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1. Introduction

1.1. A first glimpse of p-adic Hodge theory.

1.1.1. The arithmetic perspective. We start with an arithmetic perspective.

The goal is to study p-adic representations, i.e. continuous representations

ΓK = Gal(K/K)→ GLn(Qp)

where K is a p-adic field. This is quite different from studying `-adic representations, i.e.
continuous representations

ΓK → GLn(Q`) for ` 6= p.

Indeed, the topologies in this case are not quite compatible, so there are not as many
representations as in the ` = p case.

We consider a motivating example. Let E be an elliptic curve over Qp with good reduction.
There is an elliptic scheme E over Zp such that EQp = E. For a prime ` (which may or may
not be equal to p), we define the Tate module

T`(E) = lim←−E[`n](Qp) ∼= Z2
`

which has a continuous ΓQp-action. Tensoring with Q`, we get a continuous ΓQp-representation

V`(E) = T`(E)⊗Q`
∼= Q2

` .

These representations see a lot of information about the elliptic curves. For example, we
have the following fact.

Fact 1.1.1. Given two elliptic curves E1, E2 over Qp, the natural maps

Hom(E1, E2)⊗ Z` ↪→ HomΓQp
(T`(E1), T`(E2))

Hom(E1, E2)⊗Q` ↪→ HomΓQp
(V`(E1), V`(E2))

are injective.
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How to study T`(E)? For ` 6= p, we can consider the special fiber EFp , en elliptic curve over
Fp. The Tate module T`(EFp) is a continuous ΓFp-representation. To describe the action, it
is enough to describe the action of Frobenius (a topological generator for ΓFp): it acts on
T`(EFp) with characteristic polynomial x2 − ax+ p where a = p+ 1−#(EFp(Fp)).

The punch line is that the reduction map

(1) T`(E)→ T`(EFp)

is an isomorphism of ΓQp-representations, where the right hand side is a ΓQp-representation
via the surjection ΓQp � ΓFp

∼= Gal(Qun
p /Qp). Therefore:

(1) The action of ΓQp factors through the map ΓQp � ΓFp .
(2) Frobenius of ΓFp acts with characteristic polynomial x2 − ax+ p.

The condition (1) is equivalent to the representation of ΓQp being unramified.

Theorem 1.1.2 (Neron–Ogg–Shafarevich). An elliptic curve E/Qp has good reduction if
and only if T`(E) is unramified for all ` 6= p.

What about ` = p? The key isomorphism (1) never holds. In fact,

Tp(EFp) ∼= 0 or Zp,

so it has the wrong rank. Let

IQp = ker(ΓQp � ΓFp)

be the intertia group. Then there is a non-trivial contribution from IQp .

The solution to this problem was found by Grothendieck and Tate. We define

E[p∞] = lim−→E[pn],

the p-divisible group of E. Note that this is a limit of schemes, not of the point of schemes.

Fact 1.1.3. We can recover the action of ΓQp on Tp(E) from E[p∞].

The schemes E [p∞] and EFp [p∞] are also defined. We have maps

E [p∞]

E[p∞] EFp [p∞]

⊗Qp ⊗Fp

Theorem 1.1.4 (Tate). The functor{
p-divisible groups

over Zp

}
⊗Qp−→

{
p-divisible groups

over Qp

}
is fully faithful.

Understanding the proof of the theorem and related results will be the goal of Chapter 2.
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Theorem 1.1.5 (Dieudonné, Fontaine). There are equivalences of categories{
p-divisible groups

over Fp

}
←→

{
Dieduonné modules

over Fp

}
,

{
p-divisible groups

over Zp

}
←→

 Dieduonné modules
over Fp

with an “admissible filtration”

 .

Definition 1.1.6. A Dieudonné module over Fp is a free Zp-module M of finite rank with
an endomorphism ϕ such that ϕ(M) ⊇ pM .

One should think of Zp here are the ring of Witt vectors of Fp, Zp = W (Fp).

The following summarizes the situation:

Tp(E)→ E[p∞] p-divisible group

→
{

Dieduonné module over Fp
+ extra data

}
.

After inventing p, we also get

Vp(E)→
{

“isocrystals” over Fp
+ extra data

}
.

The general themes of p-adic Hodge theory are:

(1) To construct a dictionary between certain p-adic representations and certain semilin-
ear algebraic objects.

(2) Change base field to Q̂un
p .

Since Qun
p is not p-adically complete any more, we need to work with Q̂un

p instead.

Many interesting properties of p-adic representations are encoded in the action of IQp . We
note that:

IQp = IQun
p

= IQ̂un
p
.

Usually, base changing to Q̂un
p simplifies things.

In the above correspondence, base changing to Q̂un
p roughly corresponds to replacing Fp

by Fp.

Theorem 1.1.7 (Manin). The category of isocrystals over Fp is semisimple.

Question. Is there a general framework or formalism that provides all these general themes
in more general scope?

To properly answer this question, we need to discuss the geometric side of the story.
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1.1.2. The geometric perspective. The goal here is to use p-adic representations to study the
geometry of algebraic varieties X over K. We look at the cohomology of X:

• Hét: étale cohomology,
• HdR: algebraic de Rham cohomology,
• Hcris: crystalline cohomology.

By definition, Hét is a p-adic Galois representation. The main goal is to find comparison
theorems between the three cohomology theories.

In classical Hodge theory, there are many comparison theorems:

• between singular cohomology1 and Hodge cohomology,
• between singular cohomology and de Rham cohomology

valid for proper smooth varieties over C.

The reason for the name p-adic Hodge theory comes from the above motivation. The main
issue in finding these comparison theorems is finding the correct period ring.

The obvious answer would be to work with K̂, but we will soon see that this ring is not
sufficient.

We first recall in more detail one of the comparison theorems from Hodge theory.

Theorem 1.1.8 (Hodge decomposition). Let Y be a proper smooth variety over C. Then

Hn(Y (C),C) ∼=
⊕
i+j=n

H i(Y,Ωj
Y ).

Corollary 1.1.9. The Hodge number of Y are topological invariants.

Let CK = K̂. It has a continuous ΓK-action. The p-adic cyclotomic character is

χ : ΓK → Z×p
such that for any p-power root of unity ζ,

σ(ζ) = ζχ(σ).

Definition 1.1.10. We define the Tate twist as a ΓK-representation CK(j) with the under-
lying vector space CK and σ ∈ ΓK acting by χj(σ) · σ.

Theorem 1.1.11 (Hodge–Tate decomposition, Faltings). Let X be a proper smooth variety
over K. Then

Hn
ét(XK ,Qp)⊗Qp CK

∼=
⊕
i+j=n

H i(X,Ωj
X/K)⊗K CK(−j),

compatible with ΓK-action, where

σ acts by σ ⊗ σ on the left hand side,
σ acts by 1⊗ σ on the right hand side.

1One should think that singular cohomology over C corresponds to étale cohomology in the p-adic setting
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Tate proved when X is an abelian variety with good reduction as a by product of the generic
fiber functor theorem.

Define the Hodge–Tate period ring

BHT =
⊕
j∈Z

CK(j).

Then the Hodge–Tate decomposition 1.1.11 can be restated as

Hn
ét(XK ,Qp)⊗Qp BHT

∼=

⊕
i+j=n

H i(X,Ωj
X/K)

⊗BHT.

Theorem 1.1.12 (Tate–Sen). We have that BΓK
HT = K.

As a consequence, we see that(
Hn

ét(XK ,Qp)⊗BHT

)ΓK =
⊕
i+j=n

H i(X,Ωj
X/K).

Here is another result from Hodge theory. There is an isomorphism

Hn(Y (C),C) ∼= Hn
dR(Y/C)

coming from the period pairing

Hn
dR(Y/C)×H2d−n(Y,C)→ C

(ω,Γ) 7→
∫

Γ

ω.

Goal. Construct a p-adic period ring.

Fontaine constructed a p-adic period ring BdR such that:

(1) BdR carries ΓK-action with BΓK
dR = K,

(2) BdR carries a filtration with the accociated graded ring BHT.

Theorem 1.1.13 (Faltings). We have that

Hn
ét(XK ,Qp)⊗Qp BdR

∼= Hn
dR(X/K)⊗K BdR

compatible with ΓK-actions and filtrations.

By construction, Hn
dR(X/K) has a Hodge filtration such that the associated graded is⊕

i+j=n

H i(X,Ωj
X/K)

The filtration on the right hand side of Faltings’ Theorem 1.1.13 is given by the convolution
filtration:

Film =
⊕
a+b=m

Fila⊗Filb .

Remarks 1.1.14.
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(1) By passing to the associated graded in Faltings’ Theorem 1.1.13, we recover the
Hodge–Tate decomposition 1.1.11.

(2) We have that
(
Hn

ét(XK ,Qp)⊗BdR

)ΓK ∼= Hn
dR(X/K).

(3) We will not attempt to prove Faltings’ Theorem 1.1.13, but we will use it as motiva-
tion.

Question. Is there a refinement of HdR which recovers Hét itself?

Answer. Yes, cristalline cohomology Hcris.

Conjecture 1.1.15 (Grothendieck). Let OK be the valuation ring of K and k be the residue
field of OK. Let W (k) be the ring of Witt vectors of k and K0 = Frac(W (k)). (If K = Qp

then K0 = Qp, and if K is a finite extension of Qp, then K0 is the maximal unramified
subextension.)

There should be a (purely algebraic) fully faithful functor D on a certain category of repre-
sentations such that

D
(
Hn

ét(XK ,Qp)
)

= Hn
cris(Xk/W (k))⊗W (k) K0

for any proper smooth X with integral model X over OK.

Recall that for any elliptic curve E over Qp with good reduction, we have seen that there is
a fully faithful functor

Vp(E) {filtered isocrystal}.
Now,

Vp(E) ∼=
(
H1

ét(EQp ,Qp)
)

and

{filtered isocrystal} ∼= H1
cris(EFp/Zp)⊗Zp Qp.

Grothendieck’s conjecture 1.1.15 is a generalization of this. By purely algebraic we mean
that there should be a way to avoid going through p-divisible groups (which are geometric).

Fontaine constructed another period ring, called Bcris such that:

(1) Bcris carries an action of ΓK such that BΓK = K0,
(2) Bcris carries a semi-linear endomorphsim ϕ called the Frobenius action,
(3) there is a natural map Bcris ⊗K0 K ↪→ BdR, inducing a filtration on Bcris.

Theorem 1.1.16 (Faltings). Suppose X has good reduction with integral model X . Then

Hn
ét(XK ,Qp)⊗Qp Bcris

∼= Hn
cris(Xk/W (k))⊗Bcris,

compatible with ΓK-action, filtration, and Frobenius action.

Remark 1.1.17. By construction, Hn
cris(Xk/W (k)) carries a Frobenius action. Frobenius

acts only through Bcris on the left hand side and diagonally on the right hand side.

The isomorphism

Hn
cris(Xk/W (k))⊗W (k) K ∼= Hn

dR(X/K)

gives a filtration on Hcris. We use the convolution filtration on the right hand side.



8 SERIN HONG

Now, taking ΓK-invariants of both sides gives:(
Hn

ét(XK ,Qp)⊗Qp Bcris

)ΓK ∼= Hn
cris(Xk/W (k))⊗W (k) K0.

There is an inverse functor so we get D, Grothendieck’s mysterios functor, given by

D(V ) = (V ⊗Qp Bcris)
ΓK .

This would prove Grothendieck’s conjecture 1.1.15 if we define the domain of this functor
and prove that it is fully faithful.

1.1.3. Interplay via representation theory. Fontaine built the formalism for functors that
connect the geometric and arithmetic sides. This will be the focus of Chapter 3.

Let B be any period ring such as BHT, BdR, Bcris. Then define

RepQp(ΓK) = category of p-adic representations of ΓK .

Define DB(V ) = (V ⊗Qp B)ΓK . A representation V ∈ RepQp(ΓK) is B-admissible if the
natural maps

(V ⊗Qp B)ΓK ⊗B → V ⊗B
is an isomorphism.

Now, DB defines a functor on RepBQp(ΓK), the category of B-admissible representations. The
target category reflects the structure on B.

Examples 1.1.18. (1) IfB = BHT, the target category is the category of finite-dimensional
graded vector spaces.

(2) If B = BdR, the target category is the category of finite-dimensional filtered vector
spaces.

(3) If B = BdR, the target category is the category of finite-dimensional filtered vector
spaces with Frobenius action.

Theorem 1.1.19 (Fontaine). The functors DBHT
, DBdR

, DBcris
are exact and faithful. More-

over, DBcris
is fully faithful.

In particular, this proves Grothendieck’s conjecture 1.1.15.

1.2. A first glimpse of the Fargues–Fontaine curve.

1.2.1. Definition and key features. There are two ways to describing the Fargues–Fontaine
curve, the schematic curve and the adic curve. We will only describe the schematic curve,
since we do not have the necessary language to talk about adic spaces. Fortunately, there is
a GAGA type theorem, giving an equivalence between these two approaches.

For simplicity, we work with K = Qp. Let Cp = Q̂p. Let F = F̂p((u)).

Recall Fontaine’s ring Bcris with Frobenius action ϕ. There is a ring B+
cris such that:

(1) B+
cris is stable under ϕ, and (B+

cris)
ϕ=1 = Qp,

(2) there exists t ∈ B+
cris such that B+

cris

[
1
t

]
= Bcris and ϕ(t) = pt.
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Definition 1.2.1. The Fargues–Fontaine curve associated to (Qp, F ) is

X = Proj

⊕
n≥0

(B+
cris)

ϕ=pn

 .

Remark 1.2.2. The Fargues–Fontaine curve X is

(1) a Qp-scheme,
(2) not of finite type over Qp, and hence not projective.

Slogan. The Fargues–Fontaine curve is the p-adic analogue of the Riemann sphere P1
C.

Theorem 1.2.3 (Fargues–Fontaine, Kedlaya). The curve X satisfies the following proper-
ties:

(1) it is Noetherian, connected, regular of dimension 1 over Qp,
(2) it is the union of two spectra of Dedekind domains,
(3) it is complete in the sense that for all f ∈ K(X), div(f) has degree 0,
(4) Pic(X) ∼= Z.

In fact, X is an affine scheme of a PID together with a point at ∞. There exist closed points
x ∈ X such that

X \ {x} ∼= Spec(Be)

ÔX,x ∼= B+
dR

where

Be = Bϕ=1
cris ,

B+
dR = valuation ring of BdR.

1.2.2. Relation to the theory of perfectoid spaces.

Definition 1.2.4. Let C be a field which is complete, non-archimedean, residue character-
istic p.

(1) It is a perfectoid field if
(a) the valuation is non-discrete,
(b) the p-power map is surjective on OC/p.

(2) The tilt of C is defined as

C[ = lim←−
x 7→xp

C

with

(a · b)n = an · bn,
(a+ b)n = lim

n→∞
(an+m + bn+m)p

m

|a|[ = |a0|.

Remark 1.2.5. For any C, C[ is a perfectoid field of characteristic p.
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Examples 1.2.6. The field Cp is perfectoid of characteristic 0 with C[
p
∼= F .

Remark 1.2.7. Scholze extended the de Rham Comparison Theorem 1.1.13 to rigid analytic
varieties using the theory of perfectoid spaces.

Theorem 1.2.8 (Tilting equivalence). Suppose C is a perfectoid field.

(1) Every finite extension of C is a perfectoid field.
(2) There is a bijection

{finite extension of C} ↔ {finite extension of C[}
L 7→ L[,

(3) The above bijection induces an isomorphism ΓC ∼= ΓC[.

This allows to translate problems in characteristic 0 to problems in characteristic p.

Question. Can you parameterize a way of untilting?

Definition 1.2.9. An untilt of F is a pair (C, ι) where C is a perfectoid field of characteristic
0 and ι : C[ ∼= F .

Let ϕF be the Frobenius automorphism on F . It acts on the set of untilts of F by

ϕF ◦ (C, ι) = (C,ϕF ◦ ι).

Theorem 1.2.10 (Fargues–Fontaine).

(1) For any closed point x ∈ X, k(x) is a perfectoid field of characteristic 0 with k(x)[ ∼=
F .

(2) There is a bijection

{closed points on X} ↔ {ϕF -orbits of untilts}
induced by x 7→ k(x).

Remark 1.2.11. This theorem is one of the main motivations for the theory of diamonds.
Just as

Algebraic space = Scheme/étale equivalent relation,

one thing should that

Diamond = Perfectoid space/pro-étale equivalence relation.

1.3. Geometrization of p-adic representations.

Definition 1.3.1. Fix a closed point ∞ ∈ X.

(1) A vector bundle on X is a locally free OX-module of finite rank.
(2) A modification of vector bundles on X is (E ,F , i) where

• E , F are vector bundles on X,
• i : E|X\∞ ∼= F|X\∞.
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Remark 1.3.2. There is a complete classification of vector bundles on X. We will see
this later in the course. Roughly, it is analogous the fact that any vector bundle on P1 is
isomorphic to

⊕
O(λ).

Theorem 1.3.3 (Fargues–Fontaine). There is a functorial commutative diagram:

{isocrystals over Fp} {vector bundles on X}

{filtered isocrystals over Fp}
{

modifications of
vector bundles on X

}
where the vertical arrows are forgetful functors. The top horizontal arrow is a bijection, but
not an equivalence of categories.

Recall that there is a functor

DBcris
:
{

Bcris-admissible
representations over Qp

}
→
{

filtered isocrystals
over Fp

}
which is fully faithful.

Question. What is the essential image of this functor?

Theorem 1.3.4 (Colmez–Fontaine). Given N0 = (N,Fil•(N)) over Fp, define N0 = (N,Fil•(N))

over Fp. Via Theorem 1.3.3, we obtain a modification of vector bundles (E(N),F(N), i(N)).

Then N0 is in the essential image of DBcris
if and only if F(N) is trivial (i.e. F(N) ∼= O⊕nX ).

Remark 1.3.5. Let Vcris be the quasi-inverse of DBcris
. Then

Vcris(N) = H0(X,F(N)).

2. Foundations of p-adic Hodge theory

The goal of this chapter is to discuss:

(1) finite flat group schemes,
(2) p-divisible groups.

In particular, we will try to cover the main results of Tate’s p-divisible groups [Tat67].

2.1. Finite flat group schemes. The main reference for this chapter is Tate’s finite flat
group schemes [Tat97].

2.1.1. Basic definition and properties.

Definition 2.1.1. Let S be a base scheme. An S-scheme G is a group scheme if there are
maps

• m : G×S G→ G multiplication,
• e : S → G unit section,
• i : G→ G inverse.
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satisfying the following axioms:

(1) associativity:

G×G×G G×G

G×G G

(id,m)

(m,id) m

m

(2) identity axiom:

G×S S ∼= G G

G×G

id

(id,e)

m

and similarly for S ×S G ∼= G,
(3) inverse:

G G×G

S G

(id,i)

m

e

Lemma 2.1.2. Let G be an S-scheme. It is a group scheme if and only if G(T ) is a group
functorial in T for all T/S.

Definition 2.1.3. Let G,H be group schemes over S. A map f : G→ H of S-schemes is a
homomorphism if G(T )→ H(T ) is a group homomorphism for all T/S.

We define ker(f) to be an S-group scheme such that

ker(f)(T ) = ker(G(T )→ H(T )).

Equivalently, ker(f) is the fiber of the unit section.

Example 2.1.4. The multiplication by n map [n]G : G→ G is defined by g 7→ gn.

Assume S = Spec(R).

Definition 2.1.5. Then G = Spec(A) is an R-group scheme if it has

• µ : A→ A⊗R A comultiplcation,
• ε : A→ R counit,
• ι : A→ A coinverse.

that correspond to multiplication, unit section, and inverse.

Examples 2.1.6.

(1) The multiplcative group over R is

Gm = Spec(R[t, t−1]).

Then Gm(B) = B× with multiplication for any R-algebra B. Then

µ(t) = t⊗ t, ε(t) = 1, ι(t) = t−1.
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(2) The additive group over R is

Ga = Spec(R[t])

Then Ga(B) = B with addition for any R-algebra B. Then

µ(t) = 1⊗ t+ t⊗ 1, ε(t) = 0, ι(t) = −t.
(3) The nth roots of unity over R is

µn = Spec(R[t]/(tn − 1)).

For any R-algebra B,

µn(B) = {b ∈ B | bn = 1}
under multiplication. The functions µ, ε, ι are all as in (1).

(4) If R has characteristic p, we can define

αp = Spec(R[t]/tp).

Then αp(B) = {b ∈ B | bp = 0} with addition for any R-algebra B. The functions
µ, ε, ι are all as in (2).

(5) Let A be an abelian scheme over R. Then

A[n] = ker([n]A)

is an affine group scheme over R. This is because [n]A is a finite morphism.
(6) Let M be a finite abstract group. We can associate to it the constant group scheme

M defined by

M =
∐
m∈M

Spec(R) ∼= Spec

∏
m∈M

R

 .

Writing A =
∏
m∈M

R, note that

A ∼= {R-valued functions on M}.
For any R-algebra B, we have that

M(B) = {locally constant functions Spec(B)→M}
with the group structure induced by M . To describe µ, note that

A⊗R A = {R-valued functions on M ×M}.
We have that

µ(f)(m,m′) = f(mm′),

ε(f) = f(1M),

ι(f)(m) = f(m−1).

Assumption. From now on, R is a Noetherian local ring, m is the maximal ideal of R, k is
the residue field. The assumption R local is just for simplicity.

Definition 2.1.7. Let G = Spec(A) be an R-group scheme. It is a (commutative) finite flat
group scheme of order n if:

(1) A is a locally free R-module of rank n,
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(2) G is commutative, in the sense that:

G×G G×G

G

(x,y)7→(y,x)

m
m

Remark 2.1.8. (1) implies that G → Spec(R) is finite and flat. (2) implies that G(T )
is commutative for all T over S = Spec(R). Note that G(T ) may not be of order n; for
example, if T = Spec(B) if B is highly disconnected.

Example 2.1.9.

(1) The group scheme µn is finite flat of order n.
(2) If R has characteristic p, αp is a finite flat R-group scheme of order p.
(3) Let A be an abelian scheme of dimension g over R. Then A[n] is a finite flat group

scheme of order n2g.
(4) If M is a finite abelian abstract group of order n, then M is a finite flat group scheme

of order n.

We will assume two theorems in this section without proof.

Theorem 2.1.10 (Grothendieck). Suppose G is a finite flat R-group scheme of order m and
H ⊆ G is a closed finite flat R-subgroup scheme of order n. Then the quotient G/H exists
as a finite flat R-group scheme of order m/n.

As a result, we have a short exact sequence

0 H G G/H 0

of R-group schemes.

