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Introduction

These are notes from an Undergraduate Research Opportunities project at Imperial College
London under the supervision of Professor Martin Liebeck. They are an introduction to the
theory of relational complexity and arity, focusing mainly on finite structures.

The standard and natural way of describing a mathematical object is specifying how its
elements interact (relations between elements) and what operations on them are allowed. For
example, a group is a set with addition (binary operation), a distinguished neutral element
(1-ary relation), and inverses (1-ary operation). Model theory is a branch of mathematics
that deals with mathematical objects understood this way. Ever since its conception, it has
found broad applications, proving very useful in theoretical computer science, the study of
data bases, and algebraic geometry.

To describe an object, we have to choose a (mathematical) language to do it in. This
means that (depending on that choice), we can have very different presentations of the same
structure. A natural question that arises is: which presentation of a structure is best to work
with? The theory of homogeneous structures provides one way of answering the question for
(purely) relational structures, i.e. structures that do not have any operations.

A homogeneous relational structure has the property that every part of the structure looks
exactly the same: whichever subset we zoom in at, there is no way of telling where we
are. For example, the rational numbers with the linear order and the full bipartite graph
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(Kn,n) are both homogeneous structures. Homogeneity is the highest degree of symmetry
we can require from a structure, making homogeneous structures very well-behaved. Hence
if an object is not homogeneous, it is useful to know if we can represent it (perhaps in
another language) as a homogeneous structure. The smallest arity of relations required to
do this is called the relational complexity of a structure and it tells us how homogeneous it
is. Therefore, when we have a relational structure, we can say which way of representing it
is the most convenient and how nice the representation is.

The beauty of homogeneous structures becomes most vivid in their connection to permuta-
tion group theory. In [Mac11], Macpherson writes: The context of homogeneous structures
provides a meeting-point of ideas from combinatorics, model theory, permutation group the-
ory, and descriptive set theory, and connections to theoretical computer science and to uni-
versal algebra are beginning to emerge. There is a very natural way of describing relational
structures using permutation groups with a lot of properties transferring along in the con-
nection. Relational complexity, for example, corresponds to the arity of permutation groups
(a property of orbits of the action on k-sets), which has often been associated with difficulty
of computations in a group.

Even though there are a number of classification results for homogeneous structures with
some additional properties (including a very general theory due to Lachlan [KL87]), there
are still a lot of unanswered questions about relational complexity (especially in the infinite
case). Similarly, we still do not know much about the arity of group actions, even in some
basic cases. For example, there are no good estimates for the arity of the symmetric group
on partitions of a fixed type. Therefore, homogeneity of structures and arity are still a very
active area of research.

In these notes, we will study homogeneity of relational structures and describe their relation
to permutation groups. We review some classification results and work out some known
arities.

Acknowledgements. These notes were prepared as part of a UROP project. I would like
to thank my supervisor, Professor Martin Liebeck, for suggesting the topic and providing
many helpful explanations. I am also grateful to the Department of Mathematics at Imperial
College London for the financial support.

1. Relational structures and homogeneity

Recall that a relational structure X a pair (X,R) consisting of a set X together with a family
of relations R on X. (In model theoretic terminology, this is the same as a model of a purely
relational language.)

For instance, a graph Γ is a relational structure (V Γ, {EΓ}), where V Γ is the vertex set of Γ
and EΓ is the adjacency relation (i.e. (x, y) ∈ EΓ if and only if x adjacent to y). Similarly, a
graph Γ with a colouring ω : EΓ→ C of edges, where C is the set of colours, is a relational
structure (X, {Rc}c∈C), where X = V Γ and Rc is the relation of adjacency in colour c (i.e.
xRcy if and only if ω(x, y) = c).

The rational numbers with the linear order (Q, {≤}) is a relational structure.
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A substructure (X ′,R) of X = (X,R) is a subset X ′ ⊆ X with the same set of relations
(restricted to X ′). We will denote it by 〈X ′〉X or, if the underlying structure is clear, simply
〈X ′〉.

For example, (Z, {≤}) is a substructure of (Q, {≤}). So in fact (Z, {≤}) = 〈Z〉 (with the
underlying structure (Q, {≤})). But we cannot add another relation to the structure, so
(Z, {≤, mod n}) is not a substructure of (Q, {≤}).

For a graph, a substructure is simply a subgraph, that is a subset of vertices with all edges
between them. It is important to note that in choosing a subgraph, we only choose the ver-
tices, not the edges: whenever two vertices are connected in a graph, they are also connected
in a subgraph.

Given two relational structures, one can ask when they can be considered the same or
equivalent.

Definition 1.1. An automorphism of X = (X,R) is a bijection

f : X → X

such that a ∈ R if and only if f(a) ∈ R for R ∈ R. We denote the group of automorphisms
of X by Aut(X ).

Definition 1.2. A function f : X → Y is an isomorphism of relational structures X =
(X,RX) and Y = (X,RY ) if it is an isomorphism of the permutation groups (Aut(X ), X),
(Aut(Y), Y ). We then say that X and Y are isomorphic or equivalent.

Typically, one defines an automorphism of an object A by saying it is an isomorphism A→ A.
However, this is impossible in this case. The intuitive idea that an isomorphism should be a
structure preserving and reflecting bijection (that is, x and y are related in X if and only if
their images f(x) and f(y) are related in Y) cannot be formalised for the following reasons.

First, the same property of a set can be described by different relations. Consider (Z, {≤})
where ≤ is the linear order, and (Z, {s}) where s is the binary successor relation. Even
though 0 ≤ 2 but 2 is not a successor of 0, the linear order induces the successor relation
and vice versa, so the structures are equivalent. Moreover, even the arities of relations that
describe the same property can be different. For the set {1, 2, 3}, the 1-ary relation R1 = {1},
and the binary relation R2 = {(1, 2), (2, 1)} are essentially the same:

Finally, we can have equivalent relational structures with different numbers of relations. This
is best illustrated by graphs: an empty graph on n vertices (0 relations) is the same as a full
graph on n vertices (1 relation). Since all the vertices are connected in the full graph, the
adjacency relation carries no information about the graph.
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Notice that this definition differs from the notion of a graph isomorphism since it does not
distinguish between a graph and its complement (it does not matter which relation we call
“edges” and which we call “non-edges”).

Definition 1.3. A relational structure X is homogeneous if for any X1, X2 ⊆ X and any
isomorphism f : X1 → X2 of 〈X1〉 and 〈X2〉, there exists an automorphism f ∈ Aut(X ) such
that f |X1

= f .

Examples 1.4. The 5-cycle C5 is a homogeneous graph.

We define the graph nd by V (nd) = [n]d where [n] = {1, 2, . . . , n} and two d-tuples are
adjacent if they differ on exactly one coordinate. The only homogeneous graph nd with
n, d > 1 which is homogeneous is 32. More about homogeneity of nd can be found in
Subsection 2.1.

The digraph C3(
−→
C3) which is an undirected 3-cycle with each vertex replaced by a directed

3-cycle is homogeneous. Similarly, the digraph
−→
C3(C3) which is a directed 3-cycle with each

vertex replaced by an undirected 3-cycle is homogeneous.

For a list of homogeneous graphs and digraphs, see Section 4.

We already noticed that we can present a relational structure in different but equivalent
ways. We introduce the notion of relational complexity to measure how homogeneous a
structure is (what is the “smallest” homogeneous presentation of the structure).

