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Abstract. This review collates a wide variety of free boundary problems which are characterized
by the uniform proximity of the free boundary to a prescribed surface. Such situations can often
be approximated by mixed boundary value problems in which the boundary data switches across
a “codimension-two” free boundary, namely, the edge of the region obtained by projecting the free
boundary normally onto the prescribed surface. As in the parent problem, the codimension-two
free boundary needs to be determined as well as the solution of the relevant field equations, but no
systematic methodology has yet been proposed for nonlinear problems of this type. After presenting
some examples to illustrate the surprising behavior that can sometimes occur, we discuss the relevance
of traditional ideas from the theories of moving boundary problems, singular integral equations,
variational inequalities, and stability. Finally, we point out the ways in which further refinement of
these techniques is needed if a coherent theory is to emerge.
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1. Introduction. Several books and monographs [14, 20, 27, 54, 69, 70], pro-
ceedings [6, 10, 16, 22, 32, 51, 58, 61, 79], and bibliographies [17, 77] have appeared
during the past thirty years on the mathematical theory of free boundary problems.
Such problems are defined as differential equations that must be solved in domains of
dimension n, some of whose boundaries, of dimension (n− 1), are unknown a priori.
The inherent nonlinearity of these problems has prompted theoretical investigations
into questions of existence, uniqueness, regularity of the boundary, numerical algo-
rithms, stability, and asymptotic behavior. Certain mathematical techniques have
emerged as widely applicable, including the use of weak solutions and scaling argu-
ments. In cases where there is enough structure for weak or variational formulations
to be found, great unification has been achieved both analytically and numerically.
At the other extreme, when very irregular or unstable free boundary morphology can
occur, much theoretical work remains to be done and justifiable numerical algorithms
are only in their infancy.

Despite all this mathematical activity, there remains a widely-occurring, but little-
studied, subclass of free boundary problems in which the free boundary has dimension
(n − 2) and for which only two tentative attempts at unification have been made
[39, 60]. Nonetheless, the number of case studies of this type that have appeared in
the literature is now so large that it is appropriate to write a review with the aim of
stimulating further mathematical study of these important problems. They form a
subset of what is now known as “codimension-two free boundary problems,” although
this term is also commonly applied to models of, say, a curve in R3, as might be the
case for vortex dynamics in a fluid or superconductor. In these latter cases, the motion
of the curve is often governed, to lowest order, by a purely local partial differential

∗Received by the editors January 25, 1995; accepted for publication (in revised form) July 20,
1996.

http://www.siam.org/journals/sirev/39-2/28062.html
†OCIAM, Mathematical Institute, 24–29 St Giles’, Oxford OX1 3LB, United Kingdom (howison@

maths.ox.ac.uk, ejam@maths.ox.ac.uk).
‡Gas Research Centre, British Gas plc, Ashby Road, Loughborough LE11 3QU, United Kingdom.

This author acknowledges the support of SERC.

221

D
ow

nl
oa

de
d 

01
/0

8/
15

 to
 1

29
.6

7.
11

9.
86

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



222 S. D. HOWISON, J. D. MORGAN, AND J. R. OCKENDON

Free Points

Saturated Medium

DRY REGION

FIG. 1. The shallow dam: (a) the codimension-one problem; (b) the codimension-two problem P1.

equation, and hence the model loses the distinctive global attribute of free boundary
problems.

The way in which our class of codimension-two problems arises is exemplified by
referring to the well-known dam problem [57, 64]. The two-dimensional, codimension-
one version of this problem is shown in Figure 1(a) with a dam of infinite extent (as
may be a model for a sandbank). It involves percolation in a saturated region where
liquid flows with dimensionless velocity −∇Φ, where Φ = p + y and the pressure p
is Laplacian. This region is separated from a dry region by a codimension-one free
boundary at which two free boundary conditions are imposed, namely, a kinematic
condition and the condition that p be atmospheric (zero). Here, and in other models,
we denote the normal free boundary speed by vn. Now suppose, as in [1], that ε � 1 so
that the top of the dam, y = εf(x), is nearly flat; the boundary conditions can then be
linearized onto the x-axis. By scaling Φ = εφ (we shall use lowercase letters for all our
codimension-two problems) and with the codimension-one free boundary represented
by y = ε(f(x) + h(x, t)), it is plausible, but almost impossible to prove, that the
leading order model1 is that given in Figure 1(b). Thus we have a mixed boundary

1Formally, φ and h should be expanded in asymptotic expansions in powers of ε, but here, and
in other cases, it is always the leading-order term which is of interest, and so for ease of reading we
shall omit this step.
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Free

point

Singularities

Boundary condition IBoundary condition I

FIELD EQUATION I

Contact region: Contact region:

Boundary conditions II

Non-contact region:

REGION II

Free boundary

REGION I

Prescribed boundary

point

Free

FIG. 2. (a) The geometry needed for a codimension-two free boundary problem; (b) the resulting
mixed boundary value problem.

value problem in which the only geometrical unknowns are the “free points” which
mark the points at which the free boundary meets the top of the dam. We shall use
the term “free points” throughout this paper and “free curves” in a three-dimensional
problem.