Theorem 2.1.11 (Serre). — Let G be a finite flat R-group scheme of order n. Then [n]G
kills G, i.e. [n]G factors through the unit section of G.

Remark 2.1.12. This is unknown for noncommutative finite flat group schemes.

Lemma 2.1.13. Suppose G is as above. Then GB = G ×R B for any R-algebra B is a
finite-flat B-group scheme.

Proof. If G = Spec(A) with µ, ε, ι, then GB = Spec(AB) with µ⊗ 1, ε⊗ 1, ι⊗ 1. �

2.1.2. Cartier duality.

Definition 2.1.14. Let G be as above. The Cartier dual G∨ of G is

G∨(B) = HomB-grp(GB, (Gm)B)

with group structure induced by (Gm)B.

Using this definition, it is hard to see that G∨ is a finite flat group scheme. We will describe
it differently soon which will make this apparent.
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Remark 2.1.15. We could have defined G∨ = Hom(G,Gm), where the sheaf Hom is on the
big fppf site.

Lemma 2.1.16. If [n]G kills G, then

G∨(B) = HomB-grp(GB, (µn)B).

Proof. Recall that µn = ker([n]Gm). �

Theorem 2.1.17 (Cartier duality). Let G = Spec(A) be an R-group scheme of order n with
µ, ε, ι as comultiplication, counit, coinverse. Define

mA : A⊗R A→ A ring multiplication,

p : R→ A structure morphism,

A∨ = HomR-mod(A,R).

Then:

(1) the maps µ∨ and ε∨ given an R-algebra structure on A∨,
(2) G∨ ∼= Spec(A∨) with m∨A, p∨, ι∨ as comultiplication, counit, coinverse,
(3) G∨ is a finite flat R-group scheme of order n,
(4) (G∨)∨ ∼= G canonically.

Proof. Part (1) is straightforward. Parts (3) and (4) are consequences of (2). It suffices to
prove (2) but we will do this next time. �

Examples 2.1.18.

(1) We have that µ∨n
∼= Z/nZ. Exercise: check this using Cartier duality 2.1.17.

(2) We have that α∨p
∼= αp.

As a consequence, we have the following result.

Proposition 2.1.19. Suppose R = k is a field. Let f : A→ B be an isogeny between abelian
varieties over k. Then

ker(f)∨ ∼= ker(f∨).

Proof. We have a short exact sequence

0 ker(f) A B 0.
f

Applying the Hom functor, we get the long exact sequence sequence:

0 Hom(B,Gm) Hom(A,Gm)

ker(f)∨︷ ︸︸ ︷
Hom(ker(f),Gm)

Ext1(B,Gm)︸ ︷︷ ︸
B∨

Ext1(A,Gm)︸ ︷︷ ︸
A∨

f∨
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We have that Hom(B,Gm) = Hom(A,Gm) = 0 since A,B are proper so any A → Gm is
constant. Hence the short exact sequence

0 ker(f)∨ B∨ A∨,
f∨

completing the proof. �

Corollary 2.1.20. Let R = k be a field. Then A[n]∨ ∼= A∨[n]. This gives

A[n]× A∨[n]→ µN ,

called the Weil pariing.

Later, we will use a pairing

Tp(A)× Tp(A∨)→ µp∞ ∼= Zp(1)

obtained from the above corollary.

Proof of Cartier duality 2.1.17. Let G = Spec(A) and µ, ε, ι be the comultiplication, counit,
and coinverse.

Let p : R → A be the structure morphism, mA : A ⊗R A → A be the ring multiplication.
Consider

A∨ = HomR(A,R)

with R-algebra structure given by µ∨ and ε∨. Consider

G∇ = Spec(A∨)

with m∨A, p∨, ι∨ as comultiplication, counit, and coinverse. We want to show that

(2) G∨(B) ∼= G∇(B)

for all R-algebra B. We have that:

G∨(B) ∼= Homgrp(GB, (Gm)B)

=

{
f ∈ HomB-alg(B[t, t−1], AB)

∣∣∣∣ µB(f(t))=f(t)⊗f(t),
εB(f(t))=1,

ιB(f(t))=f(t)−1

}
=

{
u ∈ A×B

∣∣∣∣ µ(u)=u⊗u,
ε(u)=1,
ι(u)=u−1

}
via f 7→ f(t)

= {u ∈ A×B | µ(u) = u⊗ u},

where the last equality follows from

(idB ⊗ εB) ◦ µB = idB,

(idB ⊗ ι) ◦ µB = pB ◦ εB.
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Now, the right hand side of equation 2 is

G∇(B) = HomR-alg(A∨, B)

= HomB-alg(A∨ ⊗B,B)

= {f ∈ HomB-mod(B,AB) | compatible with m∨B, p
∨
B, µB, εB}

= {u ∈ A×B | µB(u) = u⊗ u, εB(u) = 1}
= {u ∈ A×B | µ(u) = u⊗ u}.

This completes the proof if we check that the isomorphism respects the group structure.
This is left as an exercise. �

Lemma 2.1.21. Suppose f : H ↪→ G is a closed embedding of finite flat R-groups. Then

ker(f)∨ ∼= (G/H)∨.

Proof. We have that

ker(f)∨(B) = ker(Hom(GB,Gm,B)
f→ Hom(HB,Gm,B))

= Hom((G/H)B,Gm,B)

= (G/H)∨(B),

as required. �

Proposition 2.1.22. Taking the Cartier dual is an exact functor.

Proof. We want to show that if

0 G′ G G′′ 0,
f g

then

0 (G′′)∨ G∨ (G′)∨ 0
g∨ f∨

is exact. Injectivity of g∨ is easy to check, since ker(f∨) ∼= (G′′)∨.

To check that f∨ is surjective, note that f∨ : G∨ → (G′)∨ induces

G∨/(G′′)∨ → (G′)∨.

Its dual is

(G′)∨∨ → (G∨/(G′′)∨)∨ ∼= ker(g∨∨) = ker(g) = G′,

which is an isomorphism. �
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2.2. Finite étale group schemes.

Proposition 2.2.1. For R Henselian, we have that:

{finite étale groups over R} ↔ {finite abelian groups with a continuous Γk-action}
G 7→ G(k).

Proof. Consider m : Spec(k)→ R, a geometric point. Then

π1(Spec(R),m) ∼= Γk.

Hence
{finite étale schemes/R} ↔ {finite sets with a continuous Γk-action}.

Passing to group objects gives the result. �

Remark 2.2.2.

(1) This bijection is compatible with the order on each side.
(2) If k = k, we have that Γk = 1.

Definition 2.2.3. Let G = Spec(A). The augmentation ideal is I = ker(ε).

Lemma 2.2.4. As R-modules, A ∼= R⊕ I.

Proof. The structure morphism R→ A splits the short exact sequence:

0 I A R 0,ε

giving the desired isomorphism. �

Proposition 2.2.5. Let G = Spec(A) and I be the augmentation ideal. Then

ΩA/R
∼= I/I2 ⊗R A,

I/I2 ∼= ΩA/R ⊗A A/I.
Remark 2.2.6. The multiplication on G defines an action on ΩA/R. The invariant forms
under the G-action are determined by the values along the unit section. Any other form is
an invariant form times a form on A.

Proof. We have the commutative diagram:

G×G G×G

G

(g,h)7→(g,gh−1)

∼=

∆ (id,e)

which corresponds to the commutative diagram

A⊗R A A⊗R A

A
x⊗y 7→xy

∼=

x⊗y 7→xε(y)
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Let J be the kernel of the left map. Then ΩA/R = J/J2 by definition.2

The kernel of the right hand side map is J = A⊗R I since

A⊗R A ∼= (A⊗R R)⊕ (A⊗R I)

and I = ker(ε). Hence

J2 = (A⊗R I)2 = A⊗R I2,

and so

J/J2 = (A⊗ I)/(A⊗ I2) ∼= A⊗R I/I2,

showing that

ΩA/R ⊗A A/I = (I/I2 ⊗R A)⊗ A/I = (I/I2)⊗R A/I ∼= I/I2.

This gives the result. �

Corollary 2.2.7. Let G = Spec(A) be a finite flat R-group scheme. Then G is étale if and
only if I = I2.

Proposition 2.2.8. Every constant group scheme is étale.

Proof. If A =
∏
m∈M

R, then I =
∏

m6=idM

R, so I = I2. �

Corollary 2.2.9. Let R = k = k be a field of characteristic p. Then Z/pZ is the unique

finite étale k-group scheme of order p.

In particular, Z/pZ, µp, αp are mutually non-isomorphic as finite flat groups of order p.

Proof. We know that Z/pZ is étale. Uniqueness follows from Proposition 2.2.1.

Since µp, αp are not reduced, they are not isomorphic to Z/pZ. Finally:

µp = Spec(k[t]/tp−1) so µ∨p
∼= Z/pZ,

αp = Spec(k[t]/tp) so α∨p
∼= αp,

so they cannot be isomorphic. �

Proposition 2.2.10. Let G = Spec(A) be a finite flat R-group scheme. Then G is étale if
and only if the image of the unit section is open.

Proof. We have ε : Spec(R) → Spec(A). The image of the unit section is Spec(A/I) which
is open if and only if I = I2. �

Proposition 2.2.11. Let G = Spec(A) be a finite flat R-group scheme. If the order G is
invertible in R, then G is étale.

Corollary 2.2.12. Every finite flat group scheme over a field of characteristic 0 is étale.

Proof of Proposition 2.2.11. Let n be the order of G. We claim that [n]G induces multipli-
cation by n on I/I2. We have the diagrams

2This is an equivalent way to define ΩA/R. Indeed, ds = 1⊗ s− s⊗ 1 is the universal derivation.
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Spec(R) G

G×G

e

(e,e) m

G G

G×G

id

(e,id)(id,e) m

which correspond to

R A

A⊗ A

ε

µε⊗ε

A A

A⊗ A

id

µid⊗ε ε⊗id

For all x ∈ I, ε⊗ ε(µ(x)) = 0.

Since A ∼= R⊕ I, we have that

A⊗ A ∼= R⊗R⊕R⊗ I ⊕ I ⊗R⊕ I ⊗ I,
so

µ(x) = a⊗ 1 + 1⊗ b+ I ⊗ I
for a, b ∈ I. For x = a = b, we get

µ(x) = 1⊗ x+ x⊗ 1 + I ⊗ I
for all x ∈ I. Hence µ acts as 1 ⊗ x + x ⊗ 1 on I/I2. By induction, the assertion follows
(indeed, [n] = m ◦ ([n− 1], id) and we can run a similar argument).

We know that [n] kills G by Serre’s Theorem 2.1.11. Hence [n] factors as:

[n] : G→ R
e→ G.

This gives

ΩA/R → ΩR/R︸ ︷︷ ︸
=0

→ ΩA/R,

so the induced map on ΩA/R is 0. Thus [n]G induces the zero map on

ΩA/R ⊗A A/I ∼= I/I2.

As n is invertible, multiplication by n on I/I2 should be an isomorphism. �

2.3. The connected étale sequence. Let R be a Henselian local ring with residue field k.

Lemma 2.3.1. An R-group G is étale if and only if Gk is étale.

Proof. Étaleness is a fiberwise property. �

Lemma 2.3.2. Let T = Spec(B) be a finite scheme over R. The following are equivalent:

(1) T is connected,
(2) B is a henselian local finite R-algebra,
(3) Γk acts transitively on T (k).
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Proof. Clearly, (2) implies (1), because local implies connected. For (1) implies (2), suppose
B =

∏
Bi for henselian local finite R-algebras. Then Spec(Bi) is a connected component of

Spec(B). To show that (1) is equivalent to (3), let ki be the residue field of Bi. Then

T (k) = HomR-alg(B, k) =
∐

Homk(ki, k)

and Hom(ki, k) is a Γk-orbit. �

Proposition 2.3.3. Let G = Spec(A) and G0 be a connected component of the unit section.
Then G0(k) = 0.

Proof. Let G0 = Spec(A0). Then A0 is a henselian local finite R-algebra. We get a surjective
homomorphism A0 → R. The residue field of A0 is k. Then G0(k) = Homk(k, k) = 0. �

Theorem 2.3.4 (Connected–étale sequence). Let G = Spec(A) be a finite-flat R-group
scheme. Then G0 is a closed subgroup of G Gét = G/G0 is a finite étale group over R. We
have a short exact sequence

0 G0 G Gét 0.

Proof. We have that G0 ×G0 is connected, since

(G0 ×G0)(k) = G0(k)×G0(k) = 0.

We hence have that m(G0×G0) ⊆ G0 and ι(G0) ⊆ G0, so G0 is a closed subgroup. The unit
section of Gét is G0/G0 which is open, since G0 is open in G. �

Corollary 2.3.5. A finite flat group scheme G is connected if and only G(k) = 0.

Corollary 2.3.6. A finite flat group scheme G is étale if and only if G0 = 0.

Corollary 2.3.7. If f : G→ H is a group homomorphism with H is étale, then f uniquely
factors through Gét.

Proof. We have that f(G0) ⊆ H0 = 0, so we get the result using the universal property
of Gét. �

Proposition 2.3.8. Let R = k = k be a field. Then the connected–étale sequence splits.
(This is also true if R = k is a perfect field.)

Proof. We want to show that there is a section of G� Gét. Consider

Gred = Spec(A/n)

where n is the nilradical of A. We claim that Gred is a subgroup of G. Since a product of
reduces schemes is reduced, Gred ×Gred is reduced. Hence

m(Gred ×Gred) ⊆ Gred, ι(Gred) ⊆ Gred.

Moreover, Gred is étale because it is finite and reduced over k.

It suffices to show that the map G� Gét induces Gred ∼= Gét. Since k is reduced, Gred(k) =
G(k) and we also know that G(k) = Gét(k). �
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Example 2.3.9. Consider an elliptic curve E over Fp. We have a connected–étale sequence
for the p-torsion:

0 E[p]0 E[p] E[p]ét 0.

We know that E[p](Fp) has order 1 or p. Hence E[p]ét(Fp) has order p if E is ordinary of 1 if E
is supersingular. Assume E is ordinary. Hence E[p]ét is étale of order p. By Corollary 2.2.9,

E[p]ét ∼= Z/pZ.

Moreover,

(E[p]ét)∨ ∼= (Z/pZ)∨ ∼= µp ↪→ E[p]∨ = E∨[p] ∼= E[p].

Since µp is connected, µp ↪→ E[p]0, so µp ∼= E[p]0. Hence the connected-étale sequence is

0 µp E[p] Z/pZ 0.

By Proposition 2.3.8,

E[p] ∼= µp × Z/pZ.

Remark 2.3.10. If E is supersingular, we know that E[p]ét is trivial. Then E[p] is self-dual
and we have a short exact sequence:

0 αp E[p] αp 0.

2.4. The Frobenius morphism. Let R = k be a perfect field of characteristic p. Let σ be
the Frobenius on k.

Definition 2.4.1. Let G = Spec(A) be a finite k-group. The Frobenius twist is G(p) =
G×k,σ k and the (relative) Frobenius ϕG of G (over k) is defined by the diagram:

G

G(p) G

Spec(k) Spec(k)

ϕG

structure map

x 7→xp

σ

More generally,

G(pr) = (G(pr−1))(p),

ϕrG = ϕG(pr−1) ◦ ϕr−1
G .

The Verschiebung of G is ψG = ϕ∨G∨ where

ϕG∨ : G∨ → (G∨)(p).

Remark 2.4.2. Verschiebung ψG is a map G(p) ∼= ((G∨)(p))∨ → G.
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Remark 2.4.3. We can check if a finite flat R-group scheme is connected or étale by passing
to the special fiber. There are criteria for connected or étaleness for GK in terms of Frobenius
and the Verschiebung

Lemma 2.4.4.

(1) The Frobenius ϕG induces a map

A(p) = A⊗k,σ k → A

a⊗ c 7→ c · ap.

(2) For any morphism G→ H as schemes, we have induced maps

G G(p)

H H(p)

ϕG

ϕH

G(p) G

H(p) H

ψG

ψH

(3) Both ψG and ϕG are group homomorphism.

Example 2.4.5. We have that:

(1) ϕαp = 0, ψαp = 0,
(2) ϕZ/pZ is an isomorphism, ψZ/pZ = 0,

(3) ϕµp = 0, ψµp is an isomorphism.

Proposition 2.4.6. We have

ψG ◦ ϕG = [p]G ϕG ◦ ψG = [p]G(p) .

Proof. This proof follows Richard Pink’s notes [Pin04].

Since ψG = (ϕG∨)∨, consider ϕ∨A∨ :

ϕA∨ : A∨ ⊗k,σ k → A∨.

Then:

(A∨)(p) = A∨ ⊗K,σ k SympA∨ A∨

(A∨)⊗p

f⊗c 7→[cf⊗p]

ϕA∨

⊗fi 7→
∏
fi

The dual of this diagram is:
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A (A⊗p)Sp A(p) = A⊗k,σ k

A⊗p.

ϕ∨
A∨

λ

We compute the map λ explicitly. We have that

λ(a⊗p)(f ⊗ c) = ε⊗pa ([c · f⊗p])
= c · f(a)p

= f(a)⊗ c
= (εa ⊗ 1)(f ⊗ c),

where εa is the identification A ∼= A∨∨, given by εa(f) = f(a).

Hence λ(a⊗p) = a ⊗ 1 in the above diagram. The other elements of (A⊗p)Sp will map to 0,
because k has characteristic p. We hence have the diagram

A (A⊗p)Sp A(p) = A⊗k,σ k

A⊗p A

ϕ∨
A∨

a⊗p 7→a⊗1

ϕA

⊗ai 7→
∏
ai

On the level of groups, this yields:

G G(p)

G×p G

ψG
m

(x,...,x)← [x

ϕG

Hence ψG ◦ ϕG = [p]G. The other equality follows immediately. �

Proposition 2.4.7. Suppose G is a finite group scheme over k. Then G is connected if and
only if ϕrG = 0 for some r. Moreover, G is étale if and only if ϕG is an isomorphism.

Proof. If G is connected, A is a local Artinian ring. It decomposes as A = k ⊕ I where
I = ker(ε). Since I is a maximal ideal, it is nilpotent, so there is r > 0 such that for all
x ∈ I, xp

r
= 0. This shows that ϕrG factors through the unit section.

Conversely, suppose ϕrG = 0 for some r. Since ϕrG induces an isomorphism G(k) ∼= G(pr)(k),
we have that G(k) = 0, so G is connected.
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If G is étale, ker(ϕG) is connected, so ker(ϕG) ⊆ G0 = 0. This shows that ϕG is injective. In
fact, it is an injective homomorphism ϕG : G → G(p) between groups of the same order, so
it is an isomorphism.

Suppose now that ϕG is an isomorphism. It induces an isomorphism on G0. Hence ϕG0 is
an isomorphism, and hence ϕrG0 is an isomorphism. Since ϕrG0 = 0 at some point (G0 is
connected), we see that G0 = 0, and hence G is étale. �

Proposition 2.4.8. Suppose G is a connected finite flat k-group. Then the order of G is a
power of p.

Proof. Let n be the order of G. We induct on n.

As usual, let I = ker(ε) be the augmentation ideal. Choose x1, . . . , xd ∈ I which lifts a basis
of I/I2. Since G is connected, d > 0.

Then A be a local ring with maximal ideal I.

Let H = ker(ϕG). We first claim that the order of H is pd.

By Nakayama, x1, . . . , xd generate I. Hence

H = Spec(A/(xp1, . . . , x
p
d)).

We want to show that

λ : k[t1, . . . , td]/(t
p
1, . . . , t

p
d)
∼=→ A/(xp1, . . . , x

p
d).

Surjectivity is clear. We have a natural map

π : A = k ⊕ I → I/I2.

For each j = 1, . . . , d, define Dj : A→ A as the composition

A A⊗ A A⊗k I/I2 A
µ (id,π) xj 7→δij

We can check that λ ∂
∂tj

= Djλ for all j by checking on the generators. Hence the kernel

kerλ is stable under ∂
∂tj

. Therefore, kerλ has to contain some constant, which shows that

kerλ = 0. This proves that λ is an isomorphism, and hence the claim that H has order pd.

Since G is connected, ϕrG = 0 for some r. Since ϕrG on G/H is 0, G/H is connected. Finally,
the order of G is the order of H times the order of G/H. Induction hence completes the
proof. �

Recall that if the order of G is invertible in the base, then G is étale.

If R is a henselian local ring with perfect residue field, then there is another proof of the the
proposition. Assume R = k is a field. If k has characteristic p, the connected–étale sequence
has G0 = 0 if order is invertible in p. When k has characteristic 0, G0 ∼= Spec(k[t1, . . . , td])
when d = dim I/I2, so d = 0.

2.5. p-divisible groups. The references for this section are [Dem86] and [Tat67].

We assume throughout that the base ring R is a Henselian local noetherian ring.
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2.5.1. Basic definitions and properties.

Definition 2.5.1. A p-divisible group of height h over R is an inductive system G = lim−→Gv

such that

(1) Gv is a finite flat R-groups of order pvh,
(2) there is an exact sequence

0 Gv Gv+1 Gv+1,
iv [pv ]

i.e. Gv = Gv+1[pv].

Examples 2.5.2.

(1) The constant p-divisible group is

Qp/Zp = lim−→Z/pvZ

with the obvious transfer maps. It is a p-divisible group of height 1.
(2) The p-power roots of unity is

µp∞ = lim←−µpv
with the obvious transfer maps. It is a p-divisible group of height 1.

(3) If A is an abelian scheme over R,

A[p∞] = lim−→A[pv]

with the obvious transfer maps is a p-divisible group of height 2g, where g = dimA.

Definition 2.5.3. A map of p-divisible groups f : G→ H is a homomorphism if f = (fi) is
compatible system of R-group homomorphism:

Gv HV

Gv+1 Hv+1

fv

fv+1

The kernel of f is ker(f) = lim−→ ker(fv).

Remark 2.5.4. The kernel of f might not be a p-divisible group.

Example 2.5.5. The map [n]G = ([n]Gv) is a homomorphism, called multiplication by n
on G.

We want to discuss Cartier duality for p-divisible groups. We first need a lemma.

Lemma 2.5.6. Let G = (Gv) be a p-divisible group over R. Then for any v, t ∈ Z≥0 there
exist

iv,t : Gv ↪→ Gv+t,

jv,t : Gv+t → Gt

such that

(1) iv,t induces Gv = Gv+t[p
v],
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(2) the diagram

Gv+t Gv+t

Gt

jv,t

[pv ]

iv,t

commutes,
(3) there is a short exact sequence:

0 Gv Gv+t Gr 0.
iv,t jv,t

Proof. We have that iv,t = iv+t−1 ◦ iv+t−2 ◦ · · · ◦ iv : Gv ↪→ Gv+t. To check (1), we see that

Gv+t[p
v] = Gv+1[pv+t−1] ∩Gv+t[p

v]

= Gv+t−1 ∩Gv+t[p
v]

= Gv+t−1[pv].

