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1. INTRODUCTION
1.1. A first glimpse of p-adic Hodge theory.

1.1.1. The arithmetic perspective. We start with an arithmetic perspective.

The goal is to study p-adic representations, i.e. continuous representations
'k = Gal(K/K) — GL,(Q,)

where K is a p-adic field. This is quite different from studying ¢-adic representations, i.e.
continuous representations

'y — GLn(@g) for ¢ 7& p.

Indeed, the topologies in this case are not quite compatible, so there are not as many
representations as in the ¢ = p case.

We consider a motivating example. Let E be an elliptic curve over Q, with good reduction.
There is an elliptic scheme £ over Z, such that £, = E. For a prime ¢ (which may or may
not be equal to p), we define the Tate module

T(E) = lim E[0")(Q,) = 23
which has a continuous I'g, -action. Tensoring with Q,, we get a continuous I'g,-representation
Vi(E) = To(E) ® Q¢ = QF.

These representations see a lot of information about the elliptic curves. For example, we
have the following fact.

Fact 1.1.1. Guwen two elliptic curves Ey, Ey over Q,, the natural maps
HOH’l(El, EQ) & Zg — HOIHFQP (Tg(El), TZ(EQ))
Hom(E1, Ey) @ Qp — Homep(‘/'g(El), Vi(Es))

are injective.
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How to study 7,(£)? For £ # p, we can consider the special fiber &, , en elliptic curve over
Fp,. The Tate module T;(&r,) is a continuous I'r, -representation. To describe the action, it
is enough to describe the action of Frobenius (a topological generator for I'r,): it acts on
Ty(&r,) with characteristic polynomial 2* — ax 4+ p where a = p 4+ 1 — #(&x, (Fp)).

The punch line is that the reduction map
(1) Tg(E) — TZ(E]FP)

is an isomorphism of I'g,-representations, where the right hand side is a I'g,-representation
via the surjection I'q, — I'r, = Gal(Q,"/Q,). Therefore:

(1) The action of I'g, factors through the map I'g, — I's,.
(2) Frobenius of I'r, acts with characteristic polynomial z* — az + p.

The condition (1) is equivalent to the representation of I'g, being unramified.
Theorem 1.1.2 (Neron-Ogg-Shafarevich). An elliptic curve E/Q, has good reduction if
and only if T,(E) is unramified for all { # p.
What about ¢ = p? The key isomorphism (1) never holds. In fact,

T,(Er,) =0 or Zy,
so it has the wrong rank. Let

Iy, = ker(I'g, — I'r,)

be the intertia group. Then there is a non-trivial contribution from Ig,.
The solution to this problem was found by Grothendieck and Tate. We define

E[p™] = lim E[p"],
the p-divisible group of E. Note that this is a limit of schemes, not of the point of schemes.
Fact 1.1.3. We can recover the action of I'g, on T,(E) from E[p™].

The schemes E[p™] and &, [p™] are also defined. We have maps

Ep™]
®Qp ®Fp
/ \
E[p>]

&r, [p™]
Theorem 1.1.4 (Tate). The functor

p-divisible groups| «Q, | p-divisible groups
—
over Zi, over Q,

15 fully faithful.

Understanding the proof of the theorem and related results will be the goal of Chapter 2.
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Theorem 1.1.5 (Dieudonné, Fontaine). There are equivalences of categories

{p—dz’visz’ble gmups} PN {Dz’eduormé modules} 7

over I, over I,
L Dieduonné modules
p-divisible groups
over 7, over IF,,
P with an “admissible filtration”

Definition 1.1.6. A Dieudonné module over F), is a free Z,-module M of finite rank with
an endomorphism ¢ such that (M) 2 pM.
One should think of Z, here are the ring of Witt vectors of F,, Z, = W (F,).
The following summarizes the situation:
T,(E) — E[p™] p-divisible group
. {Dieduonné module over Fp}.

+ extra data

After inventing p, we also get

“isocrystals” over [F,
Vo(E) = { + extra data '

The general themes of p-adic Hodge theory are:

(1) To construct a dictionary between certain p-adic representations and certain semilin-
ear algebraic objects.

(2) Change base field to @l.

Since Q" is not p-adically complete any more, we need to work with @1 instead.

Many interesting properties of p-adic representations are encoded in the action of Ig,. We
note that:

Usually, base changing to @;\n simplifies things.

In the above correspondence, base changing to @1 roughly corresponds to replacing [,
by E.

Theorem 1.1.7 (Manin). The category of isocrystals over F, is semisimple.

Question. Is there a general framework or formalism that provides all these general themes
in more general scope?

To properly answer this question, we need to discuss the geometric side of the story.
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1.1.2. The geometric perspective. The goal here is to use p-adic representations to study the
geometry of algebraic varieties X over K. We look at the cohomology of X:

e Hg: étale cohomology,
e Hyg: algebraic de Rham cohomology,
e H ., crystalline cohomology.

By definition, Hg is a p-adic Galois representation. The main goal is to find comparison
theorems between the three cohomology theories.

In classical Hodge theory, there are many comparison theorems:

e between singular cohomology' and Hodge cohomology,
e between singular cohomology and de Rham cohomology

valid for proper smooth varieties over C.

The reason for the name p-adic Hodge theory comes from the above motivation. The main
issue in finding these comparison theorems is finding the correct period ring.

The obvious answer would be to work with K, but we will soon see that this ring is not
sufficient.

We first recall in more detail one of the comparison theorems from Hodge theory.
Theorem 1.1.8 (Hodge decomposition). Let Y be a proper smooth variety over C. Then
H"(Y(C),C) = (P H'(Y. ).

i+j=n

Corollary 1.1.9. The Hodge number of Y are topological invariants.

Let Cx = % It has a continuous I'k-action. The p-adic cyclotomic character is
x: 'k = Z,

such that for any p-power root of unity ¢,
7(¢) = X,

Definition 1.1.10. We define the Tate twist as a I'g-representation Cg (j) with the under-
lying vector space Cx and o € I'k acting by x’(0) - 0.

Theorem 1.1.11 (Hodge-Tate decomposition, Faltings). Let X be a proper smooth variety
over K. Then

HE (X7, Qp) ®q, Cx = @D HI(X, Q% x) ©x Cre(—1),

i+j=n

compatible with 'k -action, where

o acts by 0 @ o on the left hand side,
o acts by 1 ® o on the right hand side.

1One should think that singular cohomology over C corresponds to étale cohomology in the p-adic setting
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Tate proved when X is an abelian variety with good reduction as a by product of the generic
fiber functor theorem.

Define the Hodge—Tate period ring

Bur = P Cx(j)

JEL
Then the Hodge-Tate decomposition 1.1.11 can be restated as
HE (X7, Qp) ®@g, Bur = | @ H'(X,9% ) | © Bur.
i+j=n

Theorem 1.1.12 (Tate Sen). We have that By = K.

As a consequence, we see that

(H: (X7, Q) ® Bur) = @) H'(X, Q).

i+j=n

Here is another result from Hodge theory. There is an isomorphism
H*(Y(C),C) = Hir(Y/C)
coming from the period pairing

H(Y/C) % Hoq_p(Y,C) — C

F)»—>/Fw

Fontaine constructed a p-adic period ring Bgg such that:

Goal. Construct a p-adic period ring.

(1) By carries I'g-action with B = K,
(2) Bgg carries a filtration with the accociated graded ring Byr.
Theorem 1.1.13 (Faltings). We have that
He (X5, Q) g, Bar = Hig(X/K) @k Bar

compatible with I g -actions and filtrations.

By construction, Hl; (X/K) has a Hodge filtration such that the associated graded is

@ H'(X, Q)

i+j=n

The filtration on the right hand side of Faltings’ Theorem 1.1.13 is given by the convolution
filtration:
FiI" = P Fil*@Fil’.
a+b=m
Remarks 1.1.14.
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(1) By passing to the associated graded in Faltings’ Theorem 1.1.13, we recover the
Hodge—Tate decomposition 1.1.11.

(2) We have that (HZ (X, Q,) ® Bur) ™ = Hig(X/K).

(3) We will not attempt to prove Faltings’ Theorem 1.1.13, but we will use it as motiva-
tion.

Question. Is there a refinement of Hyg which recovers Hyg; itself?
Answer. Yes, cristalline cohomology Hs.

Conjecture 1.1.15 (Grothendieck). Let Ok be the valuation ring of K and k be the residue
field of O. Let W(k) be the ring of Witt vectors of k and Ky = Frac(W(k)). (If K = Q,
then Ky = Q,, and if K is a finite extension of Q,, then K, is the maximal unramified
subextension.)

There should be a (purely algebraic) fully faithful functor D on a certain category of repre-
sentations such that

D (Hy (X%, Qp)) = Hiio(X/W (k) Qwry Ko

for any proper smooth X with integral model X over O.

Recall that for any elliptic curve E over Q, with good reduction, we have seen that there is
a fully faithful functor
V,(E) ~~ {filtered isocrystal}.

Now,
Vo(B) = (Hi(Eg,, Q)
and
{filtered isocrystal} = HY . (Er, /Z,) ®z, Q.
Grothendieck’s conjecture 1.1.15 is a generalization of this. By purely algebraic we mean

that there should be a way to avoid going through p-divisible groups (which are geometric).

Fontaine constructed another period ring, called B.s such that:

(1) Beis carries an action of I'x such that BY'x = K,
(2) Beis carries a semi-linear endomorphsim ¢ called the Frobenius action,
(3) there is a natural map B ®k, K < Bgr, inducing a filtration on B;s.

Theorem 1.1.16 (Faltings). Suppose X has good reduction with integral model X. Then
Hgt(X?a Qp) ®q, Beis = ngs(Xk/W%)) ® Bris,
compatible with I g -action, filtration, and Frobenius action.

Remark 1.1.17. By construction, H2 (Xx/W(k)) carries a Frobenius action. Frobenius
acts only through B on the left hand side and diagonally on the right hand side.

The isomorphism
Heo (X /W (R)) @wy K = Hig (X/K)

gives a filtration on H.i. We use the convolution filtration on the right hand side.
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Now, taking I'g-invariants of both sides gives:

(HE (X7, Qp) @, Bers) ™ 2 HIu (X /W (k) @way Ko

There is an inverse functor so we get D, Grothendieck’s mysterios functor, given by
D(V) = (V ®q, Bexis)" ™

This would prove Grothendieck’s conjecture 1.1.15 if we define the domain of this functor
and prove that it is fully faithful.

1.1.3. Interplay via representation theory. Fontaine built the formalism for functors that
connect the geometric and arithmetic sides. This will be the focus of Chapter 3.

Let B be any period ring such as Byr, Bgr, Beis- Then define
Repg, (T'x) = category of p-adic representations of T'k.

Define Dp(V) = (V ®q, B)'*. A representation V' € Repg (I'x) is B-admissible if the
natural maps
(V®g, B *®B—=V®B

is an isomorphism.

Now, Dp defines a functor on Repgp (T'k), the category of B-admissible representations. The
target category reflects the structure on B.

Examples 1.1.18. (1) If B = Byr, the target category is the category of finite-dimensional
graded vector spaces.
(2) If B = Bygr, the target category is the category of finite-dimensional filtered vector
spaces.
(3) If B = Bgg, the target category is the category of finite-dimensional filtered vector
spaces with Frobenius action.

Theorem 1.1.19 (Fontaine). The functors Dpy.., Dp,, Dp
over, Dg . 1is fully faithful.

are exact and faithful. More-

cris

cris

In particular, this proves Grothendieck’s conjecture 1.1.15.
1.2. A first glimpse of the Fargues—Fontaine curve.

1.2.1. Definition and key features. There are two ways to describing the Fargues—Fontaine
curve, the schematic curve and the adic curve. We will only describe the schematic curve,
since we do not have the necessary language to talk about adic spaces. Fortunately, there is
a GAGA type theorem, giving an equivalence between these two approaches.

—

For simplicity, we work with K = Q,. Let C, = Q,. Let F = F,((u)).

Recall Fontaine’s ring B.s with Frobenius action ¢. There is a ring BT. such that:

cris

(1) B, is stable under o, and (B[,)?=' = Q,,

(2) there exists t € B, such that B, [$] = Bes and ¢(t) = pt.
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Definition 1.2.1. The Fargues—Fontaine curve associated to (Q,, F') is

X = Proj | P(BL)7"

n>0
Remark 1.2.2. The Fargues-Fontaine curve X is

(1) a Q,-scheme,
(2) not of finite type over Q,, and hence not projective.

Slogan. The Fargues-Fontaine curve is the p-adic analogue of the Riemann sphere P¢.

Theorem 1.2.3 (Fargues—Fontaine, Kedlaya). The curve X satisfies the following proper-
ties:

(1) it is Noetherian, connected, regular of dimension 1 over Q,,
(2) it is the union of two spectra of Dedekind domains,
(3) it is complete in the sense that for all f € K(X), div(f) has degree 0,
(4) Pic(X) = Z.
In fact, X is an affine scheme of a PID together with a point at co. There exist closed points
x € X such that

X\ {z} = Spec(B)

Ox. ™ B

where
B. = B¢,

By = valuation ring of Bqg.

1.2.2. Relation to the theory of perfectoid spaces.

Definition 1.2.4. Let C be a field which is complete, non-archimedean, residue character-
istic p.

(1) It is a perfectoid field if

(a) the valuation is non-discrete,

(b) the p-power map is surjective on O¢/p.
(2) The tilt of C'is defined as

C” = lim C
mﬁp
with
(G, . b)n = Qp * bna
(a4 b)y = lim (appm + bugm)*
n—oo
lal’ = |ag|.

Remark 1.2.5. For any C, C” is a perfectoid field of characteristic p.
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Examples 1.2.6. The field C, is perfectoid of characteristic 0 with CII’? = F.

Remark 1.2.7. Scholze extended the de Rham Comparison Theorem 1.1.13 to rigid analytic
varieties using the theory of perfectoid spaces.

Theorem 1.2.8 (Tilting equivalence). Suppose C' is a perfectoid field.

(1) Ewvery finite extension of C' is a perfectoid field.
(2) There is a bijection

{finite extension of C'} < {finite extension of C’}
L L,

(3) The above bijection induces an isomorphism I'c = Tc.

This allows to translate problems in characteristic 0 to problems in characteristic p.
Question. Can you parameterize a way of untilting?

Definition 1.2.9. An untilt of F is a pair (C, ¢) where C'is a perfectoid field of characteristic
0and ¢: C* = F.

Let ¢ be the Frobenius automorphism on F. It acts on the set of untilts of F' by
$YF o (C, l’) = (Ca $YF o L)‘
Theorem 1.2.10 (Fargues—Fontaine).

(1) For any closed point x € X, k(x) is a perfectoid field of characteristic 0 with k(z)” =
F.
(2) There is a bijection

{closed points on X} «» {@p-orbits of untilts}
induced by x — k(x).

Remark 1.2.11. This theorem is one of the main motivations for the theory of diamonds.
Just as

Algebraic space = Scheme/étale equivalent relation,
one thing should that

Diamond = Perfectoid space/pro-étale equivalence relation.

1.3. Geometrization of p-adic representations.

Definition 1.3.1. Fix a closed point co € X.

(1) A wvector bundle on X is a locally free Ox-module of finite rank.
(2) A modification of vector bundles on X is (€, F,i) where

e £ F are vector bundles on X,

® i €|X\oo = F|X\oo
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Remark 1.3.2. There is a complete classification of vector bundles on X. We will see
this later in the course. Roughly, it is analogous the fact that any vector bundle on P! is
isomorphic to @ O(\).

Theorem 1.3.3 (Fargues—Fontaine). There is a functorial commutative diagram:

{isocrystals over F,} +—— {vector bundles on X}

I [

{filtered isocrystals over IETD} - { modifications of

vector bundles on X

where the vertical arrows are forgetful functors. The top horizontal arrow is a bijection, but
not an equivalence of categories.

Recall that there is a functor

Diess: {sepreiticimios o, ) = { Mg
which is fully faithful.
Question. What is the essential image of this functor?

Theorem 1.3.4 (Colmez Fontaine). Given N° = (N, Fil*(N)) overF,, define NO = (N, Fil*(N))
over F,. Via Theorem 1.3.3, we obtain a modification of vector bundles (£(N), F(N),i(N)).

if and only if F(N) is trivial (i.e. F(N) = OY").
Remark 1.3.5. Let Vs be the quasi-inverse of Dp_, . Then
Varis(N) = H(X, F(N)).

Then N° is in the essential image of Dy

cris

2. FOUNDATIONS OF p-ADIC HODGE THEORY

The goal of this chapter is to discuss:

(1) finite flat group schemes,
(2) p-divisible groups.

In particular, we will try to cover the main results of Tate’s p-divisible groups [Tat67].
2.1. Finite flat group schemes. The main reference for this chapter is Tate’s finite flat
group schemes [Tat97].

2.1.1. Basic definition and properties.

Definition 2.1.1. Let S be a base scheme. An S-scheme G is a group scheme if there are
maps

e m: G x5 G — G multiplication,
e ¢: S — G unit section,
e i: G — G nverse.
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satisfying the following axioms:

(1) associativity:

GxGxG U™ ay@

(m,id)l lm

m

GxG@ —"—— G
(2) identity axiom:

7

GxsgS=G id /G
x G

G

and similarly for S xg G = G,
(3) inverse:

id,i

BNy Ie.

G X
S ——— G
Lemma 2.1.2. Let G be an S-scheme. It is a group scheme if and only if G(T) is a group
functorial in T for all T/S.

Definition 2.1.3. Let G, H be group schemes over S. A map f: G — H of S-schemes is a
homomorphism if G(T') — H(T) is a group homomorphism for all 7'/S.

We define ker(f) to be an S-group scheme such that
ker(f)(T) = ker(G(T) — H(T)).
Equivalently, ker(f) is the fiber of the unit section.
Example 2.1.4. The multiplication by n map [n|g: G — G is defined by g — g¢".

Assume S = Spec(R).
Definition 2.1.5. Then G = Spec(A) is an R-group scheme if it has

o i A— A®r A comultiplcation,
e c: A— R counit,
e 11 A— A coinverse.

that correspond to multiplication, unit section, and inverse.

Examples 2.1.6.

(1) The multiplcative group over R is
G, = Spec(R[t, t71]).
Then G,,(B) = B* with multiplication for any R-algebra B. Then
pt) =t@t, et)=1, ot)=t""
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(2) The additive group over R is
G, = Spec(R[t])
Then G,(B) = B with addition for any R-algebra B. Then
pt) =1t+t®1, €t)=0, t)=—t.
(3) The nth roots of unity over R is
fin = Spec(R[t]/(1" —1)).
For any R-algebra B,
pn(B) = {be B b =1}

under multiplication. The functions y, €, ¢ are all as in (1).
(4) If R has characteristic p, we can define

o, = Spec(R[t]/t").

13

Then a,(B) = {b € B | b? = 0} with addition for any R-algebra B. The functions

i, €, are all as in (2).
(5) Let A be an abelian scheme over R. Then

Aln] = ker([n]4)

is an affine group scheme over R. This is because [n]4 is a finite morphism.

(6) Let M be a finite abstract group. We can associate to it the constant group scheme

M defined by

Writing A = [] R, note that

meM

A = {R-valued functions on M }.
For any R-algebra B, we have that
M(B) = {locally constant functions Spec(B) — M}
with the group structure induced by M. To describe p, note that
A®pr A = {R-valued functions on M x M}.
We have that
p(f)(m,m') = f(mm'),
e(f) = f(1m),
((f)(m) = f(m™").

(1) Ais alocally free R-module of rank n,

Assumption. From now on, R is a Noetherian local ring, m is the maximal ideal of R, k is
the residue field. The assumption R local is just for simplicity.

Definition 2.1.7. Let G = Spec(A) be an R-group scheme. It is a (commutative) finite flat
group scheme of order n if:
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(2) G is commutative, in the sense that:

Gx@ad (=9) @) s G x G

N, A

Remark 2.1.8. (1) implies that G — Spec(R) is finite and flat. (2) implies that G(T)
is commutative for all T over S = Spec(R). Note that G(T') may not be of order n; for
example, if T = Spec(B) if B is highly disconnected.