We remark that there is a “complement” of our class of codimension-two problems
in which a codimension-one free boundary lies near a known boundary, but the field
equations only need to be solved in the thin intervening region, as in the flow of a
thin film on a rigid base. In this case, a local partial differential equation can also
often be derived to describe the approximate position of the free boundary.

More familiar codimension-two configurations occur in solid mechanics where the
codimension-two free boundary could be a crack tip or the perimeter of a Hertzian
contact region; these situations often pose challenging modelling problems and we
shall mention them again later.

With this motivation we shall discuss a general scenario for our codimension-two
problems as limiting cases of conventional free boundary problems when, as in Fig-
ure 2(a), the free boundary is separated from a known boundary by a thin region
(labelled Region II) in which the solution of the relevant field equations is either un-
necessary, as in the case of one-phase free boundary problems, or easy to approximate.
In either case we expect that, except near the free points, we can linearize the free
boundary conditions onto the prescribed boundary; if this boundary is nearly straight,
we can linearize it onto a straight line, as in Figure 2(b). This leaves the free points as
the only parts of the free boundary to be determined. In this configuration we call the
region of the prescribed boundary between the free points the “noncontact” region
because there is no contact between this boundary and Region I; the complement of
this region on the prescribed boundary is termed the “contact region.” As indicated
in Figure 2(b), there will be different boundary conditions on the two regions and, in
general, one more condition on the noncontact region because the codimension-one
free boundary is unknown.
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224 S. D. HOWISON, J. D. MORGAN, AND J. R. OCKENDON

The codimension-two problems we shall be addressing are characterized by four
pieces of information: the field equations, the boundary conditions on the contact
and noncontact regions, and some specification of the behavior of the solution near
the free points. It soon becomes apparent that it is this latter piece of information
that is the most difficult to prescribe. One reason for this is that, if we wish to think
of our scenario in terms of matched asymptotic expansions, this singular behavior is
determined by matching with the far field of an “inner” problem that is inevitably a
codimension-one free boundary problem, albeit on an infinite domain. Such a matched
expansion analysis can in fact be carried out for the problem in Figure 1 (see [1] and
the discussion at the end of section 2).

More generally, we shall see that constraints on the severity of the singularities
at the free points can often be obtained by functional analysis or index arguments
independently of the availability of matched asymptotic expansions. Nonetheless,
there remain many cases where there is no alternative to physical intuition if the
singularity is to be identified plausibly.

In order to illustrate the ubiquity of our class of codimension-two problems, in
Table 1 we list twelve examples that have appeared in the literature. They are clas-
sified in the format of Figure 2(b) where, for simplicity, we have mostly specialized
to cases where the field equation is to be solved in a half-plane. To produce a man-
ageable list we have deliberately restricted ourselves to two-dimensional problems for
either Laplace’s equation or the biharmonic equation. Where possible, the conjec-
tured asymptotic behavior of the field variable (almost always called φ) at the free
points is characterized in terms of the local radial distance from the free point, and
similarly in the final column for the behavior at infinity. We also cite some inequal-
ities that have been suggested, often on physical grounds, to supplement the mixed
boundary conditions; in exceptional cases, it may be necessary for technical reasons
to relax these inequalities to allow equality. In some cases they may not be essential
for the mathematical formulation of the model, but they can be shown to restrict the
possible singularities at the free points, and indeed sometimes to fix them. However,
a full mathematical analysis is not available in the majority of the twelve cases.

In addition to this list we can, as mentioned earlier, cite more general elastic
contact problems and elastic crack propagation as perhaps the prototypes of our
class of codimension-two free boundary problems. Assuming the displacement in the
contact region or at the crack face is sufficiently small, the perimeter of the contact
region is the only geometric unknown. However, each of these problems has such a vast
literature that we shall not present a survey here except to state that whereas contact
problems can be formulated as variational inequalities in the absence of friction [20,
23], the vexed question of the elastic/plastic/cohesive behavior of solids near crack tips
has stood in the way of a unifying mathematical theory for crack propagation [25, 46].
We shall make some further comments about this theory at the end of section 3.

