(HILBERT) MODULAR FORMS

Modular form of level N, weight 1: holomorphic function $f: \mathcal{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\} \to \mathbb{C}$ such that

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)f(z)$$
 for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ with $c \equiv 0 \mod N$.

Let F be a totally real degree n extension of \mathbb{Q} and $\sigma_1, \ldots, \sigma_n \colon F \hookrightarrow \mathbb{R}$ be the real embeddings. For $a \in F$, write $a_j = \sigma_j(a) \in \mathbb{R}$.

Hilbert modular form of level N, weight 1: holomorphic function $f: \mathcal{H}^n \to \mathbb{C}$ such that

$$f\left(\frac{a_1z_1+b_1}{c_1z_1+d_1},\dots,\frac{a_nz_n+b_n}{c_nz_n+d_n}\right) = \prod_{j=1}^n (c_jz_j+d_j)f(z_1,\dots,z_n)$$
for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F)$ with $c \equiv 0 \mod N$.

Modular curve: n = 1.

$$f \in H^0(X_{\mathbb{Q}}, \omega)$$

$$u_f^{\vee}$$

$$u_f^{\vee}$$

$$H^1(X_{\mathbb{Q}}, \omega)$$

THEORETICAL EVIDENCE

Theorem. We have that

$$\frac{\omega_f^{\sigma_1,\dots,\sigma_n}}{\prod\limits_{j=1}^n \log(u_{f,j})} \in H^n(X_{\mathbb{Q}},\omega).$$

Hence the action of top degree elements $u_{f,1}^{\vee} \wedge \cdots \wedge u_{f,n}^{\vee} \in \bigwedge^{n} U_{f}^{\vee} \otimes \mathbb{Q}$ is rational:

$$H^{0}(X_{\mathbb{C}}, \omega) \xrightarrow{u_{1}^{\vee} \wedge \cdots \wedge u_{f,n}^{\vee}} H^{n}(X_{\mathbb{C}}, \omega)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$H^{0}(X_{\mathbb{Q}}, \omega) \xrightarrow{u_{f,1}^{\vee} \wedge \cdots \wedge u_{f,n}^{\vee}} H^{n}(X_{\mathbb{Q}}, \omega)$$

Corollary. The conjecture is true for modular curves (n = 1).

For the sake of this poster, we have assumed that $f \in H^0(X_{\mathbb{Q}}, \omega)$. In general, there is a finite extension E/\mathbb{Q} such that $f \in H^0(X_{\mathbb{Q}}, \omega) \otimes_{\mathbb{Q}} E$. In that case, the analogous result is conditional on Stark's conjecture.

Modular forms as sections of line bundles

A modular form f of weight 1 may be interpreted as a section of a line bundle ω over the modular curve $X_{\mathbb{C}} := \Gamma_0(N) \backslash \mathcal{H}$:

OF HILBERT MODULAR VARIETIES

$$\gamma(z,\tau) = \left(\frac{az+b}{cz+d}, (cz+d)\tau\right) \qquad \omega := \Gamma_0(N) \backslash \mathcal{H} \times \mathbb{C} \qquad (z,f(z))$$

$$\uparrow \qquad \qquad \uparrow$$

$$\gamma z = \frac{az+b}{cz+d} \qquad X_{\mathbb{C}} := \Gamma_0(N) \backslash \mathcal{H} \qquad z$$

We write $f \in H^0(X_{\mathbb{C}}, \omega)$. Similarly, a Hilbert modular form is a section $f \in H^0(X_{\mathbb{C}}, \omega)$ of a line bundle ω over a Hilbert modular variety $X_{\mathbb{C}}$.

The Hilbert modular variety $X_{\mathbb{C}}$ has a model $X_{\mathbb{Q}}$ over \mathbb{Q} and the line bundle ω is defined over \mathbb{Q} . We assume $f \in H^0(X_{\mathbb{Q}}, \omega)$.

THE MAIN CONJECTURE

Partial complex conjugation. Given a Hilbert modular form f, we may consider the differential form

$$\omega_f^{\sigma_j} = f(z_1, \dots, -\overline{z_j}, \dots, z_n) y_i^{-1}(dz_j \wedge d\overline{z_j}) \in H^1(X_{\mathbb{C}}, \omega).$$

More generally, there are differential forms

$$\omega_f^J \in H^{|J|}(X_{\mathbb{C}}, \omega) \quad \text{for } J \subseteq \{\sigma_1, \dots, \sigma_n\}.$$

Question. Does a multiple of $\omega_f^J \in H^{|J|}(X_{\mathbb{C}}, \omega)$ belong to the rational structure $H^{|J|}(X_{\mathbb{Q}}, \omega)$? If so, what multiple?

Conjecture. Recall that there is a decomposition $U_f \cong \bigoplus_{j=1}^n U_{f,j}$. For any $u_{f,j} \in U_{f,j}$, $j \in J$, we have that:

$$\frac{\omega_f^J}{\prod\limits_{j\in I}\log(u_{f,j})}\in H^{|J|}(X_{\mathbb{Q}},\omega)\subseteq H^{|J|}(X_{\mathbb{C}},\omega).$$

In particular, the exterior algebra $\bigwedge^* U_f^{\vee}$ acts on the space $H^*(X_{\mathbb{Q}}, \omega)$.

