recall equation (3.9)). The above pairing is related to

the one defined in Proposition 3.20 via the following lemma.

Lemma 3.21. Let φ be as above and consider u and v in Lk−2(C). Hence,

⟨[τDN+,N−
] Φu(φ),Φv(φ)⟩ =

vol(R×
N+,N−

)(
N+N sc

−
)(k−2)/2

(k − 1)
⟨φ,φ⟩N+,N− ⟨u, v⟩k−2.

Before proving the lemma, we remark that if R is an Eichler order of level N+, the Atkin–Lehner operator

becomes τDN+,1
, and we recover the formula in [Hsi21, equation (4.5)].

Proof of Lemma 3.21. This is an application of Schur orthogonality relations for linear pairings once we

split the integration over A×D×\D(A)× = A×
f D

×\D̂××R×\D×
∞. More precisely, one can proceed as in

the proof of [GS20, Lemma 3.2], obtaining

⟨χA Φu(φ),Φv(φ)⟩ =
vol(R×

N+,N−
)

(k − 1)
⟨χA φ,φ⟩N+,N− ⟨u, v⟩k−2.

The factor ν
(
τDN+,N−

)(k−2)/2

arises from the definition of the isomorphism f in [GS20, equation (16)];

one must notice that they work with automorphic forms valued in the dual space (Lk−2(C))∨, so their

action at ∞ is obtained by inverting x∞. Expressing everything under our definitions and our choices of

normalizations we obtain the stated equality. We conclude noticing that ν
(
τDN+,N−

)
= N+N

sc
− . ■

4. The JL correspondence in families

As in Section 3.6, we take D and RpnN+,N− for n ∈ Z≥0 and p ≥ 5 a prime with (p,N+N−) = 1,

satisfying the conditions in equation (3.18). We also fix a Dirichlet character χ of conductor c | N+N−

and assume that, for all primes q | N−,

vq(c) = vq(N
sp
− )− 1 = 0, if q | N sp

− , and vq(c) ≤ vq(N sc
− )− 1 = 1 if q | N sc

− .(4.1)

This section is devoted to the study of quaternionic p-adic Hida families, with level structure given

by such Pizer orders. Our eventual goal is to study a Jacquet–Langlands transfer in families for Cole-

man/Hida families on GL2 of level N . We show that for any collection of signs ϵℓ for each ℓ|N sc
−

corresponding to eigenvalues of ⟨ϖDℓ
⟩, there is a Coleman/Hida family on D× that transfers to a given

Coleman/Hida family on GL2. To that effect, we study eigenvarieties for the Hecke algebra augmented by

the extra operators ⟨ϖDℓ
⟩, and obtain an open immersion of eigenvarieties á la Chenevier [Che04]. The

main tool is therefore Chenevier’s interpolation technique, adjusted for dealing with this more general

setup. We conclude with a control theorem in the spirit of Hida (see Corollary 4.28).

The main reference for this section is Bellaiche’s book [Bel21], together with [Buz07], [Che04], and

[Lud17]. We try to keep the discussion as brief as possible; we recall only the necessary notions and

definitions, and provide references where details can be found.

4.1. Eigenvarieties. Let W denote the weight space, i.e. the rigid analytic space over Qp whose Qp-
points are

(4.2) W(Qp) = Homcts(Z×
p ,Qp

×
).

We freely identify any Qp-point κ ∈ W(Qp) with the corresponding character of Z×
p . The space W is

endowed with an admissible covering C by admissible affinoid open subsets, as constructed in [Buz07,

Section 6]; in loc. cit. the covering is considered on the Fredholm variety, while here we prefer to deal
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only with the weight space, as in [Bel21], out of convenience of exposition. For any X = Sp(A) ∈ C ,

we consider the space of cuspidal overconvergent p-adic modular forms as defined in [Buz07, Section

6] and denote it by S†N+N−,χ
(X) (in loc. cit. S†N+N−,χ

(Xn) is denoted by Mn, for Xn ∈ C ). This is

a Banach A-module and satisfies Property (Pr) as in [Bel21, Section 3.1.6]. Similarly, we consider the

space of cuspidal overconvergent p-adic quaternionic modular forms as defined in [Buz07, Section 9], and

denote it by SD,†N+N−,χ
(X) (in loc. cit. SD,†N+N−,χ

(Xn) is denoted by SDκ (U ; r), for κ and r associated with

Xn ∈ C ); once again, this space is a Banach A-module and satisfies Property (Pr). In order to keep the

discussion of this section brief, we opt to not recall the precise definition of overconvergent automorphic

forms and instead refer the interested reader to [Buz07] and [Che04]. Let us remark that this decision

will not compromise the proofs of the main results as they rely only on properties and operators on

classical automorphic forms.

We are interested in the eigenvectors of ⟨ϖDℓ
⟩, for each ℓ | N sc

− ; therefore, we fix once and for all a

square root

(4.3)
√
χA,N+N−/ℓ2(ℓ)

−1,

which we call the positive square root of χA,N+N−/ℓ2(ℓ)
−1. We consider the field extension

(4.4) K = Qp
({√

χA,N+N−/ℓ2(ℓ)
−1
}
ℓ|Nsc

−

)
and let O be its ring of integers. Moreover, let I′ = OJ1 + pZpK be the corresponding finite extension

of the Iwasawa algebra Λ. As we will make use of equation (3.17), we need to extend I′, adjoining the

square roots of [⟨ℓ⟩]I′ ; we set

(4.5) I = I′
[{√

[⟨ℓ⟩]I′
}
ℓ|Nsc

−

]
for the corresponding finite flat extension of Λ. Taking its normal closure in Frac(I) if needed, we can

assume that I is a normal domain. As above, we fix a compatible choice of square roots

(4.6)
√

[⟨ℓ⟩]I′ , for ℓ | N sc
− ,

which we refer to as the positive square roots; we shorten the notation and set

(4.7) ⟨
√
ℓ⟩I =

√
[⟨ℓ⟩]I′ , for ℓ | N sc

− .

Let TI be the polynomial algebra over I generated by the Hecke operators Tq for q ∤ pN+N−, Ul for

l | pN+N
sp
− and the Diamond operators away form pN+N−; it is the Hecke algebra away from ℓ | N sc

− ,

and we remark that TI is a commutative algebra over I with a distinguished element, the Up operator.

We extend the Λ-action defined in Section 3.5.4 to an I-action via the group-like elements. Similarly, we

consider corresponding I-action on the space of p-adic modular forms and automorphic forms (cf. [Hsi21,

Section 2.3]).

Getting back to Banach modules, for any X = Sp(A) as above, there exist ring homomorphisms,

ψX : TI −→ EndA(S†N+N−,χ
(X)) and ψDX : TI −→ EndA(SD,†N+N−,χ

(X)),(4.8)

such that the image of the Up-operator under each map defines a compact operator (see [Buz07, Section 6,

Lemma 12.2]). Moreover, for any X ′ = Sp(A′) ∈ C , the A′-modules S†N+N−,χ
(X)⊗̂AA′ and S†N+N−,χ

(X ′)

(resp. SD,†N+N−,χ
(X)⊗̂AA′ and SD,†N+N−,χ

(X ′)) are linked (see [Bel21, Definition 3.5.1]), as the I-action

commutes with Hecke operators (cf. Section 3.5.4).
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4.1.1. Classical eigenvarieties. By [Bel21, Theorem 3.6.3] (cf. [Che04, Theoreme 6.3.6]), there exist two

cuspidal eigenvarieties EGL2
and ED associated, respectively, with the eigenvariety data

DGL2

N+N−,χ
= (W, TI, Up, S†N+N−,χ

, ψGL2
) and DD

N+N−,χ = (W, TI, Up, SD,†N+N−,χ
, ψD).(4.9)

We recall that the eigenvariety EGL2 (resp. ED) is a rigid analytic space over K endowed with

• a locally finite morphism ωGL2
: EGL2

−→W (resp. ωD : ED −→W), called the weight map;

• a morphism of rings ψGL2
: TI −→ O(EGL2

) (resp. ψD : TI −→ O(ED)), which sends Up to an

invertible function;

• the morphism ωGL2
×ψGL2

(Up)
−1 : EGL2

−→W×A1
rig (resp. ωD×ψD(Up)−1 : ED −→W×A1

rig)

is finite ([Bel21, Proposition 3.7.7]).

The general definition of eigenvariety satisfies analogous properties and it can be found in [Bel21, Defi-

nition 3.6.2].

Remark 4.1.

(1) By [Bel21, Theorem 3.6.3], there exists an eigenvariety for each eigenvariety data and it is unique

up to unique isomorphism.

(2) The eigenvariety construction of ED provided in [Buz07] applies in our case, as the adèlization

R̂× is a compact open subset of D̂×; cf. [Dal23b, Lemma 2.3].

(3) By [Bel21, Proposition 3.7.7], all the eigenvarieties overW are separated; moreover, as in [Lud17],

it is enough for us to work with the reduced rigid analytic space associated with each eigenvariety.

Hypothesis 4.2. From now on, we assume all the eigenvarieties we consider throughout this note are

reduced and separated.

Lemma 4.3 ([Buz07, Lemma 5.9]). Let (E , ψ, ω) be either (EGL2 , ψGL2 , ωGL2) or (ED, ψD, ωD). For any

discretely valued extension K′/K, the association

E (K′) −→ Homring(TI,K′)×W(K′) mapping z 7−→ ( [h 7→ ψ(h)(z)], ω(z)),

defines a bijection between the K′-valued points of E and the set of K′-valued systems of eigenvalues with

non-zero Up-eigenvalue.

Remark 4.4. Lemma 4.3 holds for any general eigenvariety ([Bel21, Theorem 3.7.1]).

Proposition 4.5 (p-adic extension of the JL correspondence). The Jacquet–Langlands correspondence

extends uniquely to a closed immersion

ED
JLp

↪−−−−−−−→ EGL2

compatible with the eigenvariety structure, that is, ωD = ωGL2
◦ JLp and ψD = JL∗

p ◦ ψGL2
.

Before proving the proposition, we need to recall the notion of arithmetic points on W(Qp).

Definition 4.6. We say that κ ∈ W(Qp) is classical if there exists a point z ∈ EGL2(Qp) such that

ωGL2(z) = κ and z corresponds to a classical modular form; we denote by Wcl(Qp) the set of classical

points. We say that κ ∈ W(Qp) is arithmetic if there exists a point z ∈ EGL2(Qp) such that ωGL2(z) = κ

and z corresponds to a form of weight-character κ = (k, ε) ∈ W(Qp) = Hom(Z×
p ,Qp

×
) with k ∈ Z≥2 and

ε a p-adic character of finite order. We denote by Warith(Qp) the set of arithmetic points. By Coleman

classicality’s theorem [Col97, Theorem 1.1], we know that arithmetic points of small slope are classical.

Proof of Proposition 4.5. We want to apply [Lud17, Proposition 2.10]. We define the very Zariski-

dense (see [Bel21, Definition 3.8.1]) subset Z ⊂ ED(Qp), as the set of arithmetic Qp-points z such that

ωD(z) ∈ Warith(Qp). Coleman’s classicality theorem combined with [HPS89b, Theorem 7.17] (cf. also
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Proposition 3.10) implies that both ED and EGL2
are endowed with a classical structure (see [Bel21,

Definition 3.8.5]) given by classical forms over Warith(Qp). [Bel21, Proposition 3.8.6] tells us that the

subset of all classical points Z ⊂ ED is very Zariski-dense in ED, thus, setting Z = Z (Qp) we can

assume it to be very Zariski-dense in ED(Qp); Z embeds in EGL2(Qp) by the classical Jacquet–Langlands

correspondence and Strong Multiplicity One for automorphic representations. More precisely, Lemma 4.3

defines an injective association

JLp : E cl
D (Qp) ∋ z ←→ πDz 7−→ πz ←→ JLp(z) ∈ E cl

GL2
(Qp),

where πDz is the automorphic representation over D×(A) associated with the classical point z and πz =

JL(πDz ). This inclusion is compatible with the structure of the two eigenvarieties by definition of the

map. The uniqueness is ensured by the reducedness of the eigenvarieties together with [BC09, Lemma

7.2.7] and Lemma 4.3. ■

4.1.2. The extended eigenvariety. The Hecke algebra TI acts on quaternionic modular forms withRpnN+,N− -

level structure and, for each ℓ | N sc
− , we can extend TI by adjoining the operator ⟨ϖDℓ

⟩.

Definition 4.7. We define the K-algebra

T̃I = TI

[
⟨ϖDℓ

⟩
∣∣∣ ℓ | N sc

−

]
endowed with the canonical injection TI ↪→ T̃I. We refer to it as the extended Hecke algebra. By

Proposition 3.13 and equation (3.17), T̃I is commutative.

While the algebra TI acts on both SN+N−,χ and SDN+N−,χ
, T̃I acts only on SDN+N−,χ

. We can consider

the tuple

(4.10) D̃D
N+N−,χ = (W, T̃I, Up, SD,†N+N−,χ

, ψD),

which defines an eigenvariety datum, as one only needs to prove the following lemma.

Lemma 4.8. For any pair of affinoid subdomains, X ′ = Sp(A′) ⊆ X = Sp(A) ⊂ W with X,X ′ ∈ C ,

the A′-modules SD,†N+N−,χ
(X)⊗̂AA′ and SD,†N+N−,χ

(X ′) are linked (see [Bel21, Definition 3.5.1]) under T̃I.

Proof. We apply [Bel21, Lemma 3.5.2] to [Buz07, Lemma 12.2]; we must prove that the two morphisms

are T̃I-equivariant. The first inclusion morphism is TI-equivariant (recall that we are changing the

structure only at the ramified places). Thus, the properties of ⟨ϖDℓ
⟩ in Proposition 3.13 together with

the relation in Section 3.5.4 imply the T̃I-equivariance of both morphisms. ■

We deduce the following proposition.

Proposition 4.9. There exists a reduced eigenvariety associated with the datum D̃D
N+N−,χ

, which we

denote by (ẼD, ω̃D, ψ̃D). We will refer to it as the extended eigenvariety for D.

This variety plays the role of an auxiliary eigenvariety, whose points parameterize system of Hecke

eigenvalues with finite Up-slope together with a collection of additional eigenvalues associated with the

⟨ϖDℓ
⟩-operators. In particular, applying Lemma 4.3 to the inclusion TI ↪→ T̃I, we obtain a morphism

on the Cp-points of the eigenvarieties. This canonical map extends to a morphism of eigenvarieties; in

fact, more is true.

Proposition 4.10. The canonical inclusion TI ↪→ T̃I defines a unique finite morphism,

π̃ : ẼD −−−−→ ED,

compatible with the eigenvariety structure. Moreover, it sends classical points to classical points.
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Proof. We follow the proof of [Lud17, Proposition 3.15] and construct the map on the local pieces of

the eigenvariety. More precisely, we take ẼD,X = ω̃−1
D (X) ⊂ ẼD, for any X = Sp(A) in the admissible

covering C . We consider the admissibile covering {ẼD,X(U)}U indexed over connected open affinoids

U ⊆ X; by construction, each ẼD,X(U) is an affinoid Sp(T̃I(U)), for

T̃I(U) = Im

(
T̃I ⊗K O(U) −→ EndO(U)

((
SD,†N+N−,χ

(X)⊗̂O(X)O(U)
)finite slope

))red

the reduced image of T̃I ⊗K O(U). For any U as above, TI ↪→ T̃I induces the inclusion TI(U) ↪→ T̃I(U);

therefore, we obtain

ι∗U : ẼD,X(U) −→ ED,X(U).

Note that the ED,X(U) form an admissible covering of ED,X . The composition of ι∗U with the natural

inclusion ED,X(U) ↪→ ED,X determines the morphism

π̃U : ẼD,X(U) −→ ED,X .

Let X ′ be an admissible open in C and take U ⊂ X and U ′ ⊂ X ′, connected open affinoids. Up to

refining the covering, we can assume thatX ⊆ X ′. Invoking [Buz07, Lemma 5.2] as in [Lud17, Proposition

3.15], we deduce that π̃U |ẼD,X(U∩U ′) = π̃U∩U ′ , therefore the morphisms π̃U glue compatibly. Again, the

uniqueness is ensured by the reducedness of the eigenvarieties together with [BC09, Lemma 7.2.7] and

Lemma 4.3. Let now z be a classical point in ẼD(Qp). Such z corresponds to a classical eigenform

φz identified by a system of Hecke and ⟨ϖDℓ
⟩-eigenvalues for ℓ | N sc

− , say λ̃z. The morphism π̃, by

construction, maps λ̃z to the eigensystem λz obtained by forgetting the ⟨ϖDℓ
⟩-eigevalues. Lemma 4.3

shows that π(z) is classical. Finiteness follows from the relation

⟨ϖDℓ
⟩2 − χN+N−/ℓ2(ℓ)

−1 · [⟨ℓ⟩]I = 0

obtained from equation (3.17). ■

4.1.3. Idempotents. For any ℓ | N sc
− , recall the square root operators ⟨

√
ℓ⟩I defined in equation (4.7).

They are invertible elements of the algebra I, as the [⟨ℓ⟩]I are invertible. Therefore, they determine

invertible operators. We can hence define idempotents in I and on SDN+N−,χ
.

Definition 4.11. For each prime ℓ | N sc
− , we set

eDℓ
± =

1

2

1∓ 1

⟨
√
ℓ⟩I
√
χA,N+N−/ℓ2(ℓ)

−1
⟨ϖDℓ

⟩

 .

Moreover, for each tuple of signs ϵ = (ϵℓ)ℓ|Nsc
−
∈ {±1}#{ℓ|Nsc

− }, we define a canonical idempotent

eDϵ =
∏
ℓ|Nsc

−

eDℓ
ϵℓ
.

Remark 4.12.

(1) It is immediate from the definition that the sum eDℓ
+ + eDℓ

− is the identity element 1 in T̃I.

Therefore, the sum of all these idempotents is∑
ϵ∈{±1}#{ℓ|Nsc

− }

eDϵ = 1.

(2) The operators ⟨
√
ℓ⟩I take care of the p-component of the square root as explained by equa-

tion (3.13).

Proposition 4.13.
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(1) Let κ = (k, κp) ∈ Wcl(Qp) be any weight-character and let n = max{1, vp(cond(κp))}. For any

ℓ | N sc
− , let SD,±k (pnN+N−, χκp) = eDℓ

± SDk p
nN+N−, χκp). There is a canonical decomposition

SDk (pnN+N−, χκp) = SD,+k (pnN+N−, χκp)⊕ SD,−k (pnN+N−, χκp).