We could have also cited other problems whose study from their codimension-two
point of view is still in its infancy. Examples include the rise of a bubble under a
nearly horizontal inclined plane [52, 55], a model for toner deposition in photocopiers
(see [26, p. 156]), and the evolution of thin fingers in the Muskat problem [55].

The attempt to unify the different models in Table 1 immediately raises the
following questions:

1. In what precise sense are these models limits of traditional codimension-one
free boundary problems?

2. What can be said about existence, uniqueness, and regularity of solutions to
the models as stated? In particular, is any of the information redundant?
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A CLASS OF CODIMENSION-TWO FREE BOUNDARY PROBLEMS 225

TABLE 1
Codimension-two free boundary problems. Suitable initial conditions are needed in problems

P1, P2, P4, P5, P7, and P11.

Physical Field Boundary conditions on Free ∞
problem equation Contact Noncontact point

P1 Percolation in a ∇2φ = 0 φ = f φy = −ht rα(ḋ) 1/r
[1] sandbanka φy < 0 φ = f + h, h < 0
P2 Water entry ∇2φ = 0 φy = −1 φ = 0, φy = ht r1/2 1/r
[42, 48] φt < 0 h < f(x) − t

P3 Patch cavitationb ∇2φ = 0 φy = 0 φx = f, φy = hx r5/2, 1/r
[9, 41] φx < f h > 0 r1/2

P4 Surface tension ∇4φ = 0 φyy = 0 φx + ht = 0 r1/2 r
[35] driven sintering φ = 0 3φxxy + φyyy = 0

in slow flowc σ22 > 0 φxx = φyy , ht < 0
P5 Hele–Shaw flow ∇2φ = 0 φy = 0 φy = −ht r1/2 see
[67] φ < 0 φ = 0, h > 0 text
P6 Steady ∇2φ = 0 φ = 0 hφn = φ r3/2

[2] electropainting φn < j0 φn = j0, h > 0 n/a
P7 Dislocations on a ∇2φ = 0 φy = 0 U = 1 + φx r3/2 1/r
[31] single slip plane φx < 0 φyt = −[Uφy ]x

ht = −Uhx, h > 0
P8 Thermistor with ∇2φ = 0 ψy = 0 ψ = 1 + φ2/2 r1/2 n/a
[12] discontinuous ∇2ψ = 0 φ = 0 ψy = 0 (for

conductivity ψ < 1 h = φ/φy φ)
φy > 0 φ > 0, h > 0

P9 Flow over a down- ∇2φ = 0 φy = 0 (8φx + h2)x = 0 r3/2 log r
[63] ward step (x = 0) xφx < 0 φy = hx, h > 0
P10
[20]

Elastic contact
(the displacement

∂σij

∂xj
= 0 σ12 = 0

u2 = f
σ12 = 0, σ22 = 0
h = u2

r1/2 n/a

is (u1, u2)) σ22 > 0 u2 > f(x1)
P11 Slender viscous ∇4φ = 0 φ = 0 u = x+ φy , φ = 0 r3/2 1/r
[78] inclusionc φyy = 0 φyy + 4(hux)x = 0

σ22 > 0 ht = −(uh)x, h > 0
P12
[5]

Elasto-
hydrodynamic

∂σij

∂xj
= 0 (h3px)x = hx

σ22 = p, σ12 = 0
σ12 = 0, σ22 = 0
h = u2 + f

r3/2 1/r

lubrication h > 0, p > 0 h > 0
aIn the steady case α = 3/2 and φ ∼ O(log r) at infinity.
bThe singularities at the leading and trailing edges are shown.
cThe normal component of the traction in the contact region is denoted by σ22.

3. What methodology is available to solve these problems explicitly?
4. Is there a possibility of generalizing the models either to make their analysis

easier or to make them easier to solve numerically?
5. If solutions exist, are they stable to perturbations in the direction parallel to

the free curve?
There is one situation where the answer to the first question can be given at once,
namely, when the progenital codimension-one problem has an explicit analytical so-
lution. Unfortunately, such solutions are known only for P4, P5, and P7, and the
details of their relevant limits are given in [55].

