
MINI COURSE: ELLIPTIC CURVES

ALEKSANDER HORAWA

These are notes for a summer mini course on Elliptic Curves at the Mathematics Department
of the University of Michigan.

The newest version of the notes can be found on

https://sites.google.com/site/aleksanderhorawa/

If you find any typos or corrections, please let me know at ahorawa@umich.edu.

The main reference for the course is [Sil09] and we follow it closely throughout, but specific
references are also provided where relevant.

Abstract. Elliptic curves are certain algebraic curves that arise naturally when studying
Diophantine equations. Their surprising abelian group structure makes them prolific in
number theory and cryptography, with applications to famous conjectures such as Fermat’s
Last Theorem and the ABC conjecture, and encryption standards employed by the biggest
computer companies such as Google and Facebook.

This mini course will focus on studying elliptic curves over number fields. While the main
goal will be the proof of the famous Mordell-Weil theorem, generally useful methods such
as Galois cohomology, the theory of heights, and infinite descent will be introduced along
the way. The last part of the mini-course will present one of the millennium prize problems
about the rank of an elliptic curve and some of its invariants, the Birch–Swinnerton-Dyer
conjecture.

1. Introduction to elliptic curves

One of the goals of number theory that goes back to Ancient Greeks is to understand Dio-
phantine equations: polynomial equations over Q. The degree 1 case is linear equations,
resolved by linear algebra. The degree 2 case is conics, resolved by methods such as the line
trick, which gives a rational parametrization of a conic. For degree 3 equations, the line trick
does not give a parametrization, but this time it gives an addition law on the set of solutions.
This makes the study of these curves extremely fruitful and interesting.

We first present some basic definitions. For a detailed introduction, see [ST92, Chap. 1] or
[Sil09, Chap. III].

Definition 1.1. Let K be a field and char(K) 6= 2, 3. An elliptic curve over K is the set of
solutions (x, y) ∈ K̄2 of

E : y2 = x3 + ax+ b, for a, b ∈ K such that ∆ = 4a3 + 27b2 6= 0,

together with a point O called the point at infinity.
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We assume that ∆ 6= 0 to guarantee that the curve is smooth. This means that x3 + ax+ b
has no repeated roots, so we can define tangents at every point of the curve.

Remark 1.2. Equivalently, we could have defined an elliptic curve as a smooth projective
curve of genus one together with any point O ∈ E. Then one can prove [Sil09, Prop. III.3.1.]
that any such curve is of this form. The equation of an elliptic curve, however, is not unique.

Examples 1.3. The following curves are examples of elliptic curves over R. Note that the
graphs are smooth everywhere.
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However, the following curves are not elliptic curves. Clearly, for both of them 27b2+4a3 = 0.

y2 = x3
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The first curve is singular at (0, 0), but there is one tangent direction: we call it a cusp. The
second one is singular at (1, 0), but there are two distinct tangent directions: we call it a
node.
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However, these kind of examples will still be relevant in the study of elliptic curves. We will
be interested in studying elliptic curves over Q (or some number field), and it will be useful to
sometimes reduce them modulo some number. Note that the first example, y2 = x3−3x+3,
reduces to the first non-example, y2 = x3, modulo 3.

What is the point at infinity, O? This point does not belong to the plane but we think
of it as the direction upwards. That is, if we wish to draw a line through O and any given
point P on the plane, we would simply draw a vertical line through P . This is because
elliptic curves are in fact projective curves on P2(K̄) = P2 and choosing the embedding
(x, y) 7→ [x : y : 1] of K̄2 into P2, O is the point [0 : 1 : 0].

Why are elliptic curves so important and have so many applications? We can define a
non-trivial addition on them.

Let E be an elliptic curve. Let us think of how a line can intersect with the cubic. Using
Bézout’s theorem (i.e. counting the intersection multiplicity) [Kir92, Th. 3.1], we can show
that:

• any non-tangent line through two points on E intersects it at exactly one more point
(this may be O);
• the tangent at O to E does not intersect E at any other point;
• any other line tangent to an elliptic curve intersects the curve at exactly one more

point.

This allows us to naturally define the addition on E.

(1) The point at infinity O is defined to be the identity (i.e. −O = O and P + O =
O + P = P for any point P ).

(2) The negative −P of P = (x, y) is defined to be (x,−y).
(3) If P 6= Q, then the line through P and Q intersects the curve at another point, say R.

We then define P +Q = −R:

Q

P

R

P +Q

(4) If the line tangent to P intersects the curve at point R, then 2P = −R:
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P

R

2P

Why do we not define P + Q equal to R, the third point of intersection? There are several
reasons for this. To name one, we want O to be the identity of the group, i.e. P + 0 = P .
Since the line through P and O is the line through P pointing upwards, it intersects the
cubic at R = −P . Therefore, we need P +O = −R = P .

One can check that this makes E into an abelian group. The only group axiom which is not
obvious from the definition is associativity, which can be shown using projective geometry
or Abel’s Theorem (see [Kir92, Ch. 3]).

Remark 1.4. The geometric group law described here agrees with the algebraic group law
induced from the degree zero Picard group on E. See [Sil09, Prop. III.3.4].

The above definition is geometric in its nature, making in rather involved computationally.
Fortunately, the addition law can be expressed by explicit formulas. Suppose we have P =
(x1, y1) and Q = (x2, y2) on the curve, and we wish to find P+Q = (x3, y3) and 2P = (x4, y4).
By writing down the equation of the line passing through two points checking where it
intersects the curve, one verifies that (see [Kob94, Ch. VI.1] for details):

(1)

x3 =
(
y2−y1

x2−x1

)2

− x1 − x2, y3 = −y1 +
(
y2−y1

x2−x1

)
(x1 − x3),

x4 =
(

3x2
1+a

2y1

)2

− 2x1, y4 = −y1 +
(

3x2
1+a

2y1

)
(x1 − x4).

While these formulas may seem complicated, they are very easy to implement in an algorithm.
Also, one can now prove that E is an abelian group by verifying all the axioms algebraically.

1.1. Outline of the course. The goal of the course is to study elliptic curves over Q and,
more generally, over finite extensions of Q, number fields.

Definition 1.5. An elliptic curves E is defined over K, written E/K, if there is an equation

E : y2 = x3 + ax+ b, with ∆ = 4a3 + 27b2 6= 0
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such that a, b ∈ K defining E. The set of K-rational points of E is then defined as

E(K) = {(x, y) ∈ K2 : y2 = x3 + ax+ b} ∪ {O}.

The main goal of the course is to prove the following theorem.

