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1. Affine algebraic varieties

1.1. Algebraic sets and ideals. The goal is to establish a correspondence{
geometric objects defined
by polynomial equations

}
←→

{
ideals in a

polynomial ring

}
.

Let k be a fixed algebraically closed field of arbitrary characteristic. For example, k could
be C, Q, or Fp for p prime.

Say n is fixed. The n-dimensional affine space An or An
k is (as a set) kn and the polynomial

ring in n variables over k is R = k[x1, . . . , xn].

How do these two objects correspond to each other? First, note that if f ∈ R and u =
(u1, . . . , un) ∈ kn, we can evaluate f at u to get f(u) ∈ k. More specifically, for u =
(u1, . . . , un) ∈ kn, we get a homomorphism

R = k[x1, . . . , xn]→ k, xi 7→ ui

which is surjective with kernel (x1 − u1, . . . , xn − un).

Definition 1.1.1. Given a subset S ⊆ R, define

V (S) = {u = (u1, . . . , un) ∈ An | f(u) = 0 for all f ∈ S}

called the zero locus of S or the subset of An defined by S.

An algebraic subset of An is a subset of the form V (S) for some S ⊆ R.

Example 1.1.2. A linear subspace of kn is an algebraic subset. We can take S to a finite
collection of linear polynomials:{

n∑
i=1

aixi : ai ∈ k, not all 0

}
.

More generally, any translation of a linear subspace is an algebraic subset (called an affine
subspace).

Example 1.1.3. A union of 2 lines in A2

V (x1x2)

Example 1.1.4. A hyperbola in A2.
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x1

x2

V (x1x2 − 1)

Remark 1.1.5. The pictures are drawn in R2. For obvious reasons, it is impossible to draw

pictures in C2 (or especially Q2
or Fp

2
), but even the pictures in R2 can be used to develop

a geometric intuition.

Proposition 1.1.6.

(1) ∅ = V (1) = V (R) (hence ∅ is an algebraic subset).
(2) An = V (0) (hence An is an algebraic subset).
(3) If I is the ideal generated by S, then V (S) = V (I).
(4) If I ⊆ J are ideals, then V (J) ⊆ V (I).
(5) If (Iα)α is a family of ideals, then⋂

α

V (Iα) = V

(⋃
α

Iα

)
= V

(∑
α

Iα

)
.

(6) If I, J are ideals, then

V (I) ∪ V (J) = V (I · J) = V (I ∩ J).

Proof. Properties (1) and (2) are trivial. For (3), recall that

I = {g1f1 + · · ·+ gmfm | m ≥ 0, fi ∈ S, gi ∈ R}
and

(g1f1 + · · ·+ gmfm)(u) = g1(u)f1(u) + · · ·+ gm(u)fm(u).

Properties (4) and (5) follow easily from definitions. For (6), note first that

V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (I · J)

by property (4). To show V (I · J) ⊆ V (I) ∪ V (J), suppose u ∈ V (I · J) \ (V (I) ∪ V (J)).
Then there exist f ∈ I and g ∈ J such that f(u) 6= 0 and g(u) 6= 0. But then f · g ∈ I · J
and (f · g)(u) = f(u)g(u) 6= 0, which is a contradiction. �

Remark 1.1.7. By Proposition 1.1.6, the algebraic subsets of An form the closed sets of a
topology on An, the Zariski topology.

Suppose now that W ⊆ An is any subset. Then

I(W ) = {f ∈ R | f(u) = 0 for all u ∈ W} ⊆ R

is an ideal in R.
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Recall that an ideal I ⊆ R is radical if whenever f q ∈ I for some f ∈ R, q ≥ 1, then f ∈ I.
A ring R is reduced if 0 is a radical ideal, i.e. the ring has no nilpotents.

Since R = k[x1, . . . , xn] is reduced, I(W ) is a radical ideal.

Easy properties:

(1) I(∅) = R.
(2) I(An) = 0 (exercise: show this holds for any infinite field k).
(3) I(W1 ∪W2) = I(W1) ∩ I(W2).
(4) If W1 ⊆ W2, then I(W1) ⊇ I(W2).

We hence have the following maps:

{
subsets
of An

} {
ideals
in R

}I(−)

V (−)

Proposition 1.1.8. If W ⊆ An is any subsect, then

V (I(W )) = W,

the closure of W . In particular, if W is an algebraic subset, then V (I(W )) = W .

Proof. The containment W ⊆ V (I(W )) is clear, and as the right hand side is closed,

W ⊆ V (I(W )).

Let us show that

V (I(W )) ⊆ W =
⋂
Z⊇W

Z

where the intersection is taken over Z ⊇ W closed. If Z ⊇ W is closed, then Z = V (J) for
some J . We have that

J ⊆ I(Z) ⊆ I(W )

and hence

Z = V (J) ⊇ V (I(W )).

This completes the proof. �

Recall: given an ideal J in a ring R,
√
J := {f ∈ R | there exists q > 0 such that f q ∈ J}.

This is a radical ideal, the smallest such that contains J .

Theorem 1.1.9 (Hilbert Nullstellensatz). For every ideal J ⊆ R = k[x1, . . . , xn], we have

I(V (J)) =
√
J.

Homework. Read Review Sheet #1: Finite and integral ring homomorphisms.

Corollary 1.1.10. We have inverse, order reversing bijections
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algebraic subsets

of An

} {
radical ideals

in k[x1, . . . , xn]

}I(−)

V (−)

Note that if P = (a1, . . . , an) ∈ An, {P} is a closed subset. Clearly

I(P ) ⊇ (x1 − a1, . . . , xn − an),

and they are equal since the right hand side is a maximal ideal. Hence, the points are the
minimal nonempty algebraic subsets.

Thus the corollary implies that all maximal ideals are of the form

(x1 − a1, . . . , xn − an).

We will prove this first, and then the Hilbert Nullstellensatz 1.1.9.

Recall that a ring homomorphism A→ B is finite if B is finitely generated as an A-module.
The following assertions clearly hold.

(1) The composition of finite homomorphisms is finite,
(2) If f is finite, then f ⊗ 1C is finite:

A B

C B ⊗A C

f

f⊗1C

(3) If f : A→ B is injective and finite, with A, B domains, then A is a field if and only
if B is a field. (Note: it is enough for f to be integral.)

Corollary 1.1.11. Suppose A ↪→ B is finite with A and B domains. If K = Frac(A),
L = Frac(B), the induced extension K ↪→ L is finite.

Proof. Since A ↪→ B is finite and injective,

A⊗A K B ⊗A K finite injection of domains

K L

=

Since K is a field, B ⊗A K is also a field by property (3) above, and hence L = B ⊗A K is
finite over K. �

Theorem 1.1.12 (Noether Normalization Lemma). If k is a field (not necessarily alge-
braically closed), A is an algebra of finite type over k which is a domain, K = Frac(A),
n = trdeg(K/k), then there exists a k-subalgebra B of A such that

(1) B is isomorphic as a k-algebra to k[x1, . . . , xn],
(2) the inclusion map B ↪→ A is finite.

Proof. We will assume k is infinite for simplicity. (For a proof in the general case, see [Mum99]).
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We use this as follows: given any nonzero f ∈ k[x1, . . . , xr], there exists λ = (λ1, . . . , λr) ∈ kr
such that f(λ) 6= 0. (Exercise: prove this by induction on r ≥ 1.)

Choose generators y1, . . . , ym of A as a k-algebra. Then

K = k(y1, . . . , ym),

so n = trdeg(K/k) ≤ m.

We use induction on m ≥ n to show that there exists a linear change of variables

yi =
m∑
j=1

bijzj,

where bij ∈ k and det(bij) 6= 0 (hence A = k[z1, . . . , zn]) such that

k[z1, . . . , zn] ↪→ A

is finite.

We claim that this is enough. Take B = k[z1, . . . , zn]. Then Frac(B) ↪→ Frac(A) = K is finite
by Corollary 1.1.11. This implies n = trdeg(Frac(B)/k). Hence z1, . . . , zn are algebraically
independent over k.

It remains to prove the above statement. If m = n, we can use identity as the change of vari-
ables because A is a polynomial algebra. Suppose m > n. Then y1, . . . , ym are algebraically
dependent over k, so there exists a nonzero f ∈ k[x1, . . . , xm] such that f(y1, . . . , ym) = 0.
Write

f = fd︸︷︷︸
6=0

+ lower degree terms =
∑

α=(α1,...,αm)∈Zm≥0

cαx
α1
1 . . . xαmm .

Then
0 = f(y1, . . . , ym)

= f(b11z1 + · · ·+ b1mzm, . . .)

=
∑

α cα(b11z1 + · · ·+ b1mzm)α1 . . . (bm1z1 + · · ·+ bmmzm)αm

= fd(b1m, . . . , bmm)zdm︸ ︷︷ ︸
∈k

+ lower order terms in zm.

Choose the bij so that fd(b1m, . . . , bmm) · det(bij) 6= 0. We can do this since k is infinite.

After this change of variables and relabelling zi as yi,

k[y1, . . . , ym−1] ↪→ k[y1, . . . , ym]

is finite: generated as a module over the left hand side by 1, ym, . . . , y
d−1
m .

By induction, after another change of variables in y1, . . . , ym−1, we may assume

k[y1, . . . , yn] ↪→
finite

k[y1, . . . , ym−1] ↪→
finite

k[y1, . . . , ym]

and hence the composition is finite. This completes the proof of the claim and hence the
theorem. �
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Corollary 1.1.13 (Hilbert Nullstellensatz, Version I). If k is a field and A is a finitely
generated k-algebra, m is a maximal ideal in A, then

[A/m : k] <∞.

Proof. Let K = A/m. Since K is a finitely generated k-algebra, by Theorem 1.1.12, there
exists a finite inclusion B ↪→ K with B ∼= k[x1, . . . , xn]. As K is a field, B is also a field by
property (3) above. Hence n = 0, and K/k is finite. �

Homework. Read Review Sheet #2 about Noetherian rings.

Corollary 1.1.14 (Hilbert Nullestellensatz, Version II). Suppose k = k and let m be a
maximal ideal in k[x1, . . . , xn] = R. Then there exist a1, . . . , an ∈ k such that

m = (x1 − a1, . . . , xn − an).

Proof. By Corollary 1.1.13, k ↪→ R/m is finite and since k is algebraically closed, this exten-
sion is an isomorphism.

For all i, there exists ai ∈ k such that xi ≡ ai mod m. Then

(x1 − a1, . . . , xn − an) ⊆ m,

but the left hand side is a maximal ideal, and hence equality holds. �

Proof of Hilbert Nullstellensatz 1.1.9. Note that J ⊆ I(V (J)) by definition, and since the
right hand side is a radical ideal: √

J ⊆ I(V (J)).

We need to prove the reverse inclusion.

Weak version: given an ideal a ( R, we have V (a) 6= 0. This is clear, since any a 6= R is
contained in a maximal ideal m, and by Corollary 1.1.14,

m = (x1 − a1, . . . , xn − an)

for some a1, . . . , an ∈ k. Then

(a1, . . . , an) ∈ V (m) ⊆ V (a).

Rabinovich’s trick: use this property in k[x1, . . . , xn, y]. Let f ∈ I(V (J)) and

a ⊆ R[y] = k[x1, . . . , xn, y]

be the ideal generated by J and 1− f(x)y, where x = (x1, . . . , xn).

If a 6= R[y], then V (a) 6= ∅, so let (a1, . . . , an, b) ∈ V (a). Then

g(a1, . . . , an) = 0 for all g ∈ J and hence (a1, . . . , an) ∈ V (J),

1− f(a1, . . . , an)b = 0 and hence f(a1, . . . , an) 6= 0.

This is a contradiction with f ∈ I(V (J)).

Hence a = R[y]. Then we can write

1 = f1(x)g1(x, y) + · · ·+ fr(x)gr(x, y) + (1− f(x)y)g(y)
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where f1, . . . , fr ∈ J and g1, . . . , gr, g ∈ R[y]. Consider

R[y]→ Rf

given by y 7→ 1
f

(i.e. we substitute 1/f for y). Such a map exists by the universal property
of polynomial rings. Under the image of this map

1 =
r∑
i=1

fi(x)gi

(
x,

1

f(x)

)
.

Clearing denominators (recalling R is a domain), we obtain

fN =
r∑
i=1

fihi ∈ J

for some hi ∈ R and some N . Then f ∈
√
J . �

1.2. The topology on An. Recall that a commutative ring R is Noetherian if one of the
following equivalent conditions holds:

(1) every ideal is finitely generated,
(2) there is no infinite strictly increasing chain of ideals,
(3) any nonempty family of ideals has a maximal element.

Theorem 1.2.1 (Hilbert’s basis theorem). If R is a Noetherian ring, then R[x] is a Noe-
therian ring.

Corollary 1.2.2. Any polynomial ring k[x1, . . . , xn] over a field k is Noetherian.

Proof. Note that k is Noetherian and apply Hilbert’s basis theorem 1.2.1 repeatedly. �

Suppose again that k = k, n ≥ 1, and R = k[x1, . . . , xn]. Then R is Noetherian, and we get
the following consequences:

• Since every algebraic subset X ⊆ An can be written as V (J), J ideal, and there exist
f1, . . . , fr ∈ J such that J = (f1, . . . , fr), we can in fact write

X = V (f1, . . . , fr), the zero locus of finitely many polynomials.

• There is no infinite strictly decreasing chain of closed subset of An.

Definition 1.2.3. A topological space X with no infinite strictly decreasing chain of closed
subsets is called Noetherian.

Example 1.2.4. The real line R with the usual topology is not Noetherian:

[0, 1] ) [0, 1/2] ) · · · ) [0, 1/n] ) · · ·

Most non-algebraic examples are not Noetherian.

Remark 1.2.5. If X is a Noetherian topological space, there is no infinite strictly increasing
sequence of open subsets, and hence X is quasi-compact (every open cover has a finite
subcover).
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Remark 1.2.6. If X is a Noetherian topological space, then every subspace of Y is Noe-
therian (and hence every subspace of X is quasi-compact). Indeed, if

Y0 ) Y1 ) · · ·
is an infinite decreasing sequence of closed subsets of Y , consider

Y0 ) Y1 ) · · · .
Since Yj is closed in Y , Yj ∩ Y = Yj. This shows Yj+1 6= Yj for all j, contradicting that X is
Noetherian.

Definition 1.2.7. A topological space X is irreducible if

• X 6= ∅ and
• whenever X = X1 ∪X2 with X1 and X2 closed, we have X1 = X or X2 = X.

Otherwise, we say X is reducible. We say Y ⊆ X is irreducible or reducible if it is so with
the subspace topology.

Remark 1.2.8. We note that X is irreducible if and only if X 6= ∅ and for every two
nonempty open U, V ⊆ X, we have U ∩ V 6= 0. Equivalently, every nonempty open subset
of X is dense in X.

Proposition 1.2.9. If X ⊆ An is a closed subset, then X is irreducible if and only if I(X)
is a prime ideal.

Proof. Note that X is nonempty if and only if I(X) 6= R. Suppose X is irreducible. If
f, g ∈ R and f · g ∈ I(X), then X = (X ∩V (f))∪ (X ∩V (g)) is a decomposition into closed
subsets. Since X is irreducible, we may assume X = X ∩ V (f), and hence f ∈ I(X).

Conversely, suppose that I(X) is prime and X = X1 ∪X2 with X1, X2 closed, and X1 6= X,
X2 6= X. Then

I(x) ( I(Xi), for i = 1, 2.

Let fi ∈ I(Xi) \ I(X). Then f1f2 ∈ I(X1) ∩ I(X2) = I(X), contradicting that I(X) is
prime. �

Examples 1.2.10.

(1) Since k[x1, . . . , xn] is a domain, 0 is a prime ideal, so An = V (0) is irreducible.
(2) Any linear subspace L ⊆ An is irreducible: after a linear change of variables in R,

R = k[y1, . . . , yn] such that I(L) = (y1, . . . , yr) and this ideal is prime.
(3) A union of 2 lines in A2 is reducible.

Remark 1.2.11. If we have a subset X of An, it is usually not hard to prove it is an
algebraic subset by finding an ideal I such that X = V (I). However, it is sometimes not
easy to find I(X), the radical of the ideal I.

Remark 1.2.12.

(1) If Y ⊆ X is a subset, then Y is irreducible if and only if Y 6= ∅ and if Y ⊆ F1 ∪ F2,
F1, F2 ⊆ X closed, then Y ⊆ F1 or Y ⊆ F2.

(2) If Y ⊆ X, Y irreducible and Y ⊆ F1 ∪ · · · ∪ Fr for Fi closed in X, then there exists
an i such that Y ⊆ Fi. (To prove this, use induction on r.)
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(3) Using the description of irreducibility in (1) and noting that for a closed F we have
Y ⊆ F if and only if Y ⊆ F , we conclude that Y ⊆ X is irreducible if and only if Y
is irreducible.

(4) If X is irreducible and U ⊆ X is a nonempty open set, then U is irreducible by
property (3), because U = X.

We saw in Proposition 1.2.9 that if X ⊆ An is closed, then X is irreducible if and only if I(X)
is prime. The following proposition shows that any such X is a finite union of irreducible
closed sets, so I(X) is a finite intersection of prime ideals.

Proposition 1.2.13. If X is Noetherian topological space and Y ⊆ X is closed and nonempty,
then Y is a finite union of irreducible closed sets, i.e. Y = Y1 ∪ · · · ∪ Yr for some Yi closed
and irreducible. We may assume this decomposition is minimal (so Yi ( Yj for i 6= j), and
in this case the Yi are unique up to reordering.

Definition 1.2.14. In this case, Yi are the irreducible components of Y and

Y = Y1 ∪ · · · ∪ Yr
is the irreducible decomposition of Y .

Proof of Proposition 1.2.13. If there exists a Y without such a decomposition, we may choose Y
to be minimal without a decomposition, since X is Noetherian. In particular, this Y is not
irreducible, so there exists a decomposition Y = A∪B with A and B closed and A 6= Y and
B 6= Y . Since A,B 6= ∅, by minimality of Y , both A and B are finite unions of irreducibles.
But then Y = A ∪B admits such a decomposition, contradiction.

The fact that we can assume the decomposition is minimal is clear. We show uniqueness.
Suppose now

Y = Y1 ∪ · · · ∪ Yr = Y ′1 ∪ · · · ∪ Y ′s
are minimal decompositions with all Yi, Y

′
j closed and irreducible. For all i, Yi ⊆ Y ′1 ∪· · ·∪Y ′s

and Yi is irreducible, so there exists j ≤ s such that Yi ⊆ Y ′j . Similarly, there exists l ≤ r
such that Y ′j ⊆ Yl. Then Yi ⊆ Yl, so i = l by minimality of the decomposition, which implies
Yi = Y ′j .

Changing the roles of Yi and Y ′j in the above argument, we get the result. �

Definition 1.2.15. If X is a topological space and Y ⊆ X, Y is locally closed if for any
y ∈ Y , there exists an open neighborhood Uy of y in X such that Uy ∩ Y ⊆ Uy is closed.

Remark 1.2.16. If Y ⊆ X is a subset, then Y is closed in X if and only if for any y ∈ X,
there exists an open neighborhood Uy of y in X such that Y ∩ Uy ⊆ Uy is closed. Exercise:
prove this.

Proposition 1.2.17. Let Y ⊆ X be a subset. The following are equivalent:

(1) Y is locally closed in X,
(2) Y is open in Y ,
(3) we can write Y = U ∩ F with U open and F closed.

Condition (3) gives a good way to think about locally closed subsets.
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Proof. We first prove (1) implies (3). If Y is locally closed, then for all y ∈ Y choose Uy as
in the definition. Consider the open set

U =
⋃
y∈Y

Uy

in X. By Remark 1.2.16, Y is closed in U . Then Y = F ∩ U for F closed.

We now show (3) implies (2). If Y = U ∩ F for U open and F closed, then Y ⊆ F , and so
Y = U ∩ Y , showing that Y is open in Y .

Finally, we show (2) implies (1). Suppose Y = Y ∩ U . Then for any y ∈ Y , take Uy = U .
This works, since Y ∩ U = Y ∩ U is closed in U . �

Principal affine open subsets. Let X ⊆ An be closed. If f ∈ k[x1, . . . , xn], write

DX(f) = {u ∈ X | f(u) 6= 0}.

This is clearly an open subset of X, since DX(f) = X \ V (f).

Note that DX(f) ∩DX(g) = DX(fg). In fact, any open subset of X is of the form:

X \DX(J)

for some J ⊆ k[x1, . . . , xn]. Since J is finitely generated, we can write it as J = (f1, . . . , fr)
for some f1, . . . , fr ∈ J , whence

X \ V (J) = DX(f1) ∪ · · · ∪DX(fr).

Hence the sets DX(f) give a basis for the topology on X. We call them the principal affine
open subsets. This name will be justified later.

1.3. Regular functions and morphisms.

Definition 1.3.1. An affine variety is a closed subset of some An. A quasi-affine variety is
a locally closed subset of some An.

These are topological spaces with the induced topology. We will see later (when we talk
about sheaves) that these are ringed spaces.

We will do this by specifying the “allowable” functions.

Definition 1.3.2. Let Y ⊆ An be a locally closed subset. A regular function on Y is a map
ϕ : Y → k which can locally be given by the quotient of two polynomial functions, i.e. for
any y ∈ Y , there exists an open neighborhood Uy of y in Y and f, g ∈ k[x1, . . . , xn] such that
for any u ∈ Uy we have

g(u) 6= 0 and ϕ(u) =
f(u)

g(u)
∈ k.

We write O(Y ) to be the set of regular functions on Y . (By convention, O(∅) = 0.)

Remark 1.3.3. Just like the notion of a differentiable function in differential topology, we
define regular functions by a local property. Examples of functions which are not globally
rational will be given later.
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Note that

O(Y ) = {regular functions on Y } ⊆ {functions Y → k}︸ ︷︷ ︸
k-algebra

.

It is clear that O(Y ) is actually a subalgebra. For example, suppose ϕ1, ϕ2 ∈ O(Y ), so for
any y ∈ Y , there exist open neighborhoods U1, U2 of y and f1, f2, g1, g2 such that on Ui,

gi(u) 6= 0 and ϕi(u) =
fi(u)

gi(u)
. Then on U = U1 ∩ U2 3 y, we have that

(ϕ1 + ϕ2)(u) =
f1(u)

g1(u)
+
f2(u)

g2(u)
=
f1(u)g2(u) + f2(u)g1(u)

g1(u)g2(u)

and g1(u)g2(u) 6= 0. By a similar argument, ϕ1 · ϕ2 is regular.

Suppose X is closed in An. We have a map

k[x1, . . . , xn]→ O(X),

f 7→ (u 7→ f(u)).

The kernel is I(X).

Proposition 1.3.4. The induced k-algebra homomorphism

k[x1, . . . , xn]/I(X)→ O(X)

is an isomorphism.

More generally, suppose X ⊆ An is closed and U = DX(g) = {u ∈ X | g(u) 6= 0} for
g ∈ k[x1, . . . , xn]. We have a k-algebra homomorphism

Φ: k[x1, . . . , xn]g → O(U)

f

gn
7→
(
p 7→ f(p)

g(p)n

)
.

Proposition 1.3.5. The induced k-algebra homomorphism

k[x1, . . . , xn]g/I(X)g → O(U)

is an isomorphism.

Note that Proposition 1.3.4 is the case g = 1 of Proposition 1.3.5.

Proof of Proposition 1.3.5. We first show I(X)g = ker Φ. Consider

ker Φ =

{
f

gm

∣∣∣∣ f(u) = 0 for any u ∈ X \ V (g)

}
.

Clearly, I(X)g ⊆ ker(Φ). For the other inclusion, if f
gm
∈ ker(Φ), (fg)(u) = 0 for any u ∈ X,

so fg ∈ I(X), and
f

gm
=

fg

gm+1
∈ I(X)g.

Thus Φ induces an injective homomorphism as in the statement.
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We need to prove surjectivity. Fix ϕ ∈ O(U). Then there exist open V1, . . . , Vr such that
U = V1 ∪ · · · ∪ Vr and fi, gi ∈ k[x1, . . . , xn] such that for any u ∈ Vi, gi(u) 6= 0 and

ϕ(u) =
fi(u)

gi(u)
.

Since the principal affine open subsets form a basis, we may assume Vi = Dx(hi) for some
polynomial hi ∈ k[x1, . . . , xn], for any i. Since gi(u) 6= 0 for any u ∈ Dx(hi),

X ∩ V (gi) ⊆ V (hi).

By Hilbert Nullstellensatz 1.1.9, this shows that

hi ∈
√
I(X) + (gi).

Without changing Vi, we may replace hi by a power or by an element with the same class
modulo I(X). Hence we may assume without loss of generality that hi ∈ (gi), say hi = gih

′
i.

After replacing fi, gi by fih
′
i, gih

′
i respectively, we may assume gi = hi for any i:

ϕ(u) =
fi(u)

gi(u)
=
fi(u)h′i(u)

gi(u)h′i(u)
=
fi(u)h′i(u)

hi(u)

for u ∈ Vi.

Since fi(u)
gi(u)

=
fj(u)

gj(u)
for all u ∈ Dx(gigj),

fi
gi

=
fj
gj

in
k[x1, . . . , xn]gigj

I(X)gigj

by injectivity of the map. Therefore, there exists N such that

(gigj)
N(figj − fjgi) ∈ I(X).

Replacing fi by fig
N
i and gi by gN+1

i , we may assume

(1) figj − fjgi ∈ I(X)

for any i, j.

By definition of U , we have that:

U = DX(g) = DX(g1) ∪ · · · ∪DX(gr).

Thus

X \ V (g) = X \ V (g1, . . . , gr)

and hence

X ∩ V (g) = X ∩ V (g1, . . . , gr).

By Hilbert Nullstellensatz 1.1.9,√
I(X) + (g) =

√
I(X) + (g1, . . . , gr).

Thus, there exists m ≥ 1 and a1, . . . , ar ∈ k[x1, . . . , xn] such that

(2) gm −
r∑
i=1

aigi ∈ I(X).
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We claim that ϕ is the image of

r∑
i=1

aifi

gm
. We need to show that for any u ∈ DX(gj), we have

r∑
i=1

ai(u)fi(u)

gm(u)
=
fj(u)

gj(u)
.

Hence it is enough to show that
r∑
i=1

ai(u)fi(u)gj(u) = fj(u)g(u)m

for any u ∈ U . We have that
r∑
i=1

ai(u)fi(u)gj(u) =
r∑
i=1

ai(u)fj(u)gi(u) by equation (1)

= fj(u)g(u)m by equation (2).

This completes the proof. �

Example 1.3.6. Suppose X ⊆ A4 is defined by x1x2 = x3x4 and L ⊆ X is defined by
x2 = x3 = 0. Let

ϕ(u1, u2, u3, u4) =

{ u1
u3

if u3 6= 0
u4
u2

if u2 6= 0

Exercise. Show that there are no f, g ∈ k[x1, . . . , x4] such that

ϕ(u) =
f(u)

g(u)

for all x ∈ X \ L.

Note that this does not contradict Proposition 1.3.5, because X \ L is not a principal affine
open subset.

Let X ⊆ Am, Y ⊆ An be locally closed subsets. Any map f : X → Y makes the following
diagram

X Y

kn

k

f

fi pri

commute, and hence we can write f = (f1, . . . , fn) for fi = pri ◦ f : X → k.

Definition 1.3.7. A map f : X → Y is a morphism if f1, . . . , fn ∈ O(X).

Remark 1.3.8.

(1) A map f : X → A1 is a morphism if and only if f ∈ O(X). So a morphism f : X → A1

is a regular map.
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(2) A map f : X → Y is a morphism if and only if the composition X → Y ↪→ An is a
morphism.

Proposition 1.3.9. Every morphism f : X → Y is continuous with respect to the Zariski
topology.

Proof. Exercise. (Can also be found in the official notes.) �

Proposition 1.3.10. If f : X → Y and g : Y → Z are morphisms, then g◦f is a morphism.

Proof. Exercise. (Can also be found in the official notes.) �

Using Proposition 1.3.10, we can consider a category with locally closed subsets of affine
spaces over k as objects and the morphisms defined this way.

Morevoer, given a morphism f : X → Y , we get a morphism of k-algebras

f# : O(Y )→ O(X),

ϕ 7→ ϕ ◦ f.
This gives a contravariant functor{

category of
quasi-affine varieties

}
→
{

category of k-algebras
}
,

X 7→ O(X),

f 7→ f#.

Theorem 1.3.11. This induces an anti-equivalence of categories{
category of

affine varieties

}
→

 category of
finitely generated

reduced k-algebras

 ,

Proof. Note that this map is well-defined. If X ⊆ An is closed, Proposition 1.3.4 implies that

O(X) ∼= k[x1, . . . , xn]/I(X)

is a finitely generated reduced k-algebra.

It is enough to show the following statements:

(1) For any affine varieties X, Y , the map

α : HomVar(X, Y )→ Homk-alg(O(Y ),O(X))

is a bijection.
(2) For a finitely generated reduced k-algebra R, there exists an affine variety X such

that R ∼= O(X).

We first show (2). If R is a finitely generated reduced k-algebra, there exists a radical ideal J
such that

R ∼= k[x1, . . . , xm]/J.

For X = V (J), J = I(X), and hence

O(X) ∼= k[x1, . . . , xm]/J ∼= R
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by Proposition 1.3.4.

It remains to show (1). Suppose X ⊆ Am with coordinates x1, . . . , xm and Y ⊆ An with coor-
dinates y1, . . . , yn are closed. Given a morphism f : X → Y , we recall that f = (f1, . . . , fn),
fi ∈ O(X). Then by Proposition 1.3.4

O(Y ) O(X)

k[y1, . . . , yn]

I(Y )

k[x1, . . . , xn]

I(X)

yi fi

f#

∼= ∼=

Since f is determined by f1, . . . , fn, it is clear that α is injective. For surjectivity, given a
morphism of k-algebras

ϕ :
k[y1, . . . , yn]

I(Y )
→ k[x1, . . . , xm]

I(X)
,

choose f1, . . . , fn ∈ k[x1, . . . , xn] such that

yi 7→ fi.

