BALANCED TRIPLE PRODUCT p-ADIC L-FUNCTIONS AND STARK POINTS

LUCA DALL’AVA, ALEKSANDER HORAWA

ABSTRACT. Let E be an elliptic curve over Q and g1, 02: Gal(H/Q) — GL2(L) be two odd Artin rep-
resentations. We use p-adic methods to investigate the part of the Mordell-Weil group E(H) ® L on
which the Galois group acts via g1 ® g2. When the rank of the group is two, Darmon—Lauder—Rotger
used a dominant triple product p-adic L-function to study this group, and gave an FElliptic Stark Con-
jecture which relates its value outside of the interpolation range to two Stark points and one Stark
unit. Our paper achieves a similar goal in the rank one setting. We first generalize Hsieh’s construction
of a 3-variable balanced triple product p-adic L-function in order to allow Hida families with classical
weight one specializations. We then give an Elliptic Stark Conjecture relating its value outside of the
interpolation range to a Stark point and two Stark units. As a consequence, we give an explicit p-adic
formula for a point which should conjecturally lie in F(H) ® L. We prove our conjecture for dihedral
representations associated with the same imaginary quadratic field. This requires a generalization of

the results of Bertolini-Darmon—Prasanna which we prove in the appendix.
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1. INTRODUCTION

Let E be an elliptic curve over Q and g1, 02: Gal(H/Q) — GLy(L) be two odd Artin representations
such that det g1 - det oo = 1. We can consider the part of the Mordell-Weil group E(H) on which the
Galois group Gal(H/Q) acts via 91 ® g9; formally:

Elo1 ® 02] = Homgay(a/q)(01 ® 02, E(H)L).

An equivariant version of the Birch—Swinnerton-Dyer conjecture then predicts that the rank of E[o; ® 0]
is equal to the order of vanishing of the L-function L(gg ® 01 ® 02,s) at s = 1, and the leading term
of its Taylor expansion is explicitly related to the elements of F[o; ® g2]. The goal of this paper is to
investigate the group E[p; ® 2] using p-adic methods when its rank is 1. We start with a brief summary
before explaining the details.

When E[p; ® 02] has rank 2, the analogous question was considered by Darmon, Lauder, and Rotger:
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(1) They prove that there is a p-adic L-function Lo (¢) with an interpolation property which holds
for integers ¢ > 3.1 Tt is associated with the triple (E, o1, 02), but it is unbalanced — p; plays a
special role in the construction. [DR14]

(2) They conjecture a special value formula outside of the interpolation range, the rank two Elliptic

Stark Conjecture:

L81(1) ~px logpp(P21) logp,(F22)
logp(ul)

)

where P; ; € E(H)y, are points in the (91 ® g2)-isotypic component and u; € Oj; is a unit in
the Ad” p;-isotypic component. [DLR15, Conjecture ES]

(3) They prove (1.1) when g1 and go are both induced from the same imaginary quadratic field in
which p splits. [DLR15, Theorem 3.3]

When E[o; ® g2] has rank 1, we achieve the same goals in the present paper:
(1) We prove that there is a p-adic L-function Lgal(f) with an interpolation property which holds

for integers £ > 2.2 It is associated with the triple (E, o1, 02), but in our case it is balanced —
01 and gy play equivalent roles. [Theorem A]

(2) We conjecture a special value formula outside of the interpolation range, the rank one FElliptic
Stark Congjecture:

logg ,,(P)
12 Ebal 1 ~ sP
( ) P ( ) VL% logp(u1)1/210gp(u2)1/2

where P € E(H)y, is a point in the (01 ® p2)-isotypic component and u; € O} is a unit in the
Ad° g;-isotypic component, for i = 1,2. [Conjecture C]
(3) We prove (1.2) when p; and g are both induced from the same imaginary quadratic field in

which p splits. [Theorem D]

As opposed to the rank two setting, our formula (2) can be rewritten to give a p-adic analytic formula

for a p-adic point:
(13 expp (L27(1) -log, () /2 - 1o, (ug) /%) € E(H,).

conjecturally lies in E(H ).

Bertolini, Seveso, and Venerucci have also been studying the rank one group E[o; ® 2] using a
balanced p-adic L-function®. Their Oberwolfach report [BSV20] conjectures that there is a canonical
multiple L$*" of a p-adic L-function L, whose value at (2,1, 1) is equal to logg ,(P). They explain that
special cases of this conjecture have been verified in the CM setting. They give a different expression
for this p-adic L-function using an endoscopic lift to GSp,, and relate its non-vanishing at £ = 1 to
the non-vanishing of an appropriate Selmer class. This is the subject of their forthcoming work with
Andreatta [ABSV].

In the rest of the introduction, we will state our results precisely and explain the new ideas which

allow us to achieve these goals.

1.1. Construction of the balanced p-adic L-function. Let f be the normalized weight two modular

form associated with E by the Modularity Theorem, and g, A be the normalized weight one modular

I general, there is a 3-variable p-adic L-function Egl (k, 2, m) with an interpolation property when ¢ is dominant. Here,
we take (k, ¢, m) = (2,4,1) for simplicity.

2Again, in general, there is a 3-variable p-adic L-function Lgal(k,f,m) with an interpolation property when the weights
are balanced. Here, we take (k, €, m) = (2,4,¢) for simplicity.

3An algorithmic study of this p-adic L-function, motivated by their work, has been carried out in the PhD thesis of the
first-named author [Dal21].
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forms associated with g1, 02, respectively, by the work of Khare and Wintenberger [KW09a, KW09b].
The analytic properties of the L-function we are interested in are understood in terms of the Garrett

triple product L-function associated with f, g, and h:
L(or ® 01 ® 02,8) = L(f x g x h,s).

Then the completed L-function A(f x g X h, s) satisfies a functional equation relating the value at s to
the value at 2 —s. The assumption that det o1 det g2 = 1 implies that the global root number e(f x g x h)

is £1. Since we are interested in the rank one setting, we will assume that:
e(f xgxh)=-1
(see Hypothesis A). Since the global root number is the product of local root numbers

e(fxgxh):Hev(fxgxh),

and e (f x g x h) = 1, the assumption amounts to the fact that there is an odd number of primes v
such that €,(f x g x h) = —1.

Let p > 5 be a prime number. We assume that f, g, h are ordinary and regular at p (see Hypothesis B),
and consider Hida families g, h whose weight one specializations are fixed p-stabilizations g, hq of g

and h, respectively. Letting g,, h,, be the weight ¢, m specializations of g, h, respectively, we note that

€(fxg€Xhm):H€(fxg€Xhm): H ([ X ge X hum) - €a(f X ge X hun) = —€co(f X ge X hip)

v<o0o
by rigidity of automorphic types. In particular, if the weights (2, ¢, m) are balanced, i.e. 2 < ¢ < 2+ m,
2<m<2+4+/¥, and £ +m =0 (mod 2), we have that

E(f X ge X hm) = +1,
and hence we expect that generically the central L-value is non-vanishing:
L(f x g¢ X hm, (€ +m)/2) # 0,

and there should be a p-adic L-function interpolating these values divided by appropriate periods. In
comparison, Darmon, Lauder, and Rotger start with ¢(f X g X h) = +1 in the f-dominant region and
hence obtain e(f X g¢ X hy,) = +1 in the g-dominant region, i.e. for £ > m + 2.

There are two known constructions of p-adic L-functions interpolating the central critical L-values in
the balanced region for three Hida families f, g, h. The first construction was due to Greenberg and
Seveso [GS20], and the second more explicit construction was given by Hsieh [Hsi21]. The difference
between the constructions was outlined in the latter paper and it seems that Hsieh’s approach is more
suitable for arithmetic applications, such as the one in the present paper.

However, as observed by the first-named author in [Dal23a, Section 4.4.4], the ramification assump-
tion (3) in [Hsi21, Theorem B] implies that the Hida families g and h cannot both have classical weight
one specializations. In particular, as far as we know, there is no suitable balanced triple product p-adic
L-function to study classical points with weights (2,1, 1).

Therefore, the first goal of our paper is to extend Hsieh’s construction to a setting where the Hida
families g and h do have classical weight one specializations. The final assumption we make (see Hy-
pothesis C) is:

€q(f x g x h) = —1 implies that vy(N;) < 2,
where Ny, No, N3 are the levels of f, g, h, respectively. This weakens Hsieh’s assumption that v, (N;) = 1.
Fix an algebraic closure Q of Q and field embeddings of Q into C and C,.
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Theorem A (Corollary 6.4). Under the above hypotheses, there exist open admissible neighborhoods U,
and Uy, of the classical weight 1 in the weight space, and a (square root) balanced triple product p-adic
L-function L’galz Uy x U, — Cp, associated with f and the Hida families g and h. It has the following
interpolation property for integers £ € Uy and m € Uy, such that £, m > 2 and 2 —¢ < m <2+ ¢:

bal 2 A(f xge X hmc) EXM(f X ge X hyy) _
Ly (tm)” = (f, £){90, 9e) (homy b)) Ep(ge, Ad) - Ep (B, Ad) €Q

where ¢ = (£ +m)/2 is the center of the functional equation, and
EXNf % ge X him) = (1= By Bup™ ) (1 — BrogBrp™ ) (1 = By Bganp™ ) (1 — By BeSBrp ™),
Ep(Fi, Ad) = (1 = apxp, ()P" 1) (1 = ap?xp, ()P %) Fi € {g¢, hun}

are as in [Hsi21, (1.2)] and [Hsi21, p. 416], respectively.

A more general square root balanced triple product p-adic L-function for three Hida families f, g, h
is constructed in Theorem 5.5.
Note that the interpolation property for our triple product p-adic L-function differs from Hsieh [Hsi21,

Theorem B]. The three key differences (which we will expand on momentarily) are:

e Hsieh’s p-adic L-function is defined on the entire weight space.

e Qur interpolation property does not involve Gross periods, but rather just the Petersson norms
of the three forms f, g, and h,.

e The Euler factor at p in Hsieh’s p-adic L-function is only Egal( f X ge X hyy,) instead of the above
quotient. Indeed, the adjoint Euler factors above are absorbed by the Gross periods.

However, it seems that our p-adic L-function is the correct one for the eventual arithmetic application
in the present work. For example, both the periods and the Euler factor at p closely resemble those
in [DR14] in the unbalanced setting. Moreover, the proof of Theorem D below also only seems to work
with this interpolation property. We expand on the differences in Remark 5.6.

Next, we explain the technical novelty which allows us to loosen the ramification assumption in Hsieh.
Ichino’s formula [Ich08] for the central value of the triple product p-adic L-function is on the quaternion
algebra D ramified at v such that e,(f X g¢ X h,,) = —1, and utilizes the Jacquet-Langlands transfers
P, géj, hE of the three modular forms f, g¢, hy,. Under our assumptions, D is ramified at v = co and
at an odd number of finite primes g.

Let ¢ be an odd prime. As observed by Pizer [Piz80a], if D is ramified at ¢ and f is a (twist-minimal)

new cusp form of weight k > 2, level ¢2, character x of conductor at most ¢, then:

dim SP (¢, x)[f] = 2,

i.e. there is a two-dimensional space of quaternionic modular forms for D* which transfer to the same

modular form f (cf. Proposition 3.10). This raises two questions:

(1) For each (¢,m), can we choose vectors fP, gP, hl associated with f, g, h and compute the
associated local integrals in Ichino’s integral representation?
(2) Do there exist Hida families g?, h? associated with the Hida families g, h such that the spe-

cializations g”, hL) recover the choices in question (1)?
We give a positive answer to these questions by introducing “extra Hecke operators” which recover

multiplicity one in the Jacquet-Langlands correspondence.

Proposition B (Proposition 3.14). There exists an operator (wp,) on dim S} (¢?, x) associated with

a choice of local uniformizer wp, of Dy, commuting with the Hecke operators. For each twist-minimal
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new cusp form f, of weight k > 2, level ¢?, and character x of cond(x) < g:

S )12 SP (a2, X)) =P =HVxalD) @ §P (2, ) [ ] =Pa) = VXalo)

dim=1 dim=1

Here, x4 ts the local component at g of the adélization of x.

To answer question (1), we can choose a vector in either of the one-dimensional eigenspaces. Section 2
computes the necessary local integrals in Ichino’s formula. Answering question (2) is then also based on
Proposition B, although it is technical and occupies Sections 3 and 4. We show that for each choice of
sign +1 or —1, there is a one-dimensional space of Hida families on D* associated with the Hida families
on GLg, strengthening the results in [Dal23b]. Theorem 4.23 proves this statement also in the case of
Coleman families. From it, we deduce a control theorem & la Hida, which is the content of Corollary 4.28.
The proof of these results relies on the construction of auxiliary quaternionic eigenvarieties endowed with
closed immersions in the classical cuspidal one. In order to construct an explicit p-adic L-function, we
need to identify quaternionic Hida families with (a slight generalization of the) A-adic forms in [Hsi21];
this is done in Proposition 4.26.

Note that our choice of vectors on the quaternion algebra D* is only well-defined up to scalars. We
also restrict ourselves to working with an admissible affinoid in the weight space, instead of proving a
control theorem over the whole weight space. It would be interesting to generalize our control theorem
to the whole weight space and answer the natural questions about Gross periods for the different Hida
families associated with the choice of eigenvalues of the operators (wp, ). This could lead to a definition

of an integral p-adic L-function analogous to Hsieh’s.

1.2. The Elliptic Stark Conjecture. Having defined the balanced triple product p-adic L-function
E},’al, we turn to studying its value at the BSD point (¢,m) = (1,1) which lies outside of the interpolation
range. We start by introducing the relevant arithmetic objects.

Let us briefly recall our setup: the triple (f, g, h) corresponds to a triple (E, g1, 02) of an elliptic curve
E over Q, and two Artin representation p;: Gal(H/Q) — GL(V;) for two-dimensional L-vector spaces
Vi and V5. Recall that:

E[Vi ® Va] = Homp[gaa/q) (Vi @ Va, E(H) ®q L),
and under the rank one assumption, we may choose a basis:
o: ViV, — E(H)®qL,

well-defined up to L*.
We fix an embedding H — Q)" and let 0, € Gal(H/Q) be the associated Frobenius element. Under

Qg

0
our classicality and regularity assumptions, we have that g;(c,) = ) with «; # B;. Letting V.*

i
be the o;-eigenspace of V;, we consider a non-zero element in the one-dimensional subspace v, € V¢ =
V@ V¥ C Vi ® Va. Finally, we let

Poo = ®(vae) € E(H)® L,

which is well-defined up to L™, but depends on the choice of Frobenius eigenvalues oy and as.
Next, we consider the adjoint representations Ad"(g;) = Hom’(V;,V;). By [DLR15, Proposition 1.5],
the Stark unit group
U [Ad® g;] = Hompgai(s/q)(Ad° V;, O @ L)

is also of rank one, and we may choose a basis:

U;: A"V, —» OF @ L,
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well-defined up to L*.
Bi

The eigenvalues of Ad° 0i(op) are 1, %, ~t, and we fix eigenvectors in the a;/B;-eigenspaces:

v?? e (A0 V)@l B,

Finally, this defines
Uig = \I/,»(U?/B) €05 ®L,
which is well-defined up to L™, but depends on the choice of Frobenius eigenvalue «;.

Write 7(E, ogr) for the rank of Eo,® o] which is, conjecturally on BSD, equal to ords—1 L(f X gxh, s).

Conjecture C (Rank one Elliptic Stark Conjecture 6.5). If r(E, ogn) > 1, then Egal(Ll) =0. If
r(E, 0grn) = 1, then:

10gE,p(Paa)2
log, (u1,a)log, (uz,a)’

L£2M(1,1)? ~px
where

log,: (Of)rL — H,® L p-adic logarithm,
logp ,: E(H)L — Hy, ® L p-adic formal group logarithm for E.

Both sides of the equality depend on the same choice of a; and ag. At first glance, it seems that the
right hand side depends on H and the choices associated with it, but a simple computation reveals that
it does not — see Remark 6.6.

Finally, we prove that this conjecture is true if g1, g2 are both induced from characters of the same
imaginary quadratic field. Let K be an an imaginary quadratic field and p be a prime which splits in K.
Let ¢4, ¥y, be finite order Hecke characters of K such that (149n) o Nk/g = 1, and consider the theta
series g = 0y, h = 0y, . Let ¥1 = y1by and Yo = ¥y9p7. We introduce some explicit assumptions under
which our running hypotheses hold:

(1) €q(fx,%2) = +1 for all finite primes ¢ of K,
(2) g and h are ordinary and regular,
(3) if €4(f x g x h) = —1, then vy(N1) = 1 and v,(N2) = v4(N3) = 2;

Theorem D (Theorem 6.9). Under assumptions (1)—(3) above, Conjecture C' is true.

The idea of the proof of this theorem is to factor the triple product p-adic L-function into Rankin—
Selberg and Katz p-adic L-functions (Theorem 6.14). Under our ramification hypotheses, we need a
certain generalization of the result of Bertolini-Darmon—Prasanna [BDP13] on Rankin-Selberg p-adic
L-functions. Indeed, their result holds under the Heegner hypothesis, which is not satisfied under as-
sumption (3) above. We loosen the Heegner hypothesis slightly to include the case of interest to us. We
prove this result in Appendix A.

In Appendix B, we provide a digest of examples to which our conjecture and theorem apply. In future

work, we hope to give numerical evidence for Conjecture C, based on the algorithms in [Dal23a].

1.3. Organization of the paper. The main technical innovation of the paper is the study of extra
operators on the space of quaternionic modular forms, which facilitate our choice of test vectors for the
p-adic L-function. This occupies the first three sections, which consider the local (Section 2), global
(Section 3), and p-adic (Section 4) Jacquet-Langlands transfers. A reader interested in the construction
of the p-adic L-function may proceed directly to Section 5, where we use this choice of test vectors
to generalize Hsieh’s construction. The arithmetic applications are discussed in Section 6, which may
also be read independently of all the previous sections. Appendix A gives generalizations of results
of Bertolini-Darmon—Prasanna which are used the proof of Theorem D, while Appendix B contains

examples.
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2. LocAL JL CORRESPONDENCE AND TEST VECTORS

In this section, we consider a finite extension F of Q for £ # 2 (which will eventually be Q) and three
local representations 7y, ma, m3 of GLo(F') such that the product of their central characters is trivial.

We classify when e(m; ® m2 ® m3) = —1 and in all cases when c¢(m), ¢(72), c(m3) < 2, we compute the
relevant local triple product integrals on a definite quaternion algebra over F'. The new contribution of
this section is the computations of these local integrals when c(m;) = 2 for some i.

Throughout this section, we often work with Weil-Deligne representations o; = o(m;) associated with
m; via the Local Langlands Correspondence [BHO6]. Their triple product e- and L-factors agree with the
automorphic ones [HK04, Proposition 2.1].

For completeness, we briefly recall the explicit Local Langlands Correspondence [BH06, Chapter §]
for £ # 2. For a character x of K*, for a local field K, we write & = £() for the associated character of
Wi via Class Field Theory.

(1) If m# = w(x1, x2) is a principal series representation, then o(m) = (1) @ £(x2) is reducible.

(2) If 7 = St®x is a twist of the Steinberg representation, then o(m) = Sp(2) ® {(x) is a twist of
the special representation.

(3) If m = my is supercuspidal, associated with an admissible pair (K, 1)), where K/F is a quadratic
extension and 9 is a character of K*, then o(m) = Ind%f( (§(¢)AJ1) for a character Ay, defined
in [BHO6, Section 34.4]. Then ¢(r) = 2 if and only if 7 has depth 0 (or level 0), i.e. K is
unramified over F' and v has conductor 1 (level 0). In this case Ay is the unramified quadratic

character of K*.

The representations in (2) and (3) are called discrete series.

2.1. Local e-factors and L-factors. The following proposition classifies all cases when €(01 ®oo®03) =
—1.

Proposition 2.1 (Prasad). Let o1,09,03 be three Weil-Deligne representations of Wg such that the
product of their determinants is trivial. Then e¢(o1 ® 02 ® 03) = —1 if and only if there is a reordering
{o1,04,04} = {o1,092,03} such that one of the following holds:
(1) o, = Sp(2) @ det(o}) fori=1,2,3;
(2) o} =2 Sp(2) @ det(a}), ob is irreducible and of = (oh)¥ @ det(of)~;
(3) there is a quadratic extension K/F and characters &1, &2, 3 such that o = Ind%ﬁ & is irreducible
(s0 &7 # &i) and either £1€283 =1 or §16265 =1 or §1§5&3 =1 or §1£565 = 1.
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Proof. These results are contained in [Pra90, Section 8]. See [Pra90, Proposition 8.6] for (1) and [Pra90,
Proposition 8.5] (2). For completeness, we compute €(o1 ® o2 ® o3) for o; = Ind%f{ &;; the other

possibilities are dealt with similarly. First, note that:

01 Q03 Q03 (Ind%i (&162) ® 03) ® (Ind%f{ (&163) @ UB)

and hence by standard properties of e-factors:
(0102 @03) =€ (Ind%f{ (6162) © 0—3) ¢ (Ind%i (£69) ® 03)
=&k r(=1)e(o3|lwy @ 182) - Exyr(—1)e(os|wy @ &1€3)
= €(03|wy ® &1&2) - €(o3]wy @ &167)
= det(03)(—1)e(a3|wy @ &1&2) - det(o3)(—1)e(a3|w, @ &1E3),

where g /p is the quadratic character of Wr associated with K/F. Tunnell’s Theorem [Pra90, Theorem
8.2] shows that det(o3)(—1)e(os|w, ®&1&) = —1if and only if (£162) 7! = & or (£1&2) 7! = £5. Therefore,
€(01 ® 02 ® 03) = —1 if and only if condition (3) holds after reordering. |

We make the following symplifying hypothesis.
Hypothesis 2.2. For all ¢, the conductor ¢(m;) of m; is at most 2.

In particular, if 0 = Ind%f( X, then K/F is unramified, the conductor ¢(x) of x is 1, and x? # x.

Next, we record the L-factors in each of the cases when €(o7 ® 02 ® 03) = —1.
Proposition 2.3. We have that:
Cr(s+3)¢r(s+2)? case (1)
Loy ® 02 ® 03,8) = { (p(25 + 2) case (2)
Cr(29) case (3)
Proof. In case (1), note that:
Sp(2) ® Sp(2) ® Sp(2) = Sp(4) & Sp(2)| - | & Sp(2)] - |
and L(Sp(m), s) = {s(s + m — 1). Part (2) follows from
L(Sp2)®@o®0Y,s)=L(c®c’,s+1)
and [GJ78, Corollary 1.3], because o = o @1 for an unramified quadratic character 7. For (3), note that:
01 ® 03 ® 03 = Indyy” (x1x2xs) @ Indip? (x1x2x3) @ Indj” (x1x3x3) @ Indjy ™ (x1x2x5)-

Under the assumption that €(oq ® 05 ® 03) = —1, exactly one of these characters is trivial and the other

characters are ramified. This shows that:
Loy ® 02 ® 03) = (ke (5) = (r(25),
because K/F is unramified. [ |
We will also need the adjoint L-factors.

Proposition 2.4. We have that:

Ad(Sp(2) ® &) = Sp(3)| - |,

Ad(Indyr (x) 2= Indyg? (x/X7) @ Xxxe/r
and hence:

L(Ad(Sp(2) © &), ) = Cr(s + 1),
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(r(2s)
r(s)

2.2. Local Jacquet—Langlands correspondence. In cases when ¢(m ® m ® m3) = —1, the local

L(Ad(Indyf (€)) = L(xx/p, 8) =

integral should be non-vanishing on the non-split quaternion algebra D over F (cf. [Pra90, Theorem
1.2]). In this section, we briefly summarize the local Jacquet—Langlands correspondence following [BHOG,
Chapter 13].

The local Jacquet-Langlands correspondence is a bijection

JL: Rep®™(GLy(F)) — Rep(D*)
between discrete series representations of GLo(F) and irreducible smooth admissible representations of
D*. For m = St ®x, we have that:
JL(St(2) ® x) = x o v,
where v: D* — F* is the reduced norm.