Theorem 1.6 (Mordell–Weil). Let K be a number field. Then E(K) is a finitely-generated
abelian group, and hence is of the form

E(K) ∼= Zr ⊕ Z/n1Z⊕ · · · ⊕ Z/nkZ.

We will write
E(K)tors = Z/n1Z⊕ · · · ⊕ Z/nkZ

and call it the torsion of E(K). We call r the rank of E(K).

Outline of the proof:

(1) If an abelian group A is finitely-generated, then for any m ≥ 2, A/mA is finite.
Hence, along the way, we will have to show that

E(K)/mE(K) is finite,

which is known as the Weak Mordell–Weil Theorem 3.1. We will start by proving
this result.
(a) We are interested in the cokernel of the multiplication by m map, which fits in

the short exact sequence

0 E[m] E E 0,m

where E[m] is the kernel by definition; in other words A[m] = {a ∈ A : ma = 0}
for an abelian group A. We will hence introduce group cohomology in Section 2,
and show that this short exact sequence gives a long exact sequence is group
cohomology.

(b) In Section 3, we extract from the long exact sequence the Kummer sequence
and Kummer pairing, which reduces the finiteness statement to a result about
finiteness of a certain extension of number fields. This can be proved using
Kummer Theory and classical algebraic number theory.

(2) In Section 4, we develop a theory of heights on projective spaces, and apply it
to elliptic curves. We prove the Descent Theorem 4.1: using the generators for
E(K)/mE(K), we can get any point on the elliptic curve below a certain height.
But there are only finitely many points below this height, and hence the group is
finitely-generated.

Methods such as cohomology of groups in Section 2, heights and descent in Section 4 are
used in number theoretic problems and even other areas of math, and hence should be useful
to the general audience.

The torsion of an ellptic curve, at least over Q, is well-understood, due to the following
theorem.

Theorem 1.7 (Mazur). The torsion of E(Q) is one of the following 15 groups:

Z/NZ for 1 ≤ N ≤ 10, N = 12,

Z/2Z⊕ Z/2NZ for 1 ≤ N ≤ 4.



6 ALEKSANDER HORAWA

There are also efficient algorithms to compute E(K)tors. However, little is known about
the rank of an elliptic curve. For example, it is now know if there exist elliptic curves of
arbitrarily large rank—the highest known example was found in 2006 by Elkies and has rank
at least 28 (for a historical summary, see https://web.math.pmf.unizg.hr/~duje/tors/

rankhist.html). The last section 5 discusses the famous Birch–Swinnerton-Dyer conjecture
about the rank of an elliptic curve, together with a summary of all the factors involved.

Remark 1.8. The Mordell–Weil Theorem 1.6 for elliptic curves was proved by Mordell and
then generalized to abelian varieties by Weil. Many of the results and techniques in this
course apply in this more general setting. Especially, the cohomological arguments and the
Tate–Shafarevich group defined in Section 5.1 feature in the study of abelian varieties.

2. Group cohomology

In this section, we introduce Galois cohomology, which is necessary for the proof of the
Weak Mordell–Weil Theorem 3.1. We focus mostly on the first two cohomology groups: H0

and H1, following [Sil09, Appendix B].

2.1. Cohomology of finite groups. Let G be a finite group.

Definition 2.1. A (right) G-module with an abelian group M together with an action G,
for σ ∈ G, m 7→ mσ, such that

m1 = m, (m+m′)σ = mσ + (m′)σ, (mσ)τ = mστ .

Definition 2.2. The 0th cohomology group of M is the submodule

H0(G,M) = MG = {m ∈M | mσ = m for all σ ∈ G}
of elements of M invariant under the action of G.

The main example we will be interested in is the Galois group action on the points of an
elliptic curve.

Example 2.3. Let E/K be an elliptic curve and L/K be a finite Galois extension. The
abelian group E(L) is a GL/K-module, with the action given by (x, y)σ = (xσ, yσ), Oσ = O.
Then clearly:

H0(GL/K , E(L)) = E(K).

Definition 2.4. Let M and N be G-modules. A G-module homomorphism is a group
homomorphism

ϕ : M → N,

commuting with the action of G, i.e. for any σ ∈ G the diagram

M N

M N

ϕ

σ σ

ϕ

commutes: for any m ∈M , ϕ(mσ) = ϕ(m)σ.

https://web.math.pmf.unizg.hr/~duje/tors/rankhist.html
https://web.math.pmf.unizg.hr/~duje/tors/rankhist.html
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Note that the functor F mapping M 7→ MG is only left exact. Given an exact sequence of
G-modules

0 P M N 0,
ϕ ψ

the sequence

0 PG MG NGϕ ψ

is exact, but the induced map ψ need not be surjective. To measure how far ψ is from being
surjective, we use group cohomology. One way to define group cohomology is to consider F
as a functor of Z[G]-modules. Its right derived functor gives the group cohomology of M :

Ri(F )(M) = H i(G,M),

or, in other words,

H i(G,M) = ExtiZ[G](Z,M).

For the reader unfamiliar with homological algebra, we give a very explicit definition of the
1st homology group.

Definition 2.5. We define

1-cochains: C1(G,M) = {ξ : G→M},
1-cocycles: Z1(G,M) = {ξ ∈ C1(G,M) | ξ(στ) = ξ(σ)τ + ξ(τ)},

1-coboundaries: B1(G,M) =

{
ξ ∈ C1(G,M)

∣∣∣∣ there exists m ∈M such that
ξ(σ) = mσ −m for all σ ∈ G

}
.

Then note that for ξ ∈ B1(G,M) we have

ξ(στ) = mστ −m = (mσ)τ −mτ +mτ −m = ξ(σ)τ + ξ(τ),

so B1(G,M) ⊆ Z1(G,M), and we define the 1st cohomology group as

H1(G,M) =
Z1(G,M)

B1(G,M)
,

the 1-cocycles modulo the relation defining the 1-coboundries.

Remark 2.6. Note that if the action of G on M is trivial, then

H0(G,M) = M, H1(G,M) = Hom(G,M).

We now formalize the claim that H1 measures how far ψ is from being surjective.

Proposition 2.7 (Long exact sequence for cohomology). Let

0 P M N 0
ϕ ψ

be an exact sequence of G-modules. Then there is a long exact sequence
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0 H0(G,P ) H0(G,M) H0(G,N)

H1(G,P ) H1(G,M) H1(G,N).

ϕ ψ

δ

ϕ∗ ψ∗

The reader familiar with homological algebra will recognize this as the long exact sequence
for right derived functors (or Ext). One can prove it by a simple application of Snake Lemma,
but we present a direct proof.