Definition 1.5. A relational structure X is k-ary if there exists a homogeneous relational
structure Y with k-ary relations which is equivalent to X .

The relational complexity κ(X ) of X is the least k such that X is k-ary.

Example 1.6. The relational complexity of C7 is 2, because the following structures are
equivalent—they both correspond to D14 acting on {1, 2, . . . , 7}.

Note that the colours on the right correspond to distances in the graph on the left (black
is distance 1, blue is distance 2, red is distance 3). We know that the structures are equiv-
alent, because the automorphism group of C7 is distance-transitive, so any automorphism
preserving the graph on the left, necessarily preserves the graph on the right.

2. Arities of permutation groups

In this section we will introduce the arity of a permutation group and review some known
results. For an introduction to permutation groups, see [DM96].
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We will use the notation of [CMS96]. We will write (G,X) for a permuatation group G
acting on X. When the set X and the action is clear, we will abuse the notation and write
G instead of (G,X).

Definition 2.1. Consider the natural action of G on Xn. We write tp(a) for the orbit of a
of the action and we call the orbits n-types.

For I ⊆ {1, 2, . . . , n} we have the projection πI : Xn → XI which induces a map from Xn/G
to XI/G. Identifying I with {1, 2, . . . , r}, we may view this as a map from the n-types to
the r-types. For r ≤ n the r-type of an n-tuple a will be the function which associates to
each I ⊆ {1, 2, . . . , n} of cardinality r the r-type of the r-tuple πI(a).

We say that r-types determine n-types if any two n-tuples with the same r-type have the
same n-type. The arity Ar(G,X) is the least r such that r-types determine n-types for all
n ≥ r.

This definition gives a very formal setting for working with arities of permutation groups.
The simplest way to define the arity of (G,X) is to say that Ar(G,X) is the least r such
that two n-tuples a,b are in the same orbit, whenever any corresponding subsequences of
a,b of length r are in the same orbit, and that is the intuition we will follow.

We can also reformulate the notion of arity as follows.

Remark 2.2. The arity Ar(G,X) is the greatest r such that (r− 1)-types do not determine
r-types.

However, this does not mean that the arity is the least r for which r-types do determine
(r+ 1)-types. For example, one can show that the arity of Sym(4) o Sym(2) acting naturally
on {1, 2, 3, 4}2 is 4, but 2-types do determine 3-types in this permutation group.

2.1. Some arities of permutation groups. The two extreme examples of arities are the
natural actions of Sym(n) and Alt(n) which are respectively 2 and n− 1. In this subsection
we will explore some other known arities. A less detailed but broader exposition of the results
and open problems can be found in [Che00, Sec. 3, 9].

We will use the notation
[
n
k

]
for the set of k-elements subsets of {1, 2, . . . , n}. There is a

natural action of Sym(n) on
[
n
k

]
extending the action of Sym(n) on {1, 2, . . . , n}. We will

first work out the arity of this action following [CMS96]. We start by deducing a lower bound
for the arity from an example.

Proposition 2.3. Let k ∈ {1, 2, . . . , n/2}. Then Ar
(
Sym(n),

[
n
k

])
≥ 2 + [log2 k].

Proof. Let r = [log2 k] + 1. We will give an example of (r + 1)-tuples a, b with the same
r-type and distinct (r + 1)-types.

Let Ω be an n-element set. Assume A = {0, 1, . . . , 2r − 1} ⊆ Ω is a subset of cardinality 2r

and let A′ ⊆ Ω \ A be a subset of cardinality k − 2r−1.

Writing the elements of A in binary, for 1 ≤ i ≤ r, we define the following subsets of A:

Ai := {strings whose ith coordinate is 1} ⊂ A,
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Ae := {strings with even number of nonzero entries} ⊂ A,

Ao := {strings with odd number of nonzero entries} ⊂ A.

Clearly, |Ai| = 2r−1 because exactly one coordinate is fixed, and |Ae| = |Ao| = 2r−1 because
Ae ∪ Ao = A, Ae ∩ Ao = ∅.

Now we let Bi := Ai ∪ A′, Be := Ae ∪ A′, Bo := Ao ∪ A′. Since A ∩ A′ = ∅, |A′| = k − 2r−1,
we get Bi, Ae, Ao ∈

[
n
k

]
.

Consider the (r + 1)-tuples

a = (B1, B2, . . . , Br, Be), b = (B1, B2, . . . , Br, Bo).

We claim that a and b have the same r-type but distinct (r + 1)-types. First, consider
the r-tuples ai in a and bi in b obtained by omitting the ith coordinate, 1 ≤ i ≤ r. Let
σi ∈ Sym(Ω) be the permutation that maps a string in A to the same string with only the
ith bit changed and acts like the identity on Ω \ A. Then σi maps ai to bi. Finally, if σ
maps Ai to Ai, then σ fixes the ith coordinate of any string in A, so σ|A = idA. But then
σ(Ae) = Ae 6⊆ Bo, so a and b have distinct (r + 1)-types. This shows

Ar

(
Sym(n),

[
n

k

])
≥ r + 1

as requested. �

Example 2.4. Consider the permutation group
(
Sym(5),

[
5
2

])
. We will show that

Ar

(
Sym(5),

[
5

2

])
≥ 3

We let

A = {0, 1, 2, 3}
and we represent the numbers in A in binary to get

A1 = {2, 3}, A2 = {1, 3}, Ao = {1, 2}, Ae = {0, 3}.

In this case A′ = ∅, so we consider the 3-tuples

(A1, A2, Ae), (A1, A2, Ao).

Then
(A1, Ao) 7→ (A1, Ae) via (01)(23),
(A2, Ao) 7→ (A2, Ae) via (02)(13),

but if σ ∈ Sym(5) fixes A1 and A2, then σ(3) = 3, so σ(Ao) 6= Ae.

The Petersen graph can be defined as follows: let
[

5
2

]
be the vertex set and declare two 2-sets

connected if their intersections are empty. Because the automorphism group of this graph
is Sym(5), the permutation group

(
Sym(5),

[
5
2

])
can be identified with this graph (the strict

sense of this will be discussed in Section 3).

The example above actually shows that the Petersen graph is not homogeneous.
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A1 A1

A2 A2Ae

Ao

The subgraphs 〈A1, A2, Ae〉 and 〈A1, A2, Ao〉 are both isomorphic to K3, 3 vertices with no
edges. However, A1, A2, Ae have a mutual friend (in this case {1, 5}), but A1, A2, Ao have
no mutual friends. Therefore, there cannot be an automorphism sending one subgraph to
the other.

Theorem 2.5. Let k ∈ {1, 2, . . . , n/2}. Then Ar
(
Sym(n),

[
n
k

])
= 2 + [log2 k].

Before the proof, we will introduce some notation. The purpose of this is to express in a
simple way when two r-element sequences of k-element subsets of {1, 2, . . . , n} are in the
same orbit. The main point is to look at the cardinalities of all the intersections of the
subsets.

Fix r. Let Br be the free boolean algebra on r generators, ci. For c ∈ Br, let c1 = c and
c−1 be the complement of c. Then the atoms of Br correspond to elements of {±1}r via the
bijection γ given by

ε = (ε1, . . . , εr) 7→
⋂
i

cεii = cε11 ∩ . . . ∩ cεrr .

We define the graph associated to Br as follows

V Γr = {±1}r,

ε− ε′ if and only if ε and ε′ differ in exactly one coordinate.