Example 2.1.9.

(1) The group scheme p, is finite flat of order n.

(2) If R has characteristic p, «, is a finite flat R-group scheme of order p.

(3) Let A be an abelian scheme of dimension g over R. Then A[n] is a finite flat group
scheme of order n%9.

(4) If M is a finite abelian abstract group of order n, then M is a finite flat group scheme
of order n.

We will assume two theorems in this section without proof.

Theorem 2.1.10 (Grothendieck). Suppose G is a finite flat R-group scheme of order m and
H C G is a closed finite flat R-subgroup scheme of order n. Then the quotient G/H exists
as a finite flat R-group scheme of order m/n.

As a result, we have a short exact sequence

0 » H > G »G/H —— 0

of R-group schemes.

Theorem 2.1.11 (Serre). — Let G be a finite flat R-group scheme of order n. Then |[n|g
kills G, i.e. [n]g factors through the unit section of G.

Remark 2.1.12. This is unknown for noncommutative finite flat group schemes.

Lemma 2.1.13. Suppose G s as above. Then Gp = G Xp B for any R-algebra B is a
finite-flat B-group scheme.

Proof. 1If G = Spec(A) with pu, €, ¢, then G = Spec(Ap) with p® 1, e ® 1, t ® 1. O

2.1.2. Cartier duality.

Definition 2.1.14. Let G be as above. The Cartier dual GV of G is
GY(B) = Homp.grp (G5, (Gm)5)

with group structure induced by (G,,)p.

Using this definition, it is hard to see that GV is a finite flat group scheme. We will describe
it differently soon which will make this apparent.
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Remark 2.1.15. We could have defined GV = Hom(G, G,,,), where the sheaf Hom is on the
big fppf site.
Lemma 2.1.16. If [n|g kills G, then
G" (B) = HomB-grp<GB> (ttn)B)-

Proof. Recall that u,, = ker([n]g,,)- O

Theorem 2.1.17 (Cartier duality). Let G = Spec(A) be an R-group scheme of order n with
1, €, L as comultiplication, counit, coinverse. Define

my: AQrA— A ring multiplication,
p: R— A structure morphism,
Av = HOIIlR_mOd(A, R)

Then:
(1) the maps p” and €’ gwen cm R-algebra structure on AY,
(2) GV = Spec(AY) with mY, p¥, ¥ as comultiplication, counit, coinverse,
(3) GY is a finite flat R-group scheme of order n,
(4) (GY)Y = G canonically.

Proof. Part (1) is straightforward. Parts (3) and (4) are consequences of (2). It suffices to
prove (2) but we will do this next time. O

Examples 2.1.18.

(1) We have that p,) = Z/nZ. Exercise: check this using Cartier duality 2.1.17.
(2) We have that o) = a,.

As a consequence, we have the following result.

Proposition 2.1.19. Suppose R =k is a field. Let f: A — B be an isogeny between abelian
varieties over k. Then

ker(f)" = ker(f").

Proof. We have a short exact sequence

0 —— ker(f) v A1 B

v
e

Applying the Hom functor, we get the long exact sequence sequence:

ker(f)V
0 —— Hom(B,G,,) —— Hom(A,G,,) —— ﬁom(ker(f),GnS
I
T(BG) EEASN Ext'(4,G,,)
—_ —_

BY AV
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We have that Hom(B,G,,) = Hom(A,G,,) = 0 since A, B are proper so any A — G,, is
constant. Hence the short exact sequence

0 —— ker(f)" , Bv L, AY,

completing the proof. O
Corollary 2.1.20. Let R =k be a field. Then Aln|Y = AY[n]. This gives
Aln] x A¥[n] = py,

called the Weil pariing.

Later, we will use a pairing
Tp(A) x Tp(Av) = fipoe = Zp(1)

obtained from the above corollary.

Proof of Cartier duality 2.1.17. Let G = Spec(A) and p, €, ¢ be the comultiplication, counit,
and coinverse.

Let p: R — A be the structure morphism, ms: A ®g A — A be the ring multiplication.
Consider

AY = Hompg(A, R)
with R-algebra structure given by pV and €Y. Consider
GV = Spec(AY)

V. 1V as comultiplication, counit, and coinverse. We want to show that

with mY, p
(2) GY(B) = GY(B)
for all R-algebra B. We have that:

G"(B) = Homgy, (G, (G ) )

15 (FE)=FORF)
— } f € Homp., (BJt,t7], A es(F()=1, }
{f srag(Blt, 7], Ap) s ()= (1)1
| nw=usu, ‘
=cqu€ Ay L(el(;)ﬁ):zl_l via f — f(t)

={ue Ap | p(u) =u@u},
where the last equality follows from

(idg ® €p) o pup = idp,
(idp ® ) o up = pp o €p.
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Now, the right hand side of equation 2 is

GY(B) = Hompg.,,(AY, B)
= Homp .4(A” ® B, B)
= {f € Homp_moa(B, Ap) | compatible with m}, py, 115, €5}
={ue A5 | up(u) =u®u, eg(u) =1}
={ue A5 | plu) =u®u}.

This completes the proof if we check that the isomorphism respects the group structure.
This is left as an exercise. O

Lemma 2.1.21. Suppose f: H — G is a closed embedding of finite flat R-groups. Then
ker(f)" = (G/H)".

Proof. We have that

ker(f)"(B) = ker(Hom(Gg, G, p) EN Hom(Hp, Gy 5))
= Hom((G/H)p, G,.5)
= (G/H)"(B),

as required. 0

Proposition 2.1.22. Taking the Cartier dual is an exact functor.

Proof. We want to show that if

then

0—— (G")Y 25 v L (@)Y —=o0

is exact. Injectivity of ¢g¥ is easy to check, since ker(fY) = (G")V.
To check that fV is surjective, note that f: G¥ — (G')" induces
GY/(G")Y — (G")Y.
Its dual is
(@) = (G/(G)") = ker(g™) = ker(g) = &,

which is an isomorphism. O
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2.2. Finite étale group schemes.
Proposition 2.2.1. For R Henselian, we have that:
{finite étale groups over R} <> {finite abelian groups with a continuous I'y-action}

G G(k).

Proof. Consider m: Spec(k) — R, a geometric point. Then
m1(Spec(R), m) = I'.

Hence
{finite étale schemes/R} <+ {finite sets with a continuous I'y-action}.

Passing to group objects gives the result. U
Remark 2.2.2.

(1) This bijection is compatible with the order on each side.
(2) If k = k, we have that 'y, = 1.

Definition 2.2.3. Let G = Spec(A). The augmentation ideal is I = ker(e).
Lemma 2.2.4. As R-modules, A= R® 1.

Proof. The structure morphism R — A splits the short exact sequence:

0 s 1 sy A —— R s 0,

giving the desired isomorphism. U
Proposition 2.2.5. Let G = Spec(A) and I be the augmentation ideal. Then

Qar 2 I/I* @R A,

I/)I? = Qup @4 AL

Remark 2.2.6. The multiplication on G defines an action on €24/z. The invariant forms
under the G-action are determined by the values along the unit section. Any other form is
an invariant form times a form on A.

Proof. We have the commutative diagram:

-1
ax G (g,h)—(g,gh™") NI

k A;)
G

which corresponds to the commutative diagram

ARp A < A®rA

$®y’—% A'—me(y)
A
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Let J be the kernel of the left map. Then Q4/r = J/J? by definition.?
The kernel of the right hand side map is J = A ®p I since
ARrA= (A®rR)® (A®rI)

and I = ker(e). Hence

P =(Arl)? =A®xI?
and so

JIJP=AD/(Ax?) 2 ARz I/
showing that
Qur@a AT =I/IP2rA) @A/l =(I/I*)@r A/ =1/

This gives the result. ([l

Corollary 2.2.7. Let G = Spec(A) be a finite flat R-group scheme. Then G is étale if and
only if I = I°.

Proposition 2.2.8. Every constant group scheme is étale.

Proof. f A= [] R,then = [] R,sol=1% O

meM m##id s

Corollary 2.2.9. Let R = k = k be a field of characteristic p. Then Z/pZ is the unique

finite étale k-group scheme of order p.

In particular, Z/pZ, p,, o, are mutually non-isomorphic as finite flat groups of order p.

Proof. We know that Z/_pZ is étale. Uniqueness follows from Proposition 2.2.1.
Since f,, oy, are not reduced, they are not isomorphic to Z/_pZ Finally:
sy = Spec(k[t]/"™1)  so p, = Z/pZ,
oy, = Spec(k[t]/tF)  so ay = oy,

so they cannot be isomorphic. 0]
Proposition 2.2.10. Let G = Spec(A) be a finite flat R-group scheme. Then G is étale if
and only if the image of the unit section is open.

Proof. We have e: Spec(R) — Spec(A). The image of the unit section is Spec(A/I) which
is open if and only if [ = I?. OJ

Proposition 2.2.11. Let G = Spec(A) be a finite flat R-group scheme. If the order G is
wmvertible in R, then G is étale.

Corollary 2.2.12. FEvery finite flat group scheme over a field of characteristic 0 is étale.

Proof of Proposition 2.2.11. Let n be the order of G. We claim that [n]g induces multipli-
cation by n on I/I%. We have the diagrams

2This is an equivalent way to define Q4/r. Indeed, ds =1® s — s ® 1 is the universal derivation.
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Spec(R) —— G G —4 @
l(e,e% (idve)u(&M
GxG GxG
which correspond to
R+—— A A+— A
€ id
e®eT / id®ew€®%
AR A ARA

Forall z € I, e ® e(u(z)) = 0.
Since A = R @ I, we have that
ARAYRQRO®RIIDIQRDIRI,
SO
pr)=a®1+10b+1®1
for a,b € I. For x = a = b, we get
pr)=1r+r1+11

for all z € I. Hence p acts as 1 @ x +x ® 1 on I/I?. By induction, the assertion follows
(indeed, [n] = mo ([n — 1],id) and we can run a similar argument).

We know that [n] kills G by Serre’s Theorem 2.1.11. Hence [n] factors as:
n]: G - RS G.
This gives
Qa/r = Qr/r — Quyr,
~——

=0
so the induced map on 4/ is 0. Thus [n]¢ induces the zero map on

Qa/r@a AJT=T/T°.
As n is invertible, multiplication by n on I/I* should be an isomorphism. 0

2.3. The connected étale sequence. Let R be a Henselian local ring with residue field k.

Lemma 2.3.1. An R-group G is étale if and only if Gy, is étale.

Proof. Etaleness is a fiberwise property. OJ
Lemma 2.3.2. Let T = Spec(B) be a finite scheme over R. The following are equivalent:

(1) T is connected,
(2) B is a henselian local finite R-algebra,

(3) T'x acts transitively on T'(k).
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Proof. Clearly, (2) implies (1), because local implies connected. For (1) implies (2), suppose
B =[] B; for henselian local finite R-algebras. Then Spec(B;) is a connected component of
Spec(B). To show that (1) is equivalent to (3), let k; be the residue field of B;. Then

T(k) = Hompay(B, k) = ] [ Homy (k;, &)
and Hom(k;, k) is a I'-orbit. O
Proposition 2.3.3. Let G = Spec(A) and G° be a connected component of the unit section.
Then G°(k) = 0.
Proof. Let G° = Spec(A°). Then A is a henselian local finite R-algebra. We get a surjective
homomorphism A% — R. The residue field of A° is k. Then G°(k) = Homy(k, k) =0. O

Theorem 2.3.4 (Connected—étale sequence). Let G = Spec(A) be a finite-flat R-group
scheme. Then G° is a closed subgroup of G G = G/G° is a finite étale group over R. We
have a short exact sequence

0 —— GY y G y G

v
e

Proof. We have that G x G is connected, since
(G x G°)(k) = G°(k) x G°(k) = 0.

We hence have that m(GY x G°) C G° and +(G°) C GY; so G is a closed subgroup. The unit
section of G is G°/G which is open, since G is open in G. O

Corollary 2.3.5. A finite flat group scheme G is connected if and only G(k) = 0.
Corollary 2.3.6. A finite flat group scheme G is étale if and only if G° = 0.

Corollary 2.3.7. If f: G — H s a group homomorphism with H is étale, then f uniquely
factors through G¢.

Proof. We have that f(G°) C HY = 0, so we get the result using the universal property
of G¢. O

Proposition 2.3.8. Let R = k = k be a field. Then the connected—étale sequence splits.
(This is also true if R = k is a perfect field.)
Proof. We want to show that there is a section of G — G*. Consider

G = Spec(A/n)

where n is the nilradical of A. We claim that G*? is a subgroup of G. Since a product of
reduces schemes is reduced, G* x G™4 is reduced. Hence

m(Gred % Gred) g Gred, L(Gred) g Gred.

Moreover, G™ is étale because it is finite and reduced over k.

It suffices to show that the map G — G “induces Gred = G, Since k is reduced, G™4(k) =
G(k) and we also know that G(k) = G¢*(k). O
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Example 2.3.9. Consider an elliptic curve E over E. We have a connected—étale sequence
for the p-torsion:

0 —— E[p]® — E[p] —— E[p]* —— 0.

We know that E[p|(F,) has order 1 or p. Hence E[p]*(F,) has order p if E is ordinary of 1 if E
is supersingular. Assume E is ordinary. Hence E[p]® is étale of order p. By Corollary 2.2.9,

E[p|* = Z/pL.

Moreover,
(Ep]*) =(2/p2)" = p, — E[p]’ = E'[p] = E[p].

Since p, is connected, p, < E[p|°, so p, = F[p|®. Hence the connected-étale sequence is

0 >y » Elp] —— Z/pZ —— 0.

By Proposition 2.3.8,
E[p] = fp X Z]pZ.

Remark 2.3.10. If F is supersingular, we know that E[p]® is trivial. Then E[p)] is self-dual
and we have a short exact sequence:

0 > oy > Elp > oy > 0.
2.4. The Frobenius morphism. Let R = k be a perfect field of characteristic p. Let o be

the Frobenius on k.

Definition 2.4.1. Let G = Spec(A) be a finite k-group. The Frobenius twist is G®) =
G X, k and the (relative) Frobenius pg of G (over k) is defined by the diagram:

z—aP
G
XGJ

o G

structure map l l

Spec(k) —Z— Spec(k)
More generally,
GP) — (G(p“l))(p)’
Pa = Paur1 © Yo -
The Verschiebung of G is g = ¢lv where
oav: GV — (GV)W),
Remark 2.4.2. Verschiebung ¢ is a map G® = ((GV)®)" — @G.
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Remark 2.4.3. We can check if a finite flat R-group scheme is connected or étale by passing
to the special fiber. There are criteria for connected or étaleness for G in terms of Frobenius
and the Verschiebung

Lemma 2.4.4.

(1) The Frobenius @ induces a map

AP = A,k — A

a®@c—c-ad.

(2) For any morphism G — H as schemes, we have induced maps

G %5, ) aw Y, o
H -2 g H®) Y1

(3) Both vg and g are group homomorphism.

Example 2.4.5. We have that:

(1) Pap = 07 wap = 0,
(2) ¢z/pz 1s an isomorphism, ¥zz = 0,

(3) wu, =0, ¥, is an isomorphism.

Proposition 2.4.6. We have

Ve o e =[pla ¢aove=[plgw-

Proof. This proof follows Richard Pink’s notes [Pin04].

Since g = (pgv)Y, consider pYv:

YAV AY ®k,o kE— AY.
Then:

Pav

o cf®p
(AP = AV @k, p feezlef ™l Sym? A —— 5 AV
T @fi—I1 fi
(A\/)®p

The dual of this diagram is:
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\
(pA\/

AT (A%P)S 2y AW =A@y, k
A®P.

We compute the map A explicitly. We have that
Ma®)(f @ ¢) = e ([c- f*7])
= c- flay
= fla)®c
= (Ea ® 1)(f ® C)a
where ¢, is the identification A = AYY, given by €,(f) = f(a).

Hence A(a®P) = a ® 1 in the above diagram. The other elements of (A®P)% will map to 0,
because k has characteristic p. We hence have the diagram

\
‘pAV

AT (AseySsy fIREL pm) - A @y ke

\ l - lSOA

A®P y A

On the level of groups, this yields:

Hence ¥g o o = [p|]g. The other equality follows immediately. O

Proposition 2.4.7. Suppose G is a finite group scheme over k. Then G is connected if and
only if i =0 for some r. Moreover, G is étale if and only if pg is an isomorphism.

Proof. If GG is connected, A is a local Artinian ring. It decomposes as A = k & [ where
I = ker(e). Since [ is a maximal ideal, it is nilpotent, so there is » > 0 such that for all
z €I, 27" = 0. This shows that ¢f, factors through the unit section.

Conversely, suppose ¢, = 0 for some . Since ¢}, induces an isomorphism G(k) = G®")(k),

we have that G(k) = 0, so G is connected.
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If G is étale, ker(¢g) is connected, so ker(pg) € GY = 0. This shows that (¢ is injective. In
fact, it is an injective homomorphism ¢g: G — G® between groups of the same order, so
it is an isomorphism.

Suppose now that ¢ is an isomorphism. It induces an isomorphism on G°. Hence pgo is
an isomorphism, and hence ¢, is an isomorphism. Since ¢g, = 0 at some point (G is
connected), we see that G® = 0, and hence G is étale. O

Proposition 2.4.8. Suppose G is a connected finite flat k-group. Then the order of G is a
power of p.

Proof. Let n be the order of G. We induct on n.

As usual, let I = ker(€) be the augmentation ideal. Choose x1, ..., 24 € I which lifts a basis
of I/I?. Since G is connected, d > 0.

Then A be a local ring with maximal ideal I.
Let H = ker(pg). We first claim that the order of H is p?.

By Nakayama, x1, ...,z generate I. Hence
H = Spec(A/(2f,. .., ah)).
We want to show that
A kfty, ot /() S AJ (R, ah).
Surjectivity is clear. We have a natural map
A=kl 1/
For each j =1,...,d, define D;: A — A as the composition

A AoA Y Ag, /2 B 4

We can check that )\% = D; for all j by checking on the generators. Hence the kernel
J

il

at;

ker A\ = 0. This proves that ) is an isomorphism, and hence the claim that H has order p®.

ker A is stable under =-. Therefore, ker A has to contain some constant, which shows that

Since G is connected, g, = 0 for some r. Since ¢, on G/H is 0, G/H is connected. Finally,
the order of G is the order of H times the order of G/H. Induction hence completes the
proof. O

Recall that if the order of G is invertible in the base, then G is étale.

If R is a henselian local ring with perfect residue field, then there is another proof of the the
proposition. Assume R = k is a field. If & has characteristic p, the connected—étale sequence
has G° = 0 if order is invertible in p. When k has characteristic 0, G = Spec(k[ty,. .., t4])
when d = dim [ /12, so d = 0.

2.5. p-divisible groups. The references for this section are [Dem86] and [Tat67].

We assume throughout that the base ring R is a Henselian local noetherian ring.
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2.5.1. Basic definitions and properties.

Definition 2.5.1. A p-divisible group of height h over R is an inductive system G = hg G,
such that

(1) G, is a finite flat R-groups of order p*",
(2) there is an exact sequence

0 > (3 N Gy ﬂ Gyit,

ie. Gy, = Gyya[pY].
Examples 2.5.2.

(1) The constant p-divisible group is
Qp/Zp = liﬂZ/p”Z

with the obvious transfer maps. It is a p-divisible group of height 1.
(2) The p-power roots of unity is

fpee = Jm fu0
with the obvious transfer maps. It is a p-divisible group of height 1.
(3) If A is an abelian scheme over R,

Alp™] = lim Alp’]
with the obvious transfer maps is a p-divisible group of height 2g, where ¢ = dim A.

Definition 2.5.3. A map of p-divisible groups f: G — H is a homomorphism if f = (f;) is
compatible system of R-group homomorphism:

GULHV

| J

for1
Gop1 —— Hyp

The kernel of f is ker(f) = ligker(fv).