Take f : X → An given by f(u) = (f1(u), . . . , fn(u)). By definition, this is a morphism. We
claim that f(X) ⊆ Y . Indeed, for g ∈ I(Y ), we have that g(f(u)) = 0 for all u ∈ X, because

g(f1, . . . , fn) ∈ I(X).

This completes the proof of (1) and hence the proves the theorem. �

Definition 1.3.12. A map f : X → Y is an isomorphism if it is an isomorphism in the
category of quasi-affine schemes, i.e. there exists a morphism g : Y → X such that f ◦g = idY
and g ◦ f = idX .

We note that f is an isomorphism if and only if f is bijective and f−1 is a morphism.

Definition 1.3.13. We say that a quasi-affine variety is affine if it is isomorphic to a closed
subset in some An.

The following is an important example of an affine variety.

Proposition 1.3.14. Suppose X ⊆ An is closed. For f ∈ O(X), DX(f) = {u ∈ X | f(u) 6=
0} is an affine variety.

(This justifies the name principal affine open subsets.)

Proof. Consider Y ⊆ An+1 defined by

I(X) · k[x1, . . . , xn, y] + (1− f(x)y).

Explicitly,
Y = {(x, y) | x ∈ X, 1 = f(x)y}.
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Let ϕ : DX(f) → Y be given by ϕ(u) =
(
u, 1

f(u)

)
. This is clearly a morphism and the map

ψ : Y → DX(f), ψ(u, t) = u is its inverse morphism. �

Remark 1.3.15. Let X ⊆ An be locally closed. Then X is open in X, which is affine.
Hence by Proposition 1.3.14, we have a basis of open subsets in X which are affine varieties.

Proposition 1.3.16. Suppose that f : X → Y is a morphism of affine varieties and

ϕ = f# : O(Y )→ O(X).

Let W ⊆ X be closed. Then

IY

(
f(W )

)
= ϕ−1(IX(W )).

Proof. We have

IY

(
f(W )

)
= IY (f(W ))

= {g ∈ O(Y ) | g(f(u)) = 0 for any u ∈ W}

= {g ∈ O(Y ) | (ϕ(g))(u) = 0 for any u ∈ W}

= ϕ−1(IX(W )).

as required. �

In particular, if x ∈ X with maximal ideal mx and y = f(x) with maximal ideal my, then
my = ϕ−1(mx).

Another special case is when W = X.

Definition 1.3.17. We say that a morphism f : X → Y is dominant if f(X) = Y .

By Proposition 1.3.16, f is dominant if and only if ϕ is injective. More generally, IY

(
f(X)

)
=

kerϕ.

Proposition 1.3.18. Suppose Z ⊆ Y is closed and Z = V (J). Then f−1(Z) = V (J ·O(X)),
where J · O(X) is the ideal of O(X) generated by elements in the image of J under f#.

Proof. We have that

u ∈ f−1(Z) if and only if f(u) ∈ Z
if and only if ϕ(g)(u) = g(f(u)) = 0 for any g ∈ J
if and only if u ∈ V (ϕ(J)) = V (J · O(X)).

This completes the proof. �
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1.4. Local rings.

Definition 1.4.1. Let X be a variety and W ⊆ X be closed and irreducible. We define the
local ring of X at W by

OX,W = lim−→
U open,
U∩W 6=∅

O(U)

where the order on such U is given by reverse inclusion.

Note that this is a filtering poset, i.e. for any open U1, U2 such that Ui∩W 6= ∅, we also have
U1 ∩ U2 ∩W 6= ∅ by irreducibility, so U1 ∩ U2 is a set bigger than U1 and U2 (under reverse
inclusion).

This gives a nice description of OX,W :

OX,W =

{
(U,ϕ)

∣∣∣∣ U open, U ∩W 6= ∅
ϕ ∈ O(U)

}/
∼

where (U1, ϕ1) ∼ (U2, ϕ2) if there exists U ⊆ U1∩U2 such that U∩W 6= ∅ and (ϕ1)|U = (ϕ2)|U .

Then it is clear that OX,W is a k-algebra. For example,

[(U1, ϕ1)] + [(U2, ϕ2)] = [(U1 ∩ U2, ϕ|U1,∩U2 + ϕ|U1∩U2)].

We will show that if X is affine and p = IX(W ) is prime, then

OX,W = O(X)p.

In particular, this is indeed a local ring.

The general goal is to describe OX,W more concretely. Intuitively, OX,W carries local infor-
mation about the functions on W . In particular, we have the following lemma.

Lemma 1.4.2. If V ⊆ X is open, V ∩W 6= ∅, then there exists a canonical isomorphism
OX,W → OV,V ∩W .

Proof. This follows since{
U ⊆ V

∣∣∣∣ U open, U ∩W ∩ V 6= ∅
ϕ ∈ O(U)

}
⊆
{
U ⊆ X

∣∣∣∣ U open, U ∩W 6= ∅
ϕ ∈ O(U)

}
and the right hand side is final. Explicitly, the map

OX,W → OV,V ∩W
(U,ϕ) 7→ (U ∩ V, ϕU∩V )

is the isomorphism, with inverse (U ′, ϕ′) 7→ (U ′, ϕ′). �

Remark 1.4.3. If (I,≤) is a poset, a subset J ⊆ I if final if for any a ∈ I, there exists b ∈ J
such that a ≤ b.

Proposition 1.4.4. If X is affine, W ⊆ X is closed and irreducible, with ideal IX(W ) = p,
then

OX,W ∼= O(X)p.

In particular, OX,W is a local ring, with maximal ideal

{(U,ϕ) | ϕ|W∩U = 0}.
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Proof. Since principal affine open subsets of X form a basis for the topology:

OX,W = lim−→
g∈O(X)

DX(g)∩W 6=∅

O(DX(g))︸ ︷︷ ︸
O(X)g

and DX(g) ∩W 6= ∅ if and only if W 6⊆ V (g) if and only if g 6∈ p. Then

OX,W = lim−→
g∈O(X)
g 6∈p

O(X)g.

Exercise: show that the natural map from the right hand size to O(X)p is an isomorphism.

Finally, O(X)p is a local ring with maximal ideal pO(X)p. Since p = IX(W ), the corre-
sponding ideal of OX,W is {(U,ϕ) | ϕ|W∩U = 0}. �

Remark 1.4.5. This is the origin of the term local ring. The maximal ideal p corresponds
to a point p ∈ X, and the localization O(X)p describes the functions in a neighborhood of
the corresponding point. (See the first special case below.)

Two special cases.

(1) If W = {p} is a point

OX,p = {germs of regular functions at p},
the local ring that captures the information about X in a neighborhood at p.

(2) If W = X (and hence X itself is irreducible), we define

k(X) := OX,X .
If U ⊆ X is a nonempty open affine subset, k(X) = k(U) = Frac(O(U)). Then k(X)
is a finite type field extension of k, i.e. k(X) = k(a1, . . . , an) for some a1, . . . , an ∈
k(X).

The elements of k(X) are called rational functions on X.

1.5. Rational functions and maps.

Lemma 1.5.1. If X, Y are quasi-affine varieties, f, g : X → Y are morphisms, then

{x ∈ X | f(x) = g(x)}
is closed in X.

Proof. Suppose Y ⊆ An is locally closed. Write f = (f1, . . . , fn) and g = (g1, . . . , gn). Then

A = {x ∈ X | (fi − gi)(x) = 0 for 1 ≤ i ≤ n}
and fi−gi are regular functions, and hence are continuous. Thus A is closed as an intersection
of closed sets (fi − gi)−1(0). �

Definition 1.5.2. Let X be a quasi-affine variety. The ring of rational functions on X is

{(U,ϕ) | U ⊆ X is open, dense and ϕ ∈ O(U)}
/
∼

where (U1, ϕ1) ∼ (U2, ϕ2) if there exists V ⊆ U1 ∩ U2 is open, dense, and (ϕ1)|V = (ϕ2)|V .
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Note that for open and dense sets U1, U2, the set U1 ∩U2 is also open and dense. Moreover,
by Lemma 1.5.1, the condition (ϕ1)|V = (ϕ2)|V is equivalent to (ϕ1)|U1∩U2 = (ϕ2)|U1∩U2 .

Hence we can make the following definition.

Definition 1.5.3. A rational function from X to Y , written f : X 99K Y , is an equivalence
class under ∼ of a pair (U,ϕ), where U ⊆ X is open and dense, and ϕ : U → Y , and
(U1, ϕ1) ∼ (U2, ϕ2) if (ϕ1)|U1∩U2 = (ϕ2)|U1∩U2 .

Suppose f : X 99K Y is a rational map, and (U1, ϕ1), (U2, ϕ2) are both representatives of f .
Define

ϕ : U1 ∪ U2 → Y

by

ϕ(x) =

{
ϕ1(x) if x ∈ U1,
ϕ2(x) if x ∈ U2.

Then ϕ is a morphism U1 ∪ U2 → Y and (U1 ∪ U2, ϕ) is also a representative of f .

By Noetherianity, we can choose a representative of f , say (V, ψ), such that V is maximal.
Then by the above argument, any representative of f is of the form (V ′, ψ|V ′) for some dense
subset V ′ ⊆ V .

Definition 1.5.4. If (V, ψ) is a representative of f and V is maximal, we say V is the domain
of the rational function f .

To compose rational functions, we recall Definition 1.3.17.

Definition. A morphism f : X → Y is dominant if f(X) = Y , i.e. for any nonempty open
subset V ⊆ Y , f−1(V ) 6= ∅.

If U ⊆ X is dense, then f : X → Y is dominant if and only if f |U : U → Y is dominant.
Hence we can make the following definition.

Definition 1.5.5. A rational map f : X 99K Y , represented by (U,ϕ), f is dominant if ϕ is
dominant.

This allows us to define composition.

Definition 1.5.6. Let f : X 99K Y , g : Y 99K Z be rational maps with X, Y, Z irreducible.
If f is dominant, we define the composition g◦f as follows: choose representatives ϕ : U → Y ,
ψ : V → Z and since U ∩ ϕ−1V 6= ∅ (as f is dominant), we let the map

U ∩ ϕ−1(V ) V Z
ϕ|U∩ϕ−1(V ) ψ

be a representative of g ◦ f .

Remark 1.5.7.

• The above construction is independent of choices for ϕ, ψ.
• If g is dominant, g ◦ f is also dominant.
• The identity 1X is dominant for all X.
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Therefore, we get a category whose objects are irreducible quasi-affine varieties and whose
morphisms are dominant rational maps. We write

Homrat(X, Y ) = {f : X 99K Y dominant rational maps},

the set of morphisms between X and Y in this category. This leads to an interesting notion
of isomorphism.

Definition 1.5.8. A dominant rational map f : X 99K Y is birational if it is an isomorphism
in this category, i.e. there exists a dominant rational map g : Y 99K X such that f ◦ g = 1Y ,
g ◦ f = 1X (as rational maps).

A birational morphism is a morphism f : X → Y which is birational.

Two irreducible varieties X and Y are birational if there exists a birational map X 99K Y .

Since the open sets in affine varieties are very large, varieties which are birational will share
a lot of the same properties. We will make this more precise later.

Examples 1.5.9.

(1) If X is an irreducible variety, U ⊆ X, then the inclusion i : U ↪→ X is a birational
morphism with inverse X 99K U represented by 1U .

(2) Let f : An → An be given by f(x1, . . . , xn) = (x1, x1x2, . . . , x1xn). For L = (x1 = 0),
f(L) = {(0, . . . , 0)}, and hence f induces a map

An \ L→ An \ {0}

which is an isomorphism with inverse

g : An \ {0} → An \ L

g(y1, . . . , yn) =

(
y1,

y2

y1

, . . . ,
yn
y1

)
.

Hence f is a birational morphism, although it is clearly not an isomorphism.

(3) Let X ⊆ A2 be defined by x2 − y3 = 0:

x

x

V (x2 − y3) = X

Let f : A1 → X, f(u) = (u3, u2) be a morphism. Then letting

g : X \ {(0, 0)} → A1,
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g(x, y) =
x

y
,

we see that f ◦ g = 1X , g ◦ f = 1A1 and hence f is birational. In fact,

f−1(X \ {(0, 0)}) A1 \ {0}

X \ {(0, 0)}

=

∼=

Even though f is a bijection, it is not an isomorphism, since

f# :
k[x, y]

(x2 − y3)
→ k[t]

x 7→ t3

y 7→ t2

is not an isomorphism.

Theorem 1.5.10. The contravariant functor quasi-affine irreducible varieties
and

rational dominant maps


 finite type field extensions K/k

and
k-algebra homomorphisms


X k(X)

f f#

is an anti-equivalence of categories.

Note that if f : X 99K Y is a dominant rational map, we get a map f# : k(Y ) → k(X) by
f#(ϕ) = ϕ ◦ f , and this is an k-algebra homomorphism. Hence the functor is well-defined.

Proof. It suffices to show

(1) for any X, Y , the map

Homrat(X, Y )→ Homk-alg(k(Y ), k(X)),

(2) for any field extension K/k of finite type, there exists an irreducible quasi-affine
variety such that K ∼= k(X).

Part (2) is clear. If K/k is of finite type, K = k(a1, . . . , an) for some a1, . . . , an ∈ K. Then

A = k[a1, . . . , an] ∼=
k[x1, . . . , xn]

P

for some ideal P , and since A ⊆ K is a domain, P is a prime ideal. Hence set X = V (P ),
which is irreducible, and O(X) ∼= A, so k(X) ∼= K.
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It remains to prove (2). Suppose X ⊆ Am, Y ⊆ An are locally closed and irreducible.
Then X is open in X and Y is open in Y . Thus X ↪→ X, Y ↪→ Y are birational morphisms,
so

Homrat(X, Y ) ∼= Homrat(X,Y ),

and k(X) ∼= k(X), k(Y ) ∼= k(Y ).

Replacing X by X, Y by Y , we may assume that X is closed in Am and Y is closed in An.
We note that

Homrat(X, Y ) =
⋃

g∈O(X)

Homdom(DX(g), Y )︸ ︷︷ ︸
dominant morphisms

=
⋃

g∈O(X)

Hominj
k-alg(O(Y ),O(X)g)︸ ︷︷ ︸
injective morphisms

.

Now,

Homk-alg(k(Y ), k(X)) = Hominj
k-alg(O(Y ), k(X))

=
⋃

g∈O(X)

Hominj
k-alg(O(Y ),O(X)g)

since O(Y ) is a finitely generated k-algebra.

All these isomorphisms are compatible with each other, which completes the proof. �

Corollary 1.5.11. A dominant rational map f : X 99K Y between irreducible quasi-affine
varieties is birational if and only if f# : k(Y )→ k(X) is an isomorphism.

Exercise. A rational map f : X 99K Y for X, Y irreducible is birational if and only if there

exist open subsets U ⊆ X and V ⊆ Y such that f induces an isomorphism U
∼=→ V .

1.6. Products of affine and quasi-affine varieties. We have an identification

Am × An = Am+n.

We we show that the topology on Am+n is finer than the product topology.

Proposition 1.6.1. If X ⊆ Am, Y ⊆ An are closed, then X × Y ⊆ Am+n is closed.

Proof. Suppose X = V (I) for I ⊆ k[x1, . . . , xm] and Y = V (J) for J ⊆ k[y1, . . . , yn]. Then

X × Y = V (I ·R + J ·R)

for R = k[x1, . . . , xm, y1, . . . , yn]. This shows that X × Y is closed in Am+n. �

Corollary 1.6.2. If U ⊆ Am and V ⊆ An are open subsets, then U × V ⊆ Am+n is open.
(Hence the topology on Am+n is finer than the product topology.) Similarly, a product of
locally closed subsets is locally closed.

Proof. We have that

Am+n \ (U × V ) = (Am \ U)× An ∪ Am × (An \ V )

is closed by 1.6.1. The second assertion follows from the ones for open and closed sets. �
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Example 1.6.3. The topology on A2 is strictly finer than the product topology. For example,
the diagonal V (x1 − x2) is closed in A2 but not closed in the product topology.

Remark 1.6.4. If X ⊆ Am, Y ⊆ An are locally closed, then X×Y ⊆ Am+n is locally closed
and the diagram

X X × Y Y

Am Am+n An

q1 q2

p1 p2

commutes.

We claim that (X × Y, q1, q2) is the direct product of X and Y in the category of quasi-
affine varieties. Given two morphisms f : Z → X, g : Z → Y , there is a unique morphism
h : Z → X × Y such that q1 ◦ h = f , q2 ◦ h = g, namely h = (f, g).

The upshot of this is that if f : X → X ′ and g : Y → Y ′ are isomorphisms, then

(f, g) : X × Y → X ′ × Y ′

is an isomorphism.

Proposition 1.6.5. Let X, Y be affine varieties. The two projections

p : X × Y → X

q : X × Y → Y

are open, i.e. the image of an open set under both p and q is open.

Proof. By symmetry, it is enough to prove the assertion for p. Note that if X = U1∪· · ·∪Ur
and Y = V1 ∪ · · · ∪ Vs are open covers, then for an open subset W ⊆ X × Y , we have that

p(W ) =
⋃
i,j

p(W ∩ (Ui × Vj)).

It is hence enough to prove the proposition for Ui × Vj.

Since

• we are allowed to replace X, Y by isomorphic varieties,
• X, Y can be covered by open subsets which are affine varieties,

we may assume X ⊆ Am, Y ⊆ An are closed subsets. Also, every open subset W ⊆ X × Y
is a union of principal affine open subsets, so it is enough to show that p(W ) is open for
W = DX×Y (g), where g ∈ k[x, y], x = (x1, . . . , xm), y = (y1, . . . , yn).

We can write

g(x, y) =
r∑
i=1

pi(x)qi(y)

for polynomials pi ∈ k[x], gi ∈ k[y]. Given W , choose g and pi, qi such that r is minimal.
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We claim that q1, . . . , qr ∈ O(Y ) are linearly independent over k. Otherwise, we can write

r∑
i=1

λiqi = P (x) ∈ I(Y )

with some λj 6= 0. Take

g′ = g − pjλ−1
j P.

Then DX×Y (g) = DX×Y (g′), since P ∈ I(Y ), and

g′ =
∑
i 6=j

(pi − λ−1
j λi)qi,

contradicting the minimality of r. This proves the claim.

Suppose u ∈ p(DX×Y (g)). Then there exists v ∈ Y such that g(u, v) 6= 0. Then there
exists K ∈ {1, . . . , r} such that pK(u) 6= 0, i.e. u ∈ DX(pK). It is enough to show that

DX(pK) ⊆ p(DX×Y (g)).

Suppose u′ ∈ DX(pK), so pK(u′) 6= 0. Suppose for a contradiction that for any v′ ∈ Y we
have that g(u′, v′) = 0. Then

r∑
i=1

pi(u
′)︸ ︷︷ ︸

∈k

qi ∈ I(Y ).

Since pK(u′) 6= 0, this contradicts the linear independence of qi proved above. �

Corollary 1.6.6. If X, Y are quasi-affine irreducible varieties, then X × Y is irreducible.

Proof. It is enough to show that, given nonempty open subsets U, V ⊆ X × Y , the inter-
section U ∩ V is nonempty. We know that p(U), p(V ) are nonempty and open in X by
Proposition 1.6.5. Since X is irreducible,

p(U) ∩ p(V ) 6= 0,

so let a ∈ p(U) ∩ p(V ). Consider

Ua = {b ∈ Y | (a, b) ∈ U},

Va = {b ∈ Y | (a, b) ∈ V }.
Since the map Y → X×Y given by y 7→ (a, y) is a morphism, it is continuous, so Ua is open.
Similarly, Va is open. Hence for a ∈ p(U)∩p(V ), Ua, Va 6= ∅ and hence by irreducibility of Y ,
we have that Ua ∩ Va 6= ∅, and hence (a, b) ∈ U ∩ V . This shows that U ∩ V is nonempty,
and hence X × Y is irreducible. �

Suppose X ⊆ Am and Y ⊆ An are closed subsets, and I(X) ⊆ k[x], I(Y ) ⊆ k[y] are their
ideals. It is easy to see that

X × Y = V (I(X) · k[x, y] + I(Y ) · k[x, y]).

The goal is to show that

I(X × Y ) = V (I(X) · k[x, y] + I(Y ) · k[x, y]),
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i.e. the ideal I(X) · k[x, y] + I(Y ) · k[x, y] is radical. This is equivalent to showing that the
quotient ring

k[x, y]

I(X) · k[x, y] + I(Y ) · k[x, y]
is reduced. Note that this ring is isomorphic to

O(X)⊗k O(y).

Recall that k[x, y] = k[x]⊗k k[y]. In general, given

A B

C B ⊗A C

and ideals I ⊆ B, J ⊆ C, then

B/I ⊗A C/J ∼=
B ⊗A C

I · (B ⊗A C) + J · (B ⊗A C
by right-exactness of ⊗. Exercise. Prove this.

Proposition 1.6.7. If X, Y are affine varieties, then

O(X)⊗k O(Y )

is reduced.

This is related to separability of field extensions. Thus, before we prove Proposition 1.6.7,
we recall a few properties of separability.

Lemma 1.6.8. If k is a field, K/k is a finite, separable extension, then K ⊗k K ′ is reduced
for every field extension K ′/k.

Proof. If K/k is finite and separable, by the Primitive Element Theorem, there exists u ∈ K
such that K = k(u). Morevoer, if f ∈ k[x] is the minimal polynomial of u, then f has no
multiple roots in any field extension of k. Moreover,

K ∼=
k[x]

(f)
.

Then we have that

K ⊗k K ′ ∼=
K ′[x]

f ·K ′[x]
.

If the irreducible decomposition of f in K ′[x] is g1, . . . , gs, then the gi’s are relatively prime.
Indeed, if gi and gj had a common factor of positive degree, then they would have a common
linear factor in the algebraic closure of K ′, i.e. f would have a double zero, contradicting
that f has no multiple roots.

Thus, by the Chinese Remainder Theorem,

K ⊗k K ′ =
s∏
i=1

field︷ ︸︸ ︷
K ′[x]

(gi)
.
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Hence K ⊗k K ′ is reduced. �

Lemma 1.6.9. Let k be a perfect field. If K/k is a finite type field extension. Then there
exists a transcendence basis x1, . . . , xn of K/k such that

k(x1, . . . , xn) ↪→ K

is separable.

Recall that k is a perfect field if every finite extension of k is separable. For example,
characteristic 0 fields are separable, and characteristic p fields are separable if kp = k. In
particular, algebraically closed fields are perfect.

Proof. We may assume the characteristic of k is p > 0. Let x1, . . . , xm be a system of
generators of K/k. We may assume that

• x1, . . . , xn are a transcendence basis of K/k,
• xn+1, . . . , xn+r are not separable over k(x1, . . . , xn) = K ′,
• xn+r+1, . . . , xm are separable over K ′

If r = 0, there is nothing to prove. Suppose r > 0. Then there exists an irreducible
polynomial f ∈ K ′[T ] such that f ∈ K ′[T p] and f(xn+1) = 0. Choose 0 6= u ∈ k[x1, . . . , xn]
such that

g = uf ∈ k[x1, . . . , xn, T
p].

We claim that there exists i ≤ n such that ∂g
∂xi
6= 0. Otherwise,

g ∈ k[xp1, . . . , x
p
n, T

p]

and hence g = hp for a polynomial h, since k is perfect, contradicting the irreducibility of f .

Reordering, we may assume that ∂g
∂xn
6= 0. Then xn is separable over k(x1, . . . , xn−1, xn+1).

Hence switching xn and xn+1 will lower r. Repeating this procedure completes the proof of
the lemma. �

Proposition 1.6.10. If k is a perfect field, then for any field extensions K/k and K ′/k, the
tensor product K ⊗k K ′ is reduced.

Proof. We first show that we may assume that K/k is of finite type. We can write

K = lim−→
k⊆Ki⊆K

Ki/k finite type

Ki.

Then
K ⊗k K ′ ∼= lim−→(Ki ⊗k K ′)

and a direct limit of reduced rings is reduced. Hence we may assume K/k is of finite type.

By Lemma 1.6.9, there exists a transcendence basis x1, . . . , xn such that K is separable over
K ′′ = k(x1, . . . , xn). We have that

K ⊗k K ′ = K ⊗K′′ K ′′ ⊗k K ′,
and K ′′ ⊗k K ′ is a localization of K ′[x1, . . . , xn]. Therefore,

K ′′ ⊗k K ′ ↪→ K ′(x1, . . . , xn).
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Tensoring with K, we obtain

K ⊗k K ′ ↪→ K ⊗K′′ K ′(x1, . . . , xn)

and K ⊗K′′ K ′(x1, . . . , xn) is reduced by Lemma 1.6.8. �

We can finally prove that O(X) ⊗k O(Y ) is reduced for affine varieties X, Y over k. In
particular, as we have seen, this implies that the natural map

O(X)⊗k O(Y )→ O(X × Y )

is an isomorphism.

Proof of Proposition 1.6.7. We may assume that X and Y are irreducible. Let X1, . . . , Xn

are irreducible components of X and Y1, . . . , Ys are the irreducible components of Y . We
have a morphism

O(X) ↪→
r∏
i=1

O(Xi),

which is injective since X =
⋃
i

Xi. Similarly, the map

O(Y ) ↪→
s∏
j=1

O(Yj)

is injective. Then

O(X)⊗k O(Y ) ↪→
∏
i,j

O(Xi)⊗k O(Yj).

The product is reduced if all O(Xi) ⊗k O(Yj) are reduced, and in this case O(X) ⊗k O(Y )
are reduced.

Hence we may assume X and Y are irreducible. Then O(X) and O(Y ) are domains and

O(X) ↪→ k(X), O(Y ) ↪→ k(Y ),

so
O(X)⊗k O(Y ) ↪→ k(X)⊗k k(Y ).

Since k is algebraically closed, it is perfect, so k(X)⊗k k(Y ) is reduced by Proposition 1.6.10,
and hence O(X)⊗k O(Y ) is reduced. �

Definition 1.6.11. A hypersurface in An is a closed subset defined by

{u | f(u) = 0}
for some f ∈ k[x1, . . . , xn] \ k.

Recall that if R is a UFD then R[x] is a UFD.1 By induction, k[x1, . . . , xn] is a UFD. In
particular, f ∈ k[x1, . . . , xn]\k is irreducible if and only if (f) is prime. This shows that V (f)
is irreducible if and only if f is a power of an irreducible polynomial.

Proposition 1.6.12. If X is an irreducible quasi-affine variety, then X is birational to some
irreducible hypersurface in some AN .

1This is a standard theorem due to Gauss.
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Proof. We apply Lemma 1.6.9 to K = k(X) over k. There exists a transcendence basis
x1, . . . , xn of K/k such that K is finite and separable over k(x1, . . . , xn). By the Primitive El-
ement Theorem, there exists u ∈ K such that K = k(x1, . . . , xn)(u). Let f ∈ k(x1, . . . , xn)[T ]
be the minimal polynomial of u. Then

K ∼=
k(x1, . . . , xn)[T ]

(f)
.

After multiplying u be a suitable element of k(x1, . . . , xn), we may assume that

f ∈ k[x1, . . . , xn, T ]

and it is irreducible. In this case,

k(X) = Frac

(
k[x1, . . . , xn, T ]

(f)

)
,

and hence X is birational to
{u | f(u) = 0},

which is a hypersurface. �

1.7. Affine toric varieties. We first recall a few definitions.

Definition 1.7.1. A semigroup is a set with an operation + which commutative, associative,
and has an identity element, 0.

A morphism of semigroups is a map f : S → S ′ satisfying f(s1 + s2) = f(s1) + f(s2) and
f(0) = 0.

A subsemigroup of a semigroup S is a subset S ′ ⊆ S such that 0S ∈ S ′ and s1 + s2 ∈ S ′ for
s1, s2 ∈ S ′. (Then S ′ is also a semigroup.)

Examples 1.7.2.

(1) Every abelian group is a semigroup.
(2) For a field k, (k, ·) is a semigroup.
(3) The natural numbers N = Z≥0 are a semigroup (N,+).
(4) For semigroups S1, S2, S1 × S2 is a semigroup under pointwise addition.
(5) The set {m ∈ N | m 6= 1} is a semisubgroup of N.

We will require two properties:

• The semigroup S is finitely generated: there exist generators s1, . . . , sn ∈ S, i.e. for
any u ∈ S, there exist a1, . . . , an ∈ N such that

u = a1s1 + · · ·+ ansn.

In other words, there is a surjective morphism of semigroups

Nn S

(0, . . . ,
i

1, . . . , 0) si

• The semigroup S is integral, i.e. S is isomorphic to a subsemigroup of a finitely
generated free abelian group.
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If S is a finitely generated, integral semigroup, then we can form the semigroup algebra

k[S] =
⊕
s∈S

kχu

with multiplication given by χu · χv = χu+v and identity given by χ0.

If S1 → S2 is a semigroup morphism, we get an induced morphism of semigroup algebras
k[S1]→ k[S2] given by χu 7→ χϕ(u).

Examples 1.7.3. We have the following semigroup algebras associated to some semigroups:

(1) k[N] ∼= k[x],
(2) k[Nr] ∼= k[x1, . . . , xr],
(3) k[Zr] ∼= k[x±1

1 , . . . , x±1
r ],

(4) S = {m ∈ N | m 6= 1}, a semisubgroup of N generated by 2 and 3, then

k[S] = k[t2, t3] ⊆ k[t].

If S is a finitely generated, integral semigroup, then

• there exists a surjective map Nr → S, and hence a surjective homomorphism

k[x1, . . . , xr] = k[Nr]→ k[S],

and hence k[S] is a finitely generated k-algebra,
• there exists an injective map S ↪→ Zr, and hence an injective morphism

k[S] ↪→ k[Zr],

and hence k[S] is a domain.

There exists an affine algebraic variety, unique up to canonical isomorphism, TV(S) such
that O(TV(S)) ∼= k[S]. It is called the toric variety associated to S. The points of TV (S)
are in bijection with maximal ideals in k[S], i.e. with k-algebra homomorphisms k[S] → k,
which are in bijection with semigroup homomorphisms S → (k, ·).

For example, if ϕ : S → k is a semigroup homomorphism, the corresponding point of TV(S)
satisfies

χu(ϕ) = ϕ(u)

for u ∈ S.

In summary, we have the following procedure

S k[S] TV(S)

semigroup
domain of finite

type over k
irreducible affine

variety

and

points on TV(S) semigroup homomorphisms S → (k, ·).
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If S → S ′ is a semigroup morphism, we get a map k[S]→ k[S ′] which gives a map TV(S ′)→
TV(S).