(2) The projectors eDℓ
± are orthogonal with respect to the quaternionic Petersson inner product defined

in Section 3.6.1.

Proof. It is clear that the two idempotents eDℓ
± give rise to projectors on SDk (pnNℓ2, χκp), satisfying

the identity 1 = eDℓ
+ + eDℓ

− , i.e. eDℓ
− = 1 − eDℓ

+ . Therefore, for any φ ∈ SDk (pnNℓ2, χκp), we compute

eDℓ
± eDℓ

∓ φ = 0, in fact, eDℓ
± eD∓φ = eDℓ

± φ− eDℓ
± eDℓ

± φ = eDℓ
± φ− eDℓ

± φ = 0. This proves (1). Part (2) follows

from Proposition 3.20 and equation (3.13). ■

4.1.4. The extended eigenvarieties of idempotent type. We fix one of the idempotents in Definition 4.11,

say eDϵ , and consider the tuple

(4.11) eDϵ D̃D
N+N−,χ = (W, T̃I, Up, e

D
ϵ S

D,†
N+N−,χ

, ψD).

Proposition 4.14. There exists a unique reduced eigenvariety associated with the datum eDϵ D̃D
N+N−,χ

,

which we denote by (Ẽ ϵ
D, ω̃

ϵ
D = ω̃D|Ẽϵ

D

, ψ̃D) and we will refer to it as the extended eigenvariety for D.

Proof. The above Proposition 4.13 guarantees that the projection by eDϵ (which is linear and continuous)

produces Banach modules satisfying Property (Pr) (see [Bel21, Exercise 3.1.23]). Since eDϵ commutes

with all Hecke operators, Lemma 4.8 shows that the modules are still linked. ■

Proposition 4.15. The natural map

ι̃ ϵ : Ẽ ϵ
D ↪−−−−→ ẼD,

is the unique closed immersion compatible with the eigenvariety structure. Moreover, ẼD is the disjoint

union of the images of Ẽ ϵ
D, for all the ϵ ∈ {±1}#{ℓ|Nsc

− }.

Proof. This is just [Bel21, Exercise 3.7.2 and Exercise 3.6.4], together with the direct sum decomposition

of Proposition 4.13. Alternatively, one can also consider an approach similar to the proof of [Lud17,

Proposition 2.10]. ■

Proposition 4.16. The morphism J̃L
ϵ

p of eigenvarieties, obtained by composition,

J̃L
ϵ

p = JLp ◦ π̃ ◦ ι̃ ϵ : Ẽ ϵ
D ↪−−−−→ EGL2

is a closed immersion.

Proof. The morphism preserves the eigenvariety structures and it is finite, by composition of finite

morphisms of eigenvarieties; recall that closed immersions are finite by definition, see e.g. [FvdP04,

Definition 4.5.7 and Definition 4.10.1]. As in the proof of [Lud17, Lemma 2.9], we consider an affinoid

V ⊂ W × A1
rig, its preimage X = (ω̃ϵD × ψ̃D(Up)−1)−1(V ) in Ẽ ϵ

D, and the natural surjective map

ψ̃D ⊗ (ω̃ϵD × ψ̃D(Up)−1)∗ : T̃I ⊗K O(V ) −→ O(X).

To prove that J̃L
ϵ

p is a closed immersion, it is enough to show that the restriction

ψ̃D ⊗ (ω̃ϵD × ψ̃D(Up)−1)∗ : TI ⊗K O(V ) −→ O(X).

is still surjective. This follows by the finiteness of O(X) as a O(V )-module (see Section 4.1.1) and from

the relation

ψ̃D(⟨ϖDℓ
⟩) = ϵℓ

√
χA,ℓ(ℓ) ψ̃D(⟨

√
ℓ⟩I), for all ℓ | N sc

− .

We can hence follow through the proof of [Lud17, Proposition 2.10], considering finite subsets IV ⊂ TI

containing the operators ⟨
√
ℓ⟩I for ℓ | N sc

− . ■



BALANCED TRIPLE PRODUCT p-ADIC L-FUNCTIONS AND STARK POINTS 29

We can summarize the above eigenvarieties and their morphisms in the following commutative dia-

grams:

(4.12)

Ẽ ϵ
D ẼD T̃I

ED EGL2
TI,

W × A1
rig

ι̃ ϵ

J̃L
ϵ

p

ω̃ϵ
D×ψ̃ϵ

D(Up)
−1

π̃

ω̃D×ψ̃D(Up)
−1

JLp

ωD×ψD(Up)
−1

ωGL2
×ψGL2

(Up)
−1

(4.13)

O(Ẽ ϵ
D) O(ẼD)

T̃I

O(ED) O(EGL2
).

TI

(ι̃ ϵ)∗

ψ̃Dψ̃ϵ
D

(π̃)∗

(JLp)
∗

(J̃L
ϵ

p)
∗

ψGL2

ψD

4.1.5. The image of J̃L
ϵ

p. We conclude this section with a couple of interesting observations which

strengthen the comparison between our immersion and Chenevier’s one. As explained in [Che05, Section

2.1.1, Section 4.6, and Proposition 4.7.(b)], one can construct a reduced closed rigid analytic subvariety

E tr=0
GL2

⊆ EGL2
whose classical points correspond to forms which are new at the primes dividing the

discriminant of D.

Proposition 4.17. The morphism JLp is an isomorphism onto E tr=0
GL2

.

Proof. By Proposition 4.5 and the above discussion, we know that JLp is a closed immersion. Note that

classical points are dense both in E tr=0
GL2

and in ED, and hence it is enough to show that

JLp(E
cl
D ) ⊇ E tr=0,cl

GL2

in order to prove that the morphism is surjective. Each point in E tr=0,cl
GL2

corresponds to a Hecke eigenform

which, under our assumptions, can be transferred to the quaternion algebra. ■

Proposition 4.18. The morphism π̃|Ẽ ϵ
D

is an isomorphism onto its image.

Proof. We would like to apply [BC09, Proposition 7.2.8], but Im(π̃|Ẽ ϵ
D
) is not necessarily an eigenvariety.

However, modifying the sets IV as in the proof of Proposition 4.16, the proof of [BC09, Proposition 7.2.8]

applies verbatim to our setup. ■

Corollary 4.19. The composition π̃ ◦ ι̃ ϵ is an open and closed immersion. Therefore, J̃L
ϵ

p is an open

and closed immersion into E tr=0
GL2

.

Proof. The first assertion follows by combining Proposition 4.18 with Proposition 4.15. The second one

follows from Proposition 4.17. ■
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Remark 4.20. For any two distinct choices of signs, ϵ and ϵ′, the images of the eigenvarieties Ẽ ϵ
D and

Ẽ ϵ′

D are not disjoint in EGL2
, since their intersection contains the twist-minimal forms.

4.2. Families of quaternionic modular forms. This section and the next one contain the main

results we employ in the construction of the triple product p-adic L-function, namely the existence of

families of quaternionic modular forms of finite slope. We follow the definition given in [Che04, Section

6.2.6], and restrict our attention to the two eigenvarieties

EGL2
∼ (W, TI, Up, S†N+N−,χ

, ψGL2
) and Ẽ ϵ

D ∼ (W, T̃I, Up, e
D
ϵ S

D,†
N+N−,χ

, ψ̃ϵD).(4.14)

To S†N+N−,χ
(resp. eDϵ S

D,†
N+N−,χ

), one can associate a sheaf of Banach modules on W, which we denote

by S †
N+N−,χ

(resp. SD,ϵ,†
N+N−,χ

); this geometric object is roughly obtained glueing the Banach modules

of overconvergent forms compatibly. As we are only interested in its sheaf nature, we do not recall the

precise definition here, but refer the reader to [Che04, Section 3] and [Che05, Section 1] for a thorough

discussion. Let T GL2

I be the closure of TI in

(4.15) EGL2

I =
{
h ∈ End(S †

N+N−,χ
)
∣∣∣h is integral and rational

}
,

where the topology is the coarsest topology such that, for any open affinoid X ∈ W, the restriction map

(4.16) EGL2

I −→ EndctsOX(X)(S
†
N+N−,χ

(X))

is continuous; here EndctsOX(X)(S
†
N+N−,χ

(X)) is endowed with the topology induced by the supremum

norm. Analogously (cf. [Che04, Proposition 4.5.4] and equation (3.17)), we define T̃ D,ϵ
I as the closure

of T̃I in

(4.17) ED,ϵI =
{
h ∈ End(SD,ϵ,†

N+N−,χ
)
∣∣∣h is integral and rational

}
.

Let (E , W, S†, ψ, ω, T ) be either the tuple

(EGL2
, W, S†N+N−,χ

, ψGL2
, ωGL2

,T GL2

I ) or (Ẽ ϵ
D, W, eDϵ S

D,†
N+N−,χ

, ψ̃ϵD, ω̃
ϵ
D, T̃ D,ϵ

I ).(4.18)

For any open affinoid U in W, we denote the submodule of power-bounded elements by

(4.19) O(U)0 =
{
s ∈ O(U)

∣∣ |s(u)| ≤ 1 for all u ∈ U
}
.

If U is reduced, which is always the case if U is small enough, O(U)0 is compact in O(U) (see [BC09,

Lemma 7.2.11]). The same definition applies for any affinoid X ⊂ E .

Definition 4.21 (Families of quaternionic cusp forms). Let κ ∈ W(Cp) and let φ ∈ ω−1(κ) be a p-

adic overconvergent cuspidal form. We define a family of quaternionic cuspidal modular forms passing

through φ as the collection of

• an affinoid open U ⊆ W, κ ∈ U(Cp);
• an affinoid X ⊂ E , endowed with a finite morphism φ : X −→ U , surjective when restricted to

any irreducible component of X ;
• a Cp-point x0 ∈ X (Cp) such that φ(x0) = κ;

• a continuous ring homomorphism λ : T −→ OX (X )0;

satisfying:

• for all x ∈ X (Cp), there exists a form φx ∈ S†(X ) ∩ ω−1(ω(x)), such that, for all h ∈ T ,

h(φx) = λ(h)(x)φx;

• the form φ is such that one can take φx0 = φ.
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We say that the family is parameterized by X , and that it has slope α (resp. finite slope) if every form

φx in the family has slope vp(λ(Up)(x)) = α (resp. vp(λ(Up)(x)) is finite). We call a family of slope 0 a

Hida family, while we refer to families of finite slope bigger equal than 0 as Coleman families.

Remark 4.22.

(1) By [Bel21, Proposition 6.2.7], if there exists a classical point in a family, then the classical points

are dense in the family.

(2) All the eigenvarieties we consider are equidimensional of dimension one ([Bel21, Proposition

3.7.5]).

Theorem 4.23. For any Coleman family f on EGL2
, there exist at most a unique Coleman family on

Ẽ ϵ
D, of the same slope, lifting f . Moreover, there exist a family φ on Ẽ ϵ

D, for each choice of signs ϵ,

corresponding to f , if f passes through a classical point whose corresponding form is supercuspidal at

each prime ℓ | N sc
− .

Proof. Let (U , κ, X , x0, f : X → U) be a Coleman family on EGL2
and (J̃Lp

ϵ
)−1({x0}) be the preimage

of x0. It is either empty or it contains a unique point xD,ϵ0 ∈ Ẽ ϵ
D. If (J̃Lp

ϵ
)−1({x0}) = ∅, up to shrinking

X , and hence U , we can assume that X ∩ Im(J̃Lp
ϵ
) = ∅ (by Proposition 4.16). Therefore, there is

no family on Ẽ ϵ
D lifting (U , κ, X , x0, f : X → U). Suppose now that xD,ϵ0 = (J̃Lp

ϵ
)−1(x0). Since X

can be taken to be an open affinoid and closed immersions are finite, X ϵD = (J̃Lp
ϵ
)−1(X ) is an open

affinoid (see [FvdP04, discussion after Definition 4.5.7]). We hence define φϵ = f ◦ J̃Lp
ϵ
. As above,

up to shrinking X , and hence U , we can assume that X is contained in Im(J̃Lp
ϵ
), therefore φϵ is a

finite morphism, surjective when restricted to any irreducible component. As J̃Lp
ϵ
is an eigenvariety

morphism, we obtain φϵ(xD,ϵ0 ) = κ. It remains to lift the ring homomorphism λ. Consider now the

quotient map

T̃I
∼=

TI[Xℓ]ℓ|Nsc
−

(X2
ℓ − χA,ℓ(ℓ)[ℓ]I)ℓ|Nsc

−

−→ TI,

determined by the choice of signs ϵ, obtained by sending

Xℓ 7−→ ϵℓ

√
χA,ℓ(ℓ) ⟨

√
ℓ⟩I, for each ℓ | N sc

− .

This map defines, for any such affinoid open V ⊆ W, a diagram

T̃I Im(T̃I → EndctsOV(V))(S
D,ϵ,†
N+N−,χ

(V))) OX ϵ
D
(X ϵD)0

TI Im(TI → EndctsOV(V)(S
†
N+N−,χ

(V)) OX (X )0,

λ̃D
V

λV

(J̃Lp
ϵ
)∗

where the first square is a commutative square of continuous algebra homomorphisms, with the second

vertical map obtained from the Jacquet–Langlands correspondence (cf. Section 3.5.1) and the chosen

quotient map. We can define λ̃DV as the composition of morphisms in the right hand side square, where λV

is the restriction of λ. Let us remark that the function λ̃DV (⟨ϖDℓ
⟩) ∈ OV(V)0 obtained by composition is

the constant function λ̃D(⟨ϖDℓ
⟩)(x) = ϵℓ

√
χA,ℓ(ℓ) ⟨

√
ℓ⟩I, for all x ∈ X (cf. Lemma 3.17). The morphism

λ̃DV is a continuous ring homomorphism. It remains to extend λ̃DV to T̃ D,ϵ
I . We start noticing that the

defined morphisms λ̃DV glue compatibly, as the λV do. Moreover, T̃ D,ϵ
I is a commutative I-algebra, hence

the translates of Im(T̃I → EndctsOV(V))(S
D,ϵ,†
N+N−,χ

(V))) define an open covering. The uniqueness of the lift,

as well as the invariance of the slope, follow now from the construction of φϵ. ■

Remark 4.24.
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(1) In the above proof, we note that fixing the eigenvalue of each ⟨ϖDℓ
⟩, shows that

Im(T̃I → EndctsOV(V)(S
D,ϵ,†
N+N−,χ

(V))) = Im(TI → EndctsOV(V)(S
D,ϵ,†
N+N−,χ

(V))).

(2) We must stress the fact that the sequence {Un!p }n still converges in T̃ D,ϵ
I , as it does so in each

closure Im(T̃I → EndctsOV(V)(S
D,ϵ,†
N+N−,χ

(V))).

4.3. Λ-adic quaternionic forms and Hida families. Even though Theorem 4.23 guarantees the

existence of Coleman families, we need a more explicit way to describe them. In particular we restrict

our attention to Hida families.

4.3.1. Λ-adic quaternionic forms. We keep the notation introduced in Section 3.4.3 and fix a chain of

inclusions of orders

(4.20) RN+,N− ⊃ RpN+,N− ⊃ Rp2N+,N− ⊃ · · · ⊃ RpnN+,N− ⊃ · · · ⊃ Rp∞N+,N− ,

for

(4.21) Rp∞N+,N− =
{
r ∈ R̂N+,N−

∣∣∣ ιp(rp) = ( a b0 d

)
a, d ∈ Z×

p , b ∈ Zp
}
.

Considering the set

(4.22) X∞ = D×\D̂×/U1(Rp∞N+,N−),

for

(4.23) U1(Rp∞N+,N−) =

{
r ∈ U1(RN+,N−)

∣∣∣∣∣ ιp(rp) =
(
a b

0 1

)
a ∈ Z×

p , b ∈ Zp

}
,

we have the natural quotient maps

(4.24) X∞ −→ Xm −→ Xn,

for anym > n. We also take Pn =
(
(1 + T )p

n − 1
)
, a height one prime ideal in Λ = ZpJ1+pZpK ∼= ZpJT K,

for T = ⟨1 + p⟩Λ − 1. Recall that we define the diamond operators as in [Hsi21, Section 4.4]. We extend

the notion of Λ-adic forms provided in loc. cit. as follows.

Definition 4.25. Let SD(RN+,N− ,Λ) be the space of functions f : X∞ −→ Λ, such that, for any z ∈
1 + pZp,

f(xz) = f(x)⟨z⟩2⟨z⟩−1
Λ ,

and, for any n sufficiently large,

f (mod Pn) : X∞ −→ Λ/Pn

factors through Xn. We call it the space of Λ-adic quaternionic modular forms of level RN+,N− .

By construction,

(4.25) SD(RN+,N− ,Λ) = lim←−
n

HomΛ(Zp[Xn],Λ/Pn)⊗Λ,ι2 Λ,

for ι2 : Λ −→ Λ the Zp-algebra morphism (twisting the action at p) defined by

(4.26) ι2 : T 7−→ (1 + T )−2(1 + p)2 − 1.

Therefore, the Λ-module SD(RN+,N− ,Λ) is compact and endowed with the Hecke action defined by

(4.27) t · f(x) = f(t · x), for any t ∈ T̃I and x ∈ X∞.
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Recall the notation of Section 3.5.4. For any Dirichlet character χ modulo N+N−p, valued in Zp, we
define

(4.28)

SD(RN+,N− , χ,Λ) =

{
f ∈ SD(RN+,N− ,Λ)}

∣∣∣∣∣ f(xzr) = (χA)
−1(z)χ̃(r)f(x) ⟨εcyc(z)⟩2 [⟨εcyc(z)⟩]Λ

for all z ∈ A×
f , r ∈ R̂

×
p∞N+,N−

}
,

and, for any finite flat extension Λ′/Λ and any Λ′-valued Dirichlet character χ, we set

(4.29) SD(RN+,N− ,Λ
′) = SD(RN+,N− ,Λ)⊗Λ Λ′ ⊇ SD(RN+,N− , χ,Λ

′).

From equation (4.25), we deduce the compactness of SD(RN+,N− ,Λ), hence the ordinary projector

eord = lim
n→∞

Un!p converges in EndΛ(S
D(RN+,N− ,Λ)), as it converges in each EndΛ(Zp[Xn]). We define

(4.30) eordSD(RN+,N− , χ,Λ
′)

as the space of ordinary Λ-adic quaternionic forms.