To construct jv,t, we first note that [pv+t] kills Gv+t. Hence [pv](Gv+t) is killer by [pt]. Hence

[pv](Gv+t) ⊆ Gv+t[p
t] = Gt.

The composition defines a map jv,t : Gv+t → Gt such that the diagram in (2) commputes.

Finally, it remains to check the surjectivity of jt,v to complete the proof of (3). We have that
ker(jv,t) = ker[pv] = Gv. Hence jv,t induces a map

Gv+t/Gv ↪→ Gt

between two groups of order pv+t/pv = pt. It is hence an isomorphism, showing jv,t is
surjective. �

Corollary 2.5.7. The map [p] on G is surjective as a map of fpqc schemes.

Proposition 2.5.8 (Cartier duality for p-divisible groups). Let G = lim−→Gv be a p-divisible
group of height h over R.

(1) The sequence

Gv+1 Gv+1 Gv 0
[pv ] jv=j1,v

is exact.
(2) The injective limit G∨ = lim−→G∨v , the Cartier dual of G, is a p-divisible group of height

h over R with transfer maps j∨v .
(3) There is a canonical isomorphism G∨∨ ∼= G.

Proof. We start with (1). We have a commutative diagram with an exact row:

G1

0 GV Gv+1 Gv+1 Gv 0

i1,v

iv=iv,1 [pv ]

jv,1

j1,v=jv
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We have that ker(j1,v) = G1 = im([pv]Gv+1). We hence get (1).

For (2), we dualize to get an exact sequence

0 G∨v G∨v+1 G∨v+1

j∨v pv

by Cartier duality 2.1.17. Hence G∨i = lim−→G∨v is a p-divisible group.

Part (3) is obvious. �

Examples 2.5.9. We have that:

(1)
(
Qp/Zp

)∨ ∼= µp∞ ,

(2) A[p∞]∨ ∼= A∨[p∞].

Proposition 2.5.10 (Connected–étale sequence for p-adic groups). Let G = lim−→Gv be a
p-divisible group over R. Then there are p-divisible groups over R:

G0 = lim−→G0
v,

Gét = lim−→Gét
v

such that

0 G0 G Gét 0.

Proof. We have a diagram:

0 0 0

0 G0
v Gv Gét

v 0

0 G0
v+1 Gv+1 Gét

v+1 0

0 G0
v+1 Gv+1 Gét

v+1 0

i0v iv iét
v

[pv ] [pv ] [pv ]

where the dotted maps are to be constructed. There is a unique iét
v such that the top right

square commutes. For exactness, we can pass to k-points and see that it follows the middle
column on k-points.

There is also a unique closed embedding i0v such that the left top square commutes.

We want to show that G0
v = G0

v+1[pv]. Obviously, G0
v ⊆ G0

v+1[pv]. Also, G0
v+1[pv] ⊆ G0

v and

G0
v+1[pv] ⊆ Gv+1[pv] = Gv. Finally, G0

v+1[pv](k) ⊆ G0
v+1(k) = 0. �

Definition 2.5.11. Let R = k be a perfect field of characteristic p. There is a Frobenius
twist:

G(p) = lim−→G(p)
v .



MATH 679: INTRODUCTION TO p-ADIC HODGE THEORY 29

There is a Frobenius morphism ϕG = (ϕGv) and a Verschiebung morphism ψG = (ψGv).

Proposition 2.5.12. If G is a p-divisible group of height h,

(1) G(p) is a p-divisible group of height h,
(2) ϕG and ψG are homomorphisms,
(3) ψG ◦ ϕG = [p]G,
(4) ϕG ◦ ψG = [p]G(p).

Proof. The proof is obivous by working on finite levels. �

Definition 2.5.13. Let R = k be a field. The Tate module of G is

Tp(G) = lim←−Gv(k),

where the transfer maps are given by jv : Gv+1 → Gv.

Proposition 2.5.14. Let R = k be a field of characteristic not equal to p. Then there is an
equivalence:

{p-divisible groups over k} ↔
{

finite free Zp-modules
with continuous ΓK-action

}
,

G 7→ Tp(G).

Proof. Use the corresponding equivalence for finite flat k-groups (Proposition 2.2.1) and the
fact that groups with invertible orders are étale (Proposition 2.2.11). �

2.6. Serre–Tate equivalence for connected p-divisible groups. A key correspondence
for p-divisible groups is the Serre–Tate equivalence:

{
connected p-divisible

groups over R

}
↔
{

formal group laws
over R

}
↔
{

p-divisible
formal Lie groups

}
.

Let R be a complete local noetherian ring, with residue characteristic p.

Definition 2.6.1. Let G = lim−→Gv be a p-divisible group over R. We say that G is:

• connected if each Gv is connected,
• étale if each Gv is étale.

Examples 2.6.2.

(1) The p-divisible group µp∞ is connected.
(2) The p-divisible group Qp/Zp is étale.

Definition 2.6.3. Let A = RJt1, . . . , tdK. Then define

A⊗̂A = RJt1, . . . , td, u1, . . . , udK.
We will also write T = (t1, . . . , td), U = (u1, . . . , uD) for the variables.

A formal group law of dimension d over R is a (continuous) map µ : A → A⊗̂A such that
Φ(T, U) = (Φi(T, U)) for each Φi(T, V ) a power series of 2d variables and

Φi(T, V ) = µ(ti)

satisfying the following properties:
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(1) associativitiy: Φ(T,Φ(V, V )) = Φ(Φ(T, V ), V ),
(2) unit section: Φ(T, 0d) = Φ(0d, T ) = T ,
(3) commutativity: Φ(T, V ) = Φ(V, T ).

Lemma 2.6.4. If µ is a formal group law over R, then

(1) the diagrams

A A⊗̂A

A⊗̂A A⊗̂A ⊗A

µ

µ (µ,id)

(id,µ)

A⊗̂A A⊗̂A

A

x⊗y 7→y⊗x

µ µ

commute,
(2) the map ε : A → R given by ti 7→ 0 makes the diagram

A A A⊗̂R

A⊗̂A

id

µ

∼=

(id,ε)

and a symmetric diagram commute,
(3) there is a continuous map ι : A → A such that

A A⊗A

R A

µ

ε id⊗ιι⊗id

commutes.

Proof. Parts (1) and (2) are clear. For (3), we need to define Ii(T ) = ι(ti), I(T ) = Ii(T )
such that

Φ(I(T ), T ) = 0 = Φ(T, I(T )).

We want Pj(T ): a family of polynomials of degree j such that I(T ) = limPj(T ), i.e.

(i) Pj(T ) = Pj−1(T ) mod degree j,
(ii) Φ(Pj(T ), T ) = 0 mod degree j + 1.

Since Φ(T, U) = T + U mod degree 2, we may take P1(T ) = −T . We define Pj(T ) by
recursion on j. We have that

Φ(Pj(T ), T ) = ∆j(T ) mod degree j + 2,

where ∆j(T ) is a homogeneous polynomial of degree j + 1. Define

Pj+1(T ) = Pj(T ) + ∆j(T ).

Then (i) is clearly satisfied. For (ii), we note that

Φ(Pj+1(T ), T ) = Φ(Pj(T ) + ∆j(T ), T ) ≡ Φ(Pj(T ), T ) + ∆j(T ) ≡ 0 mod degree j + 2.

This proves (3). �



MATH 679: INTRODUCTION TO p-ADIC HODGE THEORY 31

Remark 2.6.5 (Formal schemes and groups). A formal scheme is a scheme together with
an infinitesimal neighborhood.

If A is a ring, we define Spec(A) as the set of prime ideals.

If A is a topological ring, we define Spf(A), the formal spectrum, as the set of open prime
ideals of A.

Formal groups are group objects in the category of formal schemes. The lemma says that
any formal group law over R defines a formal group structure on Spf(A), written Gµ.

Example 2.6.6. The multiplicative formal group law is

µĜm : RJtK→ RJt, uK,
t 7→ (1 + t)(1 + u)− 1.

Definition 2.6.7. Let µ, ν be formal group laws of dimension d over R. A continuous map
γA→ A is a homomorphism from µ to ν if the diagram

A A⊗̂A

A A⊗̂A

ν

γ γ⊗γ

µ

commutes.

Lemma 2.6.8. A continuous map γ : A→ A given by Ξ(T ) = (Ξi(T )) where Ξi(T ) = γ(ti)
if a homomorphism if and only if, writing Φ(T, V ) and Ψ(T, V ) for the functions associated
to µ and ν, we have that

Ψ(Ξ(T ),Ξ(V )) = Ξ(Φ(T, V )).

Example 2.6.9. The multiplication by n map [n]µ on µ is a homomorphism.

Definition 2.6.10.

(1) The ideal I = (t1, . . . , td) = ker ε is the augmentation ideal of µ.
(2) A formal group law µ is p-divisible if [p]µ is finite flat in the sense that A is a free

module of finite rank over itself.

Remark 2.6.11. A formal group law µ is p-divisible if and only if [p] on Gµ is surjective
with finite kernel.

Proposition 2.6.12. Let µ be a p-divisible formal group law of dimension d over R. Define

Av = A/([pv]µ(I)),

A[pv] = Spec(Av).

Then

(1) each µ[p∨] is a connected finite flat R-group,
(2) µ[p∞] = lim−→µ[pv] is a connected p-divisible group over R.
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Proof. We may write

Av = A/[pv]µ(I)

= (A/I)⊗A,[pv ] A
= R⊗A,[pv ] A.

Then 1⊗ µ, 1⊗ ε, 1⊗ ι define comultiplication, counit, and coinverse on AV .

Let r be the rank of A over [p](A). Then rv is the rank of A over [pv](A). Hence Spec(Av)
is a finite flat R-group scheme of order rv.

Since R is complete, A is also a lcoal ring. Hence each Av is a local ring, showing that
Spec(Av) is connected over R. Since Spec(A1) has order ph = r, and Spec(Av) has order phv.
This completes the proof of (1).

For (2), we need to check that µ[pv] is the pv-torsion of µ[pv+1]. The natural surjective map

Av = A/[pv](I)� [p]A/[pv+1](I)

is an isomorphism as it is an R-linear map between R-modules of the same rank. We hence
have a surjection

Av+1 = A/[pv+1](I)� [p]A/[pv+1](I) ∼= Av

induced by [p], and hence [pv] will be 0. �

Remark 2.6.13. We have that Gµ[pv] = Spec(Av).

Theorem 2.6.14 (Serre–Tate equivalence). There functor{
p-divisible formal group laws

over R

}
→
{

connected p-divisible
groups over R

}
µ 7→ µ[p∞]

is an equivalence of categories.

The map above is really the following. We have a formal group scheme Gµ associated to µ.
Then the connected p-divisible group over R associated to µ is

lim−→Gv
∼= lim−→Gµ[pv],

where we recall that

Gv = Spec(A/[pv](I)).

Remark 2.6.15. Local class field theory can be stated in terms of Lubin–Tate formal group
laws. Local Langlands for GL1 is local class field theory. It can hence be stated in terms of
certain p-divisible groups.

For GLn, Harris and Taylor [HT01] proved the local Langlands correspondence via moduli
spaces of p-divisible groups: Rapoport–Zink spaces and local Shimura varieties.

We now work towards the proof of the Serre–Tate equivalence 2.6.14.

The following proposition shows the essential surjectivity over k in the Serre–Tate equiva-
lence 2.6.14.
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Proposition 2.6.16. Let G = lim−→Gv be a connected p-divisible group over R, where Gv =
Spec(Av). Then

lim←−Av ⊗ k
∼= kJt1, . . . , tdK.

Proof. Let G = G×R k. Define Hv = ker(ϕv) and note that Hv ⊆ ker([pv]) = Gv. Since

ϕv ◦ ϕv = [pv],

writing Hv = Spec(Bv) and we have Av ⊗ k � Bv.

We have that Gv is a connected finite flat k-group. Hence ϕw = 0 on Gv, so Gv ⊆ Hw

showing that Bw � Av ⊗ k. Hence

lim←−Av ⊗ k
∼= lim←−Bv.

Let Jv be the augmentation ideal of Hv and J = lim←− Jv. Then Bv/Jv ∼= k. Let y1, . . . , yd ∈ J
lift a basis of J1/J

2
1 . We have a commutative diagram:

k = (Bv/Jv)⊗k,σ k B1

B
(p)
v = Bv ⊗k,σ k Bv

x⊗c7→cxp

so

B1
∼= Bv/J

(p)
v

where J
(p)
v is the ideal generated by p-powers of elements in J .

Since J1/J
2
1
∼= Jv/J

2
v , the images of y1, . . . , yd generate Jv/J

2
v . By Nakayma’s Lemma, they

generate Jv. We hence have a map

k[t1, . . . , td]� Bv.

We hence have

k[t1, . . . , td]/(t
pv

1 , . . . , t
pv

d )� Bv,

since Hv = ker(ϕv). We want to show this is an isomorphism.

We proceed by induction on v. When v = 1, we checked this in the proof of Proposition 2.4.8.
For the induction step, we argue on ranks. We ant to show that pvd is the order of Hv. For
that, we observe that the sequence

0 H1 Hv+1 H
(p)
v 0

ϕ

is exact. Since H1 = ker(ϕ), we just need to check that ϕ is surjective. Recall that [p] is
surjective by Corollary 2.5.7. We know that ϕ ◦ ψ = [p], so ϕ is surjective. Recall that

Hv+1 = ker(ϕv+1), so ϕ(Hv+1) ⊆ ker(ϕ∨
G(p)

), and the preimage of H
(p)
v is ker(ϕ∨

G
(p)).

This shows that the order of Hv+1 is pd · pvd = pd(v+1), completing the proof. �
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Lemma 2.6.17. Let µ be a p-divisible formal group law R. Letting

Av = A/[pv](I),

we have that
A ∼= lim←−Av.

Proof. Let m be the maximal ideal of R. Then M = mA + I is a maximal ideal of A. For
each v, i, we have that

[pv](I) + miA ⊇Mw

for some w, since
A/([pv](I) + miA) = Av/m

iAv,

which is local Artinian.

Moreover, [p](I) ⊆ pI+I2, because [n] acts as multiplication by n on I/I2 by the argument
in the proof of Proposition 2.2.11. Alternatively, recall that Φ(T, U) = T +U+(degree ≥ 2).

This shows that
[pv](I) + miA ⊆Mw′

for some w′.

Altogether, we see that:

A ∼= lim←−A/M
w

= lim←−
v,i

A/([pv](I) + miA)

= lim←−
v,i

Av/m
iAv

∼= lim←−
v

Av since Av is m-adically complete.

This completes the proof. �

Proof of Theorem 2.6.14. We first check that the functor is fully faithful. Let µ, ν be p-
divisible formal group laws over R. Then for Bv = A/[pv]ν(I):

Hom(µ, ν) = Homν,µ(A,A)

= Homν,µ(lim←−Bv, lim←−Av) by Lemma 2.6.17

= lim←−Homνv ,µv(Bv, Av)

= lim−→Homgrp(µ[pv], ν[pv])

= Hom(µ[p∞], ν[p∞]).

For essential surjectivity, consider G = lim−→Gv be a connected p-divisible group. Let

G = G×R k,
and Gv = Spec(Av). By Proposition 2.6.16,

kJt1, . . . , tdK ∼= lim←−Av ⊗ k.
We want to lift to f : A → lim←−Av. We hence need lifts fv : A → Av, which lifts the above
isomorphism, such that
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A Av+1 Av+1 ⊗ k

Av Av ⊗ k.

fv+1

fv
pv

Let f1 be any lift over kJt1, . . . , tdK → A1 ⊗ k. We define fv by recursion on v. Choose
y1, . . . , yd ∈ Av+1 which lift images of t1, . . . , td under

kJt1, . . . , tdK→ Av+1 ⊗ k.
Then pv(y1), . . . , pv(yd) must lift the images of t1, . . . , td after the map

kJt1, . . . , tdK→ Av ⊗ k.
We know that fv(t1), . . . , fv(td) also lift the images of t1, . . . , td under this map. Then
fv(ti)− pv(yi) ∈ mAv, so there exist zi ∈ mAv+1 such that

pv(zv) = fv(ti)− pv(yi).
Defining fv+1 by fv+1(ti) = yi + zi gives the desired lift.

We want to show that the resulting map

f : A → lim←−Av
is an isomorphism. Surjectivity is clear by Nakayama’s Lemma. We want to show that
ker(f) = 0. We know that ker(f)⊗R k = 0, i.e. m ker(f) = ker(f). We now note that

M ker(f) = (mA+ I)(ker f) = ker(f),

so f is injective by Nakayama’s Lemma.

We have an isomorphism
f : A → lim←−Av.

To prove essential surjectivity, We define G = lim−→Gv for Gv = Spec(Av). Then µv is
a comultiplication on Gv, and µ = lim←−µv defines a formal group law over R such that
µ[pv] = Gv.

We just need to check that G is p-divisible. We omit the details of this; roughly, ones uses
that the map jv,t : Gv+t � Gt induces an injection At ↪→ Av+t. �

Definition 2.6.18. For a p-divisible group G = lim−→Gv over R,

dim(G) = dimension of the formal group law associated to G0

(via the Serre–Tate equivalence 2.6.14).

In the course of the proof of Theorem 2.6.14, we showed the following result.

Corollary 2.6.19. Let G = G×R k. Then ker(ϕG) has order pdim(G).

Example 2.6.20. Recall that µĜm(t, u) = (1 + t)(1 +u)− 1. Then [pv](t) = (1 + t)p
v − 1, so

µĜm [p∞] = µp∞ .

Theorem 2.6.21. Let G be a p-divisible group over R. Then

ht(G) = dim(G) + dim(G∨).
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Proof. By passing to the residue field, we may assume that R = k is a perfect field of
characteristic p. Then

0 ker(ϕ) G G(p) 0

0 0 G G 0

ϕ

[p] ψ

id

is commutative with exact rows, since ϕ is surjective, because ϕ ◦ ψ = [p]G(p) and ker(ϕ) is
killed by [p] because ψ ◦ ϕ = [p].

Snake Lemma then gives a short exact sequence

0 kerϕ ker([p]) ker(ψ) 0.

Since ker(ϕ) has order pdim(G) and ker([p]) = G1 has order pht(G), and ψ = ϕ∨G∨ implies
that ker(ψ) has order pdim(G∨), we are done by multiplicativity of orders in short exact
sequences. �

Corollary 2.6.22. Let G be a p-divisible group over R with residue field k = k of height 1.
Then G is isomorphic to µp∞ or Qp/Zp.

Proof. By Theorem 2.6.21, we know that dimG = 0 or dimG∨ = 0. If dimG = 0, G is étale,
so G ∼= Qp/Zp. Otherwise, dimG∨ = 0, so G∨ ∼= Qp/Zp, so G ∼= µp∞ . �

One can also prove this result using Dieudonné theory, which we will soon explain.

Example 2.6.23. Let E be an ordinary elliptic curve over Fp. Then there is a short exact
sequence

0 E[p∞]0 E[p∞] E[p∞]ét 0.

Since E[p]0 and E[p]ét are both non-trivial, so are E[p∞] and E[p∞]ét. Finally, E[p∞] is of
height 2, so Corollary 2.6.22 shows that

E[p∞]0 = µp∞ , E[p∞]ét = Qp/Zp.

The short exact sequence splits, because it splits at each finite level. Hence

E[p∞] = µp∞ ×Qp/Zp.

Remark 2.6.24. We discuss Serre–Tate deformation theory for ordinary elliptic curves.

In general, Serre–Tate deformation theory says that the deformations of an abelian variety
A/k are equivalent to the deformations of A[p∞] (i.e. p-divisible groups G/R such that
G×R k ∼= A[p∞]).

Therefore, a deformation of an elliptic curve E over k = k corresponds to a deformation of
E[p∞]. The deformation space of E[p∞] is

Ext1(Qp/Zp, µp∞),
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since if G is a deformation over R, the connected–étale sequence

0→ G0 → G→ Gét → 0

and G0 = µp∞ and Gét = Qp/Zp.

We also have a short exact sequence

0 Zp Qp Qp/Zp 0.

The long exact sequence after applying Ext(−, µp∞) gives

Ext1(Qp/Zp, µp∞) ∼= Hom(Zp, µp∞).

Therefore, the deformation space has the structure of a formal torus of dimension 1, given
by µĜm .

2.7. Dieudonné–Manin classification. Let k be a perfect field of characteristic p. Let σ
be the Frobenius automorphism over k.

Definition 2.7.1. We write W (k) for the ring of Witt vectors over k. We write K0(k) for
the fraction field of W (k). The Frobenius σW (k) on W (k) is

σ

∑
n≥0

τ(xn)pn

 =
∑
n≥0

τ(xpn)pn

where τ : k → W (k) is the Teichmüller lift. Finally, σK0(k) is the unique field of automorphism
on K0(k) extending σW (k).

Example 2.7.2. Let k = Fq and ζq−1 be a primitive (q − 1)st root of unity. Then

W (k) = Zp[ζq−1], K0(k) = Qp[ζq−1]

and σ acts on W (k) by
σ(ζq−1) = ζpq−1,

and trivially on Zp.

Definition 2.7.3. A Dieudonné module over k is a pair (M,ϕ) where

• M is a finite free module over W (k),
• ϕ : M →M is an additive map such that:

(1) ϕ is σ-linear, i.e. ϕ(am) = σ(a)ϕ(m) for all a ∈ W (k), m ∈M ,
(2) ϕ(M) ⊇ pM .

Theorem 2.7.4 (Dieudonné). There is an anti-equivalence:

D : {p-divisible groups over k} → {Dieudonné modules over k}
such that

(1) rk(D(G)) = ht(G),
(2) G is étale if and only if ϕD(G) is an isomorphism,
(3) G is connected if and only if ϕD(G) is topologically nilpotent,
(4) [p]G induces multiplication by p on D(G).
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For a proof, see [Dem86].

Remark 2.7.5. There is a notion of duality for Dieudonné modules, compatible with Cartier
duality.

Examples 2.7.6. We have that

(1) D(Qp/Zp) is W (k) with ϕD(Qp/Zp given by σW (k),

(2) D(Qp/Zp) is W (k) with ϕD(Qp/Zp given by pσW (k),

(3) if E is an ordinary elliptic curve over k, D(E[p∞]) = W (k)⊕2 with ϕ = σW (k)⊕pσW (k).

Definition 2.7.7. A map of p-divisible groups f : G → H is an isogeny if it is surjective
and ker f is finite flat.