We label the edge ε − ε′ with the union of the atoms associated to its vertices. Then if ε
and ε′ differ exactly at the ith coordinate, then the label on ε− ε′ is in fact an atom in the
algebra generated by {cj}j 6=i.

In the proof of the theorem, we will use the following reformulation of two r-tuples a and
b having the same r-type. Let A and B be boolean algebras generated by the r-tuples
(i.e. we take all the intersections, unions, and complements of the sets in a and b) and let
f : Br → A, g : Br → B be the homomorphisms induced by

f(ci) = ai, g(ci) = bi.

Then we claim that a and b realize the same r-type if and only if for any atom α ∈ Br we have
|f(α)| = |g(α)|. The intuition is again that f(α) and g(α) correspond to the intersections of
the k-element subsets of {1, 2, . . . , n}. To show that, first suppose that σ ∈ Sym(n) sends a
to b. Then g = σ ◦ f (because σ(ai) = bi) and hence |f(α)| = |σ(f(α))| = |g(α)|. For the
other implication, suppose for any atom α ∈ Br we have |f(α)| = |g(α)|. Then we can write

ci =
⋃
j

αij



8 ALEKSANDER HORAWA

for atoms αij and we get

ai = f(ci) =
⋃
j

f(αij)

bi = g(ci) =
⋃
j

g(αij)

for any i, which are partitions of ai and bi into disjoint sets with corresponding cardinalities.
Thus we can map ai to bi via some σ ∈ Sym(n).

Proof of Theorem 2.5. By Proposition 2.3, it is enough to show that

Ar

(
Sym(n),

[
n

k

])
≤ 2 + [log2 k].

Fix any r ≥ 1 + [log2 k]. We will show that (r − 1)-types determine r-types. Let a,b
be two r-tuples with the same (r − 1)-type and A,B be their corresponding algebras. We
label the edges and vertices of the graph Γr as follows: ΓAr is the graph Γr with ε ∈ V Γr
labelled |f(γ−1(ε))| and ε−ε′ labelled |f(γ−1(ε)∪γ−1(ε′))|. The labelled graph ΓBr is defined
analogously.

We observed before the proof that we can think of the edge labels of Γr as atoms in the
algebra generated by {ci}i 6=j. Therefore, since a and b have the same (r − 1)-type, we
conclude that the edge labels of ΓAr and ΓBr coincide. We will show that the vertex labels
coincide as well. Note that the edge label on ε− ε′ is the sum of the vertex labels on ε and
ε′. Since the graph Γr is connected, it is enough to show that the vertex labels coincide in
one vertex (and the rest will follow).

Consider the 2r−1 edges of Γr that correspond to atoms in Br for which ε1 = 1. The image
of these atoms under f are 2r−1 disjoint subsets of a1 (which has k elements). Now since
2r−1 ≤ k, at least one of these atoms is empty, so one of the edges in ΓAr (and hence also
in ΓBr ) is labelled 0. So both vertices connected by this edge are labelled 0 in ΓAr (and ΓBr ).
Therefore the vertex labels of ΓAr and ΓBr coincide, so the cardinalities of the images of the
atoms in Br under f and g are equal. Hence a and b have the same r-type. �

Example 2.6. This shows that the arity of
(
Sym(5),

[
5
2

])
is in fact 3. As we have seen in

Example 2.4, the first inequality showed that the Petersen graph is not homogeneous. The
fact that the arity is 3, actually means that there is a structure with 3-ary relations which
is equivalent to the Petersen graph and homogeneous. This will be discussed in more detail
in Section 3.

As we have seen, the arity of Sym(n) acting on
[
n
k

]
is known precisely. The paper [CMS96]

explores the more general arity of Sym(n) o Sym(d) acting on
[
n
k

]d
, presenting some general

bounds and precise answers in particular cases (e.g. n2, 2d).

The arity of Sym(n) o Sym(d) acting on nd has been worked out precisely in [Sar99] and
[Sar00].
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2.2. Primitive affine binary permutation groups. We will now look into the case of
primitive permutation groups and introduce non-trivial examples of primitive binary permu-
tation groups. These arise by considering affine permutation groups.

So let F be a field and V be a d-dimensional vector field over F. We denote by AGL(V ) :=
V nGL(V ), the general affine linear group, and by AΓL(V ) := V nΓL(V ), the general affine
semilinear group.

Definition 2.7. An affine linear group G of dimension d is a subgroup of AΓL(V ) containing
the full translation group as a subgroup, i.e. G = V nG0, where G0 ≤ ΓL(V ), the stabilizer
of 0.

We say that G is strictly linear, if G0 ≤ GL(V ).

Proposition 2.8. A primitive 1-dimensional strictly linear affine group G satisfies Ar(G,F) ≤
3, and Ar(G,F) = 2 if and only if G is cyclic or dihedral.

Proof. The ‘if’ implication is clear: cyclic and dihedral groups are binary.

For the ‘only if’ implication, note that the stabilizer of any two points in F is trivial in this
case. To show that Ar(G,F) ≤ 3, let r ≥ 4 and consider two r-tuples a and b with the same
(r − 1)-type. There exists g ∈ G such that

(a1, . . . , ar−1) 7→ (b1, . . . , br−1),

so we may assume that ai = bi for i = 1, . . . , r − 1. If a1 = a2 = . . . = ar−1, then clearly a
and b have the same r-type. Suppose that a1 6= a2. There exists g′ ∈ G such that

(a1, a2 . . . , ar−2, ar) 7→ (a1, a2, . . . , ar−2, br).

Since r ≥ 4, g ∈ Ga1,a2 , so g = 1, and br = g(ar) = ar. Therefore, a and b have the same
r-type and we showed that Ar(G,F) ≤ 3.

Now suppose that Ar(G,F) = 2. We will show that G is cyclic or dihedral, i.e. G = F nG0

and |G0| ≤ 2. So suppose that |G0| > 2, i.e. there exists g ∈ G0 such that g 6= ±1. Since G
is 1-dimensional, g ∈ F. Consider the triples

(0,−1, g), (0,−1, g−1).

Since the stabilizer of any two points is trivial, these triples lie in distinct orbits. We check
that they have the same 2-types:

(0, g−2)(0, g) = (0, g−1),

(1− g, g−1)(−1, g) = ((−1 + 1− g)g−1, (g + 1− g)g−1) = (−1, g−1),

which contradicts binarity. �

Proposition 2.9. A primitive 1-dimensional affine group G which is not strictly linear
satisfies Ar(G,F) ≤ 4.

Moreover, Ar(G,F) = 2 if and only if F = Fq2 and G0 = 〈xq−1〉n 〈σ〉, where x is a primitive
element of F and σ ∈ ΓL(F) \GL(F) has order 2.



10 ALEKSANDER HORAWA

Proof. We know that G = F nG0 and G0 = H n Γ where H ≤ GL(F), Γ ≤ Aut(F) and we
can write

G = F nH n Γ.

We will write tc,h,σ for the element mapping

v 7→ hvσ + c

First, we will show that Ar(G,F) ≤ 4. To do this, we will show that the stabilizer of any two
elements of F is binary. Let v1, v2 ∈ F be distinct elements and let g ∈ Gv1,v2 . If we write
g = tc,h,σ, then

v1 = hvσ1 + c,

v2 = hvσ2 + c,

and given σ, we can determine uniquely c(σ), h(σ) that satisfy these equations. Thus

Gv1,v2 = {tc(σ),h(σ),σ | σ∈Γ} ∼= Γ

and we conclude that Gv1,v2 is cyclic, so it is binary.