With the above questions in mind, the remainder of this paper comprises a re-
view of the kind of behavior and difficulties that can be anticipated whenever these
codimension-two free boundary problems are encountered. In section 2 we begin by
deriving some examples that we will subsequently need for illustrative purposes. A
primary aim is to show that there are many mathematical tools available for the ex-
plicit solution of our codimension-two problems. As we shall see in section 3, this is
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226 S. D. HOWISON, J. D. MORGAN, AND J. R. OCKENDON

because problems such as that in Figure 2(b) are much more likely to possess explicit
solutions than are their parent codimension-one problems; this is a consequence of the
well-developed theory of mixed boundary value problems [28, 75]. Another interesting
contrast comes when we try to consider codimension-two problem formulations that
are more general than the mixed boundary value problems of Table 1. We recall that
weak formulations, as developed for the theory of conservation laws, have played a key
role in the theory of codimension-one problems, the theory of shock waves being the
standard example. No such theory has yet been proposed for these codimension-two
problems any more than has been suggested for other codimension-two free singular-
ities such as vortices in an inviscid fluid [71]. However, the unification brought about
by variational inequalities in codimension-one problems does, as we shall see, some-
times carry over to codimension-two cases with or without the need for preliminary
smoothing transformations, and this will form the subject of section 4, where we will
also discuss the importance of this reformulation for obtaining numerical solutions. As
mentioned earlier, weak and variational formulations of codimension-one free bound-
ary problems have been a great boon to numerical analysts, as have front tracking
and other fixed domain formulations [14]; more recent approaches include the level set
method of [73]. However, except in situations where variational inequalities can be uti-
lized, there is as yet no catalogue of algorithms for our class of free boundary problems.

Finally, in section 5, we will discuss the relatively unexplored possibilities of
applying perturbation theory to codimension-two problems. Even linear stability
theory poses serious challenges at the formal level, and the exploitation of small
parameters in the initial or fixed boundary conditions can lead to unexpected new
models. This is an important issue since, as we shall see, there is clear evidence for the
possible irregular evolution of codimension-two free boundaries. Also, the interesting
question of the relationship between the stability of our codimension-two problems
and their codimension-one progenitors will be mentioned.

2. Derivation of some codimension-two problems. This section contains
brief derivations of five members of our class of codimension-two models starting from
their codimension-one counterparts. Apart from the Hele–Shaw problem, they all de-
scribe commonly occurring practical situations and we will use them, and the shallow
dam problem described in the introduction, to illustrate the ideas put forward in later
sections. In each case, the question of the local behavior near the free points will be
discussed from a physical viewpoint only, with the mathematical implications left to
section 3. The first four are “one-phase” problems, beginning with a model for water
entry, which produces one of the simplest codimension-two models. The next exam-
ple, of a type of cavitation, leads to a more complicated model and demonstrates that
there may be different singularities at different free points. Then the small-time sinter-
ing of viscous cylinders is introduced as a problem in which an exact codimension-one
solution is available but which is not governed by Laplace’s equation. We also mention
Hele–Shaw flow as another free boundary problem where precise comparison can be
made between the codimension-two problem and its codimension-one parent. The last
example, of electropainting, is introduced to illustrate a situation where the geometry
is not a half-space and the underlying problem has two phases.

2.1. Water entry of a blunt body. In the simplest water entry problems, a
uniformly smooth body Y = f(εX), where f is even, moves with unit speed in the
negative Y -direction into water, which is initially at rest in Y < 0. The effects of
gravity, viscosity, and surface tension are neglected. As shown in [42], for ε � 1 the
codimension-one configuration is modelled as in Figure 3(a): the free surface “turns
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A CLASS OF CODIMENSION-TWO FREE BOUNDARY PROBLEMS 227

JetInner Region

a

b

FIG. 3. The ship impact model: (a) codimension-one problem; (b) codimension-two problem P2.

over” and forms two jets along the impacting body and these “turn-over” points are
found to lie within O(ε) of (±d(t)/ε, f(±d(t)) − t). The model consists of inviscid,
irrotational flow with velocity potential Φ(X,Y, t) and with Bernoulli and kinematic
conditions on the free surface Y = H(X, t). We have not been specific about the
details of the jet flow because, as shown in [42], it exerts only a second-order influence
on the codimension-two model. Relative to an O(1) lengthscale for f , the turn-
over points have an O(1/ε) lateral separation, and we therefore rescale distances via
x = εX, y = εY and write the free surface Y = H(X, t) as y = εh(x, t); the body is at
y = ε(f(x) − t) and the free (turn-over) points at x = ±d(t) (the jet roots are now at
y = ε(f(±d(t)) − t) +O(ε2)). The kinematic condition demands that we also rescale
φ(x, y, t) = εΦ(X,Y, t). It is now reasonable to linearize the boundary conditions for
φ onto the x-axis and to ignore the jets altogether so that h(d(t), t) = f(d(t)) − t; to
lowest order, the problem is as shown in Figure 3(b), where the condition φ = 0 for
|x| > d(t) is an integration of Bernoulli’s equation.