Proposition 2.7.8. The following are equivalent:

(1) f : G→ H is an isogeny,
(2) D(f) : D(H)→ D(G) is injective,

(3) D(f)[1/p] : D(H)[1/p]
∼=→ D(G)[1/p].

This is easy to check using the properties in Theorem 2.7.4.

Definition 2.7.9. An isocrystal over k is a finite-dimensional K0(k)-vector space N with a
σ-linear bijection ϕ : N → N .

Remark 2.7.10. If G is a p-divisible group over k, D(G)[1/p] is an isocrystal which deter-
mines the isogeny class of G.

Example 2.7.11. Let λ ∈ Q be λ = d
r

for (d, r) = 1, r > 0. The simple isocrystal N(λ) of
slope λ is K0(k)⊕r with

ϕ(e1) = e2, ϕ(e2) = e3, ϕ(er) = pde1.

Theorem 2.7.12 (Manin). Let k = k. The category of isocrystals over k is semisimple with
simple objects given by N(λ).

In other words, any N over k has a decomposition

N =
⊕

N(λi)
⊕mi

for λ1 < · · · < λ`.

Definition 2.7.13. For λi = di
ri

, (di, ri) = 1, ri > 0.

(1) The Newton polygon of N is the lower convex hull of the points

(m1r1 + · · ·+miri,m1d1 + · · ·+midi), i = 1, . . . , `.

Here is a schematic diagram of N :
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(m1r1,m1d1) (m1r1 +m2r2,m1d1 +m2d2)

(0, 0)

slope λ1 = d1

r1

(2) The dimension of N is dim(N) = m1d1 +m2d2 + · · ·m`d`.

(3) The slope of N is µ(N) = dim(N)
rank(N)

.

Proposition 2.7.14. If G is a p-divisible group over k, then D(G)[1/p] has rank ht(G) and
dimension dim(G). Moreover, if

D(G)[1/p] =
⊕̀
i=1

N(λi)
⊕mi ,

then
D(G∨)[1/p] =

⊕
N(1− λi)⊕mi .

Theorem 2.7.15 (Serre, Honda–Tate, Oort). Let N be an isocrystal over k. Then

N ∼= D(A[p∞])[1/p]

for some abelian variety A over k if and only if

(1)

Example 2.7.16. Let A be a principally polarized abelian variety of dimension g over k.
Then A is ordinary if D(A[p∞])[1/p] has Newton polygon connecting (0, 0) to (g, 0) to (2g, g).
Hence A[p∞] is isogenous to µgp∞ ×Qp/Zpg.

We claim that A[p∞] ∼= µgp∞ ×Qp/Zpg. We have the short exact sequence

0→ A[p∞]0 → A[p∞]→ A[p∞]ét → 0.

We have that
(A[p∞])ét ∼= (Qp/Zp)g,

and
((Qp/Zp)g)∨ ∼= µgp∞ ↪→ A[p∞]∨ = A∨[p∞] = A[p∞]0,

so
A[p∞]0 ∼= µp∞ .
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Finally,
A[p∞] ∼= A[p∞]0 × A[p∞]ét = µgp∞ × (Qp/Zp)g.

Remark 2.7.17. One can extend Serre–Tate deformation theory to show that the deforma-
tion space of A is a formal torus of dimension g(g + 1)/2.

2.8. Hodge–Tate decomposition. The goal is to prove he following two results.

(1) The Hodge–Tate decomposition for Tate modules.
(2) The full faithfulness of the generic fiber functor for p-divisible groups.

The reference is [Tat67].

2.8.1. The completed algebraic closure of a p-adic field.

Definition 2.8.1. A p-adic field K is a discrete valued complete non-archimedean extension
of Qp with perfect residue field of characteristic p.

Example 2.8.2.

(1) Every finite extension of Qp.
(2) If k is a perfect field of characteristic p, K0(k), the fraction field of W (k), is a p-adic

field.

Remark 2.8.3. Let k = Fp. Then K0(Fp) is the completion of the maximal unramified
extension of Qp.

Notation. If K is a p-adic field, we write

ΓK = Gal(K/K),

OK = valuation ring of K,

m = maximal ideal of OK ,
k = OK/m.

Definition 2.8.4. The completed algebraic closure of K is CK = K̂. We write OCK for the
valuation ring of CK .

Remark 2.8.5. The field CK is not a p-adic field. We will study it nonetheless. It is our
first example of a characteristic 0 perfectoid field.

We fix a valuation on CK so that v(p) = 1.

Lemma 2.8.6. The action of ΓK on K uniquely extends to a continuous action on CK.

Proof. Obvious by continuity. �

Proposition 2.8.7. The field CK is algebraically closed.

Proof. Consider P (t) ∈ CK [t]. We want to show P (t) has a root in CK .

Exercise. We can assume P (t) is monic over OCK .
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We want to show that there is a Cauchy sequence (αn) such that P (αn) converges to 0.

Write
P (t) = td + a1t

d−1 + · · ·+ ad for ai ∈ OCK .

Consider
Pn(t) = td + an,1t

d−1 + · · ·+ an,d
with v(ai,n − ai) ≥ dn and an,i ∈ OK .

We construct αn recursively such that αn is a root of Pn(t). Let α1 be any root of P1(t).
Suppose αn such that Pn(αn) = 0. Then

Pn+1(αn) = Pn+1(αn)− Pn(αn)

d∑
i=1

(an+1,i − an,i)αin

and hence
v(Pn+1(αn)) ≥ dn.

Let
Pn+1(t) =

∏
(t− βn+1,i).

Since OK is integrally closed, βn+1,i ∈ OK . Then

Pn+1(αn) =
∏

(αn − βn+1,i),

so there exists i such that v(αn − βn+1,i) ≥ n. We define αn+1 = βn+1,i.

We have a sequence αn such that

v(αn − αn+1) ≥ n

Pn(αn) = 0.

Then (αn) is Cauchy, so αn → α ∈ CK . Now,

Pn(α)− Pn(αn) =
∑
i

(ai − an,i)αi.

Hence v(pn(α))→ 0 as n→∞, showing that p(α) = 0. �

Definition 2.8.8. A p-adic representation of ΓK is a finite-dimensional Qp-vector sapce V
with a continuous homomorphism ΓK → GL(V ).

Examples 2.8.9.

(1) Let G be a p-divisible group over K. Then Vp(G) = Tp(G) ⊗Zp Qp is a p-adic
representation.

(2) Let X be an algebraic variety over K. Then H i
ét(XK ,Qp) is a p-adic representation.

Notation. We write RepΓK
(Qp) for the category of p-adic representations of ΓK .

Definition 2.8.10. Let M be a Zp-module with continuous ΓK-action. The nth Tate twist
of M is

M =

{
M ⊗ Tp(µp∞)⊗n if n > 0,

HomΓK (Tp(µp∞)⊗−n,M) if n < 0.
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Example 2.8.11. Recall that Zp(1) = Tp(µp∞). As a Galois representation, this corresponds
to the p-adic cyclotomic character of K:

χK : ΓK → Aut(Zp(1)) ∼= Z×p .
We will usually simply write χ for χK .

Lemma 2.8.12. Suppose M is a Zp-module with a continuous ΓK-action. Then

M(m+ n) ∼= M(m)⊗ Zp(n),

M(m)∨ ∼= M∨(−m).

Proof. These are simple consequences of the definition. �

Lemma 2.8.13. Let M be a Zp-module with a continuous ΓK-action % : ΓK → Aut(M).
Then M(n) is identified with the Zp-module M with σ ∈ ΓK acting by χ(σ)n%(σ).

Proof. We have that M(n) = M ⊗ Zp(n) with ΓK-action %⊗ χn. �

We will assume the following theorem without proof.

Theorem 2.8.14 (Tate–Sen). The Galois cohomology of CK(j) is given by

H i(K,CK(j)) =

{
K if i = 0, 1 and j = 0,

0 otherwise.

Remark 2.8.15. The proof of this theorem requires the full power of the higher ramification
theory and local class field theory. It would take several lectures to prove, which is why we
omit it here.

If i = j = 0, the theorem says that CΓK
K = K. This has an elementary proof, c.f. [BC09,

Prop. 2.1.2].

Lemma 2.8.16 (Serre–Tate). Let V ∈ RepΓK
(Qp). Then the natural map

αV :
⊕
n∈Z

(V ⊗Qp CK(n))ΓK ⊗K CK(−n)→ V ⊗Qp CK

is injective and ΓK-equivariant.

Proof. For each n ∈ Z, we have

αV,n : (V ⊗Qp CK(n))ΓK ⊗K K(−n) ↪→ V ⊗Qp CK(n)⊗K K(−n) = V ⊗Qp CK .

This extends to a CK-linear map. Taking the direct sum of these maps give αV which is now
clearly ΓK-equivariant.

We need to show αV is injective. Suppose that ker(αv) 6= 0. For each n ∈ Z, choose a basis
(vm,n) of (V ⊗Qp CK(n))ΓK . Since the individual mapsαV,n are injective, we can identify vm,n
as a vector αV,n(vm,n) in V ⊗Qp CK .

Now, the vectors (vm,n)m,n span the source of αV . Since we assume that ker(αV ) 6= 0, there
is a non-trivial relation ∑

cm,nvm,n = 0.
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Choose such a relation with minimal length and assume that cm0,n0 = 1 for some m0, n0.
For σ ∈ ΓK ,

0 = σ
(∑

cm,nvm,n

)
− χ(σ)n0

(∑
cm,nvm,n

)
=
∑

σ(cm,n)χ(σ)−nvm,n − χ(σ)n0

(∑
cm,nvm,n

)
=
∑(

σ(cm,nχ(σ)−n − χ(σ)n0cm,n)
)
vm,n

If m = m0, n = −n0, the coefficient is 0. By minimality assumption, we see that

σ(cm,n)χ(σ)−n − χ(σ)n0cm,n = 0.

Hence

σ(cm,n)χ(σ)−n−n0 = cm,n.

The left hand side is the Galois action on C(−n−n0). If n 6= −n0, cm,n = 0. Hence cm,n 6= 0
possibly only if n = −n0.

If n = −n0, cm,n ∈ CΓK
K = K. Hence∑

m

cm,nvm,−n0 = 0

is a K-linear relation, which is a contradiction. �

Definition 2.8.17. A representation V ∈ RepΓK
(Qp) is Hodge–Tate if αV is an isomorphism.

We now present the general idea of the proof of the Hodge–Tate decomposition for Tate
modules. Recall that if G is a Lie group, logG : G→ Lie(G) is a local homeomorphism.

In our context, if G is a p-divisible group over OK , G0 gives a formal group G. We get a
p-adic Lie group G(OC) and

log : G(OC)→ TG.

We will relate Tp(G) to tG∨ .

2.8.2. Formal points on p-divisible groups. Fix R = OK . Let L be the p-adic completion of
an algebraic extension of K (e.g. L = CK). Let OL be the valuation ring of L and mL be its
maximal ideal.

Definition 2.8.18. Let G = lim−→Gv be a p-divisible group over OK . The group of OL-valued
formal points on G is

G(OL) = lim←−G(OL/miOL) = lim←−
i

lim−→
v

Gv(OL/miOL).

Remark 2.8.19. This terminology is not standard. In [Tat67], G(OL) is the group of OL-
points, but it will soon become clear why these are just “formal points”.
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Example 2.8.20. We have that µp∞(OL) = 1 + mL with the multiplicative structure. We
check this:

µp∞(OL) = lim←−µp∞(OL/miOL)

= {x ∈ O×L | v(xp
v − 1) can be arbitrarily large}

= 1 + mL xp
v − 1 ≡ (x− 1)p

v

mod mL.

Remark 2.8.21. The ordinary OL-valued points are

µp∞(OL) = lim−→µpv(OL) = p-power torsion points in O×L .

Proposition 2.8.22. Let G = lim−→Gv be a p-divisible group over OK.

(1) If Gv = Spec(Av), G(OL) = HomOK -cont(lim←−Av,OL).
(2) The OL-formal points on G, G(OL) form a Zp-module with torsion:

G(OL)tor = lim−→ lim←−Gv(OL/miOL).

(3) If G is étale, then G(OL) ∼= G(kL) is a torsion group (where kL is the residue field
of OL).

Remark 2.8.23. The comultiplication on Gv defines a formal group on G = Spf(lim←−Av).
ThenG(OL) = HomOK -cont(lim←−Av,OL), which agree with our definition by Proposition 2.8.22 (1).

Proof of Proposition 2.8.22. We start with (1). Recall that OL is complete, so

OL = lim←−OL/m
iOL.

Since Av is finite free over OK , Av is m-adically complete, so

Av = lim←−
i

Av/m
iAv.

By definition,
G(OL) = lim←− lim−→Gv(OL/miOL).

Hence

G(OL) = lim←− lim−→HomOK (Av,OL/miOL)

= lim←− lim−→HomOK (Av/m
iAv,OL/miOL)

= lim←−
i

HomOK (lim←−
v

Av/m
iAv,OL/miOL)

= HomOK -cont(lim←−
i,v

Av/m
iAv, lim←−

i

OL/miOL)

= HomOK -cont(lim←−Av,OL).

For (2), note that G(OL) is obviously a Zp-module and

G(OL)tor = set of p-power torsion.

We have an exact sequence:

0 Gv(OL/miOL) G(OL/miOL) G(OL/miOL)
[pv ]
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and taking lim←−i,

0 lim←−iGv(OL/miOL) lim←−
i

G(OL/miOL)︸ ︷︷ ︸
G(OL)

lim←−
i

G(OL/miOL)︸ ︷︷ ︸
G(OL)

[pv ]

Hence the pv-torsion on G(OL) is lim←−
i

Gv(OL,miOL). Hence

G(OL)tor = lim−→ lim←−Gv(OL/miOL).

For (3), if G is étale, Gv is étale and hence formally étale, so

Gv(OL/miOL) ∼= Gv(OL/mi+1OL).

Hence

G(OL) = lim←− lim−→Gv(OL/miOL) = lim←− lim−→Gv(kL) = G(kL),

completing the proof. �

Corollary 2.8.24. If G is connected, take µ to be the formal group law under the Serre–Tate
equivalence 2.6.14. Then

G(OL) = HomOK -cont(OKJt1, . . . , tdK,OL)

where d = dim(G) and multipliciation by p is given by [p]µ.

Proposition 2.8.25. Let G = lim−→Gv be a p-divisible group over OK. Then

0 G0(OL) G(OL) Gét(OL) 0

is exact.

Proof. Let Gv = Spec(Av), G
0
v = Spec(A0

v), and Gét
v = Spec(Aét

v ). Let

A = lim←−Av, Aét = lim←−A
ét
v .

This sequence is left exact since colimits and limits are both left exact. We need to show
that G(OL)→ G’et(OL) is surjective, i.e. the map

Homcont(A,OL)→ Homcont(Aét,OL)

is surjective. Recall that

G0(OL) = Homcont(OKJt1, . . . , tdK,OL)

where d = dim(G). Moreover,

(A’et ⊗ k)Jt1, . . . , tdK ∼= A⊗ k

since over k the connected–étale sequence splits.

We get f : AétJt1, . . . , tdK→ A (by the same argument as in Serre–Tate). We claim that this
map is an isomorphism.
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For surjectivity, assume coker(f) 6= 0. Then there exists a maximal ideal M of A such that
coker(f)M 6= 0. Hence coker(f)⊗OK k = 0, so m coker(f) = coker(f), and hence

coker(f)M = m coker(f)M = M coker(f)M.

Since coker(f)M is finitely-generated over AM, we are done by Nakayama’s Lemma.

For injectivity, let I = (t1, . . . , td) and I be the image of I under f . We have a short exact
sequence

0 ker(f)/ ker(f) ∩ Ij AétJt1, . . . , tdK/Ij A/Ĩj 0,

so ker(f)/ ker(f) ∩ Ij = 0, showing that ker(f) ⊆ Ij. Since
⋂
Ij = 0, this shows that

ker(f) = 0.

We have hence shown that f is an isomorphism. This gives a surjection A → A’et which
splits the embedding Aét → A. We hence get a splitting of

Homcont(A,OL)→ Homcont(Aét,OL),

showing this map is surjective. �

Corollary 2.8.26. For all x ∈ G(OL), pnx ∈ G0(OL) for some n.

Proof. The group Gét is torsion. Hence for some some n, the image of pnx in Gét(OL) is
trivial. We are hence done by the connected–étale sequence. �

Proposition 2.8.27. If the field L is algebraically closed (e.g. L = CK), multiplication by p
on G(OL) is surjective.

Proof. By the connected–étale sequence, can work on G0(OL) and Gét(OL) separately. Since
Gét(OL) = Gét(kL), using equivalence to finite free Zp-modules, multiplication by p is sur-
jective.

The group G0(OL) is p-divisible by the p-divisibility of the corresponding p-divisible formal
group µ. Surjectivity on G0(OL) follows. �

Remark 2.8.28. These facts will imply that log : G(OCK )→ tG(CK) is surjective.

2.8.3. The logarithm for p-divisible groups. Let L be the p-adic completion of an algebraic
extension of K. Recall that

G(OL) = group of formal OL-valued points.

Then

G0(OL) = Homcont(OKJt1, . . . , tdK,OL)

and

0 G0(OL) G(OL) Gét(OL) 0

is exact.
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Definition 2.8.29. Let G be a p-divisible group over OK of dimension d. Let µ be the
formal group law associated to G0 and I = (t1, . . . , td) ⊆ OKJt1, . . . , tdK be the augmentation
ideal of µ.

(1) Let M be an OK-module. The tangent space of G with values in M is

tG(M) = HomOK -mod(I/I2,M).

(2) The cotangent space of G with values in M is

t∗G(M) = I/I2 ⊗OK M.

Remark 2.8.30.

(1) There is a formal group G associated to G. The tangent (cotangent space of G)
agrees with the above notion.

(2) For any real λ > 0,

FilλG0(OL) = {f ∈ G0(OL) | v(f(x)) ≥ λ for all x ∈ I}

(this makes sense since f ∈ G0(OL) = Hom(OKJt1, . . . , tdK,OL)).

Definition 2.8.31. The log map for G is

logG : G(OL)→ tG(L) = HomOK -mod(I/I2, L)

f 7→
(
x 7→ f(x) = lim

n→∞

(pnf)(x)

pn

)
This definition only makes sense when we prove the limit exists.

Lemma 2.8.32. Let f ∈ FilλG0(OL). Then

pf ∈ Filk(G0(OL))

where k = min(1 + λ, 2λ).

Proof. Recall that [p]µ(x) = px+ y for any x ∈ I, where y ∈ I2. Hence

(pf)(x) = f([p]µ(x))

= f(px+ y)

= f(px) + f(y)

= pf(x) + f(y).

Hence

v((pf)(x)) = v(pf(x) + f(y))

and

v(pf(x)) = 1 + v(f(x)) ≥ 1 + λ

v(f(y)) ≥ 2λ.

Therefore, v((pf)(x)) ≥ 1 + λ, 2λ. �
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Lemma 2.8.33. For every x ∈ I, f ∈ G(OL),

lim
n→∞

(pnf)(x)

pn

exists in L and equal zero if x ∈ I2.

Proof. Recall that for any f ∈ G(OL), pnf ∈ G0(OL) for n� 0 by Corollary 2.8.26. Hence
we can apply Lemma 2.8.32 to pnf ∈ G0(OL).

By an easy induction, there exists c such that

pnf ∈ Filn+cG0(OL) for n� 0.

Indeed, if λ ≥ 1, min(1 + λ, 2λ) = 1 + λ and if λ < 1, min(1 + λ, 2λ) = 2λ.

We now want to show that
(

(pnf)(x)
pn

)
is Cauchy. We have that

(pn+1f)(x)

pn+1
− (pnf)(x)

pn
=

(pnf)([p]µ(x))

pn+1
− (pnf)(px)

pn+1

=
(pnf)([p]µ(x)− px)

pn+1

=
(pnf)(y)

pn+1

has valuation ≥ 2(n+ c)− (n+ 1) = n+ 2c− 1. This shows that the limit exists.

We finally want to show that the limit is 0 if x ∈ I2. By the same calculation as above,

v

(
(pnf)(x)

pn

)
≥ 2(n+ c)− n ≥ n+ 2c,

so the sequence tends to 0. �

Corollary 2.8.34. Definition 2.8.31 of logG makes sense.

Remark 2.8.35. By the Serre–Tate equivalence, there is a smooth formal group G0 associ-
ated to G0. One can then show that G0(OL) = G0(OL) has a structure of a p-adic analytic
group.

One can hence define log on G0(OL). For all f ∈ G(OL), pnf ∈ G0(OL), so we define

log(f) =
log(pnf)

pn
.

Example 2.8.36. Suppose G = µp∞ . Then

µp∞(OL) ∼= Homcont(OKJtK,OL)
∼= mL f 7→ f(t)
∼= 1 + mL f(t) 7→ 1 + f(t)

Moreover, tµp∞ (L) = HomOK (I/I2, L) = L and I = (t).

We claim that the diagram
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f µp∞(OL) tG(L) g

1 + f(t) 1 + mL L g(t)

logµp∞

∼= ∼=
logp

commutes. We have that

log(f)(t) = lim
n→∞

(pnf)(t)

pn

= lim
n→∞

f([pn]µ(t))

pn

= lim
n→∞

f((1 + t)p
n − 1)

pn

= lim
n→∞

(1 + f(t))p
n − 1

pn
.

Now,

logp(1 + x) = lim
n→∞

(1 + x)p
n − 1

pn
= lim

n→∞

pn∑
i=1

1

pn

(
pn

i

)
xi.

We claim that
1

pn

(
pn

i

)
xi − (−1)i−1

i
xi → 0.

This is equal to
(pn − 1) . . . (pn − i+ 1)− (−1)i−1(i− 1)!

i!
.

Hence

v

(
1

pn

(
pn

i

)
xi − (−1)i−1

i

)
≥ n+ iv(x)− v(i!) ≥ n+ iv(x)− i

p− 1
.

This shows that

lim
n→∞

1

pn

(
pn

i

)
xi =

(−1)i−1

i
xi.

Hence

logp(1 + x) =
∞∑
i=1

(−1)i−1

i
xi

is the usual power series for log

Proposition 2.8.37.

(1) The log map logG is a group homomorphism.
(2) The log map logG is a local isomorphism, in the sense that for all λ ≥ 1:

FilλG0(OL)
∼=→ Filλ tG(L) = {τ ∈ tG(L) | v(τ(x)) ≥ λ for all x ∈ I/I2}.