Proof. We can assume P ⊆M is a submodule by replacing it with its image in under ϕ. We
first explicitly define δ. Let n ∈ H0(G,N) = NG. By surjectivity of ψ, choose m ∈ M such
that ψ(m) = n, and define ξ ∈ C1(G,M) by

ξ(σ) = mσ −m.

Since

ψ(ξ(σ)) = ψ(mσ)− ψ(m) = ψ(m)σ − ψ(m) = nσ − n = 0,

ξ(σ) ∈ kerψ, and by exactness, ξ(σ) ∈ P , so ξ ∈ C1(G,P ). Finally,

ξ(στ) = mστ −m = (mσ)τ −mτ +mτ −m = ξ(σ)τ + ξ(τ),

so ξ ∈ Z1(G,P ), and define

δ(n) = class of ξ in H1(G,P ).

The only non-trivial part of the proof is showing that

(1) im δ = kerϕ∗,

(2) imψ = ker δ.

We have that

ϕ∗(δ(n))(σ) = ϕ(ξ(σ)) = mσ −m,
so δ(n) ∈ Z1(G,M), showing that im(δ) ⊆ kerϕ∗. Conversely, if ξ ∈ H1(G,P ) satisfies
ϕ∗(ξ) = 0, then

ϕ(ξ(σ)) = mσ −m
for some m ∈ M , and hence the class of ξ is the same as the class of δ(ψ(m)). This shows
equation (1).

We proceed similarly to show equation (2). First, note that

δ(ψ(m)) = mσ −m = 0,

if m ∈ H0(G,M) = MG, showing that imψ ⊆ ker δ. Conversely, let n ∈ NG be such that
δ(n) is 0 in H1(G,P ). Then the class of ξ(σ) = mσ −m is represented by ξ(σ) = pσ − p for
some p ∈ P . This shows that for any σ ∈ G, pσ − p = mσ −m. Hence (m− p)σ = m− p, so
m− p ∈MG = H0(G,M), and

ψ(m− p) = ψ(m)− ψ(p) = ψ(m) = n.

This shows equation (2), and completes the proof. �
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Suppose H is a subgroup of G. Then any G-module is an H-module, and if ξ : G→M is a
1-cochain, ξ|H : H →M is a 1-cochain too, and we can define the restriction homomorphism

Res: H1(G,M)→ H1(H,M).

If H is moreover a normal subgroup of G, then MH is a G/H-module. Let ξ : G/H → MH

be a 1-cochain. Then the composition

G G/H MH M
ξ

defines the inflation homomorphism

Inf : H1(G/H,MH)→ H1(G,M).

Proposition 2.8 (Inflation–restriction sequence). Let M be a G-module and H be a normal
subgroup of G. Then there is an exact sequence

0 H1(G/H,MH) H1(G,M) H1(H,M).Inf Res

Proof. It is clear that Res ◦ Inf = 0. To show Inf is injective, suppose ξ : G/H →MH is a 1-
cocycle such that Inf([ξ]) is 0 in H1(G,M). Then there is an m ∈M such that ξ(σ) = mσ−m
for all σ ∈ G. But ξ(σ) only depends on the class of σ in G/H, so mσ −m = mστ −m for
any τ ∈ H, showing that mτ = m, i.e. m ∈ MH . This shows that ξ is a 1-coboundary, i.e.
[ξ] = 0 in H1(G/H,MH).

Finally, to show exactness atH1(G,M), take any 1-cocycle ξ : G→M such that Res([ξ]) = 0.
Then there exists m ∈M such that

ξ(τ) = mτ −m for all τ ∈ H.
Subtracting σ 7→ mσ − m from ξ does not change the class [ξ] ∈ H1(G,M), so we may
assume ξ(τ) = 0 for all τ ∈ H. But then

ξ(τσ) = ξ(τ)σ + ξ(σ) = ξ(σ),

so ξ only depends on the class of σ in G/H. Finally, since H is normal, there exists τ ′ ∈ H
such that στ = τ ′σ, and hence

ξ(σ)τ = ξ(σ)τ + ξ(τ) = ξ(στ) = ξ(τ ′σ) = ξ(σ),

showing that ξ induces a 1-cocycle G/H → MH , whose image under the inflation map
is [ξ]. �

2.2. Galois cohomology. In the study of elliptic curves, group cohomology will prove useful
for Galois groups. In the previous section, we assumed that the group G is finite, so the
theory only applies to finite extensions. Recall that to study infinite Galois extensions, we
note that for an extension K̄/K:

GK̄/K = lim←−GL/K ,

where the limit is taken over all finite Galois extensions L of K contained in K̄. Giving GL/K

the discrete topology, this gives GK̄/K the profinite topology. Explicitly, a basis of open sets
around the identity consists of the sets of normal subgroups having finite index in GK̄/K , i.e.
kernels of maps GK̄/K → GL/K for finite Galois extensions L/K.
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This topology plays a crucial role in the study of infinite extensions; for example, the fun-
damental theorem of infinite Galois theory gives a correspondence between intermediate
extensions and closed subgroups of the Galois group. We hence adapt the definition of the
first homology group to account for the topology.

Definition 2.9. Let K̄/K be a Galois extension and G = GK̄/K . A map ξ : G → M is
continuous if it is continuous with respect to the profinite topology on GK̄/K and discrete
topology on M . We then define for

1-cochains: C1
cont(G,M) = {continuous maps ξ : G→M},

1-cocycles: Z1
cont(G,M) = {ξ ∈ C1

cont(G,M) | ξ(στ) = ξ(σ)τ + ξ(τ)}

Any map of the form σ 7→ mσ −m is automatically continuous, and hence we can define the
1st cohomology group of the G-module M to be

H1(G,M) =
Z1

cont(G,M)

B1(G,M)
.

Remark 2.10. As before, if the action of G on M is trivial, then H0(G,M) = M , and
H1(G,M) = Homcont(G,M).

Both the long exact sequence for cohomology 2.7 and the inflation–restriction sequence 2.8
also exist for Galois cohomology.

3. Weak Mordell–Weil Theorem

We will now apply the results from Section 2 to prove the Weak Mordell–Weil Theorem.

Theorem 3.1 (Weak Mordell–Weil). Let K be a number field and E/K be an elliptic curve,.
Then for any m ≥ 2, the quotient group

E(K)/mE(K)

is finite.