Exercise. Consider S to be the image of a semigroup morphism ϕ : Nr → Zs. Then

k[S] ∼= k[Nn]/I,

where I = (χa − χb | a, b ∈ Nr, ϕ(a) = ϕ(b)).

There is some extra structure on TV(S) coming from the semigroup structure on S. Specif-
ically, we get a morphism

TV(S)× TV(S)→ TV(S)

corresponding to the k-algebra homomorphism

k[S]→ k[S]⊗ k[S]

χu 7→ χu ⊗ χu.

To describe it at the level of points, let ϕ, ψ : S → (k, ·) be a semigroup morphism. Then the
map above corresponds to the map (ϕ, ψ) 7→ ϕ · ψ, which is given by (ϕ · ψ)(u) = ϕ(u)ψ(u).
This operation is commutative, associative, and has the identity element

S → k

u 7→ 1.

Examples 1.7.4.

(1) Let S = Nr so that TV (S) = Ar. The operation on Ar is coordinate-wise multiplica-
tion. In particular, TV(S) is not a group in general.

(2) Let S = M be a free, finitely generated abelian group, so M ∼= Zr. Then

TV(M) ∼= (k∗)r

is the algebraic torus. This is an algebraic group. Note that we can recover M from
TV(M) via

M ∼= Homalg-gp(TV(M), k∗).

Proposition 1.7.5. If M and M ′ are free, finitely generated abelian groups, then the canon-
ical map

HomZ(M,M ′)→ Homalg-gp(TV (M ′),TV(M))

is bijective.

Note that, more generally, if ϕ : S → S ′ is a semigroup morphism, then we have a commu-
tative square

k[S] k[S]⊗ k[S]

k[S ′] k[S ′]⊗ k[S ′]

i.e. the induced map TV(S ′) → TV(S) is compatible with our operations. Hence the map
in Proposition 1.7.5 is well-defined.
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Proof of Proposition 1.7.5. A morphism of algebraic groups TV(M ′)→ TV(M) corresponds
(bijectively) to a k-algebra homomorphism f : k[M ]→ k[M ′] such that

k[M ] k[M ′]

k[M ]⊗ k[M ] k[M ′]⊗ k[M ′]

f

f⊗f

commutes. Suppose f(Xu) =
∑
u′∈M ′

au,u′X
u′ . Then the commutativity condition shows that

∑
u′∈M ′

au,u′X
u′ ⊗Xu′ =

(∑
u′∈M ′

au,u′X
u′

)
⊗

(∑
v′∈M ′

au,v′X
v′

)
=

∑
u′,v′∈M ′

au,u′au,v′X
u′ ⊗Xv′

This shows that if u′ 6= v′, then au,u′ ·au,v′ = 0, so there exists a unique u′ such that au,u′ 6= 0.
(Note that Xu is invertible in k[M ], so f(Xu) 6= 0.) Using the equality again, we get that
a2
u,u′ = au,u′ , so au,u′ = 1. Therefore, there exists f : M →M ′ such that f(Xu) = Xϕ(u).

We have hence shown that any morphism TV(M ′) → TV(M) comes from a morphism
ϕ : M → M ′. It is clear that ϕ is unique, and if f is a k-algebra homomorphism, then ϕ is
a group homomorphism. �

We go back to the general case where S is a semigroup (not a group).

Exercise. Given an integral, finitely generated semigroup, there exists a semigroup homom-
rphism i : S → Sgp, where Sgp is an abelian group, which is universal: given any morphism
g : S → A where A is an abelian group, there exists a unique morphism of semigroups
g̃ : Sgp → A such that the diagram

S A

Sgp

i
g̃

commutes.

In fact, if S ↪→ M , where M is a finitely generated free abelian group, we can take Sgp to
be the subgroup of M generated by S. This clearly shows that:

(1) Sgp is a finitely generated free abelian group,
(2) Sgp is generated as a group by S,
(3) i : S → Sgp is injective.

Let S be a finitely generated, integral semigroup. Then the map i : ↪→ Sgp induces a map

TV(Sgp)→ TV(S).
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Proposition 1.7.6. This map gives an isomorphism of TV(Sgp) onto a principal affine open
subset of TV(S).

Proof. Let u1, . . . , un ∈ S be a system of generators. Then Sgp is generated as a semigroup
by u1, . . . , un and −(u1 + · · ·+ un). Then

k[S]→ k[Sgp]

is the localization at Xu1+···+un . �

Note that the map TV(Sgp) → TV(S) is such that the action of TV(Sgp) on itself extends
to an algebraic group action of TV(Sgp) on TV(S) via the following commutative diagram

TV(Sgp)× TV(Sgp) TV(Sgp)

TV(Sgp)× TV(S) TV(S)

TV(S)× TV(S) TV(S)

=

Definition 1.7.7. An affine toric variety is an irreducible affine variety X with an open
subset T isomorphic to a torus such that the action of T on itself extends to an algebraic
action of T on X.

Remark 1.7.8. Normally, one adds the assumption that X is normal in the definition of an
affine toric variety. We will discuss this later on.

Hence we saw that if S is a finitely generated integral semigroup, then TV(S) with TV(Sgp) ↪→
TV(S) gives an affine toric variety.

Proposition 1.7.9. Given any affine toric variety X with a torus T ⊆ X, there exists a
finitely generated semigroup S such that X ∼= TV(S) as algebraic groups, and the diagram

X TV(S)

T TV(Sgp)

∼=

∼=

commutes.

Proof. We have an induced injective k-algebra homomorphism

O(X) ↪→ O(T ) = k[M ],

where T = TV(M). The commutative diagram

T × T T

T ×X X
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gives a commutative diagram

k[M ] k[M ]⊗k k[M ]

O(X) k[M ]⊗k O(X)

The commutativity condition shows that given f =
∑
auX

u ∈ O(X), we have that∑
auχ

u ⊗ χu ∈ k[M ]⊗k O(X)

if and only if whenever au 6= 0 , we have χu ∈ O(X). Hence if S = {u ∈ M | χu ∈ O(X)},
we have O(X) = k[S]. It is clear that S is a semisubgroup of M and hence S is integral.
Moreover, as k[S] is finitely generated, so S is finitely generated as a semigroup.

We finally show that Sgp = M . We note that S ⊆ Sgp ⊆M . Then the corresponding map

T = TV(M)→ TV(Sgp)→ X

is injective because T ⊆ X, and hence the first map T → TV(Sgp) is injective. By the
structure theorem for modules over PIDs, there exists a basis e1, . . . , en of M such that a
basis of Sgp is given by a1e1, . . . , anen for a1, . . . , ar ∈ Z>0. Thus the map T → TV(Sgp) can
be written as

TV(M) ∼= (k∗)n → (k∗)r ∼= TV(Sgp)

(λ1, . . . , λn) 7→ (λa11 , . . . , λ
ar
r ).

Since this map is injective, we must have r = n and ai = 1 for 1 ≤ i ≤ n if k has
characteristic 0. Hence M = Sgp.

Exercise. Check that the fact that T → X is an isomorphism onto an open subset implies
that r = n and ai = 1 for all i even in positive characteristic. �

Definition 1.7.10. Suppose X, Y are affine toric varieties with tori TX ⊆ X and TY ⊆ Y .
A toric morphism f : X → Y is a morphism of algebraic varieties that induces a morphism
of algebraic groups g : TX → TY .

Note that in this case f(λ · u) = g(λ)f(u), since this holds on TX × TX ⊆ TX ×X which is
open and dense.

Example 1.7.11. If ϕ : S1 → S2 is a morphism of semigroups, then we have the induced
morphism Sgp

1 → Sgp
2 , and hence a commutative diagram

TV(S2) TV(S1)

TV(Sgp
2 ) TV (Sgp

1 )

f

morphism

of alg. groups

Hence f is a toric morphism.
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Proposition 1.7.12. Given finitely generated integral semigroups S1, S2 the canonical map

Homsgp(S1, S2)→ Homtoric(TV(S2),TV(S1))

is a bijection.

Proof. By Proposition 1.7.5,

{
morphisms of algebraic groups

TV(Sgp
2 )→ TV(Sgp

1 )

} {
group homomorphisms

ϕ : Sgp
1 → Sgp

2

}
.

The map ϕ extends to

TV(S2) TV(S1)

TV(Sgp
2 ) TV (Sgp

2 )

if and only if ϕ(S1) ⊆ S2. This completes the proof, since the natural map

Homsgp(S1, S2)→ {ϕ : Sgp
1 → Sgp

2 | ϕ(S1) ⊆ S2}

is clearly bijective. �

Examples 1.7.13.

(1) If S = Nn, then (k∗)n = TV(Zn) ⊆ TV(S) = An and the action is component-wise
multiplication.

(2) For S = N \ {1} ⊆ N, S is generated by 2 and 3, so

k[S] = k[t2, t3] ⊆ k[t]

and the image of the map

TV(S) ↪→ A2

is the set X defined by x3 − y2 = 0. Note that k∗ ↪→ X under λ 7→ (λ2, λ3), and via
this embedding the action is given by component-wise multiplication.

Recall from the homework that if G is an algebraic group acting algebraically on an affine
variety X, there is an induced linear action of G on O(X) is given by

(λf)(u) = f(λ−1u).

Example 1.7.14. Consider X = TV(S) ⊇ V (Sgp) = T . For ϕ ∈ T , ϕ : Sgp → k∗, and
χω ∈ O(X), we have that

(ϕ · χω)(ψ) = χω(ϕ−1 · ψ) = ϕ−1(ω)ψ(ω)

for ψ : S → k. Hence the induced action of T on O(X) is

ϕ · χω = ϕ(ω)−1χω.
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Lemma 1.7.15. A linear subspace V ⊆ k[S] is preserved by the torus action, i.e. λV ⊆ V

for all λ ∈ T , if and only if V is S-homogeneous, i.e. for all f =
∑
u∈S

auχ
u ∈ V we have

χu ∈ V if au 6= 0.

Proof. By Example 1.7.14, the “if” implication is clear. Conversely, suppose V is preserved

by the T -action and let f =
∑
u

auχ
u ∈ V . Given ϕ ∈ T , by Example 1.7.14, we have that

∑
u

auϕ(u)−1χu ∈ V.

Repeating this, we see that∑
u

auϕ(u)−mχu ∈ V for any m ≥ 0.

If u1, . . . , ur ∈ Sgp are pairwise distinct, there exists a map ϕ : Sgp → k∗ such that ϕ(ui) 6=
ϕ(uj) for i 6= j. Indeed, given (ai1, . . . , a

i
n) ∈ Zn, there exist λ1, . . . , λn ∈ (k∗)n such that

n∏
j=1

λ
aαj
j 6=

n∏
j=1

λ
aβj
j

for α 6= β.

If f =
r∑
i=1

auiχ
ui and ϕ : Sgp → k∗ satisfies ϕ(ui) 6= ϕ(uj) for i 6= j, we see that χu1 , . . . , χur

are linear combinations of
r∑
i=1

auiϕ(ui)
−mχui

for 0 ≤ m ≤ r − 1. �

1.8. Normal varieties. We first recall a few definitions from Review Sheet #2. Let A→ B
be a ring homomorphism, and let

B′ = {u ∈ B | u is integral over A},
i.e. u ∈ B′ satisfies an equation of the form

un + a1u
n−1 + · · ·+ a0 = 0, ai ∈ A.

Then B′ is a subring of B, called the integral closure of A in B.

If A ⊆ B, then A is integrally closed in B if B′ = A.

Definition 1.8.1. A domain A is integrally closed if it integrally closed in Frac(A). It is
normal if it is Noetherian and integrally closed.

Definition 1.8.2. An irreducible affine variety X is normal if O(X) is normal, i.e. it is
integrally closed in its fraction field k(X).

Example 1.8.3. If a ring R is a UFD, then R is normal. In particular, An and (k∗)n are
normal varieties.
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Example 1.8.4. Let S be a finitely generated integral semigroup. Then TV(S) is normal
if and only if S is saturated, i.e. for any u ∈ Sgp such that mu ∈ S for some m ≥ 1 implies
that u ∈ S.

The only if implication is immediate, since (χu)m ∈ k[S] is integral. The converse is left as
an exercise. The solution can be found in the official notes.

2. Dimension of algebraic varieties

2.1. Krull dimension.

Remark 2.1.1. Later on, we will define algebraic varieties and all the results about affine
algebraic varieties will hold also for algebraic varieties. For simplicity, we present everything
for affine varieties for now.

Definition 2.1.2. Let X be a nonempty topological space. The Krull dimension of X is

dimX = sup

r ≥ 0

∣∣∣∣∣∣
there exists a sequence
Y0 ) Y1 ) · · · ) Yr

of closed and irreducible subsets Yi of X

 .

By convention, we set dim(∅) = −1.

Definition 2.1.3. Let R be a commutative ring, R 6= 0. The Krull dimension of R is

dimR = sup

r ≥ 0

∣∣∣∣∣∣
there exists a sequence
p0 ( p1 ( · · · ( pr

of prime ideals pi of R

 .

Example 2.1.4. If X is an affine variety over k, then dimX = dim(O(X)), where dimX is
the Krull dimension of X with the Zariski topology.

Remark 2.1.5. For every R, there is a topological space SpecR such that dim Spec(R) =
dimR. This will be made precise on the next homework.

Lemma 2.1.6. If X is a topological space and Y is a subspace of X, then dimY ≤ dimX.

Proof. If Y0 ) Y1 ) · · · ) Yr are irreducible and closed in Y , then Y0 ⊇ Y1 ⊇ · · · ⊇ Yr is a
sequence of irreducible closed sets. Moreover, since Yi is closed in Y , Yi = Yi ∩ Y for all i,
and hence the inclusion are strict. This shows that dimX ≥ r. �

Lemma 2.1.7. Suppose X is a topological space, Y1, . . . , Yr are closed subsets of X, and
Y = Y1 ∪ · · · ∪ Yr. Then

dimY = max
i

dimYi.

This applies, for example, if X is Noetherian space, Y is closed, and Yi are the irreducible
components of Y .

Proof. The inequality ≥ follows by Lemma 2.1.6. To prove the other inequality, suppose

Z0 ) · · · ) Zm
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are closed irreducible subsets of Y . Then

Z0 ⊆ Y = Y1 ∪ · · · ∪ Yr
and since Z0 is irreducible, there is an i such that Z0 ⊆ Yi. Then Zj ⊆ Yi for all j and hence
dim(Yi) ≥ m. This implies the other inequality. �

Lemma 2.1.8. Suppose X is a topological space, X = U1∪· · ·∪Ur for open subsets Ui ⊆ X.
Then dimX = max

i
dimUi.

Proof. The inequality ≥ follows by Lemma 2.1.6. To prove the other inequality, suppose

Z0 ) · · · ) Zm

are closed irreducible subsets of X. Since Zm 6= ∅, there is an i such that Zm ∩ Ui 6= ∅, and
hence

Z0 ∩ Ui ⊇ · · · ⊇ Zm ∩ Ui
are closed in Ui. Since the Zj’s are irreducible and Ui ∩ Zj 6= ∅, Ui ∩ Zj is irreducible and
dense in Zj. In particular, Zj ∩ Ui ) Zj+1 ∩ Uj for all j. Hence dim(Ui) ≥ m. �

Definition 2.1.9. Let X be a topological space and Y ⊆ X be an irreducible closed subset.
Then codimension of Y in X is

codimX(Y ) = sup

r ≥ 0

∣∣∣∣∣∣
there exists a sequence
Y0 ) Y1 ) · · · ) Yr = Y

for closed and irreducible subsets Yi of X

 .

Definition 2.1.10. Let R be a commutative ring and p ⊆ R be a prime ideal. Then height
of p or codimension of p is

ht(p) = codim(p) = sup

r ≥ 0

∣∣∣∣∣∣
there exists a sequence
p0 ( p1 ( · · · ( pr = p
for prime ideals pi of R


Remark 2.1.11. If X is an affine variety and Y ⊆ X is an irreducible closed subset with
ideal p = IX(Y ) ⊆ O(X), then codim(p) = codimX(Y ).

Remark 2.1.12. Arguing as in Lemmas 2.1.6, 2.1.7, and 2.1.8, if Y is a closed irreducible
subset of X and U ⊆ X is an open subset such that U ∩ V 6= ∅, then

codimX(Y ) = codimU(Y ∩ U).

2.2. Finite morphisms between affine varieties.

Definition 2.2.1. A morphism of affine varieties f : X → Y is finite if f# : O(Y )→ O(X)
is finite, i.e. it makes O(X) into a finitely generated O(Y )-module.

Example 2.2.2. Let Y be any affine variety and let a1, . . . , an ∈ O(Y ). Consider

X = {(u, t) | tn + a1(u)tn−1 + · · ·+ an(u) = 0} ⊆ Y × A1.

This is a closed subset in Y × A1. Clearly,

O(X) ∼=
(

O(y)[t]

(tn + a1(u)t+ · · ·+ an(u))

)
red

.
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Then O(X) is generated as an O(Y )-module by 1̄, t̄, . . . , t̄n−1. Hence the composition

X ↪→ Y × A1 → Y

is a finite morphism.

Example 2.2.3. Let X be an affine variety and i : Y ↪→ X be an inclusion of a closed subset
of X. Then i is finite, since O(X)→ O(Y ) is surjective, and hence finite.

Example 2.2.4. Let X ⊆ AN be a closed subset. Recall that in the proof of Noether
Normalization Lemma 1.1.12, we show that if x1, . . . , xN are the coordinates on AN , then
there exists a change of coordinates

yi =
∑

aijxj aij ∈ k, det(aij) 6= 0

such that
k[y1, . . . , yr] ↪→ O(X)

is finite, where r = trdegk(k(X)).

In other words, we have the commutative diagram

X AN AN (u1, . . . , uN)

Ar (u1, . . . , ur)finite and dominant

∼=
linear

Example 2.2.5. A map f : X → Y = {point} is finite if and only if X is a finite set. For the
“if” implication, note that O(X) = k#X is finitely generated over k. Conversely, if X → Y is
finite, then there exist irreducible components Xi of X such that the induced map Xi → Y
is finite (as a composition of finite maps). We may hence assume that X is irreducible.

The induced map k ↪→ O(X) is finite and O(X) is a domain, and hence O(X) is a field
which is a finite extension of k = k̄. Thus O(X) = k, which means that X is a point.

Remark 2.2.6. Note that a composition of finite morphisms between affine varieties is finite.

Remark 2.2.7. If f : X → Y is a finite morphism between affine varieties X and Y , and
Z ⊆ X, W ⊆ Y satisfy f(Z) ⊆ W , then the induced morphism g : Z → W is finite. This is
clear by the diagram

X Y O(Y ) O(X)

Z W O(W ) O(Z)

f#

g#

Since f# is finite, g# is also finite.

In particular, for any y ∈ Y , the map f−1(y)→ {y} is finite, so the set f−1(y) is finite.

Proposition 2.2.8. Let ϕ : R→ S be a finite (or just integral) ring homomorphism.

(1) If q ⊆ S is a prime ideal and p = ϕ−1(q) then q is maximal if and only if p is
maximal.
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(2) If q1 ( q2 are prime ideals in S then ϕ−1(q1) 6= ϕ−1(q2).
(3) If ϕ is also injective, then for any prime p ⊆ R there exists a prime q ⊆ S such that

ϕ−1(q) = p.
(4) If p1 ⊆ p2 are primes in R and q1 ⊆ S is a prime in S such that ϕ−1(q1) = p1, then

there exists a prime q2 ⊇ q1 such that ϕ−1(q2) = p2.

Proof. For (1), note that we have a finite injective homomorphism

R/p︸︷︷︸
domain

↪→ S/q︸︷︷︸
domain

,

and hence S/q is a field if and only if R/p is a field. (See Review Sheet #1 for the proof of
the last assertion.)

For (2), suppose ϕ−1(q1) = ϕ−1(q2) = p. Recall that if a map A→ B is finite, then the map
C → B ⊗A C is also finite:

A B finite

C B ⊗A C finite

Therefore, the map
Rp → Sp = S ⊗R Rp

is finite. By part (1), both q1Sp and q2Sp are maximal ideals contained one in the other.
Then they must be equal, which is a contradiction.

Recall that there is a bijection{
primes q in S

with ϕ−1(q) = p

} {
primes in

Sp/pSp
∼= S ⊗Rp/pRp

}
q qSp/pSp

The reason is the primes in Sp/pSp are all of the form qSp/pSp where q is a prime in S such
that pSp ⊆ q ⊆ Sp and ϕ(R \ p) ∩ q = ∅.

We will use this and Nakayama Lemma (which we recall in Remark 1.2.16) to prove (3). If
ϕ is injective, then Rp → Sp is also injective. Since Sp 6= 0 is a finitely generated Rp module
and Rp is local, by Nakayama lemma Sp 6= pSp, i.e. Sp/pSp 6= 0. Therefore, this ring has a
prime ideal, which must be of the form

qSp/pSp

with a prime q ⊆ S such that ϕ−1(q) = p. This implies (3).

For (4), consider the map
ϕ : R/p1 → S/q1

which is injective and finite. Using (3) for p2/p1, we get a prime ideal in S/q1 equal to q2/q1,
whose inverse image under ϕ is p2/p1. This implies (4). �
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Remark 2.2.9 (Nakayama Lemma). If (A,m) is a local ring and M is a finitely generated
A-module such that M = mM , then M = 0.

Corollary 2.2.10. Let f : X → Y be a finite morphism between affine varieties and ϕ =
f# : O(Y )→ O(X).

(1) The map f is closed, i.e. f(Z) is closed for Z ⊆ X closed. In particular, f is
surjective if and only if ϕ is injective.

(2) If Z1 ( Z2 are irreducible and closed in X, then f(Z1) 6= f(Z2).
(3) If f is surjective, then for any irreducible and closed subset W ⊆ Y , there exists an

irreducible and closed subset Z ⊆ X such that f(Z) = W .
(4) If W1 ⊆ W2 is irreducible and closed in Y and Z2 ⊆ X is irreducible, closed, and

f(Z2) = W2, then there exists an irreducible and closed subset Z1 ⊆ X such that
Z1 ⊆ Z2 and f(Z1) = W1.

Proof. Let Z ⊆ X be the closed subset corresponding to I = IX(Z) ⊆ O(X). We saw that

f(Z) = V (ϕ−1(I)).

We will show that V (ϕ−1(I)) ⊆ f(Z). Consider the finite injective homomorphism

O(Y )/ϕ−1(I) ↪→ O(X)/I.

Given a point y ∈ V (ϕ−1(I)) corresponding to a maximal ideal in n in O(Y )/ϕ−1(I), by
Proposition 2.2.8 (3), there exists a prime ideal m ⊆ O(X) such that I ⊆ m. Since ϕ−1(m) =
n, m is maximal by Proposition 2.2.8 (1). Hence y ∈ f(Z).

Finally, note that ϕ is injective if and only if f(X) = Y if and only if f is surjective, since
f is closed.

We have hence proved (1), and assertions (2), (3), (4) follow from the corresponding results in
Proposition 2.2.8 via the correspondence between prime ideals and irreducible closed sets. �

Corollary 2.2.11. If f : X → Y is a surjective finite morphism of affine varieties, then
dimX = dimY . Also, if Z is an irreducible closed subset of X, then codimX(Z) =
codimY (f(Z)).

Proof. If Z0 ) Z1 ) · · · ) Zr are irreducible and closed in X, then

f(Z0) ⊇ f(Z1) ⊇ · · · ⊇ f(Zr)

in Y are closed by Corollary 2.2.10 (1), irreducible, and the inclusions are strict by Corol-
lary 2.2.10 (2). Therefore, dimY ≥ dimX.

Suppose W0 ) W1 ) · · · ) Ws are irreducible and closed in Y . Since f is surjective, by
Corollary 2.2.10, there exists a closed irreducible subset Z0 ⊆ X such that f(Z0) = W0. By
Corollary 2.2.10 (4), there exists a sequence

Z0 ⊇ Z1 ⊇ · · · ⊇ Zs

of irreducible and closed subset such that f(Zi) = Wi for all i. Since the inclusions have to
be strict, dimX ≥ dimY .

Exercise. Prove the assertion above codimension. �
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2.3. The Principal Ideal Theorem (Krull). The goal of this section will be to prove the
following theorem.

Theorem 2.3.1 (Principal Ideal Theorem, Krull). Let X be a quasi-affine variety, f ∈
O(X), and let Y be an irreducible component of V (f) = {u ∈ X | f(u) = 0}. Then
codimX(Y ) ≤ 1.

Remark 2.3.2. The corresponding statement holds in arbitrary Noetherian rings.

Remark 2.3.3. We show that this holds if X is affine and O(X) is a UFD.

If f = 0, Y = X, and hence codimX(Y ) = 0.

If f 6= 0, we can write f = ufm1
1 . . . fmrr for a unit u and irreducibles fi. Then Y = V (fi)

for some i. If codimX(Y ) ≥ 2, there is a prime ideal p such that 0 ( p ( (fi). Choose
a ∈ p \ {0}. Let m be the exponent of fi in the prime factorization of a, i.e. a = fmi b ∈ p for
b coprime fi. Since fi 6∈ p and p is prime, this shows that b ∈ p. However, p ⊂ (fi), so fi|b,
contradicting the definition of m.

Homework. Read Review Sheet #3 on norms of elements with respect to finite field
extensions.

Before we proceed with the proof of Krull’s Theorem 2.3.1, we recall a few notions from
Review Sheet #3. Suppose L/K is a finite field extension. For u ∈ L, let ϕu : L→ L be the
K-linear map given by ϕu(v) = uv. We define the norm of u as

NL/K(u) = det(ϕu) ∈ K.
Then NL/K has the following properties

• NL/K(0) = 0 and NL/K(u) 6= 0 if u 6= 0,
• N(u1u2) = N(u1)N(u2),
• if u ∈ K, then N(u) = u[L:K],
• if f is a minimal polynomial of u over K, then N(u) = ±f(0)[L:K(u)].

Proposition 2.3.4. Let A ↪→ B be an injective integral homomorphism of integral domains
such that K = Frac(A) ↪→ L = Frac(B) is finite. If A is integrally closed, then for any
u ∈ B, NL/K(u) ∈ A. Moreover, if J is an ideal in B and u ∈ J , then NL/K(u) ∈ J ∩ A.

Proof. Let u ∈ B and f ∈ K[x] be the monic minimal of u over K. By hypothesis, there
exists a monic polynomial g ∈ A[x] such that g(u) = 0. Then f |g in K[x]. For every root a of
f in some algebraic closure L of L we have that g(a) = 0, so a is also integral over A. Writing
f = xn + α1x

n−1 + · · · + αn, we know that each coefficient αi is a (symmetric) polynomial
function of the roots of f , so it is integral over A. Since A is integrally closed in K, αi ∈ A
for all i. This implies that f(0) = αn ∈ A. Hence

NL/K(u) = ±(power of f(0)) ∈ A.

Finally, if u ∈ J , then
un + α1u

n−1 + · · ·+ αn = 0,

and hence
αn = −u(un−1 + · · ·+ αn−1︸ ︷︷ ︸

∈B

) ∈ J,
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since αi ∈ A ⊆ B and u ∈ B. This shows that

NL/K(u) = ±(power of αn) ∈ J,
completing the proof. �

Before proving Theorem 2.3.1, we restate it here for convenience and make a few remarks.

Theorem (Krull’s Theorem 2.3.1). Let X be a quasi-affine variety and f ∈ O(X). Let Y
be an irreducible component of V (f) = {u ∈ X | f(u) = 0}. Then codimX(Y ) ≤ 1.

Remark 2.3.5.

(1) If X1, . . . , Xr are the irreducible components of X and f |Xi 6= 0 for all i, then there
exists i such that Y ( Xi, so codimX Y ≥ 1. Hence by Theorem 2.3.1, codimX Y = 1.

(2) If U is an open subset of X and U ∩ Y 6= ∅, then codimX Y = codimU(Y ∩ U).
Moreover, Y ∩ U is an irreducible component of V (f |U). Hence we may replace X
by U and Y by U ∩ Y in Krull’s Theorem 2.3.1.

(3) To prove Krull’s Theorem 2.3.1, we may assumeX is affine, irreducible and Y = V (f).
Indeed, if there is a chain Y ( Y1 ( Y2 of irreducible closed subsets in X, then Y is
an irreducible component of V (f)∩ Y2 = V (f |Y2). Hence we may replace X by Y2 to
assume X is irreducible. Moreover, choose U ⊆ X open, affine such that U ∩ Y 6= ∅
and U ( X \

⋃
(other components of V (f)). By (2), we may replace X by U to

assume that X is affine and irreducible and Y = V (f).

Proof of Theorem 2.3.1. By Remark 2.3.5 (3), we may assume that X is irreducible, affine,
and Y = V (f). Since O(X) is a domain of finite type over k, by Noether Normaliza-
tion Lemma 1.1.12, there exists a finite injective homomorphism B ↪→ O(X) with B ∼=
k[x1, . . . , xr] where r is the transcendence degree of k(X) over k.

Let p = IX(Y ) ⊆ O(X), which is a prime ideal, and let q = p ∩ B, which is a prime ideal
in B. Morevoer, let K = Frac(B), L = k(X) = Frac(O(X)), and u = NL/K(f) 6= 0. Since
f ∈ p, by Proposition 2.3.4, u ∈ q.

We will show that q =
√

(u). The ‘⊇’ inclusion is clear since u ∈ q and q is prime. For the

other inclusion, ‘⊆’, suppose g ∈ q. Then g ∈ p =
√

(f), so there exists s ≥ 1 such that
gs = fh for some h ∈ O(X). Applying NL/K to this, we obtain

us·[L:K] = NL/K(g)s

= NL/k(f) ·NL/K(g) ∈ (u),

since NL/K(f) = u and NL/K(h) ∈ B by Proposition 2.3.4, and hence g ∈
√

(u).

Consider the finite surjective morphism ϕ : X → Ar such that Y ⊆ X goes to ϕ(Y ) = V (q).
By Corollary 2.2.11,

codimX Y = codimAr ϕ(Y ).