The filtration on the left hand side is what defines the topology.
(3) The kernel ker(logG) = G(OL)tor.
(4) The log map logG induces an isomorphism G(OL)⊗Zp Qp

∼= tG(L).
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Proof. We first check (1). For all f, g ∈ G(OL), we want to show that

logG(f + g) = logG(f) + logG(g).

We have that

pn(f + g)(x)

pn
=

(pnf ⊗ png)(µ(x))

pn

=
(pnf)(x) + (png)(x) + y

pn
for y ∈ (pnf)I ⊗ (png)(I).

Since the valuation of y gets really large as n→∞, this shows that

pn(f + g)(x)

pn
− (pnf)(x)

pn
− (png)(x)

pn
→ 0.

For (2), note that for all f ∈ FilλG0(OL),

(pnf) ∈ Filλ+nG0(OL),

so

v

(
(pnf)(x)

pn

)
≥ λ,

showing that
v(logG(f)(x)) ≥ λ

for all x ∈ I/I2. There is also an inverse:

Filλ tG(L)→ FilλG0(OL)

τ 7→ the unique element f such that log f(ti) = τ(ti).

Exercise. This is actually the exponential map in terms of p-adic Lie groups. Find an
elementary proof of this fact.

To show (3), we first note that tG(L) has no torsion. Then G(OL)tor ⊆ ker(logG). We
want to show that ker(logG) ⊆ G(OL). For f ∈ ker(logG), pnf ∈ G0(OL) for n � 0, so
pnf ∈ Fil1G0(OL), which shows that pnf = 0.

This also shows injectivity in (4) and we just need to show surjectivity. For τ ∈ tG(L),
pnτ ∈ Fil1 tG(L), so there exists f ∈ Fil1G0(OL) such that logG(f) = pnτ , so τ is in the
image. �

2.8.4. Proof of Hodge–Tate decomposition.

Theorem 2.8.38 (Tate). Let G be a p-divisible group over OK. Then

Hom(Tp(G),CK) ∼= tG∨(CK)⊕ t∗G(CK)(−1),

where Tp(G) = Tp(G×K).

Corollary 2.8.39. We have that dim(G) = dim Hom(Tp(G
∨),CK)ΓK .

In fact, we will prove this Corollary along the way to proving Tate’s theorem 2.8.38.

Lemma 2.8.40. Let G be a p-divisible group over OK. Then Gv(K) ∼= Gv(CK) ∼= Gv(OCK ).
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Proof. Since K has characteristic 0, any finite flat K-group is étale. This gives the first
isomorphism. The second isomorphism follows from the valuative criterion for properness.

�

Lemma 2.8.41. We have that G(OCK )ΓK = G(OK) and tG(CK)ΓK = tG(K).

Proof. Since CΓK
K = K and OΓ

CK = OK , this is immediate. �

Lemma 2.8.42. We have that
∞⋂
n=1

pnG0(OK) = 0.

Proof. Since the valuation on K is discrete, there exists δ > 0, a minimal valuation. If
f ∈ FilλG0(OK), pf ∈ FilκG0(OK) for κ = min(λ+ 1, 2λ). Hence

pnf ∈ Filnδ G0(OK).

Since
∞⋂
n=0

Filnδ G0(OK) = 0, this gives the result. �

Corollary 2.8.43. The group G0(OK) does not contain any element which is infinitely p-
divisible, i.e. G0(OK) does not contain any Qp-space.

Definition 2.8.44. Let G = lim−→Gv be a p-divisible group over OK . Then

Tp(G) = Tp(G×OK K) = lim←−Gv(K) Tate module,

Φp(G) = lim−→Gv(K) = G(K) Tate comodule.

Example 2.8.45. When G = µp∞ ,

Tp(µp∞) = Zp(1)

Φp(µp∞) = lim−→µpv(K) = µp∞(K).

Proposition 2.8.46. We have the following duality isomorphisms:

Tp(G) = HomZp(Tp(G
∨),Zp(1)),

Φp(G) = HomZp(Tp(G
∨), µp∞(K)).

Proof. Note that

Tp(G) = lim←−Gv(K)

= lim←−HomK((G∨v )K , (µpv)K) Cartier duality

= Hom(lim←−(G∨v (K)), lim←−µpv(K)) both étale

= HomZp(Tp(G
∨), Tp(µ

∞
p )).
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For the other isomorphism,

Φp(G) = lim←−Gv(K)

= lim←−
K

((G∨v )K , (µpv)K)

= lim←−(G∨v (K), µp∞(K))

= HomZp(lim←−G
∨
v (K), µp∞(K))

= HomZp(Tp(G
∨), µp∞(K)),

as stated. �

Proposition 2.8.47. We have a short exact sequence

0 Φp(G) G(OCK ) tG(CK) 0.
logG

Proof. We know that Φp(G) = G(K) ⊆ G(OCK ). We need to check that logG is surjective
and its kernel is Φp(G).

Recall that logG induces an isomorphism G(OCK )⊗Qp
∼= tG(CK), so logG is surjective after

inverting p.

Since CK is algebraically closed, G(OCK ) is p-divisible (i.e. multiplication by p on G(OCK )
is surjective). Hence p is already invertible in G(OCK ), showing that logG is surjective.

We now want to show that ker(logG) = Φp(G). Then

ker(logG) = G(OCK )tors

= lim−→
v

lim←−
i

Gv(OCK/m
iOCK )

= lim−→
v

Gv(OCK )

= lim−→
v

Gv(K)

= Φp(G),

as required. �

Example 2.8.48. Let G = µp∞ . Then

Φp(µp∞) = µp∞(K)

and µp∞(OCK ) = 1 + mCK , tµp∞ (CK) = CK . The short exact sequence is

0 µp∞(K) 1 + mCK CK 0.
logp

Proposition 2.8.49. There is a commutative diagram with exact rows
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0 Φp(G) G(OCK ) tG(CK) 0

0 HomZp(Tp(G
∨), µp∞(K)) HomZp(Tp(G

∨), 1 + mCK ) HomZp(Tp(G
∨),CK) 0

∼=

logG

α dα

where α and dα are Zp-linear, ΓK-equivariant, and injective.

Proof. Since Tp(G
∨) is a finite free Zp-module, the bottom row is exact. The left vertical

map is an isomorphism by Proposition 2.8.46.

We construct the map α. We have that

Tp(G
∨) = lim←−G

∨
v (K)

= lim←−G
∨
v (OCK )

= lim←−HomOCK -grp((Gv)OCK
, (µpv)CCK

)

= Homp-div(G, µp∞).

For any g ∈ G(OCK ), we define

α(g)(u) = uOCK
(g)

where u ∈ Tp(G∨) defines a map uOCK
: G(OCK )→ µp∞(OCK ). Can similarly define dα.

Exercise. Both α and dα are Zp-linear and ΓK-equivariant.

The right square commutes by the functoriality of logG:

G(OCK ) tG(CK)

µp∞(OCK ) CK

logG

logp

commutes.

The left square also commutes, because both vertical maps come from Cartier duality.

We want to show that α and dα are injective. Snake Lemma gives and isomorphism ker(α) ∼=
ker(dα). We just need to show that dα is injective. Also, dα is Qp-linear, so ker(dα) is a
Qp-vectors space.

Step 1. The map α is injective on G(OK). Otherwise, let 0 6= g ∈ kerα ∩ G(OK). Then
0 6= png ∈ G0(OK) ∩ kerα. We may hence assume g ∈ G0(OK) ∩ kerα. Hence G0(OK)
contains a Qp-vector space, contradicting Corollary 2.8.43.

Step 2. We show that dα is injective on tG(K). Since logG induces logG(G(OK)) ⊗ Qp
∼=

tG(K), it is enough to show injectivity on logG(G(OK)).

We want to show that if h ∈ G(OK) and dα(logG(h)) = 0, then logG(h) = 0.
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Since ker(α) = ker(dα) via logG and logG(h) ∈ ker(dα), we have that logG(h) = logG(h′) for
h′ ∈ ker(α). This shows that

h− h′ ∈ ker(logG) = G(OK)tors.

Therefore, pn(h− h′)− 0, so

pnh = pnh′ ∈ ker(α) ∩G(OK) = 0.

Hence pnh = 0, so logG(h) = 0.

Step 3. Finally, dα factors as

tG(CK) = tG(K)⊗ CK ↪→ Hom(Tp(G
∨),CK)ΓK ⊗K CK

↪→ Hom(Tp(G
∨,CK)).

The first map is injective. The second is injective by the Serre–Tate Lemma 2.8.16. �

Note that Snake Lemma also shows that cokerα ∼= coker dα. Also, we note that kerα =
ker dα is a Qp-vector space. We will use these facts later.

Theorem 2.8.50. The maps α, dα from Proposition 2.8.49 induce isomorphisms on GK-
invariants:

αK : G(OK)
∼=→ HomZp[ΓK ](Tp(G

∨), 1 + mCK ),

dαK : tG(K)
∼=→ HomZp[ΓK ](Tp(G

∨),CK).

Proof. By Proposition 2.8.49, we have the following commutative diagram with exact rows:

0 G(OCK ) HomZp(Tp(G
∨), 1 + mCK ) coker(α) 0

0 tG(CK) HomZp(Tp(G
∨),CK) coker(dα) 0

α

logG ∼=

dα

Applying (·)ΓK , we get a commutative diagram

0 G(OK) HomZp[ΓK ](Tp(G
∨), 1 + mCK ) coker(α)ΓK

0 tG(K) HomZp[ΓK ](Tp(G
∨),CK) coker(dα)ΓK

αK

logG ∼=

dα

By exactness, we have a commutative diagram:

coker(αK) coker(α)ΓK

coker(dαK) coker(dα)ΓK
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Since coker(αK) ↪→ coker(dαK), it is enough to show that dαK is surjective.

Let

W = HomZp(Tp(G),CK),

V = HomZp(Tp(G
∨),CK).

Then dαK : tG(K)→ V ΓK , so dimK(V ΓK ) ≥ dimK tG(K) = dimG = d.

We want to show dimK(V ΓK ) = dimK(tG(K)). We also know that

dimK(W ΓK ) ≥ dimK(tG∨(K)) = dim(G∨) = d∨

and hence
dimK(V ΓK ) + dimK(W ΓK ) ≥ d+ d∨ = h.

It is enough to show that
dimK(V ΓK ) + dim(W ΓK ) ≤ h.

Note that dimCK (V ) = h = dimCK (W ). Recall that

Tp(G) ∼= HomZp(Tp(G
∨),Zp(1))

as a ΓK-module, which induces a perfect ΓK-equivariant pairing

Tp(G)× Tp(G∨)→ Zp(1).

This gives a perfect ΓK-equivariant pairing

V ×W → CK(−1).

Taking ΓK-invariant, we get

V ΓK ×W ΓK → CK(−1)ΓK = 0.

This shows that V ΓK ⊗ CK and W ΓK ⊗ CK are orthogonal under this pairing. Hence

dimCK (V ΓK ⊗ CK) + dimCK (W ΓK ⊗ CK) ≤ dimCK (V ) = h,

completing the proof. �

Corollary 2.8.51. We have that

dim(G) = dimK HomZp[ΓK ](Tp(G
∨),CK) = dimk(Tp(G)⊗ CK(−1))ΓK .

In particular, the dimension of G is determined by G×OK K.

Proof. The first identity follows from Theorem 2.8.50. For the second identity, use

Tp(G)⊗ CK(−1) ∼= HomZp(Tp(G
∨),CK)

(e.g. by the pairing in the proof of Theorem 2.8.50). �

Proof of the Hodge–Tate decomposition 2.8.38. Let

W = HomZp(Tp(G),CK),

V = HomZp(Tp(G
∨),CK).

Then V ΓK ∼= tG(K) and W ΓK ∼= tG∨(K) by Theorem 2.8.50. We also had a perfect pairing

V ×W → CK(−1),
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inducing an isomorphism
W ∼= Hom(V,CK(−1)).

Under this isomorphism,

V ΓK ⊗ CK
∼= tG(CK)

W ΓK ⊗ CK
∼= tG∨(CK)

and they are orthogonal under this pairing. We now have that

tG(CK) ∼= HomCK (tG(CK),CK) ⊆ W.

Moreover,
dim tG(CK)︸ ︷︷ ︸

d

+ dim tG∨(CK)︸ ︷︷ ︸
d∨

= dim(W ) = h.

We hence get an exact sequence

0 tG∨(CK) HomZp(Tp(G),CK) Hom(tG(CK),CK(−1))︸ ︷︷ ︸
∼=t∗G(CK)(−1)

0.

To prove the theorem, we want to show that this sequence splits uniquely. Indeed,

Ext1(tG∗(CK)(−1), tG∨(CK)) ∼= Ext1(CK(−1)⊕d,C⊕d∨K ) ∼= H1(ΓK ,CK(−1))⊕dd
∨

= 0

by the Tate–Sen Theorem 2.8.14, and

Hom(tG(CK)(−1), tG∨(CK)) ∼= H0(ΓK ,CK(−1))⊕dd
∨

= 0,

proving the theorem. �

Corollary 2.8.52. The representation Vp(G) = Tp(G)⊗Zp Qp is Hodge–Tate.

Proof. Recall that V ∈ RepQp(ΓK) is Hodge–Tate if

αV :
⊕

(V ⊗Qp CK(n))ΓK ⊗K CK(−n) ∼= V ⊗Qp CK .

We check that V = Vp(G) is Hodge–Tate. By Hodge–Tate decomposition 2.8.38, we have
that

(V ⊗ CK(n))ΓK =


tG(CK) if n = 0

t∗G(CK) if n = 1

0 otherwise.

Since αV is always injective, it must be an isomorphism for dimension reasons. �

Proposition 2.8.53. Suppose A is an abelian variety over K with good reduction. Then

Hn
ét(AK ,Qp)⊗Qp CK

∼=
⊕
i+j=n

H i(A,Ωj
A/K)⊗K CK(−j).

Proof. Since A has good reduction, there is an abelian scheme A over OK such that the
generic fiber is A×K ∼= A. Moreover, we know that

A∨[p∞] ∼= A[p∞]∨.

We have the following facts:
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(1) H1
ét(AK ,Qp) = HomZp(Tp(A[p∞]),Zp)⊗Zp Qp,

(2) the formal completion of A at the unit element gives the formal group law corre-
sponding to A[p∞]0 under the Serre–Tate equivalence 2.6.14,

(3) we have isomorphisms:

H0(A,Ω1
A/K) ∼= t∗e(A),

H1(A,OA) ∼= te(A
∨).

(4) we have isomorphisms:

Hn
ét(AK ,Qp) ∼=

n∧
H1

ét(AK ,Qp),

H i(A,Ωj
A/K) ∼=

i∧
H1(A,OA)⊗

j∧
H0(A,Ω1

A/K).

By (4), it is enough to prove the result for n = 1. We have that

Hét(AK ,Qp)⊗ CK
∼= HomZp(Tp(A[p∞]),CK).

By (2) and (3), we have that

H0(A,Ω1A/K) ∼= t∗A[p∞](CK)

H1(A,OA) ∼= tA[p∞]∨(CK).

Hence the result following from the Hodge–Tate decomposition 2.8.38 for A[p∞]. �

2.9. Generic fibers of p-divisible groups.

Theorem 2.9.1 (Tate). The generic fiber functor for the category of p-divisible groups over
OK is fully faithful.

Corollary 2.9.2. The functor G 7→ Tp(G) is fully faithful.

Proposition 2.9.3. Let G = lim−→
v

Gv is a p-divisible group over OK, where Gv = Spec(Av).

Then

disc(Av/OK) = (pdvp
hv

)

where d = dim(G), h = ht(G).

Sketch of proof. Recall that we have an exact sequence

0 G1 Gv+1 Gv 0.
iv,1 j1,v

We can then show that

disc(Av+1/OK) = disc(Av/OK)p
h · disc(A1)p

hv

.

By induction, we reduce to the case v = 1. The connected–étale sequence is

0 G0
1 G1 Gét

1 0.
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We can show that disc(Aét
1 /OK) = (1). It is hence enough to show that disc(A0

1/OK) =

(pd·p
h
). Using Serre–Tate correspondence2.6.14,

A1 = OK ⊗A1[p]µ A

and
disc(A1/OK) = disc(A/[p]A).

This is hard so we omit the details. �

Lemma 2.9.4. Consider a homomorphism f : G→ H between p-divisible groups. If f̃ : G×OK
K → H ×OK K is an isomorphism, f is an isomorphism.

Proof. Let G = lim−→
v

Gv, H = lim−→
v

Hv, Gv = Spec(Av), Hv = Spec(Bv). The map f consists of

maps αv : Bv → Av such that αv ⊗ 1: Bv ⊗K
∼=→ Av ⊗K.

Since both Av, Bv are finite free over OK , Bv ↪→ Av. If disc(Av/OK) = disc(Bv/OK), then
we are done. Recall that dim(G) is determined by Tp(G). �

Remark 2.9.5. This statement is not true for finite flat OK-group schemes. However, if
K/Qp is finite with e < p− 1, then Lemma 2.9.4 also holds (this is a Theorem of Raynaud).

Proposition 2.9.6. Let G be a p-divisible group over OK. Let M be a Zp-direct summand
of Tp(G), stable under ΓK-action. Then there exists a p-divisible group H over OK with a
homomorphism H → G (in fact, a closed embedding), which induces Tp(H) ∼= M .

Proof. There is a p-divisible group H̃ over K with H̃ → G ×OK K such that Tp(H̃) ∼= H,

where H̃ = lim−→ H̃v.

Consider the scheme closure Hv of H̃v in Gv.

Remark. The injective limit lim−→v
Hv may not be a p-divisible group over OK .

We get maps Hv ↪→ Hv+1 induced from H̃v ↪→ H̃v+1.

We claim that there exists v0 such that

Hv = Hv+v0/Hv0

such that lim−→Hv is a p-divisible group.

On the generic fiber,

Hv ×K ∼= H̃v+v0/H̃v0
∼= H̃v.

The map [p] on Hv+1 factors through Hv, since H̃v+1/H̃v is killed by p, so Hv+1/Hv is killed
by p.

Hence [p] induces:
δv : Hv+2/Hv+1 → Hv+1/Hv.

On generic fibers, δv is an isomorphism. Writing Hv+1/Hv = Spec(Bv), δv induces a map

Bv → Bv+1
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which becomes an isomorphism after tensoring with K. Hence Bv ↪→ Bv+1 and {Bv} is an
increasing order in B1 ⊗K.

Fact. The integral closure of OK in B1 ⊗K is Noetherian.

Hence there exists v0 such that

Bv
∼= Bv+1 for all v ≥ v0.

If v ≥ v0, we have that
Hv+2/Hv+1

∼= Hv+1/Hv.

Now,

Hv+1 = Hv+1+v0/Hv0 Hv+1+v0/Hv0
∼= Hv+1

Hv+1+v0/Hv0+v Hv0+1/Hv0

[pv ]

∼=

Finally, ker([pv]) = Hv+v0/Hv0 = Hv. �

Proposition 2.9.7. There is a bijection:

Hom(G,H) ∼= Hom(G×K,H ×K).

Proof. If you have a homomorphism f : G × K → H × K. Then f̃ uniquely extends to
f : G→ H.

For uniqueness: if Gv = Spec(Av), Hv = Spec(Bv), then f̃v : Bv ⊗K → Av ⊗K, so there is
at most one extension to Bv → Av (by choosing generators).

We need tos how existence. Consider the graph of T = Tpf : Tp(G)→ Tp(H):

M ⊆ Tp(G)⊕ Tp(H).

We claim that M is a Zp-direct summand. Note that

Tp(G)⊕ Tp(H)/M
∼=→ Tp(H)

(x, y) 7→ y − T (x),

so Tp(G)⊕ Tp(H)/M is torsion-free. Hence the short exact sequence

0 M Tp(G)⊕ Tp(H) Tp(G)⊕ Tp(H)/M 0

splits.

Since Tp(G×H) = Tp(G)⊕Tp(H), Proposition 2.9.6, there exists a p-divisible group G′ over
OK with a homomorphism ι : G′ → G×H such that Tp(G

′) ∼= M .

Consider the projection maps

π1 : G×H → G,

π2 : G×H → H.
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Then π1 ◦ ι : G′ → G is an isomorphism by Lemma 2.9.4. Then f = π2 ◦ ι ◦ (π1 ◦ ι)−1

extends f̃ . �

Remark 2.9.8.

(1) Theorem 2.9.1 extends to any base ring R such that
(a) R is integrally closed and notherian,
(b) R is an integral domain with Frac(R) of characterictic 0.

by Hartog’s Lemma.
(2) The special fiber functor is faithful, i.e. Hom(G,H) ↪→ Hom(G× k,H × k).

3. Period rings and functors

The goal is to define and study:

• period rings BHT, BdR, Bcris,
• de Rham and crystalline representations.

There is another important period ring, Bst, related to semistable representations. We will
omit this here entirely.

3.1. Fontain’s formalism on period rings. The reference for this section is [BC09, Sec-
tion 5].

LetK be a p-adic field and ΓK be the absolute Galois group Gal(K/K) and IK = Gal(K/Kun)
be the inertia group of K.

3.1.1. Definitions and examples.

Definition 3.1.1. Let B be a Qp-algebra with an action of ΓK and let C be the fraction
field of B with the natural ΓK-action.

We say that B is (Qp,ΓK)-regular if

(1) BΓK = CΓK ,
(2) any b ∈ B with b 6= 0 is a unit if Qp · b is stable under the ΓK-action.

Example 3.1.2. Every field extension of Qp under any ΓK-action is (Qp,ΓK)-regular.

Remark 3.1.3. If F is a field and G is a group, we can define (F,G)-regular rings by
replacing Qp with F and ΓK with G in the above definition.

We can also extend our formalism to this setting.

Definition 3.1.4. Suppose B is a (Qp,ΓK)-regular ring and E = BΓK . Then

(1) for all V ∈ RepQp(ΓK), define

DB(V ) = (V ⊗Qp B)ΓK .

(2) a representation V ∈ RepQp(ΓK) is B-admissible if

dimE DB(V ) = dimQp V.
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We denote by RepBQp(ΓK) the category of B-admissible p-adic representations.

Remark 3.1.5. Let R be a topological ring with a continuous ΓK-action. Then

H1(ΓK ,GLd(R)) = {continuous d-dimensional semilinear ΓK representations over R}/ ∼= .

Exercise. Check this.

For V ∈ RepQp(ΓK), we can consider the class [V ] ∈ H1(ΓK ,GLn(Qp)). Let [V ]B be its

image in H1(ΓK ,GLn(B)). Then V is B-admissible if and only if [V ]B is trivial.

Examples 3.1.6.

(1) For any (Qp,ΓK)-regular B, V = Qp with trivial ΓK-action is B-admissible. Indeed,
DB(V ) = BΓK = E.