3.1. Kummer sequence and pairing. In other words, we want to prove that the cokernel
of the multiplication by m map is finite. Therefore, we look at the following exact sequence
of GK̄/K-modules:

0 E[m] E(K̄) E(K̄) 0.m

The long exact sequence for Galois cohomology 2.7 then yields

0 E(K)[m] E(K) E(K)

H1(GK̄/K , E[m]) H1(GK̄/K , E(K̄)) H1(GK̄/K , E(K̄)).

m

δ

m

From the middle of this sequence, we extract the following short exact sequence, called the
Kummer sequence for E/K:
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(∗) 0 E(K)
mE(K)

H1(GK̄/K , E[m]) H1(GK̄/K , E(K̄))[m] 0δ

Using the general construction of δ from the proof of Proposition 2.7, we can describe it
explicitly: for P ∈ E(K), we choose some Q ∈ E(K̄) such that mQ = P , and represent δ(P )
by the 1-cocycle

c : GK̄/K → E[m], c(σ) = Qσ −Q.
This gives a pairing

κ : E(K)×GK̄/K → E[m], κ(P, σ) = c(σ) = Qσ −Q,
called the Kummer pairing. By our construction, it is clearly independent of the choice of Q.

We now use the inflation-restriction sequence 2.8 to show that we may assume E[m] ⊆ E(K),
by replacing K with a finite extension.

Lemma 3.2. Let L/K be a finite Galois extension. If E(L)/mE(L) is finite, then E(K)/mE(K)
is also finite.

Proof. We have a natural map

ϕ :
E(K)

mE(K)
−→ E(L)

mE(L)

and we show that its kernel is finite. By the inflation-restriction sequence 2.8 together with
the Kummer sequence (∗), we get the following diagram with exact rows

0 ker(ϕ) E(K)
mE(K)

E(L)
mE(L)

0 H1(GL/K , E(L)[m]) H1(GK̄/K , E[m]) H1(GL̄/L, E[m])

δK

ϕ

δL

Inf Res

where the square commutes. The rest of the proof follows from the five lemma, but we prove
it directly: there exists an injective map λ : ker(ϕ) → H1(GL/K , E[m]). Since both GL/K

and E[m] are finite, this indeed shows E(K)
mE(K)

is finite.

Take P ∈ ker(ϕ), and note that Res(δK(P )) = δL(ϕ(P )) = 0, so δK(P ) ∈ ker Res = im Inf,
and hence there exists [ξ] ∈ H1(GL/K , E[m]) such that Inf([ξ]) = δK(P ). Set

λ(P ) = [ξ].

To show that λ is injective, suppose λ(P ) = 0. Then

δK(P ) = Inf(0) = 0,

so P = O, since δK is injective. �

From now on, suppose (possibly replacing K by a finite extension L) that E[m] ⊆ E(K).
Then the action of GK̄/K on E[m] is trivial and hence

H1(GK̄/K , E[m]) = Hom(GK̄/K , E[m]),
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and the Kummer sequence (∗) gives an injective homomorphism

δ :
E(K)

mE(K)
↪→ Hom(GK̄/K , E[m]), P 7→ κ(P,−).

Proposition 3.3. For a fixed P , the kernel of the map σ 7→ κ(P, σ) is GK̄/L, where

L = K(m−1E(K))

is the compositum of all fields K(Q) over all Q ∈ E(K̄) such that mQ ∈ E(K).

In other words, L is obtained by adjoining the mth roots of elements of E(K). This is a
similar process to what is done in classical Kummer theory.

Proof. If σ ∈ GK̄/L, then κ(P, σ) = Qσ − Q = O, since Q ∈ E(L) by definition of L.
Conversely, suppose that σ ∈ GK̄/K satisfies κ(P, σ) = O for all P ∈ E(K). Then for every

Q ∈ E(K̄) such that mQ ∈ E(K) we have

O = κ(mQ, σ) = Qσ −Q,
and hence σ fixes any such Q. This shows that σ fixes the compositum, L, and hence
σ ∈ GK̄/L. �

Having described the kernel, recalling that GK̄/K/GK̄/L
∼= GL/K , we obtain the following

corollary.

Corollary 3.4. The Kummer pairing induces a perfect bilinear pairing

E(K)/mE(K)×GL/K → E[m],

where L is the field defined in Proposition 3.3, and hence there are injective homomorphisms

E(K)/mE(K) ↪→ Hom(GL/K , E[m]),

P 7→ κ(P,−).

Note that E[m] is always finite. This is clear from the addition equations, and Proposition 3.7
gives a formal proof. Therefore, to complete the proof of weak Mordell–Weil Theorem 3.1,
it suffices to show that L/K is finite. We do this in two steps: first show L/K has certain
number-theoretic properties, and then use classical number theoretic results to show that
any such field extension is finite.

3.2. Local fields and reduction of elliptic curves. For conics, the set of rational solu-
tions is fully determined by the set of local solutions.

Theorem 3.5 (Hasse–Minkowski, Local–Global principle, [Cas91, Chap. 3]). Suppose f is
a quadratic form over Q. Then

f(x, y) = 0 for some (x, y) ∈ Q if and only if

 f(xp, yp) = 0 for some (xp, yp) ∈ Qp

for any prime p,
f(x∞, y∞) = 0 for some (x∞, y∞) ∈ R.

More generally, if K is a number field and f is a quadratic form over K, then
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f(x, y) = 0 for some (x, y) ∈ K if and only if f(xv, yv) = 0 for some (xv, yv) ∈ Kv

for all valuations v on K.

We will explain the precise meaning of a valuation v and Kv soon. One reason this is
extremely powerful is that we have good analytic methods, such as Hensel’s lemma, for
solving equations in a local setting.

For higher degree equations (or higher genus curves), this principle fails. However, looking
at the local picture still allows us to extract a lot of information about elliptic curves.

In order to study the torsion of elliptic curves, we consider the reduction of elliptic curves
modulo a prime. Over Q, this would mean, we take a prime p ∈ Z and look at the solutions
of

Ẽp : y2 ≡ x3 + ãx+ b̃ mod p.

As long as this remains an ellpitic curve, so ∆ 6≡ 0 mod p, the torsion of E(Q) embeds into

Ẽp(Fp) = {(x, y) ∈ Fp : y2 = x3 + ãx+ b̃} ∪ {Õ}.

Example 3.6. Consider

E : y2 = x3 + x with ∆ = 4

over Q. We can easily check that

Ẽ(F3) = {Õ, (0, 0), (2, 1), (2, 2)} ∼= Z/4Z,

Ẽ(F5) = {Õ, (0, 0), (2, 0), (3, 0)} ∼= Z/2Z⊕ Z/2Z,
since a point (x, y) has order 2 if and only if y = 0. We know that E(Q)tors embeds into both
of these groups, since 3, 5 do not divide ∆ = 4. Hence is has order 1 or 2. But it contains
the points (0, 0) of order 2, and thus

E(Q)tors = {O, (0, 0)} ∼= Z/2Z.