For supercuspidal representations, an explicit description of the correspondence is given in [BH06,
Section 56]. We only describe it here for supercuspidal representations of conductor two, i.e. m = m,, for
the unramified quadratic extension K of F' and character 1) of K* of conductor 1 such that )7 # .

Recall that Ay is the unramified quadratic character of K> in this case. We then have that:

o Ty @Ay =y,
e under the local Langlands correspondence, the corresponding representation of W is Ind%j{ (E(W)Ay).

We describe the representation

ﬂg = JL(my)
explicitly. Let Op be a maximal order of D and wp € Op be a uniformizer. We will assume that

wQD = wp for a uniformizer wr of F. There is a filtration on (’)g

o} a=0

1+@w(0p a>1.

(2.1) Us =

Given an unramified character 1) of K*, we may extend it to a character ¥ of K*U}, by letting U}, act
trivially. Then:
nf) = eTndP .

Let 7 be a smooth irreducible representation of D*, which is automatically finite-dimensional because
D*/F* is compact. Thus 7|ys = 1 for a > 0. We define the conductor c(r) of 7 to be a + 1 where
a is the smallest integer such that 7|ya = 1. Note that under the assumption that ¢ has conductor 1,
7r5 has conductor two. For completess, we verify that all representations of D* of conductor two are
obtained this way, following [Car84].

Note that wg = wp because K/F is an unramfied quadratic extension, and k¥ = Ok /wrOk is a
quadratic extension of f = Op/wrOF. Finally, since d = Op/wOp is also a quadratic extensions of f,

it is isomorphic to k. By definition, a representation of conductor two factors through
(2.2) D* /UL = d* x (wp).

Note that wDODwBI = Op because the maximal order Op C D is unique, and hence conjugation by
wp preserves d*. Moreover, w2 = wp is in the center F* of D* and hence acts trivially. In particular,
we have a subgroup: d* X (wp) C d* x (wp).

Next, observe that a character ¢ of K* which is trivial on U}, corresponds precisely to a character
of k* X (wp). Therefore, we may identify 71'5 with the inflation of the induction Indji jg;DF >> v. This
representation is reducible unless ¥®2 #£ 1. Altogether, we get the following result.
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Proposition 2.5. Suppose m is an smooth irreducible representation of D* and that ¢(w) = 2. Then
there is a character ¥ of d* X (wpg) with Y=P # 1 such that:

dXN<wD> w

m = Infpy i Indy, 7 200

In particular, 7 is two-dimensional and in the basis corresponding to the decomposition above, we have:

m(x) = (dj(x) - (x)) , z€d* x (wp),

1
@) = ("/’(WF) ) .

Finally, if w is the central character of w, then ¥|px = w and the last equality may be written:

1
=) = (W(WF) ) .

Proof. The first claim then follows from [Car84, Section 5.1]. The rest of the proposition is immediate.
|

We identify the representation 775 with the one described explicitly in Proposition 2.5.

2.3. Local integral for zero, two, and three supercuspidal representations of level (2. Let
7,2, T3 be irreducible admissible representations of GLo(F') with central characters w; which satisfy
wiwaws = 1. Let 01, 092, 03 be corresponding representations of Wr such that det(oq) det(o2) det(o3) = 1.
As above, let D be the non-split quaternion algebra over F, and 7” be the Jacquet-Langlands transfer
of m; to D*.

Prasad [Pra90, Theorem 1.4] proves that there exists a non-zero trilinear form on 7P ®@ 78 ® 72 if

and only if €(01 ® 03 ® 03) = —1. There is a natural trilinar form:
(23) L@ = [ @@oddy oerp o and
FX\DX

and the goal of this section is to choose vectors ¢ and compute I, (¢) # 0 explicitly when (o) @2 ®03) =
—1 and ¢(0;) < 2. Here, (—, —) is a pairing between 7 @ 7L @ 72’ and its contragredient representation,
and ¢ is the vector dual to ¢ under this pairing. Recall that there were three cases (1)—(3) outlined in

Proposition 2.1 and we will treat each of them separately.

Remark 2.6. As far as we know, these are the first such results when one of the components of w1 X 7wy X3
is supercuspidal and e(m; ® o ® 73) = —1 so the trilinear form is on the quaternion algebra D*. When
e(m; ® ma @ w3) = +1, the trilinear form is on GLg and Dimitrov—Nyssen [DN10] show how to choose

vectors in 7y X 7y X w3 when at least one component is not supercuspidal.

2.3.1. Case (1): zero supercuspidal representations. Suppose m; = St(2) ® w; for i = 1,2,3. Then:

7P =w;ov: DX = CX

is one-dimensional and we choose any non-zero vectors ¢; € 7.

Proposition 2.7. For characters wy,ws,w3 of F* such that wywsows = 1 and any mon-zero vectors

¢; € T, we have that

for ¢ = @1 X ¢ X ¢3.

Proof. See the proof of [Wool2, Proposition 4.5]. |
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2.3.2. Case (2): two supercuspidal representations. Consider representations my, ma, 75 of GLy(F') such
that:

(1) m, w2 are supercuspidal, 73 = St Quws is a twist of the Steinberg representation,

(2) the product w; - wa - wg of their central characters it trivial,

(3) e(m @m@73) = —1,ie m =m Qws .

We assume that 7, ma have conductor 2 and let 77 be the representation of D* corresponding to 7;

for ¢+ = 1,2, 3 under the the Jacquet-Langlands correspondence. Then:

(1) P = m, for some character ¢ of d* x (wp) such that ¥|px = wi,

(2) 3

(3) ™ 2wz ov.

1%

-1
Typ—1 Q Wy ™,

lé

Proposition 2.8. Let 71, ma, T3 be as above, €; € {1} fori=1,2, and
(1) ¢S € P non-zero such that T2 (wp)dS = ei/wi(0)dS* (cf. Proposition 2.5),
(2) ¢3 € T nonzero.

Then for ¢¢ = ¢7' X ¢5* X ¢3, we have that:
ég}"’% — (1 + crea /(D)

Proof. We simplify the notation throughout the proof and write 7; = 7. We compute, using the above

1(OF)
o

description of the local representations:

I(6) = / (r(9)6°, &) dg
FX\DX
- / (n(g)°, &) dg + / (r(g)m(wp) 6, ) dg D* = FXO% UwpF 0%
0% 0%

= (1+ erea/wi (Dwa (Ows (0) D (m(x)¢%, ¢9)u(U})

rzedX

— (14 creavan(O)u(Uh) 3 (n()s, &)

red*

Finally, for z € d*, we have that:

7T1(CE) il _ '@[}(x) + lewD (LE) ¢if + ’l/l(w) - 6211wa (x) 7,
-1 —1,@wp -1 _ —1,@wp
() 52 _ <1/) (r) + 5;#’ () (15; + ™ (x) 5;1/) () ¢2> W3(Nd/k:v)71,

m3(x)p3 = w3(Ng/pT) 3.

We hence obtain
> w(@)6° = Syt + 89t S yo T+ S5 ¢
zed*

for:

Sty = i D @) + e () (Y (@) + ey P (),

redX

1
= Z|d>< ‘(1 + 6162)
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S =7 2 W)~ arTr @)W (@) + ev = (@)
redX
= i|d>< ‘(1 - 6162),
S = 3 W) - e (@) (@) — e ()
redX

1
= Z|d>< ‘(1 + 6162).

This shows that: )
D m(@)o = S |d¥|(¢° + )

2
rEdX
and hence:
(@) ~ O ~
I(6°) = (14 e1e2 ws(@)ﬂ( 2D) (0°+ ¢ 0°) = (1 +c1e2 W3(€))M( 2D) (65, 6°).
The rest of the results follow. [ |

2.3.3. Case (3): three supercuspidal representations. We next consider the case of three twist-minimal
supercuspidal representations 7, me, 3 of GLo(F') conductor 2 such that wq - wy - ws = 1; according to

Proposition 2.5:

(2.4) P =y
where 97 # 1; and we note that
(2.5) TP YT P = 1.
Proposition 2.1 (3) classifies when €(m; ® m2 @ m3) = —1. We compute the local integrals associated

with all possible choices of vectors ¢ € 7P = 7, as in Proposition 2.8 and check that I} (¢) # 0 for

some ¢ exactly when e(m; ® mo ® m3) = —1.
Proposition 2.9. Let 7y, 2, w3 be as above. Fore € {£1}3 let ¢¢ = ¢ x 952 x ¢ € 70 = 7P x 7l x 7l
Then: y
I (¢° @
v(¢)~) _ (1 + €1€2€3)u( 4D) )
(¢, 0°)

D

Proof. Once again, we simplify the notation to write m; = m;° etc. We proceed as in the proof of

Proposition 2.8:

I(¢%) = / (m(9)8°, &) dg

FX\Dx

- / (r(g)", &) dg + / (r(g)m(w )6, ) dg DX = FXO% UwpF* O3
o5 o5

= (1 + ereaes/wr (Dwa(Ows(0) D (m(2)¢%, ) u(U})

redX

= (1+ e1e263)u(Up) Z (m(2)¢°, ¢°).
redX

Next, we need to compute > (w(z)¢c, &) Forx € d* and i =1,2,3:
TEdX

m(w)q/):l _ Yi(r) + ;ﬂ/}?” () (bj +

Vi(w) — €97 (2)
2

i -
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Therefore:

@) = 3 s,
ne{£1}3

1 3

sne = 5 [1Wi(@) + e (@)
= % Z (e1m1)% (€212)%2 (63773)53wf7;’1 (z) ;2’2 (z) :,,waDg ().

6€{0,1}3

and hence:

()6, 6) = seclo, 6 = S0 wFP @ET @5 () (65, 5.

sef{0,1}3
Altogether, we have that:
> (m(x)9t, ¢°) ,

Without loss of generality, suppose that 11913 = 1. We claim that then:

S = {5 c{0,1}3

By assumption, (0,0,0) € S and by equation (2.5) also (1,1,1) € S. To verify that S cannot be larger,
suppose without loss of generality that (1,0,0) € S, i.e. "' ¢2tp3 = 1. Then "' = 1, but this
contradicts the admissibility of the pair (K, v1). |

w’sl W’SQ W’SS
1 7Y PPy P = 1} ={(0,0,0),(1,1,1)}.

Remark 2.10. It would be interesting to treat the case of supercuspidal representations of higher

conductor as well, but this would take us too far afield from the ultimate arithmetic goals of the paper.

3. GLOBAL JL CORRESPONDENCE AND TEST VECTORS

We are ready to study the global consequences of Section 2. We focus our attention on quaternionic
modular forms with level structure given by orders which are residually inert at the primes where
the quaternion algebra ramifies; the local theory considered in the previous section allows a precise
understanding of such forms.

From now on, D denotes a quaternion algebra over Q (and not a local quaternion algebra as in the
previous section). For simplicity of exposition, until Section 3.6, we restrict ourselves to the case where
the quaternion algebra is ramified exactly at one odd prime ¢ and at infinity. However, everything we
state in this section generalizes to any definite quaternion Q-algebra (see also Remark 3.15); in particular,
the results in Section 3.6 and Sections 4—6 deal with the general situation.

For any place v of Q, we denote D, = D ®q Q,, where we understand Qo to be R. Similarly, for
any order R C D and any finite place v, we denote R, = R ®z Z,. As a last piece of notation, we set
D(A) = D ®qg A, for A the adeles of Q, D=D ®gq Ay, for Ay the finite adeles, and R=R Rz Z for 7,

the profinite completion of the integers.

3.1. A remark on the structure of quaternion algebras at ramified primes. We begin by re-
calling a general formalism to deal with definite quaternion algebras over a local field, which will make
our exposition clearer and independent of the choices of the uniformizers. Most of the content of this
section can be found in [Voi2l, Section 13]. Let D; be a quaternion division algebra over Q, and let
Q¢(w) and Qg2 be, respectively, one of the two ramified quadratic extension of Q, and the unique un-
ramified quadratic one; as Dy is division, there exists embeddings of these two fields in Dy. Consider

vp : Dy — Qg to be the reduced norm map at £. We extend the f-adic valuation vy of Qy, to the division
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algebra: wy = % -vg o vp. We fix
ODe = {(E € Dy ‘ wg(l') S Zg}

and denote by wp, € Op, a uniformizer of Dy, namely an element in Op, with valuation we(wp,) = 1/2;
it is not difficult to notice that one can take wp, = wy. Therefore, we can decompose the division algebra

Dy as
(31) D[ = @22 ©® ’ID@Q@.

Denoting by wg,, the uniformizer of Q2, we can further write

(3.2) D¢ = Q¢ ® wq,; Qr & @, Q & wq,, @ Qe

with the condition wg,, @ = @, = —@w@g,, -

3.2. Residually inert orders. We briefly recall the definition of residually inert (at ¢) orders in D. The
interested reader may consult [Voi21, Section 24.3], [HPS89a] and [Piz80b] for a more detailed exposition.

Definition 3.1. Let N be a positive integer prime to /. We say that an order R C D of level N/? is
o residually split at the prime ¢ | N if R, is an Eichler order of level qv2la(N).
o residually inert at ¢ (also known as special or Pizer order) if there exists a ramified quadratic

extension Qy(wy)/Qy, such that Ry is conjugate to
Oy + {ac € Dy | l/g(:E) S ZZ@} =0 “"WDEODN
where Oy is the ring of integers of Q(wwy).

In order to shorten the notation, we call such a global order a Pizer order of level N¢%, however, we
remark that these orders are a type of basic orders and we point to [Voi21l, Remark 24.5.7] for a complete

discussion on the different terminologies for such orders.

Remark 3.2.
e If the order has level N/, then the local order at ¢ is no longer residually inert, but it is the

unique maximal order in D,. In particular, an order R of level N/? is contained in an Eichler
order of level NY.

e Adding a subscript ¢ at the notation of Section 2, we notice that, by equation (2.1), R; 2 U})e
with quotient F,. The quotient in equation (2.2) recovers the observations in [Piz80b, proofs of
Propositions 1.8 and 9.26].

For any prime ¢ # ¢, we fix a Q4-linear isomorphism ¢,: Dy = M2(Qy); up to changing this isomor-

y= (; :) (mod NMQ(Zq))}.

At the ramified prime ¢, we assume that R, = Oy + wp,Op,. For the rest of this section, we fix R to be

phism, we may assume that

(3.3) tq(Rq) = {7 € Ma(Zy)

a Pizer order of level N¢2, and advise the reader that every time we pick a Pizer order, we are implicitly

assuming the above identifications. We also introduce the following notation

(3.4) Ui(R) = {r = (r,) € R*

tg(rq) = (; ;k) (mod NMs(Z,)), for ¢ | N and rp € 1 —I-wDeRg} .

It is not difficult to notice that it is an open compact subgroup of B* (cf. also [Dal23b, Lemma 2.1.3]).

3.3. Lifting characters. Let x be a Dirichlet character of conductor C, for C' | N¢. Every such

character can be lifted to a character of EX; for simplicity we consider the case of £ odd. A similar
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construction works for £ = 2 and a precise recipe is provided in [HPS89a, Section 7.2] as we focus on the

odd case. Let g be a prime and let x, be the g-component of the character x. We define the lift X, of

Xq to R as follows:

(1) If ¢ | N¢, but g 1 C, we set X4(r) = 1 for any r € R.

(2) If ¢ | N and q | C, we set Xq(r) = xq(d) for any r € R} such that t4(r) = (2});

(3) If g=¢>2and ¢| C, we fix, once and for all, an odd character ¢, with cond(e;) = £. For every
even character ¢, of cond(¢,) = ¢, we fix, once and for all, a character v, with cond(vy,) = ¢ and
such that 77 = ¢,. As remarked in [HPS89a, Section 7.2], the particular choice of e, and v, is
not important, but the fact that a certain choice is fixed once and for all is crucial.

(a) We first extend e¢ to R, via the composition:

OZ (O@/WDZOK)X T> (Z@/sz)X
[ |
R = (0¢+wp,0p,)" N Q"

(b) If x¢ is even, let vy be the square root character associated with it, as above. We define

/

Xe(r) = ve(ve(r)), for any r € R;. Clearly, xe(r) = Xe(r') if r = 7' (mod wp,Op,).

(c) If x¢ is odd, then x¢ = €¢ - x}, with x} even. We then define X, = gg;(z.
Definition 3.3. We denote the lift of x to R by X, defined as X = ] Xq-
q|C

Recall that we can define the adelization of
(3.5) Xa : QX\AX /R, (1 + NZ)* — C*,

as the unique finite order Hecke character such that x4 ((1,...,1,¢,1,...)) = x(¢)~*; then x,(q) = x(¢)~*
if gt N.

Remark 3.4.

(1) The restriction of X to Z recovers the starting character x. At any prime g away from ¢, the lifting
process of each local component Y, consists exactly in the adelization of its inverse, (Xgl) A-

(2) The lifting process can be constructed compatibly with the inclusion of Pizer orders R 2 R/,
with R’ Pizer order of level N'¢?, N | N'.

(3) By construction, the character X is trivial on U;(R). More precisely, it is a character of
(R/5(R)), for 6(R) the different ideal of R (cf. [HPS89a, Sections 7.1-7.2]).

3.4. Forms on definite quaternion algebras. In this section we recall the various notions of quater-
nionic forms and their explicit relations. We fix an odd prime p # ¢ and an absolute closure of Q,,, which

we denote by Q.

3.4.1. Quaternionic modular forms. Let A be a commutative ring and consider the space of polynomials

in two variables, A[X,Y]. We endow this module with the action of invertible matrices GL2(A) given by
(3.6) v-PXY) = P((X,Y) ),

for any v € GLy(A) and P € A[X,Y]. For any m € Z>( we define the submodule of homogeneous
polynomials of degree m and denote it by L,,(A); the GLy(A)-action descends to an action on L, (A).
In the following, the ring A will be an algebra over the ring of integers of a finite extension of Q,, for

example, @.

Definition 3.5 (Quaternionic modular forms). Let R be a Pizer order of level N/?, and assume that
p | N. Let A be a Z,-algebra and fix an A-valued Dirichlet character x with conductor C' | N¢. A
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quaternionic modular form for D>, of weight k € Z>5, level structure R, and character x, is a continuous
function ¢ : DX —» Ly _2(A), such that

plddzr) = (xa) T () X(r) 27" (1 - 0(d)),

for d € D*, de ﬁx, z € A}(, and r € R¥. Here X is the lifting constructed in Definition 3.3. We denote
the space of quaternionic modular forms by SP (R, x, A).

Note that, for z € A; NR*, X(2) = (xa)~(2), and that ¢ is right-invariant under Uy (R)®), i.e. away
from p. The space SP (R, x, A) inherits a right-action of GL2(Z,) given by Lph(ci) =~~1. p(d).

As defined, quaternionic modular forms are not the classical quaternionic modular forms considered
in [HPS89al, which are (non-unitarized) automorphic forms on D. In order to clarify the situation, as
well as making explicit certain actions on the space of quaternionic modular forms (see Section 3.5), we
recall the definition of automorphic forms and algebraic quaternionic modular forms, highlighting their

relations with quaternionic modular forms.

3.4.2. Automorphic forms on D*. Fix an isomorphism ¢ : Q, 2 C and let ¥, : Doy = D®gR < M;(C)
be an embedding such that 1(:,(d)) = Yoo (d), for any d € D* C DS = GL3(Qp). For any k > 2, let
(3.7) Pook : Do —> Aut(Lir—2(C))

be the unitarized representation defined by

(3.8) P (doo) (P(X,Y)) = [ (doo)| T oo (doo) - P(X,Y).

Definition 3.6 (Automorphic forms on D*). Let R and y be as above. We define the space AP (R, x)
of automorphic forms on D>, of weight k, level R, and character x, as the vector space of continuous
functions ¢: D(A)* — Ljy_2(C), such that

Pdrdsorz) = (xa) ™' (2) X(r) pho x(d) (6(2))

ford € D*, ds € DX, z € A, and r € R*.

o0

There is a correspondence between quaternionic modular forms and automorphic forms. Precisely, to

each p € SP(R,x) we associate the automorphic form ®(p) € AP (R, x) defined as
(3.9) D()(d) = plt 1(d=) (1(dp - () )
for any d € D(A)*, with finite part dy € ﬁx, and components d;, and do, respectively at p and infinity.

3.4.3. Algebraic quaternionic modular forms. In order to construct the p-adic L-function in the following
Section 5, we need Hida families of quaternionic modular forms. We define them in Section 4.2, similarly

to [Hsi21, Definition 4.1], and for this purpose we should introduce algebraic quaternionic modular forms.

Consider the Iwasawa algebra A = Z,[1+pZ,]. For any z € 1+ pZ,, we denote by [z]x the group-like
element of A determined by z. For r > 1, let Rz, be a sequence of nested Pizer orders on level N >y

contained in the nested sequence of Eichler order Ry,-. We consider the finite set
(3.10) X, = DX\D* JUy(Rygpr),

and let O[X,] be the finitely generated O-module spanned by divisors on X,. The Iwasawa algebra A

acts Zy-linearly on O[X,] via
(3.11) Zla-z=2(1,...,1,(§9),1,...),

forx € X,, z €1+ pZyand (1,...,1,(§9),1,...) the adele with p-th component (§9).
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Definition 3.7 (Algebraic quaternionic modular forms). Let x be a Dirichlet character of conductor
dividing N/p". We define the space of algebraic quaternionic modular forms of level Ryy2,r, weight k

and character x as the finite A-module

SkD(RNZmeX) = {f € HomCtS(O[XT],Ll%Q(QTp)) fzzr) = (xa) 1 (2)X(r) f(2) } ’

forall z€ A%, re R]szpr

Recall that any ¢ € SP (Ryyz2pr, X) is not Uy (Ryzpr )-invariant but only Uy (R zpr) P)-invariant. The

relation between SkD(RN[2pr, x) and SP (Rne2pr, x) is made clear via the association
(3.12) SE (Rnezprs X) 2 () — f(2) = zp - p(2) € S (Rnezprs X)-

Remark 3.8. We will define Hecke operators on SP(Ryy2,, x) momentarily (cf. Section 3.5.1). For
now, let us mention that the A-action on the space of quaternionic modular forms SP (Rnezprs x) takes

the form of

(3.13) [ela - plz) =2 oL, 1,(59), 1) = (xap) ™ (2) (@),

In other words, we can think of the A-action as a diamond operator at the prime p.

3.5. Operators on quaternionic modular forms.

3.5.1. Hecke operators. As in the usual setting of classical modular forms, one can define Hecke operators
acting on the space of quaternionic modular forms. These are easily defined taking into account the adelic
description of these forms; for any prime ¢ # ¢, let ¢, € A? be the element characterized by ¢, = ¢ and
1 at other places. Let A be again a Z,-algebra and let ¢ € S,? (Rye2, X, A). For any d € D*, the Hecke

operator Tj is determined by

W(d((l)gg))—l- Z Lp(cf(%‘f)) for each prime gt N¢2,
a€Z/qZ

(3.14) T,e(d) =
“lego @62+ X wl(gc{)(c?(%’i‘)) for g =pand pf N,

> e(dsD) for ¢ | N,

a€Z/qZ
(3.15) Uye(d) =
J(Sp @ —
Z tp\(zézi) (d(o 1)) forg=pand p| N.
a€Z/pZ
Remark 3.9.

(1) In the case of a definite quaternion algebra, one can express the action of quaternionic Hecke
operators via Brandt matrices. Via these matrices we can also define Hecke operators for the
primes of ramification for the quaternion algebra. As Hecke operators are compatible with the
Jacquet—Langlands correspondence (up to a sign at £), applied to forms which are new at £, Uy
will be the zero-operator. We refer the interested reader to [Eic73], [Piz77], [Piz80b] and [HPS89b]
for their precise definition.

(2) We define an Atkin-Lehner operator in Definition 3.18, following [Piz80b]. One can find quater-
nionic analogues of the local Atkin-Lehner operators in Section 9 of loc. cit. and [Piz77]. For

what concerns diamond operators, they can be defined as in [Hsi21, Section 4.4].
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(3) The first-named author wishes to remark that the definition of the Uy operator provided in [Dal23b]
is not correctly stated. As above, one should use Brandt matrices to define it and not the invo-
lution obtained by multiplication with an element of norm ¢ in D,*. This definition is correct for
Eichler orders, as it coincides (up to a sign) with the Atkin-Lehner operator. The proofs and

results contained in loc. cit. are unfazed by this misstated definition.