Remark 2.5.4. The kernel of f might not be a p-divisible group.

Example 2.5.5. The map [n]¢ = ([n]g,) is a homomorphism, called multiplication by n
on G.

We want to discuss Cartier duality for p-divisible groups. We first need a lemma.

Lemma 2.5.6. Let G = (G,) be a p-divisible group over R. Then for any v,t € Zsq there
exrist

Z.v,t: G’U — Gv+t7
jv,t: Gv—i—t — Gt
such that

(1) iyt induces G, = Gyie[p*],
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(2) the diagram

commutes,
(3) there is a short exact sequence:

Tyt Ju,t
0 y Gy —— Gy —— G,

2\
e

Proof. We have that i, = G441 0dysy20 -+ 0iy: Gy = Gyyy. To check (1), we see that

Gyt [pv] = Gv+1[pv+t71] M Gv+t[Pv]
= Gyyi—1 N Gy [p']
= Gv+t71[pv]~

To construct j,;, we first note that [p***] kills G, 4. Hence [p*](G,4¢) is killer by [p']. Hence
P')(Gust) € Gopelp'] = G
The composition defines a map j,;: Gy — G, such that the diagram in (2) commputes.

Finally, it remains to check the surjectivity of j;, to complete the proof of (3). We have that
ker(j,+) = ker[p’|] = G,. Hence j,; induces a map

Gott/Gy — Gy

between two groups of order p*t*/p’ = pf. It is hence an isomorphism, showing j,; is
surjective. 0

Corollary 2.5.7. The map [p] on G is surjective as a map of fpgc schemes.

Proposition 2.5.8 (Cartier duality for p-divisible groups). Let G = @Gv be a p-divisible
group of height h over R.

(1) The sequence

2\
(@)

v} jv:jl,v
Gv—i—l E— Gv+1 ” Gv

18 exact.

(2) The injective limit G¥ = hg G, the Cartier dual of G, is a p-divisible group of height
h over R with transfer maps j, .

(3) There is a canonical isomorphism G¥Y = G.

Proof. We start with (1). We have a commutative diagram with an exact row:

V A

J1,0=J
> GU+1 - 1; GU

o
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We have that ker(j;,) = G1 = im([p*]e,,,). We hence get (1).

For (2), we dualize to get an exact sequence

-V v
v v v P v
0 7 G 7 GU+1 —> GU+1

by Cartier duality 2.1.17. Hence G = lim G is a p-divisible group.
Part (3) is obvious. O
Examples 2.5.9. We have that:

(1) (Qp/Zp)v = e
(2) Alp>]Y = AY[p>].

Proposition 2.5.10 (Connected—étale sequence for p-adic groups). Let G = ligG’v be a
p-divisible group over R. Then there are p-divisible groups over R:

G° =l G,
Gét — @Git

such that
0 —— G° y G y G > 0.
Proof. We have a diagram:
0 0 0
0 > GO > G, y G > 0
ZO i 7/ét

0 é
0 » Goyy — Gopn — Gy —— 0

l[pw [ [

0 6t
0 Gv+1 Gv+1 Gi+1 — 0

where the dotted maps are to be constructed. There is a unique i such that the top right
square commutes. For exactness, we can pass to k-points and see that it follows the middle
column on k-points.

There is also a unique closed embedding 70 such that the left top square commutes.

We want to show that G = G, [p]. Obviously, GY C GY_,[p*]. Also, GV, ,[p"] C GY and
Gg+1[pv] C Gyia[p’] = Gy Finally, G?;+1 [p°](k) C G8+1(k7) = 0. [
Definition 2.5.11. Let R = k be a perfect field of characteristic p. There is a Frobenius
twist:

GWw — ligle()p)-
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There is a Frobenius morphism pc = (pg,) and a Verschiebung morphism ¥¢ = (¢¢,).
Proposition 2.5.12. If G is a p-divisible group of height h,

(1) G® is a p-divisible group of height h,
(2) w¢ and vg are homomorphisms,

(3) Yg o pe = [Pl

(4) pcova = [plaw-

Proof. The proof is obivous by working on finite levels. O
Definition 2.5.13. Let R = k be a field. The Tate module of G is

T,(G) = lim G, (B),
where the transfer maps are given by j,: G,11 — G,.

Proposition 2.5.14. Let R = k be a field of characteristic not equal to p. Then there is an
equivalence:

finite free Zyp-modules
with continuous I i -action [ 7

G — T,(G).

{p-divisible groups over k} < {

Proof. Use the corresponding equivalence for finite flat k-groups (Proposition 2.2.1) and the
fact that groups with invertible orders are étale (Proposition 2.2.11). O

2.6. Serre—Tate equivalence for connected p-divisible groups. A key correspondence
for p-divisible groups is the Serre-Tate equivalence:

groups over R over R formal Lie groups

{connected p—divisible} PN {formal group laws } PN { p-divisible } )

Let R be a complete local noetherian ring, with residue characteristic p.
Definition 2.6.1. Let G = ligGv be a p-divisible group over R. We say that G is:
e connected if each G, is connected,
e ‘ctale if each GG, is étale.

Examples 2.6.2.

(1) The p-divisible group gy~ is connected.
(2) The p-divisible group Q,/Z, is étale.

Definition 2.6.3. Let A = R[ty,...,t4]. Then define
A@A - R[[tl, co ,td,ul, e ,ud]].
We will also write T = (ty,...,tq), U = (ug,...,up) for the variables.

A formal group law of dimension d over R is a (continuous) map u: A — A®.A such that
O(T,U) = (9;(T,U)) for each ®;(T, V) a power series of 2d variables and

q)i(Tv V) = N(ti>

satisfying the following properties:
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(1) associativitiy: ®(T,®(V,V)) = &(P(T,V),V),
(2) unit section: ®(T,04) = ®(04,7) =T,
(3) commutativity: ®(T,V) = &V, T).

Lemma 2.6.4. If i is a formal group law over R, then
(1) the diagrams
A——— ABA  ADA —ZUT L ABA

lu lw,id) 'x ) /

id,p

ABA Y A A @ A

commute,
(2) the map e: A — R given by t; — 0 makes the diagram
A—%— A —— AR
N Ae)

ABA
and a symmetric diagram commute,
(3) there is a continuous map v: A — A such that

A5 A A

l€ L®iduid®b
R—— A
commutes.

Proof. Parts (1) and (2) are clear. For (3), we need to define I,(T) = u(t;), I(T) = L,(T)
such that

O(I(T), T)=0=9(T,1(T)).
We want P;(T'): a family of polynomials of degree j such that I(7) = lim P;(T), i.e.

(i) P;(T) = Pj_1(T") mod degree j,
(ii) ©(P;(T),T) =0 mod degree j + 1.

Since ®(T,U) = T 4+ U mod degree 2, we may take P;(T) = —T. We define P;(T) by
recursion on j. We have that

O(P;(T), T) = Aj(T) mod degree j + 2,
where A;(7T') is a homogeneous polynomial of degree j + 1. Define
Pya(T) = P(T) + Ay(T),
Then (i) is clearly satisfied. For (ii), we note that
O(Ppi(T),T) = ®(P(T) + A(T),T) = ®(P;(T),T) + A;(T) =0 mod degree j + 2.
This proves (3). O
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Remark 2.6.5 (Formal schemes and groups). A formal scheme is a scheme together with
an infinitesimal neighborhood.

If A is a ring, we define Spec(A) as the set of prime ideals.

If A is a topological ring, we define Spf(A), the formal spectrum, as the set of open prime
ideals of A.

Formal groups are group objects in the category of formal schemes. The lemma says that
any formal group law over R defines a formal group structure on Spf(A), written G,,.

Example 2.6.6. The multiplicative formal group law is
pe: R[] — R[t,u],
t— (1+t)(1+u) -1

Definition 2.6.7. Let u, v be formal group laws of dimension d over R. A continuous map
vA — A is a homomorphism from p to v if the diagram

AL ARA

lv l’y®w

At ARA
commutes.

Lemma 2.6.8. A continuous map v: A — A given by Z(T) = (Z(T")) where Z;(T) = ~(t;)
if @ homomorphism if and only if, writing (T, V') and V(T,V') for the functions associated
to p and v, we have that

(ET),Z2(V)) = E(S(T,V)).
Example 2.6.9. The multiplication by n map [n], on u is a homomorphism.

Definition 2.6.10.

(1) The ideal Z = (t,...,tq) = ker e is the augmentation ideal of p.
(2) A formal group law p is p-divisible if [p], is finite flat in the sense that A is a free
module of finite rank over itself.

Remark 2.6.11. A formal group law f is p-divisible if and only if [p] on G, is surjective
with finite kernel.

Proposition 2.6.12. Let p be a p-divisible formal group law of dimension d over R. Define
A, = A/(P"1(D)).
Alp®] = Spec(A,).
Then

']

(1) each u[p“] is a connected finite flat R-group,
(2) plp™] = ligl,u[p”] is a connected p-divisible group over R.
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Proof. We may write
Ay = A/[p"]u(Z)
= (A/T) @4 A
=R @4, [p] A.
Then 1 ® i, 1 ® €, 1 ® ¢ define comultiplication, counit, and coinverse on Ay .

Let r be the rank of A over [p|(.A). Then r* is the rank of A over [p*](A). Hence Spec(A4,)
is a finite flat R-group scheme of order r”.

Since R is complete, A is also a lcoal ring. Hence each A, is a local ring, showing that
Spec(A,) is connected over R. Since Spec(A;) has order p* = r, and Spec(A4,) has order p.
This completes the proof of (1).

For (2), we need to check that u[p] is the p’~torsion of u[p’™!]. The natural surjective map
A, = A/p"IT) — [plA/[p" ()

is an isomorphism as it is an R-linear map between R-modules of the same rank. We hence
have a surjection

Avr = A/[p™)(@) — [p]A/[p"](Z) = A,
induced by [p], and hence [p"] will be 0. O

Remark 2.6.13. We have that G,[p"] = Spec(4,).

Theorem 2.6.14 (Serre-Tate equivalence). There functor

p-divisible formal group laws . connected p-divisible
over R groups over R

p = p[p™]

is an equivalence of categories.

The map above is really the following. We have a formal group scheme G, associated to p.
Then the connected p-divisible group over R associated to p is

iy G, 2 limy G, ),
where we recall that

G, = Spec(A/[p'](Z)).

Remark 2.6.15. Local class field theory can be stated in terms of Lubin-Tate formal group
laws. Local Langlands for GL; is local class field theory. It can hence be stated in terms of
certain p-divisible groups.

For GL,, Harris and Taylor [HT01] proved the local Langlands correspondence via moduli
spaces of p-divisible groups: Rapoport—Zink spaces and local Shimura varieties.
We now work towards the proof of the Serre-Tate equivalence 2.6.14.

The following proposition shows the essential surjectivity over k in the Serre-Tate equiva-
lence 2.6.14.
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Proposition 2.6.16. Let G = liﬂGv be a connected p-divisible group over R, where G, =
Spec(A,). Then
@Av ® k = k[tq, ..., td].

Proof. Let G = G xp k. Define H, = ker(¢") and note that H, C ker([p‘]) = G,. Since
"o =[p'],
writing H, = Spec(B,) and we have A, ® k — B,.

We have that G, is a connected finite flat k-group. Hence ¢* = 0 on G,, so G, C H,,
showing that B, - A, ® k. Hence

@nAv@k%’@Bv.

Let J, be the augmentation ideal of H, and J = @ Jy. Then B,/ J, = k. Let y1,...,yq € J
lift a basis of J;/JZ. We have a commutative diagram:

k= (B’U/JU) ®k70 k—— By

[

B = B, ®,, k 22 B,

SO

B, = B,/J®
where qup ) is the ideal generated by p-powers of elements in J.

Since J;/JE = J,/J?, the images of y, ..., ys generate J,/J?. By Nakayma’s Lemma, they
generate J,. We hence have a map

]{][tl, oo ,td] - BU.

We hence have
klty, ... ta /&, ..., t7") = B,

since H, = ker(¢"). We want to show this is an isomorphism.

We proceed by induction on v. When v = 1, we checked this in the proof of Proposition 2.4.8.
For the induction step, we argue on ranks. We ant to show that p*¢ is the order of H,. For
that, we observe that the sequence

0 sy H, sy Hypy —2— HP

e}

is exact. Since H; = ker(p), we just need to check that ¢ is surjective. Recall that [p] is
surjective by Corollary 2.5.7. We know that ¢ o ¢ = [p], so ¢ is surjective. Recall that

Hy 1 = ker(p*), so o(Hyy1) C ker(@%), and the preimage of H is ker(gpé(m).

d(v+1)

This shows that the order of H,,; is p¢ - p¥¢ = p , completing the proof. O
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Lemma 2.6.17. Let p be a p-divisible formal group law R. Letting
A, = A/p’1(D),
we have that

.A%lgr_nAv.

Proof. Let m be the maximal ideal of R. Then 9 = mA + Z is a maximal ideal of A. For
each v, i, we have that
[p*](I) + m'A D M»
for some w, since ' .
A/([P](Z) + m'A) = A, /m’A,,

which is local Artinian.

Moreover, [p](Z) C pZ+ZI?, because [n] acts as multiplication by n on Z/Z? by the argument
in the proof of Proposition 2.2.11. Alternatively, recall that ®(7,U) = T+ U + (degree > 2).

This shows that ‘ /
[p'I(Z) + m"A C 9
for some w’.
Altogether, we see that:
A l&n A/
= lim A/([p'](T) + m'A)

= @ A, /m'A,
= 1'&1141, since A, is m-adically complete.
This completes the proof. O

Proof of Theorem 2.6.14. We first check that the functor is fully faithful. Let u,r be p-
divisible formal group laws over R. Then for B, = A/[p"],(Z):

Hom(y, v) = Hom,, ,(A, A)

= Homw(lgn By, @Av) by Lemma 2.6.17

= l&n Hom,, ,,, (B, Av)

= limp Homygy, (p[p°], v[p"])

= Hom(u[p™], v[p™]).
For essential surjectivity, consider G = hﬂGv be a connected p-divisible group. Let

G =G xpk,
and G, = Spec(A,). By Proposition 2.6.16,
Elty, ... tq = lé'r_nAU ® k.

We want to lift to f: A — 1'&114@. We hence need lifts f,: A — A,, which lifts the above
isomorphism, such that
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A fuss v+1 — Av+1 & k:

]

Ay, — A, ® k.

Let fi; be any lift over k[ty,...,ts] — A1 ® k. We define f, by recursion on v. Choose
Y1, -, Ya € Apyq which lift images of ¢, ..., t; under

k[[t]_, . e ,td]] — AU+1 ® k
Then p,(y1), .- ., pu(ya) must lift the images of t1, ..., t; after the map
k’[[tl,...,td]] — Av®k}

We know that f,(t1),..., fu(tq) also lift the images of ti,...,t; under this map. Then
fo(ti) — pu(y;) € mA,, so there exist z; € mA, 1 such that

pv(zv) = fv(tz) - pv(yz)
Defining f,11 by for1(t;) = yi + 2; gives the desired lift.
We want to show that the resulting map
fr A= limA,

is an isomorphism. Surjectivity is clear by Nakayama’s Lemma. We want to show that

ker(f) = 0. We know that ker(f) ®g k = 0, i.e. mker(f) = ker(f). We now note that
Mker(f) = (mA+ I)(ker f) = ker(f),

so f is injective by Nakayama’s Lemma.

We have an isomorphism

fr A= mA,.
To prove essential surjectivity, We define G = liﬂGv for G, = Spec(4,). Then pu, is
a comultiplication on G,, and pu = @uv defines a formal group law over R such that

plp’] = Gy

We just need to check that G is p-divisible. We omit the details of this; roughly, ones uses
that the map j,;: G4+ — Gy induces an injection A; — A, 4. O

Definition 2.6.18. For a p-divisible group G = liﬂGv over R,

dim(G) = dimension of the formal group law associated to G"

(via the Serre-Tate equivalence 2.6.14).

In the course of the proof of Theorem 2.6.14, we showed the following result.
Corollary 2.6.19. Let G = G xp k. Then ker(yg) has order pi™(©),
Example 2.6.20. Recall that pg—(t,u) = (1+)(1+u) — 1. Then [p°](t) = (1 +1)*" =1, so

Hg [P = prpe.
Theorem 2.6.21. Let G be a p-divisible group over R. Then

ht(G) = dim(G) + dim(GY).
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Proof. By passing to the residue field, we may assume that R = k is a perfect field of
characteristic p. Then

0 —— ker(yp) y G —— GW > 0
Uk
0 > 0 y G —4 5 @ > 0

is commutative with exact rows, since ¢ is surjective, because ¢ o ¥ = [p|ae and ker(yp) is
killed by [p] because 1) o ¢ = [p].

Snake Lemma then gives a short exact sequence

0 —— kerp —— ker([p]) —— ker(y)) —— 0.

Since ker(y) has order p™(@ and ker([p]) = G, has order p"™& and @ = @Y., implies
that ker(¢)) has order pdm(E) - we are done by multiplicativity of orders in short exact
sequences. ]

Corollary 2.6.22. Let G be a p-divisible group over R with residue field k = k of height 1.
Then G is isomorphic to jiyee or Q,/Z,.

Proof. By Theorem 2.6.21, we know that dimG = 0 or dimGY = 0. If dim G = 0, G is étale,
so G =2 Q,/Z,. Otherwise, dimG" =0, so G¥ = Q,/Z,, so G = piy=. O
One can also prove this result using Dieudonné theory, which we will soon explain.
Example 2.6.23. Let F be an ordinary elliptic curve over E. Then there is a short exact
sequence
0 —— E[p®]° —— E[p>*] —— E[p=]* —— 0.
Since E[p]° and E[p]* are both non-trivial, so are E[p>°] and E[p*°]%. Finally, E[p>] is of
height 2, so Corollary 2.6.22 shows that
Ep™]’ = e, Ep™)" = Q/Z,.
The short exact sequence splits, because it splits at each finite level. Hence
Elp™] = ppee x Qp/Zy.
Remark 2.6.24. We discuss Serre-Tate deformation theory for ordinary elliptic curves.

In general, Serre-Tate deformation theory says that the deformations of an abelian variety
A/k are equivalent to the deformations of A[p™] (i.e. p-divisible groups G/R such that
G xg k= A]p™]).

Therefore, a deformation of an elliptic curve E over k = k corresponds to a deformation of
E[p>]. The deformation space of E[p™] is

Ext' (@p/zpa [y )
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since if G is a deformation over R, the connected—étale sequence
0-G"=>G—=G"=0
and G° = iy~ and G = Q,/Z,.

We also have a short exact sequence

0 > Lp > Qp » Qp/Z, —— 0.

The long exact sequence after applying Ext(—, p,~) gives
Ext' (Qp/Zyp, prp) = Hom(Zp, fp).

Therefore, the deformation space has the structure of a formal torus of dimension 1, given
by pg=.

2.7. Dieudonné—Manin classification. Let k& be a perfect field of characteristic p. Let o
be the Frobenius automorphism over k.

Definition 2.7.1. We write W (k) for the ring of Witt vectors over k. We write Ky(k) for
the fraction field of W (k). The Frobenius ow iy on W (k) is

o | D orlapt | = lah)p"

n>0 n>0

where 7: k — W (k) is the Teichmiiller lift. Finally, o, x) is the unique field of automorphism
on Ky(k) extending ow ).

Example 2.7.2. Let k = F, and (,_; be a primitive (¢ — 1)st root of unity. Then

W(k) = Zp|Cq-1],  Ko(k) = Qp[¢g-1]
and o acts on W (k) by
(Cq 1) q 1

and trivially on Z,,.

Definition 2.7.3. A Dieudonné module over k is a pair (M, @) where

e M is a finite free module over W (k),

e p: M — M is an additive map such that:
(1) ¢ is o-linear, i.e. p(am) = o(a)p(m) for all a € W(k), m € M,
(2) @(M) 2 pM.