Consider r ≥ 5 and suppose a, b are two r-tuple with the same (r− 1)-type. We may (as in
the proof of Proposition 2.8) assume that

a = (a1, . . . , ar−1, a), b = (a1, . . . , ar−1, b)

and a1 6= a2. Since a and b have the same (r − 1)-type in (G,F), they have the same
(r − 3)-type in (Ga1,a2 ,F). As r ≥ 5 and by binarity of Ga1,a2 , they have the same r-type in
(Ga1,a2 ,F) and so also in (G,F). Therefore, Ar(G,F) ≤ 4.

Now suppose that G is binary. We will show that F = Fq2 , H = 〈xq+1〉 and |Γ| = 2.

We start by showing that |Γ| = 2. Similarly as in the proof of Proposition 2.8, if we assume

again that |Γ| > 2, we conclude that for g0 = hσ ∈ G0, 1g0 = 1g
−1
0 , i.e. hσ = h−1. Therefore,

σ2 fixes H for any σ ∈ Γ, and by primitivity we conclude that HΓ generates F, so σ2 = 1.
Therefore |Γ| ≤ 2 and since G is not strictly linear, |Γ| = 2.

Hence Γ = {1, σ} for σ ∈ ΓL(F) \GL(F) with order 2 and we can conclude that for a prime
power q we have F = Fq2 .

Now we will show that H = 〈xq+1〉 for a primitive element x ∈ F. As we noticed before, for
any h ∈ H we have hσ = hq = h−1, so in particular H ⊆ 〈xq+1〉 for some primitive x ∈ F.
The goal is to show that any element s ∈ 〈xq+1〉 is an element of H. Since G is primitive, H
contains some r 6= ±1. For some b ∈ 〈xq+1〉 we have bσ = bs. Consider the triples

(0, b, b/(r + 1)), (0, bs, bs/(r + 1)).

We check that the 3-tuples have the same 2-type:

• t0,1,σ(0, b) = (0, bs)
• t0,r−1,σ(0, b/(r + 1)) = (0, bs/(r + 1)), because

r−1 bσ

r−1 + 1
=

bs

r(r−1 + 1)
=

bs

1 + r
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• tbs(1−r),r,σ(b, b/(r + 1)) = (bs, bs/(r + 1)), because

r(b)σ + bs(1− r) = rbs+ bs(1− r) = bs

r
bσ

r−1 + 1
+ bs(1− r) = bs

(
r

1 + r−1
+ 1− r

)
= bs

r−1

1 + r−1
=

bs

1 + r
.

Therefore, by binarity, there exists g ∈ G that maps

(0, b, b/(r + 1)), (0, bs, bs/(r + 1)).

But g fixes 0, so g ∈ G0 and bg = bs, so either g = σ or g = s. But

(b/(r + 1))σ 6= bs/(r + 1),

so we get g = s.

The remainder of the proof will show that G = Fq2 n 〈xq−1〉 n 〈σ〉 is indeed binary, i.e.
(r − 1)-types determine r-types for r ≥ 3. As we have seen before, the stabilizer of any two
points consists of two elements, in particular

G0,v = {1, t0,v1−q ,σ}.
For w ∈ F we have

t0,v1−q ,σ(w) = v1−qwσ = v1−qwq,

so the stabilizer of three distinct points in G is trivial. This already shows that (r− 1)-types
determine r-types for r ≥ 4 and we have reduced the problem two showing that 2-types
determine 3-types. Consider two triples

(a1, a2, a3), (b1, b2, b3)

with the same 2-type. Firstly, we can assume that a1 = b1, a2 = b2 and then apply a
translation by −a1 to reduce the triples to

a = (0, v, a),b = (0, v, b).

Since the triples have the same 2-type, we know that for some h1 ∈ 〈xq−1〉 and i ∈ {0, 1}

b = h1a
σi

,

and for some h2 ∈ 〈xq−1〉 and j ∈ {0, 1}

b = h2a
σj

+ v − h2v
σj

Therefore

(1) h1a
σi

= h2a
σj

+ v − h2v
σj

.

If i = j, then equation (1) yields

aσ
i

=
v − h2v

σi

h2 − h1

(unless h1 = h2, in which case we are done). Then

b = h1a
σi

= h1
v − h2v

σi

h2 − h1

If i = 0, then

v1−qaσ = v1−q
(
v − h2v

h2 − h1

)σ
= v1−qvqh1

1− h2

h2 − h1

= b,
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so t0,v1−q ,σ maps a to b. If i = 1, then a similar argument shows a and b have the same
3-type.

Now suppose i 6= j. Without loss of generality, assume i = 1, j = 0. Then equation (1)
yields h1a

q − h2a = v − h2v and taking the images of both sides under σ we get a system of
equations {

h1a
q − h2a = v(1− h2)

h−1
1 a− h−1

2 aq = vq(1− h−1
2 )

We can use it to get v(1−h2) = h1h2v
q(h−1

2 − 1), so that v1−q = h1
1−h2
1−h2 = h1 (unless h2 = 1,

in which case we are done), and

b = h1a
q = v1−qaσ.

Therefore, t0,v1−q ,σ maps a to b, showing that Fq2 n 〈xq−1〉n 〈σ〉 is binary. �

In [Che13] Cherlin shows that these are in fact all primitive binary affine permutation groups.
He has also conjectured (for example, in [Che00, Ch. 9]) that these are in fact all finite prim-
itive binary permutation groups. In a recent paper [Wis14], Wiscons reduced the conjecture
to the almost simple case.

3. Relational structures and permutation groups

One way of describing a relational structure is through its automorphism group, the group
of all bijections preserving the relations on the set. On the other hand, given a permutation
group acting on a set, one can consider relations which are invariant under the group action.
This is a Galois connection between relational structures and permutation groups which we
describe in this section.

To a relational structure X = (X,R), assign the permutation group (Aut(X ), X).

If X1 = (X,R1) and X2 = (X,R2) satisfy R1 ⊆ R2, then

Aut(X2) ⊆ Aut(X1).

Indeed, if g ∈ Aut(X2), then g : X → X preserves all the relations in R2, so it preserves all
the relations in R1 ⊆ R2.

Recall that a permutation group (G,X) is k-closed if for

R = Xk/G

(i.e. two k-tuples are related if they are conjugate under G), we have G = Aut(X,R). If G
has arity r, then, in particular, it is r-closed. This motivates the following definition.

Let (G,X) be a permutation group and r = Ar(G,X). Consider the relational structure
(X,R(G,X)), where

R(G,X) = Xr/G

is a set of r-ary relations (subsets of Xr), the r-types in X. When X is known, we will simply
write R(G). Note that this forces (X,R(G)) to be homogeneous and G = Aut(X,R(G)).

If G1 ≤ G2, then obviously R(G1) ⊆ R(G2).
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Example 3.1. We can identify the undirected n-cycle Cn with the dihedral group D2n and

the directed n-cycle
−→
Cn with the cyclic group Z/nZ.

Some properties of permutation groups and relational structures are preserved well in the
connection, one of which is the relational complexity of a relational structure (arity of a
permutation group).

Proposition 3.2. Suppose X = (X,R) has relational complexity k. Then (Aut(X ), X) has
arity k.

Proof. Let G = Aut(X ) and r = Ar(G,X). Note that X is equivalent to (X,R(G)), since
G is r-closed, so, by homogeneity of (X,R(G)) and the fact that all relations R ∈ R(G,X)
are r-ary, we get k ≤ r.