We note the following physically reasonable inequalities:

h(x, t) ≤ f(x) − t for |x| > d(t),(1)
φ ≤ 0 for |x| < d(t).(2)
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MPP

PATCH CAVITY

OBSTACLE

FIG. 4. The codimension-one patch cavity model.

The latter equation is an integration of Bernoulli’s equation, assuming that the pres-
sure beneath the body is positive.

We also note that the water exit problem can be formulated in the same way by
reversing the sign of φy(x, 0, t) for |x| < d(t). However, we shall see later that the
solution properties are very different in this case.

2.2. Patch cavitation. Cavitation in liquids occurs because they cannot sustain
indefinitely low pressures and instead vaporize at the vapor pressure PV , which im-
poses a lower bound on the pressure. In inviscid irrotational flow, the lowest pressures
must occur on the boundary of the flow domain [4], and [13] records observations of
thin “patch” cavities on the surface of an axisymmetric obstacle in a uniform main-
stream flow. The cavities form near the point on the body at which the pressure
would take its minimum value, PM , in their absence (we call this the minimum pres-
sure point, or MPP), and we let the tangential fluid speed at this point be U . They
are observed to be long and thin when PV − PM � ρU2 and to persist for a time
much greater than the local residence time of fluid particles. Therefore, as in [41],
we initially restrict ourselves to steady two-dimensional flows and neglect viscosity,
gravity, and surface tension; the codimension-one model is then outlined in Figure 4.

The small parameter that we exploit here is

ε2 =
(PV − PM )

1
2ρU

2
,(3)

and it can be argued [41] that the thickness of the cavity is O(ε3) and its length is
O(ε).

Because the cavity is small compared to the obstacle, it is controlled only by
the local flow near the MPP. Unlike the earlier problems we have described, the
codimension-two model now arises as a local model for the flow near the cavity and
the flow in this local region is matched to the mainstream outer flow by using the
theory of matched asymptotic expansions. Since the aspect ratio of the cavity is
O(ε−2), all the variables must be expanded to second order in ε. Thus, when we
transform to local coordinates (x, y) tangential and normal to the obstacle at the
MPP as shown in Figure 5(a), the body is approximately y = εk1x

2 + ε2k2x
3, where

k1 < 0. The thickness of the cavity is written as ε2h(x), the leading edge of the cavity
is at x = d1, and the trailing edge is at x = d2.

With a suitable scaling the potential in the codimension-two region is written as

x+ 2εk1xy + ε2
(
φ(x, y) − k2(y3 − 3yx2) + c0(x3 − 3xy2)

)
,(4)
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MPP

FLOW

FLUID

OBSTACLE

Cavity

a

b

FIG. 5. The codimension-two patch cavity problem: (a) geometry; (b) mixed boundary value
problem P3.

where c0 is a constant known from the outer flow (it is not possible to determine
c0 from a local knowledge of the obstacle shape near the MPP). In (4), φ(x, y), the
potential in the codimension-two problem, is to be determined; φ = 0 corresponds to
unseparated flow past the obstacle in which, as shown in [41], the pressure near the
MPP can be written as

p ∼ pV + ε2
(
κ2x2 − 1

2

)
,(5)

where κ2 = −3c0 − 4k2
1 and it is necessary that c0 < −4k2

1/3.
Linearization of the boundary conditions onto the x-axis gives the mixed boundary

problem shown in Figure 5(b), with h(d1) = h(d2) = 0 and where the condition φx =
κ2x2− 1

2 expresses the constancy of the pressure in the cavity. Pressure considerations
also dictate the physically reasonable inequalities on y = 0, x < d1, and x > d2. The
geometric parameter k2 does not appear in the model P3 because, to the order of
magnitude considered, it does not affect the pressure on the obstacle.

2.3. Sintering of viscous cylinders. We now consider a benchmark problem
whose codimension-one parent possesses an explicit analytical solution. The mechan-
ical sintering of viscous drops and cylinders is a process of some technological impor-
tance in, for example, optical fiber manufacture. Both [35] and [68] describe methods
whereby exact solutions can be obtained that describe the coalescence under the ac-
tion of surface tension of two equal circular cylinders of viscous liquid that initially
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FIG. 6. (a) The coalescence of two viscous cylinders under surface tension; (b) the codimension-
two region.

touch along a common generator, as in Figure 6(a). The full model is Stokes flow, with
a kinematic boundary condition on the free boundary as well as the conditions that
the normal stress be equal to the curvature, σNN = κ, and that the tangential stress
be zero, σNT = 0. The initial motion near the origin is rapid, and it is this regime
that we analyze within our codimension-two framework as shown in Figure 6(b); we
give only a brief résumé of the description in [55].