Theorem 2.7.4 (Dieudonné). There is an anti-equivalence:

D: {p-divisible groups over k} — { Dieudonné modules over k}
such that

k(D(G)) = ht(G),

G is étale if and only if pp) s an isomorphism,
G is connected if and only Zf () s topologically nilpotent,
[pla induces multiplication by p on D(G).

(1) r
(2)
(3)
(4)



38 SERIN HONG
For a proof, see [Dem86].

Remark 2.7.5. There is a notion of duality for Dieudonné modules, compatible with Cartier
duality.

Examples 2.7.6. We have that
(1) D(Qp/Zy) is W (k) with ¢n(g,/z, given by ow ),

(2) D(Qp/Zp) is W(k) with PD(Qp/Zy given by POw (k),
(3) if E is an ordinary elliptic curve over k, D(E[p™]) = W (k)®? with ¢ = ow @) ®pow k)-

Definition 2.7.7. A map of p-divisible groups f: G — H is an isogeny if it is surjective
and ker f is finite flat.

Proposition 2.7.8. The following are equivalent:

(1) f: G — H is an isogeny,
(2) D(f): D(H) — D(QG) is injective,

(3) D()[1/p]: D(H)[1/p] = D(G)[1/p].
This is easy to check using the properties in Theorem 2.7.4.

Definition 2.7.9. An isocrystal over k is a finite-dimensional Ky(k)-vector space N with a
o-linear bijection ¢: N — N.

Remark 2.7.10. If G is a p-divisible group over k, D(G)[1/p] is an isocrystal which deter-
mines the isogeny class of G.

Example 2.7.11. Let A € Q be A = g for (d,r) =1, r > 0. The simple isocrystal N(X) of
slope X is Ko(k)®" with

90(61) = €2, 90(62) = es, 90(67«) = pd€1.

Theorem 2.7.12 (Manin). Let k = k. The category of isocrystals over k is semisimple with
simple objects given by N(N).

In other words, any N over k has a decomposition
N =N
for A\ < -+ < Mg
Definition 2.7.13. For A, = &, (d;,r;) = 1, r; > 0.
(1) The Newton polygon of N is the lower convex hull of the points
(myry + -« +myrg,mady + - +md;), i=1,... 0.

Here is a schematic diagram of N:
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(myry,midy) (mary + marg, mydy + mads)

(2) The dimension of N is dim(N) = mydy + mads + - - - myd,.

(3) The slope of N is u(N) = i:f(((]]v\,))-

Proposition 2.7.14. If G is a p-divisible group over k, then D(G)[1/p] has rank ht(G) and
dimension dim(G). Moreover, if

D@1/} = DN,

then
D(GY)[1/p] = @N ) Em
Theorem 2.7.15 (Serre, HondaTate, Oort). Let N be an isocrystal over k. Then
N = D(A[p>])[1/p]

for some abelian variety A over k if and only if

(1)

Example 2.7.16. Let A be a principally polarized abelian variety of dimension g over k.
Then A is ordinary if D(A[p>])[1/p] has Newton polygon connecting (0, 0) to (g, 0) to (2g, g).
Hence A[p™] is isogenous to pin X Q,/Z,’.

We claim that A[p>] = il x Q,/Z,°. We have the short exact sequence
0 — Ap™]° — A]p™] = Ap™]* — 0.
We have that )
(A[p>D™ = (Q/Z,)*,
and
(Qp/Zp)")" = e — Alp™]Y = AY[p] = A]p™)",
S0
Alp>]? = Hpee -
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Finally,

Alp™] = Ap™]" x Alp™]™" = jre x (Qp/Zy)".
Remark 2.7.17. One can extend Serre-Tate deformation theory to show that the deforma-
tion space of A is a formal torus of dimension g(g + 1)/2.

2.8. Hodge—Tate decomposition. The goal is to prove he following two results.

(1) The Hodge-Tate decomposition for Tate modules.
(2) The full faithfulness of the generic fiber functor for p-divisible groups.

The reference is [Tat67].

2.8.1. The completed algebraic closure of a p-adic field.

Definition 2.8.1. A p-adic field K is a discrete valued complete non-archimedean extension
of Q, with perfect residue field of characteristic p.

Example 2.8.2.

(1) Every finite extension of Q,.
(2) If k is a perfect field of characteristic p, Ko(k), the fraction field of W (k), is a p-adic
field.

Remark 2.8.3. Let k = F,. Then K,(F,) is the completion of the maximal unramified

extension of Q.

Notation. If K is a p-adic field, we write
'y = Gal(K/K),
Ok = valuation ring of K,
m = maximal ideal of O,
k= Og/m.

Definition 2.8.4. The completed algebraic closure of K is Cx = K. We write Oc, for the
valuation ring of Cg.

Remark 2.8.5. The field Cg is not a p-adic field. We will study it nonetheless. It is our
first example of a characteristic 0 perfectoid field.

We fix a valuation on Cg so that v(p) = 1.

Lemma 2.8.6. The action of L' on K uniquely extends to a continuous action on Cg.

Proof. Obvious by continuity. 0
Proposition 2.8.7. The field Ck is algebraically closed.

Proof. Consider P(t) € Ck[t]. We want to show P(t) has a root in Cg.

Exercise. We can assume P(t) is monic over O, .
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We want to show that there is a Cauchy sequence (a,) such that P(cq,) converges to 0.
Write
Pt)=t"+at 4+ +ag fora; € Oc,.
Consider
Po(t) =t + ap t" - ang
with v(a;,, — a;) > dn and a,,; € Of.

We construct a, recursively such that «, is a root of P,(t). Let a; be any root of Pi(t).
Suppose «, such that P,(a,) = 0. Then

Poyi(an) = Poyi(an) — Pa(an)

Z(anJrl,i - Cln,z’)OéiL

i=1
and hence

v(Pri1(a)) > dn.
Let

Pn—i-l(t) = H(t - ﬁn-&-l,i)-

Since Oy is integrally closed, 3,41, € Ox. Then
Poyi(an) = [ [(an = Bosra),
so there exists ¢ such that v(a, — Bpi1:) > n. We define a1 = Srg
We have a sequence «,, such that
V(0 — ) > 1
P,(a,) = 0.

Then (ay,) is Cauchy, so «,, — a € Cg. Now,

Py(a) = Po(en) = Y (ai — )0
Hence v(p,(a)) — 0 as n — oo, showing that p(a) = 0. O
Definition 2.8.8. A p-adic representation of I'k is a finite-dimensional Q,-vector sapce V'
with a continuous homomorphism I'x — GL(V).

Examples 2.8.9.

(1) Let G be a p-divisible group over K. Then V,(G) = T,(G) ®z, Q, is a p-adic
representation.
(2) Let X be an algebraic variety over K. Then H (X%, @Q,) is a p-adic representation.

Notation. We write Repr, (Q,) for the category of p-adic representations of I'k.
Definition 2.8.10. Let M be a Z,-module with continuous I'g-action. The nth Tate twist
of M is
M= M @ T, (pp)®" if n >0,
Homp, (T}, (pp)®~", M) if n <O0.
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Example 2.8.11. Recall that Z,(1) = T,,(pp~ ). As a Galois representation, this corresponds
to the p-adic cyclotomic character of K:

xi: Tk — Aut(Z,(1)) = Z,;.
We will usually simply write x for xx.
Lemma 2.8.12. Suppose M is a Z,-module with a continuous I'-action. Then
M(m +n) = M(m) ® Z,(n).
M(m)" = MY (—m).

Proof. These are simple consequences of the definition. [l
Lemma 2.8.13. Let M be a Z,-module with a continuous I'-action o: I'x — Aut(M).
Then M (n) is identified with the Z,-module M with o € I'x acting by x(o)"o(0).

Proof. We have that M(n) = M ® Z,(n) with I'x-action o ® x". O

We will assume the following theorem without proof.
Theorem 2.8.14 (Tate-Sen). The Galois cohomology of Ck(j) is given by
K ifi=0,1andj=0,

0  otherwise.

H'(K,Ck(3)) :{

Remark 2.8.15. The proof of this theorem requires the full power of the higher ramification
theory and local class field theory. It would take several lectures to prove, which is why we
omit it here.

If i = 5 = 0, the theorem says that CE(K = K. This has an elementary proof, c.f. [BC09,
Prop. 2.1.2].

Lemma 2.8.16 (Serre-Tate). Let V € Repr, (Qp). Then the natural map
ay: @(V ®@p (CK(H))FK R CK(—TL) -V ®@p Cg
nez
18 1njective and I i -equivariant.

Proof. For each n € Z, we have
Qyp (V ®@p (CK(H))FK XK K(—n) —V ®Qp (CK(TL) XK K(—n) =V ®Qp (CK.
This extends to a Cx-linear map. Taking the direct sum of these maps give oy which is now

clearly I'x-equivariant.

We need to show ay is injective. Suppose that ker(a,) # 0. For each n € Z, choose a basis
(Umn) of (V ®g, Ck(n))' . Since the individual mapsavy,, are injective, we can identify vy, ,,
as a vector oy, (Umy) in V ®q, Ck.

Now, the vectors (v, n)mn span the source of ay. Since we assume that ker(ay ) # 0, there
is a non-trivial relation
Z CrmnUm,n = 0.
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Choose such a relation with minimal length and assume that c¢,,,,, = 1 for some mg, ny.
For 0 € I'k,

0=0 (Z cm,nvm’n> — x (o)™ (Z cm,nvm,n)
=" olemax(@) " vmn = X" (3 cmntinn )
= (o(Cmnx(0)™" = X(0)Cmn)) Vmn

If m = mg, n = —nyg, the coefficient is 0. By minimality assumption, we see that

-n

o(Cmn)x(0) ™" = x(0)" i = 0.

Hence

—_n—n
0 — Cm,n-

o(Cmn)X(0)

The left hand side is the Galois action on C(—n —ng). If n # —ng, ¢, = 0. Hence ¢, # 0
possibly only if n = —ny.

If n=—ng, ¢y € Clx = K. Hence

E CmnUm,—ng = 0
m

is a K-linear relation, which is a contradiction. 0

Definition 2.8.17. A representation V' € Repr, (Q,) is Hodge—Tate if oy is an isomorphism.

We now present the general idea of the proof of the Hodge-Tate decomposition for Tate
modules. Recall that if G is a Lie group, log.: G — Lie(G) is a local homeomorphism.

In our context, if G is a p-divisible group over O, G° gives a formal group G. We get a
p-adic Lie group G(O¢) and

10g2 g(Oc) — Tg.
We will relate T,(G) to tgv.

2.8.2. Formal points on p-divisible groups. Fix R = Og. Let L be the p-adic completion of
an algebraic extension of K (e.g. L = Cg). Let Of, be the valuation ring of L and my, be its
maximal ideal.

Definition 2.8.18. Let G = hgq G, be a p-divisible group over Og. The group of Oy -valued
formal points on G is

Remark 2.8.19. This terminology is not standard. In [Tat67], G(Oy) is the group of Of-
points, but it will soon become clear why these are just “formal points”.
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Example 2.8.20. We have that pi,<(Or) = 1 + my, with the multiplicative structure. We
check this:
ppe(Or) = 1'&nNp‘x’(C)L/miOL)
= {z € OF | v(z"" — 1) can be arbitrarily large}

U

=1+mg 2 —1=(x—1)" modmy.

Remark 2.8.21. The ordinary Op-valued points are
ppo (Or) = %nupv(OL) = p-power torsion points in OF.
Proposition 2.8.22. Let G = ligGv be a p-divisible group over O.

(1) If G, = Spec(A,), G(Or) = HomoK_Com(l'&nAv, Opr).
(2) The Op-formal points on G, G(Op) form a Z,-module with torsion:

G(OL)tor = héﬂl&n GU(OL/mZOL)

(3) If G is étale, then G(OL) = G(kg) is a torsion group (where ky, is the residue field
Of OL)

Remark 2.8.23. The comultiplication on G, defines a formal group on G = Spf (M Ay).
Then G(Oy) = HomoK_Cont(@ A,, Op), which agree with our definition by Proposition 2.8.22 (1).

Proof of Proposition 2.8.22. We start with (1). Recall that Oy, is complete, so
O = @OL/miOL.
Since A, is finite free over Ok, A, is m-adically complete, so
A, = l'glAv/miAU.
By definition, '
G(Or) = Jim liny Go(OL/m'Oy).

Hence
G(Op) = l'glligiHomoK(Av, O /m'Oy)
= I'&nli_ngHom@K(Av/m’Av, Or/m'Op)
= T&nHom@K(l'&n A, /m*A,, Op/m*Op)

= HomOK—cont (1&1 Av/miAva I&H OL/mZOL)
= HomOK-cont (I&H Am OL)

For (2), note that G(Op) is obviously a Z,-module and
G(Op)tor = set of p-power torsion.

We have an exact sequence:

0 —— Go(OL/mOy) —— GO, /mi0;) Ly GO, /mioy)
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and taking l'gli,

0 —— lim G,(Op/mi0;) —— lim G(Or/m'O;) L lim G(O,/mi0y)

- . S

G(On) G(Or)

Hence the p*-torsion on G(Oy) is @GU(OL,miOL). Hence

G(OL)tor - hﬂ 1&1 G”U(OL/mZOL)

For (3), if G is étale, GG, is étale and hence formally étale, so
Go(Op/m'OL) =2 G, (O /M Oy).
Hence
G(OL) = @MGU(OL/‘(“ZOL) = @@Gv(kl/) = G(kp),
completing the proof. O

Corollary 2.8.24. If G is connected, take p to be the formal group law under the Serre—Tate
equivalence 2.6.14. Then

G(OL) = HomOK—cont<OK[[t1; Ce ,td]], OL)
where d = dim(G) and multipliciation by p is given by [p|,.
Proposition 2.8.25. Let G = ligGv be a p-divisible group over Ok . Then

0 —— G°(0r) — G(Or) —— G*(O0r) —— 0
15 exact.

Proof. Let G, = Spec(A,), GY = Spec(A4?), and G = Spec(A%). Let
A=lmA, A*=lim A%,

This sequence is left exact since colimits and limits are both left exact. We need to show
that G(Or) — G**(Oyp) is surjective, i.e. the map

Homeont (A, Or) — Homegn (A%, OF)
is surjective. Recall that
G°(Or) = Homeont (Ok|t1, . .., ta], Or)
where d = dim(G). Moreover,
(A @)ty ...t 2 ARk
since over k the connected—étale sequence splits.

We get f: A%[ty, ..., tq] — A (by the same argument as in Serre-Tate). We claim that this
map is an isomorphism.
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For surjectivity, assume coker(f) # 0. Then there exists a maximal ideal 9t of A such that
coker(f)am # 0. Hence coker(f) ®o, k =0, so mcoker(f) = coker(f), and hence

coker(f)am = mcoker(f)m = I coker(f)om.
Since coker(f)gy is finitely-generated over Agy, we are done by Nakayama’s Lemma.

For injectivity, let Z = (t1,...,t;) and Z be the image of I under f. We have a short exact
sequence

0 —— ker(f)/ker(f) [ E— Aét[[tl,...,td]]/[j — A/TJ — 0,

so ker(f)/ker(f) NI/ = 0, showing that ker(f) C I/. Since (I’ = 0, this shows that
ker(f) = 0.

We have hence shown that f is an isomorphism. This gives a surjection A — A" which
splits the embedding A* — A. We hence get a splitting of

Homcont(Aa OL) — Homcont (Aét7 OL),
showing this map is surjective. 0

Corollary 2.8.26. For all x € G(Oy), p"x € G°(Oy) for some n.

Proof. The group G is torsion. Hence for some some n, the image of p"z in G*(Oy) is
trivial. We are hence done by the connected—étale sequence. O

Proposition 2.8.27. If the field L is algebraically closed (e.g. L = Ck ), multiplication by p

on G(Or) is surjective.

Proof. By the connected—étale sequence, can work on G°(Op) and G*(QOp) separately. Since
G%(Or) = G*(kyz), using equivalence to finite free Z,-modules, multiplication by p is sur-
jective.

The group G°(Oy) is p-divisible by the p-divisibility of the corresponding p-divisible formal
group p. Surjectivity on G°(Op) follows. O

Remark 2.8.28. These facts will imply that log: G(Oc, ) — tc(Ck) is surjective.
2.8.3. The logarithm for p-divisible groups. Let L be the p-adic completion of an algebraic
extension of K. Recall that

G(Or) = group of formal O-valued points.

Then
GO(OL) = Homcont(oK[[tlu s 7td]]7 OL)

and
0 —— G°0OL) —— G(O) —— G*(Or) —— 0

is exact.
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Definition 2.8.29. Let G be a p-divisible group over Ok of dimension d. Let pu be the
formal group law associated to G® and I = (ty,...,tq) C Ok|t1,...,tq] be the augmentation
ideal of u.

(1) Let M be an Og-module. The tangent space of G with values in M is
ta(M) = Homo,-mea(I/1%, M).
(2) The cotangent space of G with values in M is
ta(M) =1/I* ®p, M.
Remark 2.8.30.

(1) There is a formal group G associated to G. The tangent (cotangent space of G)
agrees with the above notion.
(2) For any real A > 0,

Fil*G°(Or) = {f € G°(Op) | v(f(x)) > A for all x € I}
(this makes sense since f € G°(Or) = Hom(Oxk][t1, .. .,t4], Or)).
Definition 2.8.31. The log map for G is
loge: G(Or) — tg(L) = Home,..moa(I/1%, L)

e (mf@:) — lim M)

n—oo pn

This definition only makes sense when we prove the limit exists.
Lemma 2.8.32. Let f € Fil* G°(Oy). Then

pf € Fil*(G°(O}))
where k = min(1 + A, 2)).

Proof. Recall that [p],(z) = pz + y for any = € I, where y € I*. Hence

Pf)(x) = f([plu(x))

= f(pz +y)
= f(px) + f(y)
=pf(x)+ f(y).
Hence
v((pf)(x)) = v(pf(z) + f(y))
and

v(pf(x)) =1+ o(f(z) =21+ A
v(f(y)) = 2.
Therefore, v((pf)(z)) > 1+ A, 2. O
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Lemma 2.8.33. For everyxz € I, f € G(Oy),
(p"f) (@)

lim ————~=
n—00 pn

exists in L and equal zero if v € I*.
Proof. Recall that for any f € G(Op), p"f € G°(Or) for n > 0 by Corollary 2.8.26. Hence
we can apply Lemma 2.8.32 to p"f € G°(Op).
By an easy induction, there exists ¢ such that
p"f € Fil"™ G°(Oy) for n > 0.
Indeed, if A > 1, min(1 + A,2)\) = 1+ X and if A < 1, min(1 + A, 2)\) = 2\.

We now want to show that <%> is Cauchy. We have that

(" ) @) @) @ Hplu(x) " f)(pr)

pn+1 pn pn+ 1 pn+1

(P"f)(y)

pn+1
has valuation > 2(n+c¢) — (n + 1) = n + 2¢ — 1. This shows that the limit exists.

We finally want to show that the limit is 0 if # € I?. By the same calculation as above,

v(%) >2(n+¢)—n>n+2c

so the sequence tends to 0. 0
Corollary 2.8.34. Definition 2.8.31 of log. makes sense.

Remark 2.8.35. By the Serre-Tate equivalence, there is a smooth formal group G° associ-
ated to G°. One can then show that G°(O) = G°(Or) has a structure of a p-adic analytic

group.
One can hence define log on G°(Oy). For all f € G(Oy), p"f € G°(OL), so we define

st 0"

Example 2.8.36. Suppose G = fip. Then

Hpoe (OL) = Homcont(oK [[ﬂ]? OL)
1+my f(t>’_>1+f(t)
Moreover, t,, .. (L) = Homp, (I/I?, L) = L and I = (t).

12

1%

We claim that the diagram
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lo 0800

f ppo=(OL) —— ta(L) g

LT b

1+ f(1) l4m, — o[ g(0)

commutes. We have that

log()(#) = tim L0

n—00 p"

o HL0)

n—00 pn

(Rt

n—00 pn

(+fy -1

Now,
I O ) et B 1 PN
log,(1+z) = lim ——F—— = nh_}ngo E — (" )2

We claim that

This is equal to .
(P —1)...(p"—i+1)— (=) —1)!
i! ‘

. (i (p,n> . (_1.)“) > 4iv(@) — o) > 1+ iv(x) — —.