RELATIONSHIP TO OTHER CONJECTURES

Cohomology theory	Over C	Over $\mathbb{Z}/p^n\mathbb{Z}$	Over \mathbb{Q}_p
Betti/étale cohomology	Prasanna-Venkatesh	Venkatesh	Venkatesh
	[PV16]	[Ven16]	[Ven16]
Coherent cohomology			
$Modular\ curves$	Horawa	Harris-Venkatesh	???
	[Hor20]	[HV17]	
$Hilbert\ modular\ varieties$	Horawa	Horawa	???
	[Hor20]	[Hor20]	

REFERENCES

[Hor20] Aleksander Horawa, Motivic action on coherent cohomology of Hilbert modular varieties, 2020, arXiv:arXiv:2009.14400.

[HV17] Michael Harris and Akshay Venkatesh, Derived Hecke algebra for weight one forms, 2017, arXiv: arXiv:1706.03417.

[PV16] Kartik Prasanna and Akshay Venkatesh, Automorphic cohomology, motivic cohomology, and the adjoint L-function, 2016, arXiv:arXiv:1609.06370.

[Ven16] Akshay Venkatesh, Derived hecke algebra and cohomology of arithmetic groups, 2016, arXiv:arXiv: 1608.07234.

GALOIS REPRESENTATIONS AND MOTIVIC COHOMOLOGY

According to the Langlands program, a Hilbert modular form f of weight 1 corresponds to an (odd) 2-dimensional **Artin representation**:

$$\varrho \colon \operatorname{Gal}(L/F) \to \operatorname{GL}(V),$$

where L/F is a Galois extension and V is a 2-dimensional vector space over \mathbb{Q} .

The space $\operatorname{Ad}^0 V = \{\varphi \colon V \to V \mid \operatorname{trace}(\varphi) = 0\}$ is the **trace 0 adjoint** representation of $\operatorname{Gal}(L/F)$ via the conjugation action on $\operatorname{End}(V)$.

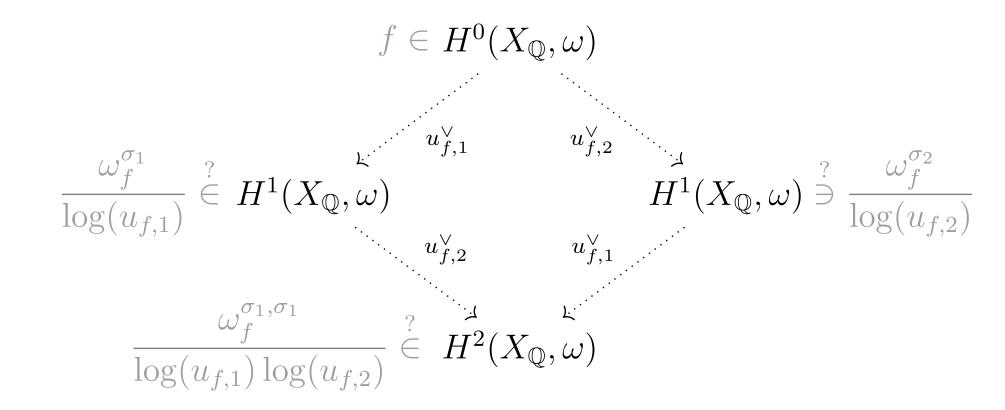
Motivic cohomology group:

$$U_f := U_L[\operatorname{Ad}^0 V] = \operatorname{Hom}_{\operatorname{Gal}(L/F)}(\operatorname{Ad}^0 V, U_L \otimes \mathbb{Q}).$$

This is sometimes known as a Stark unit group.

Proposition. The vector space U_f has dimension n and naturally decomposes into 1-dimensional subspaces $U_f \cong \bigoplus_{j=1}^n U_{f,j}$.

HILBERT MODULAR SURFACE: n=2.



NUMERICAL EVIDENCE

When n=2, it remains to verify that

$$\frac{\omega_f^{\sigma_i}}{\log(u_{f,j})} \stackrel{?}{\in} H^1(X_{\mathbb{Q}}, \omega) \subseteq H^1(X_{\mathbb{C}}, \omega).$$

Idea. Consider the restriction to a modular curve $\iota: Y_{\mathbb{Q}} \hookrightarrow X_{\mathbb{Q}}$. It is then enough to check that:

$$\int_{Y(\mathbb{C})} f(-\overline{z}, z) y^{-1} dz \wedge d\overline{z} \stackrel{?}{=} c \cdot \log(u_{f, \sigma_1}) \quad \text{for } c \in \mathbb{Q}.$$

We checked this numerically (up to 15 digits) in some cases:

F	level N	constant c	time taken
$\mathbb{Q}(\sqrt{5})$	23	2	00:09:34
$\mathbb{Q}(\sqrt{5})$	31	-4	00:13:36
$\mathbb{Q}(\sqrt{13})$	23	8	00:10:19
$\mathbb{Q}(\sqrt{13})$	31	-2	00:49:47