We work on a timescale over which ε, defined to be the order of magnitude of
the lateral extent of the contact region between the two cylinders, is small. For the
contact region to be of this size, it turns out that time T and the stream function
Ψ must be scaled with −ε/ log ε and −ε2 log ε, respectively. Therefore, to retain a
nontrivial kinematic condition the full scalings for the codimension-two region (lower
case) are

(X,Y ) = ε(x, y), Ψ = −ε2(log ε)ψ, T =
( −ε

log ε

)
t, H = ε2h.(6)

(Some of these scalings, it must be admitted, would have been very difficult to as-
certain without comparison with the exact solution in [35].) The logarithm reflects
the fact that in contrast to, say, the water entry problem, there is no local similarity
solution involving a power of t. On this timescale, the free boundary far away from
the origin only moves by o(ε), and so the outer problem away from the origin is to
solve the biharmonic equation in a circle with the stress conditions mentioned earlier
and a singularity at the origin. This singularity produces a flow toward the origin, and
this is reflected in the condition at infinity in the codimension-two problem, where
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FIG. 7. The codimension-two coalescence problem P4.

the initial free boundary is y = 1
2x

2. In the codimension-two region the air gap thick-
ness 2h = O(ε), and so linearization onto the y-axis yields the mixed boundary value
problem for ψ shown in Figure 7, in which symmetry has been exploited to formu-
late the problem in the upper half-plane. Again, the inequalities are based on the
physically realistic assumptions that the fluid is in a state of tension and the sintering
cylinders do not interpenetrate. Note that even in this region surface tension forces
are dominated by viscous ones, except in the immediate vicinity of the free points
x = ±d(t).

2.4. Hele–Shaw free boundary flows. A Hele–Shaw cell [72] consists of two
parallel plates between which a viscous liquid flows, under the influence of injection
or suction at the edges of the cell or through holes in the plates. When an effectively
inviscid fluid such as air is also introduced, interfaces can form between the two fluids.
For large aspect ratios (small gaps), these free surfaces can be modelled as curves in
the plane of the cell. Moreover, the slow flow equations reduce (in suitable dimen-
sionless variables) to a two-dimensional potential flow. The fluid velocity u(x, y, t)
and pressure p(x, y, t) satisfy

u = −∇p, ∇ · u = 0,

and writing Φ = −p we have ∇2Φ = 0 in the fluid region. On free boundaries, we use
the simple “zero surface tension” model Φ = 0 and the kinematic condition

Φn = vn.

These equations also model two-dimensional flow in a porous medium [64] and are
relevant to several other physical situations such as electrochemical machining [49, 53]
and, even more importantly, they are a special case of the Stefan model (see section
4). We study the Hele–Shaw problem because complex variable methods lead to an
unparalleled variety of explicit solutions (see [33] for a review), many of which are
suitable tests of the validity of the codimension-two approach. We mention three such
situations.

The first has a geometry analogous to that in P4. If fluid is injected symmetrically
into a Hele–Shaw cell through point sources at (0,±1), the fluid region first consists
of two expanding circles centred on the sources. Eventually they sinter at the origin
and the domain is thereafter simply connected and tends to a circle as t → ∞ (the
exact solution is given in [67] and sketched in Figure 8(a)). The codimension-two
approximation is valid for times immediately after the circles touch, and it is shown
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a

b

FIG. 8. The Hele–Shaw cell with two equal sources: (a) codimension-one problem; (b) the
codimension-two problem P5.

in Figure 8(b). There the air gap has thickness 2h(x, t) in suitable local coordinates,
with h(x, 0) = 1

2x
2, and the inequality φ < 0 on the contact region follows from the

fact that p > 0 throughout the fluid region (symmetry has been exploited to formulate
the problem in the upper half-plane).

A second configuration concerns the evolution of a long thin bubble in an infinite
cell with an appropriate driving mechanism at infinity. The driving mechanism might
be either uniform suction or injection [37], in which case φ ∼ Q log r as r → ∞,
Q > 0 corresponding to injection and Q < 0 to suction, or a dipole flow [21] with
φ ∼ A(x2 − y2). In the former case the area of the bubble increases or decreases at a
rate Q, while in the latter it remains constant. The codimension-two formulation is
very similar to that of Figure 8(b).