Hence

l p—1

1 n ) -1 =1
lim —n(p,>IZ:( ) '

n—oo p 1

This shows that

Hence

8

log,,(1 + )
=1
is the usual power series for log

Proposition 2.8.37.

(1) The log map log is a group homomorphism.
(2) The log map log is a local isomorphism, in the sense that for all A > 1:
Fil* G°(O,) S Fil tg(L) = {r € ta(L) | v(r(x)) > X for all x € I/1?}.

The filtration on the left hand side is what defines the topology.
(3) The kernel ker(loge) = G(OpL)tor-
(4) The log map logg induces an isomorphism G(Op) ®z, Q, = ta(L).
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Proof. We first check (1). For all f,g € G(OL), we want to show that

logo(f + g) = logg(f) +loga(g).
We have that
pr(f+g)x)  @"f@p g)(u(z))

mo P
p"f)z) + (P g)(x) +y n n
- ) raie) for y € (5" )] © (") (1),
Since the valuation of y gets really large as n — oo, this shows that

p"(f+g)z) @) (P9 (x)

— — — 0.
" p" "

For (2), note that for all f € Fil* G(Oy),
(p"f) € FiIM" G°(Oy),

(220 5

p’I’L

SO

showing that

v(logg(f)(x)) = A
for all z € I/I%. There is also an inverse:

Fil* tq(L) — Fil* G°(Oy)
7 +— the unique element f such that log f(t;) = 7(;).
Exercise. This is actually the exponential map in terms of p-adic Lie groups. Find an

elementary proof of this fact.

To show (3), we first note that t¢(L) has no torsion. Then G(Op)ior C ker(logs). We
want to show that ker(log,) € G(Or). For f € ker(logy), p"f € G°(Oy) for n > 0, so
p"f € Fil' G°(O1), which shows that p"f = 0.

This also shows injectivity in (4) and we just need to show surjectivity. For 7 € tg(L),
p"1 € Fil'tg(L), so there exists f € Fil' G°(OL) such that log,(f) = p"r, so 7 is in the
image. U
2.8.4. Proof of Hodge—Tate decomposition.

Theorem 2.8.38 (Tate). Let G be a p-divisible group over Ok . Then
Hom(T},(G), Ck) = tav(Ck) @ to(Ck) (1),

where T,(G) = T,(G x K).

Corollary 2.8.39. We have that dim(G) = dim Hom(7,(G"), Cx)"x.

In fact, we will prove this Corollary along the way to proving Tate’s theorem 2.8.38.

Lemma 2.8.40. Let G be a p-divisible group over Of. Then G(K) = G(Cx) = Go(Oc,.).
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Proof. Since K has characteristic 0, any finite flat K-group is étale. This gives the first

isomorphism. The second isomorphism follows from the valuative criterion for properness.
O

Lemma 2.8.41. We have that G(O¢c, )" = G(Ok) and tg(Cg)'x = tg(K).

Proof. Since Ci = K and OF,_ = Oy, this is immediate. O

Lemma 2.8.42. We have that

() p"G°(0x) = 0.

n=1

Proof. Since the valuation on K is discrete, there exists 6 > 0, a minimal valuation. If
f € FiI* G°(Ok), pf € Fil" G°(Ok) for k = min(\ + 1,2)). Hence

pUf € Fil™ G°(Ok).
Since (] Fil™ G°(Ok) = 0, this gives the result. O
n=0

Corollary 2.8.43. The group G°(Ok) does not contain any element which is infinitely p-
divisible, i.e. G°(Of) does not contain any Q,-space.

Definition 2.8.44. Let G = 1i_n>qu be a p-divisible group over Og. Then
T,(G) =T,(G xp, K) = @GU(F) Tate module,
Q,(G) = @GU(F) = G(K) Tate comodule.
Example 2.8.45. When G = ji),
T (o) = Zp(1)
Dy (pp) = hﬂﬂp”(K) = ppoe (K).
Proposition 2.8.46. We have the following duality isomorphisms:

T,(G) = Homg, (T,(G"), Z,(1)),
P,(G) = Homg, (Tp(GV)’ Hpoo (F))

Proof. Note that
= lim Hom#((GY) %, (1t )7) Cartier duality
= Hom(lim(G/ (K)), Hm g1, (K)) both étale
~ Homg, (Ty(GY), Ty (1),
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For the other isomorphism,

%(G)zlg_c:( )
= lm((GY)e. (1))

= im(GY (K, e (K)
= Homy, (Im G (K), jy= (K)

= Homyg, (T,(G ), s (K)),
as stated. 0
Proposition 2.8.47. We have a short exact sequence

logg

0 — ¢,(G) — G(O¢)) —= te(Cxg) —— 0.

Proof. We know that ®,(G) = G(K) C G(Oc,.). We need to check that log,, is surjective
and its kernel is ®,(G).

Recall that log. induces an isomorphism G(Oc¢,) ® Q, = t¢(Ck), so log, is surjective after
inverting p.

Since Cg is algebraically closed, G(Oc, ) is p-divisible (i.e. multiplication by p on G(Oc,.)
is surjective). Hence p is already invertible in G(Oc, ), showing that log is surjective.

We now want to show that ker(logs) = ®,(G). Then
ker(logs) = G(Ocy )tors
= hg"l I&H GU(OCK /miOCK)
= hﬂ GU(OCK)
=lim G, (K)
= (I)p(G)v
as required. -

Example 2.8.48. Let G = pip-. Then

Dy (ppee) = ppoe (K)

and fip (Ocy ) = 1+ mg,, t, o (Cx) = Cx. The short exact sequence is

0 —— ppe(K) —— 1+ mg, » Ck > 0.

Proposition 2.8.49. There is a commutative diagram with exact rows
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0 —m

lo
) s G(Oc,) i s ta(Cx) ——— 0

(G
f o B

0 — Homg, (T,(GY), pip(K)) — Homg, (T,(GY),1 +mg, ) — Homg, (T,(G¥),Cx) — 0

where o and doc are Zy-linear, I -equivariant, and injective.

Proof. Since T,(G") is a finite free Z,-module, the bottom row is exact. The left vertical
map is an isomorphism by Proposition 2.8.46.

We construct the map a. We have that
T,(G") = im G(K)

— lim GY(Oc,)

= ILH HomOCK'grP(<GU)OCK’ (Up”)CcK)

= Homy,, iy (G, pipee ).
For any g € G(Oc¢, ), we define

a(g)(u) = uog, (9)

where u € T,,(G") defines a map uo., : G(Ocy) = pp=(Ocy ). Can similarly define do.

Exercise. Both a and da are Z,-linear and I'x-equivariant.

The right square commutes by the functoriality of log:

G(Oc,) —294 14(Ck)

| |

lo, »
e (Ocye) 2, Ck

commutes.

The left square also commutes, because both vertical maps come from Cartier duality.

We want to show that o and d,, are injective. Snake Lemma gives and isomorphism ker(«) =
ker(da). We just need to show that d, is injective. Also, da is Q,-linear, so ker(da) is a
Q,-vectors space.

Step 1. The map « is injective on G(Ok). Otherwise, let 0 # g € kera N G(Ok). Then
0 # p'g € G°%Ok) Nkera. We may hence assume g € G°(Ok) Nkera. Hence G°(Ok)
contains a Q,-vector space, contradicting Corollary 2.8.43.

Step 2. We show that da is injective on t¢(K). Since log induces log,(G(Ok)) ® Q, =
ta(K), it is enough to show injectivity on log.(G(Ok)).

We want to show that if h € G(Ok) and da(logg(h)) = 0, then logs,(h) = 0.
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Since ker(a) = ker(da) via log, and loge(h) € ker(da), we have that logg(h) = logs(h') for
h' € ker(a). This shows that

h — k' € ker(logs) = G(Ok )tors-
Therefore, p"(h — h') — 0, so
p"h =p"h' € ker(a) N G(O) = 0.
Hence p"h = 0, so log(h) = 0.
Step 3. Finally, da factors as

tg((CK) :tg( )®(CK — HOIII( (G ) CK) R Cx
— Hom(T,(GY,Ck)).

The first map is injective. The second is injective by the Serre-Tate Lemma 2.8.16. U

Y

Note that Snake Lemma also shows that coker o = cokerda. Also, we note that kera =
ker da is a Q,-vector space. We will use these facts later.

Theorem 2.8.50. The maps «, da from Proposition 2.8.49 induce isomorphisms on G-
movariants:

- G(O ) Ho mzp[FK}(Tp(GV> 1+m(cK),
dOzKi t(;(K) — Ho mZP[FK}( (G ) (CK)

IR \LHZ

Proof. By Proposition 2.8.49, we have the following commutative diagram with exact rows:

0 — G(O¢,) —— Homg, (T,(GY),1+ m¢, ) — coker(a) —— 0

J | I

0 — to(Ck) —2— Homgy, (T,(G"),Cx) ———— coker(da) —— 0
Applying ()%, we get a commutative diagram

0 —— G(Okg) —*= Homg,r,(T,(GY),1+mc, ) — coker(a)lx

e l l

0 —— ta(K) —2— Homg, r,)(T,(G),Cx) — coker(do)"

IR

By exactness, we have a commutative diagram:

coker(ag) — coker(a)l'x

! |

coker(day) — coker(da)'x
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Since coker(ag) < coker(dag), it is enough to show that day is surjective.
Let
W = Homg, (T,(G), Ck),
V = Homyg, (T,(G"),Ck).
Then dag: tg(K) — V% so dimg (V%) > dimg to(K) = dim G = d.
We want to show dimg (V'x) = dimg (t¢(K)). We also know that
dim g (WEE) > dimg (tev (K)) = dim(GY) = d”
and hence
dim g (VIE) + dimg (W'S) > d +d” = h.
It is enough to show that
dimg (V) + dim(WHe) < h.
Note that dim¢, (V) = h = dimc, (V). Recall that
T,(G) = Homg, (T,(GY), Zy(1))
as a ['g-module, which induces a perfect I'g-equivariant pairing
T(G) x TH(GY) = Z,(1).
This gives a perfect I'g-equivariant pairing
VxW — Cg(—-1).
Taking I'g-invariant, we get
VIiE x WEe — Cx(—1)'% = 0.
This shows that V% @ Cx and WTx @ Cg are orthogonal under this pairing. Hence
dime, (V' @ Cg) + dime, (W'* @ Cg) < dime, (V) = h,
completing the proof. O
Corollary 2.8.51. We have that
dim(G) = dimyx Homgz, r(7,(GY), Cx) = dimg(T,(G) ® Cx(—1))"%.

In particular, the dimension of G is determined by G X, K.

Proof. The first identity follows from Theorem 2.8.50. For the second identity, use
Tp(G) & CK(—l) = HOHIZP(TP(GV),CK)
(e.g. by the pairing in the proof of Theorem 2.8.50). O

Proof of the Hodge—Tate decomposition 2.8.38. Let
W = Homg, (T,(G),Ck),
V = Homyg, (T,(G"),Ck).
Then Vs = ¢4 (K) and W's 22 tov (K) by Theorem 2.8.50. We also had a perfect pairing
VX W = Cg(-1),
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inducing an isomorphism

W = Hom(V,Ck(—1)).
Under this isomorphism,

V% ® Cx = t¢(Crk)

W's @ Cx 2 tqv(Ck)
and they are orthogonal under this pairing. We now have that

te(Cx) = Homg, (t¢(Ck),Cx) C W.

Moreover,

dim tg(CK) +dimtgv ((CK) = dlm(W) = h.

J/

d v
We hence get an exact sequence

0 —— t(;v((CK) E— Homzp(Tp(G),(CK) e \HOIIl(tg(CK),CK(—l))/ — 0.

~12,(Cre) (—1)

To prove the theorem, we want to show that this sequence splits uniquely. Indeed,
Ext'(te-(Cx)(—1),tav(Ck)) = Ext! (Cx(—1)%, C3*") = H' Ty, Cx(—1))%*" =0
by the Tate-Sen Theorem 2.8.14, and
Hom(te(Cx)(—1), tav(Ck)) = HO(Dg, Cx(—1))®%" = 0,
proving the theorem. 0
Corollary 2.8.52. The representation V,(G) = T,(G) ®z, Q, is HodgeTate.

Proof. Recall that V' € Repg, (I') is Hodge-Tate if

av: @V ®g, Cx(n))" ©k Cx(—n) =V &g, Cx.

We check that V' = V,(G) is Hodge-Tate. By Hodge-Tate decomposition 2.8.38, we have
that
tg((CK) ifn=20
(V@ Cg(n))'" = t5(Ck) ifn=1
0 otherwise.

Since ay is always injective, it must be an isomorphism for dimension reasons. 0

Proposition 2.8.53. Suppose A is an abelian variety over K with good reduction. Then

HE (A, Q) ®g, Cx = €D H'(A, %)) ©x Cic(—3)-

i+j=n

Proof. Since A has good reduction, there is an abelian scheme A over O such that the
generic fiber is A x K = A. Moreover, we know that

A [p] = Alp>]".
We have the following facts:
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(1) He(Ag, Qp) = Homg, (T,(A[p™)), Z,) ®z, Qp,

(2) the formal completion of A at the unit element gives the formal group law corre-
sponding to A[p>]® under the Serre-Tate equivalence 2.6.14,

(3) we have isomorphisms:

H[)(Aa Q,lél/K) = t:(A)a
Hl(Aa OA) = te(Av)'

(4) we have isomorphisms:
Hth(Af, @P) = /\ Hélt(Afv @P)>

HY(A, Q)= \ H'(A,04) @ /\ H(A, Q)
By (4), it is enough to prove the result for n = 1. We have that
Ha(A7.Q,) ® Cr = Homg, (T,(A[p™]). C).
By (2) and (3), we have that
H°(A, Q' A/K) =t} (Ck)
H'(A,04) = tapev (Ck).
Hence the result following from the Hodge-Tate decomposition 2.8.38 for A[p™]. 0

2.9. Generic fibers of p-divisible groups.

Theorem 2.9.1 (Tate). The generic fiber functor for the category of p-divisible groups over
Ok s fully faithful.

Corollary 2.9.2. The functor G — T,(G) is fully faithful.
Proposition 2.9.3. Let G = ligGv is a p-divisible group over Ok, where G, = Spec(A4,).

Then
disc(4,/Ok) = (p"™)
where d = dim(G), h = ht(G).

Sketch of proof. Recall that we have an exact sequence

iy,1 J1,
0 > G1 AL Gv+1 - Gv

e

We can then show that
disc(Ay1/Ok) = disc(A, /O )" - disc(A)""".

By induction, we reduce to the case v = 1. The connected—étale sequence is

0 >y GY y Gy > GSt > 0.
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We can show that disc(AS'/Ok) = (1). It is hence enough to show that disc(A?/Ok) =
(pd'ph). Using Serre—Tate correspondence2.6.14,

Ay =0k & A [pl, A

and
disc(A;/Of) = disc(A/[p]A).
This is hard so we omit the details. O

Lemma 2.9.4. Consider a homomorphism f: G — H between p-divisible groups. [ff: GX 0o
K — H xp, K is an isomorphism, f is an isomorphism.

Proof. Let G = @Gv, H = ligHv, G, = Spec(A,), H, = Spec(B,)). The map f consists of

maps «,: B, = A, such that o, ® 1: BU®KE>AU®K.

Since both A,, B, are finite free over Ok, B, — A,. If disc(A,/Ok) = disc(B,/Ok), then
we are done. Recall that dim(G) is determined by 7,(G). O

Remark 2.9.5. This statement is not true for finite flat Og-group schemes. However, if
K/Q, is finite with e < p — 1, then Lemma 2.9.4 also holds (this is a Theorem of Raynaud).

Proposition 2.9.6. Let G be a p-divisible group over Ok. Let M be a Z,-direct summand
of T,(G), stable under I'k-action. Then there exists a p-divisible group H over O with a
homomorphism H — G (in fact, a closed embedding), which induces T,(H) = M.

Proof. There is a p-divisible group H over K with H — G X o, K such that Tp(fl) ~ H,
where H = @Hv.
Consider the scheme closure H, of E, in G,.

Remark. The injective limit ligv H, may not be a p-divisible group over Ok.

We get maps H, — H,; induced from ﬁv — I:TUH.
We claim that there exists vy such that
H, = Hyty, /ﬂ

such that hgl H, is a p-divisible group.
On the generic fiber,

H,xK=*>H,.,/H, = H,.
The map [p] on H,; factors through H,, since ﬁvﬂ/f[v is killed by p, so H,11/H, is killed
by p.

Hence [p] induces:
51): Hv+2/Hv+1 — Hv—i—l/ﬂ-

On generic fibers, §, is an isomorphism. Writing H,1/H, = Spec(B,), J, induces a map

Bv — Bv+1
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which becomes an isomorphism after tensoring with K. Hence B, < B,;; and {B,} is an
increasing order in B} ® K.
Fact. The integral closure of Ok in By ® K is Noetherian.
Hence there exists vy such that
B, = B, forall v > .

If v > vy, we have that
H’U+2/Hv+1 = HU+1/&-

Now,
[p*] ~
Hyp = Hv—i-l—l—vo/% E— Hv—i—H—Uo/% = Mot
Hv+1+v0/Hvo+v ;> HvoJrl/%
Finally, ker([p"]) = Hyyvy/Hoy = Ho. O

Proposition 2.9.7. There is a bijection:

Hom(G, H) 2 Hom(G x K, H x K).
Proof. If you have a homomorphism f: G x K — H x K. Then f uniquely extends to
f:G— H.

For uniqueness: if G, = Spec(A,), H, = Spec(B,), then ]?v: B, ® K - A, ® K, so there is
at most one extension to B, — A, (by choosing generators).

We need tos how existence. Consider the graph of T'=T,f: T,(G) — T,(H):
M C T,(G) & Ty(H).
We claim that M is a Z,-direct summand. Note that
T,(G) & T,(H) /M = T,(H)
(z,y) =y —T(x),
so T,(G) & T,(H)/M is torsion-free. Hence the short exact sequence

0 > M » T,(G)dT,(H) — T,(G)® T,(H)/ M —— 0

splits.
Since T,(G x H) = T,(G) & T,(H), Proposition 2.9.6, there exists a p-divisible group G’ over
Ok with a homomorphism ¢: G' — G x H such that T,(G") = M.
Consider the projection maps
m:Gx H— G,
me: G X H— H.
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Then 7 o t: G’ — G is an isomorphism by Lemma 2.9.4. Then f = mpor0 (m o)™}
extends f. 0
Remark 2.9.8.

(1) Theorem 2.9.1 extends to any base ring R such that
(a) R is integrally closed and notherian,
(b) R is an integral domain with Frac(R) of characterictic 0.
by Hartog’s Lemma.
(2) The special fiber functor is faithful, i.e. Hom(G, H) < Hom(G X k, H X k).

3. PERIOD RINGS AND FUNCTORS

The goal is to define and study:

e period rings Byr, Bar, Beris,
e de Rham and crystalline representations.

There is another important period ring, By, related to semistable representations. We will
omit this here entirely.

3.1. Fontain’s formalism on period rings. The reference for this section is [BC09, Sec-
tion 5.

Let K be a p-adic field and ' be the absolute Galois group Gal(K /K ) and I = Gal(K /K"™)
be the inertia group of K.

3.1.1. Definitions and examples.

Definition 3.1.1. Let B be a Q,-algebra with an action of I'x and let C' be the fraction
field of B with the natural I'x-action.

We say that B is (Q,, I'x)-regular if

(1) B'x = CVx |
(2) any b € B with b # 0 is a unit if Q, - b is stable under the I'k-action.
Example 3.1.2. Every field extension of Q, under any I'k-action is (Q,, I'x)-regular.

Remark 3.1.3. If F' is a field and G is a group, we can define (F,G)-regular rings by
replacing Q, with F" and I'x with G in the above definition.

We can also extend our formalism to this setting.