3.5.2. Multiplicity two. A peculiar property of Pizer orders of level N¢? is the failure of multiplicity one
for Hecke-eigenspaces of quaternionic modular forms. This phenomenon has been extensively studied in

both [Piz80b] and [HPS89b], and it can be summarized in the following proposition.

Proposition 3.10 (Pizer, Hijikata—Pizer—Shemanske). Let f € S(T'1(N£?), x)"®" be a Hecke-eigenform,
twist-minimal at £. Suppose that the £-component of x has conductor cond(y,) < €. There is an isomor-

phism of Hecke-eigenspaces

SkD(RNEQ’X7 Qp(f))[f] = Sk(NEQﬂ X)[ﬁ@Q'
In particular, the Hecke-eigenspace SP (Ryez,x, Qp(f))[f] is two-dimensional.

Remark 3.11. The Jacquet-Langlands correspondence associates to any automorphic representation
mp of D*(A) an automorphic representation w of GLg(A). By Strong Multiplicity One for GLs and
its inner forms, there cannot be two different automorphic representations 7p and 7, of D*(A) that
correspond to the same automorphic representation 7 of GL2(A). Proposition 3.10 is therefore about
automorphic forms, i.e. elements of 7p and 7.

For GLgo(A), there is a well-known theory of newforms: there is a compact open subgroup K, C
GL2(Af) such that dim ﬂ'ff" = 1. This is no longer the case for D*(A); in fact, underlying Proposi-

RX
tion 3.10 is the fact that dim WDISfQ = 2, which was observed locally at the prime ¢ in Proposition 2.5.

3.5.3. An extra operator. Using the methods of Section 2, we can define an extra operator acting on
the space of A-valued quaternionic modular forms S (Ryyz, X, A); its nature is local, arising from the
structure of the order at the prime of ramification £.

With a slight change of notation from Section 2, let wp be the element in D* defined as
(316) wD:(17~-~717ng;17---)»

for @wp, a quaternionic uniformizer of D;/Q;; note that No,(w,,)/0,(®@p,) = @g, for a uniformizer of
Q. We will choose wp, so that wQDz = (. Equivalently, we are fixing our chosen ramified quadratic
extension Qq(wp,) to be Qy(v/¢). Notice that one can fix another choice of uniformizer and, mutatis

mutandis, all the results in this section and in Section 4 are similarly obtained.

Definition 3.12. We define the operator (wwp,) on the space SP (Ryyz, x, A) as
(@p,) ¢(d) = ¢ (dp)

Proposition 3.13.

(1) Iterating (wp,) twice, one has

(@0)? ld) = ¢ (1L, LD 1)) = ()7 ().
(2) The operator (wp,) commutes with the Hecke-operators.
Proof. We notice that (1,...,1,£,1,...) € A]f, and
Xa (O =1=x4 (1, 1,61, ) Xl (6 6 1,8,.),

hence
Xoa (L L61,00)) = xwa (6, 61,0, )) = X3 (0).
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Both statements follow now from the definitions of (wp,), quaternionic modular forms, and Hecke

operators away from /. |

The choice of the notation (wp,) is justified by the above proposition; this extra operator is closer to
a diamond operator than a replacement for the Hecke operator at ¢. Let us remark that X]_\,l evaluated
at £ coincides with the evaluation at the same integer of the adelization of the character xy; this follows

by the definition of the adelization as the rational elements not prime to the conductor are mapped to 1.

Proposition 3.14. Let f € Si(T1(N£?), %)™V be a Hecke-eigenform, twist-minimal at £. As above,
suppose that the £-component of x has conductor cond(xe) < £. The two-dimensional Hecke-eigenspace

SP(Ryez, X, A)[f] decomposes into one-dimensional eigenspaces under the action of (wp,),

SP (R, x, ALf] = SP Rz, x, A)[f)FPO=HVXN O @ SP(Ryge, x, A)[f] (TP =VXn O,

Proof. Let m; be the automorphic representation associated with f and consider ¢ its local compo-
nent at ¢. By definition of automorphic forms, the quaternionic modular forms in SP(Ryyz, x, A)[f]
correspond to (semi-)invariant vectors in the automorphic representation WJ? , obtained as the Jacquet—
Langlands transfer of m;. In other words, we can identify SP(Ryyz,x, A)[f] with the space (W?)RX of
(semi-)invariant vectors. By definition, the action of the operator (wp,) is local on the representation
77]? , and it acts as the local uniformizer wp,. Since the representation 71')? , is a twist-minimal smooth
representation of D, of conductor 2, we can apply Proposition 2.5 and conclude the proof. Notice that
the central character of 7y is (up to the archimedean component) the adélization of the character ¥,

thus, the central character of m¢, at ¢ coincides with xa ¢ ((1,...,1,4,1,...)) = Xx,l(é). |

Remark 3.15.

(1) The result of Lemma 3.14 depends only on the local representation at ¢, more precisely, on its
automorphic type and its minimal conductor.

(2) The local automorphic type, the conductor and the twist-minimality property are rigid in p-adic
Hida families of modular forms (see [FO12, Lemma 2.14] and [Hsi21, Remark 3.1]).

(3) If one considers more general quaternion algebras, the multiplicity will be given by

11 2.

LeRam(D)—{oco}:
cond (m)=¢>

Therefore, considering a (wp,)-operators for each ¢ € Ram(D) — {oco}, one can recover multi-
plicity one for quaternionic modular forms.

(4) In the case x = 1, one can define a whole set of operators, defining a dihedral group of order
2(¢ +1), as in [Piz80b, Section 9]. Among these, by our analysis in Section 2, one can recognize
the operator (wp,), the Atkin—Lehner operator, and a few mysterious others arising from the
local structure of the order. The indefinite setting has been studied in [dVP13].

Our analysis is partially motivated by the explicit work of Pizer [Piz80b], where the study of Pizer
orders is addressed with a more elementary flavor; in particular, the above lemma provides a more
explicit take on the conductor 2 case of the statements contained in [HPS89b, Section 9]. Moreover,
if the central character is trivial, we recover the setting studied by Pizer. Even though the authors of
loc. cit. observed and studied the higher multiplicity phenomenon without addressing how to recover
one-dimensional eigenspaces, their explicit work has been a key input for our results. It also helped us
to implement the operator (wp,) in Pizer’s setting in magma [BCP97]. Our implementation can be found

at [1] and we use it to compute a first example below.



20 LUCA DALL’AVA, ALEKSANDER HORAWA

Example 3.16. With the above notations, take £ = 7 and let f € S2(I'o(7%))"*", be the unique newform
of level of level 72 and trivial character. In [HPS89b, Example 10.5], the authors compute that the f-
eigenspace of quaternionic modular forms of weight 2, level 72 and trivial character, is generated by two

forms, namely ¢; and @5, whose values on the ideal classes are
o1 +— (1,-1,0,0)", @2 +— (0,0,1,-1)".

Since the character is trivial, the eigenvalues of the operator (wp,) are 1. Our implementation in

magma yields the action of the (wp,)-operator as

<WD7>§01 = ¥1, <WD7><P2 = —p2.

Thus, we decompose

=—1

P (Re2)™ () = (S2 Ry [1]) 777 @ (8P (Rea e (7) =77 77

-1

for (SP (Ry2)"" [f]) @2 =11 = (p1) and (SP(Rr)"[f]) 77777 = ().

For completeness, we conclude this section with an observation on the action of the operator (wwp,)

on forms which are f-new but not twist-minimal at the same prime.

Lemma 3.17. The (wp,)-eigenvalue on the space SP(Np™2,x) is ++/xa npn (€)1

Proof. Once again, looking at the local description. If 7y is an admissible irreducible representation of
D/ of conductor 1, then it is (inflated from) a character m: (wp,) — C*. In particular, it is determined

by m¢(wp,) and once again wg(wf) = m(wg,)? = x(wg,)?. [ ]

3.5.4. A-action and operators. Recall the notation introduced in Section 3.4.3; equation (3.13) shows
that the A-action commutes with Hecke operators and also with the (wp,)-operators. Considering the
A-action on quaternionic modular forms is critical for ensuring the necessary properties of the morphisms

between eigenvarieties we construct in Section 4.1. More precisely, we make use of the relation

(3.17) (@p,)? o = xa,e(€) [(O]a - o,
for (¢) € 1+ pZ, the image of £ under the projection () : Z) — 1+ pZ,.

3.6. Pairings. We introduce here the general setting we deal with in Sections 4 and 5. Let D be a
definite quaternion algebra over Q; it is ramified at an odd number of primes ¢ || disc(D), for disc(D) the
discriminant of D. We denote by Ry, n_ a fixed Pizer order of level Ny N_, with N_ = N*® N*¢, such
that

(3.18) (N, dise(D)) = 1, (N*?, N*) =1, NP || disc(D), N*°|| dise(D)2.

We will occasionally simplify this notation to Ry = Ry, n_ where N = N, N_. The notation refers
to the local factors of the corresponding representations of GLo(A): they are special at primes dividing
N and supercuspidal at primes dividing N5¢. As discussed above, we need the extra operator (wp,) at
primes ¢|N¢. We remark that (N°P)2N*¢ = disc D?. Moreover, we fix y to be a Dirichlet character of
conductor ¢ | Ny N_, and a weight k € Z>o.

3.6.1. The quaternionic Petersson product. We recall here the definition of the Petersson product be-
tween quaternionic modular forms; our definition extends the one provided in [Hsi21, Section 4.2]. Fol-

lowing [GS20, Section 2.1], we consider the p-adic norm form N, : Dx\ﬁ>< — Z, given by

(3.19) Np(_) = (|VAf(_)|Af VAf(_))

for (—)p : A? — Qp, the projection to the p-component. In other words, N, is defined as the p-

p7

component of the normalization of the reduced norm by the adelic absolute value. With the notation of
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[Hsi21, Section 4.2], we denote the p-adic cyclotomic character by eqyc; this is the character
Ecye - Q+\A;< — Z;
(3.20) a+— (|a\Af a)p = |a|Af ap.

Therefore, N, = ecyc 0 v, as the quaternion algebra D is definite.

We consider the pairing

(321) (_a _)N+7N7 : SICD(RNJNN?’X) X SI?(RN+,N77X71) — @pa
given by

k—2
(3:22) (o1, p2) Ny, N_ = > M@Nﬂas@z(ﬁ?)ﬂ%

[s]eDX\D*/RY

where 'y, n_(x) = (D* ﬂx§§+,N71‘)QX/QX and

(3.23) (= =dr—2 : Li—2(Qp) x Ly—2(Qp) — Qp
is the paring defined by

(i) it i=k-2,

3

0 ifitj£k—2

(3.24) (Xiyh=27t xiyh=270y, 5 =

For any g € GL2(Q,), let § = det(g)g~! be its image under the canonical involution on GL2(Q,). Given
such g and any P, Q € Ly_2(Q,), we have:

(3.25) (9 P,Q)k—2=(P,g Q)2
That implies that the pairing (—, —)n, n_ is well defined, as
Ny (@r)* 2o (ar), g2 (ar))i—2 = Np(@)" 20y ()2, - o1 (@), 7yt - p2(@))i—2
(3.26) = vp(1p)" 20 (r, )N ()2 1 (@), 2 (@) )2
= Ny ()" (1 (), p2(2))k-2,

for r € ]:ElfbﬂN_ and [z] € Dx\ﬁx/ﬁiu,N_'

Definition 3.18. With the notation of Section 3.1 (cf. also [Piz80b, Section 9]), let TII\:[)+7N_ € D* the

element determined by

1 lqufN+N,,

— 0 1 .
() ol
AR it g | N*P,

D0, it g=¢] N>,

We define the Atkin—Lehner operator
[, v ] SE (B ve ) — SP (R v x 7,

as

[T£+7N,] o(x) = 7'11\?+,N,,p : ¢($T£+,N,)XA(V($))-

Lemma 3.19. The Atkin-Lehner operator is a well-defined involution.
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Proof. It is easy to notice that the level of [T]6)+’N_] @ is still Ry, n_, but we need to check that its

character is y~!. Given r € R;M ~N_» We compute

(rx, v Je)ar) =780 n_p e(ar Ty, N ) xa(v(2)) xa(v(r).

We must only check the primes ¢ | N*¢ as the local behavior at the other primes is the one of the usual
Atkin—Lehner operator. Let ¢ be such a prime. With the formalism of Section 3.1, we note that, for

r =1+ wg,y +wp,z € R, with z,y € Zy and z € Op,,
TWQ,, = TWQ,, + WQ, YWQ,, + TD2WQ,, = W0, (x — waﬂ) + @wp, 2w, -
Therefore, rwq,, = wq,,r (mod wp,Op,), hence X¢(rwg,,) = Xe(wg,,7). As
wQ,, BN, N 0= BN, N_1DQ,
we deduce that the operator is well defined, and inverting the character. We conclude noticing that

7R R 1 e@) = (7B v ) (2R, )?), and

1 if q '|' N+N7,
(TD )2 _ _qvq(N+N7) if q | N+a
Ny N_q) =
B 1 if ¢ | N°P,
wézz ifg=10]N**.
Therefore, (T£+7N_7q)2 € Zg, for each q. u

Proposition 3.20. The pairing

(= =g v 1 SE (R N_ o X) X SP(Ryv_,x) — Qp

defined by (¢1,2)N, N = (@1, [T£+,N_]@2)N+’N7 is perfect and equivariant for both the action of the

Hecke operators and of (wp,).

Proof. The Hecke-equivariance follows exactly as in [Hsi21, Section 4.2] from [Hid06, Lemma 3.5]. Since
¢?|| disc(D), it is not difficult to compute that I'n, n_(2) = 'n, n_(zw@p,). Writing temporarily X =
DX\EX/R;,JMNJ we have that:

N k—2
(=p) eroanen. = 5 A lor(ahrl - larf s Xa@) v s
[z]eX -

—1 N k—2
:Z Nx?w(;(;ff)é)azﬂz(le () (e1(2), 78, n_p P@wp, TN, N XA V(@) Ny Nk
[w]lex ~PATEE ol

_ 1 Np(m)k g D ) D 1
Xi (w(@p,)) Y Ty SS— (p1(2), 7, N_pP@TN, N_p@D,V(@D,) ") Xa(V(2)) Ny N k-2

= (901’ <tz> @2)N+,N_

where the second equality is obtained by the substitution z — =z wf,j, and we have used N, (w p) =1

2

-1_pD _ D -2y _ D -1
and wp,, TN . ,N_p— TN+,N_,wa£(_ng) = TN, N_ ,waeV(tz) . u

3.6.2. Automorphic and quaternionic pairings. Let x, be the adelization of x and Ry, ny_ a Pizer
order in D of level NyN_, we denote by A% (Ry, n_,xa) the space of scalar-valued (i.e. weight 2)
automorphic forms of level ]TEN ..~ and character 4. For any two such forms f € AP(Ry L N_,Xa) and

fre AP(Rn, v ,x3"), we define the pairing

(3.27) D= ST @)
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for dz the Tamagawa measure on AX\D(A)*.

Let ¢ € S,? (Rn,,N_, X,@p) be a quaternionic modular form of weight k£ and character y, and let
u be a polynomial in Lj_5(C). We can define the matrix coefficient ®,(p) € AP (Rn, n_,X5"') as
D, (p)(x) = (P(P)(x), u)g—2, for any x € D(A)* (recall equation (3.9)). The above pairing is related to

the one defined in Proposition 3.20 via the following lemma.

Lemma 3.21. Let ¢ be as above and consider u and v in Ly_o(C). Hence,

vol(Ry, v )
<[T£+,N7] (I)u((p)v (I)W(SD» = (N+Nic)(kN2)/]\; (k . 1) <('07 QP>N+’N7 <U7U>k,2.

Before proving the lemma, we remark that if R is an Eichler order of level NV, , the Atkin—Lehner operator

becomes T£+71, and we recover the formula in [Hsi21, equation (4.5)].

Proof of Lemma 3.21. This is an application of Schur orthogonality relations for linear pairings once we
split the integration over A* D*\D(A)* = A7 D* \D* x R*\DX. More precisely, one can proceed as in
the proof of [GS20, Lemma 3.2], obtaining

Vol(RK,+ ~N)

(Xa Pu(p), Pu(p)) = ﬁ (Xa @, ©) N, N_ (U V)2

(k—2)/2
The factor v (T]e_h N_) arises from the definition of the isomorphism f in [GS20, equation (16)];
one must notice that they work with automorphic forms valued in the dual space (Lg—2(C))Y, so their
action at oo is obtained by inverting x,,. Expressing everything under our definitions and our choices of

normalizations we obtain the stated equality. We conclude noticing that v (7’1%’ N,) = NN |

4. THE JL CORRESPONDENCE IN FAMILIES

As in Section 3.6, we take D and Rynn, n_ for n € Zx¢ and p > 5 a prime with (p, NyN_) =1,
satisfying the conditions in equation (3.18). We also fix a Dirichlet character x of conductor ¢ | Ny N_

and assume that, for all primes ¢ | N_,

(4.1) vg(c) = vg(NP)—=1=0, if ¢ | NP, and vg(c) < vg(N*) —1=1if ¢ | N*.

This section is devoted to the study of quaternionic p-adic Hida families, with level structure given
by such Pizer orders. Our eventual goal is to study a Jacquet—Langlands transfer in families for Cole-
man/Hida families on GLg of level N. We show that for any collection of signs ¢, for each ¢|N=¢
corresponding to eigenvalues of (wp,), there is a Coleman/Hida family on D* that transfers to a given
Coleman/Hida family on GLs. To that effect, we study eigenvarieties for the Hecke algebra augmented by
the extra operators (wp,), and obtain an open immersion of eigenvarieties & la Chenevier [Che04]. The
main tool is therefore Chenevier’s interpolation technique, adjusted for dealing with this more general
setup. We conclude with a control theorem in the spirit of Hida (see Corollary 4.28).

The main reference for this section is Bellaiche’s book [Bel21], together with [Buz07], [Che04], and
[Lud17]. We try to keep the discussion as brief as possible; we recall only the necessary notions and

definitions, and provide references where details can be found.

4.1. Eigenvarieties. Let ¥V denote the weight space, i.e. the rigid analytic space over Q, whose Q,-

points are

(4.2) W(Q,) = Homes (2, Q, ).

We freely identify any Q,-point & € W(@p) with the corresponding character of Z;. The space W is
endowed with an admissible covering 4 by admissible affinoid open subsets, as constructed in [Buz07,

Section 6]; in loc. cit. the covering is considered on the Fredholm variety, while here we prefer to deal
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only with the weight space, as in [Bel21], out of convenience of exposition. For any X = Sp(A4) € €,
we consider the space of cuspidal overconvergent p-adic modular forms as defined in [Buz07, Section
6] and denote it by SE\@N,,X(X) (in loc. cit. S}L\uNﬂX(Xn) is denoted by M, for X,, € ¥). This is
a Banach A-module and satisfies Property (Pr) as in [Bel21, Section 3.1.6]. Similarly, we consider the
space of cuspidal overconvergent p-adic quaternionic modular forms as defined in [Buz07, Section 9], and
denote it by SﬁfN__’X (X) (in loc. cit. ngN_,X(Xn) is denoted by SP(U;r), for k and r associated with
X,, € ¥); once again, this space is a Banach A-module and satisfies Property (Pr). In order to keep the
discussion of this section brief, we opt to not recall the precise definition of overconvergent automorphic
forms and instead refer the interested reader to [Buz07] and [Che04]. Let us remark that this decision
will not compromise the proofs of the main results as they rely only on properties and operators on

classical automorphic forms.

We are interested in the eigenvectors of (wp,), for each ¢ | N*¢; therefore, we fix once and for all a

square root

(4.3) \/XA,N+N,/122 (0)-1,

which we call the positive square root of xa v, n_/¢2 ()~L. We consider the field extension

(4.4) K=Q ({\/XA,MNM2 (5)1}2“\@6)

and let O be its ring of integers. Moreover, let I' = O[1 + pZ,] be the corresponding finite extension

of the Twasawa algebra A. As we will make use of equation (3.17), we need to extend I’, adjoining the

square roots of [(¢)]1; we set

(4.5) v [{ViEn}, .|

for the corresponding finite flat extension of A. Taking its normal closure in Frac(I) if needed, we can

assume that I is a normal domain. As above, we fix a compatible choice of square roots

(4.6) VO], for €| N,

which we refer to as the positive square roots; we shorten the notation and set

(4.7) (VO = [(O)]r, for ] N*.

Let Ty be the polynomial algebra over I generated by the Hecke operators T, for ¢  pNyN_, U; for
I | pN.N? and the Diamond operators away form pN, N_; it is the Hecke algebra away from £ | N5¢,
and we remark that T is a commutative algebra over I with a distinguished element, the U, operator.
We extend the A-action defined in Section 3.5.4 to an I-action via the group-like elements. Similarly, we
consider corresponding I-action on the space of p-adic modular forms and automorphic forms (cf. [Hsi21,
Section 2.3]).

Getting back to Banach modules, for any X = Sp(A) as above, there exist ring homomorphisms,
(4.8) ¥x 1 Tr — Enda(Sh, v, (X)) and R Ty — Enda(SyTy_ (X)),

such that the image of the U,-operator under each map defines a compact operator (see [Buz07, Section 6,
Lemma 12.2]). 1\/[01re/(\)ve1r7 for any X’ = Sp(4’) € €, the A’-modules S}LwNﬂX(X)@AA’ and S}L\uNﬂX(X’)
(resp. SﬁfN,,X(X)‘X’AA/ and SﬁfN,,x (X)) are linked (see [Bel21, Definition 3.5.1]), as the I-action

commutes with Hecke operators (cf. Section 3.5.4).
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4.1.1. Classical eigenvarieties. By [Bel21, Theorem 3.6.3] (cf. [Che04, Theoreme 6.3.6]), there exist two

cuspidal eigenvarieties gL, and ép associated, respectively, with the eigenvariety data
GL D D,
(4.9) @va,,x =W, T1, Uy, Sj\qz\/,,xa YGL, ) and @N+N,7X = (W, Tr, Uy, SNJN,,Xv ¥p).

We recall that the eigenvariety &cr,, (resp. &p) is a rigid analytic space over K endowed with
e a locally finite morphism wgr, : gL, — W (resp. wp : &p — W), called the weight map;
e a morphism of rings ¥qar, : Tt — O(&qL,) (resp. ¥p : Tt — O(Ep)), which sends U, to an
invertible function;
e the morphism war, X ¥arL,(Up) ™t & Sar, — W xA%ig (resp. wp x¥p(U,)~t: &Ep — W A%ig)
is finite ([Bel21, Proposition 3.7.7]).
The general definition of eigenvariety satisfies analogous properties and it can be found in [Bel21, Defi-
nition 3.6.2].

Remark 4.1.
(1) By [Bel21, Theorem 3.6.3], there exists an eigenvariety for each eigenvariety data and it is unique
up to unique isomorphism.
(2) The eigenvariety construction of &p provided in [Buz07] applies in our case, as the adelization
R*isa compact open subset of ﬁx; cf. [Dal23b, Lemma 2.3].
(3) By [Bel21, Proposition 3.7.7], all the eigenvarieties over W are separated; moreover, as in [Lud17],

it is enough for us to work with the reduced rigid analytic space associated with each eigenvariety.

Hypothesis 4.2. From now on, we assume all the eigenvarieties we consider throughout this note are

reduced and separated.

Lemma 4.3 ([Buz07, Lemma 5.9]). Let (&,1,w) be either (6GL,, YLy, waL,) o7 (6D, ¥ p,wp). For any

discretely valued extension K' /K, the association
&(K') — Homying (Tr, K') x W(K') mapping z— ([h = P(h)(2)], w(z)),

defines a bijection between the K'-valued points of & and the set of K'-valued systems of eigenvalues with

non-zero Up-eigenvalue.
Remark 4.4. Lemma 4.3 holds for any general eigenvariety ([Bel21, Theorem 3.7.1]).