(2) Consider B = K. Then V ∈ RepQp(ΓK) is K-admissible if and only if V is potentially
trivial (i.e. the action of ΓK on V factors through some finite quotient). This follows
from the group cohomology interpretation and Hilbert 90.

(3) Consider B = CK . Then V ∈ RepQp(ΓK) is CK-admissible if and only if V is
potentially unramified, i.e. the action of the inertia group factors through a finite
quotient. This fact is quite difficult; it follows from Sen theory and is almost as
difficult as the Tate–Sen theorem 2.8.14.

Theorem 3.1.7. Let B and E be as above and V ∈ RepQp(ΓK).

(1) the natural map αV : DB(V ) ⊗E B → V ⊗Qp B is B-linear, ΓK-equivariant, and
injective,

(2) dimE DB(V ) ≤ dimQp(V ) with equality if and only if αV is an isomorphism

Compare this to the Serre–Tate Lemma 2.8.16 and Definition 2.8.17.

Proof. In (1), αV is defined as the composition

DB(V )⊗E B = (V ⊗Qp B)ΓK ⊗E B
→ (V ⊗Qp B)⊗E B
= V ⊗Qp (B ⊗E B)

→ V ⊗Qp B

so it is clearly ΓK-equivariant and B-linear.

We want to show that αV is injective. Let C = Frac(B), which is (Qp,ΓK)-regular.

Then we get a map βV : DC(V )⊗ C → V ⊗Qp C with

DB(V )⊗E B V ⊗Qp B

DC(V )⊗R C V ⊗Qp C

αV

βV
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where we have used E = BΓK = CΓK (Condition (1) in Definition 3.1.1). To show that
kerαV = 0, it is enough to show that ker βV = 0. We may hence assume that B is a field.

Let (ei) be a basis of DB(V ) = (V ⊗Qp B)ΓK over E. We regard each ei as in V ⊗Qp B.

Assume ker(αV ) 6= 0 and consider a non-trivial relation
∑
biei = 0 for bi ∈ B. We follow the

proof of the Serre–Tate Lemma 2.8.16. Take such a relation of minimal length with br = 1
for some r.

For all γ ∈ ΓK ,

0 = γ(
∑

biei)−
∑

biei =
∑

(γ(bi)− bi)ei,
a shorter relation since γ(br)− br = 1− 1 = 0. By minimality,

v(bi) = bi

for all i, so bi ∈ BΓK = E. This is a contradiction, proving (1).

For (2), αV : DB(V )⊗E B ↪→ V ⊗Qp B induces

αV ⊗ 1: DB(V )⊗E C ↪→ V ⊗Qp C.

Taking C-dimensions, we obtain dimE DB(V ) ≤ dimQp V .

If αV is an isomorphism, so is αV ⊗ 1, so dimE DB(V ) = dimQp(V ). Then the map αV ⊗ 1
is automatically an isomorphism.

Conversely, assume that d = dimE dB(V ) = dimQp(V ). Let ei be an E-basis of DB(V ), (vi)
be a Qp-basis of V . In these bases, αV is a d×d matrix MV . Since αV ⊗1 is an isomorphism,
det(MV ) 6= 0. We want to show that

det(MV ) ∈ B×.
By definition of determinant:

αV (e1 ∧ · · · ∧ ed) = det(MV )(v1 ∧ · · · ∧ vd).
For any γ ∈ ΓK ,

γ(v1 ∧ · · · ∧ vd) = cγ(v1 ∧ · · · vd) for some cγ ∈ Qp

and e1 ∧ · · · ∧ ed is ΓK-invariant. This shows that

γ(det(Mv)) =
1

cγ
det(MV ).

Condition (2) in Definition 3.1.1 implies that det(MV ) ∈ B×. �

3.1.2. Hodge–Tate representations. We want to see how Hodge–Tate representations fit into
this formalism.

Definition 3.1.8. The Hodge–Tate period ring is

BHT =
⊕
n∈Z

CK(n).

Then:

(1) BHT is (Qp,ΓK)-regular,
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(2) V ∈ RepQp(ΓK) is Hodge–Tate if and only if V is BHT-admissible.

Let χ be the p-adic cyclotomic character of K, i.e. χ : ΓK → Aut(Tp(µp∞)) = Aut(Zp(1)) =
Z×p .

Lemma 3.1.9. The image of inertia IK under χ is infinite.

We have the following extension of Tate–Sen Theorem 2.8.14. We will assume it without
proof.

Theorem 3.1.10 (Tate). Let η : ΓK → Z×p be a continuous character. Define

CK(η) = CK with twisted ΓK-action of γ given by η(γ) · γ.

For i = 0, 1, we have that

H i(ΓK ,CK(η)) =

{
0 if η(IK) is infinite,

K if η(IK) is finite.

Note that CK(χn) ∼= CK(n) and χ(IK) is infinite, so we recover the Tate–Sen Theorem 2.8.14
for i = 0, 1.

Proof of Lemma 3.1.9. Recall that χ : ΓK → Z×p = Aut(µp∞). For any γ ∈ ΓK , ζ ∈ µp∞(K),
we have that

γ(ζ) = ζχ(γ)

by definition of χ. It is enough to show that the field extension K(µp∞(K))/K is infinitely
ramified. Let en be the ramification degree of K(µpn(K)/K) over K. We then know that

the ramification of degree of Qp(µpn(Qp))/Qp is pn−1(p− 1) and

en ≥ pn−1(p− 1)/e→∞,

completing the proof. �

Proposition 3.1.11. The ring BHT is (Qp,ΓK)-regular.

Proof. Let CHT = Frac(BHT). We first check condition (1) in Definition 3.1.1: BΓK
HT = CΓK

HT .

By Tate–Sen 2.8.14, BΓK
HT = K. We want to show that CΓK

HT = K.

Observe that BHT
∼= CK [t, t−1] with γ ∈ ΓK acting by

γ
(∑

ant
n
)

= γ(an)χn(γ)tn.

Now, CHT = CK(t) ⊆ CK((t)). It is hence enough to show that CK((t))ΓK = K. If
∑
ant

n ∈
CK((t))ΓK , we have that

γ(an)χ(γ)n = an for all γ ∈ ΓK .

Hence

an ∈ CK(n)ΓK =

{
0 if n 6= 0

K if n = 0,

showing that
∑
ant

n = a0 ∈ K. This proves condition (1) in Definition 3.1.1.
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We now check condition (2) in the definition: if 0 6= b ∈ BHT satisfies Qpb is stable under ΓK ,
then b ∈ B×HT.

Let b =
∑
ant

n. There is a character η : ΓK → Q×p such that

γ(b) = η(γ)b

for all γ ∈ ΓK , which is continuous. It hence factors through η : ΓK → Z×p . Then

η(γ)b = γ(b) =
∑

γ(an)χn(γ)tn,

so

γ(an)χ(γ)n = η(γ)an,

i.e.

γ(an)(η−1χn)(γ) = an.

Hence an ∈ CK(η−1χn)ΓK .

If an 6= 0, χ−1χn(IK), Theorem 3.1.10

We want to show that b = ant
n ∈ B×. If an 6= 0 and am 6= 0, then η−1χn(IK) and η−1χm(IK)

are both finite. Hence χn−m(IK) is finite, contradicting Lemma 3.1.9. �

Remark 3.1.12. This remark was made in response to the question if the ring B+
HT =⊕

n≥0

CK(n) is (Qp,ΓK)-regular. The answer is no: the proof of Proposition 3.1.11 shows that

this ring, isomorphic to CK [t], is not (Qp,ΓK)-regular, because t is not invertible.

Proposition 3.1.13. A representation V ∈ RepQp(ΓK) is Hodge–Tate if and only if it is
BHT-admissible.

Proof. We recall the definitions:

• V is Hodge–Tate if and only if

α̃V :
⊕

(V ⊗Qp CK(n))ΓK ⊗K CK(−n)→ V ⊗Qp CK

is an isomorphism.
• V is BHT-admissible if and only if dimE DBHT

(V ) = dimQp(V ); we check that this is
also equivalent to αV being an isomorphism.

Since

DBHT
(V ) = (V ⊗Qp BHT)ΓK =

⊕
n∈Z

(V ⊗ CK(n))ΓK ,

the map α̃V is an isomorphism if and only if dimE DBHT
(V ) = dimQp(V ). �

Remark 3.1.14. One could also prove this by relating the maps αV and α̃V . It is important
that they are not the same:

• αV is a homomorphism between graded vector spaces,
• α̃V is a map between the graded 0-pieces.

Theorem 3.1.15. Consider the functor DB : RepBQp(ΓK) → VecE, where VecE is the cate-
gory of finite-dimensional E-vector spaces. We have that:
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(1) DB is exact and faithful,
(2) RepBQp(ΓK) is stable under taking subrepresentations and quotients,

(3) RepBQp(ΓK) is stable under taking tensors, exterior and symmetric powers, duals,

(4) DB commutes with the operations in (3):

DB(V ⊗W ) ∼= DB(V )⊗DB(W ),

DB

 i∧
V

 ∼= i∧
DB(V ),

DB

(
SymiV

)
∼= SymiDB(V ),

DB(V ∨) ∼= DB(V )∨.

We prove this as a series of propositions.

Proposition 3.1.16. The functor DB is exact and faithful.

Proof. To check that it is faithful, suppose V,W ∈ RepBQp(ΓK) and f ∈ HomQp[ΓK ](V,W )
satisfies

0 = DB(f) : DB(V )→ DB(W ).

We want to show f = 0. Indeed:

DB(V )⊗E B DB(W )⊗E B

V ⊗Qp B W ⊗Qp B,

DB(f)⊗1=0

∼= ∼=
f⊗1

so f = 0.

To show exactness, suppose

0 U V W 0

is an exact sequence in RepBQp(ΓK).

Fact 3.1.17. Every algebra over a field is faithfully flat.

Hence:

0 U ⊗Qp B V ⊗Qp B W ⊗Qp B 0

0 DB(U)⊗E B DB(V )⊗E B DB(U)⊗E B 0

∼= ∼= ∼=

which shows that

0 DB(U) DB(V ) DB(W ) 0
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is exact. �

Remark 3.1.18. In practice, we enhance DB to a functor into a category of E-spaces with
some additional structures. We will need some work for exactness of this enhanced functor.

Proposition 3.1.19. If V ∈ RepBQp(ΓK), any subrepresentation or quotient of V is also
B-admissible.

Proof. Suppose

0 U V W 0

is an exact sequence in RepQp(ΓK) with V ∈ RepBQp(ΓK). We want to show that U and W
are also B-admissible. Recall that

DB(V ) = (V ⊗B)ΓK .

Since DB is left-exact,

0 DB(V ) DB(V ) DB(W ),

we have that

dimE DB(V ) ≤ dimE DB(V ) + dimE DB(W )

≤ dimQp V + dimQpW

= dimQp V.

Since V is B-admissible, all the inequalities are equalities, showing that U and W are also
B-admissible. �

Remark 3.1.20. This remark is an answer to the question: Is the category RepBQp(ΓK)
closed under extensions?

The answer is no. In fact, there is an example which is Hodge–Tate but not de Rham given
any non-split extension V :

0 Qp V Qp(1) 0.

Hence the category of BdR-admissible representations is not closed under extensions. How-
ever, the proof of the existence of such a non-split extension is very hard.

Proposition 3.1.21. If V,W ∈ RepBQp(ΓK), then V ⊗Qp W ∈ RepBQp(ΓK) with

DB(V ⊗Qp W ) ∼= DB(V )⊗E DB(W ).

Proof. We have a natural E-linear map:

DB(V )⊗E DB(W )→ (V ⊗Qp B)⊗ (W ⊗Qp B)

→ (V ⊗Qp W )⊗Qp B (∗)
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The image of the first map is (V ⊗QpB)ΓK ⊗ (W ⊗B)ΓK . The second map is ΓK-equivariant,
so we get a map

DB(V )⊗DB(W )→ ((V ⊗Qp W )⊗Qp B)ΓK = DB(V ⊗Qp W ) (∗∗).

The map (∗) is injective, since it extends to a B-linear map:

(DB(V )⊗E DB(W ))⊗E B → ((V ⊗Qp B)⊗ (W ⊗Qp B))⊗Qp B → (V ⊗Qp W )⊗Qp B.

The resulting map:

(DB(V )⊗E B)⊗B (DB(W )⊗E B)→ (V ⊗Qp B ⊗E B)⊗ (W ⊗Qp B ⊗E B)

→ (V ⊗Qp B)⊗B (W ⊗Qp B)

is exactly αV ⊗ αW . Since V and W are B-admissible, this map is an isomorphism.

Hence (∗∗) is injective. This show that

dimDB(V ⊗W ) ≥ dimE DB(V ) · dimE DB(W )

= dimQp(V ) · dimQp(W )

= dimQp(V ⊗Qp W ).

Since the other inequality is clear, this completes the proof. �

Proposition 3.1.22. If V ∈ RepBQp(ΓK), then
∧n V and SymnV ∈ RepBQp(Qp) with natural

isomorphisms

DB

(
n∧
V

)
∼=

n∧
DB(V ),

DB (SymnV ) ∼= SymnDB(V ).

Proof. We only prove this for
∧n V , since SymnV can be treated similarly.

Since V is B-admissible, V ⊗n is B-admissible by Proposition 3.1.21 and hence
∧n V is B-

admissible by Proposition 3.1.19.

We get a commutative diagram:

DB(V )⊗n ∼= DB(V ⊗n) DB(
∧n V )

∧nDB(V )

(∗)

by Propositions 3.1.16 and 3.1.21.
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We want to show that (∗) is an isomorphism. We know that (∗) is surjective by the commu-
tativity of the diagram. Moreover,

dimE DB(
n∧
V ) = dimQp(

n∧
V )

=

(
dimQp V

n

)
=

(
dimE DB(V )

n

)
= dimE

∧
DB(V ),

so (∗) must be an isomorphism. �

Proposition 3.1.23. If V ∈ RepBQp(ΓK), V ∨ ∈ RepBQp(ΓK) with a perfect pairing:

DB(V )⊗E DB(V ∨)
∼=→ DB(V ⊗Qp V

∨) ∼= DB(Qp) = E (∗).

Proof. Case 1. dimQp V = 1.

We want to show dimE DB(V ∨) = 1 = dimQp V
∨. Choose a basis v of V over Qp. There

exists a character η : ΓK → Q×p such that

γ(v) = η(γ)v for all γ ∈ ΓK .

Since V is B-admissible, DB(V ) = (V ⊗Qp B)ΓK is 1-dimensional. Hence, there exists b ∈ B
such that v ⊗ b is a ΓK-invariant E-basis of DB(V ).

Since V is B-admissible, Theorem 3.1.7 shows that the map

αV : DB(V )⊗E B
∼=→ V ⊗Qp B

is an isomorphism, and hence it maps v ⊗ b to a basis of V ⊗Qp B. Hence b ∈ B×.

Finally:

γ(v ⊗ b) = γ(v)⊗ γ(b)

= η(v)v ⊗ γ(b)

v ⊗ η(v)γ(b).

Hence b = η(γ)γ(b) for all γ ∈ ΓK . This shows that

DB(V ∨) = (V ∨ ⊗Qp B)ΓK

contains a non-zero v∨ ⊗ b−1 where v∨ is a dual basis.

Hence V ∨ is B-admissible and DB(V ∨) is spanned by v∨ ⊗ b−1. One easily checks that (∗)
is perfect.

Case 2. General case.

Let d = dimQp V . There is a natural ΓK-equivariant isomorphism

Φ: det(V ∨)︸ ︷︷ ︸∧d V ∨
⊗

d−1∧
V ∼= V ∨
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given by

(f1 ∧ · · · ∧ fd)⊗ (w2 ∧ · · · ∧ wd) 7→ (w1 7→ det(fi(wj))).

Since V is B-admissible, det(V ) =
∧d V is B-admissible, hence

det(V ∨) = det(V )∨ is B-admissible

by Case 1.

Since
∧d−1 V is B-admissible by Proposition 3.1.22, this shows that V ∨ is also B-admissible.

We want to show that (∗) is perfect.

Fact. If W , W ′ are vector spaces with d = dimEW = dimEW
′ then W ×W ′ → E is perfect

if and only if

det(W )× det(W ′)→ E

is perfect.

Finally, (∗) induces the pairing:

det(DB(V ))⊗ det(DB(V ∨)) E

DB(det(V ))⊗DB(det(V ∨)) E

= =

Since dim det(V ) = 1, this completes the proof. �

3.2. De Rham representations. The goal is to define and study:

• the de Rham period ring BdR,
• de Rham representations.

The references for this section are [BC09, Sections 4, 6] and [Sch12].

Outline of the construction of BdR.

The field CK is perfectoid. Hence F = C[
K is a perfectoid field of characteristic p. Let OF

be the valuation ring of F .

We get a surjective ring homomorphism:

θ : W (OF )� OCK

which gives

θ : W (OF )[1/p]� CK

and we may consider ker(θ). Then

B+
dR = lim←−

j

W (OF )[1/p]/(ker θ)j

BdR = Frac(B+
dR).
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3.2.1. Perfectoid fields and tilting.

Definition 3.2.1. Let C be a complete non-archimedean field of residue characteristic p
with valuation ring OC . Then C is a perfectoid field if:

(1) the valuation on C is non-discrete,
(2) the pth power map on OC/pOC is surjective.

Lemma 3.2.2. Let C be a complete non-archimedean field of residue characteristic p with
non-trivial valuation. Assume that the pth power map is surjective on C. Then C is perfec-
toid.

Proof. We first check property (1). Let v be the valuation on C and suppose v is discrete.
Then there exists x ∈ C with minimal positive valuation. Also, x = yp for some y ∈ C by
the surjecitivity of the pth power map.

Then

0 < v(y) =
1

p
v(x) < v(x)

which is a contradiction.

For (2), it suffices to show surjectivity on OC . For all x ∈ OC , there exists y ∈ C such that
x = yp. Then v(y) = 1

p
v(x) > 0, so y ∈ OC . �

Proposition 3.2.3. The field CK is perfectoid.

Proof. This follows from Lemma 3.2.2, since CK is algebraically closed. �

Proposition 3.2.4. A non-archimedean field of characteristic p is perfectoid if and only if
it is complete and perfect.

Proof. The ‘only if’ direction is immediate. The ‘if’ direction follows from Lemma 3.2.2. �

Fix a perfectoid field C. Write OC for the valuation ring of C and v for the valuation on C.

Definition 3.2.5. The tilt of C is
C[ = lim←−

x 7→xp
C

with the natural multiplication.

A priori, C[ is a multiplicative monoid. We will later define a topology on it, which turns
out to be equivalent to the inverse limit topology.

We want to show C[ is a perfectoid field of characteristic p.

Lemma 3.2.6. Fix $ ∈ C× such that 0 < v($) ≤ v(p). For all x, y ∈ OC with x−y ∈ $OC,
then

xp
n − ypn ∈ $n+1OC .

Proof. By the inequality, $ divides p in OC . We have that

xp
n − ypn = (yp

n−1 − (yp
n−1 − xpn−1

))p − ypn

which shows the result by induction. �
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Remark 3.2.7. In practice, if C has characteristic 0, then we may choose $ = p.

If C has characteristic p, C[ ∼= C, so in practice, we might as well assume C has characteristic
0.

Proposition 3.2.8. Fix $ ∈ C× such that 0 < v($) ≤ v(p). Then we have a multiplicative
bijection:

lim←−
x 7→xp

OC → lim←−
x 7→xp

OC/$OC

induced by OC � OC/$OC.

Proof. The map is clearly multiplicative, so we only need to construct an inverse. Define

` : lim←−
x 7→xp

OC/$OC → lim←−
x 7→xp

OC

by setting for c = (cn) ∈ lim←−x 7→xp OC/$OC for cn ∈ OC/$OC :

`(c) = (`n(c))

`n(c) = lim
m→∞

cp
m

n+m where cn ∈ OC lifts cn.

For `,m, n� 0,

cp
`

n+m+` − cn+m ∈ $OC ,
because

cp
`

n+m+` − cn+m = cn+m − cn+m

= 0.

Hence Lemma 3.2.6 shows that

cp
`+m

n+m+` − c
pm

n+m ∈ $m+1OC .

Therefore, for all n, (cp
m

n+m) is a Cauchy sequence in OC . Therefore,

lim
m→∞

cp
m

n+m exists.

To check ` is well-defined, choose another lift c′n of cn. Then

cn − c′n ∈ $OC ,
so Lemma 3.2.6 implies that

cp
m

n+m − c
′pm
n+m ∈ $m+1OC .

Hence the limit does not depend on the choice.

Finally, we need to show that ` is inverse to the reduction map in the statement. We have
that:

(cn) 7→ (cn) 7→
(

lim
m→∞

cp
m

n+m

)
=

(
lim
n→∞

cn

)
= (cn),

(cn) 7→
(

lim
m→∞

cp
m

n+m

)
7→
(

lim
m→∞

cp
m

n+m

)
=

(
lim
n→∞

cn

)
= (cn),

showing that ` is the inverse. �
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Remark 3.2.9. Since Proposition 3.2.8 gives a bijection

lim←−
x 7→xp

OC → lim←−
x 7→xp

OC/$OC

we may choose to work on either side of it. We will mostly work on the left hand side and
only use the right hand side if needed. This gives a simple valuation (as we will see below)
but makes the addition structure complicated.

Scholze [Sch12], on the other hand, chooses to work on the right hand side. Conversely, this
makes the addition structure easy but the valuation is complicated.

Proposition 3.2.10. The tilt C[ is a perfectoid field of characteristic p with valuation ring
OC[ = lim←−

x 7→xp
OC.

Proof. Step 1. We show that C[ is a perfect field of characteristic p. Fix $ ∈ C× as before.
Since $ divides p, OC/$OC is of characteristic p. Hence

lim←−
x7→xp

OC/$OC

has a ring structure with natural addition and multiplication. This induces a ring structure
on OC[ via Proposition 3.2.8. In fact, if a = (an) and b = (bm) are in OC[ , then

(a+ b)n =

(
lim
m→∞

(an+m + bn+m)p
m

)
does not depend on the choice of $. Recall that

C[ = lim←−
x 7→xp

C

so we may identify C[ as the fraction field of OC[ . Hence C[ is perfect of characteristic p.

Step 2. The field C[ admits a valuation v[ such that v[(c) = v(c0) for all c = (cn) ∈ C[.

We have that vb(c) =∞ implies that v(c0) =∞, so c0 = 0. Then cn = 0 for all n, so c = 0.
It is also clear that v[ is multiplicative by definition.

We need to check the triangle inequality: for a = (an), b = (bn) in (C[)×, we have that

v[(a+ b) ≥ min(v[(a), v[(b)).