We will now show that k-types determine n-types in X. We assume (possibly changing X to
and equivalent) that X is homogeneous with k-ary relations. Take two n-tuples a, b with the
same k-type. Since their k-types are the same and all the relations are k-ary, we know that
the substructures X corresponding to a and b are isomorphic (via an isomorphism preserving
the order of elements in a and b). Thus by homogeneity, there exists an automorphism g ∈ G
extending this isomorphism, which sends a to b. This shows r ≤ k. �

Proposition 3.3. Suppose (G,X) has arity r. Then (X,R(G)) has relational complexity r.

Proof. Let R = R(G,X), X = (X,R) and k = κ(X ). Suppose that X ′ = (X,R′) equivalent
to X is homogeneous with k-ary relations. But then G = Aut(X ′) and by Proposition 3.2
the arity of (G,X) is k. �

Corollary 3.4. If we identify permutation groups with relational structures, then the arity
and the relational complexity are equivalent.

Example 3.5. In Examples 2.4 and 2.6, we discussed the arity of
(
Sym(5),

[
5
2

])
and its

connection to the Petersen graph. We can easily see that the automorphism group of the
Petersen graph is precisely

(
Sym(5),

[
5
2

])
. While it might be easier for some purposes to think

of
(
Sym(5),

[
5
2

])
as the Petersen graph, we know that the Petersen graph is not homogeneous.

Because Ar
(
Sym(5),

[
5
2

])
= 3, we know that the Petersen graph is equivalent (as a relational

structure) to a homogeneous structure with 3-ary relations (its relational complexity is 3).
The Petersen graph is not homogeneous as a 2-ary structure, but it is homogeneous as a
3-ary structure.

4. Classification of finite homogeneous graphs and digraphs

The aim of this section is to list all finite homogeneous digraphs. To do this, we first list the
finite homogeneous graphs in Subsection 4.1 and then use that as the first step to find all
finite homogeneous digraphs in Subsection 4.2.

4.1. Classification of finite homogeneous graphs. This subsection classifies the finite
homogeneous graphs following [Gar76]. For clarity of the exposition, we have reorganised
the proof, and added some details and pictures.
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For a graph Γ, we will denote by Γ the complement of Γ, we will write t · Γ for a disjoint
union of t graphs Γ. We will also write Kn;t for the full t-partite graph with parts of size n,
i.e. t ·Kn, and Kn,n for Kn;2.

Theorem 4.1. If Γ is a homogeneous graph then it is isomorphic to one of t ·Kn, Kn;t, C5,
32.

Throughout this section, we will use the simplified notation 〈X〉 for 〈X〉Γ, where X ⊆ V Γ.
Moreover, we let % be the distance function on Γ.

Lemma 4.2. Suppose Γ is homogeneous.

(1) Γ is also homogeneous.
(2) Γ is regular.
(3) If 〈U〉 is a connected component for U ⊆ V Γ, then the diameter of 〈U〉 is at most 2.

Proof. (1) and (2) are clear. For (3), suppose %(u, u′) = 3 for u, u′ ∈ U and the shortest path
is (u, u1, u2, u

′). Then %(u, u2) = 2. Now since 〈{u, u′}〉 ∼= 〈{u, u2}〉 ∼= K2, by homogeneity
there exists an automorphism that sends (u, u′) to (u, u2). That contradicts %(u, u′) = 3 6=
2 = %(u, u2). �

For a graph Γ and u ∈ V Γ, we let Γ(u) = {v | {u, v} ∈ EΓ} be the set of neighbours of u.
We also define Γ′ to be 〈Γ(u)〉. Since 〈Γ(u)〉 ∼= 〈Γ(u′)〉 for any u, u′ ∈ V Γ, Γ′ is well-defined.

Lemma 4.3. If Γ is homogeneous, then Γ′ is homogeneous.

Proof. Fix Γ homogeneous and u ∈ V Γ. Suppose V1, V2 ⊆ Γ(u) form isomorphic subgraphs
〈V1〉, 〈V2〉 with f : V1 → V2 isomorphism. We will show that f extends to an automorphism
of 〈Γ(u)〉. Consider V ′1 = V1∪{u}, V ′2 = V2∪{u}. Then 〈V ′1〉 ∼= 〈V ′2〉 via f ′ : V ′1 → V ′2 defined
by

f ′(v) =

{
f(v) for v ∈ V1

u for v = u

Then by homogeneity f ′ extends to an automorphism f ′ of Γ. But f ′ induces an automor-
phism f = f ′|Γ(u) of 〈Γ(u)〉 extending f . �

Proposition 4.4. For a homogeneous graph Γ:

(1) if Γ′ ∼= Kr, then Γ ∼= t ·K1+r, t ≥ 1;
(2) if Γ′ ∼= k ·K1, k ≥ 2, then either Γ ∼= C5 or Γ ∼= Kk,k;
(3) if Γ′ ∼= Kr;t, t ≥ 2, then Γ ∼= K1+r;t;
(4) if Γ′ ∼= t ·Kr, r ≥ 2, t ≥ 2, then r = t = 2 and Γ ∼= 32;
(5) Γ′ 6∼= C5, Γ′ 6∼= 32.

Lemma 4.5. (1) Any homogeneous graph of girth 5 is isomorphic to C5.
(2) Any homogeneous graph of girth 4 is bipartite.

Proof. (1) Let k be the valency of Γ. If k ≥ 3, then consider the triples {u, v, w} of pairwise
non-adjacent vertices (triangle in Γ). Since k ≥ 3 and there are no triangles in Γ, there exists
a triple {u, v, w} of pairwise non-adjacent vertices with Γ(u) ∩ Γ(v) ∩ Γ(w) 6= ∅.
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The rest of the proof is illustrated below. Let (u1, u2, . . . , u5) be a 5-cycle in Γ. Since k ≥ 3,
there exists u6 ∈ V Γ \ {ui}5

i=1 adjacent to u4. We consider the triple {u1, u3, u6}. Since
g = 5, these are pairwise non-adjacent vertices. By homogeneity, we can map (u, v, w) to
(u1, u3, u6) by an automorphism, so Γ(u1) ∩ Γ(u3) ∩ Γ(u6) 6= ∅, which contradicts g = 5.

u1

u2

u3 u4

u5

u1

u2

u3 u4

u5

u6

u1

u2

u3 u4

u5

u6

u1

u2

u3 u4

u5

u6

Therefore k = 2 and Γ ∼= C5.

(2) It is easy to prove that a homogeneous graph is distance-transitive (the only non-trivial
case being Γ′ ∼= Kt;r which will be clear from the proof of Proposition 4.4 (3)). In particular,
if u ∈ V Γ and v ∈ Γ, then

c2 := |Γ(v) ∩ Γ(u)|,

a2 := |Γ(v) ∩ Γ(u)| = k − c2 ≥ 1.

(where k is the valency of Γ) are independent on the choice of u and v. Choose v′ ∈ Γ(v)∩Γ(u)
and set

A := Γ(v) ∩ Γ(u), A′ := Γ(v′) ∩ Γ(u).