Our final example concerns cusp formation in the free boundary. It is well known
that the suction problem is ill posed and that for almost all initial value problems there
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A CLASS OF CODIMENSION-TWO FREE BOUNDARY PROBLEMS 233

is finite-time blow-up involving a singularity at the free boundary. For a large class of
such blow-up solutions, it can be shown that the free boundary develops a 3/2-power
cusp, and the late stages of cusp formation are also modelled by a codimension-two free
boundary problem very similar to that in Figure 8(b). At the moment of blow-up, the
fluid velocity at the cusp tip is infinite, and the solution does not exist thereafter. This
highly unstable scenario presents an extreme test of the robustness of the codimension-
two approach. In fact, the traditional linear stability analysis of planar solutions to the
codimension-one Hele–Shaw problem [59, 72] leads to a problem for the perturbation
potential in which the noncontact boundary condition in P5 is replaced by φ = ±h,
φy = ht, i.e., φy = ±φt in the injection (+) and suction (−) cases, respectively. (Of
course, the linearization is the same as in the derivation of a codimension-two problem;
the distinctive feature of the latter is the switch in boundary conditions at the free
points.) As discussed in [40], this linearized stability problem can be interpreted
in terms of motion of singularities of the analytic continuation of the perturbation
potential, and blow-up can result if such a singularity reaches the free boundary.
Although the introduction of a codimension-two free boundary changes this scenario
substantially, it still seems likely that codimension-two problems suffer ill posedness
via blow-up well away from the free points, just as the codimension-one problem does.
(We consider the stability of the codimension-two free boundary later.)

We note that cusp formation can also occur in Stokes flow [43, 66] and that flows
that very nearly realize these cusps can be observed in experiments [45]. However,
these flows do not suffer ill posedness in the same way as Hele–Shaw flows do. To be
more precise, while the solutions to slow flow free boundary problems with suction
generally develop singularities such as cusps in finite time, the linear growth rate of
small perturbations to a planar interface is algebraic rather than exponential, and the
time to blow-up is correspondingly larger than in the Hele–Shaw case.

2.5. Electropainting. In our final example, the underlying codimension-one
problem is two phase and the geometry is more complicated than in the problems
considered hitherto. A metal object, the workpiece, is to be painted electrically by
being placed in a bath of paint particles (positive ions) in solution, as indicated in
Figure 9. A potential difference is applied between the workpiece and the anode,
which is the bath itself; the resulting current drives the paint toward the workpiece.
However, the paint only adheres to bare metal if the current density normal to the
surface exceeds a critical value j0; otherwise no painting of bare metal occurs, and
if paint is already present, it dissolves. The resulting paint layer is thin because its
conductivity is small compared to that of the solution.

The codimension-one model [2] assumes an electric potential which satisfies La-
place’s equation in the solution and in the paint, with continuity of the potential and
the current at the paint surface. Because the paint layer is so thin, the potential varies
approximately linearly across it in the direction normal to the workpiece. Then, in
suitable dimensionless units, the potential φ at the paint surface is related to the
current density there by Ohm’s law so that φ = hφn, where h is the paint thickness
(which is also proportional to the resistance of the layer). This boundary condition is
linearized onto the workpiece so that

φ =
{
hφn, where h > 0,
0, where h = 0,(7)

the second condition stating that the workpiece is grounded. As discussed in [2], the
other boundary condition on the noncontact region describes the kinetics of the paint
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FREE POINTS

PAINT

WORK PIECE

ANODE

SOLUTION

WORKPIECE

a b

FIG. 9. The electropainting problem: (a) codimension-one geometry; (b) the codimension-two
problem P6.

growth. There are several possible models, of which the simplest is

ht =
{

0, where h = 0 and φn < j0,
φn − j0 elsewhere.(8)

The relevant mixed boundary value problem and associated inequalities are shown in
Figure 9(b).

2.6. Discussion. With the above prototypical problems in mind, we can make
some preliminary observations about the first three questions raised at the end of
section 1. First we note that in all cases there is a nonuniformity in the approximation
of the codimension-one problem by the codimension-two problem in the neighborhood
of a free point. This nonuniformity can be best understood if matched asymptotic
expansions can be constructed linking the codimension-two problem to a local inner
problem near each free point. Indeed, such “inner” solutions can be found for P1–P5
in terms of a “hatted” coordinate system denoting variables in an inner region near
a free point2 as follows.