Proposition 4.5 (p-adic extension of the JL correspondence). The Jacquet-Langlands correspondence

extends uniquely to a closed immersion
JL,
gD — @@GLQ
compatible with the eigenvariety structure, that is, wp = wgL, © J Ly and Yp = JL; o gL, .
Before proving the proposition, we need to recall the notion of arithmetic points on W(@)

Definition 4.6. We say that x € W(Q,) is classical if there exists a point z € &gr,(Q,) such that
wGL, (2) = Kk and 2z corresponds to a classical modular form; we denote by W< (Q,) the set of classical
points. We say that k € W(Q,) is arithmetic if there exists a point z € g1, (Q,) such that war, () = &
and z corresponds to a form of weight-character x = (k,e) € W(Q,) = Hom(Z) @X) with k € Z>9 and
e a p-adic character of finite order. We denote by With(Q,)) the set of arithmetic points. By Coleman

classicality’s theorem [Col97, Theorem 1.1], we know that arithmetic points of small slope are classical.

Proof of Proposition 4.5. We want to apply [Ludl7, Proposition 2.10]. We define the very Zariski-
dense (see [Bel21, Definition 3.8.1]) subset Z C &p(Q,), as the set of arithmetic Q,-points z such that
wp(z) € Wath(Q,,). Coleman’s classicality theorem combined with [HPS89b, Theorem 7.17] (cf. also
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Proposition 3.10) implies that both &p and &g1, are endowed with a classical structure (see [Bel21,
Definition 3.8.5]) given by classical forms over Warith(Q,). [Bel21, Proposition 3.8.6] tells us that the
subset of all classical points & C &p is very Zariski-dense in &p, thus, setting 7 = % (@p) we can
assume it to be very Zariski-dense in £p(Q,); Z embeds in &g1,,(Q,) by the classical Jacquet-Langlands
correspondence and Strong Multiplicity One for automorphic representations. More precisely, Lemma 4.3

defines an injective association
b EXQy) Dz ¢— TP s, > JLy(2) € éaéle(QTp),

where 2 is the automorphic representation over D* (A) associated with the classical point z and 7, =
JL(wP). This inclusion is compatible with the structure of the two eigenvarieties by definition of the
map. The uniqueness is ensured by the reducedness of the eigenvarieties together with [BC09, Lemma
7.2.7) and Lemma 4.3. |

4.1.2. The extended eigenvariety. The Hecke algebra Ty acts on quaternionic modular forms with Ry,nn, n_-

level structure and, for each ¢ | N5, we can extend Ty by adjoining the operator (wp,).

Definition 4.7. We define the K-algebra
ﬁ‘l = TI [(wDe> ’ﬁ | Nic:|

endowed with the canonical injection Ty — ’f‘l. We refer to it as the extended Hecke algebra. By
Proposition 3.13 and equation (3.17), Ty is commutative.

While the algebra Ty acts on both Sy, y_ , and S£+N,,X7 Ty acts only on SJE\’,+N77X. We can consider

the tuple
~ ~ D,
(4.10) DRon =W, T, Uy, SRy ¥p),
which defines an eigenvariety datum, as one only needs to prove the following lemma.

Lemma 4.8. For any pair of affinoid subdomains, X' = Sp(A’) C X = Sp(4A) C W with X, X' € €,
the A’-modules Sf,fNﬂX(X)@AA’ and Szl\)rfN,,X(Xl) are linked (see [Bel21, Definition 3.5.1]) under Tr.

Proof. We apply [Bel21, Lemma 3.5.2] to [Buz07, Lemma 12.2]; we must prove that the two morphisms
are 'ﬁ‘l—equivariant. The first inclusion morphism is Tr-equivariant (recall that we are changing the
structure only at the ramified places). Thus, the properties of (wwp,) in Proposition 3.13 together with

the relation in Section 3.5.4 imply the 'fl—equivariance of both morphisms. |
We deduce the following proposition.

Proposition 4.9. There exists a reduced eigenvariety associated with the datum §1€+N,,X7 which we

denote by (é"ND,@D,JD). We will refer to it as the extended eigenvariety for D.

This variety plays the role of an auxiliary eigenvariety, whose points parameterize system of Hecke
eigenvalues with finite Up-slope together with a collection of additional eigenvalues associated with the
(wp,)-operators. In particular, applying Lemma 4.3 to the inclusion Ty < Ty, we obtain a morphism
on the C,-points of the eigenvarieties. This canonical map extends to a morphism of eigenvarieties; in

fact, more is true.
Proposition 4.10. The canonical inclusion Ty — TI defines a unique finite morphism,
T (g)ND _— éaD,

compatible with the eigenvariety structure. Moreover, it sends classical points to classical points.
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Proof. We follow the proof of [Lud17, Proposition 3.15] and construct the map on the local pieces of
the eigenvariety. More precisely, we take & DX = &Bl(X ) C & p, for any X = Sp(A) in the admissible
covering €. We consider the admissibile covering {gp, x(U)}y indexed over connected open affinoids
U C X; by construction, each (50~D7X(U) is an affinoid Sp(Ty(U)), for

~ ~ Dt . finite slope red
Ty(U) = Im ( Ty @x O(U) — Endoy, (SN;M’X(X)@O(X)O(U))

the reduced image of Ty @ O(U). For any U as above, Ty < Ty induces the inclusion Ty(U ) = Ty(U);
therefore, we obtain

iy Epx(U) — p x(U).
Note that the &p x (U) form an admissible covering of &p x. The composition of tj; with the natural

inclusion ép x (U) — &p, x determines the morphism
7~TU : éapyx(U) — gp)x.

Let X’ be an admissible open in € and take U C X and U’ C X', connected open affinoids. Up to
refining the covering, we can assume that X C X’. Invoking [Buz07, Lemma 5.2] as in [Lud17, Proposition

3.15], we deduce that 7| G x( = Tynur, therefore the morphisms 7y glue compatibly. Again, the

unu’
uniqueness is ensured by the reduc)edness of the eigenvarieties together with [BC09, Lemma 7.2.7] and
Lemma 4.3. Let now z be a classical point in Q;QVD(QTP). Such z corresponds to a classical eigenform
¢, identified by a system of Hecke and (wp,)-eigenvalues for £ | N*¢, say X.. The morphism 7, by
construction, maps Xz to the eigensystem A, obtained by forgetting the (wp,)-eigevalues. Lemma 4.3

shows that 7(z) is classical. Finiteness follows from the relation

(@p,)? = Xnanv_ e (07 (D=0
obtained from equation (3.17). |
4.1.3. Idempotents. For any £ | N*°, recall the square root operators (v/¢); defined in equation (4.7).

They are invertible elements of the algebra I, as the [(£)]; are invertible. Therefore, they determine

invertible operators. We can hence define idempotents in I and on SJI\L N_ox-
Definition 4.11. For each prime ¢ | N*¢, we set

1 1
ei’z = 5 1F <tzz>

(V)1 \/XA,N+N_/Z2 Ok

Moreover, for each tuple of signs € = (Gg)l‘Nic € {il}#mNiC}, we define a canonical idempotent

D __ Dy
P = [ .

£|N=<

Remark 4.12.

D,

(1) Tt is immediate from the definition that the sum efﬂ + eZ* is the identity element 1 in Ty.

Therefore, the sum of all these idempotents is
Z eP =1.
ce {1} ONTY
(2) The operators (v/f)1 take care of the p-component of the square root as explained by equa-
tion (3.13).

Proposition 4.13.
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(1) Let k = (k,k,) € WUQ,) be any weight-character and let n = max{1,v,(cond(k,))}. For any
£| N5, let S,?’i(p”N+N,, Xkp) = eieS,?p”NJrN,,X/ip). There is a canonical decomposition

SP(P"NyN_, xrkp) = ST (0" Ny N_ xrp) © Sy (0" N N~ xtip).-

(2) The projectors eg’f are orthogonal with respect to the quaternionic Petersson inner product defined
in Section 3.6.1.

Proof. Tt is clear that the two idempotents eg"’ give rise to projectors on SP (p" N2, xk,), satisfying
the identity 1 = eff + e]_j’f, e ePr=1-— ef". Therefore, for any ¢ € S,? (p”NZz,an), we compute
ei’eegﬂp =0, in fact, eize%p =P —ePrelip = Pt — Pt = 0. This proves (1). Part (2) follows

from Proposition 3.20 and equation (3.13). |

4.1.4. The extended eigenvarieties of idempotent type. We fix one of the idempotents in Definition 4.11,

say eP, and consider the tuple
DD o DgD,
(4.11) P DR N =W, Tr, Uy, ePSPTy L ¥p).

Proposition 4.14. There exists a unique reduced eigenvariety associated with the datum e?@ﬁ+N_7X,

which we denote by (gf,,fujj = (:)D|§E ,{/;D) and we will refer to it as the extended eigenvariety for D.
D

Proof. The above Proposition 4.13 guarantees that the projection by e? (which is linear and continuous)

D

. commutes

produces Banach modules satisfying Property (Pr) (see [Bel21, Exercise 3.1.23]). Since e
with all Hecke operators, Lemma 4.8 shows that the modules are still linked. |

Proposition 4.15. The natural map
¢85 — &p,
is the unique closed immersion compatible with the eigenvariety structure. Moreover, @gD is the disjoint

union of the images of é‘%, for all the € € {jzl}#mNS—C},

Proof. This is just [Bel21, Exercise 3.7.2 and Exercise 3.6.4], together with the direct sum decomposition
of Proposition 4.13. Alternatively, one can also consider an approach similar to the proof of [Ludl17,
Proposition 2.10]. [ |

Proposition 4.16. The morphism ﬁ; of eigenvarieties, obtained by composition,
ﬁ; =JL,omot": & — &L,
is a closed immersion.

Proof. The morphism preserves the eigenvariety structures and it is finite, by composition of finite
morphisms of eigenvarieties; recall that closed immersions are finite by definition, see e.g. [FvdP04,
Definition 4.5.7 and Definition 4.10.1]. As in the proof of [Lud17, Lemma 2.9], we consider an affinoid
V CW x A}, its preimage X = (@, x JD(UI,)_l)_l(V) in gf), and the natural surjective map

bp @ (&5 X Pp(Uy) ™) : Ty 0k OV) — O(X).
To prove that ﬁ; is a closed immersion, it is enough to show that the restriction
¥p @ (@ X Pp(Uy) ™) : Tr ok OV) — O(X).

is still surjective. This follows by the finiteness of O(X) as a O(V)-module (see Section 4.1.1) and from
the relation

Up((@p,)) = e \/xae(l) ¥p((VOr), forall £|N*.
We can hence follow through the proof of [Lud17, Proposition 2.10], considering finite subsets Iy, C Ty
containing the operators (v/¢)g for £ | N*°. [ |
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We can summarize the above eigenvarieties and their morphisms in the following commutative dia-

grams:
~D€ 7,
GpxPp(Up)~?
(4.12) UJEXJE(UPYI pXxYp(Up)
&aL. Ty,
W x Al
o(&5)
5
Ty
(4.13)
(JLp)*
O(ép) O(éc1,)
wDT PG,y
Ty

4.1.5. The image of ,ﬁ; We conclude this section with a couple of interesting observations which
strengthen the comparison between our immersion and Chenevier’s one. As explained in [Che05, Section
2.1.1, Section 4.6, and Proposition 4.7.(b)], one can construct a reduced closed rigid analytic subvariety
é"érfzo C &c1, whose classical points correspond to forms which are new at the primes dividing the

discriminant of D.

Proposition 4.17. The morphism JL, is an isomorphism onto éaéfzo.

Proof. By Proposition 4.5 and the above discussion, we know that JL,, is a closed immersion. Note that

classical points are dense both in é”‘é’}zo and in &p, and hence it is enough to show that

TLy(65) 2 6,

in order to prove that the morphism is surjective. Each point in é’gfzo’d corresponds to a Hecke eigenform

which, under our assumptions, can be transferred to the quaternion algebra. |
Proposition 4.18. The morphism %lge is an tsomorphism onto its image.
D

Proof. We would like to apply [BC09, Proposition 7.2.8], but Im(?r‘ 7<) is not necessarily an eigenvariety.
D
However, modifying the sets Iy as in the proof of Proposition 4.16, the proof of [BC09, Proposition 7.2.8]

applies verbatim to our setup. |

Corollary 4.19. The composition ™o 7€ is an open and closed immersion. Therefore, ﬁ; 15 an open

and closed immersion into é”éﬁo.

Proof. The first assertion follows by combining Proposition 4.18 with Proposition 4.15. The second one

follows from Proposition 4.17. |
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Remark 4.20. For any two distinct choices of signs, € and €, the images of the eigenvarieties é~”5 and

! o . . . . . . . . . . .
&} are not disjoint in &gr,,, since their intersection contains the twist-minimal forms.

4.2. Families of quaternionic modular forms. This section and the next one contain the main
results we employ in the construction of the triple product p-adic L-function, namely the existence of
families of quaternionic modular forms of finite slope. We follow the definition given in [Che04, Section

6.2.6], and restrict our attention to the two eigenvarieties

e o D, s
(414) oL, ~ W, Tr, Uy, SNy Yar,) and &S5~ W, T, Uy, ePSTy 0 0h).
To S}LV+N,,X (resp. e?SﬁfNﬂX), one can associate a sheaf of Banach modules on W, which we denote
by 5’):,+ N_x (resp. yjj\?f’l\;,,x); this geometric object is roughly obtained glueing the Banach modules
of overconvergent forms compatibly. As we are only interested in its sheaf nature, we do not recall the
precise definition here, but refer the reader to [Che04, Section 3] and [Che05, Section 1] for a thorough

discussion. Let fIGI” be the closure of Ty in

(4.15) g2 = { he End(yjin_,X) h is integral and rational} ,

where the topology is the coarsest topology such that, for any open affinoid X € W, the restriction map
G

(4.16) &7 — End$, (x) (S, v (X))

is continuous; here Endgi( X)(SR,Jr ~N_ (X)) is endowed with the topology induced by the supremum

norm. Analogously (cf. [Che04, Proposition 4.5.4] and equation (3.17)), we define f?: D€ as the closure
of Ty in
(4.17) SID’E = { he End(Y/\?f];,TﬂX) h is integral and rational} .

Let (&, W, ST, ¢, w, 7) be either the tuple
(4.18) (oo, W, Sk, v Yans wars, Z02) or (&5, W, ePSRTy 4G, 85, 7).
For any open affinoid ¢/ in W, we denote the submodule of power-bounded elements by
(4.19) oU)’ ={scoU)||s(u)| <1foralluecld}.

If U is reduced, which is always the case if I is small enough, O(U)° is compact in O(U) (see [BCOY,
Lemma 7.2.11]). The same definition applies for any affinoid X C &.

Definition 4.21 (Families of quaternionic cusp forms). Let x € W(C,) and let ¢ € w™!(k) be a p-
adic overconvergent cuspidal form. We define a family of quaternionic cuspidal modular forms passing

through ¢ as the collection of

e an affinoid open U C W, k € U(C,);

e an affinoid X C &, endowed with a finite morphism ¢: X — U, surjective when restricted to
any irreducible component of X’;

e a C,-point zp € X(C,) such that p(x¢) = k;

e a continuous ring homomorphism A\: 7 — Oy (X)?;

satisfying:
e for all z € X(C,), there exists a form ¢, € ST(X) Nw™(w(x)), such that, for all h € 7,
hex) = A(h) (@) ¢

o the form ¢ is such that one can take ., = ¢.
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We say that the family is parameterized by X, and that it has slope « (resp. finite slope) if every form
@z in the family has slope v,(A(Up)(z)) = a (resp. vp(A(Up)(x)) is finite). We call a family of slope 0 a
Hida family, while we refer to families of finite slope bigger equal than 0 as Coleman families.

Remark 4.22.

(1) By [Bel21, Proposition 6.2.7], if there exists a classical point in a family, then the classical points
are dense in the family.

(2) All the eigenvarieties we consider are equidimensional of dimension one ([Bel21, Proposition
3.7.5)).

Theorem 4.23. For any Coleman family £ on &ai,, there exist at most a unique Coleman family on
gf), of the same slope, lifting £. Moreover, there exist a family ¢ on gB, for each choice of signs e,
corresponding to f, if £ passes through a classical point whose corresponding form is supercuspidal at

each prime £ | N*°.

Proof. Let (U, k, X, xg, £: X — U) be a Coleman family on éaGL2 and (JL ) L({xo}) be the preimage
of xg. It is either empty or it contains a unique pomt x Die ¢ @@e If (JL ) Y({xo}) = 0, up to shrinking
X, and hence U, we can assume that X' N Im(JLp ) = 0 (by Proposition 4. 16) Therefore there is
no family on gﬁ lifting (U, K, X, xg, £: X — U). Suppose now that :1:(?’ (JL ) Y(x). Since X
can be taken to be an open affinoid and closed immersions are finite, X, = (JLp )~1(X) is an open
affinoid (see [FvdP04, discussion after Definition 4.5.7]). We hence define ¢ = f o jLVpE. As above,
up to shrinking &X', and hence U, we can assume that X is contained in Im(jfps), therefore € is a
finite morphism, surjective when restricted to any irreducible component. As ffj is an eigenvariety
morphism, we obtain ¢°(xz; D, ‘) = k. It remains to lift the ring homomorphism A. Consider now the

quotient map
~ T1[Xe] o vse

T
T 7 — X O ) e
determined by the choice of signs €, obtained by sending

1%

— TL

X — €01/ xax(€) (VO)1, for each £ | N*°.

This map defines, for any such affinoid open V C W, a diagram

c D .
Tr ——— Im(T1 = Endg}, 1)) (SRN_ (V) -------F-oomoe > Oxg (X5)°
(JLp")*
Ty —— Im(Tr — EndgS 1, (Sky, v, (V) Av Ox(X)°,

where the first square is a commutative square of continuous algebra homomorphisms, with the second
vertical map obtained from the Jacquet-Langlands correspondence (cf. Section 3.5.1) and the chosen
quotient map. We can define X{? as the composition of morphisms in the right hand side square, where Ay,
is the restriction of A. Let us remark that the function XQ((WD[)) € Oy (V)" obtained by composition is
the constant function XD(<wD2>)(x) = er/xa.e(0) (VOr1, for all z € X (cf. Lemma 3.17). The morphism
Xe is a continuous ring homomorphism. It remains to extend X\l)) to §I/ D-¢ We start noticing that the
defined morphisms X{? glue compatibly, as the Ay, do. Moreover, ,/?\I/ D€ is a commutative I-algebra, hence
the translates of Im(Ty — Endgi(v))(S][\),fAT, +(V))) define an open covering. The uniqueness of the lift,
as well as the invariance of the slope, follow now from the construction of €. |

Remark 4.24.
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(1) In the above proof, we note that fixing the eigenvalue of each (wp,), shows that
m s D.e, S De,
Im(Ty — Endg}, ) (SMAT/,,X(V))) = Im(Ty — End}, (SN+1\TL,X(V)))'

(2) We must stress the fact that the sequence {U;}!}n still converges in %D’E, as it does so in each

closure Im(Ty — Endgi(v) (ng}\k’x(l)))).

4.3. A-adic quaternionic forms and Hida families. Even though Theorem 4.23 guarantees the
existence of Coleman families, we need a more explicit way to describe them. In particular we restrict

our attention to Hida families.

4.3.1. A-adic quaternionic forms. We keep the notation introduced in Section 3.4.3 and fix a chain of

inclusions of orders

N ' N D ANLN. D NN
(4.20) Ry, n_ D Ryn,. N DszN N_ D D Rynn, N_ D D Ryeon, N
for
(4.21) Ryenon. = {r€ Buon |w(m) = (§4) a.d ez, bez,).
Considering the set
(4.22) Xoo = DX\D* /U (R n, N )
for

a b
(4.23) Ul(RpooN+’N_)={TEUl(RN+7N_) Lp(Tp): <0 1) aGZ;,bEZp},

we have the natural quotient maps
(4.24) Xoo — X — X,

for any m > n. We also take P, = ((1+ T)P" — 1), a height one prime ideal in A = Z,[1+pZ,] = Z,[T7,
for T'= (1+ p)a — 1. Recall that we define the diamond operators as in [Hsi21, Section 4.4]. We extend

the notion of A-adic forms provided in loc. cit. as follows.

Definition 4.25. Let SD(RN+,N_,A) be the space of functions f: X, — A, such that, for any z €
1+ pZy,
f(az) = £(2)(2)*(2)3 ",
and, for any n sufficiently large,
f (mod P,): Xoo — A/P,

factors through X,,. We call it the space of A-adic quaternionic modular forms of level Ry, n_.

By construction,

(4.25) SP (R, v, A) = lim Homy (Zp[X,], A/ P) @0, A,

for t9: A — A the Z,-algebra morphism (twisting the action at p) defined by

(4.26) o: T— (1+T)2(14p)? —1.

Therefore, the A-module S”(Ry, n_,A) is compact and endowed with the Hecke action defined by

(4.27) t-f(z) =f(t-z), forany t € Ty and = € Xo.
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Recall the notation of Section 3.5.4. For any Dirichlet character x modulo Ny N_p, valued in Z,, we
define
(4.28)
f = -1 X c 2 c
SP (R, v x.A) = {f € §P(m. Ay} | T = )RR @) el (e } |

forall z€ A¥, re ITE;&N%AL
and, for any finite flat extension A’/A and any A’-valued Dirichlet character x, we set
(4.29) SP(Ry, v N)=SP(Rn, v ,A)@a N D SP(Rn, n ., x, A)).

From equation (4.25), we deduce the compactness of S”(Ry, n_,A), hence the ordinary projector

eord = Jim UM converges in Endy (SP(Ry, ,n_,A)), as it converges in each End(Zy[X,]). We define

(4.30) e “SP(Ry, N_, X, )
as the space of ordinary A-adic quaternionic forms.

4.3.2. Hida families. The ordinary projector e°™® determines an idempotent in endomorphism ring of
quaternionic modular forms and this implies a decomposition into the ordinary and non-ordinary com-
ponents of the eigenvarieties, which we will denote by the corresponding superscript. We obtain the

following diagram of eigenvarieties:

(;@VD@OTd c — g[o)rd ']AII*I

(4.31) ]
JL, or

gyl 2 o Tr.

All the results obtained in Section 4.1 descend to the ordinary eigenvarieties.

Proposition 4.26. Let (U, X, @, \) be a Hida family on @Eﬁ (that is, a family in @55’0“1), and suppose
that it contains a classical point. Up to shrinking it, we can identify the family (U, X, @, \) with the
O(U)°-adic module

(€SP (R, v, OU)*))[g] = {f € SP(Ry, v N)@p OU)° | t-£ = Mp(t)F, for t €Ty } :
where \p = W, © A iD’e — OU)°.

Proof. The weight map wgr, is étale at cuspidal ordinary classical points ([Bel21, Theorem 7.6.4 and
Remark 7.6.6], where the weight is shifted by 2) and, by [Che04, Proposition 6.2.7], these points are
dense in the family. We deduce that O(X) = O(ﬁ;()()) is a finite flat algebra over O(U), hence
finite flat over I. Up to shrinking U to a subaffinoid in the admissible covering ¥, and intersecting
its preimage with X, we can identify .ﬁ;(X) = U by [FvdP04, Lemma 8.1.3] (restrict wgr, to a
suitable wide open affinoid neighborhood in X', hence shrink U to a be contained in the wide open
neighborhood of the target affinoid). Therefore, wgy, becomes an isomorphism. Let now f be an
element in (e SP(Ry, n_,A) ®x OU)°)[p]; by equation (4.25), it is uniquely characterized by the
sequence

{f (mod P,): X, — OU)" @ AJPa}bsy

For n big enough we consider the specialization map A, defined as
~ ~pe A
Apn: Tr — F2C 25 OU)° — OWU)° @4 A/P,.
Up to O(U) constants, we can then associate each f (mod P,) to

0 = Npn(t)yez, € X(OU)° ©a A/P,),



34 LUCA DALL’AVA, ALEKSANDER HORAWA

where x,, corresponds to the system of eigenvalues associated with the quaternionic modular form
f (mod P,). Note that here we are using the fact that, up to further shrinking ¢, O(U)° is a finitely
generated compact A-module. We have then proved the sought-for identification. |

Let now (U, X, p, A) be a Hida family on & 5 and let @S2 be the ordinary family corresponding to

it. We consider the space of A-adic classical Hida families and its eigenspace
(4.32) (IS 2(T{(NyN_), A) @5 OU)*) 2] = {f € OWU)°[T] |t - £ = Apors ()f, for t € Ty }.