4.3.2. Hida families. The ordinary projector eord determines an idempotent in endomorphism ring of

quaternionic modular forms and this implies a decomposition into the ordinary and non-ordinary com-

ponents of the eigenvarieties, which we will denote by the corresponding superscript. We obtain the

following diagram of eigenvarieties:

(4.31)

Ẽ ϵ,ord
D Ẽ ord

D T̃I

E ord
D E ord

GL2
TI.

ι̃ ϵ

J̃L
ϵ

p

π̃

JLp

All the results obtained in Section 4.1 descend to the ordinary eigenvarieties.

Proposition 4.26. Let (U ,X ,φ, λ) be a Hida family on Ẽ ϵ
D (that is, a family in Ẽ ϵ,ord

D ), and suppose

that it contains a classical point. Up to shrinking it, we can identify the family (U ,X ,φ, λ) with the

O(U)0-adic module

(eordSD(RN+,N− ,O(U)0))[φ] =
{
f ∈ SD(RN+,N− ,Λ)⊗Λ O(U)0

∣∣∣ t · f = λφ(t) f , for t ∈ T̃I

}
,

where λφ = ω∗
GL2
◦ λ : T̃ D,ϵ

I −→ O(U)0.

Proof. The weight map ωGL2 is étale at cuspidal ordinary classical points ([Bel21, Theorem 7.6.4 and

Remark 7.6.6], where the weight is shifted by 2) and, by [Che04, Proposition 6.2.7], these points are

dense in the family. We deduce that O(X ) ∼= O(J̃L
ϵ

p(X )) is a finite flat algebra over O(U), hence

finite flat over I. Up to shrinking U to a subaffinoid in the admissible covering C , and intersecting

its preimage with X , we can identify J̃L
ϵ

p(X ) = U by [FvdP04, Lemma 8.1.3] (restrict ωGL2 to a

suitable wide open affinoid neighborhood in X , hence shrink U to a be contained in the wide open

neighborhood of the target affinoid). Therefore, ωGL2 becomes an isomorphism. Let now f be an

element in (eordSD(RN+,N− ,Λ) ⊗Λ O(U)0)[φ]; by equation (4.25), it is uniquely characterized by the

sequence {
f (mod Pn) : Xn −→ O(U)0 ⊗Λ Λ/Pn

}
n≫1

.

For n big enough we consider the specialization map λφ,n defined as

λφ,n : T̃I −→ T̃ D,ϵ
I

λφ−→ O(U)0 −→ O(U)0 ⊗Λ Λ/Pn.

Up to O(U)0-constants, we can then associate each f (mod Pn) to

xn = (λφ,n(t))t∈T̃I
∈ X (O(U)0 ⊗Λ Λ/Pn),
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where xn corresponds to the system of eigenvalues associated with the quaternionic modular form

f (mod Pn). Note that here we are using the fact that, up to further shrinking U , O(U)0 is a finitely

generated compact Λ-module. We have then proved the sought-for identification. ■

Let now (U ,X ,φ, λ) be a Hida family on Ẽ ϵ
D and let φGL2 be the ordinary family corresponding to

it. We consider the space of Λ-adic classical Hida families and its eigenspace

(4.32) (eordSGL2(Γ1(N+N−),Λ)⊗Λ O(U)0)[φGL2 ] =
{
f ∈ O(U)0JT K

∣∣ t · f = λφGL2 (t)f , for t ∈ TI

}
.

Theorem 4.27. Suppose that φGL2 contains a classical point. Up to shrinking U , there exists an

isomorphism of rank one O(U)0-modules

(eordSD(RN+,N− ,Λ)⊗Λ O(U)0)[φ] ∼= (eordSGL2(Γ1(N+N−),Λ)⊗Λ O(U)0)[φGL2 ].

Proof. Proceeding as in the proof of Proposition 4.26, up to shrink the family, we can assume it to be

étale over the weight space and identify it with the corresponding neighborhood U . Moreover, we can

assume that all the points are minimal [Bel21, Lemma 7.4.8], therefore the corresponding eigespaces are

one-dimensional. The isomorphism in the statement is then obtained keeping track of the constants in

O(U)0. By Strong Multiplicity One on GL2 and finite flatness of O(U)0 over I, we deduce that

(eordSD(RN+,N− ,Λ)⊗Λ O(U)0)[φ]⊗O(U)0 Frac(O(U)0) ∼= Frac(O(U)0).

The rank-1 statement follows now from the GL2-case. An alternative approach can be obtained combining

[Bel21, Theorem 7.6.4, Theorem 8.1.5 and Lemma 8.1.1], keeping in mind that we are considering cuspidal

eigenvarieties and the closed immersions of eigenvarieties of [Bel21, Theorem 7.2.3] hold true. ■

We are now ready to state the control theorem generalizing [Dal23b, Theorem 4.10]. Notice that the

specialization morphism can be made explicit as in [Hsi21, Theorem 4.2].

Corollary 4.28 (Hida’s Control Theorem). For any arithmetic weight (k, εn) ∈ W(Cp) ∩ U ,

(eordSD(RN+,N− ,O(U)0))[φ]⊗Λ Λ/P(k,εn)
∼= (eordSDk (RpnN+,N−))[φ(k,εn)].

Proof. The above Theorem 4.27 together with Strong Multiplicity One and Proposition 3.14 imply the

isomorphism between the rank 1 modules in the statement. ■

Remark 4.29. In the introduction (Section 1) we already pointed out that the condition for having

weight one classical specializations in a family φGL2 are rather strict. In the setting of this section,

this condition can be read easily from the level N−: a family will not contain classical weight one

specializations unless N sp
− = 1, i.e. N− = N sc

− . Therefore, throughout the rest of the paper, we will work

under this assumption.

5. Balanced triple product p-adic L-function

In this section, we prove our main theorem about the existence of balanced p-adic L-functions and

their interpolation property.

5.1. Definition of the p-adic L-function. Let F = (f ,g,h) be the triple product of primitive Hida

families of tame conductors (N1, N2, N3) ∈ N3 and characters (χ1, χ2, χ3). Let N = lcm(N1, N2, N3).

For any classical weight (k1, k2, k3), we write (fk1 , gk2 , hk3) = F(k1, k2, k3); moreover, we let:

Σ− = {ℓ finite | ϵℓ(fk1 × gk2 × hk3) = −1},

which is independent of the choice of (k1, k2, k3) by the rigidity of automorphic types.

We make the following assumptions:
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• |Σ−| is odd; then there exists a definite quaternion algebra D over Q ramified exactly at the

places in Σ− (and infinity),

• if ℓ ∈ Σ−, then vℓ(N) ≤ 2 (this is an improvement on Hsieh’s [Hsi21] assumption that vℓ(N) = 1).

We now choose test vectors on the quaternionic group D×(A). First, we write

Σ−,sc
∗ = {ℓ ∈ Σ− | ∗ is supercuspidal at ℓ} for ∗ ∈ {f, g, h},(5.1)

Σ−,sc = Σ−,sc
f ∪ Σ−,sc

g ∪ Σ−,sc
h ⊆ Σ−,(5.2)

Σ−,n = {ℓ ∈ Σ− | n of πf,ℓ, πg,ℓ, πh,ℓ are supercuspidal} for n ∈ {0, 1, 2, 3}.(5.3)

Once again, these sets only depend on f , g, h.

Recall from Proposition 2.1 that Σ− = Σ−,0 ⊔ Σ−,2 ⊔ Σ−,3. The computations of the local integrals

at ℓ ∈ Σ− are in Propositions 2.7, 2.8, 2.9, respectively.

Next, we choose the signs which determine the Hida families on D×:

ϵ∗ ∈ {±1}Σ
−,sc
∗ for ∗ ∈ {f, g, h},

ϵ = (ϵf , ϵg, ϵh).

To shorten the notation from Section 4.3 we will write eSD,ϵ(N,ψ,U) for the space of Λ-adic quaternionic
forms eordSD(RN+,N− , ψ

−1
A ,O(U)0) where the extra Hecke operators act accordingly to the choice of

signs ϵ. Then by Theorem 4.23 and Proposition 4.26, for any classical point of the weight space there

exist an open admissible affinoid neighborhood U = U1 × U2 × U3 of this point, and elements:

(fD,ϵf ,gD,ϵg ,hD,ϵh) ∈ eSD,ϵf (N1, ψ1,U1)[f ]× eSD,ϵg (N2, ψ2,U2)[g]× eSD,ϵh(N2, ψ2,U3)[h].

Note that these choices are only well-defined up to elements in O(U)× = O(U1)×⊗̂O(U2)×⊗̂O(U3)×.
Finally, we bring these forms to the common level N , following [Hsi21, Definition 4.8].

Definition 5.1.

(1) Define the adjustments of levels df , dg, dh as in [Hsi21, Section 3.4]. At ℓ ∈ Σ−,sc, we make no

additional adjustment.

(2) Consider the sets ΣIIb
∗,0 as in [Hsi21, Section 3.4] and define:

(fD⋆,ϵf ,gD⋆,ϵg ,hD⋆,ϵh) ∈ eSD,ϵf (N1, ψ1,U1)[f ]× eSD,ϵg (N2, ψ2,U2)[g]× eSD,ϵh(N3, ψ3,U2)[h]

by

fD⋆,ϵf =
∑

I⊆ΣIIb
f,0

(−1)|I|βI(f)−1Vdf/nf
fD,ϵf ,

gD⋆,ϵf =
∑

I⊆ΣIIb
g,0

(−1)|I|βI(g)−1Vdg/ng
gD,ϵg ,

hD⋆,ϵh =
∑

I⊆ΣIIb
h,0

(−1)|I|βI(h)−1Vdh/nh
fD,ϵh .

We now define an unnormalized version of the triple product p-adic L-function.

Definition 5.2. Let R = O(U) = O(U1)⊗̂OO(U2)⊗̂OO(U3).

(1) Define the triple product FD⋆,ϵ : (D×\D̂×)3 → R by FD⋆,ϵ = fD⋆,ϵf ⊠ gD⋆,ϵg ⊠ hD⋆,ϵh .

(2) The associated theta element is:

ΘFD⋆,ϵ = (FD⋆,ϵ)∗(∆†
∞) ∈ R,

where ∆†
∞ is the regularized diagonal cycle from [Hsi21, Definition 4.6].
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Since FD⋆,ϵ is only well-defined up to scalars, so is ΘFD⋆,ϵ . To define the genuine p-adic L-function,

we will divide ΘFD⋆,ϵ by the Petersson norm of FD⋆,ϵ.

Recall the quaternionic Petersson product introduced in Section 3.6.1. Considering such pairing, for

f and f ′ ∈ SD(N+N−, χ, I) we define

(5.4) BN+,N−,α(f , f
′) =

∑
[x]∈D×\D̂×/R̂×

N+pα,N−

χA(νAf
(x)) ⟨Np(x)⟩ [⟨Np(x)⟩]I
#ΓN+pα,N−(x)

f
(
x τDN+pα,N−

)
f ′ (x) .

As in [Hsi21, Definition 4.3], we obtain a Hecke-equivariant I-bilinear pairing

(5.5) BN : eSD(N,χ, I)× eSD(N,χ, I)→ I,

(5.6) BN (f , f ′) = lim←−
α

BN,α(f , f
′) ∈ lim←−

α

I/Pα = I

such that for every arithmetic point κ = (k, ϵ) and integer α ≥ max{1, vp(cond(ϵ))}, we have (cf. [Hsi21,

Proof of Lemma 4.4])

BN (f , f ′)(κ) = (−1)k⟨U−α
p fκ, f

′
κ⟩N+pα,N− .(5.7)

Definition 5.3. For fD ∈ eSD(N,χ,O(U)), the Petersson inner product of fD is

ηfD = BN (fD, fD) ∈ O(U)

and the Petersson norm of fD is:

∥fD∥ = η
1/2

fD
∈ FracO(U).

Similarly, for a triple product FD = fD ⊠ gD ⊠ hD, its Petersson norm is:

∥FD∥ = ∥fD∥ · ∥gD∥ · ∥hD∥ ∈ FracO(U).

Before defining the p-adic L-function we recall two more technical points from [Hsi21], related to the

choice of test vectors at primes dividing N+:

• There is a twist F′ = (f ⊗ χ1,g ⊗ χ2,h⊗ χ3) by Dirichlet characters χ1, χ2, χ3 modulo M with

M2|N+ such that χ1χ2χ3 = 1 and F′ satisfies Hypothesis 6.1 of loc. cit. (see also Remark 6.2).

• There is a fudge factor fF′ =
∏
q|N+

fF′,q ∈ R× defined in Proposition 6.12 of loc. cit., and,

enlarging O if necessary, we have that
√
fF′ ∈ R×.

By [Hsi21, Lemma 6.11], there exists ϵΣ
−
(F) ∈ R× such that

ϵΣ
−
(F)(κ) = ϵΣ

−
(fκ1)ϵ

Σ−
(gκ2)ϵ

Σ−
(hκ3)

is the product of the away-from-Σ− parts of the root numbers.

Definition 5.4. The (genuine) square root balanced triple product p-adic L-function associated with F

and ϵ is:

Lbal
F,ϵ(κ) =

ΘF′D⋆,ϵ

∥FD⋆,ϵ∥
· 2−

|Σ−|+1−k1−k2−k3
2 · (N−)−1/2 · ϵΣ

−
(F)−1/2 ·

√
fF′

−1 ∏
ℓ∈Σ−,sc

ℓk1+k2+k3−13/2√
ζℓ(2)

∈ FracR.

5.2. The interpolation property. Consider the subset of arithmetic points in U :

(5.8) Uarith =
{
κ = (k1, k2, k3, χ1, χ2, χ3) ∈ Uarith

1 × Uarith
2 × Uarith

3

∣∣ k1 + k2 + k3 ≡ 0 (mod 2)
}
,

and let Ubal be the subset of balanced arithmetic points:

(5.9) Ubal =
{
κ = (k1, k2, k3, χ1, χ2, χ3) ∈ Uarith

∣∣ k1 + k2 + k3 > 2ki for all i = 1, 2, 3
}
.
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Theorem 5.5. For an arithmetic point κ = (k1, k2, k3, χ1, χ2, χ3) ∈ Ubal in the balanced range we have:

(Lbal
F,ϵ(κ))

2 =
ΓV†

κ
(0) · L(V†

κ, 0)

(
√
−1)k1+k2+k3−1⟨Fκ,Fκ⟩

·Ebalp (Vκ)·
∏

q∈Σexc

(1−q−1)2·
∏

ℓ∈Σ−,2

1 + ϵℓ,1ϵℓ,2
√
ω3(ℓ)

2

∏
ℓ∈Σ−,3

1 + ϵℓ,1ϵℓ,2ϵℓ,3
4

,

where Ep(Vκ) is an Euler factor defined by:

Ebalp (Vκ) =
Ep(Fil+balVκ)

Ep(Fκ,Ad)

and Ep(Fκ,Ad) is a modified adjoint Euler factor (5.12).

In particular, Lbal
F,ϵ ̸= 0 only if ϵ satisfies:

(1) if ℓ ∈ Σ−,2, then ϵℓ = (ϵℓ,1, ϵℓ,2): if the special representation is a twist of Steinberg by ω3 such

that ω3(ℓ) = 1, then ϵℓ,1 · ϵℓ,2 = 1,

(2) if ℓ ∈ Σ−,3, then ϵℓ,1 · ϵℓ,2 · ϵℓ,3 = 1.

Remark 5.6. In this extended remark, we compare our p-adic L-function to the one defined by

Hsieh [Hsi21, Theorem B]. The main difference is that his p-adic L-function is defined without nor-

malizing by the Petersson norm ∥FD∗,ϵ∥ on the quaternion algebra. As a result, note that Gross periods

([Hsi21, Definition 4.12]) do not feature in the interpolation formula for our p-adic L-function.

We instead use the above definition for two reasons:

(1) It seems that this is the correct p-adic L-function to state an Elliptic Stark Conjecture 6.5 for.

For example, we will soon see in Theorem 6.9 that it is this p-adic L-function that admits a

natural factorization in the CM case.

(2) We did not prove the analogue of Theorem 4.5 in loc. cit.: that the I-modules eSD,±(N, I)[λDf ] are

free of rank one over the whole algebra I. Instead, we satisfy ourselves with the local statement

in Theorems 4.23 and 4.27, because it is enough for our arithmetic applications. However, this

means that our choices of vectors FD⋆,ϵ are only well-defined up to scalars, and hence only the

quotient by the Petersson norm is well-defined.

The terminology genuine p-adic L-function is inspired by the discussion after [Hsi21, Theorem A]. The

advantage is that it is independent of choices, but the disadvantage is that it is only an element of FracR
and not R.

The denominators of Lbal
F,ϵ should be captured by the congruence module of FD⋆,ϵ, which in turn

should be related to the congruence module for F (see [Hsi21, Remark 7.8]). Indeed, if one could choose

vectors fD,± ∈ eSD,±(N, I)[λDf ] as in [Hsi21, Theorem 4.5], then one could also define a p-adic L-function

in I⊗̂I⊗̂I, generalizing the one constructed in loc. cit. It would then differ from our genuine p-adic L-

function by
√
ηF′D⋆,ϵ and one could presumably show that ηF′D⋆,ϵ is a generator for the congruence

module as in [Hsi21, Section 7.2]. We decided to defer these questions to future work.

Remark 5.7. Note that the Euler factor at p:

Ep(Vκ) =
Ep(Fil+balVκ)

Ep(Fκ,Ad)

is analogous to the Euler factor for the unbalanced p-adic L-function constructed by Darmon–Rotger [DR14,

Theorem 1.3]:

E(f, g, h)
E0(f)E1(f)

=
(1− βfαgαhp−c)(1− βfαgβhp−c)(1− βfβgαhp−c)(1− βfβgβhp−c)

(1− β2
fχ

−1
f (p)p1−k)(1− β2

fχ
−1
f (p)p−k)

.

The proof of Theorem 5.5 will occupy the rest of this section and amounts to generalizing the results

of [Hsi21, Section 4]. We split it into two parts:

• an intermediate interpolation property obtained from Ichino’s formula [Ich08], with factors com-

ing from certain normalized local zeta integrals,
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• the evaluation of the local zeta integrals.

5.3. An intermediate interpolation property. We start by proving the analogue of [Hsi21, Corollary

4.13], which gives an interpolation property up to certain local factors.