Without loss of generality, assume that v[(a) ≥ v[(b). For any n,

ν(an) =
1

pn
v(a0) = v[(a) ≥ v[(b) = v(b0) =

1

pn
v(bn)

by multiplicativity. This shows that
an
bn
∈ O×C for all n.

Hence a = b · r for some r ∈ ObC and

v[(a+ b) = v[(b(r + 1)) = v[(b) · v[(r + 1) ≥ v[(b)

since r + 1 ∈ O[C . We hence checked that v[ defines a valuation on C[.

Step 3. The valuation ring is OC[ .
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For any c = (cn) ∈ C[,

v(cn) =
1

pn
v(c0) =

1

pn
v[(c)

and v[(c) ≥ 0 if and only if v(cn) ≥ 0 for all n.

Step 4. The v[-adic topology on C[ is complete.

Given some N > 0, we have that ν(cn) ≥ ν($) for all n ≥ N if and only if n(c0) ≥ pnv($).
Hence v(c1) ≥ pN−1v($) etc.

Hence the v[-adic topology on OC[ is the same as the inverse topology on lim←−OC/$OC . The
latter topology is complete by definition.

By Proposition 3.2.4, this shows that C[ is perfectoid. �

3.2.2. The de Rham period ring BdR. Let F = C[
K , a perfectoid field of characteristic p.

Write OF for its valuation ring and v[ for its valuation.

Let W (OF ) be the Witt vectors over OF .

We want to construct a ring homomorphism

θ : W (OF )→ OCK .

Lemma 3.2.11 (Universal property of Witt vectors). Let A be a perfect Fp-algebra and R
be p-adically complete. Given a ring homomorphism π : A→ R/pR, π lifts uniquely to:

• a multiplicative map π̂ : A→ R,
• a ring homomorphism π : W (A)→ R.

Also,

π
(∑

[an]pn
)

=
∑

π̂(an)pn.

Remark 3.2.12. There is another universal property [BC09, Proposition 4.3.4]: for

• A: perfect Fp-algebra,
• B a p-ring (i.e. a ring for which B/p is perfect),

any π : A→ B/p uniquely lifts to a ring homomorphism W (A)→ B.

We cannot use this universal property, however, because OCK/p is not perfect.

Proposition 3.2.13. There is a ring homomorphism

θ : W (OF )→ OCK

such that

θ
(∑

[cn]pn
)

=
∑

c#
n p

n

where cn = (cn,k) ∈ OF = lim←−
x 7→xp

OCK and c#
n = cn,0 ∈ OCK .
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Proof. We have the ring homomorphism:

π : OF → OCK/pOCk

c 7→ c#,

where c# is the modulo p reduction of C#. Since the natural map

π̂ : OF → OCK

c 7→ c#

is multiplicative, Lemma 3.2.11 gives the required map θ = π. �

Definition 3.2.14. The infinitesimal period ring is:

Ainf = W (OF ),

where F = C[
K .

We constructed a homomorphism

θ : Ainf → OCK .

Proposition 3.2.15. The map θ is surjective.

Lemma 3.2.16. For any x ∈ OCK , there exists y ∈ OF such that x− y# ∈ pOCK .

Proof. Let x be the image of x in OCK/pOCK . Since the pth power map is surjective on
OCK/pOCK , there exists

y′ ∈ lim←−
x 7→xp

OCK/pOCK with y′0 = x.

By Proposition 3.2.8, we have that:

OF = lim←−
x 7→xp

OCK
∼=→ lim←−

x 7→xp
OCK/pOCK

y ←[ y′

and y works. �

Proof of Proposition 3.2.15. We have that

θ
(∑

[cn]pn
)

=
∑

c#
n p

n.

For all x ∈ OCK , we have:

x = c#
0 + px0 c0 ∈ OF , x0 ∈ OCK

= c#
0 + p(c#

1 + px1) c0, c1 ∈ OF , x1 ∈ OCK
...

= c#
0 + pc#

1 + p2c#
2 + · · · .

This gives the result by completeness of OCK . �
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Remark 3.2.17. Where does this come from? Recall that BdR is a refinement of BHT for the
de Rham comparison theorem. Observe that the de Rham cohomology has a Hodge filtration
whose associated graded algebra equal to the Hodge cohomology. We want to construct BdR

as ring with graded algebra BHT.

Fontaine’s idea was to construct a complete DVR B+
dR such that

B+
dR/m

∼= CK , m/m2 ∼= CK(1).

In characteristic p, the theory of Witt vectors provides a complete DVR with a specified
residue field. Therefore, we want to build “W (CK)”, but this does not work well, because
CK has characteristic 0. We should hence pass to characteristic p.

The ring OCK/pOCK has characteristic 0, but is not perfect. Fontaine defined the perfection
of OCK/pOCK as

RK = lim←−
x 7→xp

OCK/pOCK .

Then define Ainf = W (RK).

Note that RK
∼= OF , so we have just been considering a more modern treatment of Fontaine’s

idea.

Fontaine finally realizesOCK as a quotient of Ainf ; indeed θ is surjective by Proposition 3.2.15.
We have an induced map:

θQ : Ainf [1/p]→ CK ,

so CK is a quotient of Ainf [1/p].

Definition 3.2.18. Define

B+
dR = lim←−

j

Ainf [1/p]/ ker(θQ)j.

However, B+
dR is not (Qp,ΓK)-regular.

Definition 3.2.19. The de Rham period ring is:

BdR = Frac(B+
dR).

Having laid out the strategy for constructing BdR, we need to prove it has all the right
properties.

To prove B+
dR is a complete DVR, we study ker(θ).

Fix p[ ∈ OF with (p[)# = p. For example:

p[ = (p, p1/p, p1/p2

, . . .).

Consider the associated element

ξ = [p[]− p ∈ Ainf .

We want to show that ker(θ) is a principal ideal, generated by ξ.

Lemma 3.2.20. We have that

ker(θ) ∩ pnAinf = pn ker(θ).
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Proof. The ‘⊇’ inclusion is obvious, so we only prove ‘⊆’. For x ∈ ker(θ) ∩ pnAinf , we can
write

x = pny for some y ∈ Ainf .

Then
0 = θ(x) = θ(pny) = pnθ(y).

Since OCK has no nonzero p-torsion, θ(y) = 0, so y ∈ ker(θ). �

Lemma 3.2.21. We may write x ∈ ker(θ) as

x = cξ + dp

for some c, d ∈ Ainf .

Proof. We want to show that

x ∈ (ξ, p) = ([p[]− p, p) = ([p[], p).

The element x has a Teichmuller expansion

x =
∑

[cn]pn for cn ∈ OCK .

Hence
0 = θ(x) =

∑
c#
n p

n,

so
c#

0 ≡ 0 mod p.

Hence:
v[(c0) = v(c#

0 ) ≥ v(p) = v((p[)#) = v[(p[)

This shows that c0 is divisible by p[ in OF . Hence [c0] is divisible by [p[] in Ainf .

Finally,

x = [c0] +
∑
n≥1

[cn]pn ∈ ([p[], p),

completing the proof. �

Proposition 3.2.22. We have that ker(θ) = (ξ).

Proof. Note that ξ ∈ ker(θ), because

θ(ξ) = θ([p[])− θ(p) = (p[)# − p = p− p = 0.

We want to show that ker(θ) ⊆ (ξ).

For any x ∈ ker(θ), Lemma 3.2.21 shows that we may write

x = c0ξ + px0 for some c0, x0 ∈ Ainf .

We have that
px0 = x− c0ξ ∈ ker(θ),

so x0 ∈ ker(θ) by Lemma 3.2.20. Hence

x = c0ξ + p(c1ξ + px1)

by Lemma 3.2.21 and we keep applying the two lemmas to write

x = c0ξ + pc1ξ + p2c2ξ + · · · ∈ (ξ),
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completing the proof. �

Remark 3.2.23. We say that x =
∑

[cn]pn ∈ Ainf is primitive of degree 1 if

v[(c0), v[(c1) = 0.

We will see that x generates ker(θ) if and only if x is primitive of degree 1.

In fact, we get a bijection: {
primitive elements
of degree 1 in Ainf

}
↔
{

untilts
of F

}
α 7→ Ainf [1/p]/(α).

Hence for any algebraically closed perfectoid field F of characteristic p, all untilts are alge-
braically isomorphic to Ainf/ ker(θ).

They are not (generally) topologically isomorphic: there is a counterexample. The intuition
is that we define the topology dependent on the choice of generator α.

Proposition 3.2.24. We have that

ker(θQ)j ∩ Ainf = ker(θ)j.

Proof. We proceed by induction on j. For j = 1, clearly ker(θQ) ∩ Ainf ⊇ ker(θ), so we just
have to show the other inclusion. If x ∈ ker(θQ) ∩ Ainf , since θQ : Ainf [1/p] → CK , there
exists n such that pnx ∈ ker(θ) ∩ Ainf . This shows that x ∈ ker(θ) by Lemma 3.2.20.

In the induction step, the inclusion

ker(θQ)j ∩ Ainf ⊇ ker(θ)j

is again obvious and we prove the other inclusion.

For any x ∈ ker(θQ)j ∩ Ainf , there exists n ≥ 0 such that pnx ∈ ker(θ)j, so

pnx = rξj

for some r ∈ Ainf . Hence

x ∈ ker(θQ)j ∩ Ainf ⊆ (ker(θQ))j−1 ∩ Ainf = ker(θ)j−1

by the inductive hypothesis. Hence x = ξj−1 · s for some s ∈ Ainf . We have that

rξj = pnsξj−1,

so

rξ = pns.

This shows that

pns = rξ ∈ ker(θ).

Using Lemma 3.2.20, s ∈ ker(θ), so s = ξs′ for some s′ ∈ Ainf . Finally, this shows that

x = ξj · s′ ∈ ker(θ)j,

as required. �
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Proposition 3.2.25. We have that
∞⋂
j=1

ker(θQ)j =
∞⋂
j=1

ker(θ)j = 0.

Proof. By Proposition 3.2.24, we have that

(3)
∞⋂
j=1

ker(θQ)j =
∞⋂
j=1

ker(θ)[1/p].

We just need to show that
∞⋂
j=1

ker(θ)j = 0.

For x =
∑

[cn]pn ∈
∞⋂
j=1

ker(θ)j, x is infinitely divisible by ξ.

Hence c0 is infinitely divisible by p[. Since v[(pb) = v(p) = 1 > 0, we have that c0 = 0. This
shows that x is divisible by p and we write

x = p · x1 for x1 ∈ Ainf .

Then

x1 ∈

 ∞⋃
j=1

ker(θ)j

 [1/p] ∩ Ainf .

By equation 3,

x1 ∈

 ∞⋃
j=1

ker(θQ)j

 ∩ Ainf =
∞⋂
j=1

ker(θ)j,

so x is infinitely divisible by p in
∞⋂
j=1

ker(θ)j. This shows that x = 0. �

Lemma 3.2.26. The natural map

Ainf [1/p]→ lim←−Ainf [1/p]/ ker(θQ)j = B+
dR

is injective. In particular, we can regard Ainf [1/p] as a subring of B+
dR.

Definition 3.2.27. The map θ induces a map

θ+
dR : B+

dR � Ainf [1/p]/ ker(θQ) ∼= CK .

Theorem 3.2.28. The ring B+
dR is a complete DVR with ker(θ+

dR) as maximal ideal, CK as
residue field, and ξ as uniformizer.

Proof. Step 1. We show that B+
dR is a local ring.

By construction, B+
dR/ ker(θ+

dR) ∼= CK , so ker(θ+
dR) is a maximal ideal. We need to show that

there are no other maximal ideals.
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Fact. If R is any ring and I ⊆ R is an ideal such that
⋃∞
n=1 I

n = 0, and we write R̂ =

lim←−R/I
n for the completion of R with respect to I, then x ∈ R̂ is a unit if and only if the

image in R/I is a unit.

Hence x ∈ B+
dR is a unit if and only if θ+

dR(x) is a unit in CK i.e. x 6∈ ker(θ+
dR). This shows

that B+
dR is local.

Step 2. We can show that any x ∈ B+
dR has a unique expression x = ξiu with u ∈ (B+

dR)×.

Exercise. Check this.

By construction, B+
dR is the ξ-adic completion of Ainf [1/p], so B+

dR is complete. �

Since de Rham cohomology has a filtration, we need a filtration on BdR.

Corollary 3.2.29. For any uniformizer $ of B+
dR,

{$iB+
dR}i∈Z = {ker(θidR)}i∈Z

has the following properties:

(1) $iB+
dR ⊇ $i+1B+

dR,
(2)

⋂
i∈Z

$iB+
dR = 0,

⋃
i∈Z

$iB+
dR = BdR,

(3) $iB+
dR ·$jB+

dR ⊆ $i+jB+
dR.

Therefore, BdR has a natural structure of a filtered ring.

Finally, we want to show that BΓK
dR = K with graded algebra isomorphic to BHT.

Proposition 3.2.30. Let K0 = Frac(W (k)) where k is the residue field of K. Then:

(1) K is a finite totally ramified extension of K0,
(2) there is a unique map K → B+

dR making the triangle:

K B+
dR

CK

θ+
dR

commute.

Remark 3.2.31. The map K → B+
dR is not continuous.

Proof. Recall that if A is a perfect Fp-algebra and R is p-adically complete, then any ring
homomorphism A→ R/p uniquely lifts to a homomorphism W (A)→ R by Lemma 3.2.11.

For (1), note that the quotient map OK/pOK → OK/m = k has a canonical section k →
OK/pOK (induces by k → OCK/pOCK ), giving a map W (k)→ OK , and hence a map

K0 → K

of discrete valued fields. (Alternatively, one can use another universal property of Witt
vectors to obtain the desired map W (K)→ OK .)
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Then e(K/K0) = 1
v($)

where $ is a uniformizer of K and f(K/K0) = 1. This shows (1).

For (2), consider the composition

k → OK/pOK → OCK/pOCK → lim←−
x 7→xp

OCK/pOCK = OF

which gives a map
W (k)→ Ainf

and hence
K0 → Ainf [1/p]→ B+

dR.

This lifts to a map K → B+
dR by Hensel’s lemma.

We only proved that the map K → B+
dR exists, but we did not prove uniqueness. This can

be found in [BC09], but we omit it here. �

Proposition 3.2.32. There is a refinement of the DVR topology on B+
dR such that

(1) Ainf → B+
dR is a closed embedding,

(2) θQ : Ainf [1/p]→ CK is open and continuous,
(3) there is a continuous logarithm map

log : Zp(1)→ B+
dR

given by

log(x) =
∑

(−1)n
([x]− 1)n

n
where we identify

Zp(1) = lim←−µpv(K) = {c ∈ OF | c# = 1},

(4) multiplication by any uniformizer of B+
dR is a closed embedding,

(5) B+
dR is complete.

Remark 3.2.33. A sketch of the proof is in [BC09, Exercise 4.5.3].

Remark 3.2.34. The DVR topology does not satisfy properties (1), (2), (3). The issue is
that the DVR topology “ignores” the valuation topology on CK . In fact, the ΓK-action of
B+

dR is not continuous for the DVR topology.

Fix ε ∈ Zp(1) with ε 6= 1, i.e. ε = (ζpn) is a compatible system of pnth roots of unity. Set

t = log(ε) ∈ B+
dR.

This will be a uniformizer, which is more convenient to work with than ξ, because of the
simple Galois action.

Remark 3.2.35. We have the following (tentative) equalities:

γ(t) = γ(log(ε))

= log(γ(ε)) if log is equivariant,

= log(εχ(γ))

= χ(γ) log(ε) if log is additive,

= χ(γ)t
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Lemma 3.2.36. We have that v[(ε− 1) = p
p−1

.

Proof. Indeed,

v[(ε− 1) = v((ε− 1)#)

= v

(
lim
n→∞

(ζpn − 1)p
n

)
= lim

n→∞

(
pnv(ζpn − 1)

)
= lim

n→∞

pn

pn−1(p− 1)

=
p

p− 1
,

as required. �

Proposition 3.2.37. The element t ∈ B+
dR is a uniformizer.

Proof. We have that θ([ε]− 1) = ε# − 1 = 1− 1 = 0. Hence

[ε− 1] ∈ ker(θ) ⊆ ξB+
dR.

Now,

t = log(ε) =
∑
n≥1

(−1)n+1 ([ε]− 1)n

n
∈ ξB+

dR.

We want to show that t is not divisible by ξ2. When n ≥ 2, ([ε]−1)n

n
is divisible by ξ2. It is

hence enough to check that [ε]− 1 is no divisible by ξ2.

We look at the first coefficient in the Teichmuller expansions:

[ε− 1] and [(p[)2].

Considering valuations:

v[(ε− 1) =
p

p− 1
< 2 = 2v(p)v((p[)2),

if p > 2. If p = 2, we look at the second coefficients:

[ε− 1] and [(p[)4].

Again,

v[(ε− 1) =
p

p− 1
= 2 < 4 = v[((p[)4).

This completes the proof. �

Lemma 3.2.38. For any m ∈ Zp, log(εm) = m log(ε).

Proof. Case 1. m is an integer.

We have that
log((1 + x)m) = m log(1 + x)

as formal power series. Since
[ε]− 1 ∈ ξB+

dR,
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the power series converges in B+
dR for x = [ε]− 1.

Case 2. General case.

Choose a sequence mi ∈ Z such that limmi = m in Zp. Then

limmi log(ε) = (limmi) log(ε) = m log(ε)

where the first equality follows since t = log(ε) is a uniformizer in B+
dR.

Also, lim εmi = εm in the valuation topology on F . By continuity of log, we have that

log(εm) = log(lim εmi) = lim log(εmi) = limmi log(ε) = m log(ε),

completing the proof. �

Theorem 3.2.39 (Fontaine). The natural ΓK-action on BdR has the following properties:

(1) any γ ∈ ΓK acts by γ(t) = χ(γ)t,
(2) tiB+

dR is stable,

(3)
⊕
i

mtiB+
dR/t

i+1B+
dR
∼=
⊕
n∈Z

CK(n) = BHT,

(4) BdR is (Qp,ΓK)-regular with BΓK
dR = K.

Proof. The natural ΓK-action on CK induces an action on F = C[
K by

γ(xn) = (γ(xn))

for all (xn) ∈ F . By functoriality, this gives a ΓK-action on Ainf = W (OF ); explicitly:

γ
(∑

[cn]pn
)

=
∑

[γ(cn)]pn.

It is clear that θ, θQ are ΓK-equivariant and hence ker(θ), ker(θQ) are ΓK-stable. This gives
a natural ΓK-action on

B+
dR = lim←−Ainf [1/p]/(ker(θQ)j)

which extends to BdR.

We now check that this action satisfies the 4 properties. For (1), if ε ∈ Zp(1), we have that

γε = εχ(γ)

for all γ ∈ ΓK by definition of χ, so

γ(t) = γ(log(ε)) = log(γ(ε)) = log(εχ(γ)) = χ(γ) log(ε) = χ(γ)t

since log is ΓK-equivariant and by Lemma 3.2.38.

Part (2) is immediate from (1). For (3), we have a natural map

B+
dR/ ker(θ+

dR) = B+
dR/tB

+
dR
∼= Ainf [1/p]/ ker(θQ) ∼= CK

which is ΓK-equivariant. Hence, for any n ∈ Z, we have that

tnB+
dR/t

n+1B+
dR
∼= CK(n)

which is canonical (since t is uniquely determined up to Z×p -multiple by Lemma 3.2.38).
Taking the direct sum of these shows (3).

We just need to check (4). There is a natural injective homomorphism
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K B+
dR

CK

θ+
dR

which is ΓK-equivariant.

We hence have
K = K

ΓK
↪→ (B+

dR)ΓK ↪→ BΓK
dR .

By (3), we get an injective K-algebra homomorphism⊕
(BΓK

dR ∩ t
nB+

dR)/(BΓK
dR ∩ t

n+1B+
dR) ↪→ BΓK

HT = K

with the last equality following from Tate–Sen Theorem 2.8.14. Since the source has dimen-
sion ≤ 1 over K, we have that dimK B

ΓK
dR ≤ 1, and hence BΓK

dR = K. �

3.3. Properties of de Rham representations.

Definition 3.3.1. A representation V ∈ RepQp(ΓK) is de Rham if it is BdR-admissible, i.e.
dimK DdR = dimQp V where DdR = DBdR

.

We write RepdR
Qp (ΓK) for the category of de Rham representations.

Example 3.3.2.

(1) The representation Qp(n) is de Rham for all n ∈ Z. Indeed, we have that

DdR(Qp(n)) = (Qp(n)⊗BdR)ΓK 3 (1⊗ t−n),

soDdR(Qp(n)) is not trivial. Hence the inequality dimK DdR(Qp(n)) ≤ dimQp(Qp(n)) =
1 has to be an equality.

(2) By a result of Sen, every CK-admissible representation is de Rham. We will not prove
this.

(3) If X is a proper smooth variety over K, the representation

Hn
ét(XK ,Qp)

is a de Rham representation by a theorem of Faltings. We will not prove this.

By the general formalized of B-admissible representations (cf. Theorem 3.1.15)

(1) RepdR
Qp (ΓK) is closed under taking subquotients, tensors, and duals,

(2) DdR commutes with tensors, duals in VecK .

What we want to do next is to upgrade these properties to be compatible with the filtration
coming from BdR.

Definition 3.3.3. Define FilK to be the category of finite-dimensional filtered vector spaces
over K:

(1) the objects are finite-dimensional vector spaces V over K, endowed with {Filn(V )}
such that:
(a) Filn(V ) ⊇ Filn+1(V ),
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(b)
⋂
n∈Z

Filn = 0,

(c)
⋃
n∈Z Fil(V ) = V ,

(2) morphisms are K-linear maps f : V → W such that

f(Filn(V )) ⊆ Filn(W ).

Example 3.3.4. If V ∈ RepQp(ΓK), the vector space

DdR(V ) = (V ⊗BdR)ΓK

has a filtration defined by
Filn(V ) = (V ⊗ tnB+

dR)ΓK .

Hence DdR is a functor into FilK .

Remark 3.3.5. Falting’s de Rham comparison theorem gives a ΓK-equivariant isomorphism:

DdR(Hn
ét(XK),Qp) ∼= HdR(X/K),

identifying the filtration on the left hand side with the Hodge filtration.

Definition 3.3.6. Let V ∈ FilK . Then

gr(V ) =
⊕
n∈Z

Filn(V )/Filn+1(V )

is the associated graded vector space of V .

Example 3.3.7. By Theorem 3.2.39 (3), we have that gr(BdR) = BHT

The idea is to study RepdR
Qp (ΓK) by passing to RepHT

Qp (ΓK) by taking gr(−).