Definition 3.1.4. Suppose B is a (Q,, ['k)-regular ring and £ = B"%. Then

(1) for all V' € Repg, (I'x), define
Du(V) = (V &g, BYT™.
(2) a representation V' € Repg (I'x) is B-admissible if
dlmE DB(V> = dime V.
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We denote by Rep(gp (T'x) the category of B-admissible p-adic representations.
Remark 3.1.5. Let R be a topological ring with a continuous I'k-action. Then
H'(Tg,GLg(R)) = {continuous d-dimensional semilinear I representations over R}/ =2 .

Exercise. Check this.

For V' € Repg, (I'k), we can consider the class [V] € H'(I'x, GL,(Q,)). Let [V]p be its
image in H' (g, GL,(B)). Then V is B-admissible if and only if [V]z is trivial.

Examples 3.1.6.

(1) For any (Q,,I'x)-regular B, V' = Q, with trivial I'x-action is B-admissible. Indeed,
Dp(V) = B'x = F.

(2) Consider B = K. Then V € Repg, (I'r) is K -admissible if and only if V is potentially
trivial (i.e. the action of I'x on V' factors through some finite quotient). This follows
from the group cohomology interpretation and Hilbert 90.

(3) Consider B = Cg. Then V' € Repg, (I'x) is Ck-admissible if and only if V' is
potentially unramified, i.e. the action of the inertia group factors through a finite
quotient. This fact is quite difficult; it follows from Sen theory and is almost as
difficult as the Tate-Sen theorem 2.8.14.

Theorem 3.1.7. Let B and E be as above and V € Repg, (I'k).

(1) the natural map av: Dp(V) ®g B — V ®q, B is B-linear, I'g-equivariant, and
mjective,
(2) dimg Dp(V) < dimg, (V') with equality if and only if ay is an isomorphism

Compare this to the Serre-Tate Lemma 2.8.16 and Definition 2.8.17.

Proof. In (1), ay is defined as the composition

Dp(V) ®g B =(V®q, B)'* @p B
— (V ®q, B) @ B
=V ®q, (B®g B)
— V ®q, B

so it is clearly I'k-equivariant and B-linear.
We want to show that ay is injective. Let C' = Frac(B), which is (Q,, Ik )-regular.
Then we get a map fy: Do(V) @ C =V ®q, C with

Dp(V)®p B —"~ V ®q, B

/

De(V)®@rC 2 V ®g, C
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where we have used E = B'¢ = CTx (Condition (1) in Definition 3.1.1). To show that
ker oy = 0, it is enough to show that ker 8, = 0. We may hence assume that B is a field.

Let (e;) be a basis of Dg(V) = (V ®q, B)'* over E. We regard each ¢; as in V ®q, B.

Assume ker(ay) # 0 and consider a non-trivial relation Y b;e; = 0 for b; € B. We follow the
proof of the Serre-Tate Lemma 2.8.16. Take such a relation of minimal length with b, = 1
for some 7.

For all v € 'k,
0=~ _biei) = D> bies = Y (v(b:) = bi)es,
a shorter relation since v(b,) — b, = 1 — 1 = 0. By minimality,
v(b;) = b

for all i, so b; € B'x = E. This is a contradiction, proving (1).
For (2), ay: Dp(V) ®p B — V ®q, B induces

ay®@1: Dp(V)®p C =V ®q, C.
Taking C-dimensions, we obtain dimg Dp(V) < dimg, V.

If oy is an isomorphism, so is ay ® 1, so dimg Dg(V') = dimg, (V). Then the map ay ® 1
is automatically an isomorphism.

Conversely, assume that d = dimg dg(V') = dimg, (V). Let ¢; be an E-basis of Dg(V), (v;)
be a Q,-basis of V. In these bases, ay is a d x d matrix My . Since oy ® 1 is an isomorphism,
det(My) # 0. We want to show that

det(My) € B*.
By definition of determinant:
ay(er A+ ANeg) = det(My)(vy A -+ Awg).
For any v € 'k,
V(1 A Avg) = ¢y (vr A---vg)  for some ¢, € Q,

and e; A -+ Aeg is I'g-invariant. This shows that

A(det(M,)) = — det(My).

Cy
Condition (2) in Definition 3.1.1 implies that det(My ) € B*. O
3.1.2. Hodge—Tate representations. We want to see how Hodge-Tate representations fit into
this formalism.

Definition 3.1.8. The Hodge—Tate period ring is

BHT = @ (CK(n)

nez
Then:

(1) Bpur is (Qp, 'k )-regular,
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(2) V € Repg, (I'r) is Hodge-Tate if and only if V' is Byr-admissible.
Let x be the p-adic cyclotomic character of K, i.e. x: I'x — Aut(T,(pp~)) = Aut(Z,(1)) =
7.
p

Lemma 3.1.9. The image of inertia [ under x is infinite.

We have the following extension of Tate-Sen Theorem 2.8.14. We will assume it without
proof.

Theorem 3.1.10 (Tate). Let n: I'x — Z) be a continuous character. Define
Ck(n) = Cx with twisted T i-action of v given by n(~y) - 7.
Fori=0,1, we have that

0 if n(Ik) is infinite,

H'(Tk,Cx(n)) = {K if n(I) is finite.

Note that Cx(x") = Ck(n) and x(Ik) is infinite, so we recover the Tate-Sen Theorem 2.8.14
for i =0, 1.

Proof of Lemma 5.1.9. Recall that x: I'x — Z) = Aut(p,~). For any v € 'k, ( € fpee (K,
we have that

1(¢) = ¢

by definition of x. It is enough to show that the field extension K (j,~(K))/K is infinitely
ramified. Let e, be the ramification degree of K (u,n(K)/K) over K. We then know that
the ramification of degree of Q, (1 (Q,))/Q, is p"'(p — 1) and

en > " Hp—1)/e — o0,
completing the proof. [l
Proposition 3.1.11. The ring Bur is (Q,, 'k )-reqular.

Proof. Let Cyp = Frac(Byr). We first check condition (1) in Definition 3.1.1: ByE = CyX.
By Tate-Sen 2.8.14, BX = K. We want to show that Cf% = K.

Observe that Byt = Cklt,t™!] with v € T'x acting by

v (Z ant”) = y(an) X" ("
Now, Cut = Cg(t) C Ck((t). It is hence enough to show that Cx (t)'x = K. If Y a,t" €
Ck ()%, we have that
7(an)X(7)n = Qn for all v E FK-
Hence

0 ifn#0
anECK(n>FK:{K ifn=0

showing that ) a,t" = ap € K. This proves condition (1) in Definition 3.1.1.
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We now check condition (2) in the definition: if 0 # b € Byr satisfies Qb is stable under I'g,
then b € Bjjp.

Let b = > a,t™. There is a character n: ' — (@; such that

7(b) = n(v)b
for all v € I'k, which is continuous. It hence factors through n: I're — Z;. Then

n(7)b=5(b) = v(an)x (",

n

Y(an)x(7)" = n(v)an,
ie.

Y(an) (X" () = an.
Hence a,, € Cr(n~'x™)'x.
If a, # 0, x " 'x"(Ix), Theorem 3.1.10

We want to show that b = a,t™ € B*. If a, # 0 and a,, # 0, then n~'x"(I) and = x™(Ix)
are both finite. Hence x" ™ (/) is finite, contradicting Lemma 3.1.9. O

Remark 3.1.12. This remark was made in response to the question if the ring B, =
P Ck(n) is (Qp, 'k )-regular. The answer is no: the proof of Proposition 3.1.11 shows that
n>0

this ring, isomorphic to Ck|t], is not (Q,, Ik )-regular, because ¢ is not invertible.
Proposition 3.1.13. A representation V' € Repg, (I') is Hodge-Tate if and only if it is
Bur-admissible.

Proof. We recall the definitions:

e I/ is HodgeTate if and only if
av: PV &g, Ck(n)"™* @k Cx(—n) = V @q, Cx

is an isomorphism.
e V is Byr-admissible if and only if dimpg Dp,. (V) = dimg, (V); we check that this is
also equivalent to ay, being an isomorphism.

Since
Dy (V) = (V &g, Bur)'™ = @DV @ Cx(n))"*,
neZ
the map ay is an isomorphism if and only if dimg D, (V) = dimg, (V). O

Remark 3.1.14. One could also prove this by relating the maps «y and ay-. It is important
that they are not the same:

e «y is a homomorphism between graded vector spaces,
e oy is a map between the graded 0-pieces.

Theorem 3.1.15. Consider the functor Dg: Repgp(FK) — Vecg, where Vecg is the cate-
gory of finite-dimensional E-vector spaces. We have that:
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Dg is exact and faithful,
epl (T'x) is stable under taking subrepresentations and quotients,

R

Qp
Repgp(FK) 15 stable under taking tensors, exterior and symmetric powers, duals,
Dp commutes with the operations in (3):

Dp(Veo W)= Dg(V)® Dg(W),
Dg /\V = /\DB(V),

Dg (SymiV> =~ Sym'Dp(V),
Dy(VY) = Dy(V)".

We prove this as a series of propositions.

Proposition 3.1.16. The functor Dg is exact and faithful.

Proof. To check that it is faithful, suppose V,W € Repgp (I'x) and f € Homg,[r,(V, W)
satisfies

We want to show f = 0. Indeed:

Dp(V) @ B 22V pow) @p B

: :

V &g, B —2—— W ®qg, B,

so f=0.

To show exactness, suppose

0 s U s V s W > 0

is an exact sequence in Repgp(f‘ K)-

Fact 3.1.17. Every algebra over a field is faithfully flat.
Hence:

0 ——— U®q, B —— V®g, B— W&g, B—0

lg l% lg

0 —— Dg(U)®p B —— Dp(V)®g B —— Dp(U)®g B —— 0
which shows that

0 —— Dp(U) —— Dp(V) —— Dp(W) —— 0
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is exact. O

Remark 3.1.18. In practice, we enhance Dpg to a functor into a category of E-spaces with
some additional structures. We will need some work for exactness of this enhanced functor.

Proposition 3.1.19. If V € Repgp(FK), any subrepresentation or quotient of V' is also
B-admissible.

Proof. Suppose

0 » U s V s W

e}

is an exact sequence in Repg, (I'r) with V' € Repgp(f‘ k). We want to show that U and W
are also B-admissible. Recall that

Dg(V) = (Ve B)'*.

Since Dy is left-exact,
0—— DB(V) E— DB(V) E— DB(W),

we have that
S dim@p V + dime W
= dime V

Since V' is B-admissible, all the inequalities are equalities, showing that U and W are also
B-admissible. 0

Remark 3.1.20. This remark is an answer to the question: Is the category Repgp(FK)
closed under extensions?

The answer is no. In fact, there is an example which is Hodge—Tate but not de Rham given
any non-split extension V:

0 > Q, > V » Qp(1) —— 0.

Hence the category of Bgr-admissible representations is not closed under extensions. How-
ever, the proof of the existence of such a non-split extension is very hard.

Proposition 3.1.21. If V,W € Repg (U'x), then V @g, W € Repg (I'x) with
Dp(V @q, W) = Dp(V) ®p Dp(W).

Proof. We have a natural E-linear map:

Dp(V)®@r Dp(W) = (V ®q, B) ® (W ®q, B)
— (V &g, W) ®q, B (*)
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The image of the first map is (V ®q, B)'* ® (W ® B)'%. The second map is I x-equivariant,
so we get a map

Dp(V) @ Dp(W) — ((V ®g, W) @q, B)'* = Dp(V ®q, W) (+).
The map (%) is injective, since it extends to a B-linear map:
(Dp(V) ®g Dp(W)) ®p B = ((V ®q, B) ® (W ®q, B)) ®q, B — (V ®q, W) ®q, B.
The resulting map:

(Dp(V) ©p B) @5 (D(W) @5 B) = (V ®q, B®g B)® (W ©q, B®g B)
—(V ®q, B)®@p (W ®q, B)
is exactly ay ® ay. Since V and W are B-admissible, this map is an isomorphism.
Hence (%) is injective. This show that

= dimg, (V) - dimg, (W)
= dlm@p(v ®Qp W)

Since the other inequality is clear, this completes the proof. 0

Proposition 3.1.22. IfV € Repgp(FK), then \"V and Sym"V € Repgp(@p) with natural
1somorphisms

Dp (/n\v> = /n\DB(V)7

Proof. We only prove this for A"V, since Sym™V can be treated similarly.

Since V is B-admissible, V®" is B-admissible by Proposition 3.1.21 and hence A"V is B-
admissible by Proposition 3.1.19.

We get a commutative diagram:

DB(V)®n = DB(V®n) » DB(/\n V)
\» %
A" Dp(V)

by Propositions 3.1.16 and 3.1.21.
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We want to show that () is an isomorphism. We know that (%) is surjective by the commu-
tativity of the diagram. Moreover,

n

dimp Dp(/\ V) = dimg, (A V)

. dime %4
B n
. dlmE DB(V)
B n
= dimp /\ Dp(V
so (%) must be an isomorphism. O

Proposition 3.1.23. IfV € Repgp(I‘K L, VVoe Rep(gp (T'x) with a perfect pairing:

)
Dp(V) ®g Dp(VY) = Dp(V ®q, V¥) 2 Dp(Q,) = E ().

Proof. Case 1. dimg, V' = 1.

We want to show dimg Dp(V") = 1 = dimg, V. Choose a basis v of V' over Q,. There
exists a character n: I'x — Q) such that

v(v) =n(y)v for all v € T'k.

Since V is B-admissible, Dp(V) = (V ®q, B)'* is 1-dimensional. Hence, there exists b € B
such that v ® b is a I'x-invariant E-basis of Dg(V).

Since V' is B-admissible, Theorem 3.1.7 shows that the map
ay: Dp(V)®p B =V ®q, B
is an isomorphism, and hence it maps v ® b to a basis of V' ®q, B. Hence b € B*.
Finally:
(v ®b) =~(v) @~(b)
=n(v)v ©y(b)
v @n(v)y(b).
Hence b = n(7y)v(b) for all v € I'. This shows that
Dp(VY) = (VY ®@q, B)'*
contains a non-zero vV ® b~! where vV is a dual basis.

Hence V'V is B-admissible and Dp(V'V) is spanned by v¥ ® b~'. One easily checks that ()
is perfect.

Case 2. General case.

Let d = dimg, V. There is a natural I'x-equivariant isomorphism
d—1

O: det(V)o AV =V
N——
AVY
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given by
(fi A A fa) @ (wa A - Awa) = (wy = det(fi(w;)).
Since V is B-admissible, det(V) = AV is B-admissible, hence
det(VY) = det(V)" is B-admissible

by Case 1.
Since /\d_1 V' is B-admissible by Proposition 3.1.22, this shows that V'V is also B-admissible.
We want to show that (x) is perfect.

Fact. If W, W’ are vector spaces with d = dimg W = dimg W' then W x W' — E is perfect
if and only if
det(W) x det(W') - E

18 perfect.

Finally, (%) induces the pairing:

det(Dp(V)) @ det(Dp(VY)) —— E

l: -

Dg(det(V)) ® Dg(det(VY)) —— E
Since dim det(V') = 1, this completes the proof. O

3.2. De Rham representations. The goal is to define and study:

e the de Rham period ring Byg,
e de Rham representations.

The references for this section are [BC09, Sections 4, 6] and [Sch12].
Outline of the construction of Bgg.

The field Cg is perfectoid. Hence F = C’; is a perfectoid field of characteristic p. Let Op
be the valuation ring of F'.

We get a surjective ring homomorphism:
0: W(Op) - Oc,

which gives
0: W(Or)[1/p] - Ck

and we may consider ker(¢). Then
By = 1im W(Or)[1/p]/(ker )’
J

Bar = Frac(BZ).
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3.2.1. Perfectoid fields and tilting.
Definition 3.2.1. Let C be a complete non-archimedean field of residue characteristic p
with valuation ring O¢. Then C' is a perfectoid field if:

(1) the valuation on C' is non-discrete,

(2) the pth power map on O /pO¢ is surjective.

Lemma 3.2.2. Let C' be a complete non-archimedean field of residue characteristic p with
non-trivial valuation. Assume that the pth power map is surjective on C'. Then C' is perfec-
toid.

Proof. We first check property (1). Let v be the valuation on C' and suppose v is discrete.
Then there exists x € C' with minimal positive valuation. Also, x = y” for some y € C by
the surjecitivity of the pth power map.

Then )
0 <v(y) =-v(r) <v(z)
p
which is a contradiction.

For (2), it suffices to show surjectivity on O¢. For all = € O¢, there exists y € C such that
x =yP. Then v(y) = %v(w) > 0,50y € Oc. O

Proposition 3.2.3. The field Ck is perfectoid.

Proof. This follows from Lemma 3.2.2, since C is algebraically closed. O

Proposition 3.2.4. A non-archimedean field of characteristic p is perfectoid if and only if
it 1s complete and perfect.

Proof. The ‘only if” direction is immediate. The ‘if’ direction follows from Lemma 3.2.2. [

Fix a perfectoid field C. Write O¢ for the valuation ring of C' and v for the valuation on C.
Definition 3.2.5. The tilt of C'is
C’ = lim C
mﬁp
with the natural multiplication.

A priori, C” is a multiplicative monoid. We will later define a topology on it, which turns
out to be equivalent to the inverse limit topology.

We want to show C” is a perfectoid field of characteristic p.

Lemma 3.2.6. Fizw € C* such that 0 < v(w) < v(p). Forallz,y € Oc¢ withx—y € wO¢,
then
" — " € " Og.

Proof. By the inequality, w divides p in Os. We have that
" — " = = — xp"‘l))p — P
which shows the result by induction. O

n—1 n—1 n
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Remark 3.2.7. In practice, if C' has characteristic 0, then we may choose w = p.

If C has characteristic p, C” = C, so in practice, we might as well assume C has characteristic
0.

Proposition 3.2.8. Fiz w € C* such that 0 < v(w) < v(p). Then we have a multiplicative
bijection:

lé'rvn OC — léI_Il Oc/ZA_JOC

r—xP TP

induced by Oc — O¢/wO¢.

Proof. The map is clearly multiplicative, so we only need to construct an inverse. Define

l: 1&1 Oc/w00—> @1 Oc¢

r—xP TP
by setting for ¢ = (¢,) € @x»—)xl’ Oc/wO¢ for &, € Oc/wO¢:
(e) = (ta(@))
(,(@) = lim &, where ¢, € O¢ lifts ¢,.
m—0o0
For ¢,m,n > 0,
A
ch—i—m—&—E — Cpym € ’WOC,
because
2
sz-i—m—i—f — Cnt+m = Cntm — Cntm
= 0.
Hence Lemma 3.2.6 shows that
{+m m m
Chimse — Chim € @™ Oc.
Therefore, for all n, (cf’;_tm) is a Cauchy sequence in O¢. Therefore,
lim ¢, exists.
m—0o0

To check ¢ is well-defined, choose another lift ¢, of ¢,. Then
ey — ¢ € wOg,
so Lemma 3.2.6 implies that
Cf:;m — ngrm € meOC.

Hence the limit does not depend on the choice.

Finally, we need to show that ¢ is inverse to the reduction map in the statement. We have
that:
(cn) — () — ( lim cﬁzm> = (lim cn> = (¢n),
m—o0 n—oo

(@) — (hgl Cf:;m> — (lgn cﬁ1m> = (lgn Z) = (Cn),

showing that ¢ is the inverse. 0J
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Remark 3.2.9. Since Proposition 3.2.8 gives a bijection
@ OC — @ Oc/WOC

TP TP

we may choose to work on either side of it. We will mostly work on the left hand side and
only use the right hand side if needed. This gives a simple valuation (as we will see below)
but makes the addition structure complicated.

Scholze [Sch12], on the other hand, chooses to work on the right hand side. Conversely, this
makes the addition structure easy but the valuation is complicated.

Proposition 3.2.10. The tilt C® is a perfectoid field of characteristic p with valuation ring
O = l&n Oc¢.