Since Γ has no triangles, we have A∩A′ = ∅, so k ≥ 2c2, whence c2 ≤ a2. Since Aut(Γ) acts
transitively on the vertex subgraphs of 〈Γ(u)〉 isomorphic to j ·K1, so it acts transitively on
the

(
k
c2

)
c2-subsets of Γ(u) and each vertex of Γ corresponds to a unique such subset. This

yields ∣∣Γ(u)
∣∣ = k(k − 1)/c2 ≥

(
k

c2

)
= k(k − 1) . . . (k − c2 + 1)/c2!,

so c2 = 2 and each of the 2-subsets of Γ(u) corresponds to a unique vertex of Γ. But if
u ∈ V Γ, v ∈ Γ(u) and w1, w2 ∈ Γ(u) ∩ Γ(v), then Aut(Γ) acts transitively on the subgraphs
of Γ of the form
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〈u, v,Γ(u) ∩ Γ(v), w1, w2〉 ∼=
u

w1

w2

v

This means Aut(Γ)uv acts transitively on the
(
k−2

2

)
unordered pairs of Γ(u) ∩ Γ(v). Hence

each such pair corresponds to a unique vertex of Γ(u) ∩ Γ(v), so
(
k−2

2

)
= k − 2. This gives

k = 2, a2 = 3, |V Γ| = 16 and 〈Γ〉 is isomorphic to the Petersen graph. But the Petersen
graph is not homogeneous, since it contains two distinct kinds of vertex subgraphs isomorphic
to K3 (see Example 2.4). �

Proof of Proposition 4.4. Take u ∈ U and consider Γ(u).

For (1), if 〈Γ(u)〉 ∼= Kr and there exists v ∈ Γ(u) in the same connected component as u, i.e.
(u, v′, v) is a shortest path, then |Γ(v′)| ≥ r which contradicts 〈Γ(v′) ∼= Kr.

For (2), note that since the diameter of Γ is 2, g ≤ 5, and since Γ′ ∼= k ·K1, Γ has no triangles,
i.e. g ≥ 4. Therefore using Lemma 4.5 either g = 4 and Γ is bipartite, so Γ ∼= Kk,k, or g = 5
and Γ ∼= C5.

For (3), suppose 〈Γ(u)〉 ∼= Kr;t, r ≥ 2, t ≥ 2. For v ∈ Γ(u) we have

Γ(v) ∩ Γ(u) = {w1, . . . , wr−1}
and in 〈Γ(v)〉 we know that 〈u,w1, . . . , wt−1〉 is edgefree and Γ(v)∩Γ(u) ⊆ Γ(wi), 1 ≤ i ≤ t−1.
Similarly, if v′ ∈ Γ(v)∩Γ(u), then Γ(v′)∩Γ(u) ⊆ Γ(wi), 1 ≤ i ≤ t−1. Therefore Γ(u) ⊆ Γ(wi)
and since wi ∈ Γ(u), we conclude that Γ(u) = Γ(wi). Therefore for each v′′ ∈ Γ(u) we have
Γ(v′′) ∩ Γ(u) = {w1, . . . , wt−1}. This shows Γ ∼= K1+r;t.

For (4), suppose 〈Γ(u)〉 ∼= t · Kr, r ≥ 2, t ≥ 2. Let (Ui)
t
i=1 be the partition of V Γ into

〈Ui〉 ∼= Kr.
Fix v ∈ Γ(u) and suppose that v1, v2 ∈ Ui ∩ Γ(v) are two vertices. Then a connected
component of Γ(v1) contains the pair u, v with %(u, v) = 2 and this contradicts Γ(v1) ∼= t ·Kr.
Thus |Γ(v)∩Ui| ≤ 1 for any i and so c2 := |Γ(v)∩Γ(u)| ≤ t. Each vertex of Γ(u) corresponds
to a unique c2-subset of Γ(u) and Aut(〈Γ(u)〉) acts transitively on

{C | C ⊆ Γ(u), 〈C〉 ∼= j ·K1}
for each j ≥ 1. Any element of Γ(u) corresponds to a choice of c2 of the Ui’s and one of the
r elements in each chosen Ui, which shows the inequality:

|Γ(u)| ≥
(
t

c2

)
rc2 .

Now, each u′ ∈ Γ(u) satisfies 〈Γ(u′)〉 ∼= t ·Kr, so Γ(u′) ∩ Γ(u) forms (t− 1) ·Kr. Therefore

|Γ(u)| = tr(tr − r)/c2.

This shows c2 ≤ 2. If c2 = 1 with Γ(u) ∩ Γ(v) = {u1} ⊆ U1 for some v ∈ Γ(u). But then
〈〈Γ(u)〉(v)〉 = 〈Γ(v) \ {u1}〉 is not regular, so it cannot be homogeneous, a contradiction.
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Hence c2 = 2 and each 2-subset {x, x′} ⊆ Γ(u) for which 〈x, x′〉 ∼= 2 · K1 corresponds to
a unique vertex of Γ(u). Let v ∈ Γ(u) and Γ(u) ∩ Γ(v) = {u1, u2}, ui ∈ Ui. Choose
v1 ∈ Γ(u1) ∩ Γ(v), v2 ∈ Γ(u2) ∩ Γ(v). Since u1 and u2 are not adjacent and 〈Γ(v)〉 ∼= t ·Kr,
v1 and v2 are not adjacent. If t > 2, we may choose another vertex w ∈ Γ(u) ∩ Γ(v) such
that Γ(u)∩Γ(v)∩Γ(w) = ∅. But 〈u, v, v1, v2〉 ∼= 〈u, v, v1, w〉 which contradicts homogeneity.
Thus t = 2.
We define the graph ∆ as follows: each subgraph of Γ isomorphic to Kr+1 is a vertex and
two such vertices are adjacent if and only if the subgraphs have a common vertex in Γ. Then
Γ = L(∆), the line graph of ∆. ∆ has girth 4 and valency r+ 1 and is bipartite of diameter
2, i.e. ∆ = Kr+1,r+1, r ≥ 2. Now Aut(Kr+1,r+1) ∼= Aut(L(Kr+1,r+1)) and if r ≥ 3, then
Kr+1,r+1 contains inequivalent types of subgraphs isomorphic to 2 ·K1,2, so Aut(L(Kr+1,r+1))
does not act transitively on the set of vertex subgraphs isomorphic to 2 ·K2. Hence r = 2
and Γ ∼= L(K3,3) ∼= 32, as requested.

For (5), note that a distance-transitive graph ∆ satisfying ∆′ ∼= C5 is isomorphic to the
icosahedron, but the icosahedron is not homogeneous.
Finally, suppose for a contradiction that 〈Γ(u)〉 ∼= 32. Choose v ∈ Γ(u), w ∈ Γ(v) ∩ Γ(u).
Then obviously

Γ(v) = {u} ∪ (Γ(v) ∩ Γ(u)) ∪ (Γ(v) ∩ Γ(v)).

Two nonadjacent vertices in 32 can have exactly two mutual neighbours, so applying this to
{u,w} in 〈Γ(v)〉 ∼= 32 we get

|Γ(v) ∩ Γ(u) ∩ Γ(w)| = 2,

so that c2 = |Γ(u) ∩ Γ(w)| ≥ 3. By considering Γ(u) ∩ Γ(v) in 〈Γ(v)〉 ∼= 32 we get 〈Γ(u) ∩
Γ(v)〉 ∼= C4. Hence

6 ≥ a2 = |Γ(w) ∩ Γ(u)| ≥ 2,

3 ≤ c2 = 9− a2 ≤ 7.