See [ST92, Chap. IV.3] for more details on the K = Q case.

Over a general number field, we need to find the appropriate replacement for reduction
modulo a prime p. Once again, we have to understand what happens locally, by focusing at
one prime ideal at a time. Let

MK = {inequivalent absolute values on K}

which are classified by Ostrowski’s Theorem into two categories.

• The infinite places v ∈ M∞
K : |− |v such that |x|v = |x| for x ∈ Q, the standard

absolute value on Q. The completion Kv of K with respect to these absolute values
is either R or C.
• The finite places v ∈M0

K corresponding to prime ideals p of OK , the ring of integers
of K:

|x|v = Np− ordp(x) for x ∈ K,
where ordp(x) is the highest power of the prime ideal p dividing the ideal (x). These
restrict to the p-adic absolute values on Q, where p ∩ Q = (p), and the completion
of K with respect to them is a local field Kp, a finite extension of Qp. This means
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that the ring of integers Op of Kp has a unique maximal ideal mp. The residue field
kp = kv of Op is

kp = Op/mp
∼= Fq ⊇ Fp = Zp/pZp,

a finite extension of Fp.

For a number field K, the analogue of reduction mod p for Q will be to consider the curve
over the residue field kp. Fix a finite place v ∈M0

K corresponding to a prime ideal p. After a
change of coordinates, we may assume that the equation for E has a, b ∈ OK , and minimal
possible ordp(∆) (see [Sil09, Chap. VII.1]).

There is a natural reduction map Op → kp, x 7→ x̃, and we write

Ẽ : y2 = x3 + ãx+ b̃.

Then we define the reduction map as

E(K)→ Ẽ(kp), [x : y : z] 7→ [x̃ : ỹ : z̃]

by choosing coordinates such that x, y, z ∈ Op. If v(∆) = 0, then Ẽ defines an elliptic curves
over kv, and we say E has good reduction at v. In this case, the above map is a group
homomorphism, and we have the following result.

Proposition 3.7 ([Sil09, Prop. VII.3.1]). Let v ∈ M0
K be a discrete valuation such that

v(m) = 0 and E has good reduction at v. Then the reduction map

E(K)[m]→ Ẽv(kv)

is injective.

Remark 3.8. If E does not have good reduction at v, we say it has bad reduction. In that
case, we have a group structure on E0, the points that reduce to non-singular points on Ẽ.
Its reduction Ẽnon-sing(kv) is a group isomorphic to k̄v

∗
or k̄v

+
, depending on whether the

singularity is a cusp or a node.

For full details of elliptic curves over finite fields, the reader is encouraged to consult [Sil09,
Chap. VII].

3.3. The extension L/K is finite. To show the finiteness of L/K, we will first show that
L/K is unramified outside S. To understand what this means, in this context, it is most
natural to explain this notion as follows. For a prime p of K, choose a prime P in L such
that P ∩K = p. The decomposition group of P over p is

GP/p = {σ ∈ GL/K | σ(P) = P}.
Note that GP/p acts naturally on the completion LP/Kp. There is a natural map

GP/p → GlP/kp ,

and the inertia group IP/p of P over p is the kernel of this map. The prime P/p is unramified
if and only if IP/p is trivial.

A more detailed discussion of ramification can be found in [Lan94, Chap. I].

Proposition 3.9. Let L = K(m−1E(K)) be as in Proposition 3.3. We show that:
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(1) The extension L/K is abelian of exponent m, i.e. the Galois group G is abelian and
every element of G has order dividing m.

(2) Let

S = {v ∈M0
K : E has bad reduction at v} ∪ {v ∈M0

K : v(m) 6= 0} ∪M∞
K .

Then L/K is unramified outside S.

Proof. By Proposition 3.3, we see that there is an injection

GL/K ↪→ Hom(E(K), E[m]), σ 7→ κ(−, σ),

and (1) follows. For (2), take any v ∈MK , v 6∈ S. Since L is the compositum of K ′ = K(Q)
for Q ∈ E(K̄) such that [m]Q ∈ E(K), it is enough to show that K ′/K is unramified at v.
Choose v′ ∈ MK′ above v and let k′v/kv be the corresponding extension of residue fields.
Since E has good reduction at v, it has good reduction at v′, and we have the reduction map

E(K ′)→ Ẽ(k′v′).

Let Iv′/v ⊆ GK′/K be the inertia group for v′/v and take any σ ∈ Iv′/v. By definition of the

inertia group, σ acts trivially on Ẽ(k′v′), so

Q̃σ −Q = Q̃σ − Q̃ = Õ.

On the other hand, mQ ∈ E(K) implies that

m(Qσ −Q) = (mQ)σ −mQ = O,

so Qσ − Q is a point of order dividing m that is in the kernel of the reduction modulo v′

map. Thus, by Proposition 3.7, we have that Qσ −Q = O, and hence Qσ = Q. This shows
that Iv′/v is trivial, and hence K ′ is unramified over K at v′. This completes the proof that
L/K is unramified outside of S. �

Finally, we show that any extension L/K satisfying these properties is finite.

Theorem 3.10. Let K be a number field, S ⊆MK be a finite set of places that contains M∞
K ,

and let m ≥ 2 be an integer. Let L/K be the maximal abelian extension of K having exponent
m that is unramified outside S. Then L/K is a finite extension.

Proof. By replacing K with a finite extension, we may assume without loss of generality that
µm ⊆ K.

Note that increasing the set S makes the field L larger. If the class group of K is

CK = {a1, . . . , an},
then for any p such that ordp(ai) 6= 0 for some i, add the valuation corresponding to p to the
set S. Then the ring

RS = {a ∈ K | v(a) ≥ 0 for any v ∈MK \ S}
is a principal ideal domain. By adding the valuations for which v(m) 6= 0, we can also
guarantee that v(m) = 0 for v ∈MK \ S.

By Kummer theory, L is the largest subfield of

K( m
√
a : a ∈ K)
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which is unramified outside S. Take v ∈MK\S. One can show (Lemma A.2) that K( m
√
a)/K

is unramified at v if and only if

ordv(a) ≡ 0 mod m.

Since K( m
√
a) only depends on the class of a in K∗/(K∗)m, if we write

TS = {a ∈ K∗/(K∗)m : ordv(a) ≡ 0 mod m for all v 6∈ S},
then

L = K( m
√
a : a ∈ TS).