Theorem 4.27. Suppose that @S contains a classical point. Up to shrinking U, there exists an

isomorphism of rank one O(U)°-modules
(798P (Ry, v, A) 03 OQU))[ip] & (e7S5L2 (T (NS N_), A) @4 OU)) [0,

Proof. Proceeding as in the proof of Proposition 4.26, up to shrink the family, we can assume it to be
étale over the weight space and identify it with the corresponding neighborhood Y. Moreover, we can
assume that all the points are minimal [Bel21, Lemma 7.4.8], therefore the corresponding eigespaces are
one-dimensional. The isomorphism in the statement is then obtained keeping track of the constants in
O(U)°. By Strong Multiplicity One on GLy and finite flatness of O(U)® over I, we deduce that

(€8P (R, -, A) @2 OU)") ] ®oqyo Frac(OU)°) = Frac(OWU)°).

The rank-1 statement follows now from the GLy-case. An alternative approach can be obtained combining
[Bel21, Theorem 7.6.4, Theorem 8.1.5 and Lemma 8.1.1], keeping in mind that we are considering cuspidal

eigenvarieties and the closed immersions of eigenvarieties of [Bel21, Theorem 7.2.3] hold true. |

We are now ready to state the control theorem generalizing [Dal23b, Theorem 4.10]. Notice that the

specialization morphism can be made explicit as in [Hsi21, Theorem 4.2].
Corollary 4.28 (Hida’s Control Theorem). For any arithmetic weight (k,e,) € W(Cp) NU,
(e8P (R, v, O] @ A/ Pt e,y 2 (€S (R, v [@(e)

Proof. The above Theorem 4.27 together with Strong Multiplicity One and Proposition 3.14 imply the

isomorphism between the rank 1 modules in the statement. |

Remark 4.29. In the introduction (Section 1) we already pointed out that the condition for having
weight one classical specializations in a family %2 are rather strict. In the setting of this section,
this condition can be read easily from the level N_: a family will not contain classical weight one
specializations unless N°” = 1, i.e. N_ = N*¢. Therefore, throughout the rest of the paper, we will work

under this assumption.

5. BALANCED TRIPLE PRODUCT p-ADIC L-FUNCTION

In this section, we prove our main theorem about the existence of balanced p-adic L-functions and

their interpolation property.

5.1. Definition of the p-adic L-function. Let F = (f, g, h) be the triple product of primitive Hida
families of tame conductors (N, N2, N3) € N3 and characters (x1, X2, %3). Let N = lem(Ny, No, N3).

For any classical weight (k1, ko, k3), we write (f,, Gry, his) = F(k1, k2, k3); moreover, we let:
%7 = {{ finite | €o(fr, X gry X hiy) = —1},

which is independent of the choice of (k1, ko, k3) by the rigidity of automorphic types.

We make the following assumptions:
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e |X7| is odd; then there exists a definite quaternion algebra D over Q ramified exactly at the
places in ¥~ (and infinity),
e if ¢ € X7, then v, (N) < 2 (this is an improvement on Hsieh’s [Hsi21] assumption that v,(N) = 1).

We now choose test vectors on the quaternionic group D*(A). First, we write

(5.1) Y.%={¢eX™ | x is supercuspidal at ¢} for x € {f,g,h},
(5.2) YT =N UB U, CXT,
(5.3) YY" ={{eX | nof msy, mge, mhe are supercuspidal} for n € {0,1,2,3}.

Once again, these sets only depend on f, g, h.

Recall from Proposition 2.1 that ¥~ = £ ~% U X2 U ¥ =3, The computations of the local integrals
at £ € X7 are in Propositions 2.7, 2.8, 2.9, respectively.

Next, we choose the signs which determine the Hida families on D*:

6 € {1} for x € {f, g,h},
€= (er,€q,€n).

To shorten the notation from Section 4.3 we will write eS?¢(N, v, U) for the space of A-adic quaternionic
forms €SP (Ry, n , ¢, ", OU)°) where the extra Hecke operators act accordingly to the choice of

signs €. Then by Theorem 4.23 and Proposition 4.26, for any classical point of the weight space there

exist an open admissible affinoid neighborhood U = U; x Uy x Us of this point, and elements:
(£Pcr, gPca, hPm) € eSPCr (Ny, gy, Uy )[E] X €SP0 (Ng, 1ha, Us) [g] % €S7" (Na, 1o, Us) [h].
Note that these choices are only well-defined up to elements in O(U)* = O(U;)* RO Uz )* @OUs)*.
Finally, we bring these forms to the common level N, following [Hsi21, Definition 4.8].

Definition 5.1.

(1) Define the adjustments of levels d¢, dg, dj as in [Hsi21, Section 3.4]. At ¢ € ¥7-°¢, we make no
additional adjustment.
(2) Consider the sets X1'§ as in [Hsi21, Section 3.4] and define:

(£P%es gPreo hP*er) € eSPr (N1, 1, Uy )[£] x €SP (Ny, o, Us)[g] x eSP“" (N3, 1b3,Us)[h]

by
fFD*er — Z (_1)|I|ﬂ1(f)_1Vdf/nffD,Gf7
ey
g’ = Y (=D)Br(g) " Va, jn, 8",
csiy
hPr =y (=)MBr(R) T Vay i, £
1y

We now define an unnormalized version of the triple product p-adic L-function.

Definition 5.2. Let R = O(U) = OU) 20O (Us) 200 (Us).
1) Define the triple product FP*<: (D*\D*)3 — R by FP*¢ = fD*¢s [ gD*:€a [ hD*en
(1) ple p ¥y g

(2) The associated theta element is:
Opps.c = (FP=)* (Al ) e R,

where Al is the regularized diagonal cycle from [Hsi21, Definition 4.6].
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Since FDP*:€

is only well-defined up to scalars, so is O@gp«,.. To define the genuine p-adic L-function,
we will divide Opp..c by the Petersson norm of FP*¢.
Recall the quaternionic Petersson product introduced in Section 3.6.1. Considering such pairing, for

f and f' € SP(N,N_, x,I) we define

> X (v, () (Np(2)) [(Np(2))]1

54) B off) =
(5.4) Ny N el ) #UN,po N (2)

f (x Tﬁ+pa,N7> ' (z).
[m]eDX\ﬁX/§§+pa,N7

As in [Hsi21, Definition 4.3], we obtain a Hecke-equivariant I-bilinear pairing

(5.5) By: eSP(N,x,I) x eSP(N, x, 1) = 1,
AT / . _
(5.6) BN(fvf)*k%lBN,a(faf)6%%11/1304*1

such that for every arithmetic point x = (k, €) and integer o« > max{1, v,(cond(e))}, we have (cf. [Hsi21,
Proof of Lemma 4.4])

(5.7) By (f,£)(x) = (1)U, “f., £) v po v
Definition 5.3. For f” € eSP (N, x, OU)), the Petersson inner product of £ is
nep = By (fP,£P) € OU)
and the Petersson norm of fP is:
IEP]| = 1} € Frac O(U).

Similarly, for a triple product FP = fP K gP K hP, its Petersson norm is:

IEZ] = [I£7] - g1 - n”] € Frac OU).

Before defining the p-adic L-function we recall two more technical points from [Hsi21], related to the

choice of test vectors at primes dividing N*:

e There is a twist F/ = (f ® x1,8 ® Xx2,h ® x3) by Dirichlet characters x1, x2, x3 modulo M with
M?|NT such that x1x2x3 = 1 and F’ satisfies Hypothesis 6.1 of loc. cit. (see also Remark 6.2).

o There is a fudge factor fgr = [[ frq € R™ defined in Proposition 6.12 of loc. cit., and,
q|N+
enlarging O if necessary, we have that \/fg € R*.

By [Hsi21, Lemma 6.11], there exists ¢~ (F) € R* such that

e (F)(k) =€ (fur)e” (gra)e” (hiny)

is the product of the away-from->~ parts of the root numbers.

Definition 5.4. The (genuine) square root balanced triple product p-adic L-function associated with F

and e is:

Opp-.c ITER . »
LRl = 2 TR e e e ]

vesmee VGe(2)

5.2. The interpolation property. Consider the subset of arithmetic points in U:

€k1+k2+k‘3—13/2
€ Frac'R.

(58) Yith — {I‘i = (/{31, ko, k3, X1, X2, Xg) S Z/{frith X u;rith X u;rith | ki+ko+ks=0 (mod 2)} R
and let U*®! be the subset of balanced arithmetic points:

(5.9) U = {k = (k1, ko, k3, X1, X2, x3) € U™ | ky + ko + kg > 2k; for all i = 1,2,3} .
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Theorem 5.5. For an arithmetic point k = (ky1, ka, k3, X1, X2, X3) € U in the balanced range we have:

Iy (0)- L(V],0)

_ 1+ err€00/ws(l) 14 €1€02€0,3
(C3(x)? = a v, [T a7 1 At
N s A U L
where E,(Vy,) is an Euler factor defined by:
g;)al(vm) — gP(FﬂlJ)raIVN)
EP(FM Ad)

and E,(F ., Ad) is a modified adjoint Euler factor (5.12).
In particular, E%ai =% 0 only if € satisfies:
(1) if £ € £72, then e, = (es1,€02): if the special representation is a twist of Steinberg by ws such
that w3(f) =1, then e;1 - €0 =1,
(2) if €€ X3, then g - €12 €13 = 1.

Remark 5.6. In this extended remark, we compare our p-adic L-function to the one defined by
Hsieh [Hsi21, Theorem B|. The main difference is that his p-adic L-function is defined without nor-
malizing by the Petersson norm |[FP*¢€|| on the quaternion algebra. As a result, note that Gross periods
([Hsi21, Definition 4.12]) do not feature in the interpolation formula for our p-adic L-function.

We instead use the above definition for two reasons:

(1) Tt seems that this is the correct p-adic L-function to state an Elliptic Stark Conjecture 6.5 for.
For example, we will soon see in Theorem 6.9 that it is this p-adic L-function that admits a
natural factorization in the CM case.

(2) We did not prove the analogue of Theorem 4.5 in loc. cit.: that the I-modules eS?* (N, I)[AP] are
free of rank one over the whole algebra I. Instead, we satisfy ourselves with the local statement
in Theorems 4.23 and 4.27, because it is enough for our arithmetic applications. However, this
means that our choices of vectors FP*¢ are only well-defined up to scalars, and hence only the
quotient by the Petersson norm is well-defined.

The terminology genuine p-adic L-function is inspired by the discussion after [Hsi21, Theorem A]. The
advantage is that it is independent of choices, but the disadvantage is that it is only an element of Frac R
and not R.

The denominators of Lg? should be captured by the congruence module of FP*¢, which in turn
should be related to the congruence module for F (see [Hsi21, Remark 7.8]). Indeed, if one could choose
vectors £ € eSPF (N, T)[AP] as in [Hsi21, Theorem 4.5], then one could also define a p-adic L-function
in IQIRI, generalizing the one constructed in loc. cit. It would then differ from our genuine p-adic L-
function by /Mg/pxc and one could presumably show that ngps«. is a generator for the congruence

module as in [Hsi21, Section 7.2]. We decided to defer these questions to future work.
Remark 5.7. Note that the Euler factor at p:
& (Fili V)
E(V _=p bal ¥ K
p(Ve) E(Fu, Ad)
is analogous to the Euler factor for the unbalanced p-adic L-function constructed by Darmon—Rotger [DR 14,
Theorem 1.3]:

E(f,9,h) (1 = Bragapp™©)(1 — BragBrp~©)(1 — BrBeanp™¢)(1 — By BeSrp~°) -

EGE) (1= B3x; () (1 = Bix;  (p)p~")
The proof of Theorem 5.5 will occupy the rest of this section and amounts to generalizing the results
of [Hsi21, Section 4]. We split it into two parts:
e an intermediate interpolation property obtained from Ichino’s formula [Ich08], with factors com-

ing from certain normalized local zeta integrals,
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e the evaluation of the local zeta integrals.

5.3. An intermediate interpolation property. We start by proving the analogue of [Hsi21, Corollary

4.13], which gives an interpolation property up to certain local factors.

Proposition 5.8. Let:

~ ¢ (1)
L(6;©) Bn, |N|‘;(< o R for N,
q
j* — Y Cq(1)5 —2
(5.10) Mo, = Lo(dg @) - B L) qu(dF)|d |q for q e X702
Y Cq(1)4 _3
Iq(¢q®¢q> BHq qC (2)2 qu(dF)|d |q fOquE ’
a
be the normalized local zeta integral at q|(N/d™), with Io(¢; @ q~5;) defined in equation (5.13), and let:
/2( 2n —n(ki+ka+ks)
")l
511 <ﬂbal — Iord , [njr Fp
o1 (O] By, g o7

be the normalized p-adic zeta integral defined in [Hsi2l, (4.21)] (see loc. cit. for details).

Then for k = (K1, kg, k3) € UPY in the balanced range, we have the interpolation formula:

- - - b 1
eFD* (’%)2 — 2#27’04»17161*]62*163-N*,L(1/27Hf€) - e (fkl)EE (gkz)ez (h’ks) . H jl‘[
<FD7FD> <fk17fk?1><gk27.gk2><hk37hk3> g (FlmAd al(N/d-) e
where fi,, gk, his are the newforms associated with the specializations of F at k,
& ()= [ e/2,mp0)INel?? € 2
¢|N/d—

is the away-from-X~ part of the root number of F' € {fx,, 9ks, hks }, and
(5.12) Ep(Fr, Ad) = E,(fr, AD)E, (gry, AD)Ep Py, Ad).

is the modified Euler factor in [Hsi21, (3.10)].

Proof. Let k = (K1, ka2, k3) for k; = (ki, x;). We write

L(LIL,Ad)  Ij(¢r ® do)
C(22L(1/2,1L) (4, dr)

for the normalized local integrals. Then Ichino’s Formula [Ich08, Theorem 1.1, Remark 1.3] gives the

(5.13) Li(he ® do) =

following expression (by combining [Hsi21, p. 473, proof of Proposition 4.10] with Lemma 3.21):
I(o(6,)92*)? _ vol(OF)  (o(2)*L(1/2,11)

.14 = :

(5.14) (FD | FD) 8 L(1,11,Ad)
LACTTR SN | IR ACTTAN | ERACEE
gex—U{oo} qgpUs—
3
—1/2 + n 2n VOI(RN an)
(Nl )wFp(p )aP(F) Z];[ (N;.Ni—,scpgn)( ‘—2)/2(]% — 1)’
where

<FD7FD> = <Up_nfD7 fD>N1P"<Up_ngD7.gD>N2;D"<Up_nhD’ hD>N3P"'

Next, we use the volume formula from [Piz80b, Theorem 3.4]:

vol( RN H G(1 H Gq(2 H qu

qHN* ?||IN~ q|N+
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B 48 14q¢1 1+gqt
 [SLa(Z) : To(N)] H l—qg! H -2

1 _
allN - a1
Gq(1)?
1)
oo 7 1 Zar 11l
Lo a9 v
Using this, the final factor in equation (5.14) becomes:
3
48 Cqe(1
5.15 .
( ) 11;[1 (N;rN;xBCPQn)(ki—ﬂ/?[SLQ(Z) . Fo(NiPQn)](ki — 1 ]l;v[ 2]|]_1[V Cq

As we will need it shortly, we also record that:

Vol
(5.16) VOI(T = H

5 G(1)
i G (2)? 1l 1% |<q<

gl N~ ?|IN- gIN+

Next, we recall the relationship between the Petersson norm of a newform f and the adjoint L-
value [Hsi21, (2.18)]:

(5.17) s Proony = S22l To(V)]

L(1,m,Ad) - ] Bx,.

2k
w(f) 1
where By, are given by [Hsi2l, (2.18)]. In particular:
(518) LI Ad) =T[5 £2) 2 w(f)
s 4y 11 i1Ji [SLQ(Z) ]_"0( )] H B(ﬂ-l)q
alN
where f7 is the newform associated with f; and its level is Np“. We will write Bri,,, = Br, , Br, ,Brs 5
as in loc. cit..
Finally, Hsieh [Hsi21, Proposition 4.9] gives a relationship between I(o(t,)¢2*) and Ogp. (Q):
1/2 ’C1+k2+k3
1 v wp,p (") lpl” 1
5.19 Opps (K :7/\1— Qtn Dy P
(5:19) o+ () vol(R}) N e w2 (dy)al2/?
Next, we put all of these facts together to get:
GFD* (K’)z — 1 I(Q(ETL) IQ*)2 . wap(pn)‘pn‘i(kl+k2+k3) ]' (5 19)
(FP,FP) Vol( X2 (FP D) ap(F)"Gp(2)?  wp(dy)ds
8VOI(R]>§]) L(laH7Ad)
Iy @ tn) [ L6e® ) [ Lle;eey)
g€X~U{oo} q¢pUE—
3 I(R )
—1/2/ x4+, =1 n 2n VO, p2n
wr (VY )WF, (p")ap(F) “ s
P p ZI;II (NfNi ) an) 72/2(]% _ 1)
Cwrp ()|
ap(F)?G(2)2 wp(dy)di™
8V01(R]>\<])2 L(laH7Ad)
'Iﬁrd(sbp@%,fn) H Iy(¢q ® ¢4q) H I,(¢; @ ¢)
qeX ™ U{oo} qEpuUx—
3

48 ¢ (1
zl;[l (NJN;’SCpQ”)(’%—Q)ﬂ[SLQ(Z) : Do (N;p?™)|(k; — 1) H q( H G(1

alN; [Ny
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—1/2 /3
WP
CP(Q)Z CUF(df)dE_2

3VO A X
B 488vol(gg)[;) ' <f°??i(>z (1/2h13 8] (H BHm) R R )w(g®)w(h?) (5.18)

'Iﬁrd(ﬂﬁp@;b;»fn) H q<¢q®¢q H Iq ¢q ®¢q)

geT~U{oo} qZpUr—

(03 20 .

: i\ —2n 1) ™ _1/2(N+)
<1;[1 [SLy(Z P A +p7) ) &(2)? wp(d,)dE?
=2°3. CQ( ) (1/2 H . —kl—k2—k3w ° w © w o
=2 P e ) (HBHFQ> 2 (°)wlg®)w(h?) (5.16)

'I;rd(ébp@a;v t,) H q(¢q®¢q H Iq((b;@a;)

geX~U{oo} qgpUE~

: &)
(1:[1 NN ) (ki—1)> (q};[ Cq(2))

| 3Gal(1)? 3Gl
(q};fuzw) (EI G2 )(% N2,(?) )

3 6n -1/2 +
—on —1\—1 p W (Nl )
(HSLQ p)p 2 (1+ph) )Cp@)?w(df)d‘;?'

Next, we recall the computation of some of factors from [Hsi21, p. 474, p. 478]:

(5.20) Lo (o0 @ o) = (47°) 7! (ki — 1) (ke — 1) (ks — 1)
(5.21) Ly(g ® bg) = 2¢,(1) 2 for ¢||N ",
(2)? _
5.22 Bn = (~1 for g||N~.
(522) n = CDE I
Plugging these into the above equations and recalling that (g(2) = § and w},/ S(Nf)Bnq = Bn,,, for
q # p by definition ([Hsi21, p. 477]), we can simplify the final expression in the chain of equalities to:
Opn(K)? £0 91 —ki—ko—k - L(1/2,10)
S = (—2)#E Tolmhimhemhe L N . B : g% )w(h°
ooy = e | L P el u)

i Tt T1 125

a?|IN~ a|N+t

: 56a(1)° 2(1)
(Hl N+N 50y Hiz ) <q€1;[2q Cq(2)3> (qel;[,g (o(2)? ) (IZ_VL IN\ Cq )

[SL2(Z) : To(p)] wp )
< L+p! >Cp(2> p(d)ds?

Next, we recall that for F' € {f, g,h}:

w(F) =[] e(1/2,7r.)

£< 00
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=€(1/2,7p,) H €(1/2,mpyq) H €(1/2,7pq)

qlIN— q|N/d=

and for ¢||N~:
= €(1/2, 1) = wpn 2(@)e(1/2, 77, )e(1/2, 7, )e(1/2, s, ).

We define the away-from-X~ part of the conductor to be:

& (F) = T /2 mrg)INe|Z02 € 27

q|N/d~
This gives:
Orp+ (K)? a0 1 kahy nre L(1/2,11) e e
oy R v S T [y BRI R
3 . Ci
,Igrd((% ®$;’EH)BHF,,, (H [SLo(Z) : Ff(j_)pﬂf(l/Q,Wfi7p)> . CP(Z)_2
i=1

T 0060 3B, Ll
geEX 2 q
)

G(D)*
|| I,( B
AL foaso0Bra gy

T 1658, rbe ot )
qIN+

Wiy (dp)ldE g

To finish the proof, we recall from [Hsi21, p. 477] that:

[n]
B 3 1/2/ on . c;
Moy o 1T @il (07")  [SLa(Z) : To(p)]
5.23 = — . -E,(fi, Ad). =
(52%) B, i (P )21;[1 €(1/2, 7, ) 1+pt p(fi, Ad)

5.4. Computation of local factors. By Proposition 5.8, proving Theorem 5.5 amounts to computing

the local factors. For p and ¢|N ™, they were already computed by Hsieh.

Proposition 5.9 (Hsieh).
(1) We have that:

1
Jbal =&pal(llp)  ————.
b (TLe.p) L(1/2,10,,,)
(2) For q|N*:
(I+q7)? if g € Texe,
A,y = T0q(K) - _
otherwise
Proof. Part (1) is [Hsi21, Proposition 5.6] and part (2) is [Hsi21, Proposition 6.12]. |

Therefore, it remains to compute .y, , for £ € £~ such that ¢2||N, i.e. for £ € £72 and £ € 7.

Proposition 5.10. Suppose £ € £7? and wry = 1. Then:

1+ €169/ (0) £—2(k1thatka) 413
2 Ce(2) '

* _
fnn,ﬁ -

Proof. We use:
e Proposition 2.8:
165 ©67) _ 1+ erea(/wn (D))

< 257 zz> 2

)

e Propositions 2.3, 2.4:
L(s, Iy, Ad) = Go(s +1)(Ce(29)/Ge()?, L(s, 1) = CGe(s + 1/2)*.
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Therefore:

T(6 @ 58) — C(2)G(2)?  14+eaeyvws(l)  ¢2) 1+eae/ws(f)
(O © b)) = = '
Ce(2)2Ce(1)%¢,(1)? 2 Ce(1)* 2
Note that B,, = 1 if m, is supercuspidal and 7y ® £ = 7, for the unramified quadratic character £ of
Q) (cf. [Col18, Section 4.2]). Therefore, Bri, = By, Br, Br, = (—1)$43) (similarly to [Fsi21, p. 478]).
Altoghether, we have that:
g = Ge(2) 1+ ereav/ws(f) Ge(2) ,Ce(L)
" Ce(1)* 2 Ce(1) Ce(2)
R R Ol
o 2 Ce(2) ’

as claimed. ]

> k—2
3 |d;“ |€

Proposition 5.11. Suppose £ € X3 and wpy = 1. Then:
., = 1+ eregeg (2 (Rathatha)+13
" 4 Ce(2)

Proof. We use:

e Proposition 2.9: .
1(9) @ ¢;") 1+ erees

(07", 9¢") 4

e Propositions 2.3, 2.4:

L(s,Mg, Ad) = (Ce(25)/Ce(s))®, L(s,Tg) = Go(2s).
Therefore: o )3 o
—~ 2 1+ €1€60€3 0(2) 1+ €1€0€3
I €y ® €y — Z — .
WO = Gerairam 4 TGt 4
Moreover, By, = 1. Altogether, we have that:
* _ Cp(Q) 1 + €1€2€3 ~€CZ(1)4LL)_1
e TLm 1 e
14 eeses £|£‘5(k1+k2+k3—6)
4 Ce(2) ’

as claimed. |

k— k—
(df*)ld% e

5.5. Finishing the proof of Theorem 5.5. Putting everything together gives the interpolation prop-
erty.

. oy . b l.
Proof of Theorem 5.5. We compute using the definition of Lg”:

bal; 2 O o (IS [+1—ky—ka—ks) %~ -1 —1 (2 (k1 Fhoths) =13
(‘CF e(H)) - Dx.cll2 2 € (F)("i) fF’ ("{)
’ [0 Al
L(/2,1,) S (2kr-+ha-+ha)—13 .