Since B is a UFD, we can apply Remark 2.3.3 to conclude that codimAr(ϕ(Y )) ≤ 1, because
ϕ(Y ) = V (u) by the claim. This completes the proof. �

Corollary 2.3.6. Let X be a quasi-affine variety and f1, . . . , fr ∈ O(X). If Y is an irre-
ducible component of

V (f1, . . . , fr) = {x | fi(x) = 0 for all i},
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then codimX(Y ) ≤ r.

Proof. We argue by induction on r. The base case r = 1 is Krull’s Theorem 2.3.1. As we
did in the proof of Krull’s Theorem 2.3.1, we may assume that X is affine (see specifically
Remark 2.3.5 (3)). Consider a sequence of irreducible closed subsets

Y = Y0 ( Y1 ( · · · ( Ym.

By hypothesis, there exists i such that Yi 6⊆ V (fi), and without loss of generality, assume
i = 1. By Noetherianity, we may assume that there is no irreducible closed subset Z with
Y ( Z ( Y1. Then Y is an irreducible component of Y1 ∩ V (f1).

After replacing X by some U open such that U ∩ Y 6= ∅ and

U ⊆ X \
⋃

(other compoments of Y1 ∩ V (f1)),

we may assume Y = Y1 ∩ V (f1). (This is the same trick as in Remark 2.3.5 (3).) Then

IX(Y ) =
√
IX(Y1) + (f1),

so for any i we can write

f rii − gi ∈ (f1)

for some ri ≥ 1 and gi ∈ IX(Y1). Note that

V (f1, . . . , fr) = V (f1, g2, . . . , gr).

It is enough to show that that Y1 is an irreducible component of V (g2, . . . , gr). Indeed, if
this holds, then by the inductive hypothesis m− 1 ≤ r − 1, so m ≤ r.

We have Y1 ⊆ V (g2, . . . , gr). Suppose Y1 ( Z ( V (g2, . . . , gr) and Z is irreducible and closed.
Since Y is an irreducible component of V (f1, g2, . . . , gr), it is an irreducible component of

Z ∩ V (f1) = V ((f1)|Z).

But then Krull’s Theorem 2.3.1 implies that codimZ(Y ) ≤ 1, which is a contradiction. �

Corollary 2.3.7. For any n ≥ 0, we have dim(An) = n.

Proof. For “≥”, note that

0 = V (x1, . . . , xn) ( V (x1, . . . , xn−1) ( · · · ( X

is a sequence of closed irreducible subsets of length n.

For “≤”, it is enough to show that codimX{p} ≤ n for any point p = (a1, . . . , an) ∈ An. But

{p} = V (x1 − a1, . . . , xn − an),

so its codimension is at most n by Corollary 2.3.6. �

Corollary 2.3.8. If X is an irreducible quasi-affine variety, then dimX = trdegk(k(X)).

Proof. Let X = U1 ∪ · · · ∪ Ur for affine open subsets Ui. Then

dim(X) = max
i

dimUi.

Moreover, k(Ui) = k(X), so we may assume X is affine.
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By Noether Normalization Lemma 1.1.12, there exists a finite surjective morphism X → Ar

where r = trdegk(k(X)), so dimX = dimAr = r. �

We get the following consequences of Corollary 2.3.8:

• for any quasi-affine variety X, dimX <∞,
• for any irreducible X and nonempty open subset U ⊆ X, dimU = dimX.

Corollary 2.3.9. Let X be a quasi-affine variety.

(1) If Y = Y0 ( Y1 · · · ( Yr = Z is a saturated chain of irreducible closed subsets (i.e.
there are no other such sets between Yi−1 and Yi for any i), then

r = dimZ − dimY.

(2) If X has pure dimension (i.e. all irreducible components of X have the same dimen-
sion) and Y ⊆ X is irreducible and closed, then

dimY + codimX Y = dimX.

Proof. The key statement is the following. Suppose Y ( Z is irrreducible and closed, and
there is no irreducible and closed between Y and Z. Then

dimZ = dimY + 1.

We may assume that X = Z. By Corollary 2.3.8, we may replace X and Y by U and
U ∩ Y if U ⊆ X is open with U ∩ Y 6= ∅. We may hence assume that X is affine. Choose
f ∈ IX(Y ) \ {0}. Then Y ⊆ V (f) ( X, so Y is an irreducible component of V (f), since
there are no irreducible closed subsets between Y and X.

Replace X by

X \
⋃

(irreducible components of V (f) different from Y ).

Since this subset is open, we may assume that Y = V (f). Similarly to the proof of Principal
Ideal Theorem 2.3.1, we apply Noether Normalization Lemma 1.1.12 to get a commutative
square

V (f) = Y X

V (u) = p(Y ) An

p

where p is finite and surjective. We have that IAn(p(Y )) is a principal ideal (g). We claim
that dim(p(Y )) = n− 1. We have that

O(p(Y )) =
k[x1, . . . , xn]

(g)
.

After a linear change of coordinates (as in the proof of Noether Normalization Lemma 1.1.12),
we may assume that g is a monic polynomial in xn with coefficients in k[x1, . . . , xn−1]. The
the map

k[x1, . . . , xn−1]→ O(p(Y ))
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is finite and injective, and hence

dim(O(p(Y ))) = dim k[x1, . . . , xn−1] = n− 1,

where the last equality follows from Corollary 2.3.7.

This shows that dimZ = dimY + 1, as we claimed at the beginning of the proof.

In the setting of part (1), Y = Y0 ( Y1 · · · ( Yr = Z is saturated, so dimYi = dimYi−1 + 1
for all 1 ≤ i ≤ r, and hence

dimZ = dimY + r.

This shows (1), and, in particular, r is independent of the choice of chain. Hence r =
codimZ(Y ), proving part (2) when X is irreducible.

In general,
codimX Y = max{codimXi Y | Y ⊆ Xi},

where X1, . . . , Xm are the irreducible components of X. By the above assertion,

codimX Y = max{dimXi − dimY | Y ⊆ Xi},
and if X has pure dimension, this shows that

codimX Y = dimX − dimY,

completing the proof. �

We now prove a partial converse to Corollary 2.3.6.

Proposition 2.3.10. If X is an affine variety and Y ⊆ X is irreducible, closed and has
codimension r, then there exist f1, . . . , fr ∈ O(X) such that Y is an irreducible component
of V (f1, . . . , fr).

Proof. When r = 0, this is clear because V (0) = X.

Suppose r ≥ 1. We want to show that there is an f1 such that Y ⊆ V (f1) and if X1, . . . , Xn

are the irreducible components of X, then Xi ( V (f1) for all i. In other words, we want

f1 ∈ IX(Y ) \
m⋃
i=1

IX(Xi).

Since Y 6= Xi for any i, IX(Y ) ( IX(Xi), and by the Prime Avoidance Lemma 2.3.11, such
an f1 exists. Then Y ⊆ V (f1) and

codimV (f1)(Y ) ≤ r − 1.

Repeat this procedure to find f2, . . . , fr such that

Y ⊆ V (f1, . . . , fr)

has codimension 0. �

Remark 2.3.11 (Prime Avoidance Lemma). If p1, . . . , pr are prime ideals in a ring R and

I ⊆ R is an ideal such that I ⊆
n⋃
i=1

pi, then I ⊆ pi for some i.

The proof of this is left as an exercise, and will appear on a review sheet.
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In general, we cannot choose f1, . . . , fr ∈ O(X) such that Y = V (f1, . . . , fr) (even if one is
willing to pass to small neighborhoods of a given point).

Example 2.3.12. Let X = V (x1x2 − x3x4) ⊆ A4, dimX = 3, and Y = V (x1, x3) ⊆ X.

Then Y ∼= A2, so dimY = 2. However, there is no f such that (x1, x3) =
√

(f, x1x2 − x3x4)
(even in OX,0).

Challenge. Can you prove this?

2.4. Dimension of fibers of morphisms. The setting is as follows. Suppose f : X → Y
is a dominant morphism of irreducible quasi-affine varieties. Then k(Y ) ↪→ k(X), and let
d = trdegk(Y )k(X). Then

d = trdegk(k(X))− trdegk(k(Y )) = dimX − dimY

by Corollary 2.3.8.

Note that if y ∈ Y , then f−1(y) is a closed subset of X. More generally, if W ⊆ Y is closed,
then f−1(W ) ⊆ X is closed.

We will show that

• for any y ∈ f(X), every irreducible component of f−1(y) has dimension at least d,
• there exists V ⊆ Y open such that for any y ∈ V , every irreducible component of
f−1(y) is nonempty and has dimension d.

Theorem 2.4.1. If Z is an irreducible closed subset of Y and W is an irreducible component
of f−1(Z) which dominates Z, then dimW ≥ dimZ + d (and, equivalently, codimX(W ) ≤
codimY (Z)). In particular, if y ∈ f(X), then every irreducible component of f−1(y) has
dimension at least d.

Proof. If we replace f by f−1(U)→ U where U is an open subset such that U∩Z 6= ∅, sinceW
dominates Z, W ∩ f−1(U) 6= 0. Thus the codimensions do not change, and by taking U to
be affine, we may assume that Y is affine. If codimY Z = r, by Proposition 2.3.10, there
exist f1, . . . , fr ∈ O(Y ) such that Z is an irreducible component of V (f1, . . . , fr). Then W
is an irreducible component of f−1(V (f1, . . . , fr)) = V (f1 ◦ f, . . . , fr ◦ f).

Indeed, if W ( W ′ ⊆ f−1(V (f1, . . . , fr)), then

Z = f(W ) ⊆ f(W ′) ⊆ V (f1, . . . , fr),

so f(W ′) = Z, and hence W ′ ⊆ f−1(Z). Since W is an irreducible component of f−1(Z), we
have W = W ′, which is a contradiction.

By Corollary 2.3.6, codimXW ≤ r. �

Theorem 2.4.2. Given f as before, there exists V ⊆ Y open, nonempty such that

(1) V ⊆ f(X),
(2) for any Z ⊆ Y irreducible, closed such that Z ∩ V 6= ∅, and for every W which is an

irreducible component of f−1(Z) which dominates Z, we have that

dimW = dimZ + d.
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In particular, for any y ∈ V , every irreducible component of f−1(y) has dimension d.

Proof. It is clear that we may replace f by f−1(U) → U whenever U is open in Y . In
particular, we may assume Y is affine. We claim that we may also assume that X is affine.
Indeed, let U1, . . . , Um ⊆ X be affine open subsets such that X =

⋃
i Ui. If Vi ⊆ Y satisfies

(1) and (2) for Ui ↪→ X
f→ Y , then V = V1 ∩ · · · ∩ Vm satisfies (1) and (2) for f .

Thus suppose X, Y are affine, and consider

f# : O(Y )→ O(X),

which is injective, since f is dominant. (Note that O(Y ) and O(X) are both domains since
X and Y are irreducible.) Consider the induced map

k(Y ) ↪→ k(Y )⊗O(Y ) O(X)︸ ︷︷ ︸
R

.

Then R is a k(Y )-algebra of finite type and Frac(R) = k(X).

By Noether Normalization Lemma 1.1.12, there exist y1, . . . , yd ∈ R such that

(1) they are algebraically independent over k(Y ),
(2) k(Y )[y1, . . . , yd] ↪→ R is finite.

After possibly multiplying the yi by an element in O(Y ) to clear denominators, we may
assyme that y1, . . . , yd ∈ O(X).

We claim that there exists s ∈ O(Y ) \ {0} such that O(Y )s[y1, . . . , yd] ↪→ O(X)s is finite.2

Choose generators x1, . . . , xN of O(X) as a k-algebra. By (2) above, we have

xmii + ai,1x
mi−1
i + · · ·+ ai,mi = 0

for somemi ∈ Z>0 and aij ∈ k(Y )[y1, . . . , yd]. Choose s ∈ O(Y ) such that saij ∈ O(Y )[y1, . . . , yd]
(i.e. clear denominators). Then all xi’s are integral over O(Y )s[y1, . . . , yd], and they generate
O(X)s over O(Y )s as an algebra, which proves the claim.

Replace f by the restricted map DX(f#(s)) = f−1(DY (s)) → DY (s). We may assume we
can factor f as

X
g−→ Y × Ad pr1−→ Y,

where g is finite and surjective. Let W be an irreducible component of f−1(Z). Then
g(W ) ⊆ Z × Ad. Since g is finite and surjective,

dimW = dim(g(W )) ≤ dim(Z × Ad) = dimZ + d,

where the last equality follows from a homework problem.3

The opposite inequality holds by Theorem 2.4.1. �

2In other words, instead of inverting all elements of O(Y ) 6= {0}, we can just invert one element and still
get a finite morphism between the localizations induced by f .

3Specifically, for quasi-affine varieties X and Y , dim(X × Y ) = dim(X) + dim(Y ).
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Example 2.4.3. Let f : A3 → A3 be given by

f(x, y, z) = (xaybz, xcy, x)

for some a, b, c ∈ Z>0. If V ⊆ A3 is V = DA3(xy) = (xy 6= 0), then f−1(V ) → V is an
isomorphism with inverse (u, v, w) 7→ (w, vw−c, uv−b, w−a+bc). Hence f is birational, and
on V the fibers are just single points.

What about the other fibers? We have that

f−1(x0, y0, 0) =

{
∅ if x0 6= 0 or y0 6= 0,
∼= A2 if x0 = y0 = 0.

Similarly, for z0 6= 0,

f−1(x0, 0, z0) =

{
∅ if x0 6= 0,
V (x− z0, y) ∼= A1 if x0 = 0.

3. General algebraic varieties

General algebraic varieties are objects obtained by gluing finitely many affine algebraic vari-
eties together with a Hausdorff-type condition. We can glue affine varieties using atlases (for
example, in differential geometry) or using ringed spaces (which is the more modern point
of view). We will take the latter approach.

3.1. Presheaves and sheaves. The first goal will be to define sheaves.

Let X be a topological space. We can think of X as a category, CatX whose objects are the
open subsets of X and Hom(U, V ) has 1 element if U ⊆ V and is empty otherwise.

Let C be a category and X be a topological space. The main examples will come from
C = R-mod or C = R-alg, where R is a fixed commutative ring, but C could also be the
category of sets or the category of rings.

Definition 3.1.1. A presheaf on X of objects in C is a contravariant functor

F : CatX → C.
In other words, for any open set U ⊆ X, we have an object F(U) in C, and for any inclusion
U ⊆ V we have a morphism F(V )→ F(U) in C, denoted by s 7→ s|U , which satisfies:

(1) if U = V , s|U = s,
(2) if U ⊆ V ⊆ W , s ∈ F(W ), then (s|V )|U = s|U .

The object F(U) in C is also written Γ(U,F) and its elements are called sections of F on U .
The morphisms F(V )→ F(U) are called restrictions of sections.

Suppose that C is a subcategory of the category of sets and a morphism in C is an isomorphism
if and only if it is a bijection.

Definition 3.1.2. A presheaf F is a sheaf if given any family (Ui)i∈I of open subsets of X

and U =
⋃
i∈I

Ui together with si ∈ F(Ui) for all i ∈ I such that (si)|Ui∩Uj = (sj)|Ui∩Uj for all

i, j ∈ I, there exists a unique s ∈ F(U) such that s|Ui = si for all i.
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In other words, sheaves are presheaves such that sections can be described locally.

Note that if we take I = ∅, the condition in the definition is that F(∅) contains precisely
one element.

Remark 3.1.3. We can write the above definition categorically, without requiring that C is
a subcategory of sets. However, all the categories we consider are subcategories of sets, so
we simplify the definition to this case.

Remark 3.1.4. If F is a presheaf of objects in C which is a subcategory of the category
of abelian groups, the condition for F to be a sheaf can be reformulated as follows: for any
union U =

⋃
i

Ui of open sets Ui, the sequence

0 F(U)
∏
i

F(Ui)
∏
i,j

F(Ui ∩ Uj)

(si)i∈I ((si)Ui∩Uj − (sj)|Ui∩Uj)

is exact.

Examples 3.1.5.

(1) Let X be a topological space, and let C = R-alg, and define for U ⊆ X open

CX,R(U) = {continuous functions f : U → R}

with restriction maps given by restrictions of functions. This is the sheaf of real
continuous functions on X.

(2) Let X be a C∞-manifold. For U ⊆ X open, define

C∞X,R(U) = {f : U → R | f is C∞}

with restriction maps given by restrictions of functions. Then C∞x,R is a sheaf of R-
algebras.

(3) Let X be a quasi-affine variety. For U ⊆ X open, let

OX(U) = {f : U → k | f regular function}

with restriction of functions. Then OX is a sheaf of k-algebras.
(4) Let f : X → Y be a continuous function, and define a sheaf of sets on Y by setting

for a set U ⊆ Y ,

F(U) = {s : U → X continuous | f(s(y)) = y for all y ∈ U}

with restriction of functions. In this example, the section of F are actually sections
of a function, justifying the name.

Definition 3.1.6. If F , G are presheaves on X of objects in C, define ϕ : F → G by defining
for any U ⊆ X open a morphism in C

ϕU : F(U)→ G(U)

which is compatible with the restriction maps: if V ⊆ U are open sets, then
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F(U) G(U)

F(V ) G(V )

ϕU

ϕV

commutes, i.e. ϕV (s|V ) = ϕU(s)|V .

The same definition applies for sheaves.

Since the morphisms can be composed, we get a category of presheaves on X of objects in
C, and the full subcategory of sheaves on X of objects in C.4

Example 3.1.7. Let X and C be as before, W ⊆ X be open, and F be a presheaf on X.
Then F|W is a presheaf on W given by (F|W )(U) = F(U) for all U ⊆ W open with the
same restriction maps.

Clearly:

• if F is a sheaf, then F|W is a sheaf,
• if ϕ : F → G is a morphism, we get

ϕ|W : F|W → G|W .

Hence restriction to W is a functor from presheaves on X to presheaves on W .

Example 3.1.8. Let X be a quasiaffine, W ⊆ X be open. Then OW = (OX)|W is the sheaf
of function on W .

Assume C has direct limits.

Definition 3.1.9. If F is a presheaf on X of objects in C and x ∈ X, then the stalk of F at
x is

Fx = lim−→
U3x
F(U),

where U varies over the open neighborhoods of x, ordered by reverse inclusion.

More generally, if W ⊆ X is closed and irreducible, FW = lim−→
U∩W 6=∅

F(U).

Remark 3.1.10. This is a generalization of the definition of OX,W for a closed irreducible
subset W ⊆ X (cf. Definition 1.4.1).

Note that both sets are filtered, so the colimit is indeed a direct limit.

If C is R-mod or R-alg, we know how to describe FW (similarly to OX,W ).

This gives a functor {
presheaves on X
of objects in C

}
C

F FW
4A subcategory D ⊆ C is full if objD ⊆ objC and HomD(D,D′) = HomC(D,D′).
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since ϕ : F → G induces ϕU : F(U)→ G(U) and taking lim−→ gives a map FW → GW .

Notation. If s ∈ F(U) and x ∈ X, we write sx for the image of s in Fx.

Note that if F is a sheaf and s1, s2 ∈ F(U) satisfy (s1)x = (s2)x for all x ∈ U , then s1 = s2.

Definition 3.1.11. Let f : X → Y be a continuous map and F be a presheaf on X. We get
a presheaf on Y , denoted f∗F and called the pushforward of F by f , given by

Γ(V, f∗F) = Γ(f−1(V ),F)

for V ⊆ Y open, and the restriction maps induced by those of F .

If F is a sheaf, then f∗F is a sheaf.

This gives a functor: if ϕ : F → G, then f∗F → f∗G is induced by the following commutative
diagram

Γ(V, f∗F) Γ(V, f∗G)

Γ(f−1(V ),F) Γ(f−1(V ),G)

= =

ϕ|f−1(V )

Definition 3.1.12. If F is a presheaf on X, a subpresheaf is a presheaf G such that G(U) is
a subset of F(U) and the restriction maps for G are induced by the restriction maps for F .

If moreover F , G are both sheaves, G is called a subsheaf of F .

If G is a subpresheaf of F , the inclusion map gives a morphism of presheaves G → F .

3.2. Prevarieties. Let k = k̄ be fixed. Let X be a topological space. Define a sheaf on X
by setting for U open

FunX(U) = {f : U → k}
which is a k-algebra with respect to point-wise operations, and the restriction maps are
restrictions of functions.

If f : X → Y is a continuous map, we have a morphism of sheaves on Y given by

(∗) FunY → f∗ FunX

where for U ⊆ Y we set

FunY (U)→ FunX(f−1(U))

ϕ 7→ ϕ ◦ f
We define the category Topk as follows:

• objects are (X,OX) where X is a topological space and OX is a subsheaf of k-algebras
of FunX ,
• morphisms (X,OX) → (Y,OY ) are continuous functions f : X → Y such that for

any U ⊆ Y open and any ϕ ∈ OY (U), we have ϕ ◦ f ∈ OX(f−1(U)), i.e. (∗) induces
a morphism of sheaves OY → f∗OX .
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Remarks 3.2.1.

(1) Let (X,OX) ∈ Topk. If U ⊆ X is open, then we define OU = (OX)U ⊆ FunU , and
then (U,OU) ∈ Topk. The inclusion map i : U → X defines a morphism in Topk.

(2) If (X,OX), (Y,OY ) ∈ Topk, X =
⋃
i∈I

Ui is an open cover, αi : Ui ↪→ X are the

inclusions, and f : X → Y is any map, then

f is a morphism if and only if f ◦ αi is a morphism for all i.

This is because of the sheaf condition for OX .
(3) Isomorphisms in Topk: f : (X,OX)→ (Y,OY ) is an isomorphism if and only if f is a

homeomorphism and for any open U ⊆ Y

ϕ : U → k is in OY (U) if and only if ϕ ◦ f ∈ OX(f−1(U)).

Terminology: OX is the structure sheaf of (X,OX). We sometimes abuse notation and
write X to mean (X,OX), leaving the structure sheaf implicit.

Example 3.2.2. Let X ⊆ An be a locally closed subset. We define a sheaf OX by setting

U 7→ OX(U) = {f : U → k | f regular function}.
Then (X,OX) is an object in Topk.

If X ⊆ Am, Y ⊆ An are locally closed, then f : X → Y is a morphism in the new sense if
and only if it is a morphism in the old sense.

The ‘if’ implication follows since for f continuous and ϕ : U → k regular on U ⊆ Y open, we
have ϕ ◦ f : f−1(U)→ k is regular.

For the ‘only if’ implication, apply the definition for Y ↪→ An pri−→ k to conclude that if
f = (f1, . . . , fn), then each fi is a regular function.

Definition 3.2.3. An element (X,OX) ∈ Topk is an affine variety if it isomorphic in Topk
to (Y,OY ) where Y is a closed subset of some An.

Definition 3.2.4. A prevariety is an object (X,OX) in Topk such that there is a finite
open cover X = U1 ∪ · · · ∪ Un such that each (Ui,OUi) is an affine variety. Morphisms of
prevarieties are just morphisms in Topk.

Definition 3.2.5. A quasi-affine variety (X,OX) is an object in Topk isomorphic to (Y,OY )
where Y ⊆ An is locally closed.

Note that any quasi-affine variety is a prevariety.

Properties.

(1) If (X,OX) prevariety, then X is a Noetherian topological space.

Proof. If X = U1∪· · ·∪Ur where (Ui,OUi) is affine, so Ui is Noetherian for all i, then
any chain

F1 ⊇ F2 ⊇ · · ·
of closed subsets in X gives a chain

F1 ∩ Ui ⊇ F2 ∩ Ui ⊇ · · ·
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of closed subsets in Ui, so there exists ni such that Fj ∩ Ui = Fj+1 ∩ Ui for j > ni,
whence Fj = Fj+1 for j > max{n1, . . . , nr}. �

(2) If (X,OX) is a prevariety, then OX is a subsheaf of the sheaf CX of continuous
functions to k, i.e. CX(U) = {f : U → k | f continuous}.

This is clear since OX is a sheaf and the property holds for affines.
(3) If (X,OX) is a prevariety, ϕ ∈ OX(X), then U = {x | ϕ(x) 6= 0} is open by (2), and

we have 1
ϕ
∈ OX(U).

This is clear since OX is a sheaf and the property holds for affines by definition of
regular functions.

(4) All statements about dimension theory of quasi-affine varieties extends to all preva-
rieties.

This is because in all the proofs we reduced to the affine case, and the reduction
step is the same in the case of prevarieties.

(5) If (X,OX) is a prevariety, then the open subsets of X that are affine form a basis for
the topology of X.

This is clear since OX is a sheaf and the property holds for affines.

3.3. Subvarieties. Let (X,OX) be an object in Topk and Z be a locally closed subset of X.
Define OZ on Z as follows

OZ(U) =

{
f : U → k

∣∣∣∣ for any x ∈ U there exists V 3 x open in X and g ∈ OX(V )
such that V ∩ Z ⊆ U and g|V ∩Z = f |V ∩Z

}
.

Intuitively, elements of OZ are functions on Z that extend locally to sections of OX .

It is clear that

(1) OZ is a subsheaf of FunZ ,
(2) If Z,X are as above and W is locally closed in Z, the sheaf OW is the same whether

we consider W as a subset of X or of Z.

Note that if Z is open in X, we recover the previous definition, OZ = (OX)|Z .

Example 3.3.1. If Z is a locally closed subset in An, then the sheaf of regular functions
on Z is obtained in this way from OAn .

Proposition 3.3.2. If (X,OX) is a prevariety and Z ⊆ X is locally closed, then (Z,OZ) is
a prevariety.

Proof. There is an affine open cover X = U1 ∪ · · · ∪ Un. It is enough to show that

(Ui ∩ Z,OZ |Ui∩Z)

is a prevariety.

We have that Ui ∩ Z is a locally closed subset of Ui, which is affine, and OZ |Ui∩Z is a sheaf
induced by OX on a locally closed subset Ui ∩Z, which is the same the the sheaf induced by
OUi on Ui ∩ Z. Therefore, (Ui ∩ Z,OUi∩Z) is isomorphic to a quasi-affine variety, and hence
it is a prevariety. �

Remark 3.3.3. If (X,OX) and (Z,OZ) are as in Proposition 3.3.2, then the inclusion map
Z ↪→ X gives a morphism of prevarieties.
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Definition 3.3.4. A locally closed (open, closed) subvariety of the prevariety (X,OX) is a
prevariety (Z,OZ) where Z ⊆ X is locally closed (open, closed) and OZ is defined as before
from OX .

Definition 3.3.5. A locally closed immersion (or embedding) is a morphism of prevarieties
f : X → Y which factors as

X Z Y
g i

where g is an isomorphism and i is the inclusion map of a locally closed subvariety. If Z is
open (closed), we say that f is an open (closed) immersion.

Proposition 3.3.6. Let f : X → Y be a locally closed immersion of prevarieties. Given
g : Z → Y , there exists h : Z → X such that f ◦ h = g, i.e. the triangle

Z

X Y

gh

f

commutes, if and only if g(Z) ⊆ f(X).

Proof. If there is such an h, then g(Z) = f(h(Z)) ⊆ f(X). Conversely, suppose g(Z) ⊆ f(X).
Since f is injective, there is a unique function (set-theoretically) h : Z → X such that
f ◦ h = g. We need to show that h is a morphism. By definition of a locally closed
immersion, there exists a commuting triangle

X Y

W

f

if ′

∼=

where i is an inclusion of a locally closed subvariety and f ′ is an isomorphism. Altogether,
the diagram

X Y

W

Z

f

if ′

∼=

h g

commutes and it is enough to show that (f ′)−1 ◦h is a morphism. After replacing f : X → Y
by W ↪→ Y , we may assume that f is the inclusion of a subvariety.

We now have the commuting triangle
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X Y

Z

f

h g

Choose Y = U1 ∪ · · · ∪ Ur where Ui is open and affine, and write

X =
r⋃
i=1

f−1(Ui).

We can then restrict the above triangles to triangles

(quasi-affine) f−1(Ui) Ui (affine)

g−1(Ui)

f

h g

By covering g−1(Ui) by open affine subsets, we see that g−1(Ui) → f−1(Ui) is a morphism
for all i. Therefore, h is a morphism. �

Proposition 3.3.7. Let f : X → Y be a morphism of prevarieties. Then the following are
equivalent:

(1) f is a closed immersion,
(2) for any U ⊆ Y open affine, f−1(U) is an affine variety and the induced homomor-

phism O(U)→ O(f−1(U)) is surjective,

(3) there is an open cover Y =
r⋃
i=1

Ui such that f−1(Ui) is affine and O(Ui)→ O(f−1(Ui))

is surjective.

Proof. We show that (1) implies (2). We have the commuting diagram

X Y closed immersion

f−1(U) U closed immersion

f

As U is affine and open, f−1(U) is affine, and O(U) → O(f−1(U)) is surjective by the
description of regular functions on closed subsets of An. This shows that (1) implies (2), and
it is clear that (2) implies (3).

We show that (3) implies (1). Each morphism f−1(Ui) → Ui is a closed immersion. In
particular, it is injective and a homeomorphism onto a closed subset of Ui. Therefore, f is
injective and a homeomorphism onto a closed subset Z of Y . Consider on Z the sheaf OZ
defined from OX . By Proposition 3.3.6, f factors as X

h→ Z
i
↪→ Y . Then h is bijection and

we need to show h−1 is a morphism. This follows since

f−1(Ui) = h−1(Ui ∩ Z)→ Ui
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is an isomorphism, since f−1(Ui)→ Ui is a closed immersion. �

3.4. Fibered products of prevarieties.

Proposition 3.4.1. If X and Y are prevarieties, then there is a product on X, Y in the
category of prevarieties such that

• the underlying set is X × Y ,
• the topology is finer than the product topology,
• the “projection maps” X × Y → X and X × Y → Y are the projections.

Sketch of proof. Cover both X and Y by affine open subsets

X =
r⋃
i=1

Ui, Y =
s⋃
j=1

Yj.

Then
X × Y =

⋃
i,j

(Ui × Vj).

We know that Ui × Vj with the projections onto Ui and Vj is the direct product of Ui and
Vj in the category of quasi-affine varieties, where the topology and the structure sheaf on
Ui × Vj come from embeddings Ui ⊆ Ani and Vj ⊆ Amj .