We will show that TS is finite, thus completing the proof. This is a simple application of the
Dirichlet S-units Theorem A.3, which says that R∗S is finitely-generated. We consider the
obvious map

ϕ : R∗S → TS

and note that (R∗S)m is contained in the kernel, so ϕ factors through a map

R∗S/(R
∗
S)m → TS.

Since R∗S is finitely-generated, we see that the codomain is finite, and hence it is enough to
prove that ϕ is surjective. Take any a ∈ K∗, representing an element of TS. Then (a) as an
ideal of RS factors into primes

(a) = pα1
1 . . . pαn

n .

Since v(a) ≥ 0 for v 6∈ S, the primes pi correspond to valuations vi 6∈ S, for which

αi = ordvi(a) ≡ 0(m).

This shows that (a) is an mth power of an ideal of RS. Since RS is a principal ideal domain,
there exists b ∈ K∗ such that

(a) = (bm).

Thus a = ubm for some u ∈ R∗S. But then a and u define the same element of TS, which
shows that ϕ(u) = a. Thus ϕ is surjective, and hence TS is finite, which shows that L =
K( m
√
a : a ∈ TS) is a finite extension of K. �

Remark 3.11. An alternative way to prove Theorem 3.10 is to use Hermite’s Theorem
[Lan94, pp. 122] that says that there are only a finite number of fields L of bounded degree
over K unramified outside S. One shows that the extensions K(Q) for Q ∈ m−1E(K) have
bounded degree over K, and hence there are only finitely many of them.

4. Heights on projective spaces and proof of Mordell–Weil Theorem

4.1. Descent. We have now shown (Theorem 3.1) that E(K)/mE(K) is finite. We now
present an infinite descent argument, which shows that, with an approporiate theory of
heights, this will be enough to conclude that E(K) is finitely-generated.

Theorem 4.1 (Descent Theorem, [Sil09, Th. VIII.3.1]). Let A be an abelian group and
h : A→ R be a function such that

(1) for Q ∈ A, there exists C1 = C1(A,Q) such that

h(P +Q) ≤ 2h(P ) + C1 for any P ∈ A,
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(2) there exists m ≥ 2 and C2 = C2(A) such that

h(mP ) ≥ m2h(P )− C2,

(3) for any C3, the set
{P ∈ A : h(P ) ≤ C3}

is finite. If for the number m from (2), A/mA is finite, then A is finitely-generated.

Proof. Let Q1, . . . , Qr ∈ A represent the cosets in A/mA. The idea of the proof is to show
that for any P ∈ A, there exist ai ∈ Z such that

h

(
P −

r∑
i=1

aiQi

)
≤ C3

for some constant C3 independent of P . Then A will be generated by

{Q1, . . . , Qr} ∪ {Q ∈ A : h(Q) ≤ C3}
which is a finite set by (3).

Since Q1, . . . , Qr represent the cosets in A/mA, there exists 1 ≤ i1 ≤ r and P1 ∈ A such that

P = mP1 +Qi1 .

Similarly, there exists 1 ≤ i2 ≤ r and P2 ∈ A such that

P1 = mP2 +Qi2 ,

and continuing this way, we obtain elements P1, . . . , Pn ∈ A and numbers 1 ≤ i1, . . . , in ≤ r
such that

P = mP1 +Qi1 ,

P1 = mP2 +Qi2 ,

P2 = mP3 +Qi3 ,

...

Pn−1 = mPn +Qin .

Now, for any 1 ≤ j ≤ n:

h(Pj) ≤ 1
m2 (h(mPj) + C2) by (2)

= 1
m2 (h(Pj−1 −Qij) + C2) by definition of Pj

≤ 1
m2 (2h(Pj−1) + C ′1 + C2) by (1),

where C ′1 = max{C1(A,−Qi) | 1 ≤ i ≤ r}. Then we have that

h(Pn) ≤
(

2
m2

)n
h(P ) +

(
1
m2 + 2

m2 + · · ·+ 2n−1

m2n

)
(C ′1 + C2)

<
(

2
m2

)n
h(P ) +

C′1+C2

m2−2

≤ 1
2n
h(P ) + 1

2
(C ′1 + C2) since m ≥ 2.

Therefore, for a given P , we may choose n large enough so that

h(Pn) ≤ 1 +
1

2
(C ′1 + C2) = C3,
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and the constant C3 is independent of P . Thus we have indeed expressed

P = mnPn +
n∑
j=1

mj−1Qij ,

a linear combination of elements from the finite set

{Q1, . . . , Qr} ∪ {Q ∈ A : h(Q) ≤ C3}.
This completes the proof. �

To complete the proof of the Mordell–Weil Theorem 1.6, we just have to find a function
h : E(K) → R that satisfies the above three properties. We provide a summary, omitting
some of the proofs—the full details can, as always, be found in [Sil09, Chap. VIII.5,6].

4.2. Heights on projective spaces. This section follows [Sil09, Chap. VIII.5].

Over Q, it is easy to write down such a function: for P ∈ PN(Q), write P = [x0 : . . . : xN ]
such that xi ∈ Z and gcd(x0, . . . , xN) = 1, and define

H(P ) = max{|x0|, . . . , |xN |},
h(P ) = logH(P ) for P ∈ E(Q).

This method works because Z is a principal ideal domain, and hence we can write a point
in that form. For a general number field K, the ring of integers OK may not be a principal
ideal domain, and instead of trying to write a point in a specific form, we simply take all
the absolute values on K into account.

Definition 4.2. Let MK be the set of absolute values on K. We then define the local degree
of K at v ∈MK to be

nv = [Kv : Qv].

For P = [x0 : . . . : xN ] ∈ PN(K), we let

HK(P ) =
∏
v∈MK

max{|x0|v, . . . , |xn|v}nv .

Using a result about the behavior of local degrees in towers A.4, and the Product For-
mula A.5, we obtain the following proposition.

Proposition 4.3. Let P ∈ PN(K). Then

(1) HK(P ) is well-defined, i.e. independent of the choice of coordinates,
(2) HK(P ) ≥ 1,
(3) if L/K is a finite extension, then HL(P ) = HK(P )[L:K].

Part (3) prompts the following definition.

Definition 4.4. Let P ∈ PN(Q̄). The height of P is defined as follows: choose a number
field K such that P ∈ PN(K), and let

H(P ) = HK(P )1/[K:Q].

By Proposition 4.3, the height is well-defined and at least 1.
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4.3. Heights on elliptic curves. We now specialize the previous subsection to elliptic
curves, following [Sil09, Chap. VIII.6]. Fix an elliptic curve E/K and a function on it
f ∈ K̄(E). We can then identify f with a function

f : E → P1, P 7→
{

[1 : 0] if P is a pole,
[f(P ) : 1] otherwise.