Since |Γ(u)| = 9 · 4/c2 is an integer, we have two cases to consider. First, if a2 = 5, c2 = 4,
then 〈Γ〉 is a graph of valency five on nine vertices, a contradiction. Second, if a2 = 3,
c2 = 6, then 〈Γ〉 is a graph of valency 3 on six vertices, i.e. it is K3,3 (by looking at strongly
regular graphs with these properties). But then in Γ the vertex subgraph on Γ(u),

〈
Γ(u)

〉
Γ
,

is isomorphic to 2 ·K3 which contradicts (4). �

To complete the proof of Theorem 4.1, we introduce the notion of rank.

Definition 4.6. We define the rank of a homogeneous graph Γ to be

rank(Γ) =

{
0 for V Γ = ∅
rank(Γ′) + 1 otherwise

Proof of Theorem 4.1. If rank(Γ) = 1, then Γ ∼= k ·K1.

If rank(Γ) = 2, then rank(Γ′) = 1, so Γ′ ∼= k ·K1. By Proposition 4.4 (1, 2): if k = 1, then
Γ ∼= K2; if k ≥ 2, then Γ ∼= C5 or Γ ∼= Kk,k.

If rank(Γ) = 3, then rank(Γ′) = 2, so Γ′ ∼= K2, Γ′ ∼= C5 or Γ′ ∼= Kk,k (k ≥ 2). By Proposition
4.4 (5), Γ′ 6∼= C5. If Γ′ ∼= Kk,k = K2;k, then by Proposition 4.4 (3), Γ ∼= K3;k. Finally, if
Γ′ ∼= K2 and by Proposition 4.4 Γ ∼= K3.
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It remains to show that if rank(Γ) = r ≥ 3, then Γ ∼= t ·Kr or Γ ∼= Kr+1;t, but this is clear by
induction on r (the base step is above and the induction step is Proposition 4.4 (1, 3)). �

4.2. Classification of finite homogeneous digraphs. In this subsection we state classi-
fication of finite digraphs following [Lac82] and show the outline of the proof.

Definition 4.7. A digraph Γ is a set V Γ of vertices with one binary irreflexive relation EΓ.
The complement of Γ is the digraph Γ with V Γ = V Γ and EΓ = V Γ2 \ (EΓ ∪ {(v, v)}).

Definition 4.8. We will call edges (u, v) ∈ EΓ such that (v, u) ∈ EΓ symmetric.

We say that u dominates v (v is dominated by u) if (u, v) ∈ EΓ but (v, u) 6∈ EΓ. For any
u ∈ V Γ, we define

−→
Γ (u) = {v ∈ V Γ | u dominates v}.

If Γ is homogeneous, then we let

Γd =
〈−→

Γ (u)
〉
.

To state the classification of homogeneous digraphs, we need to introduce some digraphs.

Definition 4.9. The composition of digraphs Γ1 and Γ2 is the digraph Γ = Γ1(Γ2) with

V Γ = V Γ1 × V Γ2

and ((u1, u2), (v1, v2)) ∈ EΓ if either (u1, v1) ∈ EΓ1 or u1 = v1 and (u2, v2) ∈ EΓ2.

Examples 4.10. For a digraph Γ, the composition Kn(Γ) is simply n · Γ, n disjoint copies
of Γ.

The graph Kn,n is actually the composition K2(Kn) and, in general, the complete m-partite
graph with parts or cardinality n, Kn;m, is Km(Kn).

To simplify the notation, we will let C :=
−→
C3, D :=

−→
C4.

We also introduce three sporadic homogeneous digraphs H0, H1, H2.

H0 H1

The final digraph is more complicated. We first present it with some omitted edges as it was
presented in [Lac82] for clarity.
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H2

The rules for obtaining the additional edges are as follows. Each vertex v has a unique mate,
a vertex connected to v by a symmetric edge.

• If v dominates w, then v is dominated by the mate of w.
• If v is dominated by w, then v dominates the mate of w.

The coloured graph on the left shows the edges we obtain using these rules: first 24 edges
(blue edges below) and then 12 more edges (red edges below). The picture on the right shows
the full graph H2.

H2 H2

We can now state the classification of finite homogeneous digraphs. Let S be the set of all
homogeneous symmetric digraphs (i.e. homogeneous graphs, classified in Section 4.1), and
A be the set of all homogeneous antisymmetric digraphs.

Theorem 4.11. Let Γ be a homogeneous digraph. Then:

• If Γ ∈ A, then Γ is isomorphic to one of:

D, Kn, Kn(C), C
(
Kn

)
, H0.

• Either Γ or Γ is isomorphic to one of:

Kn(A), A(Kn), S, C(S), S(C), H1, H2

for S ∈ S, A ∈ A.

To understand the proof of the theorem, we need a similar notion to the rank of a homoge-
neous graph.
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Definition 4.12. The (dominating) rank of a homogeneous digraph Γ is defined as

rankd(Γ) =

{
0 if V Γ = ∅
rankd(Γ

d) + 1 otherwise

The classification of finite homogeneous digraphs is based on the following table.

Table of cases

case if then Γ or Γ is isomorphic to

1 V Γd = ∅ Kn (n ≥ 1)
Km(Kn) = n ·Km (m,n ≥ 2)
C5

32

2 Γd ∼= K1 S(C) (S ∈ S)
Kn(D)

3 Γd ∼= K2 Kn(C(K2))
D(K2)
H1

4 Γd ∼= Kn (n ≥ 3) Km(C(Kn)) (m ≥ 1)
D(Kn)

5 Γd ∼= Km(Kn) (m,n ≥ 2) C(Km(Kn))

6 Γd ∼= C5 C(C5)

7 Γd ∼= 32 C(32)

8 Γdd ∼= K1 Kn(H0) (n ≥ 1)
H2

9 Γdd ∼= Kn (n ≥ 2) H0(Kn)

10 Γdd ∼= Km(Kn) (m,n ≥ 2), C5, or 32 none

11 Γddd ∼= Kn none

This is the analog of Proposition 4.4 for digraphs. The proof that all homogeneous digraphs
are listed on the right hand side of the table goes the same as the proof of Theorem 4.1 by
considering rankd(Γ) instead of rank(Γ). In this case, row 11 of the table shows that there
are no homogeneous graphs Γ with rankd(Γ) ≥ 3 and we only have to consider directed ranks
0, 1, 2.
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5. Finite binary permutation groups

In general, by Corollary 3.4, classifying permutation groups with arity r is equivalent to
classifying finite homogeneous structures with relations of degree r.

When we want to classify finite permutation groups with arity r, it makes sense to set some
conditions on Xr/G, e.g. a bound ar on |Xr/G|. These permutation groups will correspond
to homogeneous structures over a language L with no operations and ar relations of arity
r. Lachlan’s theory [KL87] shows that there is a classification of countable homogenenous
structures over a relational language into finitely many types. To quote the introduction of
[CMS96]: The main result of Lachlan’s theory resists summary, but it may be expressed very
loosely as saying that large finite structures which are homogeneous for a finite relational
language can be classified into finitely many types in a manner which is quite satisfactory
from a theoretical point of view. There is however no satisfactory classification of finite
homogeneous structures.

In this section we are mainly interested in the finite transitive binary permuatation groups
(G,X). These correspond to finite homogeneous relational structures (X,R(G)) with binary,
irreflexive relations. We will write R(G) = {∆i}. It is worth noting an obvious fact about
these structures.

Remark 5.1. Let ∆i,∆j ∈ R(G). If (x0, x
′
0) ∈ ∆i and (x′0, x0) ∈ ∆j, then for all (x, x′) ∈ ∆i

we have (x′, x) ∈ ∆j.