Proposition 5.8. Let:

I ⋆
Πκ,q

=



Iq(ϕ
⋆
q ⊗ ϕ̃⋆q) ·BΠq

· ζq(1)
2

|N |2qζq(2)2
· ω−1

F,q(dF )|d
k−2
F |q for q|N+,

Iq(ϕq ⊗ ϕ̃q) ·BΠq
· q ζq(1)

5

ζq(2)3
· ω−1

F,q(dF )|d
k−2
F |q for q ∈ Σ−,2,

Iq(ϕq ⊗ ϕ̃q) ·BΠq
· q ζq(1)

4

ζq(2)2
· ω−1

F,q(dF )|d
k−2
F |q for q ∈ Σ−,3

(5.10)

be the normalized local zeta integral at q|(N/d−), with Iq(ϕ⋆q ⊗ ϕ̃⋆q) defined in equation (5.13), and let:

I bal
Πκ,q

= Iordp (ϕp, t̆n) ·B[n]

Πord
p

ω
1/2
F,p(−p2n)|p|

−n(k1+k2+k3)
p

αp(F )2nζp(2)2
.(5.11)

be the normalized p-adic zeta integral defined in [Hsi21, (4.21)] (see loc. cit. for details).

Then for κ = (κ1, κ2, κ3) ∈ Ubal in the balanced range, we have the interpolation formula:

ΘFD⋆(κ)2

⟨FD, FD⟩
= 2#Σ−,0+1−k1−k2−k3 ·N− ·L(1/2,Πκ) · ϵ

Σ−
(fk1)ϵ

Σ−
(gk2)ϵ

Σ−
(hk3)

⟨fk1 , fk1⟩⟨gk2 , gk2⟩⟨hk3 , hk3⟩
·

I bal
Πκ,p

Ep(Fκ,Ad)
·
∏

q|(N/d−)

I ⋆
Πκ,q

.

where fk1 , gk2 , hk3 are the newforms associated with the specializations of F at κ,

ϵΣ
−
(F ) =

∏
ℓ|N/d−

ϵ(1/2, πF,ℓ)|NF |(2−ki)/2ℓ ∈ Ẑ×
(p)

is the away-from-Σ− part of the root number of F ∈ {fk1 , gk2 , hk3}, and

(5.12) Ep(Fκ,Ad) = Ep(fk1 Ad)Ep(gk2 ,Ad)Ep(hk3 ,Ad).

is the modified Euler factor in [Hsi21, (3.10)].

Proof. Let κ = (κ1, κ2, κ3) for κi = (ki, χi). We write

(5.13) Iℓ(ϕℓ ⊗ ϕ̃ℓ) =
L(1,Πv,Ad)

ζℓ(2)2L(1/2,Πv)
· I

′
ℓ(ϕℓ ⊗ ϕ̃ℓ)
⟨ϕℓ, ϕ̃ℓ⟩

for the normalized local integrals. Then Ichino’s Formula [Ich08, Theorem 1.1, Remark 1.3] gives the

following expression (by combining [Hsi21, p. 473, proof of Proposition 4.10] with Lemma 3.21):

I(ϱ(t̆n)ϕ
D⋆
F )2

⟨FD, FD⟩
=

vol(Ô×
D)

8
· ζQ(2)

2L(1/2,Π)

L(1,Π,Ad)
(5.14)

· Iordp (ϕp ⊗ ϕ̃p, t̆n)
∏

q∈Σ−∪{∞}

Iq(ϕq ⊗ ϕ̃q)
∏

q ̸∈p∪Σ−

Iq(ϕ
⋆
q ⊗ ϕ̃⋆q)

· ω−1/2
F (N̂+

1 )ω−1
F,p(p

n)αp(F )
2n

3∏
i=1

vol(R̂×
Nip2n

)

(N+
i N

−,sc
i p2n)(ki−2)/2(ki − 1)

,

where

⟨FD, FD⟩ = ⟨U−n
p fD, fD⟩N1pn⟨U−n

p gD, gD⟩N2pn⟨U−n
p hD, hD⟩N3pn .

Next, we use the volume formula from [Piz80b, Theorem 3.4]:

vol(R̂×
N ) =

48

N

∏
q||N−

ζq(1)
∏

q2||N−

ζq(2)
∏
q|N+

ζq(2)

ζq(1)
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=
48

[SL2(Z) : Γ0(N)]

∏
q||N−

1 + q−1

1− q−1

∏
q2||N−

1 + q−1

1− q−2

=
48

[SL2(Z) : Γ0(N)]

∏
q||N−

ζq(1)
2

ζq(2)

∏
q2||N−

ζq(1).

Using this, the final factor in equation (5.14) becomes:

(5.15)

3∏
i=1

48

(N+
i N

−,sc
i p2n)(ki−2)/2[SL2(Z) : Γ0(Nip2n)](ki − 1)

∏
q||N−

i

ζq(1)
2

ζq(2)

∏
q2||N−

i

ζq(1).

As we will need it shortly, we also record that:

(5.16)
vol(Ô×

D)

vol(R̂×
N )2

=
1

48

∏
q||N−

q
1

ζq(1)

∏
q2||N−

q3
ζq(1)

ζq(2)2

∏
q|N+

ζq(1)
2

|N |2qζq(2)2
.

Next, we recall the relationship between the Petersson norm of a newform f and the adjoint L-

value [Hsi21, (2.18)]:

(5.17) ⟨f, f⟩Γ0(N) =
[SL2(Z) : Γ0(N)]

2kw(f)
· L(1, π,Ad) ·

∏
q|N

Bπq ,

where Bπq
are given by [Hsi21, (2.18)]. In particular:

(5.18) L(1,Π,Ad) =

3∏
i=1

⟨f◦i , f◦i ⟩
2kiw(f◦i )

[SL2(Z) : Γ0(Nipci)]
∏
q|N

B(πi)q

,

where f◦i is the newform associated with fi and its level is Npci . We will write BΠF,q
= Bπ1,q

Bπ2,q
Bπ3,q

,

as in loc. cit..

Finally, Hsieh [Hsi21, Proposition 4.9] gives a relationship between I(ϱ(t̆n)ϕ
D⋆
F ) and ΘFD⋆(Q):

(5.19) ΘFD⋆(κ) =
1

vol(R̂×
N )
I(ϱ(t̆n)ϕ

D⋆
F ) ·

ω
1/2
F,p(p

n)|p|−
k1+k2+k3

2

αp(F )nζp(2)

1

ω
1/2
F (d̂f )d

(k−2)/2
F

.

Next, we put all of these facts together to get:

ΘFD⋆(κ)2

⟨FD, FD⟩
=

1

vol(R̂×
N )2

I(ϱ(t̆n)ϕ
D⋆
F )2

⟨FD, FD⟩
· ωF,p(p

n)|pn|−(k1+k2+k3)

αp(F )2nζp(2)2
1

ωF (d̂f )d
k−2
F

(5.19)

=
vol(Ô×

D)

8vol(R̂×
N )2
· ζQ(2)

2L(1/2,Π)

L(1,Π,Ad)
(5.14)

· Iordp (ϕp ⊗ ϕ̃p, t̆n)
∏

q∈Σ−∪{∞}

Iq(ϕq ⊗ ϕ̃q)
∏

q ̸∈p∪Σ−

Iq(ϕ
⋆
q ⊗ ϕ̃⋆q)

· ω−1/2
F (N̂+

1 )ω−1
F,p(p

n)αp(F )
2n

3∏
i=1

vol(R̂×
Nip2n

)

(N+
i N

−,sc
i p2n)ki−2/2(ki − 1)

· ωF,p(p
n)|pn|−(k1+k2+k3)

αp(F )2nζp(2)2
1

ωF (d̂f )d
k−2
F

=
vol(Ô×

D)

8vol(R̂×
N )2
· ζQ(2)

2L(1/2,Π)

L(1,Π,Ad)
(5.15)

· Iordp (ϕp ⊗ ϕ̃p, t̆n)
∏

q∈Σ−∪{∞}

Iq(ϕq ⊗ ϕ̃q)
∏

q ̸∈p∪Σ−

Iq(ϕ
⋆
q ⊗ ϕ̃⋆q)

·

 3∏
i=1

48

(N+
i N

−,sc
i p2n)(ki−2)/2[SL2(Z) : Γ0(Nip2n)](ki − 1)

∏
q||N−

i

ζq(1)
2

ζq(2)

∏
q2||N−

i

ζq(1)


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· p6n

ζp(2)2
ω
−1/2
F (N̂+

1 )

ωF (d̂f )d
k−2
F

=
483 vol(Ô×

D)

8vol(R̂×
N )2

· ζQ(2)
2L(1/2,Π)

⟨f◦, f◦⟩⟨g◦, g◦⟩⟨h◦, h◦⟩
·

∏
q|N

BΠF,q

 · 2−k1−k2−k3w(f◦)w(g◦)w(h◦) (5.18)

· Iordp (ϕp ⊗ ϕ̃p, t̆n)
∏

q∈Σ−∪{∞}

Iq(ϕq ⊗ ϕ̃q)
∏

q ̸∈p∪Σ−

Iq(ϕ
⋆
q ⊗ ϕ̃⋆q)

·

(
3∏
i=1

1

(N+
i N

−,sc
i )

ki−2

2 (ki − 1)

) ∏
q||N−

ζq(1)
6

ζq(2)3

 ∏
q∈Σ−,2

ζq(1)
4

ζq(2)

 ∏
q∈Σ−,3

ζq(1)
3


·

(
3∏
i=1

[SL2(Z) : Γ0(p
ci)]p−2n(1 + p−1)−1

)
p6n

ζp(2)2
ω
−1/2
F (N̂+

1 )

ωF (d̂f )d
k−2
F

= 2532 · ζQ(2)
2L(1/2,Π)

⟨f◦, f◦⟩⟨g◦, g◦⟩⟨h◦, h◦⟩
·

∏
q|N

BΠF,q

 · 2−k1−k2−k3w(f◦)w(g◦)w(h◦) (5.16)

· Iordp (ϕp ⊗ ϕ̃p, t̆n)
∏

q∈Σ−∪{∞}

Iq(ϕq ⊗ ϕ̃q)
∏

q ̸∈p∪Σ−

Iq(ϕ
⋆
q ⊗ ϕ̃⋆q)

·

(
3∏
i=1

1

(N+
i N

−,sc
i )

ki−2

2 (ki − 1)

) ∏
q||N−

q
ζq(1)

5

ζq(2)3


·

 ∏
q∈Σ−,2

q3
ζq(1)

5

ζq(2)3

 ∏
q∈Σ−,3

q3
ζq(1)

4

ζq(2)2

∏
q|N+

ζq(1)
2

|N |2qζq(2)2


·

(
3∏
i=1

[SL2(Z) : Γ0(p
ci)]p−2n(1 + p−1)−1

)
p6n

ζp(2)2
ω
−1/2
F (N̂+

1 )

ωF (d̂f )d
k−2
F

.

Next, we recall the computation of some of factors from [Hsi21, p. 474, p. 478]:

I∞(ϕ∞ ⊗ ϕ̃∞) = (4π2)−1(k1 − 1)(k2 − 1)(k3 − 1)(5.20)

Iq(ϕq ⊗ ϕ̃q) = 2ζq(1)
−2 for q||N−,(5.21)

BΠq = (−1)ζq(2)
3

ζq(1)3
for q||N−.(5.22)

Plugging these into the above equations and recalling that ζQ(2) = π
6 and ω

1/2
F,q (N

+
f )BΠq

= BΠF,q
for

q ̸= p by definition ([Hsi21, p. 477]), we can simplify the final expression in the chain of equalities to:

ΘFD⋆(κ)2

⟨FD, FD⟩
= (−2)#Σ−,0

21−k1−k2−k3 ·N− · L(1/2,Π)

⟨f◦, f◦⟩⟨g◦, g◦⟩⟨h◦, h◦⟩
·

 ∏
q|N/d−

BΠq

 · w(f◦)w(g◦)w(h◦)
· Iordp (ϕp ⊗ ϕ̃p, t̆n)

∏
q2||N−

Iq(ϕq ⊗ ϕ̃q)
∏
q|N+

Iq(ϕ
⋆
q ⊗ ϕ̃⋆q)

·

(
3∏
i=1

1

(N+
i N

−,sc
i )

ki−2

2

) ∏
q∈Σ−,2

q3
ζq(1)

5

ζq(2)3

 ∏
q∈Σ−,3

q3
ζq(1)

4

ζq(2)2

∏
q|N+

ζq(1)
2

|N |2qζq(2)2


·
(
[SL2(Z) : Γ0(p

ci)]

1 + p−1

)
ζp(2)

−2 ω
−1/2
F (N̂−)

ωF (d̂f )d
k−2
F

.

Next, we recall that for F ∈ {f, g, h}:

w(F ) =
∏
ℓ<∞

ϵ(1/2, πF,ℓ)
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= ϵ(1/2, πF,p)
∏
q||N−

ϵ(1/2, πF,q)
∏

q|N/d−
ϵ(1/2, πF,q)

and for q||N−:

−1 = ϵ(1/2,Πq) = ω
−1/2
F,q (q)ϵ(1/2, πf1,q)ϵ(1/2, πf2,q)ϵ(1/2, πf3,q).

We define the away-from-Σ− part of the conductor to be:

ϵΣ
−
(F ) =

∏
q|N/d−

ϵ(1/2, πF,q)|NF |(2−k)/2q ∈ Ẑ×
(p).

This gives:

ΘFD⋆(κ)2

⟨FD, FD⟩
= 2#Σ−,0+1−k1−k2−k3 ·N− · L(1/2,Π)

⟨f◦, f◦⟩⟨g◦, g◦⟩⟨h◦, h◦⟩
· ϵΣ

−
(f◦) · ϵΣ

−
(g◦) · ϵΣ

−
(h◦)

· Iordp (ϕp ⊗ ϕ̃p, t̆n)BΠF,p

(
3∏
i=1

[SL2(Z) : Γ0(p
ci)]ϵ(1/2, πfi,p)

1 + p−1

)
· ζp(2)−2

·
∏

q∈Σ−,2

Iq(ϕq ⊗ ϕ̃q)BΠq
q
ζq(1)

5

ζq(2)3
ω−1
F,q(d̂f )|d

k−2
F |q

·
∏

q∈Σ−,3

Iq(ϕq ⊗ ϕ̃q)BΠqq
ζq(1)

4

ζq(2)2
ω−1
F,q(d̂f )|d

k−2
F |q

·
∏
q|N+

Iq(ϕ
⋆
q ⊗ ϕ̃⋆q)BΠq

ζq(1)
2

|N |2qζq(2)2
ω−1
F,q(d̂f )|d

k−2
F |q.

To finish the proof, we recall from [Hsi21, p. 477] that:

■(5.23)
B

[n]

Πord
p

BΠF,p

= ω
1/2
f,p (−p

−2n)

3∏
i=1

αfi,p| · |
1/2
p (p2n)

ϵ(1/2, πfi,p)
· [SL2(Z) : Γ0(p

ci)]

1 + p−1
· Ep(fi,Ad).

5.4. Computation of local factors. By Proposition 5.8, proving Theorem 5.5 amounts to computing

the local factors. For p and q|N+, they were already computed by Hsieh.

Proposition 5.9 (Hsieh).

(1) We have that:

I bal
Πκ,p

= Ebal(Πκ,p) ·
1

L(1/2,Πκ,p)
.

(2) For q|N+:

I ⋆
Πκ,q

= fF,q(κ) ·

(1 + q−1)2 if q ∈ Σexc,

1 otherwise

Proof. Part (1) is [Hsi21, Proposition 5.6] and part (2) is [Hsi21, Proposition 6.12]. ■

Therefore, it remains to compute IΠκ,ℓ
for ℓ ∈ Σ− such that ℓ2||N , i.e. for ℓ ∈ Σ−,2 and ℓ ∈ Σ−,3.

Proposition 5.10. Suppose ℓ ∈ Σ−,2 and ωF,ℓ = 1. Then:

I ⋆
Πκ,ℓ

= −
1 + ϵ1ϵ2

√
ω3(ℓ)

2

ℓ−2(k1+k2+k2)+13

ζℓ(2)
.

Proof. We use:

• Proposition 2.8:

I ′ℓ(ϕ
ϵℓ
ℓ ⊗ ϕ̃

ϵℓ
ℓ )

⟨ϕϵℓℓ , ϕ̃
ϵℓ
ℓ ⟩

=
1 + ϵ1ϵ2(

√
ω3(ℓ))

2
,

• Propositions 2.3, 2.4:

L(s,Πℓ,Ad) = ζℓ(s+ 1)(ζℓ(2s)/ζℓ(s))
2, L(s,Πℓ) = ζℓ(s+ 1/2)2.
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Therefore:

Iℓ(ϕ
ϵℓ
ℓ ⊗ ϕ̃

ϵℓ
ℓ ) =

ζℓ(2)ζℓ(2)
2

ζℓ(2)2ζℓ(1)2ζℓ(1)2
1 + ϵ1ϵ2

√
ω3(ℓ)

2
=

ζℓ(2)

ζℓ(1)4
1 + ϵ1ϵ2

√
ω3(ℓ)

2
.

Note that Bπℓ
= 1 if πℓ is supercuspidal and πℓ ⊗ ξ ∼= πℓ for the unramified quadratic character ξ of

Q×
ℓ (cf. [Col18, Section 4.2]). Therefore, BΠℓ

= Bπ1
Bπ2

Bπ3
= (−1) ζℓ(2)ζℓ(1)

(similarly to [Hsi21, p. 478]).

Altoghether, we have that:

I ⋆
Πκ,ℓ

= − ζℓ(2)

ζℓ(1)4
1 + ϵ1ϵ2

√
ω3(ℓ)

2

ζℓ(2)

ζℓ(1)
ℓ
ζℓ(1)

5

ζℓ(2)3
|dk−2
F |ℓ

= −
1 + ϵ1ϵ2

√
ω3(ℓ)

2

ℓ|ℓ|2(k1+k2+k2−6)
ℓ

ζℓ(2)
,

as claimed. ■

Proposition 5.11. Suppose ℓ ∈ Σ−,3 and ωF,ℓ = 1. Then:

I ⋆
Πκ,ℓ

=
1 + ϵ1ϵ2ϵ3

4

ℓ−2(k1+k2+k3)+13

ζℓ(2)
.