For example, we can take f(P ) = x(P ), where x(P ) = x for P = (x, y).

Definition 4.5. The logarithmic height on PN is h : PN(Q̄)→ R given by h(P ) = log(H(P )).
The height on E relative to f is

hf : E(K̄)→ R, hf (P ) = h(f(P )).

Theorem 4.6. For any non-trivial even function f ∈ K̄(E), the height function hf satisfies
the assumptions (1)–(3) of the Descent Theorem 4.1. Hence the Mordell–Weil Theorem 1.6
follows.

Proof. The proof of this is long and technical, so we omit it here. It can be found, as a
series of lemmas and propositions, in [Sil09, Chap. VIII.5,6]. An example of such an even
function is f(P ) = x(P ), mapping P to the x-coordinate of P , and hence the Mordell–Weil
Theorem 1.6 follows. �

4.4. The canonical height. One of the key theorems involved in the proof of Theorem 4.6
shows ([Sil09, Theorem 6.2]) that for an even f and P,Q on E:

hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) + C

for some constant C dependent on E and f , but independent of P and Q. This shows
that hf is almost a quadratic form. Moreover, hf is not canonical—dependent on the choice
of f . André Néron and John Tate independently showed that there is a canonical height,
independent of choices, and it actually is a quadratic form.

Definition 4.7. The canonical (or Néron–Tate) height on E/K is ĥ : E(K̄)→ R given by

ĥ(P ) =
1

deg f
lim
N→∞

4−Nhj([2
N ]P )

for a non-constant even function f ∈ K(E).

Proposition 4.8 (Néron, Tate, [Sil09, Prop. 9.1, Th. 9.3]). Let E/K be an elliptic curve,

f ∈ K(E) be a non-constant even function. Then the canonical height ĥ exists and is
independent of the choice of f . Moreover, it obeys

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q),

and hence the pairing

〈−,−〉 : E(K̄)× E(K̄)→ R

〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q),

is bilinear.

We now define an invariant of an elliptic curve related to the free part of E(K).
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Definition 4.9. The elliptic regulator of E/K is

EE/K = det(〈Pi, Pj〉)1≤i,j≤r

for generators P1, . . . , Pr of the free part E(K)/Etors(K) of E(K).

The regulator E/K is the volume of the fundamental domain for E(K)/Etors(K) with respect

to the quadratic form ĥ.

5. The rank and the Birch–Swinnerton-Dyer Conjecture

We have shown that the group E(K) is finitely-generated, and hence of the form

E(K) ∼= Zr ⊕ Z/n1Z⊕ · · · ⊕ Z/nkZ.
As mentioned, there are effective methods of computing the torsion for E(K) (see Exam-
ple 3.6). In this section, we discuss the rank of E(K), about which little is known so far.
We present the famous Birch–Swinnerton-Dyer conjecture, following [Sil09, Appendix C.16]
and [Wil06].

5.1. The Tate–Shafarevich group. The problem of computing the rank is equivalent
to computing the size of the group E(K)/mE(K). Indeed, suppose we know the torsion
of E(K), i.e.

E(K) ∼= F ⊕ Z/n1Z⊕ · · · ⊕ Z/nkZ
for a free abelian group F . Supposing, for simplicity, that m is coprime to all the ni, we
obtain

E(K)/mE(K) ∼= (Z/mZ)r,

where r = rank(F ) = rank(E). Moreover, if it was possible to compute the generators
of E(K)/mE(K) effectively, then it would be possible to compute the generators of E(K)
effectively.

Let us hence investigate the proof of the Weak Mordell–Weil Theorem 3.1 and see whether
we could make it explicit. We considered the short exact sequence

0 E[m] E(K̄) E(K̄) 0,m

which gave the long exact sequence for Galois cohomology 2.7

0 E(K)[m] E(K) E(K)

H1(GK̄/K , E[m]) H1(GK̄/K , E(K̄)) H1(GK̄/K , E(K̄)),

m

δ

m

from which we extracted the Kummer sequence for E/K:

(∗) 0 E(K)
mE(K)

H1(GK̄/K , E[m]) H1(GK̄/K , E(K̄))[m] 0.

Computing the group E(K)/mE(K) is hence the same as computing the kernel of the latter
map.
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Remark 5.1. The cohomology group H1(GK̄/K , E(K̄)) that appears above has a geometric
interpretation as (classes of) principal homogeneous spaces, known as the Weil–Châtelet
group, WC(E/K). This interpretation can be found in [Cas91, Chap. 22, 23].

Since these groups are not easily accessible, we can, just like in Section 3, resort to the local
picture instead. For v ∈ MK , let Gv = GK̄v̄/Kv

↪→ GK̄/K be the decomposition group of v̄|v
in K̄/K. Then, similarly to (∗), we obtain a local Kummer sequence:

(∗∗) 0 E(Kv)
mE(Kv)

H1(Gv, E[m]) H1(Gv, E)[m] 0.

The difference now is that computing these groups is easier in the local setting by analytic
methods such as Hensel’s lemma, because the fields are complete. This is especially visible
in the interpretation mentioned in Remark 5.1.

We can combine the sequence (∗) and the sequences (∗∗) for all v to get the commutative
diagram:

0 E(K)
mE(K)

H1(GK̄/K , E[m]) H1(GK̄/K , E(K̄))[m] 0

0
∏

v∈MK

E(Kv)
mE(Kv)

∏
v∈MK

H1(Gv, E[m])
∏

v∈MK

H1(Gv, E)[m] 0

ϕ1 ϕ2

with exact rows. In order to understand how the functions ϕ1 and ϕ2 work, we define the
following groups.

Definition 5.2. The m-Selmer group of E/K is

S(m)(E/K) = ker

(
H1(GK̄/K , E[m])→

∏
v∈MK

H1(Gv, E)

)
,

and the Tate-Shafarevich group is

X(E/K) = ker

(
H1(GK̄/K , E)→

∏
v∈MK

H1(Gv, E)

)
.

Then the commutative diagram above shows that there is an exact sequence

0 E(K)
mE(K)

S(m)(E/K) X(E/K)[m] 0.

The group S(m)(E/K) is finite (the proof is essentially what we did to prove Weak Mordell–
Weil, see [Sil09, Th. 4.2]) and possible to compute effectively ([Sil09, Rem. X.4.5]). However,
the group X(E/K)[m] is not easily accessible. It is not even known whether it is finite or
not.

Conjecture 5.3. Let E/K be an elliptic curve. Then X(E/K) is finite.