TP

Proof. Step 1. We show that C” is a perfect field of characteristic p. Fix @ € C* as before.
Since w divides p, O¢/wO¢ is of characteristic p. Hence

T&l Oc/wOC

TP

has a ring structure with natural addition and multiplication. This induces a ring structure
on Oc» via Proposition 3.2.8. In fact, if a = (a,) and b = (b,,) are in O¢s, then

(CL + b)n = ( lim (an+m + bn+m)pm)

m—00
does not depend on the choice of w. Recall that
¢’ = lim C

TP

so we may identify C” as the fraction field of Op». Hence C” is perfect of characteristic p.
Step 2. The field C” admits a valuation v’ such that v’(c) = v(cp) for all ¢ = (¢,,) € C”.

We have that v°(c) = oo implies that v(cy) = 00, s0 ¢g = 0. Then ¢, = 0 for all n, so ¢ = 0.
It is also clear that v” is multiplicative by definition.

We need to check the triangle inequality: for a = (a,), b = (b,) in (C*)*, we have that
v'(a +b) > min(v’(a), v’ (b)).
Without loss of generality, assume that v”(a) > v°(b). For any n,

1 b b
via,) = —v(ag) = v b = —uo(b,
()pn(o) (a) = v(b) = ()pn()
by multiplicativity. This shows that

% € Of for all n.

Hence a = b - r for some r € O% and
V(a+b) =0 (b(r+1)) =0’ (0) - v(r+1) = 0(b)
since 7 + 1 € O0%. We hence checked that v* defines a valuation on C”.

Step 3. The valuation ring is Oc».
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For any ¢ = (¢,) € C°,

1

= —v(c) = —v(c
v(en) = Zvlen) = Zv7(c)

and v’(c) > 0 if and only if v(c,) > 0 for all n.
Step 4. The v”-adic topology on C” is complete.

Given some N > 0, we have that v(c,) > v(w) for all n > N if and only if n(cy) > p"v(w).
Hence v(cy) > p¥~1u(w) ete.

Hence the v’-adic topology on O is the same as the inverse topology on M Oc/wO¢. The
latter topology is complete by definition.

By Proposition 3.2.4, this shows that C” is perfectoid. O

3.2.2. The de Rham period ring Bar. Let F = C’, a perfectoid field of characteristic p.
Write O for its valuation ring and v’ for its valuation.

Let W(Op) be the Witt vectors over Op.

We want to construct a ring homomorphism
0. W(OF) — O(CK-

Lemma 3.2.11 (Universal property of Witt vectors). Let A be a perfect F,-algebra and R
be p-adically complete. Given a ring homomorphism T: A — R/pR, T lifts uniquely to:

e a multiplicative map 7: A — R,
e a ring homomorphism w: W(A) — R.

Also,
m(Ylar) = 3 e
Remark 3.2.12. There is another universal property [BC09, Proposition 4.3.4]: for

o A: perfect F,-algebra,
e B a p-ring (i.e. a ring for which B/p is perfect),

any 7: A — B/p uniquely lifts to a ring homomorphism W (A) — B.
We cannot use this universal property, however, because Oc, /p is not perfect.
Proposition 3.2.13. There is a ring homomorphism
0: W(Op) = Oc,
such that
0 (Z[Cn]Pn) =

where ¢, = (chx) € O = 1&1 Oc, and ¢ = ¢, € Oc,.

TP
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Proof. We have the ring homomorphism:
7: Op = Oc, /pOc,
¢ c#,

where ¢# is the modulo p reduction of C#. Since the natural map

7: Op = Oc¢y

i

is multiplicative, Lemma 3.2.11 gives the required map 6 = . U
Definition 3.2.14. The infinitesimal period ring is:

At = W(Op),
where F = Cl;.

We constructed a homomorphism
0: Ainf — O(CK-
Proposition 3.2.15. The map 0 is surjective.
Lemma 3.2.16. For any © € Oc,., there exists y € Op such that v — y* € pOc,, .
Proof. Let T be the image of = in Oc¢, /pOc¢,. Since the pth power map is surjective on

Oc,. /pOc,,, there exists
y/ S @ OCK/pO(CK with y(,) =T

TP

By Proposition 3.2.8, we have that:

OF = I&H O(CK E) I&H O(CK/pO(CK

x—xP TP
y<y
and y works. O

Proof of Proposition 3.2.15. We have that
0 (Z[cn]p”) = .
For all € Oc,., we have:

x:c#—i-pxo co € Op,x0 € Ocye
= C# ‘HD(CiéE + px1) co,c1 € Op, 21 € Ocy,

e i 4

This gives the result by completeness of Oc, . O
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Remark 3.2.17. Where does this come from? Recall that Bgg is a refinement of Byt for the
de Rham comparison theorem. Observe that the de Rham cohomology has a Hodge filtration
whose associated graded algebra equal to the Hodge cohomology. We want to construct Bgg
as ring with graded algebra Byr.
Fontaine’s idea was to construct a complete DVR Bi; such that

Bia/m = Cg, m/m*= Cg(1).
In characteristic p, the theory of Witt vectors provides a complete DVR with a specified

residue field. Therefore, we want to build “W(Cg)”, but this does not work well, because
Cg has characteristic 0. We should hence pass to characteristic p.

The ring O¢,. /pOc, has characteristic 0, but is not perfect. Fontaine defined the perfection
of Oc¢,. /pOc, as
Ry = I&H O(CK/pO(CK'

r—raP

Then define A;,r = W(Rg).

Note that Rx = O, so we have just been considering a more modern treatment of Fontaine’s
idea.

Fontaine finally realizes O¢,. as a quotient of A;,¢; indeed 6 is surjective by Proposition 3.2.15.
We have an induced map:

0@ : Alnf[l/p] — CK7
so Ck is a quotient of Aj¢[1/p].

Definition 3.2.18. Define
By = lim Aus[1/p]/ ker(g)’.
J

However, B is not (Q,, 'k )-regular.
Definition 3.2.19. The de Rham period ring is:
Bar = Frac(BjR)-
Having laid out the strategy for constructing Bgr, we need to prove it has all the right
properties.
To prove Bjy is a complete DVR, we study ker(6).
Fix p” € Op with (p*)# = p. For example:

P = (p,p"?,p" . .).

Consider the associated element
E=[0")—p € Aur
We want to show that ker(6) is a principal ideal, generated by €.

Lemma 3.2.20. We have that
ker(0) N p" A = p" ker(0).
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Proof. The ‘2’ inclusion is obvious, so we only prove ‘C’. For x € ker(f) N p" Ay, we can
write

r=p"y for some y € Ajy.
Then

0=0(x) =0(p"y) = p"0(y).
Since O, has no nonzero p-torsion, 8(y) = 0, so y € ker(6). O
Lemma 3.2.21. We may write © € ker(6) as

x=cé+dp

for some ¢, d € Ajs.

Proof. We want to show that

ze&p) =P -pp)=P)p).
The element x has a Teichmuller expansion

= Z[cn]pn for ¢, € Oc,.

Hence
r) =) ki,
SO
=0 mod p.
Hence:

V' (eo) = o(c) = v(p) = v((P")*) = ()
This shows that ¢, is divisible by p” in Op. Hence [cg] is divisible by [p’] in A

Finally,
v =lco] + Y _lealp” € ([P').1),

n>1

completing the proof. O
Proposition 3.2.22. We have that ker(0) = ().

Proof. Note that & € ker(#), because
0(¢) =0(p") —b(p) = ()" —p=p—p=0.
We want to show that ker(f) C (&).
For any z € ker(#), Lemma 3.2.21 shows that we may write
T = co€ + pxro for some cq, g € Ajpns.

We have that

pro = = — o€ € ker(0),
so xg € ker(f) by Lemma 3.2.20. Hence

r = co§ + p(ar§ + pr1)
by Lemma 3.2.21 and we keep applying the two lemmas to write

T = cof + pei€ + pPeé + -+ € (€),
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completing the proof. O
Remark 3.2.23. We say that z = > [c,]p™ € Ainr is primitive of degree 1 if
v (co), v(c1) = 0.
We will see that x generates ker(6) if and only if z is primitive of degree 1.
In fact, we get a bijection:
rimitive elements untilts
{opf degtree 1in Airt]f} And { oftll7E }
o - Auil1/p)/(@).

Hence for any algebraically closed perfectoid field F' of characteristic p, all untilts are alge-
braically isomorphic to Ajs/ ker(6).

They are not (generally) topologically isomorphic: there is a counterexample. The intuition
is that we define the topology dependent on the choice of generator a.

Proposition 3.2.24. We have that
ker(fg)’ N A = ker(0).
Proof. We proceed by induction on j. For j = 1, clearly ker(fg) N Ains 2 ker(6), so we just

have to show the other inclusion. If z € ker(6g) N Ain, since Og: Aig[1/p] — Cg, there
exists n such that p"x € ker(f) N Aj. This shows that « € ker(6) by Lemma 3.2.20.

In the induction step, the inclusion
ker(fg)’ N A D ker(6)?
is again obvious and we prove the other inclusion.
For any z € ker(g)? N A, there exists n > 0 such that p"z € ker(6)?, so
ptx = ré
for some r € A;r. Hence
x € ker(0g) N Aps C (ker(0g))’ ' N Apye = ker(6)
by the inductive hypothesis. Hence x = &/~ - 5 for some s € Ajyy. We have that
re = psg
SO
ré =p's.
This shows that
p"s =r& € ker(0).
Using Lemma 3.2.20, s € ker(0), so s = s’ for some s’ € A;y¢. Finally, this shows that
v =¢ 8 €ker(0),

as required. O
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Proposition 3.2.25. We have that
(ker(6g)’ = () ker(6)’ =0
j=1 j=1

Proof. By Proposition 3.2.24, we have that

(3) ﬂker Og) = ﬂker [1/p].

We just need to show that
[ ker(0)’ =
j=1

For x = Y [c,]p™ € () ker(#)’, x is infinitely divisible by &.

Jj=1

Hence c is infinitely divisible by p’. Since v’(p®) = v(p) = 1 > 0, we have that ¢y = 0. This
shows that x is divisible by p and we write

r=p-x, forx € Ay
Then

] € Uker 0)7 | [1/p] N A
By equation 3,
| ker(6g)? | N Awr = (] ker(6)?
~ i1

so z is infinitely divisible by p in [ ker(#)’. This shows that z = 0. O
j=1

Lemma 3.2.26. The natural map

Aune[1/p] = lim Aine[1/p]/ ker(6g)’ = By
is injective. In particular, we can regard Ai[1/p] as a subring of Biy.
Definition 3.2.27. The map 6 induces a map

Oir: Bir = Awe[1/p]/ ker(flp) = Cx.

Theorem 3.2.28. The ring Bj, is a complete DVR with ker(01;) as mazimal ideal, Cx as
residue field, and & as uniformizer.
Proof. Step 1. We show that BJj is a local ring.

By construction, B,/ ker(61;) = Ck, so ker(61;) is a maximal ideal. We need to show that
there are no other max1ma1 ideals.
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Fact. If R is any ring and I C R is an ideal such that \J,—, I" = 0, and we write R =
@R/I” for the completion of R with respect to I, then x € R is a unit if and only if the
image in R/ is a unit.

Hence © € Bj; is a unit if and only if 033 (z) is a unit in Cg i.e. @ & ker(63;). This shows
that B is local.
Step 2. We can show that any x € BJ; has a unique expression z = 'u with u € (Bji)*.

Exercise. Check this.
By construction, Bi; is the -adic completion of A;n¢[1/p], so B3 is complete. O

Since de Rham cohomology has a filtration, we need a filtration on Bgg.
Corollary 3.2.29. For any uniformizer w of Biy,
{wiB;R iez = {ker(04R) Yiez

has the following properties:

(1) wchJer D w B, '

(2) m WZBJR == O, U WZBJR == BdR;

i€Z ' =/
(3) @' Big - @’ Big € @' Big.

Therefore, Bar has a natural structure of a filtered ring.

Finally, we want to show that Bg{{ = K with graded algebra isomorphic to Byr.

Proposition 3.2.30. Let Ky = Frac(W (k)) where k is the residue field of K. Then:

(1) K is a finite totally ramified extension of K,
(2) there is a unique map K — Biy making the triangle:

K —— B
\ legR
Ck

commute.

Remark 3.2.31. The map K — Bjy is not continuous.

Proof. Recall that if A is a perfect F,-algebra and R is p-adically complete, then any ring
homomorphism A — R/p uniquely lifts to a homomorphism W (A) — R by Lemma 3.2.11.

For (1), note that the quotient map Ok /PO — Ok /m = k has a canonical section k —
Ok /pOg (induces by k — Oc, /pOc, ), giving a map W (k) — Ok, and hence a map
Ky— K

of discrete valued fields. (Alternatively, one can use another universal property of Witt
vectors to obtain the desired map W (K) — Ok.)
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Then e(K/Ky) = =7 Where @ is a uniformizer of K and f(K/Ky) = 1. This shows (1).

For (2), consider the composition

k — OK/]?OK — (’)(CK/pO(CK — 1&1 (’)((;K/p(’)(cK = OF

TP
which gives a map
W(k) — A
and hence
Ko — Awe[1/p] = Bz
This lifts to a map K — Bi; by Hensel’s lemma.

We only proved that the map K — B exists, but we did not prove uniqueness. This can
be found in [BC09], but we omit it here. O

Proposition 3.2.32. There is a refinement of the DVR topology on Bj such that

(1) Aing — By is a closed embedding,
(2) Og: Awne[l/p] = Ck is open and continuous,
(3) there is a continuous logarithm map

log: Z,(1) = Bix
given by
([z] —1)"
1 = 1)t
og() = (-1
where we identify
Z,(1) = lim () = {c € Op | # =1},
(4) multiplication by any uniformizer of By is a closed embedding,
(5) By is complete.
Remark 3.2.33. A sketch of the proof is in [BC09, Exercise 4.5.3].

Remark 3.2.34. The DVR topology does not satisfy properties (1), (2), (3). The issue is
that the DVR topology “ignores” the valuation topology on Cg. In fact, the I'g-action of
B is not continuous for the DVR topology.

Fix € € Z,(1) with € # 1, i.e. € = ({;n) is a compatible system of p"th roots of unity. Set
t =log(e) € Biy.

This will be a uniformizer, which is more convenient to work with than &, because of the
simple Galois action.

Remark 3.2.35. We have the following (tentative) equalities:

7(t) = y(log(e))

= log(v(e)) if log is equivariant,
log(ex v))
X () log(€) if log is additive,

= X(’Y)t



Lemma 3.2.36.

Proof. Indeed,

as required.
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We have that v"(e — 1) = T

n—o0
= lim P
n—o0 p"1(p — 1)
4
=

Proposition 3.2.37. The element t € By is a uniformizer.

Proof. We have that 0([] — 1) = ¢* —1=1—1=0. Hence

Now,

le — 1] € ker(0) C {B.

(-1 (opr

t = log(e) = 3 (~1)™""

n>1

81

We want to show that ¢ is not divisible by £2. When n > 2, w is divisible by £2. It is
hence enough to check that [¢] — 1 is no divisible by £2.

We look at the first coefficient in the Teichmuller expansions:

[e—1] and [(")?):

Considering valuations:

V1) = T <2 = 2p)u(()?)

if p> 2. If p= 2, we look at the second coefficients:

Again,

[e—1] and [(")"):

This completes the proof.

Lemma 3.2.38. For any m € Z,, log(e™) = mlog(e).

Proof. Case 1. m is an integer.

We have that

log((1 4+ 2)™) = mlog(l + x)

as formal power series. Since

le] — 1 € £Bi.
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the power series converges in Bj for z = [¢] — 1.
Case 2. General case.
Choose a sequence m; € Z such that limm; = m in Z,. Then
lim m; log(e) = (limm;) log(e) = mlog(e)
where the first equality follows since ¢ = log(e) is a uniformizer in Bjy.
Also, lim €™ = €™ in the valuation topology on F. By continuity of log, we have that
log(e™) = log(lim €™) = lim log(e™) = lim m; log(e) = mlog(e),
completing the proof. 0

Theorem 3.2.39 (Fontaine). The natural I'kx-action on Bgr has the following properties:

(1) any v € Tk acts by () = x(7)t,
(2) t'Biy s stable,

(3) P mt' B/t B = € Cre(n) = Bur,

nez
(4) Bar is (Q,, T'x)-reqular with BYS = K.
Proof. The natural I'g-action on Cg induces an action on F = C% by

V(@n) = (7(n))
for all (z,,) € F. By functoriality, this gives a I'x-action on A;,; = W(Op); explicitly:

7 (Yleadr™) = >l

It is clear that 6, g are I'k-equivariant and hence ker(f), ker(fg) are I'k-stable. This gives

a natural I'g-action on ‘

B = lim Aine[1/p]/ (ker(6g))
which extends to Byg.
We now check that this action satisfies the 4 properties. For (1), if € € Z,(1), we have that

e = eX()
for all v € 'k by definition of x, so
7(t) = y(log(e)) = log(v(€)) = log(eX™) = x(7) log(e) = x(7)¢
since log is ['k-equivariant and by Lemma 3.2.38.
Part (2) is immediate from (1). For (3), we have a natural map
Bjr/ker(04r) = Bip/tBir = Awe[1/p]/ ker(fg) = Ck
which is I'g-equivariant. Hence, for any n € Z, we have that
"Bl /t"T B, 2 Ck(n)

which is canonical (since t is uniquely determined up to Z)x-multiple by Lemma 3.2.38).
Taking the direct sum of these shows (3).

We just need to check (4). There is a natural injective homomorphism
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which is I'g-equivariant.

We hence have L
K=K "< (Bi)"™ — B,
By (3), we get an injective K-algebra homomorphism
@(Bgf{ N tnBIR)/(Bgﬁ{ Nt""Bi;) — B =K

with the last equality following from Tate-Sen Theorem 2.8.14. Since the source has dimen-
sion < 1 over K, we have that dimg ng < 1, and hence ng =K. OJ

3.3. Properties of de Rham representations.

Definition 3.3.1. A representation V € Repr(FK) is de Rham if it is Bgr-admissible, i.e.
dimK DdR = dim@p V where DdR = DBdR'

We write Rep&f(f‘ i) for the category of de Rham representations.
Example 3.3.2.

(1) The representation Q,(n) is de Rham for all n € Z. Indeed, we have that

Dar(Qp(n)) = (Qp(n) ® Bar)'* > (1@t "),

50 Dar(Qp(n)) is not trivial. Hence the inequality dimg Dgr(Qp(n)) < dimg, (Qy(n)) =
1 has to be an equality.

(2) By aresult of Sen, every C-admissible representation is de Rham. We will not prove
this.

(3) If X is a proper smooth variety over K, the representation

H, gc (va Qp)
is a de Rham representation by a theorem of Faltings. We will not prove this.

By the general formalized of B-admissible representations (cf. Theorem 3.1.15)

(1) RepfiQf;(FK) is closed under taking subquotients, tensors, and duals,
(2) Dgr commutes with tensors, duals in Vecg.

What we want to do next is to upgrade these properties to be compatible with the filtration
coming from Bgg.

Definition 3.3.3. Define Filx to be the category of finite-dimensional filtered vector spaces
over K:

(1) the objects are finite-dimensional vector spaces V over K, endowed with {Fil"(V)}
such that:
(a) Fil"(V) D Fil"™'(V),
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(b) () Fil* = 0,

nez

(€) Uper Fil(V) =V,
(2) morphisms are K-linear maps f: V' — W such that

f(Fil"(V)) C Fil"(W).
Example 3.3.4. If V € Rep@p(I‘K), the vector space

Dar(V) = (V @ Bar)"'®
has a filtration defined by

Fil"(V) = (V@ t"Biz)"'~.
Hence Dgg is a functor into Filg.
Remark 3.3.5. Falting’s de Rham comparison theorem gives a I x-equivariant isomorphism:
Dar(Hg(X%), Qp) = Har(X/K),

identifying the filtration on the left hand side with the Hodge filtration.
Definition 3.3.6. Let V € FilK Then

= @i (v)/ Fir(v)

nel

is the associated graded vector space of V.