— ’ . | Iy I - fer (k)
(F..F,) &(F, Ad) pll—][V AC) qu—VL a

_ L(1/2,H,€) ' gbal(Hn,p) ) H 1+ 6162\/(«03(5) H 1+ e1e0€e3 ) H 1
(FoFy)  L/2,10,,)8,(F Ad) - 1L 2 Al T e

using Proposition 5.8 for the second equality and Propositions 5.9, 5.10, 5.11 for the final one. This

proves the theorem. |
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6. APPLICATION: ELLIPTIC STARK CONJECTURE IN RANK ONE

We are now ready to discuss the analogue of the Elliptic Stark Conjecture of Darmon-Lauder—
Rotger [DLR15] in this setting. We will consider the restriction of £>* to the weights (ki, k2, ks) =
(2,¢,m) with the goal of studying the point (2,1, 1) which is not balanced and hence lies outside of the
interpolation range.* We state a conjecture expressing this value in terms of arithmetic data and prove

it in some special cases.

6.1. Statement of the conjecture. Let E be an elliptic curve over Q and let V,,(E) be the associated p-
adic Galois representation. Let p: Gg — GL(V,) be an Artin representation, i.e. a complex continuous
Galois representation, which factors through a finite quotient Gal(H/Q) of Gg, with coefficients in a
finite extension L of Q. We consider the Hasse—Weil-Artin L-series L(E, g, s) associated with the p-
adic Galois repersentation V,(E) ® V, of Gg. The equivariant version of the Birch-Swinnerton-Dyer
Conjecture asserts that the analytic rank of L(E,p,s) at s = 1 is equal to the rank of the V,-isotypic
component of E(H) ® L:

ords—1 L(E, 0, 5) = dimy Homg, (V,, E(H) ® L).

Note that the value L(F,po,s) at s = 1 is outside of the convergence region of the Euler product
defining the L-function. We put ourselves in a situation where the analytic continuation and functional

equation for the L-function L(FE, g, s) is known:

e let f be the modular form of level N; associated with the elliptic curve E of conductor Ny,
e suppose that o0 = g4 = 04 ® g for two odd irreducible two-dimensional Artin representations
04 and gp; let g and h be the modular forms of conductors Ny and N3 corresponding to g, and
on, respectively.
Then
L(E, ogn,s) = L(f x g x h,s)

is the triple product L-function studied by Garret. We assume that:
det o4 det o, = 1,

i.e. if x is the character of g, then y ™! is the character of h. Then the representation Vg ® V, @ V}, is
self-dual, and hence there is a functional equation with the root number €(E, g,,) = 1. Moreover, the

global root number is a product of finite local root numbers:

€(E, 0gn) = H €0 (E, 0gn),
v|lem(N1,N32,N3)
because e (E, 0gr) = 1.

In the seminal work [DLR15], Darmon-Lauder-Rotger studied the L-value L(E, ggn,s) when the
analytic rank is even and at least two, using p-adic analytic method. Therefore, they assume that
€(E, 0gn) = 1, and in fact that €,(E, ogn) = 1 for all v.

In rank two, they proposed the Elliptic Stark Conjecture: a formula relating the value of a triple
product p-adic L-function associated with f, g, h to a regulator of p-adic logarithms of points on E(H)®L
and a p-adic logarithm of a Stark unit.

The main motivation for our work is to develop a rank one version of this conjecture. Our first

hypothesis is therefore.

Hypothesis A. The global root number €(E, p45) is —1. Therefore, there is an odd number of finite

places v such that
61,(E, Qgh) =-1

4We hope that using ¢ for the weight instead of the prime of supersingular type will cause no confusion to the reader.
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Next, we want to construct a balanced p-adic L-function associated with the L-function L(E, ggp,s) =
L(f x g x h,s). Under Hypothesis A, this L-function vanishes at s = 1. However, if we consider Hida
families associated with g and h, and the L-value L(f X g; X hy, s) for £ > 2, then

€oo(f X ge X he) = —1, eu(f X ge X hy) = €,(E, ogr) for v finite,

e(f x go X hy) = +1.
In particular, we expect that the central L-value for L(f X gy X hy,s) is generically non-vanishing and
hence there should be a non-vanishing p-adic L-function interpolating these values.
To define the Hida families, assume that g and h are ordinary at p and consider p-stabilizations of g
and h. For F € {g,h}, F € S1(N, xr), suppose the Hecke polynomial is:

x? — ap(F)az + xr(p) = (z — ap(F))(z = Bp(F))
with roots a,,(F') and B,(F'). We then have p-stabilizations Fy,, Fg € S1(Np, xr) such that:
UpFa = OéFa, UpFB = ﬁFB.

We will assume that F is regular, i.e. o, (F) # Bp(F), and hence it has two distinct p-stabilizations.
We then make the following classicality hypothesis.

Hypothesis B. Assume that f is ordinary at p. For F' € {g, h}, F is ordinary and regular at p (i.e. g4
is irreducible and g4(0p) has two distinct eigenvalues for the Frobenius ¢,), and it is not the theta series

of a character of a real quadratic field in which p splits.

Under this hypothesis, Darmon—Lauder—Rotger, based on results of Cho and Vatsal and of Bellaiche
and Dimitrov, proved that there are no non-classical p-adic modular forms in the generalized eigenspace
of F,.

Proposition 6.1 ([DLR15, Proposition 1.1]). Under Hypothesis B, the natural inclusion:
S1(Np,xr)e, [Fa] = ST (N, xp)[Fa)
is an isomorphism of Cp-vector spaces.

By Proposition 6.1, there exist Hida families g, and h, whose specializations at weight one are g,
and h,, respectively.

We want to consider a balanced p-adic L-function Lgal associated with f and the Hida families g, and
h,. Therefore, we need to make another hypothesis which will guarantee that Hypothesis 2.2 needed to

construct the balanced p-adic L-function is satisfied.
Hypothesis C. For each prime ¢ such that ¢,(E, pgr) = —1, vg(N;) <2 for i =1,2,3.

Under this hypothesis, we have constructed a balanced triple product p-adic L-function associated
with the triple f, g, h, and the Elliptic Stark Conjecture concerns its value at (2,1, 1), which is outside

of the range of interpolation.

Definition 6.2. Let f, g, h be three modular forms of weights 2, 1,1 satisfying Hypotheses A, B, C. Let
fa» o, hg be ordinary p-stabilizations of f, g, and h, and consider Hida families f, g, h specializing to
p-stabilizations fo, ga, ha Of f, g, h, respectively. Define the 2-variable triple product p-adic L-function
by:
eyt d = T (=) 7 6o, A) - Lo 1
qE€EXexc
(+1,41) qgex 2

using Definition 5.4 for ¢, = )
(+1,41,41) ge X4,
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m
: Interpolation
| (Corollary 6.4)
E Ebal
Elliptic Stark :
; — @
Conjecture 6.5 of

FIGURE 1. We fix k = 2, and consider two weights ¢, m with £ +m =0 (mod 2). We
indicate the four regions for the weights ¢, m; ¥ is the region where F is dominant,
and ¥P?! is the region where the weights are balanced and £,m > 2. We also indicate
the point (¢,m) = (1,1) where our Elliptic Stark Conjecture 6.5 applies.

Remark 6.3. One could presumably weaken or even remove the assumption that f is ordinary at p by
defining the 2-variable p-adic L-function directly, instead of considering a Hida family through f, and

referring to the 3-variable p-adic L-function. However, we decided not to pursue this point here.
As a corollary to Theorem 5.5, we get the following interpolation property.

Corollary 6.4. For {,m > 2 such that2—{ <m <24+ /L and {+m =0 (mod 2):

o _ A X ge X b, (£ +m)/2)
<fa f><gfyg€><hm7hm>

where A(f X g¢ X hum, 8) is the completed triple product L-function.

£ (0, m) EPN(V) - Ep(far Ad),

The value E?aL-f(l, 1) = E}i’ilgxh,e(z 1,1) will be expressed in terms of arithmetic data associated with
the triple (E, g4, o). We introduce this next.
Let 0, € Gal(H/Q) be the Frobenius at p associated with an embedding H — Q,". Under Hypothe-

sis B, for F' € {g,h}, we have that

_ ap(F) 0
QF“”)( 0 /3p<F>>

and we may hence consider the one-dimensional eigenspace Vg C Vr for 0, associated with the eigenvalue

a(F). This determines a one-dimensional L-subspace:
Vaa =V @V C V@V
and we fix an element voq € Vao. On the other hand, under Hypothesis A, we expect that r(E, gg5) =
dimz Homg, (Vgn, E(H) ® L) > 1. If dimy, Homg, (Vyn, E(H) ® L) = 1, we choose its basis
®:V,, » E(H)®L,
and let
E(H)};"" = ®(V,,) C E(H) ® L.

We will consider the point:
®(vao) € E(H)}"" C E(H)® L.
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Next, associated with F' € {g,h}, we have an adjoint representation Adp = Homo(VF,VF)7 with

Frobenius eigenvalues 1, (;pgg, 5‘72?% By [DLR15, Proposition 1.5], we have that

Homg, (Adp, (’)EF ® L)
is one-dimensional. Let ¢ be its basis and consider
(07,2 = p(Adr) C O, ® L.

Under the extra assumption that a,(F) # —B,(F) or op is induced from a character of an imaginary

_ O‘;D(F)
%w@m}

is one-dimensional [DLR15, Lemma 1.6]. In any case, we let up, € Up, be a non-torsion element.

quadratic field in Hypothesis B, the subspace

Ur, = {U € (Oirp)édF

Conjecture 6.5 (Elliptic Stark Conjecture, rank one case). Assume Hypotheses A, B, C' and that
r(E, 0gn) > 1. If 1(E, ogn) > 1, then £'];"“1’f(17 1) =0. If r(E, ogn) = 1, then:

10gE,p (®(vaa))
log, (ug, )/2log, (up,, )1/’

bal,
ﬁp f(la 1) ~VILX
where

log,: (Of)L — H,® L p-adic logarithm,
logp,: E(H)L — H,® L p-adic formal group logarithm for E.

Remark 6.6. We would like to thank Alan Lauder for suggesting the following sanity check. The left
hand side in the conjecture is independent of the number field H, whereas the right hand side seems to
depend on the Frobenius o, € Gal(H/Q) and its eigenvalues for the Artin representations ¢, and o.

However, the Frobenius o, acts on the right hand side as:

(@S _ o (pap(W)Bo()5a(h)

Bp(9) Bp(h)

Remark 6.7. Taking the formal group law exponential expy, ,,, we get an interesting formula for a p-adic
point on the elliptic curve E which is conjecturally in E(H) ® L:
?
- v,
exp,, (L5 (1, 1) log, (ug, )"/ log,, (un,)'/?) € E(H)," C E(H) @ L.
6.2. Proof in the CM case. Let K/Q be an imaginary quadratic field of discriminant —Dg in which
p splits. The next goal of the paper is to prove the Elliptic Stark Conjecture 6.5 in the case when o, and

on, are representations induced from Dirichlet characters of K.
6.2.1. Statement of the theorem. Let ¢: G — C* be a finite order character of conductor ¢ C Og. We
can then consider the associated Artin representation representation
_ Gq ).
Vy =Indg, : Gg — GL2(C)

with determinant x = detVy = % o Tr, where Tr: Gab — G2 is the transfer map. The weight one
modular form associated with this Artin representation is explicitly constructed as a theta series for the

character of Ay corresponding to ¥:

0y € M (D - NK/Q(C)7X)'
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Moreover, 0y, is a cusp form if and only if ¥ # ¢ where o is a generator of Gal(/X/Q). We will only be
interested in this case.

We consider two finite order characters v, and 1 such that x; = x;l, where x4 = 94 o Tr and
Xn = ¥p o Tr, and o7 # g, ¥f # . Then we have associated modular forms

g="0y, € S1(Ng,x)  h=0y, €S1(Nn,X)-

Write ¢, for the conductor of ¢, for x € {g, h}.
The goal is to study the Elliptic Stark Conjecture 6.5 in this example. We have a factorization

Voh = Vip, @ Vi, = Vi gy, ® Viguz,
and we will write
Y1 =Ygy, b2 = gt
This corresponds to the factorization of L-functions
L(E7 Q!JfHS) = L(E/Ka wlas)L(E/Kﬂ/)%S)-
Hypothesis A is hence equivalent to the following hypothesis.
Hypothesis A’. We have that:
6(‘E/}(’ 1/11) ' 6(‘E/I(a 'd]?) = _17
i.e. without loss of generality, e(E/K, 1) = +1, e(E/K,)2) = —1.

Next, we want to work out when Hypothesis B holds in this case. The values «, 3, depend on the
splitting of p in K:
{¥(op), ¥(o5)} if (p) = pp splits,
{\/w(op% —\/w(ap)} if (p) is inert. .

Therefore, Hypothesis B amounts to the following.

{apv BP} =

Hypothesis B’. For ¢ € {¢g, ¥ }:
e 0, is ordinary at p,
e 0, is not also the theta series of a character of a real quadratic field in which p splits,
e when p splits in K, (0,) # ¥(0p).

Finally, Hypothesis C is that for each prime ¢ such that e;(Ex, 1) - €o(FK,12) = —1, we have that
ve(Ny), ve(Nigeq), ve(Nijgen) < 2. For simplicity, we make a slightly stronger assumption.

Hypothesis C’. For each prime ¢ of K such that e;(Fx, 1) - €,(Ek,12) = —1, we have that:

o c/(Ek,v2) = +1,

o v(Ny) =1, vi(Ng/gty) = 2,ve(Nggen) = 2.
Moreover, for each prime g of K such that €¢;,(Ex, 1) - €,(Ex,¥2) = +1, we have that ¢,(Ex, 1) = +1
and €;(Ex,¢2) = +1.

Remark 6.8. We expect that the results of the section still hold under the weaker assumption, by
replacing of Appendix A by a generalization of the results of Brooks [HB15], and by calculating the local

integrals when all three representations are supercuspidal.

We consider three arithmetic quantities associated with our data of f, 1g, ¥p:

o following [Gro87, Section 11] (more generally, [CST14]),

(6.1) Cfapy = Tf > e e)s7 |,

oc€Gal(H/Q)
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where 7y is the projection onto the f-isotypic component of an appropriate Shimura set .S and
s € S is a Heegner point for H.g,,)/K;
e following [DLR15, p. 37] (cf. [LZZ18, Definition 3.3.1]),

(6.2) Py, =7y Y. WMo | € B(H)p?
o€Gal(H/K)
where 7y is the modular parametrization by an appropriate Shimura curve X and ¢t € X is a
Heegner point for H(y,)/K;
e following [DLR15, p. 38], for v € {1y /17, ¥n /17 }, we let
(6.3) up =y U (0)u’ € (OF)1
ceGal(H/K)

where u is an elliptic unit for H,(y,)/K and the unit group is written additively.

Theorem 6.9. Let K be an imaginary quadratic field and p be a prime which splits in K. Then, under
Hypothesis A’, B’, C", the rank one Elliptic Stark Conjecture 6.5 holds. Explicitly, if r(Ex,v1) =0 and
r(Ek,9) = 1, then there is an explicit constant X € vV L* such that:

ev.LXx

a log (Pw )
‘Cg}b 1(17 1) =A- <Cf7¢170f7¢1>1/2 L :

log, (ty, /pg )/ 10g,, (U, jpg )1/

where (—, —) is the height pairing on S.

Remark 6.10. The factor (cs.y,,crq,)"/% € L* could, of course, be combined with A\ € vLX in the
formula. However, we include it here, because it seems to describe the “arithmetic” contribution to the
special value associated with the character ;. It is quite interesting that this factor has a similar form
to the other (non-algebraic) factors, and may therefore be relevant to an integral version of the result or

to similar results in other settings.

The proof of this theorem is based on a factorization of the p-adic L-function corresponding to the

factorization
L(Ea Qghas) = L(E/Ka ’(/1173) ' L(E/K>1/}27S)

Following [DLR15, Section 3.2], we recall two related p-adic L-functions.

6.2.2. The Katz p-adic L-function for K [Kat76]. Let X be the set of characters of K of conductor
dividing a fixed integral ideal ¢ C Og. We then define X = Eg) U Zg ) where:

E(I?) = {¢ € ¥ of infinity type (K1, k2) with k1 > 1, ke <0},
Eg) = {¢ € ¥ of infinity type (k1,x2) with k1 <0, ko > 1}.

Katz defined a p-adic L-function
L,(K): Sk = C,

defined on the p-adic completion Sk of S with the interpolation property

Q;1*H2

’ QK1—R2

(6.4) L,(K) () = a(¥) - e(v) - f() - Le(y1,0) for ¢ € £,

where:

o () = (k1 — )72, e(e) = (1= (p)p~) (1 — ¢~} (F)) and f() = Di2/*2~",
e Q€ C and Q, € C; are CM periods attached to K, cf. [BDP12, (2-15), (2-17)],
o L.(¢1,s) is the c-depleted Hecke L-function associated with 1)~*.
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It satisfies a functional equation of the form
(6.5) Ly (K) () = Lp(K)((¥7) " Nisq),

relating the values in Zg) to Z(Igl).

A finite order Hecke character 1 has trivial infinity type and hence lies outside Yk, i.e. outside
the interpolation range (6.4); however it still belongs to 5 k- Katz proves a p-adic Kroenecker limit
formula [DLR15, (47)]:

-1
(6.6) L,(Y) = ma(w) log,, (uy), for ¢ of finite order,
for u,, defined in (6.3).
central
critical
line Ko
(CHORERN
5 AN
N functional equation
i equation (6.5)
% 2 > K1
p-adic Kronecker - *. Interpolation
formula equation (6.6) *s equation (6.4)
@ N
Py = .

FIGURE 2. The following diagram shows the diagram of infinity types (%1, %2) for the

characters in ¥. We indicate interpolation region Z(I?) for the Katz p-adic L-function in

blue (6.4), the functional equation (6.5) with the axis of symmetry given by the dotted
line, and the point where the p-adic Kroenecker limit formula (6.6) is valid. The dashed
line is the central critical line

6.2.3. The BDP p-adic Rankin L-function for f and K. For any character ¢ of K with infinity type

(K1, k2), we consider the Rankin-Selberg L-function associated with f and 6,:
L(f,I/),S) = L(f X Oy,8 — (k1 + K2 + 1)/2).

When the conductor of ¥ is coprime to the level Ny of f, a p-adic L-function was constructed in [BDP13]
and a special value formula outside of the interpolation range was proved.

Assume Hypothesis A.1,i.e. Ny = Ny N_ and N_ is a square-free product of finite primes. Let ¢ > 1
be a positive integer relatively prime to pN* and divisible by N_. Bertolini-Darmon-Prasanna assume
that N_ = 1, but we prove the analogue of their results in Appendix A.

Let X . be the set of characters defined in Definition A.4, so that for ¢ € X ., L(f, v, s) is self-dual

and has s = 0 as its central critical point. Note that X . naturally decomposes as

_ v () 2"
Ype=X; UX U]/,

Eg}g = {¢ of infinity type (1,1) | ¥ o Tr = 1},
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) = {4 of infinity type (r + 2, ) for & > 1},

2;2/) = {4 of infinity type (—&,x + 2) for k > 1}.

c
We next summarize Theorem A.5 which is a generalization of the main results of [BDP13].
There is a p-adic L-function
Ly(f.K): Sp— CS
defined on the p-adic completion 5 1, of 3f . with the interpolation property

4k+4

67)  Ly(fE)®) = a(f0) - e(£ ) - §(F.0) - s - LA 0) pex?)

where

o a(f,9) = Kl(s + DL, o(f,00) = 1— a, (v~ (B) + ¥ 2(B)p,
o §(f.0) = (2/evD)* - TT 25D [T 125 w(f,9) ", and w(f,¢) € Qis defined in [BDP13,

(5.1.11)].

qlco qle—

Next, for a finite order character ¥ of K, we have that ¢y Nx € 25,12 which is outside of the interpolation

range (6.7) and Bertolini-Darmon—Prasanna prove the following p-adic Gross—Zagier formula:

ap(f)
@ o)

(65) cpts10) = (1- ) o, (Py)?,

for Py defined in (6.2).

central
critical
line Ko

p-adic
Gross—Zagier ——— &
formula (6.8) N

functional equation

S > K1
v, Interpolation

*sequation (6.7)

S
N
N
N

N

(C)NEN
b N

fic N

N
N
N
N
N

FIGURE 3. The following diagram shows the diagram of infinity types (x1, %2) for the
character in . We indicate interpolation region 2;22 for the BDP p-adic L-function
in blue (6.4), the expected functional equation with the axis of symmetry given by the

dotted line, and the point where the p-adic Gross—Zagier formula (6.8) is valid.
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6.2.4. Gross’ formula. The following formula was originally discovered by Gross [Gro87, Proposition

11.2] in a special case and proved in full generality in [CST14, Theorem 1.10]:

LOf,41) _gs (erwicrw)
T (f, f) [0 : 2¥]2eV/Dk’
VDKL( 1)

for ¢y, defined in (6.1) and ¥ = {v places dividing (N, ¢)}. In particular, ey lies in the number
field Q(f, ).

(6.9)

6.2.5. Explicit CM Hida families. We follow [DLR15, Section 3.2] to recall Hida’s construction of an
explicit CM Hida family F specializing in weight one to Fy € {ga, o} Recall that for a finite order

character ¢ of K such that 7 # 1, we have an associated cusp form:

Oy € S1(Dxr Ni/g(c), x)-
We fix a character A of infinity type (0,1) and conductor p and valued in Q(X). Let Q,(A) be the p-adic
completion of Q()\) determined by a fixed embedding Q(A\) = Q,. We have that

@ uwx W

x —
Q) ™

where p is finite and W is a free Zy-module, and we write

(=) Og, o 2 W
for the projection.
For ¢ € {14, ¥} and every integer k > 1, define
(6.10) &y =
which is independent on the choice of A\, and let
(@) q £,

(6.11) Yro(g) =4
. XE@PE 0 () a=p.

Then the ordinary p-stabilization of the associated theta series:

(6.12) Fy =0y, _, € Se(DrNg/o(c(¥r)), xF)

is the weight k specialization of the Hida family F and, by definition, F} = F.

6.2.6. Factorization of the p-adic L-function. We are now ready prove the factorization of the triple prod-
uct balanced p-adic L-function. We start by recalling the factorization of the classical L-functions, then
analyze the periods, and finally deal with the auxillary factors. The resulting statement is Theorem 6.14
below.

Note that the norm Nk from K to Q can be regarded as a Hecke character of K of infinity type (1,1).
Since (A) has infinity type (0, 1), (A7) has infinity type (1,1) and we may identify it with Ng.

Note that:

g b—1%h o1

Vye @ Vi, = Vi = v .
9e @ Vhe = Vyim OV = Ve e, Ve e

and
WLy = g PR = ()2
By T = g U N = U N = N
Via the Artin formalism, the above results in a factorization of the triple product L-function:

L(f % ge % heys) = L(fre x h2(N)*7%,5) - L(fx X 1,5 — (€ — 1)),
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where 0, (y)2x—2 has weight 2k — 1 and 6, has weight 1.
By Corollary 6.4, we know that ﬁgal’f(ﬁ,ﬁ) is related to:

L(f % g X he, £) = L(fx X ha(A\)*72.0) - L(fx x 1b1,1)
= L(fx x Y2 (N> 72N 0) - L(fx x 1, 1).