The key point is that on (Ui1 × Vj1) ∩ (Ui2 × Vj2), the restrictions of the topology and the
struction sheaf coming from both Ui1 × Vj1 and Ui2 × Vj2 coincide. This is because both of
them satisfy the universal property defining the product (Ui1 ∩ Ui2) × (Vj1 ∩ Vj2). We can
then define a topology and a structure sheaf on X × Y by

• W ⊆ X × Y open if and only if W ∩ (Ui × Vj) is open for all i, j,
• ϕ : W → k is in OX×Y (W ) if

ϕ|W∩(Ui×Vj) ∈ OUi×Vj(W ∩ (Ui × Vj))
for all i, j.

This defines X × Y as an object in Topk. It is a prevariety since it is covered by the affine
open subsets Ui × Vj.

Exercise. Check that X ← X × Y → Y satisfies the universal property. �

Remark 3.4.2. If X and Y are irreducible is X ×Y is irreducible. To prove this, you could
use the following fact proved on Homework 1.

Suppose X is topological space and X = U1 ∪ · · · ∪Ur is an open cover and Ui 6= 0. Then X
is irreducible if and only if Ui is irreducible for all i and Ui ∩ Uj 6= ∅ for all i, j.

This allows to reduce to the case where X and Y are affine, where we know that this result
holds.

Definition 3.4.3. Let f : X → Y be a morphism of prevarieties. Define

jf : X → X × Y, x 7→ (x, f(x))

as the morphism defined by the universal property of products. Then jf is the graph mor-
phism of f and Γf = im(jf ) is the graph of f .
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For example, if f = 1X , then Γf = ∆X ⊆ X ×X is the diagonal.

Proposition 3.4.4. Let f : X → Y be a morphism of prevarieties. Then jf : X → X × Y
is a locally closed immersion.

Proof. For any x ∈ X, choose affine open neighborhoods Vx ⊆ Y of f(x) and Ux ⊆ f−1(Vx)
of x. Then

W =
⋃
x∈X

Ux × Vx

is open in X × Y . Since X × Y is Noetherian, we may take only finitely many x.

Note that jf factors through W

X X × Y

W

g open subvariety

and g is a morphism. It is enough to show that g is a closed immersion. We have that

g−1(Ux × Vx) = Ux

is affine. By Proposition 3.3.7, we only need to show that O(Ux×Vx)→ O(Ux) is surjective.

We may hence assume that X and Y are affine and show that j#
f : O(X × Y ) → O(X) is

surjective. If X ⊆ Am, Y ⊆ An, f = (f1, . . . , fn), we have that j#
f is the map

k[x1, . . . , xm, y1, . . . , yn]

I(X × Y )
→ k[x1, . . . , xm]

I(X)

xi 7→ xi

yj 7→ fj

The surjectivity is hence immediate. �

Corollary 3.4.5. The category of prevarieties has fibered products. More explicitly, if
f : X → Z and g : Y → Z, then

W = {(x, y) | f(x) = g(x)} ⊆ X × Y

is a locally closed subset and, with the maps inducted by projections. It is the fibered product
X ×Z Y :

X ×Z Y X

Y Z

f

g

(satisfying the obvious universal property).

Proof. The map
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X × Y Z × Z ⊇ ∆Z

(x, y) (f(x), g(y))

h

is clearly a morphism, and W = h−1(∆Z) is locally closed in X × Y by Proposition 3.4.4.

Consider the subvariety structure on W . It is enough to show that for any maps α : T → X,
β : T → Y such that f ◦ α = g ◦ β, there is a unique map γ : T → W such that p ◦ γ = α,
q ◦ γ = β, i.e. the following diagram commutes

T

W Y

X Z

β

α

γ

q

p g

f

The uniqueness is clear since the map has to be given by γ(t) = (α(t), β(t)) ∈ W .

We just need to show that this γ is a morphism. We have that

T W X × Yγ
incl.

is a morphism by the universal property of the product. Therefore, γ is a morphism by the
universal property of a subvariety. �

Example 3.4.6. Let f : X → Y be a morphism of prevarieties. Let W ⊆ Y be a locally
closed subvariety. Then we have the commuting square

f−1(W ) X

W Y

f f

i

and X ×Y W ∼= f−1(W ).

3.5. Separated prevarieties. When we define manifolds, we require the underlying topo-
logical space to be Haussdorff. We want to do similar for prevarieties, but algebraic preva-
rieties are almost never Hausdorff.

The key obvservation is that if X is a topological space then X is Hausdorff if and only if
∆X ⊆ X ×X is closed under the product topology. This motivates the following definition.

Definition 3.5.1. A prevariety X is separated if ∆X ⊆ X×X is a closed subset. A separated
prevariety is a variety.

Remarks 3.5.2.
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(1) We know that ∆: X → X ×X given by x 7→ (x, x) is a locally closed immersion by
Proposition 3.4.4. Therefore, X is separated if and only if ∆ is a closed immersion.

(2) If X is separated and f, g : Y → X are moprhisms, then

{y ∈ Y | f(y) = g(y)}
is closed in Y . (In particular, our discussion about the domain of a rational map
extends to varieties.)

To see this, note that we have a morphism

(f, g) : Y → X ×X, y 7→ (f(y), g(y))

and the set we want (f, g)−1(∆X), which is closed in Y since X is separated.

Properties.

(1) If X is a variety and Y is a locally closed subvariety of X, then Y is a variety. In
particular, every quasi-affine variety is a variety.

Proof. We have the diagram

Y × Y X ×X

∆Y = ∆X ∩ Y × Y ∆X

locally
closed

closed

and hence ∆Y is closed in Y × Y .
Finally, note that An is separated because ∆An = V (x1− y1, . . . , xn− yn) is closed

in An × An. �

(2) If f : X → Y is a morphism with Y separated, then jf : X × X → Y is a closed
immersion.

Proof. By Proposition 3.4.4, we only need to show that Γf ⊆ X × Y is closed. We
have a morphism

h : X × Y → Y × Y
(x, y) 7→ (f(x), y)

and Γf = h−1(∆Y ) is closed in X × Y since Y is separated. �

(3) If X and Y are varieties then X × Y is a variety. More generally, if f : X → Z and
g : Y → Z are morphisms of varieties, then

W = {(x, y) ∈ X × Y | f(x) = g(y)}
is a subvariety of X × Y . In particular, X ×Z Y is a variety by (1).

Proof. The first assertion follows from noting noting that ∆X×Y = p−1
13 (∆X)∩p−1

24 (∆Y )
where

(X × Y )× (X × Y )

X ×X Y × Y
p13

p24

�
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Thus this set is closed in X × Y , so X × Y is separated. For the second assertion,
consider the map

h : X × Y → Z × Z
(x, y) 7→ (f(x), g(y))

and W = h−1(∆Z) is closed in X × Y .
(4) If X is a variety and U, V ⊆ X are affine open subsets, then U ∩ V is affine.

Proof. We have that ∆: X → X ×X is a closed immersion, and U × V is affine, so
∆−1(U × V ) = U ∩ V is affine. �

Proposition 3.5.3. If X is a prevariety and X = U1∪ · · ·∪Ur is an affine open cover, then
X is separated if and only if Ui ∩ Uj is affine for any i, j and the homomorphism

O(Ui × Uj) O(Ui ∩ Uj)

O(Ui)⊗k O(Uj)

=

is surjective.

Proof. Apply Proposition 3.3.7, i.e. the crierion for

∆: X → X ×X
to be a closed immersion in terms of the affine open cover X ×X =

⋃
i,j

Ui × Uj. �

For gluing varieties, see problem set 5.

Example 3.5.4. Suppose X1 = X2 = A1, and define U ⊆ X1, V ⊆ X2 by

U = V = A1 \ {0}.

• Glue X1, X2 via the isomorphism id: U → V . We get a prevariety X with 2 open
subsets W1,W2 ⊆ X such that Wi

∼= A1. Then X is separated if and only if W1 ∩W2

is affine and the induced map O(W1 ∩W2) = O(W1) ⊗k O(W2) → O(W1 ∩W2) is
surjective. While W1 ∩W2 is affine, the induced map is

k[x1]⊗k [x2]→ k[t, t−1]

x1 7→ t

x2 7→ t

is clearly not surjective. Hence X is not separated.
• On the other hand, let Y be obtained from gluing X1, X2 along U → V given by
t 7→ t−1. We get two open affine subsets W1,W2 ⊆ Y such that W1 ∩W2

∼= A1 \ {0}
and the induced map

O(W1)⊗k O(W2)→ O(W1 ∩W2)

x1 7→ t

x2 7→ t−1
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is clearly surjective. Hence Y is separeted. In fact, one can see that Y is P1, which
we introduce in the next chapter.

4. Projective varieties

As always, k = k is a fixed field throughout.

4.1. The projective space. For n ≥ 0, we define

Pn = {lines in kn+1},
where a line is a 1-dimensional subspace. A line in kn+1 is given by some (a0, . . . , an) ∈
kn+1 \ {0}, and two tuples (a0, . . . , an) and (b0, . . . , bn) give the same line if there is a λ ∈ k∗
such that bi = λai for all i. This shows that, as a set,

Pn = (An+1 \ {0})/k∗

where k∗ acts by λ(a0, . . . , an) = (λa0, . . . , λan). Denote the quotient map by

π : An+1 \ {0} → Pn,
and write π(a0, . . . , an) = [a0, . . . , an].

Note that S = k[x0, . . . , xn] is an N-graded k-algebra, where the grading is given by degree.

Definition 4.1.1. A commutative unital ring R is graded if

R =
⊕
m∈Z

Rm

as abelian groups such that Rp ·Rq ⊆ Rp+q. It is moreover N-graded if Rm = 0 for all m < 0.

An element u ∈ Rm \ {0} is homogeneous of degree m and 0 is homogeneous of any degree.
Accordingly, if f ∈ R and f =

∑
i≥0

fi for fi ∈ Ri, then the fi are the homogeneous components

of f .

Note that R0 ⊆ R is a subring and Rm is an R0-module for all m. Hence R is actually an
R0-algebra.

Definition 4.1.2. A graded ring R is an A-algebra if R0 is an A-algebra (so R is an A-
algebra).

Definition 4.1.3. If R, S are graded rings, a graded homomorphism ϕ : R → S is a homo-
morphism such that ϕ(Rm) ⊆ Sm for all m.

Example 4.1.4. The main example, as we saw above, is S = k[x0, . . . , xn] where

Sm = {homogeneous polynomials of degree m}.

Remark 4.1.5. A closed subset Y ⊆ An+1 is k∗-invariant if and only if IAn+1(Y ) is a
homogeneous ideal.

Exercise. If I ⊆ R is an ideal of a graded ring R, the following are equivalent:

(1) I is generated by homogeneous elements,
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(2) if f ∈ I, all the homogeneous components of f are in I,

(3) the decomposition of R induces a decomposition I =
⊕
m

(I ∩Rm).

We can use this to prove the assertion in Remark 4.1.5. If f ∈ Sm, then

f(λ(u0, . . . , un)) = λmf(u0, . . . , un) for all λ ∈ k∗.
This implies that I is generated by homogeneous elements, and hence V (I) ⊆ An+1 is k∗-
invariant. Hence IAn(Y ) homogeneous implies Y is k∗-invariant.

Suppose Y ⊆ An+1 is k∗-invariant. Let f ∈ I = IAn+1(Y ) and write

f =
∑
i≥0

fi

with fi homogeneous of degree i. If u ∈ Y , then λu ∈ Y , so

0 = f(λu) =
∑
i≥0

λifi(u).

This holds for infinitely many λ, and hence fi(u) = 0 for all i. Thus I is homogeneous.

Goal. To establish a correspondence between homogeneous radical ideals in S and the closed
subsets in Pn with respect to a suitable topology.

By the property

f(λ(u0, . . . , un)) = λmf(u0, . . . , un) for all λ ∈ k∗

for f ∈ Sm, it makes sense to say that a homogeneous polynomial vanishes at a point in Pn.5

Given any f , we say that f vanishes at p ∈ Pn if all the homogeneous components of f
vanish at p.

Definition 4.1.6. For a homogeneous ideal I ⊆ S, define the zero locus of I in Pn as

V (I) = {p ∈ Pn | all f ∈ I vanish at p}.

Note that π−1(VPn(I)) = VAn+1(I) \ {0}.

The same properties hold for V in the projective case as did in the affine case:

(1) V (S) = ∅,
(2) V (0) = Pn,

(3) V

(∑
α

Iα

)
=
⋂
α

V (Iα),

(4) V (I ∩ J) = V (I · · · J) = V (I) ∪ V (J).

Therefore, V (I) for homogeneous ideals I ⊆ S form the closed sets of a topology on Pn,
which we call the Zariski topology again.

In the opposite direction, if X ⊆ Pn is a subset, then we may define

I(X) = {f ∈ S | f vanishes at all p ∈ X},
5Note that it does not make sense to evaluate a polynomial at a point of Pn.
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which is a homogeneous, radical ideal.

Consider the two compositions.

• If X ⊆ Pn, then V (I(X)) = X in Pn (and the proof is the same as in the affine case).
• If J is a homogeneous radical ideal in S such that J 6= (x0, . . . , xn), then

I(V (J)) = J,

which is known as the graded Nullstellensatz.

Proof. The ‘⊇’ inclusion is clear. For the other inclusion, suppose f ∈ I(V (J)).
We will show that f ∈ J . We may assume that f homogeneous of degree d (by
decomposing it into homogeneous components and proving the assertion for each of
them separately). Let Z be the zero locus of J in An+1. By hypothesis, f vanishes
on π−1(V (J))) = Z \ {0}. If d > 0, then f(0) = 0, so f vanishes on Z, and by the
Nullstellensatz 1.1.9, f ∈ J .

Suppose d = 0 and assume that f 6= 0. This implies that V (J) = ∅ as a subset
of Pn. Therefore, Z ⊆ {0}, so by the Nullstellensatz 1.1.9,

(x0, . . . , xn) ⊆ IAn+1(Z) = J.

This is a maximal ideal different from J by hypothesis, so J = S and hence f ∈ J . �

Note that I(V (x0, . . . , xn)) = I(∅) = S 6= (x0, . . . , xn). For this reason, (x0, . . . , xn) is
sometimes called the irrelevant ideal.

Corollary 4.1.7. We have inverse, order-reversing bijections

{
closed subsets

of Pn
}  radical, homogeneous ideals

in k[x0, x1, . . . , xn]
different from (x0, . . . , xn)


I(−)

V (−)

Proof. This follows from the above discussion, since for any X ⊆ Pn closed, I(X) 6=
(x0, . . . , xn). Otherwise, X = V (I(X)) = ∅, so I(X) = S. �

Exercise. If P ⊆ S is a homogeneous ideal, then P is prime if and only if for any homoge-
neous elements f, g of S, if fg ∈ P then f ∈ P or g ∈ P .

Using this, if I ⊂ S is radical, homogeneous, and different from (x0, . . . , xn), then V (I) is
irreducible if and only if I is prime.

Notation. If X ⊆ Pn is closed with corresponding ideal IX , we let SX = S/IX called the
homogeneous coordinate ring for X. This is an N-graded k-algebra since IX is homogeneous.

In particular, S is the homogeneous coordinate ring of Pn, and S+ = (x0, . . . , xn) is the
irrelevant ideal.

Definition 4.1.8. If X ⊆ Pn is closed and f ∈ SX is homogeneous, deg(f) > 0,

D+
X(f) = X \ V (f̃)

where f̃ ∈ S lies over f .
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This is an open subset of X. Since every radical homogeneous ideal J 6= S+, S is generated
by finitely many homogeneous polynomials of positive degree, the open subsets DPn(f) give
a basis for the topology on Pn.

Recall that we have a map π : An+1 \ {0} → Pn sending u to k · u.

Definition 4.1.9. If X ⊆ Pn is closed, the affine cone C(X) over X is

C(X) =
⋃
`∈X

`,

where ` ⊆ An+1 is a line.

Note that for nonempty X, C(X) = π−1(X) ∪ {0}. Moreover, if I = IX , then C(X) is the
zero-locus of I in An+1, so C(X) is also closed.

Next, we will want to characterize the irreducible components of closed subsets of Pn.

Exercise. If G is an irreducible linear algebraic group acting algebraically on the variety X
then every irreducible component Z of X is preserved by the G-action, i.e. gZ = Z for all
g ∈ G.

Suppose now that X ⊆ Pn is a closed subset. Then C(X) ⊆ An+1 is closed and we have a k∗-
action on C(X). By the exercise, the irreducible components of C(X) are preserved by the
k∗-action. By Remark 4.1.5, this implies that the ideal defining each irreducible component
of C(X) is homogeneous.

Hence the minimal primes in S containing IX are homogeneous. They correspond to the
irreducible components X1, . . . , Xr of X. The corresponding irreducible decomposition of
C(X) is

C(X) = C(X1) ∪ · · · ∪ C(Xr).

The next goal is to put a sheaf of functions on Pn, which will make it a variety.

The key observationis that if F,G ∈ S are homogeneous polynomials of degree d we get a
function

D+
Pn(G)→ k

[u0, . . . , un] 7→ F (u0, . . . , un)

G(u0, . . . , un)

which is well-defined.

Definition 4.1.10. Given a locally closed subset W ⊆ Pn, a regular function on W is
f : W → k such that for any p ∈ W , there is an open neighborhood Up ⊆ W of p and
homogeneous polynomials F,G ∈ S of the same degree such that for any q ∈ Up we have

G(q) 6= 0 and f(q) =
F (q)

G(q)
.

We then write
O(W ) = {regular functions on W} ⊆ Fun(W ).

We note that:
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• O(W ) is a k-subalgebra of Fun(W ).
• if U ⊆ W is open, restriction of functions gives O(W )→ O(U).
• the presheaf OW ⊆ FunW we obtain is in fact a sheaf (by the local definition of regular

function).

Remark 4.1.11. The sheaf OW is the sheaf induced on the locally closed subset W by the
sheaf OPn .

We will next work towards showing that (Pn,OPn) is a variety.

Let (xi 6= 0) = Ui ⊆ Pn for 0 ≤ i ≤ n, an open subset of Pn, and define

ϕi : Ui → An

[u0, . . . , un] 7→
(
u0

ui
, . . . ,

ui−1

ui
,
ui+1

ui
, . . . ,

un
ui

)
.

This map is bijective with the inverse

ψi : An → Ui

(v1, . . . , vn) 7→ [v1, . . . , vi, 1, vi+1, . . . , vn].

Proposition 4.1.12. The maps ϕi and ψi are inverse isomorphisms in Topk.

Proof. For simplicity, take i = 0. Suppose that U = DAn(f) for some f ∈ k[x1, . . . , xn].
Then

ϕ−1
0 (U) =

{
[u0, . . . , un]

∣∣∣∣ f (u1

u0

, . . . ,
un
u0

)
6= 0

}
.

If deg(f) = d, we can write

f

(
u1

u0

, . . . ,
un
u0

)
=
g(u0, . . . , un)

ud0
,

where g is homogeneous of degree d. Then

ϕ−1
0 (U) = D+

Pn(x0g(x0, . . . , xn))

is open, so ϕ0 is continuous.

Suppose V = D+
Pn(g). Then

ψ−1
0 (V ) = {(v1, . . . , vn) | g(1, v1, . . . , vn) 6= 0} = DAn(h),

where h(x1, . . . , xn) = g(1, x1, . . . , xn), which is open. Hence ψ0 is continuous, which shows
that ϕ0 is a homeomorphism.

It is enough to show that α : U → k on an open set U ⊆ An is regular if and only if α ◦ ϕ0

is regular.

If α is regular, for any p ∈ U we can write

α(u1, . . . , un) =
f(u1, . . . , un)

g(u1, . . . , un)
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in some neighborhood of p for some f, g ∈ k[x1, . . . , xn]. Then

(α ◦ ϕ0)[u0, . . . , un] =
f
(
u1
u0
, . . . , un

u0

)
g
(
u1
u0
, . . . , un

u0

) =
udeg g

0 f1(u0, . . . , un)

udeg f
0 g1(u0, . . . , un)

for some f1, g1 homogeneous with deg f1 = deg f , deg g1 = deg g. Hence α ◦ ϕ0 is regular.

Exercise. Prove the other implication: if α ◦ ϕ0 is regular, then α is regular. �

Therefore, Pn is a prevariety. We show that it is actually a variety.

Proposition 4.1.13. The prevariety Pn is separated.

Proof. We have that Pn = U0 ∪ · · · ∪ Un where Ui is affine and open. We recall that by
Proposition 3.5.3, we have that Pn is separated if and only if Ui ∩Uj is affine for all i, j, and
the induced map

O(Ui)⊗k O(Uj)→ O(Ui ∩ Uj) (∗)
is surjective. Recall that we have an isomorphism

ϕi : Ui → An.

Suppose i < j. Then this induces

Ui ∩ Uj
∼=→ (xj 6= 0) ⊆ An,

showing that Ui ∩ Uj is affine.

Let use write x1, . . . , xn for coordinates on ϕi(Ui) and y1, . . . , yn for the coordinates on ϕj(Uj).

Exercise. Show that (∗) corresponds to a map

k[x1, . . . , xn]⊗k k[y1, . . . , yn]→ k[x1, . . . , xn, x
−1
j ]

such that
x` 7→ x`

yi+1 7→ x−1
j .

This map is clearly surjective, which completes the proof. �

Altogether, this proves that (Pn,OPn) is an algebraic variety, and hence for any locally closed
subset W of Pn, (W,OW ) is an algebraic variety.

4.2. Projective varieties.

Definition 4.2.1. A variety is projective (quasi-projective) if it is isomorphic to a closed
(locally closed) subvariety of some Pn.

Remark 4.2.2. Since there is an open immersion An ↪→ Pn, quasi-affine varieties are quasi-
projective.

Remark 4.2.3. The map π : An+1 \ {0} → Pn is a morphism. Indeed, it is enough to show
that for any i, 0 ≤ i ≤ n, if Ui = D+

Pn(xi), then π−1(Ui) → Ui is a morphism. This follows
from the commutativity of the diagram:
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π−1(Ui) Ui

An+1 \ V (xi) An

(x0, . . . , xn)
(
x0
xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi

)
∼= ∼=

since the bottom map is clearly a morphism.

We will use the following homework problem in the proof of the next proposition.

Remark 4.2.4 (Homework 6, Problem 5). Let X be a prevariety and let f1, . . . , fr ∈
Γ(X,OX) be such that the ideal they generate is Γ(X,OX). If DX(fi) is an affine vari-
ety for all i, then X is an affine variety.

Proposition 4.2.5. If X ⊆ Pn is a closed subvariety and f ∈ SX is homogeneous with
deg f > 0, then D+

X(f) = X \ (f = 0) is an affine variety.

Proof. If f̃ ∈ S maps to f ∈ SX , we have that

D+
X(f) = D+

Pn(f̃) ∩X.
Since X is closed in Pn, it is enough to show the assertion for Pn.

Consider the following regular functions on D+
Pn(f): ϕ0, . . . , ϕn such that

ϕi([u0, . . . , un]) =
udeg f
i

f(u)
.

We claim that the functions ϕ0, . . . , ϕn generate the unit ideal in O(D+
Pn(f)). Since f ∈

(x0, . . . , xn), there exists m such that fm ∈ (xd0, . . . , x
d
n), where d = deg f . We can hence

write

fm =
n∑
i=0

hix
d
i .

Define αi ∈ D+
Pn(f) by

αi([u0, . . . , un]) =
hi(u)

f(u)m−1
.

These are regular functions and

n∑
i=0

αiϕi =
n∑
i=0

hi
fm−1

xdi
f

=

n∑
i=0

hix
d
i

fm
= 1.

This shows that ϕ0, . . . , ϕn generate the unit ideal in O(D+
Pn(f)).

By Remark 4.2.4, to show that D+
Pn(f) is affine, we just need to note that DPn(f)∩DPn(xi) =

D+
Pn(xif). Indeed, the isomorphism

D+
Pn(xi) ∼= An
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with coordinates y1, . . . , yn on An induces

DPn(xif) ∼= {f(y1, . . . , yi, 1, yi+1, . . . , yn) 6= 0} ⊆ An,

which is a principal affine open subset and we know it is affine. �

Localization in graded rings. If S =
⊕

Sm is a graded ring and T ⊆ S is a multiplicative
system such that every element in T is homogeneous, then T−1S has a natural grading

(T−1S)m =
{a
t

∣∣∣ t ∈ T, a ∈ Sm+deg t

}
.

Example 4.2.6. If f ∈ S is homogeneous, Sf is graded and its degree 0 part is written
as S(f).

Example 4.2.7. If p ⊆ S is a homogeneous prime ideal, take T = {u ∈ S\p | u homogenenous}.
Then T−1S is graded and its degree 0 part is written as S(p).

Fix a closed subvariety X ⊂ Pn, let SX be the homogeneous coordinate ring of X and f ∈ SX
be homogeneous of positive degree. Define

Φ: (SX)(f) → O(DX(f))

g

fm
7→
(
u = [u0, . . . , un] 7→ g(u)

f(u)m

)
for g homogeneous of degree deg g = m · deg f .

Proposition 4.2.8. The map Φ is an isomorphism.

Proof. The proof is very similar to the proof of Proposition 1.3.5, and hence it is left as an
exercise. �

4.2.1. Dimension of projective varieties.

Proposition 4.2.9. If ∅ 6= X ⊆ Pn is a closed subvariety with homogeneous coordinate
ring SX . Then dimX = dim(SX)− 1.

Proof. Suppose first that X is irreducible. Then the diagram

An+1 \ {0} C(X) \ {0}

Pn X

π f

commutes. Since O(C(X)) = SX , we have that

dim(C(X) \ {0}) = dimC(X) = dim(SX).

Since X is irreducible, C(X) is irreducible, and hence C(X) \ {0} is also irreducible.

The map f is surjective and has 1-dimensional fibers (isomorphic to A1 \ {0}). By Theo-
rem 2.4.2, we obtain that

dim(C(X) \ {0}) = dim(X) + 1.
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This completes the proof in the irreducible case.

Generally, if X has irreducible components X1, . . . , Xr, then C(X) has irreducible compo-
nents C(X1), . . . , C(Xr). By the irreducible case, dimXi = dimC(Xi)− 1, and hence

dimX = max
i

dimXi = max
i

dimC(Xi)− 1 = dimC(X)− 1

by Lemma 2.1.7. �

We will use the following homework problem to prove the next corollary.

Remark 4.2.10 (Homework 5, Problem 3). Suppose X and Y are irreducible closed subsets
of An. Then any irreducible component of X ∩Y has dimension at least dimX + dimY −n.

Corollary 4.2.11. If X, Y ⊆ Pn are nonempty closed subsets such that dimX+ dimY ≥ n,
then X ∩ Y 6= ∅ and every irreducible component of X ∩ Y has dimension at least

dimX + dimY − n.

Proof. Clearly, (C(X) ∩ C(Y )) \ {0} = C(X ∩ Y ) \ {0}. Note that

0 ∈ C(X) ∩ C(Y ),

so this set is nonempty. By Remark 4.2.10, every irreducible component of C(X) ∩ C(Y )
has dimension at least

dimC(X) + dimC(Y )− (n+ 1).

Then Corollary 4.2.9 implies that any irreducible component of C(X)∩C(Y ) has dimension
at least

dimC(X) + dimC(Y )− (n+ 1) = dimX + 1 + dimY + 1− n− 1 ≥ 1,

Hence {0} 6= C(X) ∩ C(Y ), which shows that X ∩ Y 6= ∅.

We thus showed that C(X ∩ Y ) = C(X) ∩ C(Y ). Then any irreducible component Z of
X ∩ Y gives an irreducible component C(Z) of C(X) ∩ C(Y ) and

dimZ = dimC(Z)− 1 ≥ dimX + dimY − n+ 1− 1 = dimX + dimY − n

by Corollary 4.2.9. �

Grothendieck’s philosophy was to work in a relative setting: instead of studying varieties,
study varieties over a given variety.

Definition 4.2.12. Given a variety Y , a variety over Y is a morphism f : X → Y and a
morphism of varieties X1, X2 over Y is a commuting triangle

X1 X2

Y

This defines a category of varieties over Y . If Y = {pt}, this is just the category of all
varieties.
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Today, we study projective varieties over a fixed affine variety Y . The setting is as follows. Let
S be a reduced, N-graded, finitely generated k-algebra. Note that S0 is a finitely-generated
k-algebra and Sm is a finitely-generated S0-module. We write

S+ =
⊕
m>0

Sm.

Exercise. Homogeneous elements u1, . . . , un ∈ S+ generate S as an S0-algebra if and only
if they generate S+ as an ideal.

We always assume S is generated by S1 as an S0-algebra, i.e. there exists a surjective graded
homomorphism of S0-algebras

S0[x0, . . . , xn]� S

with the standard grading on S0[x0, . . . , xn].

Since S0 is a finitely-generated, reduced k-algebra, we can define

W0 = MaxSpec(S0),

which is an affine variety associated to S0. Similarly, to S we can associate

W = MaxSpec(S)

and the inclusion S0 ↪→ S given a map W → W0.

Remark 4.2.13. On Problem Set 6, we showed that given an commutative ring R, there is
a natural affine variety MaxSpec(R) whose points are the maximal ideals in R.

More generally, one would consider Spec(R), the prime ideals of R, but we restrict our
attention to this variety.

We have a k∗-action on W with the morphism k∗ ×W → W corresponding to

S → S[t, t−1]

f =
∑
i

fi 7→
∑
i

fit
i

with fi ∈ Si the homogeneous components.

Choose graded surjective map S0[x0, . . . , xn]� S, which is a morphism of S0-algebras. This
gives a map

j : W ↪→ MaxSpec(S0[x0, . . . , xn]) ∼= W0 × An+1,

since S0[x0, . . . , xn] ∼= S0 ⊗k k[x0, . . . , xn].

We also have the morphism

β : k∗ ×W0 × An+1 → W0 × An+1

(λ,w0, x0, . . . , xn) 7→ (w0, λx0, . . . , λxn).

Then β gives an algebraic group action of k∗. Moreover,

j(α(λ,w)) = β(λ, j(w)),

which shows that α is a group action as well.
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Lemma 4.2.14. The orbits of the k∗-action on W are either points or 1-dimensional. More-
over:

(1) x ∈ W is fixed by the k∗-action if and only if x ∈ V (S+),
(2) if O is a 1-dimensional orbit, O is closed in Q \ V (S+), O ∼= A1 and O ∩ V (S+) is 1

point.