Remark 5.4. One way to interpret the group X(E/K) is a way of measuring the obstruction
to the local-global principle 3.5.
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Remark 5.5. While this group is not known to be finite, Cassels showed that that exists
an alternating bilinear pairing X×X→ Q/Z. He concluded that, if the order is finite and
there are no infinitely-divisible elements in X, it must be a perfect square. Surprisingly,
this (see [Cas91, pp. 110]) played a role in the statement of the Birch–Swinnerton-Dyer
Conjecture 5.9.

5.2. L-series and the conjecture. One way to study arithmetic properties of elliptic curves
is through their L-series. It is defined by an Euler product of local factors

(1) LE/K(s) =
∏
v∈M0

K

Lv(s).

If v ∈M0
K , the local factor Lv has a simple definition. We set qv = #kv and count how many

points we expect to be on the elliptic curve Ẽv(kv). The points are O and the solutions to
the equation

y2 = x3 + ax+ b.

For each x ∈ kv, we expect around half of the numbers x3 + ax + b to be squares, and for
each of the squares, we get two possible values of y. Thus, the heuristic estimate for the

number of points in Ẽv(kv) is qv + 1. In fact, one can show that the absolute value of

av = qv + 1−#Ẽv(kv)

is bounded by 2
√
qv, which is called the Hasse bound [Sil09, Th. V.1.]. We then define

Lv(s) = (1− avq−sv + q−2s+1
v )−1.

Remark 5.6. One may recognize this factor from the Euler product for the zeta function
of an elliptic curve [Sil09, Chap. V.2].

If the curve has bad reduction at v, the definition depends on the kind of reduction (see
Remark 3.8). We only say that

Lv(s) ∈
{

(1 + q−sv )−1, (1− q−sv )−1, 1
}

in this case.

It is easy to show using the Hasse bound above that the product (1) defines an analytic
function for Re(s) > 3

2
.

Conjecture 5.7. There exists an analytic continuation of LE/K to the whole complex plane
with a functional equation relating its values at s and 2− s.

This conjecture is a theorem for elliptic curves with complex mulitplication, and for all elliptic
curves over Q.

Birch and Swinnerton-Dyer made the following conjecture relating the rank of the elliptic
curve (known as the algebraic rank) and the order of vanishing of the L-function at s = 1
(known as the analytic rank).

Conjecture 5.8 (Birch–Swinnerton-Dyer, part I). Let E/Q be an elliptic curve. Then the
order of vanishing of LE/Q at s = 1 is the rank of E(Q).
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The refined version of the conjecture relates the coefficient of the expansion of LE/Q at s = 1
to certain algebraic properties of the elliptic curve. We first define for v ∈MQ,

wv =


∫

E(R)

∣∣∣dxy ∣∣∣ for v =∞,

1 if E has good reduction at v ∈M0
Q,

#E(Qp)

#E0(Qp)
if E has bad reduction at v ∈M0

Q.

Conjecture 5.9 (Birch–Swinnerton-Dyer, part II). Let E/Q be an elliptic curve and r be
the rank of E(Q). Then

lim
s→1

LE(s)

(s− 1)r
=

2rR(E/Q)

#Etors(Q)2
·#X(E/Q) ·

∏
v∈MQ

wv.

The factor of 2r comes from the way we defined the absolute height; if we used 2ĥ instead,
this number would disappear. The value

2rR(E/Q)

#Etors(Q)2

is hence a certain normalized way of writing the regulator.

The product ∏
v∈MQ

wv

was called fudge factors by Birch and Swinnerton-Dyer and their presence was explained by
Tate ([Sil09, pp. 451]).

The fact that X appears in this product is mysterious. According to Cassels [Cas91, pp. 110],
Birch and Swinnerton-Dyer did not expect it to appear originally, but according to their data,
their estimate was wrong by a factor of a perfect square. As mentioned in Remark 5.5, while
the group X was not (and still is not) known to be finite, the existence of an alternating
bilinear pairing on X leads to believe that the order of the group is a perfect square. (It is
now known that this is not always the case.) Hence, it was conjectured that #X was the
missing factor, and it has now been confirmed by new numerical data.

Appendix A. Algebraic number theory

We recall some fundamental results from algebraic number theory. For a detailed introduc-
tion, see [Neu99] or [Lan94].

In the proof of Theorem 3.10, we needed the following results.

Theorem A.1 ([Neu99, Th. I.6.3]). Let IK be the set of fractional ideals of K, and PK be
the subset of principal ideals. Then the class group IK/PK is finite.

Lemma A.2. Let K be a number field containing the mth roots of unity, a ∈ K. Let b = m
√
a

be a root of xm − a, and L = K(b). Then for a prime p such that ordp(m) = 0

L/K is unramified at p if and only if ordp(a) ≡ 0 mod m.
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Proof. Replacing the fields K by Kp and L by Kp(b), we may assume that K is a local field.
To show the if implication, suppose that p ramifies. Without changing the extension, we may
replace a to assume that ordp(a) ∈ {0, 1, . . . ,m − 1}. The discriminant of the polynomial
xm − a is ±mmam−1, and hence

∆L/K |mmam−1,

because Z[b] ⊆ OL. This shows that p|mmam−1, and hence p|a. Therefore, ordp(a) 6= 0. For
the only if implication, suppose L/K is unramified. Choose uniformizers πL of L and πK
of K, and if v is the valuation on K corresponding to p, choose a valuation v′ on L above v,
normalized so that v(πL) = 1. Then v(πK) = 1, since L/K is unramififed. We may write

a = πn1
K u1, for some u1 ∈ O∗K ,

b = πn2
L u2, for some u2 ∈ O∗L.

Then
πn1
K u1 = bm = πmn2

L um2 ,

and taking v′ of both sides, we get
n1 = mn2.

This shows n1 = ordp(a) ≡ 0 mod m. �

Theorem A.3 (Dirichlet S-units Theorem, [Lan94, Chap. V.1]). Let K be a number field
containing the roots of unity, and S be a finite set of places containing M∞

K . The group R∗S
of units of the ring

RS = {a ∈ K | v(a) ≥ 0 for any v ∈MK \ S}
is finitely-generated.

In Section 4 on heights, we needed the following results.

Proposition A.4 (Local Degree in Towers, [Lan94, Chap. II.1]). Suppose L/K/Q is a tower
of number fields and v ∈MK. Then∑

w|v

nw = [L : K]nv,

where the sum is over all w ∈ML such that w restricted to K is v.

Theorem A.5 (Product Formula, [Lan94, Chap. V.1]). If x ∈ K∗, then
∏

v∈MK

|x|nv
v = 1.
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