Proof. We use:

• Proposition 2.9:

I ′ℓ(ϕ
ϵℓ
ℓ ⊗ ϕ̃

ϵℓ
ℓ )

⟨ϕϵℓℓ , ϕ̃
ϵℓ
ℓ ⟩

=
1 + ϵ1ϵ2ϵ3

4
,

• Propositions 2.3, 2.4:

L(s,Πℓ,Ad) = (ζℓ(2s)/ζℓ(s))
3, L(s,Πℓ) = ζℓ(2s).

Therefore:

Iℓ(ϕ
ϵℓ
ℓ ⊗ ϕ̃

ϵℓ
ℓ ) =

ζℓ(2)
3

ζℓ(2)2ζℓ(1)3ζℓ(1)

1 + ϵ1ϵ2ϵ3
4

=
ζℓ(2)

ζℓ(1)4
1 + ϵ1ϵ2ϵ3

4
.

Moreover, BΠℓ
= 1. Altogether, we have that:

I ⋆
Πκ,ℓ

=
ζℓ(2)

ζℓ(1)4
1 + ϵ1ϵ2ϵ3

4
· ℓζℓ(1)

4

ζℓ(2)2
ω−1
F,ℓ(d

k−2
f )|dk−2

F |ℓ

=
1 + ϵ1ϵ2ϵ3

4

ℓ|ℓ|2(k1+k2+k3−6)
ℓ

ζℓ(2)
,

as claimed. ■

5.5. Finishing the proof of Theorem 5.5. Putting everything together gives the interpolation prop-

erty.

Proof of Theorem 5.5. We compute using the definition of Lbal
F,ϵ:

(Lbal
F,ϵ(κ))

2 =
Θ2

F′D⋆,ϵ

∥FD⋆,ϵ∥2
· 2−(|Σ−|+1−k1−k2−k3) · ϵΣ

−
(F)(κ)−1 · fF′(κ)−1

∏
ℓ∈Σ−,sc

ℓ2(k1+k2+k3)−13

ζℓ(2)

=
L(1/2,Πκ)

⟨Fκ,Fκ⟩
·

I bal
Πκ,p

Ep(Fκ,Ad)
·
∏

ℓ2||N−

I ⋆
Πκ,ℓ

ℓ2(k1+k2+k3)−13

ζℓ(2)
·
∏
q|N+

I⋆Πκ,q
· fF′(κ)−1

=
L(1/2,Πκ)

⟨Fκ,Fκ⟩
· Ebal(Πκ,p)
L(1/2,Πκ,p)Ep(Fκ,Ad)

·
∏

ℓ∈Σ−,2

1 + ϵ1ϵ2
√
ω3(ℓ)

2

∏
ℓ∈Σ−,3

1 + ϵ1ϵ2ϵ3
4

·
∏

q∈Σexc

1

(1 + q−1)2

using Proposition 5.8 for the second equality and Propositions 5.9, 5.10, 5.11 for the final one. This

proves the theorem. ■
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6. Application: Elliptic Stark Conjecture in rank one

We are now ready to discuss the analogue of the Elliptic Stark Conjecture of Darmon–Lauder–

Rotger [DLR15] in this setting. We will consider the restriction of Lbal
p to the weights (k1, k2, k3) =

(2, ℓ,m) with the goal of studying the point (2, 1, 1) which is not balanced and hence lies outside of the

interpolation range.4 We state a conjecture expressing this value in terms of arithmetic data and prove

it in some special cases.

6.1. Statement of the conjecture. Let E be an elliptic curve over Q and let Vp(E) be the associated p-

adic Galois representation. Let ϱ : GQ → GL(Vϱ) be an Artin representation, i.e. a complex continuous

Galois representation, which factors through a finite quotient Gal(H/Q) of GQ, with coefficients in a

finite extension L of Q. We consider the Hasse–Weil–Artin L-series L(E, ϱ, s) associated with the p-

adic Galois repersentation Vp(E) ⊗ Vϱ of GQ. The equivariant version of the Birch–Swinnerton-Dyer

Conjecture asserts that the analytic rank of L(E, ϱ, s) at s = 1 is equal to the rank of the Vϱ-isotypic

component of E(H)⊗ L:

ords=1L(E, ϱ, s) = dimLHomGQ(Vϱ, E(H)⊗ L).

Note that the value L(E, ϱ, s) at s = 1 is outside of the convergence region of the Euler product

defining the L-function. We put ourselves in a situation where the analytic continuation and functional

equation for the L-function L(E, ϱ, s) is known:

• let f be the modular form of level N1 associated with the elliptic curve E of conductor N1,

• suppose that ϱ = ϱgh = ϱg ⊗ ϱh for two odd irreducible two-dimensional Artin representations

ϱg and ϱh; let g and h be the modular forms of conductors N2 and N3 corresponding to ϱg and

ϱh, respectively.

Then

L(E, ϱgh, s) = L(f × g × h, s)

is the triple product L-function studied by Garret. We assume that:

det ϱg det ϱh = 1,

i.e. if χ is the character of g, then χ−1 is the character of h. Then the representation VE ⊗ Vg ⊗ Vh is

self-dual, and hence there is a functional equation with the root number ϵ(E, ϱgh) = ±1. Moreover, the

global root number is a product of finite local root numbers:

ϵ(E, ϱgh) =
∏

v|lcm(N1,N2,N3)

ϵv(E, ϱgh),

because ϵ∞(E, ϱgh) = 1.

In the seminal work [DLR15], Darmon–Lauder–Rotger studied the L-value L(E, ϱgh, s) when the

analytic rank is even and at least two, using p-adic analytic method. Therefore, they assume that

ϵ(E, ϱgh) = 1, and in fact that ϵv(E, ϱgh) = 1 for all v.

In rank two, they proposed the Elliptic Stark Conjecture: a formula relating the value of a triple

product p-adic L-function associated with f , g, h to a regulator of p-adic logarithms of points on E(H)⊗L
and a p-adic logarithm of a Stark unit.

The main motivation for our work is to develop a rank one version of this conjecture. Our first

hypothesis is therefore.

Hypothesis A. The global root number ϵ(E, ϱgh) is −1. Therefore, there is an odd number of finite

places v such that

ϵv(E, ϱgh) = −1.
4We hope that using ℓ for the weight instead of the prime of supersingular type will cause no confusion to the reader.
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Next, we want to construct a balanced p-adic L-function associated with the L-function L(E, ϱgh, s) =

L(f × g × h, s). Under Hypothesis A, this L-function vanishes at s = 1. However, if we consider Hida

families associated with g and h, and the L-value L(f × gℓ × hℓ, s) for ℓ ≥ 2, then

ϵ∞(f × gℓ × hℓ) = −1, ϵv(f × gℓ × hℓ) = ϵv(E, ϱgh) for v finite,

ϵ(f × gℓ × hℓ) = +1.

In particular, we expect that the central L-value for L(f × gℓ × hℓ, s) is generically non-vanishing and

hence there should be a non-vanishing p-adic L-function interpolating these values.

To define the Hida families, assume that g and h are ordinary at p and consider p-stabilizations of g

and h. For F ∈ {g, h}, F ∈ S1(N,χF ), suppose the Hecke polynomial is:

x2 − ap(F )x+ χF (p) = (x− αp(F ))(x− βp(F ))

with roots αp(F ) and βp(F ). We then have p-stabilizations Fα, Fβ ∈ S1(Np, χF ) such that:

UpFα = αFα, UpFβ = βFβ .

We will assume that F is regular, i.e. αp(F ) ̸= βp(F ), and hence it has two distinct p-stabilizations.

We then make the following classicality hypothesis.

Hypothesis B. Assume that f is ordinary at p. For F ∈ {g, h}, F is ordinary and regular at p (i.e. ϱg

is irreducible and ϱg(σp) has two distinct eigenvalues for the Frobenius σp), and it is not the theta series

of a character of a real quadratic field in which p splits.

Under this hypothesis, Darmon–Lauder–Rotger, based on results of Cho and Vatsal and of Belläıche

and Dimitrov, proved that there are no non-classical p-adic modular forms in the generalized eigenspace

of Fα.

Proposition 6.1 ([DLR15, Proposition 1.1]). Under Hypothesis B, the natural inclusion:

S1(Np, χF )Cp [Fα] ↪→ Soc,ord
1 (N,χF )JFαK

is an isomorphism of Cp-vector spaces.

By Proposition 6.1, there exist Hida families gα and hα whose specializations at weight one are gα

and hα, respectively.

We want to consider a balanced p-adic L-function Lbal
p associated with f and the Hida families gα and

hα. Therefore, we need to make another hypothesis which will guarantee that Hypothesis 2.2 needed to

construct the balanced p-adic L-function is satisfied.

Hypothesis C. For each prime q such that ϵq(E, ϱgh) = −1, vq(Ni) ≤ 2 for i = 1, 2, 3.

Under this hypothesis, we have constructed a balanced triple product p-adic L-function associated

with the triple f , g, h, and the Elliptic Stark Conjecture concerns its value at (2, 1, 1), which is outside

of the range of interpolation.

Definition 6.2. Let f , g, h be three modular forms of weights 2, 1, 1 satisfying Hypotheses A, B, C. Let

fα, gα, hβ be ordinary p-stabilizations of f , g, and h, and consider Hida families f , g, h specializing to

p-stabilizations fα, gα, hα of f , g, h, respectively. Define the 2-variable triple product p-adic L-function

by:

Lbal,f
p = 2−#Σ−,3

·
∏

q∈Σexc

(1− q−1)−2 · Ep(fα,Ad) · Lbal
f×g×h,+1

using Definition 5.4 for ϵq =

(+1,+1) q ∈ Σ−,2,

(+1,+1,+1) q ∈ Σ−,2.
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ℓ

m

Σbal

Interpolation
(Corollary 6.4)

Σg

Σh

Σf

Elliptic Stark
Conjecture 6.5

Figure 1. We fix k = 2, and consider two weights ℓ,m with ℓ +m ≡ 0 (mod 2). We
indicate the four regions for the weights ℓ, m; ΣF is the region where F is dominant,
and Σbal is the region where the weights are balanced and ℓ,m ≥ 2. We also indicate
the point (ℓ,m) = (1, 1) where our Elliptic Stark Conjecture 6.5 applies.

Remark 6.3. One could presumably weaken or even remove the assumption that f is ordinary at p by

defining the 2-variable p-adic L-function directly, instead of considering a Hida family through fα and

referring to the 3-variable p-adic L-function. However, we decided not to pursue this point here.

As a corollary to Theorem 5.5, we get the following interpolation property.

Corollary 6.4. For ℓ,m ≥ 2 such that 2− ℓ ≤ m ≤ 2 + ℓ and ℓ+m ≡ 0 (mod 2):

Lbal,f
p (ℓ,m)2 =

Λ(f × gℓ × hm, (ℓ+m)/2)

⟨f, f⟩⟨gℓ, gℓ⟩⟨hm, hm⟩
· Ebalp (Vκ) · Ep(fα,Ad),

where Λ(f × gℓ × hm, s) is the completed triple product L-function.

The value Lbal,f
p (1, 1) = Lbal

f×g×h,ϵ(2, 1, 1) will be expressed in terms of arithmetic data associated with

the triple (E, ϱg, ϱh). We introduce this next.

Let σp ∈ Gal(H/Q) be the Frobenius at p associated with an embedding H → Qur
p . Under Hypothe-

sis B, for F ∈ {g, h}, we have that

ϱF (σp) =

(
αp(F ) 0

0 βp(F )

)
and we may hence consider the one-dimensional eigenspace V αF ⊆ VF for σp associated with the eigenvalue

α(F ). This determines a one-dimensional L-subspace:

Vαα = V αg ⊗ V αh ⊆ Vg ⊗ Vh

and we fix an element vαα ∈ Vαα. On the other hand, under Hypothesis A, we expect that r(E, ϱgh) =

dimLHomGQ(Vgh, E(H)⊗ L) ≥ 1. If dimLHomGQ(Vgh, E(H)⊗ L) = 1, we choose its basis

Φ: Vgh → E(H)⊗ L,

and let

E(H)
Vgh

L = Φ(Vgh) ⊆ E(H)⊗ L.

We will consider the point:

Φ(vαα) ∈ E(H)
Vgh

L ⊆ E(H)⊗ L.
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Next, associated with F ∈ {g, h}, we have an adjoint representation AdF = Hom0(VF , VF ), with

Frobenius eigenvalues 1,
αp(F )
βp(F ) ,

βp(F )
αp(F ) . By [DLR15, Proposition 1.5], we have that

HomGQ(AdF ,O×
HF
⊗ L)

is one-dimensional. Let φ be its basis and consider

(O×
HF

)AdF

L = φ(AdF ) ⊆ O×
HF
⊗ L.

Under the extra assumption that αp(F ) ̸= −βp(F ) or ϱF is induced from a character of an imaginary

quadratic field in Hypothesis B, the subspace

UFα
=

{
u ∈ (O×

HF
)AdF

L

∣∣∣∣ σp(u) = αp(F )

βp(F )

}
is one-dimensional [DLR15, Lemma 1.6]. In any case, we let uFα ∈ UFα be a non-torsion element.

Conjecture 6.5 (Elliptic Stark Conjecture, rank one case). Assume Hypotheses A, B, C and that

r(E, ϱgh) ≥ 1. If r(E, ϱgh) > 1, then Lbal,f
p (1, 1) = 0. If r(E, ϱgh) = 1, then:

Lbal,f
p (1, 1) ∼√

L×

logE,p(Φ(vαα))

logp(ugα)
1/2 logp(uhα)

1/2
,

where

logp : (O×
H)L → Hp ⊗ L p-adic logarithm,

logE,p : E(H)L → Hp ⊗ L p-adic formal group logarithm for E.

Remark 6.6. We would like to thank Alan Lauder for suggesting the following sanity check. The left

hand side in the conjecture is independent of the number field H, whereas the right hand side seems to

depend on the Frobenius σp ∈ Gal(H/Q) and its eigenvalues for the Artin representations ϱg and ϱh.

However, the Frobenius σp acts on the right hand side as:

(αp(g)αp(h))
2

αp(g)
βp(g)

αp(h)
βp(h)

= αp(g)αp(h)βp(g)βp(h)

= χg(p)χh(p)

= 1.

Remark 6.7. Taking the formal group law exponential expE,p, we get an interesting formula for a p-adic

point on the elliptic curve E which is conjecturally in E(H)⊗ L:

expp(Lf,balp (1, 1) logp(ugα)
1/2 logp(uhα)

1/2)
?
∈ E(H)

Vgh

L ⊆ E(H)⊗ L.

6.2. Proof in the CM case. Let K/Q be an imaginary quadratic field of discriminant −DK in which

p splits. The next goal of the paper is to prove the Elliptic Stark Conjecture 6.5 in the case when ϱg and

ϱh are representations induced from Dirichlet characters of K.

6.2.1. Statement of the theorem. Let ψ : GK → C× be a finite order character of conductor c ⊆ OK . We

can then consider the associated Artin representation representation

Vψ = Ind
GQ
GK

ψ : GQ → GL2(C)

with determinant χ = detVψ = ψ ◦ Tr, where Tr: Gab
Q → Gab

K is the transfer map. The weight one

modular form associated with this Artin representation is explicitly constructed as a theta series for the

character of A×
K corresponding to ψ:

θψ ∈M1(DK ·NK/Q(c), χ).
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Moreover, θψ is a cusp form if and only if ψσ ̸= ψ where σ is a generator of Gal(K/Q). We will only be

interested in this case.

We consider two finite order characters ψg and ψh such that χh = χ−1
g , where χg = ψg ◦ Tr and

χh = ψh ◦ Tr, and ψσg ̸= ψg, ψ
σ
h ̸= ψh. Then we have associated modular forms

g = θψg ∈ S1(Ng, χ) h = θψg ∈ S1(Nh, χ).

Write c⋆ for the conductor of ψ⋆ for ⋆ ∈ {g, h}.
The goal is to study the Elliptic Stark Conjecture 6.5 in this example. We have a factorization

Vgh = Vψg
⊗ Vψh

∼= Vψgψh
⊕ Vψgψσ

h
,

and we will write

ψ1 = ψgψ
σ
h , ψ2 = ψgψh.

This corresponds to the factorization of L-functions

L(E, ϱgh, s) = L(E/K,ψ1, s)L(E/K,ψ2, s).

Hypothesis A is hence equivalent to the following hypothesis.

Hypothesis A’. We have that:

ϵ(E/K,ψ1) · ϵ(E/K,ψ2) = −1,

i.e. without loss of generality, ϵ(E/K,ψ1) = +1, ϵ(E/K,ψ2) = −1.

Next, we want to work out when Hypothesis B holds in this case. The values αp, βp depend on the

splitting of p in K:

{αp, βp} =

{ψ(σp), ψ(σp)} if (p) = pp splits,

{
√
ψ(σp),−

√
ψ(σp)} if (p) is inert.

.

Therefore, Hypothesis B amounts to the following.

Hypothesis B’. For ψ ∈ {ψg, ψh}:

• θψ is ordinary at p,

• θψ is not also the theta series of a character of a real quadratic field in which p splits,

• when p splits in K, ψ(σp) ̸= ψ(σp).

Finally, Hypothesis C is that for each prime ℓ such that ϵℓ(EK , ψ1) · ϵℓ(EK , ψ2) = −1, we have that

vℓ(Nf ), vℓ(NK/Qcg), vℓ(NK/Qch) ≤ 2. For simplicity, we make a slightly stronger assumption.

Hypothesis C’. For each prime ℓ of K such that ϵℓ(EK , ψ1) · ϵℓ(EK , ψ2) = −1, we have that:

• ϵℓ(EK , ψ2) = +1,

• vℓ(Nf ) = 1, vℓ(NK/Qcg) = 2, vℓ(NK/Qch) = 2.

Moreover, for each prime q of K such that ϵq(EK , ψ1) · ϵq(EK , ψ2) = +1, we have that ϵq(EK , ψ1) = +1

and ϵq(EK , ψ2) = +1.

Remark 6.8. We expect that the results of the section still hold under the weaker assumption, by

replacing of Appendix A by a generalization of the results of Brooks [HB15], and by calculating the local

integrals when all three representations are supercuspidal.