Example 3.3.7. By Theorem 3.2.39 (3), we have that gr(Bar) = Bur

The idea is to study Rep (FK) by passing to Rep (FK) by taking gr(—).
Definition 3.3.8. For V., W € Filg, define the convolution filtration on V ®, W by
Fil"(V @ W)= Y Fil'(V)® Fil' (W).

i+j=n

Example 3.3.9. The unit object is Filg is K[0]: the vector space K with
{K if n <0,

0 otherwise.

Fil"(K[0]) =

Hence for all V' € Filg,
Ve K=KV =W
Lemma 3.3.10. For V,W € Filk, a bijective morphism f:V — W is an isomorphism if
and only if gr(f): gr(V) — gr(W) is an isomorphism.
Proof. The ‘only if” implication is obvious. We have to check the ‘if” implication.
The map gr(f): gr(V) — gr(W) is an isomorphism of graded vector space, so
Fil*(V)/ Fil"* (V) = Fil"(W) / Fil" T (W).
Since f is a bijection, we have that
Fil" (W) — Fil"(W)
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for all n € Z. Now,

dimy, Fil"(V) = > " dim Fil'(V)/Fil" (V) = ) dim Fil'(W)/ Fil'™ (W) = dimy, Fil" W,
i<n i<n
the the map Fil"(W) — Fil"(W) is an isomorphism. O

Example 3.3.11. Define K[1] to be the filtered vector space whose underlying vector space

is K and
<
pin k) =48 S L
0 n>1.

The map K[0] — K[1] given by idk is not an isomorphism. Indeed, the map
0 = Fil' K[0] — Fil' K[1] = K

is cannot be an isomorphism. On graded vector spaces, we have that gr K[0] — gr K[1] is
the 0 map.

This shows that a bijection on the underlying vector spaces may not be an isomorphism of
graded vector spaces.

Lemma 3.3.12. Let V € Filg. Then there is a basis {v;} for V such that for alln € Z,
{v;} NFiI"(V) is a basis for Fil"(V).
Definition 3.3.13. A basis with the above property is called a filtration oriented basis.

Proof. Since

Fil"(V) =V for sufficiently small n,
Fil"(V) =0 for sufficiently large n,
we may use induction to extend the basis of Fil"(V) to Fil"~! (V). O

Proposition 3.3.14. For V,W € Filg,
gr(VoW)=Zer(V)® gr(W).

Proof. Let (v; ) be a filtration oriented basis for V' and (w;,) for a filtration oriented basis
of W, where 7 and j denote the largest filtered pieces they belong to.

Let (v7%) and (w;¢) denote their images under the maps Fil'(V) — gr(V) and Fil/ (W) —
gr/(W). Recall that
Fil"(V @ W)= Y Fil'(V) @ Fil/(W)
i+j=n

is spanned by

{uipg ®vje | i+ j <n},
so gr"(V ® W) is spanned by

{uir ®@vj¢ | i+ =n}.
The vector space

@ gr' (V) @ gt/ (W)

i+j=n

is also spanned by {w;r ® T;7 | i +j = n}.
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This gives a canonical isomorphism

"VeoW) @gr ) ® gr! (W),

i+j=n

so taking €@ gives the result. O
nez

Definition 3.3.15. For V € Fil¥| the dual filtration for VV is defined by
Fil"(VY) = {f € V¥V | Fil'""™(V) C ker(f)}

We use Fil'™", not Fil™", to guarantee that K[0]Y = K|[0].
Facts. We have that

(1) (V)Y =V,
2) (Vew)' = VYeWY).

This finishes the general discussion of filtered representations.

Lemma 3.3.16. Consider V € Repg, (I'x). Then V' is de Rham if and only if V(n) is de
Rham.

Proof. Recall that V(n) =V @ Q,(n), so V=V (n) ® Q,(—n). Since Q,(n) is de Rham for
any n € Z and Rep%lz‘(l“ k) is stable under ® (Theorem 3.1.15), the result follows. O

Proposition 3.3.17. IfV € Rep(gf, then V' is Hodge—Tate and
gr(Dar(V)) = Dyt (V).

Proof. For any integer n, we have a short exact sequence:
0 —— t""' By —— t"Bjz —— Ck(n) —— 0,

since gr(Bar) = Bur (Theorem 3.2.39 (3)). Tensoring with V' and taking I'x-invariants, we
have a left exact sequence:

0 —— (Vet""BR)\'" —— (Ve it"BiR)'" —— (V& Cg(n))'s —— 0.

This shows that
gt"(Dar(V)) = (V ® Cx(n))'*
Taking the sum over all n € Z, we have that
gr(Dar(V)) = BV ®g, Cx(n))"* = Dur(V).
To check this is an isomorphism, we compute the dimensions:
dimy, Dgr (V') = dimy, gr Dgr(V') < dimy, Dyp(V) < dimg, (V).

Since V' is de Rham, dimy Dqr (V) = dimg,(V'), so all the above inequalities have to be
equalities. This shows that V' is Hodge-Tate and the injection above is an isomorphism. [
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Example 3.3.18. Let V be a p-adic representation of 'y which fits into the short exact
sequence

0 —— Q,(0) > V > Qp(m) —— 0

where ¢ # m. We claim that V is automatically Hodge—Tate.

Tensoring with Ci(n), we get a short exact sequence
0 — C,({ +n) — V ®q, Cy(n) —— Cp(m+n) —— 0.

Taking I'k-invariants gives a long exact sequence

0 —— Cp(l+ )% —— (V ®g, Cp(n))'* —— Cplm +n)'% —— H'(Tx,Cre(l+n)).

By Tate-Sen 2.8.14, we have
K ifn=—{ —m,

V ®q, Cx(n)'™ =
(V &g, C(m)) {0 otherwise.
Hence dimy, Dyr(V) = Y dimy(V @ Cx(n))'x =2 = dimg, V.

Remark 3.3.19. If { = m = 0, then V may not be Hodge-Tate. There exists a 2-dimensional
representation V' over Q, where v € I'x acts by

((1) 1ogp<i<<v>>> |

In particular, the category Repg;F (T'k) is not closed under taking extensions.

Example 3.3.20. Let V' be a p-adic representation of 'y which fits into the short exact
sequence

0 —— Q,(n) sV > Qp(m) —— 0

where n > m. We claim that V is de Rham.

We may assume that m = 0 and n > 0. Note that Dgr is left-exact by construction. We
hence have a sequence:

0 —— Dar(Qy(n)) — Dar(V) — Dar(Qy)
T dim 1

We need check that dim Dqgr (V') = 2. This will follow if we show that the map
Dar(V) = Dar(Qp) = K
is surjective.

There is a long exact sequence:
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0 —— (Qy(n)® BSFR)FK — (Ve B&FR)FK — (Qp® BchrR)FK — H'(Ik, Q® BchrR)'

Note that:
(Qp(n) ® Bfp)"™ = (I"Bfp)"
since 'k acts on ¢ by y.

Moreover, (t"Bj;)'* = 0, because we have a commutative diagram

K —— Bi;

N

Ck

and t is a uniformizer so the image of K is disjoint from t"Bis.

Also,
(@p ® BJLR)FK - <B$R>FK =K
by Theorem 3.2.39 (4).

Altogether, the long exact sequence above becomes:

0——0 s (V & B,)'x y K —— H'(Tk,Q, ® Bly)

i |

DdR(V) = (V & BdR)FK — K

The proof will be complete if we show that H'(T'x,Q, ® Biz) = 0.

We start with the short exact sequence
0 —— t""' By —— t"Bjy — Ck(n) —— 0.
The long exact sequence in cohomology gives
0=Cg(n)'s —— H'Tk,t""'Bjg) —— H'(Tk,t"Bjy) —— H'(T'x,Ck(n)) =0

since n > 0 and using Tate-Sen 2.8.14.
By induction, this reduces to the case n = 1.

We handle this case directly. We consider oy € H*(T'g, B&LR) and show that a; = 0. Using
the isomorphism above, we get sequences (&), ¥, such that

(1) am € H' Tk, t™BiR), ym € t™ B,
(2) ame1(y) = () +7(Ym) — ym
Since ¢ is a uniformizer in Bjs, y = Y. ym € Bii. Then

a1(y) +(y) —y € H (Tk, t™BJy) for all m > 1.
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Therefore,
ar(y) +v(y) —y =0
for any ~, showing that a; is a coboundary. Hence oy = 0, as required.

Example 3.3.21. Let V be a p-adic representation of I'x which fits into the short exact
sequence

0 > Q, % » Qp(1) —— 0.

As we saw about, it is Hodge-Tate. However, if the short exact sequence above does not
split, it is not de Rham. The proof is not easy, so we omit it here.

It is not hard to show that there exists such a non-split extension using Tate’s local duality,
but we do not discuss it here either.

Definition 3.3.22. If V is Hodge-Tate, n € Z is a Hodge—Tate weight of V' if

dimy, (V' ®g, Cy(n))"* # 0.
Proposition 3.3.23. If V is de Rham, then n is a Hodge—Tate weight of V' if and only if
gr"(Dar(V)) # 0.
Proof. This is clear since by Proposition 3.3.17, there is an isomorphism of graded algebras
gr(DdR(V)) = DHT(V) SO gr”(DdR(V)) = (V ®Qp (Cp(n))FK. |:|

Remark 3.3.24. The Hodge-Tate weights are the positions of jumps in the filtration of
Dar(V).

Remark 3.3.25. If X is a smooth proper variety over K, then
Dar(Hg (X7, Qp)) = Hip (X/K).
Proposition 3.3.26. If V' is de Rham, there is an isomorphism
Dar(V) ®K Bar =V ®q, Bar

Proof. We have a natural map
DdR(V) R BdR — (V ®Qp BdR) R BdR
SV ®q, (Bar ®x Bar)
— V ® Bar multiplication.

This is a morphism in Filgx. To show that it is an isomorphism, we just need to show that
it induced map

gI‘(DdR(V) XK BdR) — gI‘(V ®Qp BdR)
by Lemma 3.3.10.

We have that
gr(Dgr(V) @k Bar) = gr(Dgr(V)) @k Bar by Proposition 3.3.14
>~ Bur ® Bur 3.3.17.
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Moreover,
gr(V ®q, Bar) =V @ gr(Bar) by Proposition 3.3.14
~ V ® By 3.3.17.

We hence get an induced map
Dyt (V) ®k Bur — V ®k B,

which is an isomorphism because V' is Hodge-Tate (by Proposition 3.3.17). O
Proposition 3.3.27. The functor

DdR: Replel:‘(FK) — FllK
is faithful and exact.
Proof. Since Dggr is faithful with values in the category Veck and the forgetful functor
Filx — Vecy is faithful, the above functor is also faithful.

To show exactness, consider a short exact sequence of de Rham representations:

0 » U >V > W > 0.
For any n € Z, consider the left exact sequence

We want to show that this sequence is also right exact.

Since U, V, W are de Rham, they are also Hodge-Tate (Proposition 3.3.17). We get an exact
sequence

of graded vector spaces (by the general formalism, cf. Theorem 3.1.15).

By Proposition 3.3.17, we get a short exact sequence:
0—— gI‘n(DdR(U)) E— gI‘n(DdR(V)) E— gI‘n(DdR(W)) — 0.

Finally,
dimy Fil"(V) = > dimy gr'(Dar(V))
>n

= Z dimg gr'(Dar(U)) + dimg gr’ (Dar(W))

>n

Hence the left exact sequence
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0 —— Dyr(U) —— Dyr(V) —— Dyr(W) —— 0

must be exact. 0
Corollary 3.3.28. IfV is a de Rham representation, every W subquotient of V is de Rham
and Dar (W) is naturally a subquotient of Dar (V).

Proof. Since W is de Rham by Theorem 3.1.15, we deduce the assertion from Proposi-
tion 3.3.27. O

Proposition 3.3.29. For V.W € Repgj(f‘;{), V ®q, W € Repfinj(FK) with a natural iso-
morphism of filtered vector spaces

Dar(V) @k Dar(W) =2 Dar(V ®@q, W).

Proof. By Theorem 3.1.15, this assertion is true in the category of vector spaces. By con-
struction, we can check that the natural map

DdR(V) R DdR(W) — DdR(V ®QP W)

is a morphism in Fil®. To check it is an isomorphism, we pass to the graded vector spaces:
cf. Lemma 3.3.10. We want to show that

gr(Dar(V) ®x Dar(W)) = gr(Dar(V ®g, W)).
We have that
gr(Dar(V) @x Dar(W)) = gr(Dar(V)) ® gr(Dar(W)) = Dur(V) @ Dur(W)
by Propositions 3.3.14 and 3.3.17. Similarly,
gr(Dar(V @g, W)) = Dur(V ®q, W),
and we know that Dyr(V) ® Dur(W) = Dur(V ®q, W) by Theorem 3.1.15. O
Proposition 3.3.30. If V is de Rham, then \"V, Sym™V are both de Rham and

A(Dar(V)) = Dar (/\ v)

Sym”(DdR(V)) = DdR (Sym” V)

Proof. Once again, by Theorem 3.1.15, this assertion is true in the category of vector space.

Since ® and quotients commute with Dgg in Fil*® by the above results. 0

Proposition 3.3.31. If V is de Rham, then V" is de Rham with a natural perfect pairing
Dar(V) ® Dar(V") 2 Dar(V @ V) = Dar(Q,) = K[0]
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Proof. Once again, by Theorem 3.1.15, we get the above perfect pairing in the category of
vector spaces. By the above results, each map is a morphism in Filg, and we can check it is
an isomorphism by passing to associated gradeds (Lemma 3.3.10). We have that

gr(Dar(V)") = Dur(VY)
=~ Dyr (V)"
= gr(Dar(V))"
which completes the proof. O
We have hence showed that all the results of Theorem 3.1.15 hold for B = dR with Dgr
valued in the category of filtered vector spaces.
We discuss some further properties of de Rham representations.

Proposition 3.3.32. Let V € Repg, (I'x) and K'/K be a finite extension so that I'xr C I'fc.
Then:

(1) DdR,K ®K K, = DdR’K/(V) mn FﬂK/,
(2) V is de Rham if and only if V is de Rham as a representation of I k.

Proof. We only have to check the first assertion. Note that Bagr only depends on Cg and
Cg = Cgr, we have a natural map:

(V& BdR)FK = Dar.x @k K' = Dap (V) = (V®BdR)FK/
in Filg. We need to check that
Fil"(Dar.x (V) @k K' = Fil*(Dap g/ (V).
By definition of the filtration:
Fil"(Dar x (V) @ K' = (V@ t"Bjp)'™ @x K’
Fil"(Dar,x(V)) = (V @ " Bg)" '

By passing to the Galois closure of K’, we may assume that K’'/K is Galois. Then:
Fil"(Dag (V) = Fil"(Dgg, i (V) K5,
We are hence done by Galois descent. 0

Remark 3.3.33. We only prove this when K’ is a finite extension of K. In fact, this holds
for any complete discretely valued extension K'/K. The main example to keep in mind is

K' = K,

Corollary 3.3.34. IfV is I-dimensional, then V' is de Rham if and only if V is Hodge—Tute.
Proposition 3.3.35. The functor Dqr is not full.

Proof. Consider any potentially trivial representation V', i.e. there exists a finite extension

K'/K such that V is trivial as a representation of I'x». Then V is de Rham by Proposi-
tion 3.3.32.
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However,
Dar(V)kr = Dag (V) = K'[0]

in Filg. Hence Dggr (V') = K|0], because at filtration level n the above isomorphisms give:

K ifn <0,

Fil" Dar(V) i = Fil" Dar g (V') = {O ifn>0

Hence the functor is not full. O

We end the discussion of de Rham representations by discussing the Fontaine-Mazur con-
jecture.

By de Rham comparison theorem, for any proper smooth variety X over K, the representa-
tion HZ (X%, Q,) is de Rham.

Question. Does every de Rham representation come from geometry? L.e. for any de Rham
representation V', do there exist integers n, m and a proper smooth variety X over X such
that V' is a subquotient of HZ (X%, Q,)(m)?

The answer is no in general. However, for a global number field, we have the following
conjectural criterion for representations to be geometric.

Conjecture 3.3.36 (Fontaine-Mazur). Let E be a number field and O be the ring of
integers of E. Consider a finite-dimensional representation V' of Gal(Q, E) over Q, such
that:

(1) V is unramified (i.e. Ig, acts trivially) at all but finitely many primes of Og
(2) for any prime p over p in O, the representation Vg, E,) i de Rham.

Then there exists a proper smooth variety X over E such that V' is a subquotient of Hg (Xg, Qp)(m).
Remark 3.3.37. Very little is known about this conjecture. We know:

e when dim V' = 1, it is true by class field theory,
e when dim V = 2, it is known in many cases by the work of Kisin.

3.4. Crystalline representations. The goal is to study the period ring B, and crystalline
representations. So far, the only result we assumed was the Tate-Sen Theorem 2.8.14 (and
one smaller result about the new topology on Bjy). In this section, we will starting assuming
more results without proof.

3.4.1. Crystalline period ring. Recall the following notation:

= Cz(,

L4 Ainf = W<OF)7

e p’ € Op such that (p°)# = p,

o £ =[p’] — p € Apy, a generator of ker(#) where : Ay — Oc,.,
e [ is the residue field of Ok,

e W (k) is the ring of Witt vectors over £k,

o Ky = Frac(W(k)).



94 SERIN HONG
Definition 3.4.1. Define

n

5 + +

crls - an dR | an € Ainf; an — 0 g BdR
n>0 :

CrlS Acrls 1/ Y4
Remark 3.4.2.

(1) We will always work on the new topology on By
(2) The definition is different from the original one by Fontaine.

Proposition 3.4.3. The element t = log([e]) belongs to Awis and P~ € pAeis.

Proof. Recall that t = log([¢]) where ¢ € Op satisfies €# = 1, € # 1. Hence € = ((,n) for p"th
roots of unity (,». We checked that [¢] — 1 € ker(), so [e] — 1 € EA;y, i.e. [e] =1 =(-c for
some ¢ € Ajys.

We want to show that ¢ € A.. We have that
t = log([e])

_ Z n+1 1)n

n>1

=S >!c”§—’i
n.

n>1
€ Acris

since (n — 1)l¢" — 0 as n — oo.
We now want to show that **~! € pAg. Consider the truncation

Z n+1 1)

n=1
Note that (n — 1)! is divisible by p for all n > p, and hence
t={+p-a
for some a € A.i. We only need to check that
()Pt € pAais.

For1<n<p-1, (—1)n+1M

is divisible by [€] — 1 in Ajs. For n = p, we have that:
n

(—1)p+1w _ (—1)”“M

p p

= (-1 (a—i—( -1 _pl)H)

(] = 1).

Hence
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for some a. We only need to show that:
([ = )P € pAcyis.

We know that [e] — 1 = [e — 1] in pAiys. It is hence enough to show that
[(e = 1)P™"] € pAais.

Recall that v’(e — 1) = 57 Hence

C((e= 1P ) =p=p" () =2"((p")),

SO
([e — 1]P71) is divisible by [(p°)?] = (€ + p)P.
Finally,
p_ &
£ =p(p— 1)-5-
Since we know that % € Aeis, this shows that &P € pAgps. O

Corollary 3.4.4. We have that B, [1/t] & Auis[1/t].
Proof. Since tP7' € pAuis, p is a unit in Agis[1/t]. Hence Bl [1/t] = Awis[l/p,1/t] =
Acris[l/t]- |:|

Definition 3.4.5. The crystalline period ring Bess is defined as B, [1/t] = Aes[1/t].

Remark 3.4.6. Where is this construction coming from? The motivation for B is
Grothendieck’s mysterious functor conjecture. He conjectured there is a functor D such
that

D(Hg (X7, Qp)) = Heso(X /W (E))
where X is proper and smooth with good reduction.

The idea is to define D = Dp_. for a period ring which is a subring of Bgg with a natural
Frobenius action in line with Frobenius action on crystalline cohomology.

They key observation is that we can get such a ring by adjoining to A;,¢ divided powers of
&, i.e. elements % These are the elements we considered in the definition of Beyis.

The class continued remotely from here on, but I stopped typing the notes.
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