More specifically, dividing by the period (f, f)(ge, ge) (he, he), we have:

L(f X ge X hg, £) 1 202 A7t L(fx x11,1)
6.13 - CL(fre X ha(NH2NZE ) ZUE XYL D)
(6.13) (fs ) ge, ge)Ches he) — (ge, ge)(hes he) (ke x $2(0) 1:0) (fi )
Note that
Wyn(0) = 03 (N 242N e 2P
has infinity type (¢, —¢ + 2), so by equation (6.7):
Q4é—4

(6.14)  L(fx x Ugn(0)™",0) = a(Cn(£)) ™ - e(f, Ugn(0) ™" F(Tgn(0) - i1 Lol K)(Yan(6)).

Next, define for F' € {g,h}
Up(l) = ¢pi_1xr Nk

and recall fact from [DLR15, Lemma 3.8]: for some K-admissible functions fo(k), f3(k)

72(‘1’F(€))f(\1/p(€)). (79, 20—2
o LW O =" o e ( > '

Thus equation (6.13) becomes

A(f X ge X hfag)
(f, [){ge, 9e) (e, he)

- Lp(K) (g () - Lp(K) (4 (0)) =

e(Wy(0)F(y (¢ )) (Wn(0)F(Tr(£))

f2(€)2F3(0)%e(f, Won (€))f(Wgn(£))
LK) (0) - Pl )
where we have canceled the factor a(¥,,(¢)) with the other powers of 7 and the I'-factors for the triple
product L-function.

Next, using Corollary 6.4, we get that:

Ly (0,0) - L (K)(1g(0)) - Lp(K) (W (0)) = E) - F(£) - L(f, K)(¥gn(0)) - W
where
(6.16) W) = glt’)al(v"”v) ~Ep(fa; Ad) e(Wy(0)) - e(\Ilh(E))’
e(f, Ygn(l))
300 F(Wg(€))f(¥ ( )
(6.17) F(l) =2 NOEROECOIR

Lemma 6.11. For any { > 0,

E(0) = (1= By (p)p™ )L = By ()p~ ).
Proof. We recall that

Lp(ed)l—l ’ S) = Lp (’(/}ffla 8) ! Lﬁ(’(ﬂ[,h S)

and hence for F' € {g,h}

ap = Yr(p)(AP)

Br = xr@)p ™ ar = p " orE) (M)

We first check that for F' € {g,h}:

(6.18) Ep(Fae, Ad) = e(Tr(0)),
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Indeed, according to [Hsi21, p. 416]

Ep(Fae, Ad) = (1 — az22xr()p" 1) (1 — o> xr(p)p"?)
= (1= ¢r(p) 2 Am) > xr)p )1 = r(p) 2 (MP) 2 xr(p)p ),

while
e(Up(0) =1 —Tp@)(p)p ") (1 —Vr()~(p))
= (1= (Pxr @) (A = (pi_ ()xrP)p) ™)
= (1= vr) @) > Fxr@p™H) (1 = (r@)p™ / (WrE)AE) )2 xr@) ™)
= (L=4rE) 2@ xr@)p ™) (1= vrp) 2 (AP) > xr()p ),

verifying equation (6.18).

Therefore, we have:
Ep (Vi) - Ep(fas A) - (T (0)e( W1 (0)) = (1 — By Bup™ ") (1 = BragBup™ ) (1 = BrByanp™ )1 — By By fup ™)
= (L=ap (Pgun) (B) (A0)) 22D ) (1B (g ) (0)p 1) (L= By (g5 ) B)p ™) (1B (%) (B) (A(p))2~2p"~2)
It remains to observe that:
e(f, Wgn(0)) = (1 —ay ¥l (0)(1 — Br ¥, (P))

= (1= apa () A2~ (1 — Bruoa(®) (AB)>2p~)

= (1= ap($yun) B AB) 2™ (1 = By (wgthn) B AE)*2p),
and use pp = (p). n

Remark 6.12. Note that:

Lp(fx x 1,8) 7" = (1= apn(@)p™") (1 = Brn(@)p™") (1 — aptpa(p)p™) (1 = Brepa(p)p™)

and hence the factor £(¢) is part of the local L-factor at p of L(fx x 91,1).

Lemma 6.13. The function F({) is K(1bg,¢n)-admissible according to [DLR15, Definition 3.5], i.e. it
extends to an element of Frac O(U) and F(1) € K (g, ¥n)*.

Proof. This follows from the same argument as the proof of [DLR15, Lemma 3.6]. |
Altogether, this gives the following result.

Theorem 6.14. There is a factorization:
Lfx x 1, 1)
(f. 1)

Then Theorem 6.9 follows by evaluating the above factorization at ¢ = 1 and using equations (6.6), (6.8),
and (6.9).

Ly (0,00 - Lo (K) (g (£)) - Lo(K) (Wn(0) = F(O) - Lp(f, K) (T gn(0)) -E(0).

APPENDIX A. A GENERALIZATION OF RESULTS OF BERTOLINI-DARMON-PRASANNA

A.1. Statement of the results. Let f be a weight two cuspidal eigenform for I'g(N), which we assume
to have trivial Nebentypus for simplicity. Let K be an imaginary quadratic field of discriminant —Dg
and p be a prime which splits in K. For any Hecke character ¢ of K with infinity type (k1,k2), we
consider the Rankin—Selberg L-function associated with f and 6y:

L(fﬂ/%s) = L(f X 91/175 - (Kl + Ko + 1)/2)



54 LUCA DALL’AVA, ALEKSANDER HORAWA

We will assume the condition:

(A.1) Dlax =%

where | - | is the norm character of Q, which ensures the L-function L(f,1,s) is self-dual with central
critical value at s = 0.

Under the Heegner hypothesis (if ¢|IV, then q is either split of ramified in K and if ¢%| N, then g is split
in K) and the assumption that the conductor of ) is coprime to the level N of f, Bertolini, Darmon, and
Prasanna [BDP13] constructed a p-adic L-function interpolating the critical values L(f,%~1,0) when
k1 > 1 and ko < 0, and proved a special value formula for kK1 = ks = 0.

The goal of this appendix is to reprove their result, allowing a squarefree product of inert primes to
divide N.

Hypothesis A.1. If ¢?|N, then q is split in K.

Instead, we make the following assumption on the conductor of ¢ under which €,(f,v) = +1 at the

inert primes ¢ dividing N.

Hypothesis A.2. Let Ny be the product of primes dividing N which are inert in . Then the conductor
of v is divisible exactly by Ny and coprime to N/Nj.

Remark A.3. The weak Heegner hypothesis allows a product IN_ of an even number of inert primes to
divide N. Assuming that the conductor of 1) is coprime to N — the opposite to Hypothesis A.2 — we have
that €,(f, 1) = —1 for all primes ¢|N_. The integral representation for the Rankin-Selberg L-function
is then on a Shimura curve associated with a quaternion algebra of discriminant N_. A generalization
of the results of Bertolini-Darmon—Prasanna to this setting was obtained by Brooks [HB15].

As mentioned above, our Hypothesis A.2 instead forces €4(f, 1) = +1 at all primes ¢|Ny, and in fact
we will assume that e,(f,1) = +1 for all ¢, so that the integral representation for L(f,1,s) is still on
the modular curve. This is why we do not require the parity assumption.

Finally, combining the results of this appendix with the results of Brooks, one could presumably allow
Ny N_|N where N_ is a product of an even number of inert primes, and the conductor of v is divisible

exactly by Ny, and coprime to N/Ny. We decided not to pursue this generality here.

Under Hypothesis A.1, there is an ideal T of Ok of norm N Ny; we fix such an ideal. Given an integer
¢ > 1 divisible exactly by Ny and coprime to (N/Ny)Dg, we consider an order O, of Ok of conductor
c. Setting 9. = M N O, we have:

O./N. 2 Z/NZ.

Indeed, for ¢|N coprime to ¢, if q|g then
Oc.q/Neyq = Okq/MNg = Z/(g"*™M)z.
Moreover, for q|No, O.q = Z + qOk, and:
Oc,q/Neq = (24 qO0k,) /40K, = L/qL.
Note that for ¢|No, 1 +¢Ok, € OF, C OIX% and

Oly/(1+40k,) — O /(1 +q0k,) — Ok /O

I I ko

In particular, a character of le(q which is trivial on O, has conductor at most 1 and is trivial on
X X
Fy C qu.
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Definition A.4. Let X . denote the set of Hecke characters ¢ of K such that:

(1) w|0x =1, but for ¢| Ny, wq\ox #1,
2) the infinity type (k1, k2) of ¥ Satlsﬁes K1+ Ko =2,

(2)
(3) 1/11#(’ =
(4) €4(f,¢™1) = +1 for all finite primes gq.

By the above discussion, if ¢ € X¢ ., then 1, for g| Ny has conductor 1 and 1/J|qu = 1. In particular,
assumption (1) in the definition implies Hypothesis A.2. If Ny = 1, this agrees with Xy .. in [BDP13].

The final condition is automatic except possibly for the primes in the set:
S(f) ={q| q divides N and Dg}.

For example, if N is coprime to Dg, S(f) = 0.
For ¢ € Xy, L(f, v, s) is self-dual and has s = 0 as its central critical point. Moreover, Xy . naturally

decomposes as

£r. =20 us? us®),

Egclz = {¢ of infinity type (1,1)},
2) = {4 of infinity type (x + 2, —k) for x > 1},

2(2 ) _ {% of infinity type (—k, k + 2) for K > 1}.

Theorem A.5.

(1) There is a p-adic L-function L,(f, K): f]fyc — C; defined on the p-adic completion f]f’c of Xf.c
with the following interpolation property:

L —1
AL —atg - eth (g ) ves()

where
a(f,) = wl(k + DT> e(fh) =1~ ap(f)i/fl(ﬁ) +972(p)p,
o §(f,0) = (2/ev/Dg)* 1t ] & XK(q) I q _1 ~w(f, )7, and w(f, ) € Q is defined in

qlc/No q|No

[BDP13, (5.1.11)].
(2) For a finite order character ¢ of K, YNk € ES}Z which is outside of the interpolation range (6.7),

there is a p-adic Gross—Zagier formula:

_ _ ap(f) 1 ’ 1o 2
Llf K) = (1 vop ¢2<p)p) tog, (Py)"

for Py defined by:

Py =7y > w0t | € B(H,)}®
o€Gal(H./K)

for a Heegner point t for H./K.

Remark A.6. We remark that Liu—Zhang—Zhang [LZZ18] proved a formula similar to part (2) of the
above theorem for any abelian variety parameterized by a Shimura curve over a totally real field. In
particular, in the case of Shimura curves over Q, they removed all the ramification hypothesis in [BDP13,
HB15].

However, their construction of the p-adic L-function does not have an interpolation property as explicit
as (1). More specifically, (1) can be interpreted as an equality in Q (or even an explicit finite extension of
Q), having fixed embeddings Q — C, C,. Crucially, the CM periods €2 and 2, make both sides algebraic.
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The interpolation property of Liu-Zhang—Zhang is not an equality of algebraic numbers and relies on
an identification C = C,,. In particular, the CM periods do not show up in their interpolation property,

and we have not find a direct way to deduce the above result from their work.

A.2. An explicit Waldspurger formula. The crux of the proof of Theorem A.5 is to give an explicit
version of Waldspurger’s formula, generalizing [BDP13, Theorem 4.6].

Theorem A.7. Let f be a normalized eigenform in So(N) and let ¢ € 2532 be a Hecke character of K
of infinity type (2 + j,—j). Suppose also that ¢ and Dk are odd, and let wx denote the number of roots
of unity in K. Then:

C(fﬂ/hc) : L(fa¢7170) = Z Xﬁl(a)Naij : (é%f)(ailata) 3

[a]ePic(O.)

where the representatives of the ideal classes in Pic(O.) are chosen to be coprime to the N. and the
constant C(f,,c) € C is given by:

1 . — — 1
C(fx€) = 77270 + DLk + j)wic| Die| /2 - evol(0n) = - 2#5r . T 4 q’jK e
gqlc/No q|No

Proof. The proof in [BDP13, Section 4] can be applied verbatim to our case, until the local calculations
in Section 4.6. The extra local integral is then computed in the next section, resulting in Proposition A.8.
|

A.3. The key computation. The assumption in [BDP13] that the conductor of 1 is coprime to the
level N of f is used in the explicit computations of the local zeta integrals in Section 4.6. We use the

same notation as loc. cit. but consider the following extra setting:

o let Q2 = Qq[w] where w? € Q) is a unit is the unramified quadratic extension of Q,, and let o
be the non-trivial automorphism of Q2 over Qq,

e 7 is an anticyclomotic character of QqXQ of conductor » > 1 such that ¢ # % and 1/)|qu =1,
(here, anticyclotomic means that 11 = 1; in particular, note that 12 # 1),

o 7 is the Steinberg representation St of GL2(Qy).

Analogously to p. 1118 of loc. cit. we consider:
I = [ Welda)Wo (d@)®s(d@)lal d"a.
Ng 5 /0,(Q2)

As written, the equation in [BDP13] involves the integral of Q,, but tracing back the reference [Pra06,
Section 3] reveals this is the correct generalization at inert places.

We also recall from Proposition 4.24 of loc. cit. that:
Wec(d(a)) = / 0 s(h™"(W')7)¢(hh') dh
Q,z
q

for any A’ such that N(h') = a, where
QY ={reQp | N=) =1} c 2%

and the Haar measure is normalized so that Vol((@f;)) =1.
We recall that the group of norm one elements in the unramified quadratic extension of @, has the

following description:

o _Jt x
(A.2) qu _{ta ’tezqg}.
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Therefore,

Wold@) = [ (' yoten /7 ar.

We choose:

e ¢ =1z, 44 wz,, the indicator function of Z; + ¢"wZ, C Zq + wly = Lz,
0

-1

o Wr(d(a)) = |alIz,(a), since 7 = St (cf. Proposition 4.23 of loc. cit.).

o ¥ = I(Zq+q7'qu)j where ] =

Then ¢((th’)? /t) = 1 if and only if
(th')7 /t € Zy + ¢"wZ,.
For x € Z2, the condition « € Zq+q"wZ, is equivalent to vgy(z—x7) > r. Therefore, the above condition
is simply:
vg(t7)2 (W) —£2R') > 7.

Next, we observe that for v(h’) > r, this condition is automatic, and in this case:

We(d(a)) = $ (1) / (/) (1) dt

—0 S
Since Wr(d(a)) = |allz,(a) and h'(h')? = a, the remaining part of the integral J(¢,?) has 0 <
v(h') <7 —1. Fix m = v(h') and write b’ = g™ - u for u € Z,. Then:
(17)2 ()7 — 21 = g((t7)?u” — 2u),
and the condition on the valuation can be concisely written as
t?u = (tu)° mod ¢"~™.
Dividing both sides by the unit ¢t° gives the equivalent condition:
tu/t? = (tu/t°)° mod ¢" ™.
Finally, this shows that:
Wi (d(a)We.. (d(a))|a* ' d*a = // V(tu)t7) dudt

vq(a)=2m u,t€Z,
q

tu/t7=(tu/t?)° mod "~ ™

_ // D) d*v v =t/tu,

v,tEZ:2

r—m

v=v? mod q

T—m

Now, if m > 1, this final integral is 0, because there exists vy € ZqXQ such that vg =1 mod ¢ and

Y(vo) # 1.

For v € Z;z such that v = v” mod ¢", there exists vg € Z; such that vg = v mod ¢", and hence
Y(v) =Y(vo) =1,
since w|qu = 1. Altogether, this shows that:

J(s,9) = vol(Z2) - vol{v € Z. | v=v" mod ¢"}.



58 LUCA DALL’AVA, ALEKSANDER HORAWA
Next, recall that the measure is normalized so that Vol((@;?) = 1 and hence by equation (A.2), we
also have Vol(ZqXQ) = 1. To compute J(s,?), it remains to compute the index of
S={veZ;|v=1v"modq"}

in ZqXQ. We consider the intersection of S with the filtration U,, = 1 + q”ZqX2 on Uy = ZqXQ. Clearly, for
n>r, S, =5NU, = U, because the condition v = v mod p" is automatically satisfied. The successive

quotients of the filtration are:
Uo/Ur = F,
Up/Ups1 = Fpe
and for n < r the condition v = v? mod ¢" gives:
So/S1 = FY,
Sy /Sny1 =Ty,

Overall, this shows that:

Therefore, finally:

qg—1
¢ —-1)
We rephrase this result as in Section 4.6 of loc. cit.

J(s,9) =

Proposition A.8. For the above choices of ¢ and 9, we have

1g—1 _
J(§719) = qTq—‘r—i]_ . Lq(ﬂ'f,ﬂ'ﬁ, S)Lq(28,€[() 1|s:1/2-
Proof. We recall that:

hd Lq(laGK) = 1+11/q = ﬁ?
e by [Jac72, Theorem 15.1], since = = St, we have

L(s,m X my) = L(s,my @ | - |Y?) = L(s + 1/2,my) = L(s + 1/2,¢),
and hence:

MVZWX@JZLOW)=17M®T2=17¢a:q2,y

Thus:
I(s,9)  q-1 ¢#-1 ¢
Lo(mp,mm, 8)Lq(25,€x) sz ¢ M(@*—1) ¢* q+1
1 -1
- .17 u
g q+1

A 4. Finishing the proof. Theorem A.5 is again proved by following [BDP13, Section 5] word-for-word,

and replacing Theorem 4.6 of loc. cit, with Theorem A.7 above.

APPENDIX B. EXAMPLES

The hypotheses of Conjecture 6.5 and Theorem 6.9 may seem quite restrictive at first glance, so in this
section we collect many examples where they are satisfied. Even though we have only provided evidence
for the conjecture in the CM case so far, we still wish to give instances where the conjecture could
be verified numerically by adapting the algorithms in [Dal23a]. We hope to carry out this numerical

verification in future work.
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We divide the examples into four categories, namely:

(1) h = g*, weight 1 forms with CM by the same field K;
(2) h # g*, weight 1 forms with CM by the same field K;
(3) h = g*, weight 1 forms without CM;
(4) h # g*, weight 1 forms without CM.

Recall that we denote the form obtained by complex conjugation from g by ¢* and that its corresponding
representation is the contragredient of 4. In the CM cases, K represents the imaginary quadratic field.
As in the previous sections, we denote the various analytic ranks by r(Ex) = ords—1(L(Fk,s)), and
r(Ex,v) = ords=1(L(FKk,1,s)). We always consider elliptic curves with analytic (and algebraic) rank
0 over Q. In the first two categories of examples, we keep track of which among the various Hypotheses
A, B, C, A’, B’, and C’ is satisfied. All our computations are made with the help of magma [BCP97] and
we make extensive use of the LMFDB Database [LMF24]; all the labels refer to items listed there. We
developed a simple procedure for computing the Hecke characters 1, and 1, and hence studying order
of vanishing of the L-functions; these routines can be found at [2]. In the following tables, we highlight

the primes of supercuspidal type in blue.

B.1. CM case, h = g*. We consider here the case of h = ¢g* with CM by K. In this situation, the
two characters 1; and 1 of Section 6 are, respectively, 1 and ¢ = 497 = 1, /wg , for o the generator
of Gal(K/Q). For each example below, we checked that Hypotheses A’, B’, and C are satisfied, so the
Elliptic Stark Conjecture 6.5 applies. The stronger hypothesis C’, under which Theorem 6.9 applies, is

only sometimes satisfied so we separate the examples into Tables 1 and 2, accordingly.
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TABLE 1. Examples where h = g*, both with CM by the same field K. Hypotheses A’,
B’, and C’ are satisfied; Theorem 6.9 applies.

E Level g=h* Level | r(Ek)+r(Ex,) K P
1422 | 2-7 | 1911.1.h.c | 3-72-13 0+ 1 Q(v—39) | 41
1422 | 2-7 |1911.1.hd | 3-72-13 0+ 1 Q(v-39) | 5
17.al 17 2023.1.c.a | 7-172 0+1 Q(V-7) | 23
17.al 17 | 2023.1.chb | 7-172 0+1 Q(V-7) | 23
17.al 17 | 2023.1.cc | 7-17 0+1 QW-17) |11
17.al 17 | 2023.1.cd | 7-172 0+1 Q-1 |11
19.a.1 19 | 2527.1.dc | 7-192 0+1 QW=7 |11
21.a4 | 3-7 | 2695.1.La | 5-7%-11 0+1 Q(v/—11) | 37
21.a4 | 3-7 | 2695.1.gi | 5-7%-11 0+1 Q(v/-11) | 67
26.al | 2-13 | 1183.1.d.a | 7-132 0+1 QW=7 |11
26.b1 | 2-13 | 1183.1.d.a | 7-132 0+1 QW=7 |11
34.al | 2-17 | 2023.1.ca | 7-172 0+ 1 Q-7 | 11
34.al | 2-17 | 2023.1.ch | 7-172 0+1 Q-7 |11
34.al | 2-17 | 2023.1.cd | 7-17? 0+1 Q(v=T7) | 11
52.a2 | 22.13 | 1183.1.d.a | 7-132 0+ 1 QW=7 | 11
55.al | 5-11 | 175.1.d.a 52.7 0+1 Q(v-T7) | 23
187.b1 | 11-17 | 2023.1.c.c | T7-17 0+1 QW=7 | 11



https://www.lmfdb.org/EllipticCurve/Q/14/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1911/1/h/c/
https://www.lmfdb.org/EllipticCurve/Q/14/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1911/1/h/d/
https://www.lmfdb.org/EllipticCurve/Q/17/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/a/
https://www.lmfdb.org/EllipticCurve/Q/17/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/b/
https://www.lmfdb.org/EllipticCurve/Q/17/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/c/
https://www.lmfdb.org/EllipticCurve/Q/17/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/EllipticCurve/Q/19/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2527/1/d/c/
https://www.lmfdb.org/EllipticCurve/Q/21/a/4
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2695/1/l/a/
https://www.lmfdb.org/EllipticCurve/Q/21/a/4
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2695/1/g/i/
https://www.lmfdb.org/EllipticCurve/Q/26/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/26/b/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/34/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/a/
https://www.lmfdb.org/EllipticCurve/Q/34/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/b/
https://www.lmfdb.org/EllipticCurve/Q/34/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/EllipticCurve/Q/52/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/55/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/175/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/187/b/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/c/
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TABLE 2. Examples where h = g*, both with CM by K. Hypotheses A’, B’, and
C are satisfied, so Conjecture 6.5 applies. However, Theorem 6.9 does not apply as
Hypothesis C’ is not satisfied.