Proof. Consider W ↪→ W0 × An+1 and note that V (S+) = W0 × {0}. �

Recall that a subset Y ⊆ W is preserved by the k∗-action if and only if IW (Y ) is homogeneous.

Definition 4.2.15. Given S as before, define the set

MaxProj(S) =

{
1-dimensional orbit

closures in W

}
=

{
homogenenous prime ideals p ⊆ S

such that dimS/p = 1 such that S+ 6⊆ p

}
.

The topology on this set is defined by declaring that the closets sets are 1-dimensional orbit
closure contained in some closed subset of W , preserved by the torus action. These are
subsets of the form

V (I) = {q ∈ MaxProj(S) | q ⊇ I}.

One can easily check that this defines a topology on MaxProj(S).

Remark 4.2.16. If S = k[x1, . . . , xn], then MaxProj(S) = Pn.

Remark 4.2.17. We use the notation MaxProj(S) in analogy to the notation MaxSpec(S)
above. Similarly as before, Proj(S) would be a similar construction without the restriction
to maximal ideals in S.

Note that we have a map

MaxProj(S)→ W0

q 7→ q ∩ S0

and it is continuous.

Remark 4.2.18 (Comments about the topology on X = MaxProj(S)). Since every homo-
geneous ideal I ⊆ S is generated by finitely many homogeneous elements, every open subset
in X is a finite union of open subsets of the form

D+
X(f) = {q ∈ X | f 6∈ q},

where f is a homogeneous element of S.

Moreover, we may only take f with positive degree. Suppose that t0, . . . , tn ∈ S1 generate S
as an S0-algebra. Then S+ = (t0, . . . , tn) and hence

D+
X(f) =

n⋃
i=0

D+
X(fti).

In particular, as in the care of a projective space, we will use the decomposition

X =
n⋃
i=0

D+
X(ti).
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Exercise. Prove the following version of Nullstellensatz. Suppose I ⊆ S is a homogeneous
ideal and f ∈ S is homogeneous such that f ∈ q for any q ∈ MaxProj(S) with q ⊇ I. Then

f · S+ ⊆ I.

Moreover, if deg(f) > 0, then f ∈ I.

Recall that if f ∈ S is a homogeneous element then S(f) is the degree 0 part of Sf , the
localization of S at f . Similarly, if q ⊆ S is a homogeneous prime ideal, then S(q) is the
degree 0 part of T−1S where T = {homogenenous elements in S \ q}.

Proposition 4.2.19. Suppose t ∈ S1.

(1) There is an isomorphism of graded rings St ∼= S(t)[x, x
−1].

(2) If I is a homogeneous ideal in St, then

I =
⊕
m∈Z

(I ∩ S(t))t
m.

(3) The set D+
X(t) is homeomorphic to MaxSpec(S(t)).

(4) If q ∈ MaxProj(S), then S(q) is a local ring with maximal ideal{a
s
∈ S(q)

∣∣∣ a ∈ q
}

and residue field k.

Proof. For (1), it is clear that the map

S(t)[x, x
−1]→ St

x 7→ t

is an isomorphism. Then (2) follows from this isomorphism.

For (3), recall that
D+
X(t) = {q ∈ MaxProj(S) | t 6∈ q}.

We have a correspondence{
homogeneous prime ideals
q in S such that t 6∈ S

}
∼= {homogeneous prime ideals in St} ∼= {prime ideals in S(t)}.

with the property that
St/qSt ∼= S(t)/p[x, x−1],

so dimS/q = dimSt/qSt = dimS(t)/p + 1. Hence dimS/q = 1 if and only if p is a maximal
ideal. This gives a homeomorphism

D+
X(t) ∼= MaxSpec(S(t)).

Finally, for (4), given any q ∈ MaxProj(S), choose t ∈ S1 such that t 6∈ q. Via the previous
correspondence, let p correspond to q. Then

S(q) ⊇
{
f

g

∣∣∣∣ f ∈ q

}
is the unique maximal ideal, i.e. this is a local ring. Via the isomorphism

St/qSt ∼= S(t)/p[x, x−1]



MATH 631: ALGEBRAIC GEOMETRY I 75

we obtain

S(q)/maximal ideal ∼= S(t)/p = k.

This completes the proof. �

Define a sheaf of functions on X = MaxProj(S) as follows: ϕ : U → k is in OX(U) if and
only if for any x ∈ U , there is an open neighborhood Ux ⊆ U of x and homogeneous elements
f, g ∈ S of the same degree such that q ∈ Ux, g 6∈ q and

ϕ(q) = image of
f

g
∈ S(q) in the residue field.

This gives an object (X,OX) ∈ Topk.

Properties.

(1) The map

MaxProj(S)→ MaxProj(S0)

q 7→ q ∩ S0

is a morphism in Topk.
(2) Given a surjective, graded map T � S, we get a map

MaxProj(S)→ MaxProj(T )

q 7→ ϕ−1(q)

which is an isomorphism onto a closed subset with the induced sheaf.
(3) For a commutative ring A, we have that

MaxProj(A[x0, . . . , xn]) ∼= MaxSpec(A)× Pn

such that

D+
X(xi) ∼= MaxSpec(A[x0/xi, . . . , xn/xi])

corresponds to

MaxSpec(A)×D+
Pn(xi) ∼= MaxSpec(A)×MaxSpec(k[x0/xi, . . . , xn/xi]).

The above isomorphism glues the isomorphisms

MaxSpec(A[x0/xi, . . . , xn/xi]) ∼= MaxSpec(A)×MaxSpec(k[x0/xi, . . . , xn/xi])

on affine charts.
(4) If f ∈ S is homogeneous of positive degree, D+

X(f) is affine.
(5) Moreover, the homomorphism S(f) → O(D+

X(f)) given by

g

fm
7→
(
q 7→ image of

g

fm
in the residue field of Sq

)
is an isomorphism.

More details, including proofs of the above facts, are provided in the official notes, but will
be skipped here.
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5. Classes of morphisms

This chapter will present certain distinguished classes of morphisms.

5.1. Proper morphisms and complete varieties. Recall that, topologically, a proper
continuous map is one that pulls back compact sets to compact sets. However, as we have
seen before, varieties behave differently from regular topological spaces (for example, they
are almost never Hausdorff, which is why we introduced the seperatedness condition), so we
will need to define this notion differently in this case.

We first want an algebraic analogue for the notion of compactness. To get it, we will argue
as we did when we defined sepearatedness as an analogue of the Hausdorff property.

The key point is that given a Hausdorff topological space X, X is compact if and only if
for any Hausdorff topological space Y , the projection X × Y → Y is closed. There is also a
similar characterization of proper continuous maps.

Definition 5.1.1. A variety X is complete if for any variety Y the projection p : X×Y → Y
is closed.

More generally, a morphism f : X → Y of algebraic varieties is proper if for any morphism
g : Z → Y , the induced morphism X ×Y Z → Z is closed:

X Y proper

X ×Y Z Z closed.

Hence X is complete if and only if X → {∗} is proper.

We will eventually prove that Pn is a complete variety, but we begin with a few elementary
properties.

Proposition 5.1.2.

(1) If f : X → Y and g : Y → Z are both proper, then g ◦ f is proper.
(2) Given a Cartesian diagram

X ×Z Z X

Z Y,

g f

if f is proper, then g is proper. In particular, if f is proper then f−1(y) is complete
for all y ∈ Y .

(3) Closed immersions are proper.
(4) If X is complete, then every morphism f : X → Y is proper.
(5) If Y =

⋃
i∈I
Vi is an open cover and f : X → Y is such that every f−1(Vi) → Vi is

proper, then f is proper.

Proof. For (1), given W → Z, consider
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X ×Y (Y ×Z W ) Y ×Z W W

X Y Z

f ′ g′

f g

Since the two squares are Cartesian, the rectangle is Cartesian. By hypothesis, f ′ and g′ is
closed, so g′ ◦ f ′ is closed, so g ◦ f is proper.

For (2), given T → Z, consider the diagram

(X ×Y Z)×Z T X ×Y Z X

T Z Y

h g f

Since the two squares are Cartesian, so is the rectangle. Hence if f is proper, then h is
proper. Since this holds for all T → Z, we conclude that g is proper.

For (3), consider a closed immersion i : X ↪→ Y and any morphism g : Z → Y . We then have
the Cartesian square

∼=g−1(i(X))︷ ︸︸ ︷
X ×Y Z Z

X Y

j

g

i

Since i is a closed immersion, j is a closed immersion, and hence j is closed. This shows i is
proper.

For (4), factor f as

X X × Y

Y

i

f
p

for i(x) = (x, f(x)) and p(x, y) = y. Then p is proper since X is complete, by property (2).
Since i is a closed immersion (since X, Y are separated), it is proper by (3). Hence f = p ◦ i
is proper by property (1).

Part (5) is left as an exercise. �

Theorem 5.1.3. The projective space Pn is complete.

Proof. We need to show that for every variety Z, the projection Z × Pn → Z is closed. If

Z =
r⋃
i=1

Ui is an affine open cover, it is enough to show that each Ui×Pn → Ui is closed. We
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may hence assume that Z is affine and Z = MaxSpec(A). The map is then given by

Z × An = MaxProj(A[x0, . . . , xn])→ MaxSpec(A).

Choose V ⊆ Z × Pn closed, so V = V (I) for some I ⊆ A[x0, . . . , xn] homogeneous. Note
that if

I ′ = {h ∈ A[x0, . . . , xn] | h · (x0, . . . , xn) ⊆
√
I},

then clearly I ⊆ I ′, and in fact V (I) = V (I ′), since the prime ideals in MaxProj do not
contain (x0, . . . , xn).

We will show that Z \p(V (I)) is open. Let m ∈ MaxSpec(A)\p(V (I)). Let Ui = D+
Z×Pn(xi),

which is an affine variety with ring

A[x0, . . . , xn](xi) = A

[
x0

xi
, . . . ,

xn
xi

]
.

For any i, m 6∈ p(Ui ∩ V (I)). Note that V (I) ∩ Ui is defined by

I(xi) :=

{
f

xmi

∣∣∣∣ f ∈ I, f homogeneous, degree m

}
Note that m 6∈ p(Ui ∩ V (I)) is equivalent to

m · A[x0, . . . , xn](xi) + I(xi) = A[x0, . . . , xn](xi).

By writing 1 ∈ LHS and getting rid of the denominators,

xnii ∈ m · A[x0, . . . , xn]ni + Ini .

If N � 0, localizing at m, we obtain

Am[x0, . . . , xn]N ⊆ m · Am[x0, . . . , xn]N + IN · Am[x0, . . . , xn]N .

By Nakayama’s Lemma (cf. Remark 2.2.9), we see that

Am[x0, . . . , xn]N ⊆ I · Am[x0, . . . , xn]N .

Then for some h ∈ A \m we obtain

h · (x0, . . . , xn)N ⊆ I,

and hence h ∈ I ′.

We claim that DZ(h) ⊆ Z \ p(V (I ′)). Note that m ∈ DZ(h), so proving this claim will
complete the proof of the Theorem.

To prove the claim, take q ∈ V (I) = V (I ′), q ⊆ A[x0, . . . , xn]. Then p(q) = q ∩ A. Since
h ∈ I ′ ⊆ q, h ∈ q. Hence

p(V (I)) ∩D(h) = ∅,
completing the proof. �

Corollary 5.1.4. If X is a projective variety then X is complete. Therefore, any morphism
X → Y is proper; in particular, it is closed.
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Proof. There is a closed immersion

X ↪→ Pn

which is proper by Proposition 5.1.2. Moreover, the map

Pn → {pt}

is proper by Theorem 5.1.3. Hence the composition

X ↪→ Pn → {pt}

is proper by Proposition 5.1.2.

Finally, the other two assertions follow from Proposition 5.1.2. �

Corollary 5.1.5. If S is a reduced, N-graded k-algebra of finite typed, generated over S0

by S1, then

MaxProj(S)→ MaxSpec(S0)

is proper.

Proof. Choose a surjective graded morphism

S0[x0, . . . , xn]� S.

This gives a closed immersion

MaxProj(S) ↪→ MaxProj(S0[x0, . . . , xn]) = MaxSpec(S0)× Pn,

and we obtain the diagram

MaxProj(S) MaxProj(S0[x0, . . . , xn])

MaxSpec(S0)× Pn Pn

MaxSpec(S0) {pr}

i

=

p g

Since g is proper by Theorem 5.1.3, Proposition 5.1.2 shows that since p and i are proper,
the map p ◦ i is proper. �

Theorem 5.1.6 (Nagate, Deligne).

• Any variety X admits an open immersion i : X ↪→ Y , with Y complete.
• More generally, any morphism of varieties f : X → S factors as

X Y

S

i

f

g

for an open immersion i and a proper morphism g.
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The proof of this theorem is difficult and is omitted here.

By Corollary 5.1.4, we know that projective varieties are complete. A natural question to
ask is for the converse relation. Chow’s Lemma allows to reduce the proof of statements
about complete varieties to projective ones.

Theorem 5.1.7 (Chow’s Lemma). If X is a complete variety, there exists f : Y → X such
that

(1) Y is projective,
(2) f induces an isomorphism between open dense subsets of X and Y .

In the relative setting, if g : X → S is a proper morphism, there exists f : Y → X such that

(1) The composition g ◦ f factors as

Y S × PN

S

closed
immersion

g◦f pr

(2) f induces an isomorphism between open dense subsets of X and Y .

Idea of the proof (in the absolute case).

• Reduce to the case when X is irreducible.
• Cover X by affine open subsets U1, . . . , Un and let U∗ = U1 ∩ · · · ∩ Un. Embed Ui

in a projective space and take the closed Ui to obtain a projective variety Ui. Then
consider 2 locally cloed immersions:

U∗ U1 × · · · × Un

U∗ X × U1 × · · · × Un

α

=

β

Using the Segre embedding (see Homework 8), we know that

U1 × · · · × Un

is projective as a product of projective varieties. Hence

W = im(α)

is projective and letting Y = im(β)), we have maps

h : Y → W

f : Y → X

The key point is the Y is an isomorphism, so Y is a projective variety.

The proof of this is technical, so it will not be presented here, but one can find it in the
official notes. �
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5.2. Finite morphisms. We now discuss a special case of proper morphisms: finite mor-
phisms.

Definition 5.2.1. A morphism f : X → Y is affine if for any affine open subset V ⊆ Y ,
f−1(V ) is an affine variety. Moreover, it is finite if it is affine and

O(V )→ O(f−1(V ))

is a finite morphism of k-algebras.

Proposition 5.2.2. Given f : X → Y and an affine open cover Y = V1 ∪ · · · ∪ Vr such that
f−1(Vi) is affine for all i (and O(Vi) → O(f−1(Vi)) is finite), then f is affine (respectively,
finite).

Lemma 5.2.3. If X is any prevariety and U, V ⊆ X are affine open subsets, we can cover
U ∩ V by principal affine open subsets with respect to both U and V .

Proof. Given p ∈ U ∩ V , choose p ∈ W = DU(f) ⊆ U ∩ V for some f ∈ O(U). Choose
p ∈ W1 ⊆ W , W1 = DV (g) for some g ∈ O(V ). We claim that W1 is a principal affine open
subset of U . Note that

g|W =
h

fm

for some h ∈ O(U). Then
W1 = DU(fh),

so it is a principal affine open subset. �

Lemma 5.2.4. Let X be an affine variety, f1, . . . , fr ∈ O(X) = A, and M be an A-
module such that Mfi is a finitely-generated Afi-module. If (f1, . . . , fr) = A (or equivalently,

X =
r⋂
i=1

DX(fi)), then M is finitely-generated.

Proof. Choose finitely many generators for Mfi over Afi :
mi,j

1
. Take N ⊆ M generated by

all mi,j.

Then N is finitely-generated and Nfi = Mfi for all i. Then

(M/N))fi = 0

for all i. This implies M/N = 0: if u ∈ M/N , for any i, there is an ni such that fnii u = 0,
and since (f1, . . . , fr) = A, also (fn1

1 , . . . , fnrr ) = A, so u = 0. �

Proof of Proposition 5.2.2. Let f : X → Y , Y =
r⋃
i=1

Vi, V ⊆ Y affine.

If V is a principal affine open subset of one of the Vi, V = DVi(ϕ), then

f−1(V ) = Df−1(Vi)(ϕ ◦ f)

is affine, and
O(V )︸ ︷︷ ︸
=O(V )ϕ

→ O(f−1(V ))︸ ︷︷ ︸
O(f−1(V ))ϕ◦f

is finite.
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Let V be an arbitrary affine open subset. Then

V =
⋃
i

(V ∩ Vi).

By Lemma 5.2.3, we can cover each V ∩ Vi by principal affine open subsets with respect to
both V and Vi. By the previous argument, the result holds for each of these sets.

Hence we have

V =
s⋃
j=1

DV (ϕj) (∗)

for ϕj ∈ O(V ) such that
f−1(DV (ϕj))

is affine (and O(DV (ϕj))→ O(f−1(DV (ϕj))) is finite). Note that (∗) implies that

(ϕ1 . . . , ϕs) = O(V )

and
(ϕ1 ◦ f, . . . , ϕs ◦ f) = O(f−1(V )).

Moreover
f−1(DV (ϕj)) = Df−1(V )(ϕj ◦ f).

By Remark 4.2.4, this shows that f−1(V ) is affine.

Consider O(V )→ O(f−1(V )). We have that

O(V )ϕi → O(f−1(V ))ϕi

is finite for all i. Lemma 5.2.4 for O(f−1(V )) implies that it is finitely generated over O(V ),
completing the proof. �

As a consequence of Proposition 5.2.2, if f : X → Y is a morphism of affine varieties, the
new definition agrees with the old one.

All properties of finite morphisms that we discussed for morphisms between affine varieties
extend to arbitrary finite morphisms by taking affine open cover of the target. For example:

(1) Finite morphisms have finite fibers.
(2) Finite morphisms are closed.
(3) Finite morphisms are closed under composition and base change: if f is finite and

we have a Cartesian square

X ×Y Z X

Z Y

g f

then g is also finite. Indeed, if X, Y, Z are affine and O(Y ) → O(X) is finite, then
we have the triangle

O(Y )⊗O(Y ) ⊗O(Z) = O(X) O(X ×Y Z)

O(X)⊗O(Y ) O(Z)

finite
quotient by nilradical
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Another way to see this is to consider the diagram

O(Z) O(X ×Y Z)

O(X)⊗O(Y ) O(Z)

O(X)⊗k O(Z)

finite

(4) Closed immersions are finite.

Remark 5.2.5. How to compute O(X ×Y Z) for X, Y, Z affine where Y ⊆ An and

X

Z Y

f=(f1,...,fn)

h=(h1,...,hn)

We have

{(x, z) | f(x) = h(z)} = X ×Y Z ↪→ X × Z

and hence

O(X ×Y Z) =
O(X × Z)

rad(fi − hi)

=
O(X)⊗k O(Z)

rad(fi ⊗ 1− 1⊗ hi)

=
O(X)⊗O(Y ) O(Z)

nilrad
.

Another way to see this would be to note that the fibered coproduct in the category of
reduced k-algebras is the tensor product.

Remark 5.2.6. Finite morphisms are proper:

X ×Y Z X

Z Y

g f finite

and since f is finite, g is finite, and hence closed.

Theorem 5.2.7. A proper morphism with finite fibers is finite.

We omit the proof here.

If f : X → Y is finite, then for any Z closed in X, dimZ = dim f(Z). Moreover, if Z is
irreducible, then codimX Z = codimY f(Z). Both of these results follow from the affine case.
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5.3. Flat morphisms. Next, we consider flat morphisms f : X → Y , i.e. morphisms such
that for x ∈ X, the k-algebra homomorphism OY,f(x) → OX,x is flat. We start with a review
of the underlying commutative algebra.

Recall that if A is a commutative ring and M is an A-module, then

−⊗AM is right exact.

We say that M is flat if this functor is exact.

If A→ B is a ring homomorphism and AB is flat, we say that B is a flat A-algebra or simply
ϕ is flat.

Examples 5.3.1.

(1) The module M = A is flat over A since −⊗A A = id.
(2) A direct sum of flat modules is flat. In particular, free modules are flat (for example,

any vector space over a field is flat).
(3) For a filtered set I,

lim−→
i∈I

(flat modules) is flat.

(4) If S ⊆ A is a multiplicative system, A→ S−1A is flat, since N ⊗A S−1A ∼= S−1N .
(5) If M is flat over A and a ∈ A is non-zero-divisor, the map A→ A given by multipli-

cation by a is injective. Applying −⊗AM , we see that

M
·a→M is injective.

In particular, if A is a domain, then M is torsion free.
If A is a PID, the converse also holds: if M is torsion-free, M is a filtered direct

limit of finitely-generated submodules (which are free so they are flat), and hence M
is flat.

Proposition 5.3.2.

(1) If AM is flat and ϕ : A→ B is a ring homomorphism, then M ⊗A B is flat over B.
(2) If ϕ : A→ B is flat and BM is flat, then AM is flat.
(3) If p prime in A and M is an Ap-module, then ApM is flat if and only if AM is flat.
(4) If A→ B is a ring homomorphism and BM , then M is flat over A if and only if for

any prime (maximal) ideal p ⊆ B, Mp is flat over A.

Proof. For (1), if N is a B-module, then

(M ⊗A B)⊗B N ∼= M ⊗A N.

For (2), if N is an A-module, then

N ⊗AM ∼= (N ⊗A B)⊗B M,

and both −⊗A B and −⊗B M are exact, so their composition is exact.

The ‘only if’ implication in (3) follows by (2) since A → Ap is flat. Conversely, use the
following: if N is an Ap-module, then

N ⊗Ap M
∼= N ⊗AM,
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which follows from

N ⊗Ap M
∼= (N ⊗A Ap)︸ ︷︷ ︸

∼=N

⊗ApM
∼= N ⊗A (Ap ⊗Ap M)︸ ︷︷ ︸

∼=M

∼= N ⊗AM,

since N , M are Ap-modules.

For (4), if M is a flat A-module and N is an A-module, then

N ⊗AMp
∼= (N ⊗AM)⊗A Ap,

so −⊗AMp is exact as a composition of exact functors. Conversely, if Mp is flat over A for
all p: suppose N ′ ↪→ N is an injective homomorphism of A-modules, then

(N ′ ⊗AM)p ↪→ (N ⊗AM)p

is injective for every p. Therefore, N ′ ⊗AM → N ⊗AM is injective. �

Remark 5.3.3. To conclude (4), we use the factor that if M is an R-module such that
Mp = 0 for all prime (maximal) ideals p, then M = 0. Applying this to ker(f) shows that f
is injective if and only if fp is injective for all p.

Remark 5.3.4. Suppose ϕ : A → B is a flat ring homomorphism, p ⊆ A is prime, and let
q ⊇ p ·B be the minimal prime in B containing pB. Then ϕ−1(q) = p.

To see this, note that by Proposition 5.3.2,

A/p
ϕ→ B/pB

is flat, so if a ∈ A/p \ {0}, ϕ(a) is a non-zero-divisor. But

q/pB ⊆ {zero divisors of B/pB},

since it is a minimal prime ideal (see Proposition 2.1 in Review Sheet 5). Hence

ϕ−1(q/pB) = {0}.

Proposition 5.3.5. Let f : X → Y be a morphism of algebraic varieties. Then the following
are equivalent:

(1) Given any U ⊆ X, V ⊆ Y is an affine open cover such that f(U) ⊆ V ,

OY (V )→ OX(U)

is flat.
(2) There exist affine open covers X =

⋃
i Ui, Y =

⋃
i Vi such that f(Ui) ⊆ Vi and

OY (Vi)→ OX(Ui)

is flat.
(3) For all x ∈ X, the homomorphism

OY,f(x) → OX,x
is flat.

Definition 5.3.6. A morphism f : X → Y is flat if it satisfies any (and all) of the equivalent
conditions in Proposition 5.3.5.
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Proof of 5.3.5. Suppose U ⊆ X, V ⊆ Y affine open such that f(U) ⊆ V and consider

A = O(V )
ϕ→ O(U) = B.

Condition (3) for those x ∈ U shows that for all maximal ideals q in B, if p = ϕ−1(q),
Ap → Bq is flat. By Proposition 5.3.5 (2), this is equivalent to A → Bq being flat for all
q, which is equivalent to A → B being flat by Proposition 5.3.5 (4). This proves that (2)
implies (3) and (3) implies (1), and it is clear that (1) implies (2). �

Examples 5.3.7.

(1) Any open immersion is flat.
(2) If X and Y are algebraic varieties, then the projections p : X × Y → X and q : X ×

Y → Y are flat. To see this, reduce to the case when X and Y are affine. For p, since
O(Y ) is flat over k, by Proposition 5.3.2 (1), we see that O(X)→ O(X)⊗k O(Y ) is
flat.

(3) If f : X → Y is flat and W ⊆ Y is an irreducible closed set with f−1(W ) 6= ∅, V ⊆ X

is any irreducible component of f−1(W ), then f(V ) = W .
By choosing affine open subsets in X and Y meeting V and W , we may assume

that X and Y are affine. Apply Remark 5.3.4 to f# : O(Y )→ O(X) and p ⊆ O(Y )
corresponding to W , q ⊆ O(X) corresponding to V , to see that (f#)−1(q) = p.

(4) If f : X → A1 is any morphism, then f if flat if and only if no irreducible component
of X is contracted by f .

The ‘only if’ implication follows from (3). For the converse implication, reduce to
the case when X is affine. Since k[x] is a PID, f is flat if and only if O(X) is torsion
free over k[x] = O(A1). Suppose u ∈ k[x] \ {0} such that f#(u) · v = 0 for some
u ∈ O(X) \ {0}. If X ′ is an irreducible component of X such that v|X′ 6= 0, then
f(X ′) ⊆ {u = 0}, contradiction.

Theorem 5.3.8. A flat morphism f : X → Y of algebraic varieties is open.

This generalizes the result that projections are open (cf. Proposition 1.6.5).

We will use the following lemma in the proof.

Lemma 5.3.9. If Y is a Noetherian topological space, then W ⊆ Y is open if and only if
for all closed irreducible subset Z ⊆ Y such that W ∩Z 6= ∅, W contains an open nonempty
subset of Z.

Proof. The ‘only if’ implication is clear. For the ‘if’ implication, argue by Noetherian induc-
tion. We may assume that the property holds for all proper closed subsets of Y and show it
for Y . We may assume W 6= ∅. Consider an irreducible decomposition

Y = Y1 ∪ · · · ∪ Yr.
Then W ∩ Yi 6= ∅ for some i. By the assumption, there exists ∅ 6= U ⊆ Yi open such that
U ⊆ W . Replace U by U \

⋃
i 6=j

Yj, which is still open in Y .

Consider W \U ⊆ Y \U . Note that Y \U is a proper closed subset of Y . If Z is an irreducible
closed subset of Y \U such that (W \U)∩Z 6= ∅, W contains an open subset of Z, so W \U
contains an open subset of Z. By the inductive hypothesis, W \ U is open in Y \ U .
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Then Y \W = (Y \U) \ (W \U) is closed in Y \U , and hence in Y . Hence W is open in Y ,
completing the proof. �

Proof of Theorem 5.3.8. If U ⊆ X is open, f |U : U → Y is flat. Hence it is enough to show
that f(X) is open.

Let us show that f(X) satisfies the condition in Lemma 5.3.9. Given Z ⊆ Y closed irreducible
such that f(X)∩Z 6= ∅, choose V to be an irreducible component of f−1(Z). As we have seen

in Example 5.3.7 (3), f(V ) = Z, so f(V ) contains an open subset of Z. Then Lemma 5.3.9
implies that f(X) is open. �

Proposition 5.3.10 (Going down for flat homomorphisms). Let ϕ : A → B be a flat ho-
momorphism. If p2 ⊆ p1 are prime ideals in A and q1 is a prime ideal in B such that
ϕ−1(q1) = p1, then there is a prime ideal q2 ⊆ q1 in B such that ϕ−1(q2) = p2:

A → B
p1 q1

p2 q2.

Proof. We saw that since ϕ is flat, the induced homomorphism Ap1 → Bq1 is flat. We may
hence assume that (A, p1) and (B, q2) are local and ϕ is a local homomorphism.

Primes in B lying over p2 are in bijection with the primes with the primes in

Bp2/p2Bp2
∼= B ⊗A Ap2/p2Ap2 .

We only need to show that this ring is nonzero.

In fact, for every nonzero module AM , the B-module M ⊗A B is nonzero. Suppose M 6= 0
and choose u ∈ M , u 6= 0. Since AnnA(u) 6= A, AnnA(u) ⊆ p1, a prime ideal. Considering
the map A→M given by a 7→ au, we get an injective map

A/AnnA(u) ↪→M,

and since B is flat over A, tensoring with B over A gives an injective map

A/AnnA(u)⊗A B ↪→M ⊗A B.

But since AnnA(u) · B ⊆ q1, a prime ideal, the quotient B/AnnA(u) · B is nonzero. Hence
M ⊗A B 6= 0. �

Proposition 5.3.11. Suppose ϕ : A→ B is a ring homomorphism which satisfies the going
down property. Let q ⊆ B be prime and p = ϕ−1(q). Then

dimBq/pBq ≤ dimBq − dimAp.

(If the dimensions are infinite, this still holds in the form dimBq/pBq + dimAp ≤ dimBq.)

Proof. Let r = dimBq/pBq and s = dimAp. Then there is a chain of prime ideals in A:

p0 ( p1 ( · · · ( ps = p

and a chain of prime ideals in B:

pB ⊆ q0 ( q1 ( · · · ( qr.
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Since pB ⊆ q0, we have that

· · · ( ps ( p ⊆ ϕ−1(q0).

Applying the going down property several primes, we obtain primes in B such that

p′0 ( · · · ( p′s ⊆ q0

such that ϕ−1(p′i) = pi. The chain

p′0 ( · · · ( p′s ( q1 ( · · · ( qr = q

shows that dimBq ≥ r + s. �

Theorem 5.3.12. If f : X → Y is a flat morphism and W ⊆ Y is an irreducible closed
subset such that W ∩ f(X) 6= ∅ and V is an irreducible component of f−1(W ), then

codimX(V ) = codimY (W ).

For example, if X has pure dimension m and Y has pure dimension n, and if V and W are
as in the theorem, then dimV = dimW + m − n. In particular, for any y ∈ f(X), f−1(y)
has pure dimension m− n.