Definition 3.3.8. For V,W ∈ FilK , define the convolution filtration on V ⊗k W by

Filn(V ⊗W ) =
∑
i+j=n

Fili(V )⊗ Filj(W ).

Example 3.3.9. The unit object is FilK is K[0]: the vector space K with

Filn(K[0]) =

{
K if n ≤ 0,

0 otherwise.

Hence for all V ∈ FilK ,
V ⊗K[0] ∼= K[0]⊗ V ∼= V.

Lemma 3.3.10. For V,W ∈ FilK, a bijective morphism f : V → W is an isomorphism if
and only if gr(f) : gr(V )→ gr(W ) is an isomorphism.

Proof. The ‘only if’ implication is obvious. We have to check the ‘if’ implication.

The map gr(f) : gr(V )→ gr(W ) is an isomorphism of graded vector space, so

Filn(V )/Filn+1(V ) ∼= Filn(W )/Filn+1(W ).

Since f is a bijection, we have that

Filn(W ) ↪→ Filn(W )
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for all n ∈ Z. Now,

dimk Filn(V ) =
∑
i≤n

dim Fili(V )/Fili+1(V ) =
∑
i≤n

dim Fili(W )/Fili+1(W ) = dimk FilnW,

the the map Filn(W ) ↪→ Filn(W ) is an isomorphism. �

Example 3.3.11. Define K[1] to be the filtered vector space whose underlying vector space
is K and

FilnK[1] =

{
K n ≤ 1,

0 n > 1.

The map K[0]→ K[1] given by idK is not an isomorphism. Indeed, the map

0 = Fil1K[0]→ Fil1K[1] = K

is cannot be an isomorphism. On graded vector spaces, we have that grK[0] → grK[1] is
the 0 map.

This shows that a bijection on the underlying vector spaces may not be an isomorphism of
graded vector spaces.

Lemma 3.3.12. Let V ∈ FilK. Then there is a basis {vi} for V such that for all n ∈ Z,

{vi} ∩ Filn(V ) is a basis for Filn(V ).

Definition 3.3.13. A basis with the above property is called a filtration oriented basis.

Proof. Since

Filn(V ) = V for sufficiently small n,

Filn(V ) = 0 for sufficiently large n,

we may use induction to extend the basis of Filn(V ) to Filn−1(V ). �

Proposition 3.3.14. For V,W ∈ FilK,

gr(V ⊗W ) ∼= gr(V )⊗ gr(W ).

Proof. Let (vi,k) be a filtration oriented basis for V and (wj,`) for a filtration oriented basis
of W , where i and j denote the largest filtered pieces they belong to.

Let (vi,k) and (wj,`) denote their images under the maps Fili(V ) → gri(V ) and Filj(W ) →
grj(W ). Recall that

Filn(V ⊗W ) =
∑
i+j=n

Fili(V )⊗ Filj(W )

is spanned by
{ui,k ⊗ vj,` | i+ j ≤ n},

so grn(V ⊗W ) is spanned by
{ui,k ⊗ vj,` | i+ j = n}.

The vector space ⊕
i+j=n

gri(V )⊗ grj(W )

is also spanned by {ui,k ⊗ vj,` | i+ j = n}.
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This gives a canonical isomorphism

grn(V ⊗W ) ∼=
⊕
i+j=n

gri(V )⊗ grj(W ),

so taking
⊕
n∈Z

gives the result. �

Definition 3.3.15. For V ∈ FilK , the dual filtration for V ∨ is defined by

Filn(V ∨) = {f ∈ V ∨ | Fil1−n(V ) ⊆ ker(f)}

We use Fil1−n, not Fil−n, to guarantee that K[0]∨ ∼= K[0].

Facts. We have that

(1) (V ∨)∨ ∼= V ,
(2) (V ⊗W )∨ ∼= (V ∨ ⊗W∨).

This finishes the general discussion of filtered representations.

Lemma 3.3.16. Consider V ∈ RepQp(ΓK). Then V is de Rham if and only if V (n) is de
Rham.

Proof. Recall that V (n) ∼= V ⊗Qp(n), so V ∼= V (n)⊗Qp(−n). Since Qp(n) is de Rham for
any n ∈ Z and RepdR

Qp (ΓK) is stable under ⊗ (Theorem 3.1.15), the result follows. �

Proposition 3.3.17. If V ∈ RepΓK
Qp , then V is Hodge–Tate and

gr(DdR(V )) ∼= DHT(V ).

Proof. For any integer n, we have a short exact sequence:

0 tn+1B+
dR tnB+

dR CK(n) 0,

since gr(BdR) ∼= BHT (Theorem 3.2.39 (3)). Tensoring with V and taking ΓK-invariants, we
have a left exact sequence:

0 (V ⊗ tn+1B+
dR)ΓK (V ⊗ tnB+

dR)ΓK (V ⊗ CK(n))ΓK 0.

This shows that
grn(DdR(V )) ↪→ (V ⊗ CK(n))ΓK .

Taking the sum over all n ∈ Z, we have that

gr(DdR(V )) ↪→
⊕

(V ⊗Qp CK(n))ΓK = DHT(V ).

To check this is an isomorphism, we compute the dimensions:

dimkDdR(V ) = dimk grDdR(V ) ≤ dimkDHT(V ) ≤ dimQp(V ).

Since V is de Rham, dimkDdR(V ) = dimQp(V ), so all the above inequalities have to be
equalities. This shows that V is Hodge–Tate and the injection above is an isomorphism. �
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Example 3.3.18. Let V be a p-adic representation of ΓK which fits into the short exact
sequence

0 Qp(`) V Qp(m) 0

where ` 6= m. We claim that V is automatically Hodge–Tate.

Tensoring with Ck(n), we get a short exact sequence

0 Cp(`+ n) V ⊗Qp Cp(n) Cp(m+ n) 0.

Taking ΓK-invariants gives a long exact sequence

0 Cp(`+ n)ΓK (V ⊗Qp Cp(n))ΓK Cp(m+ n)ΓK H1(ΓK ,CK(`+ n)).

By Tate–Sen 2.8.14, we have

(V ⊗Qp CK(n))ΓK =

{
K if n = −`,−m,
0 otherwise.

Hence dimkDHT(V ) =
∑

dimk(V ⊗ CK(n))ΓK = 2 = dimQp V .

Remark 3.3.19. If ` = m = 0, then V may not be Hodge–Tate. There exists a 2-dimensional
representation V over Qp where γ ∈ ΓK acts by(

1 logp(χ(γ))
0 1

)
.

In particular, the category RepHT
Qp (ΓK) is not closed under taking extensions.

Example 3.3.20. Let V be a p-adic representation of ΓK which fits into the short exact
sequence

0 Qp(n) V Qp(m) 0

where n > m. We claim that V is de Rham.

We may assume that m = 0 and n > 0. Note that DdR is left-exact by construction. We
hence have a sequence:

0 DdR(Qp(n))︸ ︷︷ ︸
dim 1

DdR(V ) DdR(Qp)︸ ︷︷ ︸
dim 1

We need check that dimDdR(V ) = 2. This will follow if we show that the map

DdR(V )→ DdR(Qp) ∼= K

is surjective.

There is a long exact sequence:
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0 (Qp(n)⊗B+
dR)ΓK (V ⊗B+

dR)ΓK (Qp ⊗B+
dR)ΓK H1(ΓK ,Qp ⊗B+

dR).

Note that:

(Qp(n)⊗B+
dR)ΓK ∼= (tnB+

dR)ΓK

since ΓK acts on t by χ.

Moreover, (tnB+
dR)ΓK = 0, because we have a commutative diagram

K B+
dR

CK

and t is a uniformizer so the image of K is disjoint from tnB+
dR.

Also,

(Qp ⊗B+
dR)ΓK = (B+

dR)ΓK = K

by Theorem 3.2.39 (4).

Altogether, the long exact sequence above becomes:

0 0 (V ⊗B+
dR)ΓK K H1(ΓK ,Qp ⊗B+

dR)

DdR(V ) = (V ⊗BdR)ΓK K

=

The proof will be complete if we show that H1(ΓK ,Qp ⊗B+
dR) = 0.

We start with the short exact sequence

0 tn+1B+
dR tnB+

dR CK(n) 0.

The long exact sequence in cohomology gives

0 = CK(n)ΓK H1(ΓK , t
n+1B+

dR) H1(ΓK , t
nB+

dR) H1(ΓK ,CK(n)) = 0

since n > 0 and using Tate–Sen 2.8.14.

By induction, this reduces to the case n = 1.

We handle this case directly. We consider α1 ∈ H1(ΓK , B
+
dR) and show that α1 = 0. Using

the isomorphism above, we get sequences (αm), ym such that

(1) αm ∈ H1(ΓK , t
mB+

dR), ym ∈ tmB+
dR,

(2) αm+1(γ) = αm(γ) + γ(ym)− ym

Since t is a uniformizer in B+
dR, y =

∑
ym ∈ B+

dR. Then

α1(y) + γ(y)− y ∈ H1(ΓK , t
mB+

dR) for all m ≥ 1.
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Therefore,
α1(y) + γ(y)− y = 0

for any γ, showing that α1 is a coboundary. Hence α1 = 0, as required.

Example 3.3.21. Let V be a p-adic representation of ΓK which fits into the short exact
sequence

0 Qp V Qp(1) 0.

As we saw about, it is Hodge–Tate. However, if the short exact sequence above does not
split, it is not de Rham. The proof is not easy, so we omit it here.

It is not hard to show that there exists such a non-split extension using Tate’s local duality,
but we do not discuss it here either.

Definition 3.3.22. If V is Hodge–Tate, n ∈ Z is a Hodge–Tate weight of V if

dimk(V ⊗Qp Cp(n))ΓK 6= 0.

Proposition 3.3.23. If V is de Rham, then n is a Hodge–Tate weight of V if and only if
grn(DdR(V )) 6= 0.

Proof. This is clear since by Proposition 3.3.17, there is an isomorphism of graded algebras
gr(DdR(V )) ∼= DHT(V ) so grn(DdR(V )) ∼= (V ⊗Qp Cp(n))ΓK . �

Remark 3.3.24. The Hodge–Tate weights are the positions of jumps in the filtration of
DdR(V ).

Remark 3.3.25. If X is a smooth proper variety over K, then

DdR(Hn
ét(XK ,Qp)) ∼= Hn

dR(X/K).

Proposition 3.3.26. If V is de Rham, there is an isomorphism

DdR(V )⊗K BdR
∼= V ⊗Qp BdR

in FilK.

Proof. We have a natural map

DdR(V )⊗K BdR → (V ⊗Qp BdR)⊗K BdR

∼=→ V ⊗Qp (BdR ⊗K BdR)

→ V ⊗BdR multiplication.

This is a morphism in FilK . To show that it is an isomorphism, we just need to show that
it induced map

gr(DdR(V )⊗K BdR)→ gr(V ⊗Qp BdR)

by Lemma 3.3.10.

We have that

gr(DdR(V )⊗K BdR) ∼= gr(DdR(V ))⊗K BdR by Proposition 3.3.14
∼= BHT ⊗BHT 3.3.17.
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Moreover,

gr(V ⊗Qp BdR) ∼= V ⊗ gr(BdR) by Proposition 3.3.14
∼= V ⊗BHT 3.3.17.

We hence get an induced map

DHT(V )⊗K BHT → V ⊗K BHT,

which is an isomorphism because V is Hodge–Tate (by Proposition 3.3.17). �

Proposition 3.3.27. The functor

DdR : RepdR
Qp (ΓK)→ FilK

is faithful and exact.

Proof. Since DdR is faithful with values in the category VecK and the forgetful functor
FilK → VecK is faithful, the above functor is also faithful.

To show exactness, consider a short exact sequence of de Rham representations:

0 U V W 0.

For any n ∈ Z, consider the left exact sequence

0 Filn(DdR(U)) Filn(DdR(V )) Filn(DdR(W )).

We want to show that this sequence is also right exact.

Since U, V,W are de Rham, they are also Hodge–Tate (Proposition 3.3.17). We get an exact
sequence

0 DHT(U) DHT(V ) DHT(W ) 0

of graded vector spaces (by the general formalism, cf. Theorem 3.1.15).

By Proposition 3.3.17, we get a short exact sequence:

0 grn(DdR(U)) grn(DdR(V )) grn(DdR(W )) 0.

Finally,

dimK Filn(V ) =
∑
i≥n

dimK gri(DdR(V ))

=
∑
i≥n

dimK gri(DdR(U)) + dimK gri(DdR(W ))

= dimK Filn(DdR(U)) + dimK Filn(DdR(W )).

Hence the left exact sequence
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0 DHT(U) DHT(V ) DHT(W ) 0

must be exact. �

Corollary 3.3.28. If V is a de Rham representation, every W subquotient of V is de Rham
and DdR(W ) is naturally a subquotient of DdR(V ).

Proof. Since W is de Rham by Theorem 3.1.15, we deduce the assertion from Proposi-
tion 3.3.27. �

Proposition 3.3.29. For V,W ∈ RepdR
Qp (ΓK), V ⊗Qp W ∈ RepdR

Qp (ΓK) with a natural iso-
morphism of filtered vector spaces

DdR(V )⊗K DdR(W ) ∼= DdR(V ⊗Qp W ).

Proof. By Theorem 3.1.15, this assertion is true in the category of vector spaces. By con-
struction, we can check that the natural map

DdR(V )⊗K DdR(W )→ DdR(V ⊗Qp W )

is a morphism in FilK . To check it is an isomorphism, we pass to the graded vector spaces;
cf. Lemma 3.3.10. We want to show that

gr(DdR(V )⊗K DdR(W )) ∼= gr(DdR(V ⊗Qp W )).

We have that

gr(DdR(V )⊗K DdR(W )) ∼= gr(DdR(V ))⊗ gr(DdR(W )) ∼= DHT(V )⊗DHT(W )

by Propositions 3.3.14 and 3.3.17. Similarly,

gr(DdR(V ⊗Qp W )) ∼= DHT(V ⊗Qp W ),

and we know that DHT(V )⊗DHT(W ) ∼= DHT(V ⊗Qp W ) by Theorem 3.1.15. �

Proposition 3.3.30. If V is de Rham, then
∧n V , Symn V are both de Rham and

n∧
(DdR(V )) ∼= DdR

(
n∧
V

)
Symn(DdR(V )) ∼= DdR (Symn V )

in FilK.

Proof. Once again, by Theorem 3.1.15, this assertion is true in the category of vector space.
Since ⊗ and quotients commute with DdR in Filk by the above results. �

Proposition 3.3.31. If V is de Rham, then V ∨ is de Rham with a natural perfect pairing

DdR(V )⊗DdR(V ∨) ∼= DdR(V ⊗ V ∨)→ DdR(Qp) ∼= K[0]

in FilK.
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Proof. Once again, by Theorem 3.1.15, we get the above perfect pairing in the category of
vector spaces. By the above results, each map is a morphism in FilK , and we can check it is
an isomorphism by passing to associated gradeds (Lemma 3.3.10). We have that

gr(DdR(V )∨) ∼= DHT(V ∨)

∼= DHT(V )∨

∼= gr(DdR(V ))∨

which completes the proof. �

We have hence showed that all the results of Theorem 3.1.15 hold for B = dR with DdR

valued in the category of filtered vector spaces.

We discuss some further properties of de Rham representations.

Proposition 3.3.32. Let V ∈ RepQp(ΓK) and K ′/K be a finite extension so that ΓK′ ⊆ ΓK.
Then:

(1) DdR,K ⊗K K ′ ∼= DdR,K′(V ) in FilK′,
(2) V is de Rham if and only if V is de Rham as a representation of ΓK′.

Proof. We only have to check the first assertion. Note that BdR only depends on CK and
CK
∼= CK′ , we have a natural map:

(V ⊗BdR)ΓK = DdR,K ⊗K K ′ → DdR,K′(V ) = (V⊗BdR
)ΓK′

in FilK . We need to check that

Filn(DdR,K(V ))⊗K K ′
∼=→ Filn(DdR,K′(V )).

By definition of the filtration:

Filn(DdR,K(V ))⊗K K ′ = (V ⊗ tnB+
dR)ΓK ⊗K K ′

Filn(DdR,K′(V )) = (V ⊗ tnB+
dR)ΓK′

By passing to the Galois closure of K ′, we may assume that K ′/K is Galois. Then:

Filn(DdR,K(V )) = Filn(DdR,K′(V ))Gal(K′/K).

We are hence done by Galois descent. �

Remark 3.3.33. We only prove this when K ′ is a finite extension of K. In fact, this holds
for any complete discretely valued extension K ′/K. The main example to keep in mind is

K ′ = K̂un.

Corollary 3.3.34. If V is 1-dimensional, then V is de Rham if and only if V is Hodge–Tate.

Proposition 3.3.35. The functor DdR is not full.

Proof. Consider any potentially trivial representation V , i.e. there exists a finite extension
K ′/K such that V is trivial as a representation of ΓK′ . Then V is de Rham by Proposi-
tion 3.3.32.
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However,

DdR(V )K′ ∼= DdR,K′(V ) ∼= K ′[0]

in FilK′ . Hence DdR(V ) ∼= K[0], because at filtration level n the above isomorphisms give:

FilnDdR(V )K′ ∼= FilnDdR,K′(V ) ∼=

{
K ′ if n < 0,

0 if n ≥ 0.

Hence the functor is not full. �

We end the discussion of de Rham representations by discussing the Fontaine–Mazur con-
jecture.

By de Rham comparison theorem, for any proper smooth variety X over K, the representa-
tion Hn

ét(XK ,Qp) is de Rham.

Question. Does every de Rham representation come from geometry? I.e. for any de Rham
representation V , do there exist integers n,m and a proper smooth variety X over X such
that V is a subquotient of Hn

ét(XK ,Qp)(m)?

The answer is no in general. However, for a global number field, we have the following
conjectural criterion for representations to be geometric.

Conjecture 3.3.36 (Fontaine–Mazur). Let E be a number field and OE be the ring of
integers of E. Consider a finite-dimensional representation V of Gal(Q, E) over Qp such
that:

(1) V is unramified (i.e. IEp acts trivially) at all but finitely many primes of OE
(2) for any prime p over p in OE, the representation V |Gal(Qp/Ep) is de Rham.

Then there exists a proper smooth variety X over E such that V is a subquotient of Hn
ét(XQ,Qp)(m).

Remark 3.3.37. Very little is known about this conjecture. We know:

• when dimV = 1, it is true by class field theory,
• when dimV = 2, it is known in many cases by the work of Kisin.

3.4. Crystalline representations. The goal is to study the period ring Bcris and crystalline
representations. So far, the only result we assumed was the Tate–Sen Theorem 2.8.14 (and
one smaller result about the new topology on B+

dR). In this section, we will starting assuming
more results without proof.

3.4.1. Crystalline period ring. Recall the following notation:

• F = C[
K ,

• Ainf = W (OF ),
• p[ ∈ OF such that (p[)# = p,
• ξ = [p[]− p ∈ Ainf , a generator of ker(θ) where θ : Ainf � OCK ,
• k is the residue field of OK ,
• W (k) is the ring of Witt vectors over k,
• K0 = Frac(W (k)).
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Definition 3.4.1. Define

Acris =

∑
n≥0

an
ξn

n!
∈ B+

dR | an ∈ Ainf , an → 0

 ⊆ B+
dR

B+
cris = Acris[1/p].

Remark 3.4.2.

(1) We will always work on the new topology on B+
dR.

(2) The definition is different from the original one by Fontaine.

Proposition 3.4.3. The element t = log([ε]) belongs to Acris and tp−1 ∈ pAcris.

Proof. Recall that t = log([ε]) where ε ∈ OF satisfies ε# = 1, ε 6= 1. Hence ε = (ζpn) for pnth
roots of unity ζpn . We checked that [ε]− 1 ∈ ker(θ), so [ε]− 1 ∈ ξAinf , i.e. [ε]− 1 = ζ · c for
some c ∈ Ainf .

We want to show that t ∈ Acris. We have that

t = log([ε])

=
∑
n≥1

(−1)n+1 ([ε]− 1)n

n

=
∑
n≥1

(−1)n+1(n− 1)!cn
ξn

n!

∈ Acris

since (n− 1)!cn → 0 as n→∞.

We now want to show that tp−1 ∈ pAcris. Consider the truncation

ť =

p∑
n=1

(−1)n+1 ([ξ]− 1)n

n
.

Note that (n− 1)! is divisible by p for all n > p, and hence

t = ť+ p · a

for some a ∈ Acris. We only need to check that

(ť)p−1 ∈ pAcris.

For 1 ≤ n ≤ p− 1, (−1)n+1 ([ε]− 1)n

n
is divisible by [ε]− 1 in Acris. For n = p, we have that:

(−1)p+1 ([ε]− 1)p

p
= (−1)p+1 ([ε]− 1)p−1

p
· ([ε]− 1).

Hence

ť = ([ε]− 1)

(
a+ (−1)p−1 ([ε]− 1)p−1

p

)
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for some a. We only need to show that:

([ε]− 1)p−1 ∈ pAcris.

We know that [ε]− 1 = [ε− 1] in pAinf . It is hence enough to show that

[(ε− 1)p−1] ∈ pAcris.

Recall that v[(ε− 1) = p
p−1

. Hence

v[((ε− 1)p−1) = p = pv[(p[) = v[((p[)p),

so
([ε− 1]p−1) is divisible by [(p[)p] = (ξ + p)p.

Finally,

ξp = p(p− 1)!
ξp

p!
.

Since we know that ξp

p!
∈ Acris, this shows that ξp ∈ pAcris. �

Corollary 3.4.4. We have that B+
cris[1/t]

∼= Acris[1/t].

Proof. Since tp−1 ∈ pAcris, p is a unit in Acris[1/t]. Hence B+
cris[1/t] = Acris[1/p, 1/t] =

Acris[1/t]. �

Definition 3.4.5. The crystalline period ring Bcris is defined as B+
cris[1/t] = Acris[1/t].

Remark 3.4.6. Where is this construction coming from? The motivation for Bcris is
Grothendieck’s mysterious functor conjecture. He conjectured there is a functor D such
that

D(Hn
ét(XK ,Qp)) = Hn

cris(X/W (k))

where X is proper and smooth with good reduction.

The idea is to define D = DBcris
for a period ring which is a subring of BdR with a natural

Frobenius action in line with Frobenius action on crystalline cohomology.

They key observation is that we can get such a ring by adjoining to Ainf divided powers of
ξ, i.e. elements ξ

n!
. These are the elements we considered in the definition of Bcris.

The class continued remotely from here on, but I stopped typing the notes.
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