We consider three arithmetic quantities associated with our data of f , ψg, ψh:

• following [Gro87, Section 11] (more generally, [CST14]),

cf,ψ1
= πf

 ∑
σ∈Gal(H/Q)

ψ−1
1 (σ)sσ

 ,(6.1)
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where πf is the projection onto the f -isotypic component of an appropriate Shimura set S and

s ∈ S is a Heegner point for Hc(ψ1)/K;

• following [DLR15, p. 37] (cf. [LZZ18, Definition 3.3.1]),

Pψ2
= πf

 ∑
σ∈Gal(H/K)

ψ−1
2 (σ)tσ

 ∈ E(H)ψ2

L(6.2)

where πf is the modular parametrization by an appropriate Shimura curve X and t ∈ X is a

Heegner point for Hc(ψ2)/K;

• following [DLR15, p. 38], for ψ0 ∈ {ψg/ψσg , ψh/ψσh}, we let

uψ0
=

∑
σ∈Gal(H/K)

ψ−1
0 (σ)uσ ∈ (O×

H)ψ0

L(6.3)

where u is an elliptic unit for Hc(ψ0)/K and the unit group is written additively.

Theorem 6.9. Let K be an imaginary quadratic field and p be a prime which splits in K. Then, under

Hypothesis A’, B’, C’, the rank one Elliptic Stark Conjecture 6.5 holds. Explicitly, if r(EK , ψ1) = 0 and

r(EK , ψ2) = 1, then there is an explicit constant λ ∈
√
L× such that:

Lf,balp (1, 1) = λ ·

∈
√
L×︷ ︸︸ ︷

⟨cf,ψ1
, cf,ψ1

⟩1/2 ·
logE,p(Pψ2

)

logp(uψg/ψσ
g
)1/2 logp(uψh/ψσ

h
)1/2

,

where ⟨−,−⟩ is the height pairing on S.

Remark 6.10. The factor ⟨cf,ψ1
, cf,ψ1

⟩1/2 ∈ L× could, of course, be combined with λ ∈
√
L× in the

formula. However, we include it here, because it seems to describe the “arithmetic” contribution to the

special value associated with the character ψ1. It is quite interesting that this factor has a similar form

to the other (non-algebraic) factors, and may therefore be relevant to an integral version of the result or

to similar results in other settings.

The proof of this theorem is based on a factorization of the p-adic L-function corresponding to the

factorization

L(E, ϱgh, s) = L(E/K,ψ1, s) · L(E/K,ψ2, s).

Following [DLR15, Section 3.2], we recall two related p-adic L-functions.

6.2.2. The Katz p-adic L-function for K [Kat76]. Let Σ be the set of characters of K of conductor

dividing a fixed integral ideal c ⊆ OK . We then define ΣK = Σ
(2)
K ∪ Σ

(2′)
K where:

Σ
(2)
K = {ψ ∈ Σ of infinity type (κ1, κ2) with κ1 ≥ 1, κ2 ≤ 0},

Σ
(2′)
K = {ψ ∈ Σ of infinity type (κ1, κ2) with κ1 ≤ 0, κ2 ≥ 1}.

Katz defined a p-adic L-function

Lp(K) : Σ̂K → Cp

defined on the p-adic completion Σ̂K of ΣK with the interpolation property

Lp(K)(ψ) = a(ψ) · e(ψ) · f(ψ) ·
Ωκ1−κ2
p

Ωκ1−κ2
· Lc(ψ

−1, 0) for ψ ∈ Σ
(2)
K ,(6.4)

where:

• a(ψ) = (κ1 − 1)π−κ2 , e(ψ) = (1− ψ(p)p−1)(1− ψ−1(p)) and f(ψ) = D
κ2/2
K 2−κ2 ,

• Ω ∈ C× and Ωp ∈ C×
p are CM periods attached to K, cf. [BDP12, (2-15), (2-17)],

• Lc(ψ
−1, s) is the c-depleted Hecke L-function associated with ψ−1.
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It satisfies a functional equation of the form

Lp(K)(ψ) = Lp(K)((ψσ)−1NK/Q),(6.5)

relating the values in Σ
(2)
K to Σ

(2′)
K .

A finite order Hecke character ψ has trivial infinity type and hence lies outside ΣK , i.e. outside

the interpolation range (6.4); however it still belongs to Σ̂K . Katz proves a p-adic Kroenecker limit

formula [DLR15, (47)]:

Lp(ψ) =
−1

24NK/Qc
e(ψ) logp(uψ), for ψ of finite order,(6.6)

for uψ defined in (6.3).

κ1

κ2

p-adic Kronecker
formula equation (6.6)

functional equation
equation (6.5)

Σ
(2)
K

Interpolation
equation (6.4)

Σ
(2′)
K

central
critical
line

Figure 2. The following diagram shows the diagram of infinity types (κ1, κ2) for the

characters in Σ. We indicate interpolation region Σ
(2)
K for the Katz p-adic L-function in

blue (6.4), the functional equation (6.5) with the axis of symmetry given by the dotted
line, and the point where the p-adic Kroenecker limit formula (6.6) is valid. The dashed
line is the central critical line

6.2.3. The BDP p-adic Rankin L-function for f and K. For any character ψ of K with infinity type

(κ1, κ2), we consider the Rankin–Selberg L-function associated with f and θψ:

L(f, ψ, s) = L(f × θψ, s− (κ1 + κ2 + 1)/2).

When the conductor of ψ is coprime to the level Nf of f , a p-adic L-function was constructed in [BDP13]

and a special value formula outside of the interpolation range was proved.

Assume Hypothesis A.1, i.e. Nf = N+N− and N− is a square-free product of finite primes. Let c ≥ 1

be a positive integer relatively prime to pN+ and divisible by N−. Bertolini–Darmon–Prasanna assume

that N− = 1, but we prove the analogue of their results in Appendix A.

Let Σf,c be the set of characters defined in Definition A.4, so that for ψ ∈ Σf,c, L(f, ψ, s) is self-dual

and has s = 0 as its central critical point. Note that Σf,c naturally decomposes as

Σf,c = Σ
(1)
f,c ∪ Σ

(2)
f,c ∪ Σ

(2′)
f,c ,

Σ
(1)
f,c = {ψ of infinity type (1, 1) | ψ ◦ Tr = 1},
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Σ
(2)
f,c = {ψ of infinity type (κ+ 2,−κ) for κ ≥ 1},

Σ
(2′)
f,c = {ψ of infinity type (−κ, κ+ 2) for κ ≥ 1}.

We next summarize Theorem A.5 which is a generalization of the main results of [BDP13].

There is a p-adic L-function

Lp(f,K) : Σ̂f,c → C×
p

defined on the p-adic completion Σ̂f,c of Σf,c with the interpolation property

Lp(f,K)(ψ) = a(f, ψ) · e(f, ψ)2 · f(f, ψ) ·
Ω4κ+4
p

Ω4κ+4
· L(f, ψ−1, 0) ψ ∈ Σ

(2)
f,c,(6.7)

where

• a(f, ψ) = κ!(κ+ 1)!π2κ+1, e(f, ψ) = 1− ap(f)ψ−1(p) + ψ−2(p)p,

• f(f, ψ) = (2/c
√
DK)2κ+1 ·

∏
q|c0

q−χK(q)
q−1 ·

∏
q|c−

q2

1−q2 ·ω(f, ψ)
−1, and ω(f, ψ) ∈ Q is defined in [BDP13,

(5.1.11)].

Next, for a finite order character ψ ofK, we have that ψNK ∈ Σ
(1)
f,c which is outside of the interpolation

range (6.7) and Bertolini–Darmon–Prasanna prove the following p-adic Gross–Zagier formula:

Lp(f,K) =

(
1− ap(f)

ψ(p)p
+

1

ψ2(p)p

)2

· logp(Pψ)2,(6.8)

for Pψ defined in (6.2).

κ1

κ2

p-adic
Gross–Zagier
formula (6.8)

functional equation

Σ
(2)
f,c

Interpolation
equation (6.7)

Σ
(2′)
f,c

central
critical
line

Figure 3. The following diagram shows the diagram of infinity types (κ1, κ2) for the

character in Σ. We indicate interpolation region Σ
(2)
f,c for the BDP p-adic L-function

in blue (6.4), the expected functional equation with the axis of symmetry given by the
dotted line, and the point where the p-adic Gross–Zagier formula (6.8) is valid.
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6.2.4. Gross’ formula. The following formula was originally discovered by Gross [Gro87, Proposition

11.2] in a special case and proved in full generality in [CST14, Theorem 1.10]:

(6.9)
L(Σ)(f, ψ, 1)

π2⟨f, f⟩
= 23

⟨cf,ψ, cf,ψ⟩
[O×

c : Z×]2c
√
DK

,

for cf,χ defined in (6.1) and Σ = {v places dividing (N, c)}. In particular,
√
DKL(f,ψ,1)
π2⟨f,f⟩ lies in the number

field Q(f, ψ).

6.2.5. Explicit CM Hida families. We follow [DLR15, Section 3.2] to recall Hida’s construction of an

explicit CM Hida family F specializing in weight one to Fα ∈ {gα, hα}. Recall that for a finite order

character ψ of K such that ψσ ̸= ψ, we have an associated cusp form:

θψ ∈ S1(DKNK/Q(c), χ).

We fix a character λ of infinity type (0, 1) and conductor p and valued in Q(λ). Let Qp(λ) be the p-adic

completion of Q(λ) determined by a fixed embedding Q(λ) ↪→ Qp. We have that

O×
Qp(λ)

= µ×W

where µ is finite and W is a free Zp-module, and we write

⟨−⟩ : O×
Qp(λ)

→W

for the projection.

For ψ ∈ {ψg, ψh} and every integer k ≥ 1, define

(6.10) ψ
(p)
k−1 = ψ⟨λ⟩k−1

which is independent on the choice of λ, and let

(6.11) ψk−1(q) =

ψ
(p)
k−1(q) q ̸= p,

χF (p)p
k−1/ψ

(p)
k−1(p) q = p.

Then the ordinary p-stabilization of the associated theta series:

(6.12) Fk = θψk−1
∈ Sk(DKNK/Q(c(ψF )), χF )

is the weight k specialization of the Hida family F and, by definition, F1 = F .

6.2.6. Factorization of the p-adic L-function. We are now ready prove the factorization of the triple prod-

uct balanced p-adic L-function. We start by recalling the factorization of the classical L-functions, then

analyze the periods, and finally deal with the auxillary factors. The resulting statement is Theorem 6.14

below.

Note that the norm NK from K to Q can be regarded as a Hecke character of K of infinity type (1, 1).

Since ⟨λ⟩ has infinity type (0, 1), ⟨λλσ⟩ has infinity type (1, 1) and we may identify it with NK .

Note that:

Vgℓ ⊗ Vhℓ
= V

ψ
(p)
g,ℓ−1

⊗ V
ψ

(p)
h,ℓ−1

∼= V
ψ

(p)
g,ℓ−1ψ

(p)
h,ℓ−1

⊕ V
ψ

(p)
g,ℓ−1ψ

(p),σ
h,ℓ−1

and

ψ
(p)
g,ℓ−1 · ψ

(p)
h,ℓ−1 = ψg · ψh · ⟨λ⟩2ℓ−2 = ψ2⟨λ⟩2ℓ−2

ψ
(p)
g,ℓ−1 · ψ

(p),σ
h,ℓ−1 = ψg · ψσh · ⟨λλσ⟩ℓ−1 = ψgψ

σ
hN

ℓ−1
K = ψ1N

ℓ−1
K .

Via the Artin formalism, the above results in a factorization of the triple product L-function:

L(f × gℓ × hℓ, s) = L(fK × ψ2⟨λ⟩2ℓ−2, s) · L(fK × ψ1, s− (ℓ− 1)),
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where θψ1⟨λ⟩2k−2 has weight 2k − 1 and θψ2
has weight 1.

By Corollary 6.4, we know that Lbal,f
p (ℓ, ℓ) is related to:

L(f × gℓ × hℓ, ℓ) = L(fK × ψ2⟨λ⟩2ℓ−2, ℓ) · L(fK × ψ1, 1)

= L(fK × ψ2⟨λ⟩2ℓ−2N−ℓ
K , 0) · L(fK × ψ1, 1).

More specifically, dividing by the period ⟨f, f⟩⟨gℓ, gℓ⟩⟨hℓ, hℓ⟩, we have:

L(f × gℓ × hℓ, ℓ)
⟨f, f⟩⟨gℓ, gℓ⟩⟨hℓ, hℓ⟩

=
1

⟨gℓ, gℓ⟩⟨hℓ, hℓ⟩
· L(fK × ψ2⟨λ⟩2ℓ−2N−ℓ

K , 0) · L(fK × ψ1, 1)

⟨f, f⟩
.(6.13)

Note that

Ψgh(ℓ) = ψ−1
2 ⟨λ⟩−2ℓ+2N ℓ

K ∈ Σ
(2)
K

has infinity type (ℓ,−ℓ+ 2), so by equation (6.7):

(6.14) L(fK ×Ψgh(ℓ)
−1, 0) = a(Ψgh(ℓ))

−1 · e(f,Ψgh(ℓ))−1 · f(Ψgh(ℓ))−1 · Ω
4ℓ−4

Ω4ℓ−4
p

· Lp(f,K)(Ψgh(ℓ)).

Next, define for F ∈ {g, h}
ΨF (ℓ) = ψ−2

F,ℓ−1χFN
ℓ
K

and recall fact from [DLR15, Lemma 3.8]: for some K-admissible functions f2(k), f3(k)

Lp(K)(ΨF (ℓ)) =
e(ΨF (ℓ))f(ΨF (ℓ))

f2(ℓ) · f3(ℓ)
· ⟨Fℓ, Fℓ⟩ ·

(
πΩp
Ω

)2ℓ−2

.(6.15)

Thus equation (6.13) becomes

Λ(f × gℓ × hℓ, ℓ)
⟨f, f⟩⟨gℓ, gℓ⟩⟨hℓ, hℓ⟩

· Lp(K)(ψg(ℓ)) · Lp(K)(ψh(ℓ)) =
e(Ψg(ℓ))f(Ψg(ℓ))e(Ψh(ℓ))f(Ψh(ℓ))

f2(ℓ)2f3(ℓ)2e(f,Ψgh(ℓ))f(Ψgh(ℓ))

· Lp(f,K)(Ψgh(ℓ)) ·
L(fK × ψ1, 1)

π2⟨f, f⟩
,

where we have canceled the factor a(Ψgh(ℓ)) with the other powers of π and the Γ-factors for the triple

product L-function.

Next, using Corollary 6.4, we get that:

Lbal,f
p (ℓ, ℓ)2 · Lp(K)(ψg(ℓ)) · Lp(K)(ψh(ℓ)) = E(ℓ) · F(ℓ) · Lp(f,K)(Ψgh(ℓ)) ·

L(fK × ψ1, 1)

π2⟨f, f⟩
,

where

E(ℓ) =
Ebalp (Vκ) · Ep(fα,Ad) · e(Ψg(ℓ)) · e(Ψh(ℓ))

e(f,Ψgh(ℓ))
,(6.16)

F(ℓ) = 23−2ℓ f(Ψg(ℓ))f(Ψh(ℓ))

f2(ℓ)2f3(ℓ)2f(Ψgh(ℓ))
.(6.17)

Lemma 6.11. For any ℓ ≥ 0,

E(ℓ) = (1− βfψ1(p)p
−1)(1− βfψ1(p)p

−1).

Proof. We recall that

Lp(θψℓ−1
, s) = Lp(ψℓ−1, s) · Lp(ψℓ−1, s)

and hence for F ∈ {g, h}

αF = ψF (p)⟨λ(p)⟩ℓ−1

βF = χF (p)p
ℓ−1/αF = pℓ−1ψF (p)⟨λ(p)⟩1−ℓ.

We first check that for F ∈ {g, h}:

Ep(Fα,ℓ,Ad) = e(ΨF (ℓ)),(6.18)
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Indeed, according to [Hsi21, p. 416]

Ep(Fα,ℓ,Ad) = (1− α−2
F χF (p)p

ℓ−1)(1− α−2
F χF (p)p

ℓ−2)

= (1− ψF (p)−2⟨λ(p)⟩−2ℓ+2χF (p)p
ℓ−1)(1− ψF (p)−2⟨λ(p)⟩−2ℓ+2χF (p)p

ℓ−2),

while

e(ΨF (ℓ)) = (1−ΨF (ℓ)(p)p
−1)(1−ΨF (ℓ)

−1(p))

= (1− ψ−2
F,ℓ−1(p)χF (p)p

ℓp−1)(1− (ψ−2
F,ℓ−1(p)χF (p)p

ℓ)−1)

= (1− ψF (p)−2⟨λ(p)⟩−2ℓ+2χF (p)p
ℓ−1)(1− (χF (p)p

ℓ−1/(ψF (p)⟨λ(p)⟩)ℓ−1)2χF (p)
−1p−ℓ)

= (1− ψF (p)−2⟨λ(p)⟩−2ℓ+2χF (p)p
ℓ−1)(1− ψF (p)−2⟨λ(p)⟩−2ℓ+2χF (p)p

ℓ−2),

verifying equation (6.18).

Therefore, we have:

Ebalp (Vκ) · Ep(fα,Ad) · e(Ψg(ℓ))e(Ψh(ℓ)) = (1− αfβgβhp−ℓ)(1− βfαgβhp−ℓ)(1− βfβgαhp−ℓ)(1− βfβgβhp−ℓ)

= (1−αf (ψgψh)(p)⟨λ(p)⟩2−2ℓpℓ−2)(1−βf (ψgψσh)(p)p−1)(1−βf (ψgψσh)(p)p−1)(1−βf (ψgψh)(p)⟨λ(p)⟩2−2ℓpℓ−2)

It remains to observe that:

e(f,Ψgh(ℓ)) = (1− αfΨ−1
gh (p))(1− βfΨ

−1
gh (p))

= (1− αfψ2(p)⟨λ(p)⟩2ℓ−2p−ℓ)(1− βfψ2(p)⟨λ(p)⟩2ℓ−2p−ℓ)

= (1− αf (ψgψh)(p)⟨λ(p)⟩2ℓ−2p−ℓ)(1− βf (ψgψh)(p)⟨λ(p)⟩2ℓ−2p−ℓ),

and use pp = (p). ■

Remark 6.12. Note that:

Lp(fK × ψ1, s)
−1 = (1− αfψ1(p)p

−s)(1− βfψ1(p)p
−s)(1− αfψ1(p)p

−s)(1− βfψ1(p)p
−s)

and hence the factor E(ℓ) is part of the local L-factor at p of L(fK × ψ1, 1).