Proof of Theorem 2.4.2. Since f is flat, f(V ) = W . The map OY,W → OX,V is flat, and
hence it satisfies the going down property by Proposition 5.3.10. Then

dimOX,V /mY,WOX,V = 0,

since V is an irreducible component of f−1(W ). Hence Proposition 5.3.11 implies that

codimX(V ) = dimOX,V ≥ dimOY,W = codimY (W ).

For the reverse inclusion, choose an irreducible closed subset X ′ of X such that codimX(V ) =

codimX′(V ). Choose Y ′ to be an irreducible component of Y containing f(X ′). Then by
Theorem 2.4.1:

codimX(V ) = codimX′(V ) ≤ codimY ′(W ) ≤ codimY (W ),

completing the proof. �

6. Smooth varieties

To introduce smooth varieties, we first have to discuss the tangent space of a variety at a
point.

Let X be an algebraic variety. For x ∈ X, we have the local ring OX,x with maximal ideal
mX,x. Zariski’s defintion of a tangent space is

TxX =

(
mX,x

m2
X,x

)∗
,

a vector space over OX,x/mX,x
∼= k. We will discuss the geometric description and also show

that dimTxX ≥ dimxX = dim(OX,x). Then X is smooth at x if this is an equality.
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6.1. The tangent space. If (R,m) is a Noetherian local ring, then m/m2 is a finitely-
generated vector space over k = R/m.

By Nakayama’s Lemma, dimkm/m
2 is the minimal number of generators of m.

We first consider the case when X is an algebraic variety, p ∈ X, R = OX,p, mp is the
maximal ideal, and R/mp = k.

Definition 6.1.1 (Zariski). The tangent space to X at p is

TpX = (mp/m
2
p)
∗ = Homk(mp/m

2
p, k).

If we replace X by an open neighborhood of p, TpX does not change. Hence to describe this
geometrically, we may assume X ⊆ An is a closed subset with ideal IX .

Proposition 6.1.2. There is an isomorphism

TpX =

{
(u1, . . . , un) ∈ kn

∣∣∣∣∣
n∑
i=1

∂f

∂xi
(p)ui = 0 for all f ∈ IX

}
.

Moreover, it is enough to only take f amongst a set of generators of IX .

Proof. If p = (a1, . . . , an), the ideal of p in An is (x1 − a1, . . . , xn − an). We have that

OX,p/m2
p = k[x1, . . . , xn]/(f1, . . . , fr) + (x1 − a1, . . . , xn − an)2,

where IX = (f1, . . . , fr). Given any f ∈ IX , we have

f ≡ f(p)︸︷︷︸
=0

+
n∑
i=1

∂f

∂xi
(p)(xi − ai) mod (x1 − a1, . . . , xn − an)2.

Then mp/m
2
p is the vector space generated by e1, . . . , en, where ei = xi − ai, with the relations

n∑
i=1

∂f

∂xi
(p)ei = 0

for f ∈ IX . By taking the dual, we obtain the isomorphism.

Note that if g =
r∑
j=1

gjfj with gj ∈ k[x1, . . . , xn], then

r∑
i=1

∂f

∂xi
(p)ui =

r∑
j=1

gj(p)
n∑
i=1

∂fj
∂xi

(p)ui

by the product rule and the fact that fj(p) = 0 for all j. This proves the last assertion. �

Terminology. If X ⊆ An is closed, the linear subspace in the proposition is the embedded
tangent space of X at p.

Functoriality. If f : X → Y is a morphism and p ∈ X, we obtain the morphism

OY,f(p) → OX,p
mapping the maximal ideal inside the maximal ideal, and hence it gives

mf(p)/m
2
f(p) → mp/m

2
p.
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Applying (−)∗, we obtain the linear map

dfp : TpX → Tf(p)Y.

If g : Y → Z is a morphism, then

dgf(p) ◦ dfp = d(g ◦ f)p.

Example 6.1.3. If i : X ↪→ Y is a closed immersion, then dip is injective. If i : X ↪→ Y is
an open immersion, then dip is an isomorphism.

Proposition 6.1.4. Suppose X ⊆ Am, Y ⊆ An are closed subvarieties and

f = (f1, . . . , fn) : X → Y

for fi ∈ k[x1, . . . , xm], 1 ≤ i ≤ n. Then, under the identification in Proposition 6.1.2, the
diagram

TpX Tf(p)Y

km kn

dfp

(
∂fi
∂xj

(p)

)

commutes.

Proof. We have the map

OY,f(p) → OX,p
mf(p)/m

2
f(p) → mp/m

2
p

yj 7→ fj(x)

yj − fj(p) 7→ fj(x)− fj(p) =
m∑
i=1

∂fj
∂xi

(p)(xi − ai) mod (x1 − a1, . . . , xn − an)2

where yj − fj(p) generate mf(p) and xi − ai generated mp, writing p = (a1, . . . , am). After
applying (−)∗, the result follows. �

We present a variant of this for projective varieties. Let [a0, . . . , an] = p ∈ X ⊆ Pn be a
closed subvariety and IX the radical ideal corresponding to X. We define

TpX =

{
[u0, . . . , un] ∈ Pn

∣∣∣∣∣
n∑
i=0

∂f

∂xi
(a0, . . . , an)ui = 0 for all homogeneous f ∈ IX

}
,

which is called the projective tangent space.

Note that:

(1) if we rescale the coordinates ai by λ ∈ k∗, the equations get rescaled by a suitable
power of λ,



MATH 631: ALGEBRAIC GEOMETRY I 91

(2) p ∈ TpX by Euler’s identity: if f is homogeneous of degree d,

n∑
i=0

xi
∂f

∂xi
= d · f.

Exercise. Suppose p ∈ Ui = (xi 6= 0) ∼= An. Via this isomorphism, TpX ∩ Ui is the image
of the embedded tangent space to X ∩ Ui at p via the translation that maps 0 7→ p.

Note that if f ∈ IX and i = 0, g = f(1, x1, . . . , xn), then

∂f

∂xi
(1, a1, . . . , an) =

∂g

∂xi
(a1, . . . , an),

∂f

∂x0

(1, a1, . . . , an) = −
n∑
i=1

∂g

∂xi
(a1, . . . , an)ai

by Euler’s identity.

Then the equation defining TpX becomes

n∑
i=1

∂g

∂xi
(a1, . . . , an)ui −

n∑
i=1

∂g

∂xi
(a1, . . . , an)ai =

n∑
i=1

∂g

∂xi
(a1, . . . , an)(ui − ai).

Proposition 6.1.5. Let (R,m) be the localization of a k-algebra of finite type at a prime
ideal. Then

dimK m/m2 ≥ dim(R),

where K = R/m.

Proof. Write R = Ap, m = pAp, where A is a k-algebra of finite type. Let I ⊆ A be the
nilradical. Then consider the quotient

R� R =
R

IR

and note that

m/m2 = m/m2 + IR.

Then

dimK m/m2 ≤ dimK m/m2

dimR = dimR.

It is hence enough to prove the assertion when A is reduced.

Let X be an affine variety such that O(x) = A and r = dimK m/m2. By Nakayma’s Lemma,
pAp is generated by r elements b1

f1
, . . . , br

fr
, so there exists f = f1 . . . fr 6∈ p such that pAf ⊆ Af

is generated by r elements. Replace A by Af to assume that p = (a1, . . . , ar). Then

dim(Ap) = codimV (p) ≤ r,

completing the proof. �

Definition 6.1.6. A ring R, which is a localization of a k-algebra at a prime ideal, is regular
if dim(R) = dimA/mm/m2.
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6.2. Smooth points and varieties.

Definition 6.2.1. If X is an algebraic variety, x ∈ X is a smooth point (or a nonsingular
point) if OX,x is regular. Moreover, X is smooth (or nonsingular) if all points of X are smooth
points. More generally, if V ⊆ X is an irreducible closed subset, we say X is smooth at V if
OX,V is regular.

We will see that X is smooth at V if and only if there exists x ∈ V which is a smooth point.

Examples 6.2.2.

(1) Both An and Pn are smooth varieties.
(2) If H ⊆ An is a hyperplane defined by a radical ideal (F ), then for any p ∈ H,

dimOH,p = n − 1. Hence p ∈ H is a smooth point if and only if dimTpH = n − 1.
This is equivalent to ∂F

∂xi
(p) 6= 0 for some i.

Hence the set of singular points6 of H is defined by the ideal(
F,

∂F

∂x1

, . . . ,
∂F

∂xn

)
,

so it is closed.
For example, both x2−y3 = 0 has a singular point at (0, 0) (this is called a cuspidal

cubic) and y2 − x3 + 3x − 2 = 0 has singular points at (1, 0) (this is called a nodal
cubic).

y2 = x3

−3

−2

−1

1

2

3

−2 −1 1 20

y2 = x3 − 3x+ 2 = (x− 1)2(x+ 2)

−3

−2

−1

1

2

3

−2 −1 1 20

Theorem 6.2.3. If X is an algebraic variety, then

Xsm = {x ∈ X | x is a smooth point of X}
is a nonempty open subset of X.

Assume for now the following proposition. It will only be proved later.

6Of course, a point is singular if it is not nonsingular.
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Proposition 6.2.4. If x ∈ X is a smooth point, OX,x is a domain, i.e. x lies on a unique
irreducible component of X.

This result says that any intersection point of irreducible components is a singular point.
Indeed, in the example y2 = x3 above, (0, 0) was in the intersection of two irreducible
components of this cubic. However, the converse of this proposition is not true; and indeed
y2 = x3 − 3x + 2 above has a singular point (1, 0) which does not lie on the intersection of
irreducible components.

Proof of Theorem 6.2.3. Let X1, . . . , Xr be the irreducible components of X. Then Propo-
sition 6.2.4, for all i 6= j, Xi ∩Xj ⊆ X \Xsm, i.e.

X \Xsm =

(⋃
i 6=j

(Xi ∩Xj)

)
∪

r⋃
i=1

(Xi \ (Xi)sm).

Hence it is enough to prove the theorem when X is irreducible.

Let r = dimX. By covering X by affine open subsets, we may assume that X is affine.
Suppose that X ⊆ An is defined by IX = (f1, . . . , fq).

For any p ∈ X,

TpX =

{
u = (u1, . . . , un) ∈ kn

∣∣∣∣∣
n∑
j=1

∂fi
∂xj

(p)uj = 0 for all i

}
by Proposition 6.1.2. Hence

dimTpX ≤ r if and only if rank

(
∂fi
∂xj

(p)

)
≥ n− r.

This is an open condition, and hence Xsm is open.

To prove Xsm 6= ∅, we may replace X by any irreducible variety birational to X. By
Proposition 1.6.12, we may assume that X ⊆ Ar+1 is an irreducible hypersurface. Let F be
a generator for IX , the radical ideal corresponding to X. We saw that p ∈ X is singular if
and only if ∂F

∂xi
(p) = 0 for all i.

Suppose Xsm = ∅. Then for any p ∈ X, we have that ∂F
∂xi

(p) = 0 for all i, and hence F
∣∣ ∂F
∂xi

for i. If di = degxi F , then degxi
∂F
∂xi

< di, so F
∣∣ ∂F
∂xi

if and only if ∂F
∂xi

= 0. Therefore, ∂F
∂xi

= 0

for all i. Hence char(k) = p > 0 and f ∈ k[xp1, . . . , x
p
n]. Since k is a perfect field, F = Gp for

some G ∈ k[x1, . . . , xn], which contradicts the fact that (F ) is radical. �

Example 6.2.5. If G is an algebraic group acting algebraically and transitively on a variety
X, then X is smooth. Indeed, since there is a smooth point, using the transitivity of the
group action, we see that any point is smooth.

In particular, any algebraic group G is smooth, since it acts transitively on itself.

6.3. Blow ups (of affine varieties). To prove Proposition 6.2.4, we first need to introduce
blow ups. They will also be useful in other settings, so it is an important topic on its own.

The set up is as follows: let X be an affine variety, A = O(X) and I ⊆ A is an ideal.
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Definition 6.3.1. The Rees algebra of I is

R(A, I) =
⊕
m≥0

Imtm ⊆ A[t].

It is a graded subring of A[t]. Note that:

(1) since A is reduced, R(A, I) is reduced,
(2) if A is a domain (i.e. X is irreducible), then R(A, I) is a domain.

Note also that R(A, I) is a finitely generated over k. In fact:

(1) R(A, I)0 = A which is finitely-generated over k,
(2) R(A, I) is generated over A by finitely many elements in R(A, I)1; for example, if

I = (f1, . . . , fr), then f1t, . . . , frt generate R(A, I) over A.

We are now in the setting similar to the one in section 5.1, and we will use the results and
notation from that section without further reference. We first make the following definition.

Definition 6.3.2. The blow-up of X along I is

X̃ = MaxProj(R(A, I))

together with the natural map

π : X̃ → X.

Proposition 6.3.3.

(1) If Z = V (I), then π is an isomorphism over X \ Z.

(2) The set π−1(Z) ⊆ X̃ is locally defined by 1 element which is a non-zero-divisor.
(3) If X is irreducible and I 6= 0, then π is birational.
(4) More generally, if Z does not contain any irreducible component of X, we have a

bijection between the irreducible components of X̃ and irreducible components of X

by applying π; each component of X̃ is birational to the corresponding component
of X.

Proof. For (1), it is enough to show that if DX(a) ⊆ X \ Z, then π−1(DX(a)) → DX(a) is
an isomorphism. Note that

π−1(DX(a)) = MaxProj(R(A, I)a).

Note also that the square

A R(A, I)

Aa R(A, I)a︸ ︷︷ ︸
=R(Aa,IAa)
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commutes. Since DX(a) ⊆ X \ Z, we have that V (I) = Z ⊆ V (a), so a ∈
√
I, and hence

IAa = Aa. Therefore:

π−1(DX(a)) = MaxProj(Aa[t]) ∼= DX(a)× P0 = DX(a).

This proves (1).

For (2), note that
π−1(Z) = V (I ·R(A, I)).

Say I = (f1, . . . , fr). Then R(A, I) is generated over A by f1t, . . . , frt and

X̃ = D+

X̃
(f1t) ∪ · · · ∪D+

X̃
(frt).

Consider D+

X̃
(fit) = Ui = MaxSpec(R(A, I)(fit)). Then

π−1(Z) ∩ Ui ⊆ Ui

is defined by I ·R(A, I)(fit), which is generated by
fj
1

for all j. However,

fj
1

=
fi
1
· fjt
fit
,

so I · R(A, I)(fit) is generated by
fi
1

. Finally, we note that
fi
1

is a non-zero-divisor in

R(A, I)(fit): if
fi
1

h

(fit)m)
= 0, then fih(fit)

p = 0 for some p, and hence h · (fit)p+1 = 0,

so
h

(fit)m
= 0.

Since (3) follows from (4), it remains to prove (4). By (1), π is an isomorphism over X \ Z,
so if X1, . . . , Xr are irreducible components of X, then each

π−1(Xi \ Z)

is an irreducible component of X̃ and

X̃ =
r⋃
i=1

π−1(Xi \ Z) ∪ π−1(Z).

By (2), π−1(Z) cannot contain any irreducible component of X̃. Therefore, the irreducible

components of X̃ are the π−1(Xi \ Z). �

Special case. Suppose I = m is a maximal ideal defined by a point a ∈ X. Suppose x is
not isolated. Then

π−1(Z) = MaxProj

(
R(A,m)

mR(A,m)

/
nil-rad

)
and

m ·R(A,m) =
⊕
i≥0

mi+1ti.

We define
R(A,m)

mR(A,m)
= grm(A) =

⊕
i≥0

mi/mi+1.
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Note that in this case the irreducible components of X̃ meeting π−1(Z) correspond to the
irreducible components of X containing x. By property (2) and the Principal Ideal Theo-
rem 2.3.1, we see that

dimπ−1(Z) = dim(OX,x)− 1.

We also know that

dimπ−1(Z) = dim(grm(A))− 1.

Therefore,

dimOX,x = dim(grm(A))

This is also true if x is an isolated point of X, since both of the dimensions are 0.

Remark 6.3.4. For X = An, we defined the blow up at 0 as

{(p, `) | p ∈ `} = X ′ An × Pn−1

An

and if x1, . . . , xn are coordinates on An and y1, . . . , yn are coordinates on Pn−1, then

X ′ = {xiyj − xjyj = 0 for all i, j}.

We showed in the problem session that X ′ is irreducible and X ′ → An is birational.

We relate this to the blow up X̃ at the maximal ideal m = (x1, . . . , xn). We have

X̃ = MaxProj

(⊕
i≥0

miti

)
and we have the map

k[x1, . . . , xn][y1, . . . , yn]� R(A,m)

yi 7→ xit.

Since all xiyj − xjyi are contained in the kernel, we have

X̃ X ′ closed immersion

X = An

Since both vertical maps are birational, we have that X̃ = X ′.

Definition 6.3.5. Let π : X̃ → X be a blow up and Z = V (I). If Y is a closed subvariety
of X such that no irreducible component of Y lies inside Z, then

Ỹ = π−1(Y \ Z)

is called the strict transform (proper transform) of Y in X̃.
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We claim that Ỹ is the blow-up of Y along J = I · O(Y ).

If B = O(Y ), we have the natural map

R(A, I)� R(B, J).

Then

Ỹ = MaxProj(R(B, J)) MaxProj(R(A, I)) = X̃

Y X

j

πY π

i

We have that Z ∩ Y ↪→ Y and Z contains no irreducible component of Y , and hence im(j)
is the strict transform of Y .

We now discuss how to compute strict transforms. For X = An 3 p, consider

BlpX = X̃ E = π−1(p)

X {p}.

π

Let p ∈ Y , where Y is a hyperplane with I(Y ) = (f) for f 6= 0. Then define

multp(Y ) = largest power of mp containing f.

Apply a translation to assume p = 0. Then

f = fm(x1, . . . , xn) + · · ·+ fd(x1, . . . , xn)

where fi is homogeneous of degree i, fm 6= 0 and d ≥ m = mult0(Y) ≥ 1.

What is the strict transform of Y in this case? We want to compute π−1(Y ). Recall that

X̃ ⊆ An × Pn−1

is given by xiyj = xjyi for all i, j. Then

Ui = D+

X̃
(yi) = (yi 6= 0).

On this set, xi =
yj
yi
xj for j 6= i, and

Ui ∼= An with coordinates u1, . . . , un

and we have the map π : Ui → An. Then

π#(xi) = ui,

π#(xj) = uiuj for j 6= i.

Recall that Y = (f = 0). Then

π−1(Y ) ∩ Ui = {f(u1ui, . . . , ui, . . . , unui) = 0}.
Note that

f(u1ui, . . . , ui, . . . , unui) = umi (fm(u1, . . . , 1, . . . , un) + uifm+1(. . .) + · · · ).
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Moreover,

π−1({0}) = {0} × Pn−1

and

π−1({0}) ∩ Ui = (ui = 0).

Since

fm(u1, . . . , 1, . . . , un) + uifm+1(. . .) + · · ·

does not vanish on π−1({0}), its zero locus is Ỹ ∩Ui (in fact, it generates the ideal of Ỹ ∩Ui).

Special case: n = 2. We have that

f(x1, x2) = fm(x1, x2) + higher degree terms.

Note that

fm(x1, x2) = `1 · · · · · `m

where `i are linear forms (since k = k̄). Indeed:

fm(x1, x2) = xm1 fm(1− x2/x1) = xm1 ·
m∏
i=1

(
x2

x1

− λi
)

The forms `1, . . . , `m define the tangents of Y at 0.

Examples 6.3.6. For the cuspidal cubic

y2 = x3

−3

−2

−1

1

2

3

−2 −1 1 20

the unique tangent is y = 0.

For the nodal cubic
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y2 = x3 − 3x+ 2 = (x− 1)2(x+ 2)

−3

−2

−1

1

2

3

−2 −1 1 20

there are two tangents given by y =
√

3x+ 1 and y = −
√

3x+ 1.7

Exercise. Show the the points of Ỹ ∩E, where E = P1 is parametrized by lines through 0,
correspond to presicely to the tangent lines of Y at 0. Show that in these 2 examples (the

cusp and the node), Ỹ is smooth.

6.4. Back to smooth points. We still need to prove Proposition 6.2.4. We restate it here
for convenience.

Proposition (Proposition 6.2.4). If x ∈ X is a smooth point, then OX,x is a domain.

We begin with some preparation. Let x ∈ X is a smooth point, choose U 3 x to be affine
open and let

A = O(U) ⊇ m ideal corresponding to x.

If n = dimOX,x,
minimal number of generators for mAm = dimkm/m

2 = n.

After replacing A by Af for some f 6∈ m, we may assume that m = (f1, . . . , fn). Consider

grm(A) =
⊕
i≥0

mi/mi+1 = k ⊕m/m2 ⊕m2/m3 ⊕ · · ·

which is generated over k by f1, . . . , fn ∈ m/m2.

Hence the map

ϕ : k[x1, . . . , xn]→ grm(A)

xi 7→ fi ∈ m/m2

7To agree with the above discussion, we should shift the point (1, 0) to (0, 0) and, indeed, the example
considered in class was actually y2 = x2(x+1). However, since I already used these graphs for Examples 6.2.2
(because they looked nice), I will stick to the same ones here.
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is surjective. We saw in the previous section that

n = dim(OX,x) = dim(grm(A)).

Since k[x1, . . . , xn] is a domain of dimension n, kerϕ = 0.

The conclusion is that if x ∈ X is a smooth point and X is affine, O(X) = A, m is the
corresponding maximal ideal, then

grmAm
(Am) = grm(A) ∼= k[x1, . . . , xn].

In particular, the left hand side grm(A) is a domain.

Proof of Proposition 6.2.4. Let R = OX,x ⊇ m be a maximal ideal. Then grm(R) is a domain
by the above discussion.

If R is not a domain, there exist a, b ∈ R \ {0} such that ab = 0. Since a, b 6= 0, by Krull’s
Intersection Theorem 6.4.1, there exist i, j such that

a ∈ mi \mi+1,

b ∈ mj \mj+1.

Then

0 6= a ∈ grm(R)i

0 6= b ∈ grm(R)j

so ab 6= 0. But then 0 = ab 6∈ mi+j+1, which is a contradiction. �

In the proof, we have used the following theorem.

Theorem 6.4.1 (Krull’s Intersection Theorem). If (R,m) is a local ring, then
⋂

mi = 0.

Proof. This is Theorem 3.1 in Review Sheet #4 and it is proved there. �

Remark 6.4.2. We can use the same method to show that if A is a k-algebra of finite type
and m ⊆ A is a maximal ideal such that Am is regular, then Am is a domain.

Indeed, let I ⊆ Am be the nilradical and Am = Am/I with maximal ideal m = m/I. As
before, we have

k[x1, . . . , xn]
⊕
i≥0

mi/mi+1

⊕
i≥0

mi/mi+1

︸ ︷︷ ︸
dimn

The composition is an isomorphism for dimension reasons. Hence the first map is injective,
and therefore an isomorphism, so grm(Am) is a domain. Then we can use the same argument
to conclude that Am is a domain.
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Remark 6.4.3. If m ⊆ A is a maximal ideal, then

grm(A) ∼= grmAm
(Am).

Indeed,

grmAm
(Am) ∼=

⊕
i≥0

miAm

mi+1Am︸ ︷︷ ︸
(mi/mi+1)m

,

since mi/mi+1 is an A/m-module.

Proposition 6.4.4. Let X be an algebraic variety, Y ↪→ X be a closed subvariety, and
x ∈ Ysm. Suppose there is an affine open neighborhood U of x such that

(1) IU(Y ∩ U) = (f1, . . . , fr) for fi ∈ O(U),
(2) Y ∩ U is irreducible and

codimU(Y ∩ U) = r.

Then x ∈ Xsm.

Example 6.4.5. If Y ⊆ X and x ∈ Ysm is such that for some open affine neighborhood U of
x in X, IU(Y ∩U) = (f) for a function f ∈ O(U) which is a non-zero-divisor, then x ∈ Xsm.

Proof of Proposition 6.4.4. We have

R = OX,x � R = OY,x = R/(f1,x, . . . , fr,x).

Then
m = m/(f1,x, . . . , fr,x)

so
m/m2 = m/m2 + (f1,x, . . . , fr,x).

Hence
dim(OY,x) = dimk TxY ≥ dimk TxX − r.

Since
dim(OX,x) ≥ codimU(Y ∩ U) + dimOY,x

we have that
dim(OX,x) ≥ r + dimk TxX − r = dimk TxX.

This shows that x ∈ Xsm. �

Corollary 6.4.6. If X is a variety and V ⊂ X is an irreducible and closed subset such
that X is smooth at V (i.e. OX,V is regular), then there exists x ∈ V such that x ∈ Xsm.

Note that the converse also holds: this is a special case of a theorem by Auslander-Buchsbam
and Serre which says that if (R,m) is regular, then Rp is regular for any prime ideal p. A
direct proof will be given later, when we discuss the sheaf of differentials.

Proof. Let dimOX,V = r. By the hypothesis, the maximal ideal in OX,V is generated by r
elements. After replacing X by a suitable U which is affine, open and U ∩ V 6= ∅, we may
assume that X is affine and IX(V ) = (f1, . . . , fr). By Proposition 6.4.4, if x ∈ Ysm, x ∈ Xsm.
Since by Theorem 6.2.3, Ysm 6= ∅, this completes the proof. �
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Example 6.4.7. Let H ⊆ Pn be a hyperplane and let X ⊆ H be a closed subvariety. Let
p ∈ Pn \H. The projective cone over X with vertex p is

Cp(X) =
⋃
x∈X

{line joining p and x}.

We claim that this is closed in Pn.

Choose coordinates on Pn such that H = (xn = 0) and p = [0, . . . , 0, 1]. Then

X ↪→ H ∼= Pn−1

where [u0, . . . , un−1, 0] ∈ H corresponds to [u0, . . . , un−1] ∈ Pn−1. The line joining p and
x = [a0, . . . , an−1] ∈ X is

px = [λa0, . . . , λan−1, µ].

Then if IX ⊆ k[x0, . . . , xn−1] is the ideal of X, then IX · k[x0, . . . , xn] is the ideal of Cp(X).

In particular, note that CpX ∩ (xn 6= 0) ⊆ An is the affine cone over X.

Finally, we claim that p ∈ Cp(X) is smooth if and only if X is a linear space.

Exercise. Prove this claim.

Example 6.4.8. Suppose char(k) 6= 0. Let Q ⊂ Pn be a quadric hypersurface, i.e. IQ = (F )
where F is homogeneous of degree 2. If x0, . . . , xn are the coordinates on Pn, we can write

F =
n∑

i,j=0

ai,jxixj with aij = aji

The rank of Q is rank(aij)i,j. This is independent of the choice of coordinates.

Since k = k, char(k) 6= 2, after a suitable linear change of variables, we can write

F =
r∑
i=0

x2
i

where rank(F ) = r + 1.

Note that this is smooth if and only if r = n. Moreover r ≥ 1 since (F ) is radical, and r ≥ 2
if and only if Q is irreducible.

For example, if n = 2, we either have a smooth conic or two intersecting lines.

If n = 3, we either have a smooth quadric or a projective cone over smooth conic in P2 or a
union of 2 hypersurfaces.

Exercise. If X ⊆ P3 is a smooth quadric, the variety of lines on X has two connected
components, each isomorphic to P1.

Note that every smooth quadric in P3 is isomorphic to the one given by

x0x3 = x1x2

which is the image of the Segre embedding P1×P1 ↪→ P3. The two families are given by the
two copies of P1.
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6.5. Bertini’s Theorem. Let (Pn)∗ be the parameter space for hyperplaces in Pn.

Terminology: if Z is an irreducible variety, we say that a property holds for a general point
in Z if there exists an open subset 0 6= U ⊆ Z such that the property holds for all points
in U .

Note that if a few properties hold for a general point, then they all hold for a general point
simultaneously.

Definition 6.5.1. Given a smooth variety X and two smooth closed subvarieties Y and Z
of X, recall that for every p ∈ Y Z, we may consider TpY and TpY as linear subspaces of
TpX. We say that Y and Z intersect transversely if for every p ∈ Y ∩ Z, we have

codimTp(X)(TpY ∩ TpZ) = codimp
X(Y ) + codimp

X(Z)

for codimp
X(Y ) = codimX′(Y

′) where p lies on a unique irreducible components X ′ and Y ′

of X and Y .

Note that if X ⊆ Pn and H ∈ (Pn)∗, then X and H intersect transversely if and only if for
all p ∈ X ∩H, Tp(X) ⊆ TpPn is not contained in TpH, or in other words for all p ∈ X ∩H,
TpX 6⊆ H.

Theorem 6.5.2 (Bertini). If X ⊆ Pn is a smooth variety, then for a general hypersurface
H ∈ (Pn)∗, H and X intersect transversely. In particular, X ∩ H is smooth of dimension
dimX − 1.

Proof. We may assume that X is irreducible. Consider

Z = {(p,H) ∈ X × (Pn)∗ | TpX ⊆ H}

X (Pn)∗

π1 π2

We first claim that Z is a closed subset of X × (Pn)∗. Let f1, . . . , fr ∈ IX be generators. If
p ∈ X,

TpX :=

{
[u0, . . . , un]

∣∣∣∣∣
n∑
j=0

∂fi
∂xj

(p)uj = 0 for all i

}
.

If H =

(
n∑
j=0

ajuj = 0

)
, TpX ⊆ H is equivalent to

rank


a0 a1 · · · an

∂f1
∂x0

(p) ∂f1
∂x1

(p) · · · ∂f1
∂xn

(p)
...

... · · · ...
∂fr
∂x0

(p) ∂fr
∂x1

(p) · · · ∂fr
∂xn

(p)

 ≤
(
∂fi
∂xj

(p)

)
= n− dimX.

We get a condition of the form
n∑
j=0

ajgj(p) = 0
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where all gj are homogeneous of the same degree. It is then easy to see that Z is closed in
X × (Pn)∗ by covering X and (Pn)∗ by affine open subsets. In particular, Z is a projective
variety.

We now have that

π−1
1 (p) ∼= Pn−1−dimX ,

since dimTpX = dimX. Indeed, suppose

TpX = {x0 = · · · = xm = 0} where n−m− 1 = dimX.

Then

TpX ⊆
(∑

aixi = 0
)

if and only if aj = 0 for j > m.