E Level g Level | r(Ek)+r(Ex,v) K D
15.a3 3-5 |525.1.bea | 3-52.7 0+ 1 Q(v-3) | 13
15.a3 35 525.1.ka | 3-52.7 0+1 Q(v-3) | 13
15.a3 3.5 693.1.h.a |3%2.-7-11 1+0 Q-1 |11
30.a7 | 2-3-5 | 693.1.bp.a | 32.7-11 140 QW=7 | 11
35.al 5-7 | 525.1.p.a | 3-52.7 0+ 1 Q(v-3) | 13
35.al 5.7 525.1.wa | 3-52-7 0+1 Q(-3) | 13
35.al 5.7 525.1.u.b | 3-52-7 0+1 Q(-3) | 13
39.a4 | 3-13 | 1183.1.da | 7-13? 0+1 QW=7 |11
49.24 72 539.1.c.hb | 72-11 0+1 Q(v—-11) | 5
5l.a.1 | 3-17 |2023.1.cd | 7-172 140 QW=7 |11
65.22 | 5-13 | 1183.1.d.a | 7-132 1+0 QW=7 | 11
85.2.2 | 5-17 | 2023.1.ca | 7-172 1+0 Q(v=T7) | 23
85.a.2 | 5-17 |2023.1.cb | 7-172 1+0 Q(/-17) | 23
85.2.2 | 5-17 | 2023.1.cd | 7-172 140 Q(W=T7) | 23
195.a1 | 3-5-13 | 175.1.d.a | 5%2-7 0+ 1 Q(W=T7) | 23

B.2. CM case, h # g*. We consider here the case of h # ¢* with CM by the same field K and we
collect the examples into two tables. Note that, differently from the previous section (Section B.1), we
have 11,19 # 1, hence it becomes difficult to check Hypothesis C’ for the examples in Table 3 and
Table 4. This last condition can be checked by explicitly recovering the Hecke characters i1 and 1, via
[2] and computing the local e-factors. We list a few forms satisfying all the Hypotheses A’, B’, and C
in Table 3. In these examples, Hypothesis C’ represents a rather strict assumption but, as observed in
Remark A.3, it can be relaxed by extending [HB15]. Some pairs are related by a twist of a Dirichler
character, while others are not. The latter represents the most interesting situation and one can notice
that the Artin representation V,; ® V}, decomposes as direct sum of two irreducible two-dimensional Artin
representations. The second table of this section, that is, Table 4 presents a few examples not satisfying

Hypothesis C’, i.e. ones where Theorem 6.9 does not apply, but Conjecture 6.5 does.


https://www.lmfdb.org/EllipticCurve/Q/15/a/3
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/be/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/3
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/k/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/3
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/693/1/h/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/7
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/693/1/bp/a/
https://www.lmfdb.org/EllipticCurve/Q/35/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/p/a/
https://www.lmfdb.org/EllipticCurve/Q/35/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/EllipticCurve/Q/35/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/b/
https://www.lmfdb.org/EllipticCurve/Q/39/a/4
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/49/a/4
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/b/
https://www.lmfdb.org/EllipticCurve/Q/51/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/EllipticCurve/Q/65/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/85/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/a/
https://www.lmfdb.org/EllipticCurve/Q/85/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/b/
https://www.lmfdb.org/EllipticCurve/Q/85/a/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/EllipticCurve/Q/195/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/175/1/d/a/

LUCA DALL’AVA, ALEKSANDER HORAWA

TABLE 3. Examples where h # g* both with CM by the same field K. Hypotheses A’,
B’, and C’ are satisfied; Theorem 6.9 applies.

g Level
E Level r(Ex, Y1) +r(Ex,¥2) K p
h Level
539.1.c.a 72 .11
14al| 2-7 0+1 Q(v/—11) | 5
2156.1.h.b | 22.72.5
175.1.d.a 52.7
15al | 3-5 0+ 1 QW-7) | 11
1575.1.h.d 32.52.7
525.1.u.a 3-52.7
70.al | 2-5-7 0+ 1 Q(v-3) | 13
2100.1.bn.a | 22-3-52.7
539.1.c.a 72.11
77hl| 7-11 0+1 Q(v/—11) | 5
539.1.c.b 7211



https://www.lmfdb.org/EllipticCurve/Q/14/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2156/1/h/b/
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/175/1/d/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1575/1/h/d/
https://www.lmfdb.org/EllipticCurve/Q/70/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/77/b/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/b/
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TABLE 4. Examples where h # g* both with CM by the same field K. Hypotheses A’,
B’, and C are satisfied; Conjecture 6.5 applies.

g Level
E Level r(Er, 1) +r(Exk,2) K p

h Level

525.1.u.a 3-52.7

2100.1.bn.a | 22-3.52.7

525.1.u.a 3.-52.7
20.al 22.5 0+1 Q(v-3) | 13
525.1.u.b 3-52.7

539.1.c.a 72.11
42.al 2-3-7 0+1 Q(v—11) | 11
2156.1.h.b 22.72.5

525.1.u.a 3-52.7
55.al 5-11 0+1 Q(v-3) | 13
525.1.u.b 3.52.7

525.1.u.a 3.52.7
155.a2 5-31 0+1 Q(V-3) | 13
2100.1.bn.a | 22-3-52.7

525.1.u.a 3.52.7
155.a2 5-31 0+1 Q(v-3) | 13
2100.1.bn.b | 22.3-52.7

525.1.u.a 3.52.7
210.al | 2-3-5-7 0+1 Q(V-3) | 13
2100.1.bn.a | 22-3-52.7

525.1.u.a 3-52.7
210.d1 1 2-3-5-7 0+1 Q(v-3) | 13

2100.1.bn.a | 22-3.52.7

525.1.u.a 3.52.7
490.a1 | 2-3-5-7 0+1 Q(v=3) |13
2100.1.bn.a | 22-3-5%2.7

Remark B.1. It is not automatic that finding the right level and character produces a situation where
our work applies. By Proposition 2.1 (2) ([Pra90, Proposition 8.5]), in order to obtain local sign
ee(E, 0gn) = —1, the supercuspidal representations m,, and 7, ¢ need to satisfy mg, = Wz,e = T+ 4.
There are several examples which fail this final condition:

e ¢g: 2023.1.c.a, 2023.1.c.b and h: 2023.1.c.c, 2023.1.c.d;

e g: 2527.1.d.c, 2527.1.d.d and h: 2527.1.d.1.

B.3. Non-CM case, h = g*. In this section we report a few examples to which our Conjecture 6.5
applies, but the form g does not have CM, so Theorem 6.9 does not. We divide the examples depending

on the projective image of the Artin representation associated with g.

B.3.1. RM but no CM:. We begin by giving examples of some weight 1 modular forms with RM by a
field F/Q but without CM. When h = g*, we once again have

(B.1) Vy ® Vye = Ind{y (1) & Vy,


https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/b/
https://www.lmfdb.org/EllipticCurve/Q/42/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/539/1/c/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2156/1/h/b/
https://www.lmfdb.org/EllipticCurve/Q/55/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/b/
https://www.lmfdb.org/EllipticCurve/Q/155/b/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/155/b/2
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/b/
https://www.lmfdb.org/EllipticCurve/Q/210/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/210/d/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/EllipticCurve/Q/490/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/525/1/u/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2100/1/bn/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/c/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2023/1/c/d/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2527/1/d/c/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2527/1/d/d/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2527/1/d/f/
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for ¢ = 1), /17; here o is a generator of Gal(F'/Q).

TABLE 5. Examples where h = g*, both with RM by F; r(Er) and r(Ep,1) are

computed.

E Level g Level r(Ep) +r(Er, ) F P
15.a1 | 3-5 |1025.1.4.a | 52-41 0+ 1 QW5 |11
15.al1 | 3-5 |1025.1.fa | 5241 0+1 Q(v5) | 11
20.al | 22-5 | 1025.14a | 5%-41 0+ 1 QW5) |11
20.al | 22.5 | 1025.1.fa | 52-41 0+1 Q(v5) | 11
2l.al | 3-7 | 396.1.d.a | 22-32-11 140 QW11) | 5
30.al [ 2-3-5|1025.1.4.a | 5241 0+ 1 Q(W5) |11
30.al | 2-3-5 | 1025.1.fa | 5%-41 0+ 1 Q(W5) |11
39.al | 3-7 | 396.1.da |22-32-11 0+ 1 QW11) | 5

B.3.2. A4: To compute these examples, we make wide use of the technical remarks in [DLR15, Section
5.1]. In this situation, V, ® Vg« decomposes as 1@ Ad,, for Ad, the adjoint representation of g. Therefore
it is enough to compute the order of vanishing ords—1 L(E, Ady, s). Let H be the Galois field defined by
the projective Artin representation associated with g, let h(x) be a degree 4 polynomial whose splitting
field is H. Denoting by M the field generated by a single root of h(z), by [DLR15, Section 5.1.1], we

have
(B.2) r(E,Ady) = ords—1 L(E, Ady, s) = r(En) — 1(E).

Hence, ords—1 L(f x g X h,1) = r(Ep).

TABLE 6. Examples where h = ¢g* is an exotic form of projective type Ay; r(Fjs) and
r(Eg) are computed.

E | Level g Level | r(E) | r(Ey) | 7(ER) Polynomial of M D
151 | 3-5 | 325.lwa |5%2-13| 0 1 3 rt—23-3.2+4 11
26.al | 2-13 | 1183.1.xa | 7-13%2| 0 1 3 2t — 234522 —4-2+3 |11
26.al | 2-13 | 1183.1.z.a | 7-132] 0 1 3 2t -3 +5.22 —4-2+3 | 11
26.al | 2-13 | 1183.1.bd.a | 7-132| 0 1 3 |at—2345-22-4-2+3 |11
39.al | 3-13 | 1183.1xa [7-132| 0 1 5 |at—a245-22—4-x+3]|11
39.al | 3-13 | 1183.1.z.a | 7-13%2] 0 1 5 rt—a23+5.22—4-2+3 | 11
39.al | 3-13 | 1183.1.bd.a | 7-13%2 | 0 1 5 ot -2 +5.22 —4.2+3 |11

B.3.3. S4: As above, V; ® V}, decomposes as 1 @ Ad,.


https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/21/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/396/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/39/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/396/1/d/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/325/1/u/a/
https://www.lmfdb.org/EllipticCurve/Q/26/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/x/a/
https://www.lmfdb.org/EllipticCurve/Q/26/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/z/a/
https://www.lmfdb.org/EllipticCurve/Q/26/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/bd/a/
https://www.lmfdb.org/EllipticCurve/Q/39/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/x/a/
https://www.lmfdb.org/EllipticCurve/Q/39/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/z/a/
https://www.lmfdb.org/EllipticCurve/Q/39/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1183/1/bd/a/
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TABLE 7. Examples where h = ¢g* is an exotic form of projective type Sy; r(E) and
r(E,Ady) are computed.

E | Level g Level | r(E)+r(E,Adg) | p
1l.al | 11 | 968.1.h.a | 23-112 0+1 5
33.al | 3-11 | 968.1.h.a | 23.112 0+1 5
55.al | 5-11 | 968.1.h.a | 23.112 0+1 23

We report here a few more modular forms to which our setting applies, but computing the correspond-

ing analytic ranks seems computationally demanding: 1224.1.m.a, 1224.1.m.b, 1800.1.1.a, and 1800.1.1.b.

B.3.4. As: Unfortunately, computing examples with forms of projective image A5 seems out of reach
at the present moment, due to the difficulty of computing Artin representations over degree 60 number
fields. Even trying to address the problem as in [DLR15, Section 5.1.2], as the computation of the unique
subfield of degree 2 contained in the Artin field is demanding. However, we list here a few modular forms
to which our setting should apply: 1825.1.y.a, 2079.1.dd.a, 3069.1.cd.a, 3069.1.cd.b, and 3168.1.cb.a.

B.4. Non-CM case, h # g*. Computing examples in this setting is rather challenging, but we present
a few examples of dihedral forms with RM and no CM, and exotic ones with S4 projective image. In

both cases, we only consider forms g and h with are related by a twist by Dirichlet character.

B.4.1. RM but no CM:. In this situation, we consider g and h with RM by the same field Q(v/5). We
; — Q Q Q Q o
write V; @ V, = IndQ(\/g)(wg) ® Ind@(\/g)(wh) IndQ(\/g)(Q/ng/Jh) ® IndQ(\/g) (gt7).

TABLE 8. Examples where h # g* are dihedral forms, both with RM by Q(v/5) and
without CM.

g Level
E Level T(Er, gn) +1(Er,gdf) | p
h Level

1025.1.4.a | 5241
15.al 3-5 0+1 11

1025.1.f.a | 5241

1025.1.4.a | 5241
20.al | 22.5 140 11

1025.1.f.a | 5241

1025.1.4.a | 5241
30.al | 2-3-5 0+ 1 11
1025.1.f.a | 5241

B.4.2. S4: We consider the case of g # h* but h = g ® x, for x a Dirichlet character. In this situation,

the representation V; ® V3, decomposes as p1 @ p3 for pq a d-dimensional Artin representation, d =1, 3.


https://www.lmfdb.org/EllipticCurve/Q/11/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/968/1/h/a/
https://www.lmfdb.org/EllipticCurve/Q/33/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/968/1/h/a/
https://www.lmfdb.org/EllipticCurve/Q/55/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/968/1/h/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1224/1/m/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1224/1/m/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1800/1/l/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1800/1/l/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1825/1/y/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2079/1/dd/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3069/1/cd/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3069/1/cd/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3168/1/cb/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/i/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1025/1/f/a/
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[ABSV]
[BCO9)]

[BCPY7]

[BDP12]
[BDP13]
[Bel21]

[BHO6)

[BSV20]

[Buz07]
[Carg4]
[Che04]
[Che05)
[Col97]
[Col18]
[CST14]
[Dal21]
[Dal23a]
[Dal23b)
[DLR15]

[DN10]
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TABLE 9. Examples where h # ¢g*, h = g ® x, exotic forms of projective type Sy;
r(E, p1) and r(E, p3) are computed.

g Level
E | Level r(E,p1) +7(E,p3) | p

h Level

981.1.d.a | 32-109
15.al| 3-5 0+1 7

981.1.d.b | 32-109
981.1.d.a | 32-109
24.al | 23-3 1+0 7
981.1.d.b | 32 -109
981.1.d.a | 32-109
30.al | 2-3-5 140 7
981.1.d.b | 32 -109
081.1.d.a | 32-109

981.1.d.b | 32-109

REFERENCES

Fabrizio Andreatta, Massimo Bertolini, Marco A. Seveso, and Rodolfo Venerucci, Endoscopy for GSp(4) and
rational points of elliptic curves, in preparation. 2

Joél Bellaiche and Gaétan Chenevier, Families of Galois representations and Selmer groups, no. 324, 2009.
MR 2656025 26, 27, 29, 30

Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J.
Symbolic Comput. 24 (1997), no. 3-4, 235-265, Computational algebra and number theory (London, 1993).
MR MR1484478 19, 59

Massimo Bertolini, Henri Darmon, and Kartik Prasanna, p-adic Rankin L-series and rational points on CM
elliptic curves, Pacific J. Math. 260 (2012), no. 2, 261-303. MR 3001796 48

, Generalized Heegner cycles and p-adic Rankin L-series, Duke Math. J. 162 (2013), no. 6, 1033-1148,
With an appendix by Brian Conrad. MR 3053566 6, 49, 50, 54, 55, 56, 58

Joél Bellaiche, The eigenbook—eigenvarieties, families of Galois representations, p-adic L-functions, Pathways
in Mathematics, Birkh&user/Springer, Cham, [2021] (©2021. MR 4306639 23, 24, 25, 26, 28, 31, 33, 34

Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for GL(2), Grundlehren der mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006.
MR 2234120 7, 9

Massimo Bertolini, Marco A. Seveso, and Rodolfo Venerucci, Triple product p-adic L-functions, endoscopy and
rational points on elliptic curves, 2020, https://publications.mfo.de/bitstream/handle/mfo/3774/0WR_2020_
20.pdf. 2

Kevin Buzzard, FEigenvarieties, L-functions and Galois representations, London Math. Soc. Lecture Note Ser.,
vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 59-120. MR 2392353 23, 24, 25, 26, 27

H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. Ecole Norm. Sup. (4) 17 (1984), no. 2,
191-225. MR 760676 9, 10

Gaétan Chenevier, Familles p-adiques de formes automorphes pour GLy, J. Reine Angew. Math. 570 (2004),
143-217. MR 2075765 23, 24, 25, 30, 33

, Une correspondance de Jacquet-Langlands p-adique, Duke Math. J. 126 (2005), no. 1, 161-194.
MR 2111512 29, 30

Robert F. Coleman, Classical and overconvergent modular forms of higher level, J. Théor. Nombres Bordeaux 9
(1997), no. 2, 395-403. MR 1617406 25

Dan J Collins, Numerical computation of Petersson inner products and q-expansions, arXiv preprint
arXiv:1802.09740 (2018). 42

Li Cai, Jie Shu, and Ye Tian, Ezplicit Gross-Zagier and Waldspurger formulae, Algebra Number Theory 8 (2014),
no. 10, 2523-2572. MR 3298547 47, 51

Luca Dall’Ava, Quaternionic Hida families and the triple product p-adic L-function, Ph.D. thesis, Universtat
Duisburg-Essen, 2021, available at https://duepublico2.uni-due.de/receive/duepublico_mods_00074866. 2
Luca Dall’Ava, Approzimations of the balanced triple product p-adic L-function, J. Number Theory 246 (2023),
189-226. MR 4531584 3, 6, 58

, Hida theory for special orders, Int. J. Number Theory 19 (2023), no. 2, 347-373. MR 4547454 5, 14, 18,

25, 34

Henri Darmon, Alan Lauder, and Victor Rotger, Stark points and p-adic iterated integrals attached to modular
forms of weight one, Forum Math. Pi 3 (2015), e8, 95. MR 3456180 2, 5, 43, 44, 46, 48, 49, 51, 52, 53, 64, 65
Mladen Dimitrov and Louise Nyssen, Test vectors for trilinear forms when at least one representation is not
supercuspidal, Manuscripta Math. 133 (2010), no. 3-4, 479-504. MR 2729264 10


https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/981/1/d/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/981/1/d/b/
https://www.lmfdb.org/EllipticCurve/Q/24/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/981/1/d/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/981/1/d/b/
https://www.lmfdb.org/EllipticCurve/Q/30/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/981/1/d/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/981/1/d/b/
https://www.lmfdb.org/EllipticCurve/Q/33/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/981/1/d/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/981/1/d/b/
https://publications.mfo.de/bitstream/handle/mfo/3774/OWR_2020_20.pdf
https://publications.mfo.de/bitstream/handle/mfo/3774/OWR_2020_20.pdf
https://duepublico2.uni-due.de/receive/duepublico_mods_00074866

BALANCED TRIPLE PRODUCT p-ADIC L-FUNCTIONS AND STARK POINTS 67

[DR14] Henri Darmon and Victor Rotger, Diagonal cycles and Euler systems I: A p-adic Gross-Zagier formula, Ann.
Sci. Ec. Norm. Supér. (4) 47 (2014), no. 4, 779-832. MR 3250064 2, 4, 37

[dVP13] Carlos de Vera-Piquero, The Shimura covering of a Shimura curve: automorphisms and étale subcoverings, J.
Number Theory 133 (2013), no. 10, 3500-3516. MR 3071825 19

[Eic73] M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one
variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., vol. Vol.
320, Springer, Berlin-New York, 1973, pp. 75-151. MR 485698 17

[FO12] Olivier Fouquet and Tadashi Ochiai, Control theorems for Selmer groups of nearly ordinary deformations, J.
Reine Angew. Math. 666 (2012), 163-187. MR 2920885 19

[FvdP04] Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics,
vol. 218, Birkh&user Boston, Inc., Boston, MA, 2004. MR 2014891 28, 31, 33

[GJ78]  Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of GL(2) and GL(3), vol. 11,
1978, pp. 471-542. MR 533066 8

[GP91] Benedict H. Gross and Dipendra Prasad, Test vectors for linear forms, Math. Ann. 291 (1991), no. 2, 343-355.
MR 1129372 7

[Gro87] Benedict H. Gross, Heights and the special values of L-series, Number theory (Montreal, Que., 1985), CMS Conf.
Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115-187. MR 894322 47, 51

[GS20] Matthew Greenberg and Marco Adamo Seveso, Triple product p-adic L-functions for balanced weights, Math.
Ann. 376 (2020), no. 1-2, 103-176. MR 4055157 3, 20, 23

[HB15] Ernest Hunter Brooks, Shimura curves and special values of p-adic L-functions, Int. Math. Res. Not. IMRN
(2015), no. 12, 4177-4241. MR 3356751 47, 54, 55, 61

[Hid06] Haruzo Hida, Hilbert modular forms and Iwasawa theory, Oxford Mathematical Monographs, The Clarendon
Press, Oxford University Press, Oxford, 2006. MR 2243770 22

[HKO04] Michael Harris and Stephen S. Kudla, On a conjecture of Jacquet, Contributions to automorphic forms, geometry,
and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 355-371. MR 2058614 7

[HPS89a] H. Hijikata, A. Pizer, and T. Shemanske, Orders in quaternion algebras, J. Reine Angew. Math. 394 (1989),
59-106. MR 977435 14, 15, 16

[HPS89b] Hiroaki Hijikata, Arnold K. Pizer, and Thomas R. Shemanske, The basis problem for modular forms on I'o(N),
Mem. Amer. Math. Soc. 82 (1989), no. 418, vi+159. MR 960090 17, 18, 19, 20, 25

[Hsi21] Ming-Lun Hsieh, Hida families and p-adic triple product L-functions, Amer. J. Math. 143 (2021), no. 2, 411-532.
MR 4234973 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 24, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 53

[Ich08]  Atsushi Ichino, Trilinear forms and the central values of triple product L-functions, Duke Math. J. 145 (2008),
no. 2, 281-307. MR 2449948 4, 37, 38

[Jac72] Hervé Jacquet, Automorphic forms on GL(2). Part II, Lecture Notes in Mathematics, Vol. 278, Springer-Verlag,
Berlin-New York, 1972. MR 0562503 58

[Kat76] Nicholas M. Katz, p-adic interpolation of real analytic Eisenstein series, Ann. of Math. (2) 104 (1976), no. 3,
459-571. MR 506271 48

[KW09a] Chandrashekhar Khare and Jean-Pierre Wintenberger, Serre’s modularity conjecture. I, Invent. Math. 178
(2009), no. 3, 485-504. MR 2551763 3

[KWO09b] , Serre’s modularity conjecture. II, Invent. Math. 178 (2009), no. 3, 505-586. MR 2551764 3

[LMF24] The LMFDB Collaboration, The L-functions and modular forms database, https://www.1lmfdb.org, 2024, [On-
line; accessed 26 January 2024]. 59

[Lud17] Judith Ludwig, A p-adic Labesse-Langlands transfer, Manuscripta Math. 154 (2017), no. 1-2, 23-57. MR 3682203
23, 25, 27, 28

[LZZ18] Yifeng Liu, Shouwu Zhang, and Wei Zhang, A p-adic Waldspurger formula, Duke Math. J. 167 (2018), no. 4,
743-833. MR 3769677 48, 55

[Piz77]  Arnold Pizer, The action of the canonical involution on modular forms of weight 2 on I'o(M), Math. Ann. 226
(1977), no. 2, 99-116. MR 437463 17

, An algorithm for computing modular forms on T'o(N), J. Algebra 64 (1980), no. 2, 340-390. MR 579066

[Piz80a]

4

[Piz80b] —, Theta series and modular forms of level psp2M, Compositio Math. 40 (1980), no. 2, 177-241.
MR 563541 14, 17, 18, 19, 21, 38

[Pra90] Dipendra Prasad, Trilinear forms for representations of GL(2) and local e-factors, Compositio Math. 75 (1990),
no. 1, 1-46. MR 1059954 8, 9, 10, 63

[Pra06] Kartik Prasanna, Integrality of a ratio of Petersson norms and level-lowering congruences, Ann. of Math. (2)
163 (2006), no. 3, 901-967. MR 2215136 56

[Voi21] John Voight, Quaternion algebras, Graduate Texts in Mathematics, vol. 288, Springer, Cham, [2021] (©)2021.
MR 4279905 13, 14

[Woo012] Michael Woodbury, Ezplicit trilinear forms and the triple product L-functions, preprint (2012). 10

GITHUB REPOSITORIES

[1] https://github.com/Luca-DallAva/Computing-Gross-Pizer-Prasad-Eigenspaces.
2] https://github.com/Luca-DallAva/Characters-of-Dihedral-representations.
P g %

L. Dall’Ava, DIPARTIMENTO DI MATEMATICA, UNIVERSITA DEGLI STUDI DI MILANO, MILANO, ITALY.
E-mail address: luca.dallava@unimi.it

URL: https://sites.google.com/view/luca-dallava


https://www.lmfdb.org
https://github.com/Luca-DallAva/Computing-Gross-Pizer-Prasad-Eigenspaces
https://github.com/Luca-DallAva/Characters-of-Dihedral-representations
mailto:luca.dallava@unimi.it
https://sites.google.com/view/luca-dallava

68 LUCA DALL’AVA, ALEKSANDER HORAWA

A. Horawa, MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD, OXFORD, UNITED KINGDOM.
E-mail address: horawa@maths.ox.ac.uk
URL: https://people.maths.ox.ac.uk/horawa/


mailto:horawa@maths.ox.ac.uk
https://people.maths.ox.ac.uk/horawa/