Lemma 6.13. The function F(ℓ) is K(ψg, ψh)-admissible according to [DLR15, Definition 3.5], i.e. it

extends to an element of FracO(U) and F(1) ∈ K(ψg, ψh)
×.

Proof. This follows from the same argument as the proof of [DLR15, Lemma 3.6]. ■

Altogether, this gives the following result.

Theorem 6.14. There is a factorization:

Lbal,f
p (ℓ, ℓ)2 · Lp(K)(ψg(ℓ)) · Lp(K)(ψh(ℓ)) = F(ℓ) · Lp(f,K)(Ψgh(ℓ)) ·

L(fK × ψ1, 1)

⟨f, f⟩
· E(ℓ).

Then Theorem 6.9 follows by evaluating the above factorization at ℓ = 1 and using equations (6.6), (6.8),

and (6.9).

Appendix A. A generalization of results of Bertolini–Darmon–Prasanna

A.1. Statement of the results. Let f be a weight two cuspidal eigenform for Γ0(N), which we assume

to have trivial Nebentypus for simplicity. Let K be an imaginary quadratic field of discriminant −DK

and p be a prime which splits in K. For any Hecke character ψ of K with infinity type (κ1, κ2), we

consider the Rankin–Selberg L-function associated with f and θψ:

L(f, ψ, s) = L(f × θψ, s− (κ1 + κ2 + 1)/2).
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We will assume the condition:

(A.1) ψ|A× = | · |2,

where | · | is the norm character of Q, which ensures the L-function L(f, ψ, s) is self-dual with central

critical value at s = 0.

Under the Heegner hypothesis (if q|N , then q is either split of ramified in K and if q2|N , then q is split

in K) and the assumption that the conductor of ψ is coprime to the level N of f , Bertolini, Darmon, and

Prasanna [BDP13] constructed a p-adic L-function interpolating the critical values L(f, ψ−1, 0) when

κ1 ≥ 1 and κ2 ≤ 0, and proved a special value formula for κ1 = κ2 = 0.

The goal of this appendix is to reprove their result, allowing a squarefree product of inert primes to

divide N .

Hypothesis A.1. If q2|N , then q is split in K.

Instead, we make the following assumption on the conductor of ψ under which ϵq(f, ψ) = +1 at the

inert primes q dividing N .

Hypothesis A.2. Let N0 be the product of primes dividing N which are inert in K. Then the conductor

of ψ is divisible exactly by N0 and coprime to N/N0.

Remark A.3. The weak Heegner hypothesis allows a product N− of an even number of inert primes to

divideN . Assuming that the conductor of ψ is coprime toN — the opposite to Hypothesis A.2 — we have

that ϵq(f, ψ) = −1 for all primes q|N−. The integral representation for the Rankin–Selberg L-function

is then on a Shimura curve associated with a quaternion algebra of discriminant N−. A generalization

of the results of Bertolini–Darmon–Prasanna to this setting was obtained by Brooks [HB15].

As mentioned above, our Hypothesis A.2 instead forces ϵq(f, ψ) = +1 at all primes q|N0, and in fact

we will assume that ϵq(f, ψ) = +1 for all q, so that the integral representation for L(f, ψ, s) is still on

the modular curve. This is why we do not require the parity assumption.

Finally, combining the results of this appendix with the results of Brooks, one could presumably allow

N0 ·N−|N where N− is a product of an even number of inert primes, and the conductor of ψ is divisible

exactly by N0, and coprime to N/N0. We decided not to pursue this generality here.

Under Hypothesis A.1, there is an ideal N of OK of norm NN0; we fix such an ideal. Given an integer

c ≥ 1 divisible exactly by N0 and coprime to (N/N0)DK , we consider an order Oc of OK of conductor

c. Setting Nc = N ∩ Oc, we have:

Oc/Nc
∼= Z/NZ.

Indeed, for q|N coprime to c, if q|q then

Oc,q/Nc,q
∼= OK,q/Nq

∼= Z/(qvq(N))Z.

Moreover, for q|N0, Oc,q = Z+ qOKq and:

Oc,q/Nc,q = (Z+ qOKq )/qOKq
∼= Z/qZ.

Note that for q|N0, 1 + qOKq ⊆ O×
c,q ⊆ O×

Kq
and

O×
c,q/(1 + qOKq

) O×
Kq
/(1 + qOKq

) O×
Kq
/O×

c,q

F×
q F×

q2 F×
q2/F

×
q

∼= ∼= ∼=

In particular, a character of O×
Kq

which is trivial on O×
c,q has conductor at most 1 and is trivial on

F×
q ⊆ F×

q2 .
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Definition A.4. Let Σf,c denote the set of Hecke characters ψ of K such that:

(1) ψ|Ô×
c
= 1, but for q|N0, ψq|O×

K,q
̸= 1,

(2) the infinity type (κ1, κ2) of ψ satisfies κ1 + κ2 = 2,

(3) ψψσ = | · |2,
(4) ϵq(f, ψ

−1) = +1 for all finite primes q.

By the above discussion, if ψ ∈ Σf,c, then ψq for q|N0 has conductor 1 and ψ|Z×
q
= 1. In particular,

assumption (1) in the definition implies Hypothesis A.2. If N0 = 1, this agrees with Σf,cc in [BDP13].

The final condition is automatic except possibly for the primes in the set:

S(f) = {q | q divides N and DK}.

For example, if N is coprime to DK , S(f) = ∅.
For ψ ∈ Σf,c, L(f, ψ, s) is self-dual and has s = 0 as its central critical point. Moreover, Σf,c naturally

decomposes as

Σf,c = Σ
(1)
f,c ∪ Σ

(2)
f,c ∪ Σ

(2′)
f,c ,

Σ
(1)
f,c = {ψ of infinity type (1, 1)},

Σ
(2)
f,c = {ψ of infinity type (κ+ 2,−κ) for κ ≥ 1},

Σ
(2′)
f,c = {ψ of infinity type (−κ, κ+ 2) for κ ≥ 1}.

Theorem A.5.

(1) There is a p-adic L-function Lp(f,K) : Σ̂f,c → C×
p defined on the p-adic completion Σ̂f,c of Σf,c

with the following interpolation property:

Lp(f,K)(ψ)

Ω4κ+4
p

= a(f, ψ) · e(f, ψ)2 · f(f, ψ) · L(f, ψ
−1, 0)

Ω4κ+4
ψ ∈ Σ

(2)
f,c,

where

• a(f, ψ) = κ!(κ+ 1)!π2κ+1, e(f, ψ) = 1− ap(f)ψ−1(p) + ψ−2(p)p,

• f(f, ψ) = (2/c
√
DK)2κ+1

∏
q|c/N0

q−χK(q)
q−1

∏
q|N0

q2−1
q2 · ω(f, ψ)

−1, and ω(f, ψ) ∈ Q is defined in

[BDP13, (5.1.11)].

(2) For a finite order character ψ of K, ψNK ∈ Σ
(1)
f,c which is outside of the interpolation range (6.7),

there is a p-adic Gross–Zagier formula:

Lp(f,K) =

(
1− ap(f)

ψ(p)p
+

1

ψ2(p)p

)2

· logp(Pψ)2,

for Pψ defined by:

Pψ = πf

 ∑
σ∈Gal(Hc/K)

ψ−1(σ)tσ

 ∈ E(Hc)
ψ2

L

for a Heegner point t for Hc/K.

Remark A.6. We remark that Liu–Zhang–Zhang [LZZ18] proved a formula similar to part (2) of the

above theorem for any abelian variety parameterized by a Shimura curve over a totally real field. In

particular, in the case of Shimura curves over Q, they removed all the ramification hypothesis in [BDP13,

HB15].

However, their construction of the p-adic L-function does not have an interpolation property as explicit

as (1). More specifically, (1) can be interpreted as an equality in Q (or even an explicit finite extension of

Q), having fixed embeddings Q ↪→ C,Cp. Crucially, the CM periods Ω and Ωp make both sides algebraic.
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The interpolation property of Liu–Zhang–Zhang is not an equality of algebraic numbers and relies on

an identification C ∼= Cp. In particular, the CM periods do not show up in their interpolation property,

and we have not find a direct way to deduce the above result from their work.

A.2. An explicit Waldspurger formula. The crux of the proof of Theorem A.5 is to give an explicit

version of Waldspurger’s formula, generalizing [BDP13, Theorem 4.6].

Theorem A.7. Let f be a normalized eigenform in S2(N) and let ψ ∈ Σ
(2)
f,c be a Hecke character of K

of infinity type (2 + j,−j). Suppose also that c and DK are odd, and let wK denote the number of roots

of unity in K. Then:

C(f, ψ, c) · L(f, ψ−1, 0) =

∣∣∣∣∣∣
∑

[a]∈Pic(Oc)

χ−1(a)Na−j · (δjkf)(a
−1, ta)

∣∣∣∣∣∣ ,
where the representatives of the ideal classes in Pic(Oc) are chosen to be coprime to the Nc and the

constant C(f, ψ, c) ∈ C is given by:

C(f, χ, c) =
1

4
πk+2j−1Γ(j + 1)Γ(k + j)wK |DK |1/2 · c vol(Oc)−ℓ · 2#Sf ·

∏
q|c/N0

q − χK(q)

q − 1
·
∏
q|N0

q2 − 1

q2
.

Proof. The proof in [BDP13, Section 4] can be applied verbatim to our case, until the local calculations

in Section 4.6. The extra local integral is then computed in the next section, resulting in Proposition A.8.

■

A.3. The key computation. The assumption in [BDP13] that the conductor of ψ is coprime to the

level N of f is used in the explicit computations of the local zeta integrals in Section 4.6. We use the

same notation as loc. cit. but consider the following extra setting:

• let Qq2 = Qq[ϖ] where ϖ2 ∈ Q×
q is a unit is the unramified quadratic extension of Qq, and let σ

be the non-trivial automorphism of Qq2 over Qq,
• ψ is an anticyclomotic character of Q×

q2 of conductor r ≥ 1 such that ψ ̸= ψσ and ψ|Q×
q

= 1,

(here, anticyclotomic means that ψψσ = 1; in particular, note that ψ2 ̸= 1),

• π is the Steinberg representation St of GL2(Qq).

Analogously to p. 1118 of loc. cit. we consider:

J(ς, ϑ) =

∫
NQ

q2
/Qq (Q

×
q2

)

WF (d(a))WΘ,ς(d(a))Φ
s
ϑ(d(a))|a|−1d×a.

As written, the equation in [BDP13] involves the integral of Q×
q , but tracing back the reference [Pra06,

Section 3] reveals this is the correct generalization at inert places.

We also recall from Proposition 4.24 of loc. cit. that:

WΘ,ς(d(a)) =

∫
Q(1)

q2

ς(h−1(h′)σ)ψ(hh′) dh

for any h′ such that N(h′) = a, where

Q(1)
q2 = {x ∈ Qq2 | N(x) = 1} ⊆ Z×

p2

and the Haar measure is normalized so that vol(Q(1)
q2 ) = 1.

We recall that the group of norm one elements in the unramified quadratic extension of Qp has the

following description:

Q(1)
q2 =

{
t

tσ

∣∣∣∣ t ∈ Z×
q2

}
.(A.2)
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Therefore,

WΘ,ς(d(a)) =

∫
Z×
q2

ς((th′)σ/t)ψ(th′/tσ) dt.

We choose:

• ς = IZq+qrϖZq
, the indicator function of Zq + qrϖZq ⊆ Zq +ϖZq = Zq2 ,

• ϑ = I(Zq+qrZqϖ)j where j =

(
1 0

0 −1

)
• WF (d(a)) = |a|IZq

(a), since π = St (cf. Proposition 4.23 of loc. cit.).

Then ς((th′)σ/t) = 1 if and only if

(th′)σ/t ∈ Zq + qrϖZq.

For x ∈ Zq2 , the condition x ∈ Zq+qrϖZq is equivalent to vq(x−xσ) ≥ r. Therefore, the above condition
is simply:

vq((t
σ)2(h′)σ − t2h′) ≥ r.

Next, we observe that for v(h′) ≥ r, this condition is automatic, and in this case:

WΘ,ς(d(a)) = ψ(h′)

∫
Z×
q2

(ψ/ψσ)(t) dt

= 0 ψ/ψσ ̸= 1.

Since WF (d(a)) = |a|IZq (a) and h′(h′)σ = a, the remaining part of the integral J(ς, ϑ) has 0 ≤
vq(h

′) ≤ r − 1. Fix m = v(h′) and write h′ = qm · u for u ∈ Z×
q2 . Then:

(tσ)2(h′)σ − t2h′ = qm((tσ)2uσ − t2u),

and the condition on the valuation can be concisely written as

t2u ≡ (t2u)σ mod qr−m.

Dividing both sides by the unit ttσ gives the equivalent condition:

tu/tσ ≡ (tu/tσ)σ mod qr−m.

Finally, this shows that:∫
vq(a)=2m

WF (d(a))WΘ,ς(d(a))|a|s−1d×a =

∫∫
u,t∈Z×

q2

tu/tσ≡(tu/tσ)σ mod qr−m

ψ(tu/tσ) d×u d×t

=

∫∫
v,t∈Z×

q2

v≡vσ mod qr−m

ψ(v) d×v v = t/tσu.

Now, if m ≥ 1, this final integral is 0, because there exists v0 ∈ Z×
q2 such that v0 ≡ 1 mod qr−m and

ψ(v0) ̸= 1.

For v ∈ Z×
q2 such that v ≡ vσ mod qr, there exists v0 ∈ Z×

q such that v0 ≡ v mod qr, and hence

ψ(v) = ψ(v0) = 1,

since ψ|Z×
q
= 1. Altogether, this shows that:

J(ς, ϑ) = vol(Z×
q2) · vol{v ∈ Z×

q× | v ≡ v
σ mod qr}.
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Next, recall that the measure is normalized so that vol(Q(1)
q2 ) = 1 and hence by equation (A.2), we

also have vol(Z×
q2) = 1. To compute J(ς, ϑ), it remains to compute the index of

S = {v ∈ Z×
q2 | v ≡ v

σ mod qr}

in Z×
q2 . We consider the intersection of S with the filtration Un = 1 + qnZ×

q2 on U0 = Z×
q2 . Clearly, for

n ≥ r, Sn = S ∩Un = Un because the condition vσ ≡ v mod pr is automatically satisfied. The successive

quotients of the filtration are:

U0/U1
∼= F×

q2

Un/Un+1
∼= Fq2

and for n < r the condition v ≡ vσ mod qr gives:

S0/S1
∼= F×

q ,

Sn/Sn+1
∼= Fq.

Overall, this shows that:

[Z×
q2 : S] =

q2 − 1

q − 1
· qr−1.

Therefore, finally:

J(ς, ϑ) =
q − 1

qr−1(q2 − 1)
.

We rephrase this result as in Section 4.6 of loc. cit.

Proposition A.8. For the above choices of ς and ϑ, we have

J(ς, ϑ) =
1

qr
q − 1

q + 1
· Lq(πf , πη′ , s)Lq(2s, ϵK)−1|s=1/2.

Proof. We recall that:

• Lq(1, ϵK) = 1
1+1/q = q

q+1 ,

• by [Jac72, Theorem 15.1], since π = St, we have

L(s, π × πψ) = L(s, πψ ⊗ | · |1/2) = L(s+ 1/2, πψ) = L(s+ 1/2, ψ),

and hence:

L(1/2, π × πψ) = L(1, ψ) =
1

1− ψ(q)q−2
=

1

1− q−2
=

q2

q2 − 1
.

Thus:

I(ς, ϑ)

Lq(πf , πη′ , s)Lq(2s, ϵK)−1|s=1/2
=

q − 1

qr−1(q2 − 1)

q2 − 1

q2
q

q + 1

=
1

qr
· q − 1

q + 1
. ■

A.4. Finishing the proof. Theorem A.5 is again proved by following [BDP13, Section 5] word-for-word,

and replacing Theorem 4.6 of loc. cit, with Theorem A.7 above.

Appendix B. Examples

The hypotheses of Conjecture 6.5 and Theorem 6.9 may seem quite restrictive at first glance, so in this

section we collect many examples where they are satisfied. Even though we have only provided evidence

for the conjecture in the CM case so far, we still wish to give instances where the conjecture could

be verified numerically by adapting the algorithms in [Dal23a]. We hope to carry out this numerical

verification in future work.
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We divide the examples into four categories, namely:

(1) h = g∗, weight 1 forms with CM by the same field K;

(2) h ̸= g∗, weight 1 forms with CM by the same field K;

(3) h = g∗, weight 1 forms without CM;

(4) h ̸= g∗, weight 1 forms without CM.

Recall that we denote the form obtained by complex conjugation from g by g∗ and that its corresponding

representation is the contragredient of πg. In the CM cases, K represents the imaginary quadratic field.

As in the previous sections, we denote the various analytic ranks by r(EK) = ords=1(L(EK , s)), and

r(EK , ψ) = ords=1(L(EK , ψ, s)). We always consider elliptic curves with analytic (and algebraic) rank

0 over Q. In the first two categories of examples, we keep track of which among the various Hypotheses

A, B, C, A’, B’, and C’ is satisfied. All our computations are made with the help of magma [BCP97] and

we make extensive use of the LMFDB Database [LMF24]; all the labels refer to items listed there. We

developed a simple procedure for computing the Hecke characters ψg and ψh and hence studying order

of vanishing of the L-functions; these routines can be found at [2]. In the following tables, we highlight

the primes of supercuspidal type in blue.

B.1. CM case, h = g∗. We consider here the case of h = g∗ with CM by K. In this situation, the

two characters ψ1 and ψ2 of Section 6 are, respectively, 1 and ψ = ψgψ
σ
h = ψg/ψ

σ
g , for σ the generator

of Gal(K/Q). For each example below, we checked that Hypotheses A’, B’, and C are satisfied, so the

Elliptic Stark Conjecture 6.5 applies. The stronger hypothesis C’, under which Theorem 6.9 applies, is

only sometimes satisfied so we separate the examples into Tables 1 and 2, accordingly.
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Table 1. Examples where h = g∗, both with CM by the same field K. Hypotheses A’,
B’, and C’ are satisfied; Theorem 6.9 applies.