If i = j, we call ∆i symmetric, and if i 6= j, then we call ∆i and ∆j complementary.

It is often convenient to think of these as coloured digraphs.

Definition 5.2. Let (G,X) be a finite transitive binary permuatation group. The coloured
digraph Γ corresponding to (G,X) has V Γ = X, EΓ = X2 \ {(x, x)} and the edge-colouring
ω : EΓ→ C defined by

ω(x, x′) = ci if (x, x′) ∈ ∆i.

If ∆i is symmetric, (x, x′) and (x′, x) are both coloured with ci, and we treat them as an
undirected edge {x, x′} coloured in ci.

Example 5.3. The undirected 5-cycle C5 (or D10 acting naturally on {1, 2, 3, 4, 5}) and its
corresponding graph. Note that if we treat one of the orbits as non-edges, the graphs are
the same.

The directed 5-cycle
−→
C5 (or Z/5Z acting naturally on {1, 2, 3, 4, 5}) and an example of its

corresponding digraph.
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By Remark 5.1, we know that there is a complementary orbit to any orbit which is not
symmetric, so we can omit one of the two orbits in the digraph. Because the orbits are not
symmetric, we may arbitrarily choose the direction of the edges (as long as we are consistent
throughout the whole orbit).

We have seen in Proposition 2.9 that primitive binary affine groups which are not strictly
linear are of the form (Fq2 n 〈xq−1〉 n 〈σ〉,Fq2). Let Γq be the coloured graph associated to
this permutation group.

Proposition 5.4. The graph Γq is a full graph with a colouring in q−1 colours, i.e. |X2/G| =
q.

Proof. We claim that

(F2 \ {(v, v)})/G = {[(0, xi)] | i ∈ {0, 1, . . . , q − 2}}.

First, take any (v1, v2) ∈ F with v1 6= v2. Then t−v1,1,1 maps (v1, v2) to (0, w) for w =
v2 − v1 6= 0. Then w ∈ F× and since x is primitive, w = xj for some j ∈ {0, 1, . . . , q2 − 2}.
Write j = k(q − 1) + i for some k ∈ N and i ∈ {0, 1, . . . , q − 2}. Then

t0,xk(1−q),1(w) = xk(1−q)xk(q−1)+i = xi,

so (v1, v2) is in the orbit [(0, xi)].

Finally, if (0, xj) ∈ [(0, xi)] for i, j ∈ {0, 1, . . . , q − 2}, then for some g = t0,xk(q−1),σl ∈ G0,
l ∈ {0, 1} we have

xj = g(xi) = xk(q−1)(xi)q
l

.

Then.

j = k(q − 1) + i · ql ∈ {0, 1, . . . , q − 2}

and in particular k = 0. Either i = 0 so also j = 0 or i 6= 0 and l = 0 so i = j. In any case
i = j �

Examples 5.5. (q = 2) This case is trivial. As we have seen in Proposition 5.4, Γq is just
the full graph K4 and corresponds to (Sym(4), {1, 2, 3, 4}). Indeed:

G = (F4, 〈x〉, 〈σ〉) = (F4,F×4 , 〈σ〉) = AΓL(F4) = Sym(4).

(q = 3) In this case Γq has two colours and if we treat one of them as nonedges, we can see
that Γ3

∼= 32.
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(q = 4) This case is more complicated. Recall that we can represent elements of F×16 as
polynomials a+ bx+ cx2 + dx3 with operations modulo x4 +x+ 1, i.e. assuming that
x4 = x + 1. Note that we are working in a field of characteristic 2, so addition and
subtraction are the same operation.

We will first show that Γ4 has no monochromatic triangles. Suppose contrary that
(v1, v2, v3) is a triangle, i.e.

(v1, v2), (v2, v3), (v3, v1) ∈ [(0, xi)]

for some i ∈ {0, 1, 2}. Then we know that

v1 + v2, v2 + v3, v3 + v1 ∈ xi〈x3〉,

so v1 + v2 = xix3k for some k and letting (v′1, v
′
2, v
′
3) = (v1, v2, v3)/(x3k), another

monochromatic traingle. Moreover v′1 + v′2 = xi so that v′2 = v′1 + xi and since again
v′2 + v′3, v

′
3 + v′1 ∈ xi〈x3〉, we get that

v′1 + v′3 + xi, v′1 + v′3 ∈ xi〈x3〉.

Therefore, we have found two elements w1, w2 ∈ xi〈x3〉 with w1 + w2 = xi. We let
w′1 = w1/x

i, w′2 = w2/x
i be elements of 〈x3〉 with

w′1 + w′2 = 1.

It is easy to work out that

〈x3〉 = {1, x3, x3 + x2, x3 + x}

and for any w ∈ 〈x3〉 we have 1 + w 6= 1, x3 + w 6= 1 and also

(x3 + x2) + (x3 + x) = x+ x2 6= 1.

This contradicts the existence of such w′1, w
′
2 and shows Γ4 has no monochromatic

triangles.
Therefore Γ4 is a full graph K16 coloured with 3 colours with no monochromatic

triangles, an example showing that the Ramsey Number R(3, 3, 3) ≥ 17. We know
that there are exactly two such examples with the colourings ωi : F16 → F4 (where
ωi(v, v) = 0 are the vertices of the graph) given by

ω0(v, w) = (v + w)10

ω1(v, w) = (v + w)10 + (v + v4 + w + w4)(v + v2 + v4 + v8)(w + w2 + w4 + w8).
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A colouring ωi will make the graph homogeneous, if it is invariant under the action
of G. We note that the colouring ω0 is not G-invariant: 1σ = 1, xσ = x4 = 1 + x,
but:

ω0(1, x) = 1 + x4 + x8 + x10 = 1 + x+ x2 + x10,

ω0(1, 1 + x) = (1 + 1 + x)10 = x10.

By elimination, the correct colouring has to be ω1. One can check that it is indeed
G-invariant.

5.1. Some particular cases. Let us end by expressing the results of Section 4 in the
language of permutation groups. Let (G,X) be a transitive binary permutation group.

First, suppose R(G) = {∆1,∆2}. Note that if an orbit is not symmetric, then ∆1 and ∆2 are
complementary orbits. Then we can think of ∆2 as non-edges and the graph Γ becomes an
uncoloured digraph with no symmetric edges and by the classification of digraphs (Theorem
4.11) it has to be a directed 3-cycle. This corresponds to the natural action of Z/3Z on
{1, 2, 3}.

Now, suppose both ∆1 and ∆2 are symmetric. Then we can think of ∆2 as non-edges
and the graph Γ is an uncoloured graph. Therefore, we can use Gardiner’s classification
of homogeneous graphs . The union of m full graphs, t · Kn, corresponds to the group
Sym(n) o Sym(t), the 5-cycle corresponds to the natural action of the group Z/5Z, and the
32 graph corresponds to Sym(3) o Sym(2) acting on pairs of elements of {1, 2, 3}.

In the next step, we suppose R(G) = {∆1,∆2,∆3} and ∆i 6= ∅. We know that there are
two possibilities: either all ∆i are symmetric, or exactly one ∆i is symmetric. The latter
case is solved by the classification of homogeneous digraphs (Theorem 4.11). We treat one
of the antisymmetric orbits as non-edges so that (X,R(G)) is a digraph. The former case,
however, already does not fall under any of the classifications. It is equivalent to classifying
all homogeneous graphs with an edge-colouring by two colours.

For a summary of results on the classification of finite homogeneous structures, see [Mac11,
Ch. 2].
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