This is a linear subspace of (Pn)∗ of dimension m = n− 1− dimX.

By Theorem 2.4.1, we have that

dimZ ≤ dimX + n− 1− dimX = n− 1.

This shows that π2(Z) is a proper closed subset of (Pn)∗. Hence every hyperplane H such
that [H] ∈ (Pn)∗ \π2(Z) has the property that H and X intersect transversely. Hence H ∩X
is smooth of dimension equal to dimX − 1 by Problem 3 on Problem Set 10. �

There are other versions of Bertini’s Theorem 6.5.2:

(1) If X ⊆ Pn is irreducible, dimX ≥ 2, then for a general [H] ∈ (Pn)∗, X ∩ H is
irreducible.

Proof. Consider X ↪→ Pn ↪→ PNd , using the dth Veronese embedding. If H ′ ⊆ PNd is
the hyperplane corresponding to H, then νd(X) ∩H ′ ∼= X ∩H. We can hence apply
Bertini’s Theorem 6.5.2 for νd(X) to get the result. �

(2) (Due to Kleiman) If char(k) = 0, we get a version in which instead of X ⊆ Pn we
just have a morphism f : X → Pn and take f−1(H).

Special case. If X = Pn, this implies that a general hypersurface H ⊆ Pn of degree d is
smooth.

Proposition 6.5.3. If the characteristic of k is bigger than d, then{
singular hypersurfaces

of degree d

}
⊆
{

hypersurfaces of
degree d in Pn

}
= Hd

is an irreducible closed subset of codimension 1.

Proof. Consider

Z = {(p,H) | p ∈ Pn, H ∈ Hd, P ∈ Hsing} ⊆ Pn × PNd

Pn Hd

α β
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Exericse. Check that Z is closed in Pn ×Hd.

We want to find α−1(p). We may assume p = [1, 0, . . . , 0]. Then

α−1(p) =

{
[F ] ∈ PNd

∣∣∣∣ F (p) = 0,
∂F

∂xi
(p) = 0

}
and note that F (p) = 0 means that the coefficient of xd0 is 0 and ∂F

∂xi
(p) = 0 means that the

coefficients of xd−1
0 xi are 0.

Let

Z =

{
(p, [F ]) | F (p) = 0,

∂F

∂xi
(p) = 0 for all i

}
↪→ Pn × PNd .

Then fiber over p ∈ Pn is a linear subspace of codimension n+ 1 in PNd .

The map Z → Pn is proper and the fibers are irreducible of the same dimension. Therefore, Z
is irreducible of dimension Nd − 1. Since Z is open in Z, it is irreducible of the same
dimension. Therefore, β(Z) ⊆ Hd is closed and irreducible.

To complete the proof, it is enough to find a 0-dimensional fiber. For example, consider
xd0 + · · ·+ xdn−1 = 0. Then the singular locus is [0, . . . , 0, 1].

This shows that β has a 0-dimensional fibers. By Theorem 2.4.1, for any y ∈ β(Z),
dim β−1(y) ≥ dimZ − dim β(Z). If β is not dominant, then every fiber of β has dimen-
sion at least 1. �

6.6. Smooth morphisms between smooth varieties. Smooth morphisms are the ana-
logue of submersions for differentiable manifolds. In particular, recall that preimages of
submersions are submanifolds.

Definition 6.6.1. Let f : X → Y be a morphism between smooth varieties X and Y . Then
f is smooth at x ∈ X if

dfx : TxX → Tf(x)Y

is surjective, and f is smooth if it is smooth at every x ∈ X.

In general (for varieties which are not smooth), a morphism is smooth if it is flat and the
fibers are smooth, but since we did not talk about smoothness of fibers, we postpone this
until later.

Example 6.6.2. Consider the map

f : A1 → A1

t 7→ tn

for char(k) not dividing n. Then dft is multiplication by ntn−1:

TtA1 Tf(t)A1

k k

dft

∼=

ntn−1

∼=

Hence f is smooth at t if and only if t 6= 0.
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We will next see that for a smooth maps f , every fiber f−1(y) is a smooth variety with
dimx(f

−1(y)) = dimxX − dimf(x) Y for f(x) = y.

We have an analog of Sard’s Theorem in this case, but we omit the proof here.

Theorem 6.6.3. If char(k) = 0, then for any dominant f : X → Y with X and Y smooth,
there exists an open subset V ⊆ Y such that f−1(V ) → V is smooth. In particular, for all
y ∈ V , the fiber f−1(y) is smooth.

Note that the assumption that char(k) = 0 is essential. For example, the map A1 → A1,
t 7→ tp in characteristic p > 0 has dft = 0 for all t, so it is not surjective.

Proposition 6.6.4. If f : X → Y is a smooth morphism between smooth irreducible vari-
eties, then

• f is dominant,
• for any y ∈ f(X), the fiber f−1(y) is smooth and has dimension dimX − dimY and

Tx(f
−1(y)) = ker(dfx).

Proof. Fix x ∈ X and let y = f(x). We have

f−1(y) X Y

{y}

f

and hence Tx(f
−1(y)) ⊆ ker(dfx). Therefore,

dimTx(f
−1(y)) ≤ dimTxX − dimTyY = dimX − dimY.

On the other hand, we know that every irreducible component of f−1(y) has dimension at
least dimX−dimY by Theorem 2.4.1 (with strict inequality if f is not dominant). Therefore,

dimOf−1(y) ≥ dimX − dimY ≥ dimTx(f
−1(y)).

Since we always have the other inequality 6.1.5, we conclude that f−1(y) is smooth, Tx(f
−1(y)) =

ker(dfx), all irreducible components of f−1(y) have dimension equal to dimX−dimY , and f
is dominant. �

Example 6.6.5. Note that fibers are not always irreducible. Consider the smooth map

f : A1 \ {0} → A1\{0}

given by x 7→ x2.

Definition 6.6.6. A morphism f : X → Y of smooth varieties is étale at x if f is smooth
at x and dimxX = dimf(x) Y .

A map is finite and étale if and only if it is a covering space.
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6.7. Resolution of singularities. We would like to be able to deal with singular points
using a variety which is smooth but without losing much information about them. This
motivates the following definition.

Definition 6.7.1. Let X be an irreducible algebraic variety. A resolution of singularities of
X is a proper, birational morphism f : Y → X with Y smooth.

One might require more properties. For example, that f is an isomorphism over Xsm, Y is
projective if X is projective, etc.

Theorem 6.7.2 (Hironaka). If char(k) = 0, then every irreducible algebraic variety has a
resolution of singularities.

Remark 6.7.3. It is conjectured (and hoped) that this result also holds in characteristic
p > 0. Hironaka recently posted a paper on his website claiming to have proved it, but it
has not been checked as of yet.

The proof of this theorem is difficult and technical, so we omit it here.

One can in fact be more precise with the statement. Assume for simplicity that there is a
closed immersion X ↪→ W such that W is smooth. For example, this is always true if X is
quasiprojective. Then Hironaka’s Theorem 6.7.2 can be stated more precisely by saying that
there exists a sequence of blow-ups Wi with smooth centers Zi

Zr Wr

...
...

Z1 W1

Z0 W = W0

such that at every step the strict transform of X is not contained in Zi and the strict
transform of X on Wr is smooth.

7. Quasicoherent and coherent sheaves

7.1. Operations with sheaves. Fix a commutative ring R and a topological space X. All
sheaves and presheaves are of R-modules. (For example, one can think of R = Z or R = k,
a field.)

7.1.1. The sheaf associated to a presheaf. Recall that we have a functor

ShRX ↪→ PshRX .

We construct a left adjoint. For any presheaf F , there is a sheaf F+ together with a morphism
ϕ : F → F+ which satisfies the universal property: for any sheaf G with a morphism ψ : F →
G of presheaves, there is a unique morphism of sheaves α : F+ → G making the diagram
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F F+

G

ψ

ϕ

α

commute. In other words, ϕ induces a bijection

HomSh(F+,G) ∼= HomPsh(F ,G).

We call F+ the sheafification of F .

Construction. Define F+(U) as the set of maps

s : U →
∐
x∈U

Fx

such that

(1) for any x ∈ X, s(x) ∈ Fx,
(2) for any x ∈ U , there exists an open neighborhood Ux ⊆ U of x and t ∈ F(Ux) such

that s(y) = ty for all y ∈ Ux.

We check that this F+ works.

(1) As F is a presheaf of R-modules, each Fx is an R-module, so each F+(U) is an
R-module.

(2) Restriction of functions gives for V ⊆ U the map

F+(U)→ F+(V )

which shows that F+ is a presheaf of R-modules.
(3) It is clear that F+ is a sheaf, because we deal with functions characterized by a local

condition.
(4) Define

ϕ : F → F+

F(U)→ F+(U)

s 7→

(
U 3 x 7→ sx ∈

∐
x∈U

Fx

)
.

(5) We check the universal property. Suppose ψ : F → G is a morphism of presheaves
for a sheaf G. Take s ∈ F+(U), s : U →

∐
x∈U
Fx. By hypothesis, we can cover U by

some Ui open with ti ∈ F(Ui) such that s(y) = ti,y for all y ∈ Ui. Then

ψ(ti) ∈ G(Ui)

ψ(ti)y = ψ(tj)y for all y ∈ Ui ∩ Uj.
Since G is a sheaf and

ψ(ti)|Ui∩Uj = ψ(tj)|Ui∩Uj for all i, j,

there is a unique t ∈ G(U) such that t|Ui = ψ(ti) for all i.
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Define α(s) = t ∈ G(U). It is then easy to check that this gives a morphism of
sheaves

F+ → G
which is the unique one making the diagram comumute.

Properties.

(1) If F is a sheaf, then ϕ : F → F+ is an isomorphism.
(2) This is functorial: if u : F → G is a morphism, there is a unique morphism u+ : F+ →
G+ making the diagram

F G

F+ G+

u

u+

commute.
This gives a functor PshRX → ShRX .

(3) For any open subset U ⊆ X, we an isomorphism

(F+)U ∼= (F|U)+

of sheaves.
(4) The morphism F → F+ induces for any x ∈ X an isomorphism Fx → F+

x . Indeed,
the inverse map is defined as follows: for x ∈ U , s ∈ F+(U), s : U →

∐
y∈U
Fy, and the

assignment (U, s) 7→ s(x) ∈ Fx gives the inverse of ϕx.

Example 7.1.1. If M is an R-module, we have the constant presheaf M :

U 7→M

for any U . The corresponding sheaf is M .

If X has the property that for every open set in X is a disjoint union of connected open
subsets, then

M(U) = {s : U →M | s is constant on connected components of U}.

7.1.2. The category ShRX is an abelian category. Note that

• HomShRX
(F ,G) is an R-module,

• composition of morphisms is bilinear,
• given F1, . . . ,Fn, define

(F1 ⊕ · · · ⊕ Fn)(U) = F1(U)⊕ · · · ⊕ Fr(U)

and it is easy to check this gives a sheaf of R-modules,
• for any x ∈ X, we have (

r⊕
i=1

Fi

)
x

∼=
r⊕
i=1

(Fi)x,
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• we have morphisms

Fi →
r⊕
j=1

Fj

which make
⊕
Fj the coproduct of the Fj, and also

r⊕
j=1

Fj → Fi

which make the
⊕
Fj the product of the Fj.

This makes ShRX into an additive category. To shows that ShRX is abelian, we need to discuss
kernels and cokernels.

Kernels. If ϕ : F → G is a morphism of sheaves, we may define

(ker(ϕ))(U) = ker(ϕU : F(U)→ G(U)).

It is easy to check this is a subsheaf of F . It is the (categorical) kernel of ϕ: for every
morphism u : F ′ → F such that ϕ ◦ u = 0, there is a unique v : F ′ → ker(ϕ) such that

F ′ F

ker(ϕ)

u

v

commutes.

Since filtered direct limits are exact, we see that

(ker(ϕ))x ∼= ker(ϕx : Fx → Gx).

Cokernels. For a map ϕ : F → G between sheaves, we define the presheaf

˜coker(ϕ)(U) = coker(ϕU : F(U)→ G(U)) =
G(U)

im(ϕU)
.

Then define

coker(ϕ) = ˜coker(ϕ)
+

.

• This is the categorical cokernel of ϕ: this is clear from the following diagram

F G c̃oker coker = c̃oker
+

G ′

ϕ

v1

v2

where we get v1 by the universal property of cokernels of R-modules, and v2 by the
universal property of sheafification. Moreover,

(coker(ϕ))x ∼= coker(ϕx : Fx → Gx)
using exactness of filtered direct limits and the fact thatMx

∼=M+
x for all presheavesM

and all x.
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• If F ′ is a subsheaf of F , then we define the quotient by

F/F ′ = coker(F ′ ↪→ F).

Note that for all x ∈ X, we then have an exact sequence

0 F ′x Fx Fx/F ′x 0.

• If ϕ : F → G, define im(ϕ) := ker(G → coker(ϕ)). In other words,

im(ϕ) = (U 7→ im(ϕU))+.

Exercise. Show that for any open subset U ⊆ X, we have

Γ(U, im(ϕ)) =

s ∈ Γ(U,G)

∣∣∣∣∣∣
for all x ∈ U there exists an open

neighborhood Ux ⊆ X of x
such that s|Ux ∈ im(F(Ux)→ G(Ux))

 .

Note that if ϕ : F → G is a morphism of sheaves, then we have a canonical morphism

F/ ker(ϕ)→ im(ϕ)

induced by the universal properties. This is an isomorphism: for any x ∈ X, the
induced morphism is an isomorphism by the following diagram

(F/ ker(ϕ))x im(ϕ)x

Fx/ ker(ϕx) im(ϕx)

∼= ∼=
∼=

Altogether, this makes ShRX into an abelian category.

Definition 7.1.2. Let ϕ : F → G be a morphism of sheaves. Then ϕ is injective if any of
the following equivalent conditions hold:

(1) ker(ϕ) = 0,
(2) ϕ(U) is injective for all U ,
(3) ϕx is injective for all x.

If ϕ is injective, it gives an isomorphism of F with a subsheaf of G.

Definition 7.1.3. Let ϕ : F → G be a morphism of sheaves. Then ϕ is surjective if any of
the following equivalent conditions hold:

(1) coker(ϕ) = 0,
(2) im(ϕ) = G,
(3) ϕx is surjective for all x,
(4) ϕ induces and isomorphism

F/ ker(G)→ G.

Definition 7.1.4. A sequence

F ′ F F ′′ϕ ψ

is exact if ker(ψ) = im(ϕ) or, equivalently, if ψ ◦ ϕ = 0 and ker(ψ)/ im(ϕ) = 0.
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Such a sequence is exact if and only if

F ′x Fx F ′′x
ϕ ψ

is exact for all x ∈ X.

Key point. If U ⊆ X is open, then the functor

Γ(U,−) : ShRX → R-mod

is left exact: if

0 F ′ F F ′′ 0
ϕ ψ

is exact, then

0 Γ(U,F ′) Γ(U,F) Γ(U,F ′′)ϕ ψ

is exact, but the right map might not be surjective.

Given F ,G ∈ ShRX , HomShRX
(F ,G) is an R-module. There exists a sheaf of R-modules:

HomR(F ,G)

given by

U 7→ HomShRU
(F|U ,G|U).

If V ⊆ U , we get the restriction map

Hom(F|U ,G|U)→ Hom(F|V ,G|V )

ϕ 7→ ϕ|V .

This makes Hom(F ,G) into a presheaf. In fact, it is a sheaf, because morphisms of sheaves
can be glued uniquely (see problem session 5).

Note that

Γ(X,Hom(F ,G)) = Hom(F ,G).

Finally, we define functors related to continuous maps between topological spaces. Fix a
continuous map f : X → Y . Define

f∗ : ShRX → ShRY

by (f∗F)(V ) = F(f−1(V )), the push-forward functor.

Note that f∗ is left exact: if

0 F ′ F F ′′ 0

is exact on X, then

0 f∗F ′ f∗F f∗F ′′
ϕ ψ

is exact on Y , since for all V ⊆ Y , the sequence
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0 F ′(f−1(V )) F(f−1(V )) F ′′(f−1(V ))
ϕ ψ

is exact.

We construct a left adjoint of f∗, the pull-back f−1. Given a sheaf G on Y , define a sheaf F
on X by:

X ⊇ U 7→ lim−→
V⊇f(U)

open

G(V ),

where the open sets V ⊇ f(U) are ordered by reverse inclusion. If U ′ ⊆ U , then for every V
such that f(U) ⊆ V , we have f(U ′) ⊆ V , and we get a restriction map

F(U)→ F(U ′),

which makes F a presheaf. Then define f−1G = F+.

• This is functorial: if ϕ : G → G ′ is a morphism, we get an induced map F → F ′ which
gives a unique map

f−1G = F+ → (F ′)+ = f−1G.
This gives a functor f−1 : ShRY → ShRX .
• Note that for x ∈ X:

(f−1G)x ∼= Fx = lim−→
U3x

lim−→
V⊇f(U)

G(U) = lim−→
V 3f(x)

G(V ) = Gf(x).

This implies that f−1 : ShRY → ShRX is an exact functor, because it is exact at the
level of stalks.

Example 7.1.5. If F is a sheaf on X, x ∈ X, the inclusion ix : {x} ↪→ X gives

i−1
x (F) = Fx.

Proposition 7.1.6. The pair of functors (f−1, f∗) is an adjoint pair, i.e. we have an natural
isomorphism

Hom(f−1G,F) ∼= Hom(G, f∗F)

for all F ∈ ShRX , G ∈ ShRY .

Proof. By the universal property of sheafification, giving a morphism f−1G → F is equivalent
to giving a morphism

lim−→
V⊇f(U)

G(V )→ F(U)

for any open subset U ⊆ X, compatible with restrictions. By the universal property of direct
limits, this is equivalent to giving a morphism

G(V )→ F(U)

for any open subsets U ⊆ X, V ⊆ Y such that f(U) ⊆ V , compatible with restrictions.
Finally, f(U) ⊆ V if and only if U ⊆ f−1(V ), and hence, by compatibility with restrictions,
this is equivalent to giving for all V ⊆ Y a morphism

G(V )→ F(f−1(V ))

which is compatible with restrictions. This is the same as giving a morphism G → f∗F . �
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7.2. OX-modules. Fix a ringed space (X,OX), i.e. X is topological space and OX is a sheaf
of rings on X. For example, we can take X to be an algebraic variety and OX to be the
sheaf of regular functions on X.

Definition 7.2.1. A presheaf (sheaf) of OX-modules is a presheaf (sheaf) M of sbelian
groups such that for any U ⊆ X open, M(U) is an OX(U)-modules, and these structures
are compatible with restriction maps. Explicitely, if V ⊆ U , a ∈ OX(U), s ∈ M(U), we
have that

(a · s)|V = a|V · s|V .

Definition 7.2.2. A morphism of preseaves of OX-modules M → N is a morphism of
presheaves of abelian groups such that for any U ⊆ X open, M(U)→ N (U) is a morphism
of OX(U)-modules.

Example 7.2.3.

(1) The sheaf OX is naturally and OX-module.
(2) Giving a sheaf of OX-modules is equivalent to giving a sheaf of abelian groups M

together with a morphism

OX → HomZ(M,M).

This implies that if O = R for some ring R, then

{sheaves of OX-modules} ∼= {sheaves of R-modules}.

Remark 7.2.4. If M is an OX-module, then M is a sheaf of OX(X)-modules. Indeed,
M(U) is an OX(U)-module, and we have a map OX(X)→ OX(U), which makesM(U) into
an OX(X)-module by restriction of scalars. We thus get a functor

OX-mod→ Sh
OX(X)
X ,

where OX-mod is the category of sheaves of OX-modules.

Remark 7.2.5. If F is a presheaf of OX-modules, Fx is naturally and OX,x-module.

Remark 7.2.6. If F is a presheaf of OX-modules, F+ is naturally a sheaf of OX-modules
such that F → F+ is a morphism of presheaves of OX-modules. Indeed, define

F+(U) =

{
s : U →

∐
x∈U

Fx

∣∣∣∣∣ old conditions and an extra condition

}
where the extra condition is: if a ∈ OX(U), s ∈ F+(U), then

(as)(x) = ax︸︷︷︸
∈OX,x

s(x).

Then F+ will satisfy the same universal proprety with respect to the morphism F , so it is
a sheaf of OX-modules.

Examples 7.2.7.

(1) If M1, . . . ,Mn are sheaves of OX-modules, then M1 ⊕ · · · ⊕ Mn has a natural
structure of OX-modules, which makes it both a product and a coproduct in the
category of OX-modules.
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(2) If ϕ : F → G is a morphism of OX-modules, then ker(ϕ), coker(ϕ), im(ϕ) carry
natural OX-module structures, where ker(ϕ) is the kernel of ϕ in OX-mod etc.

Altogether, this makes OX-mod an abelian category.

For an infinite family (Mi)i∈I , we consider the product and direct sum. The product

U 7→
∏
Mi(U)

is an OX-module, but its stalks are tricky to describe. The direct sum

U 7→
⊕
Mi(U)

is only a presheaf, but

(U 7→
⊕
Mi(U))+

is an OX-module, and its stalks are easy to describe:(⊕
Mi

)
x

=
⊕

(Mi)x.

Multilinear constructions. All of ⊗, Symp,
∧p have analogues for OX-modules. If M

and N are OX-modules, then we may set

U 7→ M(U)⊗OX(U) N (U)

and for V ⊆ U we get a natural map

M(U)⊗OX(U) N (U)→M(V )⊗OX(V ) N (V ).

This defines a presheaf and its sheafification is

M⊗OX N .

It is useful to note that

(M⊗OX N )x ∼=Mx ⊗OX,x Nx,
since ⊗ commutes with lim−→ and taking the sheafification does not change stalks.

Similarly, we define

Symp(M) =
(
U 7→ Symp

OX(U)M(U)
)+

,

p∧
M =

U 7→ p∧
OX(U)

M(U)

+

,

both of which behave nicely with stalks.

Example 7.2.8. An OX-module M is locally free (of finite rank) if for all x ∈ X, there is
an open set U 3 x such that M|U ∼= O⊕nU for some n. If n is independent of x, we say that
M is locally free of rank n.

Note that HomOX (OX ,F) ∼= F(X) and hence

HomOX (OX ,F) ∼= F .
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Behavior with respect to morphisms of ringed spaces. A morphism of ringed spaces
is

(X,OX)
(f,f#)−→ (Y,OY )

where f : X → Y is a continuous map and f# : OY → f∗OX .

The main example to have in mind is a morphism of algebraic varieties f : X → Y . In this
case, f# is determined by f , for ϕ ∈ OY (V ), we get ϕ ◦ f ∈ OX(f−1(V )) and this gives the
morphism

OY → f∗OX .

Ringed spaces form a category with composition given by

(X,OX) (Y,OY ) (Z,OZ)
(f,f#)

((g◦f),(f#◦g#))

(g,g#)

since the map OZ → (g ◦ f)∗OX is given by the composition

OZ(W ) OX(f−1(g−1(W )))

OY (f−1(W ))

(g◦f)#

g# f#

Suppose M is an OX-module. Then f∗M is an f∗OX-module, so it is an OY -module via
restriction of scalars for OY → f∗OX .

We want a left adjoint to f∗: if N is an OY -module, f−1N is an f−1OY -module, where
f−1OY is a sheaf of rings on X, and f# : OY → f∗OX corresponds to f−1OY → OX by
adjointness.

Define

f ∗N = f−1N ⊗f−1OY OX
which has a natural structure of an OX-module.

We have that

(f ∗N )x ∼= (f−1N )x ⊗(f−1OY )x OX,x ∼= Nf(x) ⊗OY,f(x) OX,x,

where OY,f(x) → OX,x is obtained by taking the stalk of f−1OY → OX . Explicitely,

(V 3 f(x), ϕ ∈ OY (V )) 7→ (f−1(V ), f#(ϕ)).

As a consequence, we see that f ∗ is right exact.

Example 7.2.9. If f : X → Y is a morphism of algebraic varieties and f is flat, then f ∗ is
exact, since OX,x is a flat module over OY,f(x) for any x ∈ X.
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Example 7.2.10. Suppose U ⊆ X is open. Then OU = OX |U , i : U ↪→ X is a morphism of
ringed spaces and we have

OX → i∗OU
OX(V )→ OX(U ∩ V )

s 7→ s|U∩V .

Note that i−1M∼=M|U and i−1OX ∼= OU . Therefore,

i∗M∼=M|U .

Exercise. Show that f ∗ is compatible with ⊗, Symp,
∧p. For example, for ⊗, if f : X → Y

and M,N are OY -modules, then there is a canonical isomorphism

f ∗(M⊗OY N ) ∼= f ∗M⊗OX f ∗N .

Hint. Use universal property or construct a morphism and show it induces and isomorphism
on stalks.

Remark 7.2.11. If

(X,OX) (Y,OY ) (Z,OZ)
f g

are morphisms of ringed spaces, then

(g∗ ◦ f∗)(M) = g∗(f∗(M))

by definition, and

f ∗(g∗(N )) ∼= (g ◦ f)∗(N ),

since both sides give a left adjoint to g∗ ◦ f∗.

Remark 7.2.12. If F ,G are OX-modules,

HomOX (F ,G) is an OX(X)-module,

so

HomOX (F ,G) is an OX-module.

7.3. Quasicoherent sheaves on affine varieties. The goal is to define a functor

OX(X)-mod→ OX-mod

for an affine variety X.

We first need a few preliminary notions. Suppose (X,OX) is a ringed space and P ⊆
{open subsets of X} such that

(1) P is a basis for the topology on X: every open subset U ⊆ X is a union of elements
of P ,

(2) if U, V ∈ P , then U ∩ V ∈ P .

The main example are principal affine open subsets of an affine variety.
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Definition 7.3.1. A P -sheaf of OX-modules is

P 3 U 7→ M(U) an OX(U)-module,

with restruction maps M(U) → M(V ) for V ⊆ U satisfying the obvious compatibility
conditions and the sheaf axiom for covers of subsets in P by subsets in P : for U =

⋃
i∈I
Ui for

U,Ui ∈ P , we get the sheaf condition.

Define similarly a morphism of P -sheaves.

Proposition 7.3.2. The forgetful functor{
sheaves of
OX-modules

}
→
{
P -sheaves of
OX-modules

}
is an equivalent of categories.

Sketch of the proof. Define the inverse functor by sending a P -sheaf α to the sheaf F∗ given
by

Fα(U) = ker

∏
V⊆U
V ∈P

α(V )→
∏

V1,V2⊆U
V1,V2∈P

α(V1 ∩ V2)


where the map is given by

(sv)v 7→ (sv1|V1∩V2 − sv2|V1∩V2).
Then check that this gives an inverse to the forgetful functor. �

For an affine variety X, we mentioned that

P = {principal affine open subsets of X}
satisfies propeties (1) and (2). Let A = OX(X) and M be an A-module. We want to define

an OX-module M̃ on X such that

Γ(DX(f), M̃) = Mf = M ⊗A Af .
We need to check that this is well-defined. If DX(g) ⊆ DX(f), then V (f) ⊆ V (g) so

g ∈
√

(f), and by the universal property of localization, we have a canonical morphism
Af → Ag making the triangle

Af Ag

A

commute. Therefore:

(1) Mf only depends on DX(f) (up to canonical isomorphism),
(2) if DX(g) ⊆ DX(f), we have a restriction map Mf →Mg and these are compatible.

By Proposition 7.3.2, to get a sheaf of OX-modules M̃ , we only need to show the following
lemma.
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Lemma 7.3.3. If

DX(f) =
⋃
i∈I

DX(fi),

then the sequence 0 Mf

∏
i∈I

Mfi

∏
i1,i2∈I

Mf1,f2
α β

is exact.

Proof. We may replace X by DX(f) and M by Mf to assume f = 1.

We first show α is injective. Suppose u ∈M such that u
1

= 0 in Mfi for all i. Note that

X =
⋃
i∈I

DX(fi)

is equivalent to (fi | i ∈ I) = A. Moreover, u
1

= 0 in Mfi is equivalent to fnii u = 0 for some
ni > 0. This shows that Ann(u) ⊇ (fnii | i ∈ I) = A, so u = 0. Therefore, α is injective.

It remains to prove that imα = ker β. Since imα ⊆ ker β trivially, we just need to show that
ker β ⊆ imα. Suppose we have ai

f
mi
i

= ui ∈ Mfi such that the images of ui and uj in Mfifj

are the same. After replacing each fi by a suitable power, we may assume that mi = 1 for
all i.

Choose J ⊆ I finite such that (fj | j ∈ J) = A. If there exists u ∈ M such that the image
of u in Mj is uj for all j ∈ J , the same holds for all i ∈ I. Indeed, given i ∈ I, consider
DX(fi) =

⋃
j∈J

DX(fifj), so this is true by injectivity of α. This shows that we may assume I

is finite.

Recall that ui = ai
fi
∈Mfi and ai

fi
=

aj
fj

in Mfifj , we have that

(fifj)
qij(fjaifiaj) = 0

in M for all i, j and some qij.

After replacing each fi by a large power of fi, we may assume that fjai − fiaj = 0 for all
i, j. Since (fi | i ∈ I) = A, we may write

1 =
∑
i∈I

fibi.

We claim that we can take
u =

∑
i∈I

biai ∈M.

We need to show that
u =

aj
fj

in Mfj .

We have that

fju =
∑
i∈I

fjbiai

=
∑
i∈I

fibiaj

= aj.
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This completes the proof. �

Altogether, we obtain the following corollary.

Corollary 7.3.4. For every module M over A, we get a sheaf M̃ on X such that

Γ(DX(f), M̃) ∼= Mf ,

compatible with restriction.

Moreover, if ϕ : M → N is a morphism of A-modules, then for any f , we get a morphism

Mf → Nf , compatible with restriction, which gives a morphism of sheaves M̃ → Ñ by
Proposition 7.3.2.

Therefore, we have a functor
A-mod→ OX-mod.

Definition 7.3.5. An OX-module M on X is quasicoherent if it is isomorphic to M̃ for
some M . It is coherent if, in addition, M is a finitely-generated A-module.

We finally note that for an irreducible closed subset V ⊆ X corresponding to the prime ideal
p ⊆ A, we have

M̃V = lim−→
DX(f)∩V 6=∅

Mf = lim−→
f 6∈p

Mf
∼= Mp.
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