E Level g = h∗ Level r(EK) + r(EK , ψ) K p

14.a2 2 · 7 1911.1.h.c 3 · 72 · 13 0 + 1 Q(
√
−39) 41

14.a.2 2 · 7 1911.1.h.d 3 · 72 · 13 0 + 1 Q(
√
−39) 5

17.a1 17 2023.1.c.a 7 · 172 0 + 1 Q(
√
−7) 23

17.a1 17 2023.1.c.b 7 · 172 0 + 1 Q(
√
−7) 23

17.a1 17 2023.1.c.c 7 · 172 0 + 1 Q(
√
−7) 11

17.a1 17 2023.1.c.d 7 · 172 0 + 1 Q(
√
−7) 11

19.a.1 19 2527.1.d.c 7 · 192 0 + 1 Q(
√
−7) 11

21.a4 3 · 7 2695.1.l.a 5 · 72 · 11 0 + 1 Q(
√
−11) 37

21.a4 3 · 7 2695.1.g.i 5 · 72 · 11 0 + 1 Q(
√
−11) 67

26.a1 2 · 13 1183.1.d.a 7 · 132 0 + 1 Q(
√
−7) 11

26.b1 2 · 13 1183.1.d.a 7 · 132 0 + 1 Q(
√
−7) 11

34.a1 2 · 17 2023.1.c.a 7 · 172 0 + 1 Q(
√
−7) 11

34.a1 2 · 17 2023.1.c.b 7 · 172 0 + 1 Q(
√
−7) 11

34.a1 2 · 17 2023.1.c.d 7 · 172 0 + 1 Q(
√
−7) 11

52.a2 22 · 13 1183.1.d.a 7 · 132 0 + 1 Q(
√
−7) 11

55.a1 5 · 11 175.1.d.a 52 · 7 0 + 1 Q(
√
−7) 23

187.b1 11 · 17 2023.1.c.c 7 · 172 0 + 1 Q(
√
−7) 11

https://www.lmfdb.org/EllipticCurve/Q/14/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1911/1/h/c/
https://www.lmfdb.org/EllipticCurve/Q/14/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1911/1/h/d/
https://www.lmfdb.org/EllipticCurve/Q/17/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/a/
https://www.lmfdb.org/EllipticCurve/Q/17/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/b/
https://www.lmfdb.org/EllipticCurve/Q/17/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/c/
https://www.lmfdb.org/EllipticCurve/Q/17/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/EllipticCurve/Q/19/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2527/1/d/c/
https://www.lmfdb.org/EllipticCurve/Q/21/a/4
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2695/1/l/a/
https://www.lmfdb.org/EllipticCurve/Q/21/a/4
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2695/1/g/i/
https://www.lmfdb.org/EllipticCurve/Q/26/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/26/b/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/34/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/a/
https://www.lmfdb.org/EllipticCurve/Q/34/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/b/
https://www.lmfdb.org/EllipticCurve/Q/34/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/EllipticCurve/Q/52/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/55/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/175/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/187/b/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/c/
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Table 2. Examples where h = g∗, both with CM by K. Hypotheses A’, B’, and
C are satisfied, so Conjecture 6.5 applies. However, Theorem 6.9 does not apply as
Hypothesis C’ is not satisfied.

E Level g Level r(EK) + r(EK , ψ) K p

15.a3 3 · 5 525.1.be.a 3 · 52 · 7 0 + 1 Q(
√
−3) 13

15.a3 3 · 5 525.1.k.a 3 · 52 · 7 0 + 1 Q(
√
−3) 13

15.a3 3 · 5 693.1.h.a 32 · 7 · 11 1 + 0 Q(
√
−7) 11

30.a7 2 · 3 · 5 693.1.bp.a 32 · 7 · 11 1 + 0 Q(
√
−7) 11

35.a1 5 · 7 525.1.p.a 3 · 52 · 7 0 + 1 Q(
√
−3) 13

35.a1 5 · 7 525.1.u.a 3 · 52 · 7 0 + 1 Q(
√
−3) 13

35.a1 5 · 7 525.1.u.b 3 · 52 · 7 0 + 1 Q(
√
−3) 13

39.a4 3 · 13 1183.1.d.a 7 · 132 0 + 1 Q(
√
−7) 11

49.a4 72 539.1.c.b 72 · 11 0 + 1 Q(
√
−11) 5

51.a.1 3 · 17 2023.1.c.d 7 · 172 1 + 0 Q(
√
−7) 11

65.a2 5 · 13 1183.1.d.a 7 · 132 1 + 0 Q(
√
−7) 11

85.a.2 5 · 17 2023.1.c.a 7 · 172 1 + 0 Q(
√
−7) 23

85.a.2 5 · 17 2023.1.c.b 7 · 172 1 + 0 Q(
√
−7) 23

85.a.2 5 · 17 2023.1.c.d 7 · 172 1 + 0 Q(
√
−7) 23

195.a1 3 · 5 · 13 175.1.d.a 52 · 7 0 + 1 Q(
√
−7) 23

B.2. CM case, h ̸= g∗. We consider here the case of h ̸= g∗ with CM by the same field K and we

collect the examples into two tables. Note that, differently from the previous section (Section B.1), we

have ψ1, ψ2 ̸= 1, hence it becomes difficult to check Hypothesis C’ for the examples in Table 3 and

Table 4. This last condition can be checked by explicitly recovering the Hecke characters ψ1 and ψ2 via

[2] and computing the local ϵ-factors. We list a few forms satisfying all the Hypotheses A’, B’, and C

in Table 3. In these examples, Hypothesis C’ represents a rather strict assumption but, as observed in

Remark A.3, it can be relaxed by extending [HB15]. Some pairs are related by a twist of a Dirichler

character, while others are not. The latter represents the most interesting situation and one can notice

that the Artin representation Vg⊗Vh decomposes as direct sum of two irreducible two-dimensional Artin

representations. The second table of this section, that is, Table 4 presents a few examples not satisfying

Hypothesis C’, i.e. ones where Theorem 6.9 does not apply, but Conjecture 6.5 does.

https://www.lmfdb.org/EllipticCurve/Q/15/a/3
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/be/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/3
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/k/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/3
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/693/1/h/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/7
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/693/1/bp/a/
https://www.lmfdb.org/EllipticCurve/Q/35/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/p/a/
https://www.lmfdb.org/EllipticCurve/Q/35/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/EllipticCurve/Q/35/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/b/
https://www.lmfdb.org/EllipticCurve/Q/39/a/4
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/49/a/4
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/b/
https://www.lmfdb.org/EllipticCurve/Q/51/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/EllipticCurve/Q/65/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/85/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/a/
https://www.lmfdb.org/EllipticCurve/Q/85/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/b/
https://www.lmfdb.org/EllipticCurve/Q/85/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/EllipticCurve/Q/195/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/175/1/d/a/
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Table 3. Examples where h ̸= g∗ both with CM by the same field K. Hypotheses A’,
B’, and C’ are satisfied; Theorem 6.9 applies.

E Level
g Level

r(EK , ψ1) + r(EK , ψ2) K p

h Level

14.a1 2 · 7
539.1.c.a 72 · 11

0 + 1 Q(
√
−11) 5

2156.1.h.b 22 · 72 · 5

15.a1 3 · 5
175.1.d.a 52 · 7

0 + 1 Q(
√
−7) 11

1575.1.h.d 32 · 52 · 7

70.a1 2 · 5 · 7
525.1.u.a 3 · 52 · 7

0 + 1 Q(
√
−3) 13

2100.1.bn.a 22 · 3 · 52 · 7

77.b1 7 · 11
539.1.c.a 72 · 11

0 + 1 Q(
√
−11) 5

539.1.c.b 72 · 11

https://www.lmfdb.org/EllipticCurve/Q/14/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2156/1/h/b/
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/175/1/d/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1575/1/h/d/
https://www.lmfdb.org/EllipticCurve/Q/70/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/77/b/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/b/
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Table 4. Examples where h ̸= g∗ both with CM by the same field K. Hypotheses A’,
B’, and C are satisfied; Conjecture 6.5 applies.

E Level
g Level

r(EK , ψ1) + r(EK , ψ2) K p

h Level

15.a1 3 · 5
525.1.u.a 3 · 52 · 7

0 + 1 Q(
√
−3) 13

2100.1.bn.a 22 · 3 · 52 · 7

20.a1 22 · 5
525.1.u.a 3 · 52 · 7

0 + 1 Q(
√
−3) 13

525.1.u.b 3 · 52 · 7

42.a1 2 · 3 · 7
539.1.c.a 72 · 11

0 + 1 Q(
√
−11) 11

2156.1.h.b 22 · 72 · 5

55.a1 5 · 11
525.1.u.a 3 · 52 · 7

0 + 1 Q(
√
−3) 13

525.1.u.b 3 · 52 · 7

155.a2 5 · 31
525.1.u.a 3 · 52 · 7

0 + 1 Q(
√
−3) 13

2100.1.bn.a 22 · 3 · 52 · 7

155.a2 5 · 31
525.1.u.a 3 · 52 · 7

0 + 1 Q(
√
−3) 13

2100.1.bn.b 22 · 3 · 52 · 7

210.a1 2 · 3 · 5 · 7
525.1.u.a 3 · 52 · 7

0 + 1 Q(
√
−3) 13

2100.1.bn.a 22 · 3 · 52 · 7

210.d1 2 · 3 · 5 · 7
525.1.u.a 3 · 52 · 7

0 + 1 Q(
√
−3) 13

2100.1.bn.a 22 · 3 · 52 · 7

490.a1 2 · 3 · 5 · 7
525.1.u.a 3 · 52 · 7

0 + 1 Q(
√
−3) 13

2100.1.bn.a 22 · 3 · 52 · 7

Remark B.1. It is not automatic that finding the right level and character produces a situation where

our work applies. By Proposition 2.1 (2) ([Pra90, Proposition 8.5]), in order to obtain local sign

εℓ(E, ϱgh) = −1, the supercuspidal representations πg,ℓ and πh,ℓ need to satisfy πg,ℓ ∼= π∗
h,ℓ = πh∗,ℓ.

There are several examples which fail this final condition:

• g: 2023.1.c.a, 2023.1.c.b and h: 2023.1.c.c, 2023.1.c.d;

• g: 2527.1.d.c, 2527.1.d.d and h: 2527.1.d.f.

B.3. Non-CM case, h = g∗. In this section we report a few examples to which our Conjecture 6.5

applies, but the form g does not have CM, so Theorem 6.9 does not. We divide the examples depending

on the projective image of the Artin representation associated with g.

B.3.1. RM but no CM:. We begin by giving examples of some weight 1 modular forms with RM by a

field F/Q but without CM. When h = g∗, we once again have

(B.1) Vg ⊗ Vg∗ = IndFQ (1)⊕ Vψ,

https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/b/
https://www.lmfdb.org/EllipticCurve/Q/42/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2156/1/h/b/
https://www.lmfdb.org/EllipticCurve/Q/55/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/b/
https://www.lmfdb.org/EllipticCurve/Q/155/b/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/155/b/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/b/
https://www.lmfdb.org/EllipticCurve/Q/210/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/210/d/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/490/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/c/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2527/1/d/c/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2527/1/d/d/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2527/1/d/f/
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for ψ = ψg/ψ
σ
g ; here σ is a generator of Gal(F/Q).

Table 5. Examples where h = g∗, both with RM by F ; r(EF ) and r(EF , ψ) are
computed.

E Level g Level r(EF ) + r(EF , ψ) F p

15.a1 3 · 5 1025.1.i.a 52 · 41 0 + 1 Q(
√
5) 11

15.a1 3 · 5 1025.1.f.a 52 · 41 0 + 1 Q(
√
5) 11

20.a1 22 · 5 1025.1.i.a 52 · 41 0 + 1 Q(
√
5) 11

20.a1 22 · 5 1025.1.f.a 52 · 41 0 + 1 Q(
√
5) 11

21.a1 3 · 7 396.1.d.a 22 · 32 · 11 1 + 0 Q(
√
11) 5

30.a1 2 · 3 · 5 1025.1.i.a 52 · 41 0 + 1 Q(
√
5) 11

30.a1 2 · 3 · 5 1025.1.f.a 52 · 41 0 + 1 Q(
√
5) 11

39.a1 3 · 7 396.1.d.a 22 · 32 · 11 0 + 1 Q(
√
11) 5

B.3.2. A4: To compute these examples, we make wide use of the technical remarks in [DLR15, Section

5.1]. In this situation, Vg⊗Vg∗ decomposes as 1⊕Adg, for Adg the adjoint representation of g. Therefore

it is enough to compute the order of vanishing ords=1L(E,Adg, s). Let H be the Galois field defined by

the projective Artin representation associated with g, let h(x) be a degree 4 polynomial whose splitting

field is H. Denoting by M the field generated by a single root of h(x), by [DLR15, Section 5.1.1], we

have

(B.2) r(E,Adg) = ords=1L(E,Adg, s) = r(EM )− r(E).

Hence, ords=1L(f × g × h, 1) = r(EM ).

Table 6. Examples where h = g∗ is an exotic form of projective type A4; r(EM ) and
r(EH) are computed.

E Level g Level r(E) r(EM ) r(EH) Polynomial of M p

15.a1 3 · 5 325.1.u.a 52 · 13 0 1 3 x4 − x3 − 3 · x+ 4 11

26.a1 2 · 13 1183.1.x.a 7 · 132 0 1 3 x4 − x3 + 5 · x2 − 4 · x+ 3 11

26.a1 2 · 13 1183.1.z.a 7 · 132 0 1 3 x4 − x3 + 5 · x2 − 4 · x+ 3 11

26.a1 2 · 13 1183.1.bd.a 7 · 132 0 1 3 x4 − x3 + 5 · x2 − 4 · x+ 3 11

39.a1 3 · 13 1183.1.x.a 7 · 132 0 1 5 x4 − x3 + 5 · x2 − 4 · x+ 3 11

39.a1 3 · 13 1183.1.z.a 7 · 132 0 1 5 x4 − x3 + 5 · x2 − 4 · x+ 3 11

39.a1 3 · 13 1183.1.bd.a 7 · 132 0 1 5 x4 − x3 + 5 · x2 − 4 · x+ 3 11

B.3.3. S4: As above, Vg ⊗ Vh decomposes as 1⊕Adg.

https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/21/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/396/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/39/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/396/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/325/1/u/a/
https://www.lmfdb.org/EllipticCurve/Q/26/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/x/a/
https://www.lmfdb.org/EllipticCurve/Q/26/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/z/a/
https://www.lmfdb.org/EllipticCurve/Q/26/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/bd/a/
https://www.lmfdb.org/EllipticCurve/Q/39/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/x/a/
https://www.lmfdb.org/EllipticCurve/Q/39/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/z/a/
https://www.lmfdb.org/EllipticCurve/Q/39/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/bd/a/
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Table 7. Examples where h = g∗ is an exotic form of projective type S4; r(E) and
r(E,Adg) are computed.

E Level g Level r(E) + r(E,Adg) p

11.a1 11 968.1.h.a 23 · 112 0 + 1 5

33.a1 3 · 11 968.1.h.a 23 · 112 0 + 1 5

55.a1 5 · 11 968.1.h.a 23 · 112 0 + 1 23

We report here a few more modular forms to which our setting applies, but computing the correspond-

ing analytic ranks seems computationally demanding: 1224.1.m.a, 1224.1.m.b, 1800.1.l.a, and 1800.1.l.b.

B.3.4. A5: Unfortunately, computing examples with forms of projective image A5 seems out of reach

at the present moment, due to the difficulty of computing Artin representations over degree 60 number

fields. Even trying to address the problem as in [DLR15, Section 5.1.2], as the computation of the unique

subfield of degree 2 contained in the Artin field is demanding. However, we list here a few modular forms

to which our setting should apply: 1825.1.y.a, 2079.1.dd.a, 3069.1.cd.a, 3069.1.cd.b, and 3168.1.cb.a.

B.4. Non-CM case, h ̸= g∗. Computing examples in this setting is rather challenging, but we present

a few examples of dihedral forms with RM and no CM, and exotic ones with S4 projective image. In

both cases, we only consider forms g and h with are related by a twist by Dirichlet character.

B.4.1. RM but no CM:. In this situation, we consider g and h with RM by the same field Q(
√
5). We

write Vg ⊗ Vh = IndQQ(
√
5)
(ψg)⊗ IndQQ(

√
5)
(ψh) Ind

Q
Q(

√
5)
(ψgψh)⊕ IndQQ(

√
5)
(ψgψ

σ
h).

Table 8. Examples where h ̸= g∗ are dihedral forms, both with RM by Q(
√
5) and

without CM.

E Level
g Level

r(EF , ψgψh) + r(EF , ψgψ
σ
h) p

h Level

15.a1 3 · 5
1025.1.i.a 52 · 41

0 + 1 11
1025.1.f.a 52 · 41

20.a1 22 · 5
1025.1.i.a 52 · 41

1 + 0 11
1025.1.f.a 52 · 41

30.a1 2 · 3 · 5
1025.1.i.a 52 · 41

0 + 1 11
1025.1.f.a 52 · 41

B.4.2. S4: We consider the case of g ̸= h∗ but h = g ⊗ χ, for χ a Dirichlet character. In this situation,

the representation Vg ⊗ Vh decomposes as ρ1 ⊕ ρ3 for ρd a d-dimensional Artin representation, d = 1, 3.

https://www.lmfdb.org/EllipticCurve/Q/11/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/968/1/h/a/
https://www.lmfdb.org/EllipticCurve/Q/33/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/968/1/h/a/
https://www.lmfdb.org/EllipticCurve/Q/55/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/968/1/h/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1224/1/m/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1224/1/m/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1800/1/l/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1800/1/l/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1825/1/y/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2079/1/dd/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3069/1/cd/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3069/1/cd/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3168/1/cb/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
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Table 9. Examples where h ̸= g∗, h = g ⊗ χ, exotic forms of projective type S4;
r(E, ρ1) and r(E, ρ3) are computed.

E Level
g Level

r(E, ρ1) + r(E, ρ3) p
h Level

15.a1 3 · 5
981.1.d.a 32 · 109

0 + 1 7
981.1.d.b 32 · 109

24.a1 23 · 3
981.1.d.a 32 · 109

1 + 0 7
981.1.d.b 32 · 109

30.a1 2 · 3 · 5
981.1.d.a 32 · 109

1 + 0 7
981.1.d.b 32 · 109

33.a1 3 · 11
981.1.d.a 32 · 109

1 + 0 7
981.1.d.b 32 · 109
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