P1. For the dam problem, the singularity at the free point is so weak that, to
leading order, an inner region is not needed. However, it is instructive to look at the
relevant singularity in a general steady dam problem in the limit as the dam becomes
flat. It is well known [64] that for general dam problems there is a singularity in which
φ̂ ∼ O(r̂(3π−2α)/2π) at points where the free boundary meets a seepage face making
an angle α < π/2 with the horizontal and that the intersection is tangential, as in

2Here and elsewhere we temporarily use r in the outer unhatted coordinate system to denote
distance from the free point.
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AIR

SATURATED

UNSATURATED

FIG. 10. The local problem in a general dam problem.

FIG. 11. The inner region in the water impact problem.

Figure 10. It is thus suggested in [1] that the singularity at x = d in P1 for which
α ∼ O(ε) should be one in which, near the free point, φ ∼ O(r3/2) as r → 0, with
h ∼ (d− x)3/2.

P2. We have already mentioned that the local solution near the turn-over points
in Figure 3 implies the existence of two thin jets that travel up the sides of the
impacting body. In [42] it is shown that the formation of these jets can be described
locally by the solution of a Helmholtz flow in a region where (x − d)2 + y2 = O(ε4),
as shown in Figure 11, in which ĥ is parabolic as r̂ → ∞. Hence we expect that in
P2 both φ and h should have square root singularities at the free point.

P4. This is in principle one of the simplest cases since the codimension-one
problem has an explicit solution, but it is interesting to note that the “travelling
wave” that describes the local behavior near x = d only appeared [36] after the
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original work [35]. It is only in this travelling wave region that surface tension is
strong enough to balance the viscous forces; the free boundary is exactly parabolic
and the stream function ψ̂ ∼ O(r̂1/2) as r̂ → ∞. Hence, after a scaling in which
(x− d)2 + y2 = O(ε4), we expect matching with such a travelling wave to imply that
ψ ∼ O(r1/2) as r → 0 and h ∼ (x− d)1/2.

In the Hele–Shaw problems P5, the local behavior has φ ∼ O(r1/2) and h ∼
(x − d)1/2; again the relevant inner solution, which can be found exactly [44], is a
travelling wave with parabolic free boundary.

In P3 the behavior near x = d1 may differ from that near x = d2, and it is argued
in [55] that, at the trailing edge, the inner region is the same as that in the water
impact problem. For problem P6, no local solution near the free points has been
proposed, but it is likely on physical grounds that |∇φ| is bounded there.

The question immediately arises as to the relationship between the singular be-
havior near the free points and the auxiliary inequalities that have been listed. It
remains unclear whether the specification of either implies the other. For the moment
we simply remark that if a codimension-two problem can be formulated as a varia-
tional inequality, the complementarity statement of the auxiliary inequalities can be
used to ascertain the regularity of the solution at the free points [20, 50]. We shall
return to this point in section 4.

Concerning the more general question of well posedness of codimension-two prob-
lems, we have already cited cusp formation in Hele–Shaw cells with suction as an in-
stance where the codimension-two formulation inherits the ill posedness of its
codimension-one progenitor. Despite its time reversibility, the codimension-two Hele–
Shaw suction problem (P5 with φ ∼ −y as r → ∞) can be shown to be ill posed (see
[34] and references therein) and almost all initial value problems exhibit finite-time
blow-up. The close analogy between P2 and P5 then suggests that the former is ill
posed in the water exit case, a conjecture which will be supported by the stability
analysis of section 5. Furthermore, the contrast between ill posedness and well posed-
ness extends to P1. This problem is only time reversible if the sign of gravity is also
changed, but as shown in [59], the codimension-one dam free boundary problem is
linearly unstable either if the normal to the free boundary points downward, or, if the
normal points upward, the free boundary moves downward sufficiently fast. Hence, if
we were to formulate a codimension-two problem for a dam that was saturated except
for a thin dry patch adjacent to its horizontal, impermeable base, we should expect
this problem to be ill posed. Similarly, instability probably results if fluid is removed
sufficiently fast from y = −∞ in the configuration of P1.

We shall discuss ill posedness further after a more detailed examination of some
problems that are, we hope, well posed. Meanwhile, spurred on by the observation
that several of our prototype codimension-two problems involve the solution of mixed
boundary value problems in a half-space for field equations that are linear, we pro-
ceed to discuss the implications of the theory of singular integral equations. This will
immediately necessitate a mathematical consideration of the strengths of the singu-
larities at the free points; however, it will not usually give a prescription for solving
the problem completely because the relevant integral equations are nonlinear in their
dependence on the position of these points.

3. Application of the theory of mixed boundary value problems. We
observe that in all the codimension-two models we have considered, boundary data
for the field equation is prescribed on the contact region and the noncontact region;
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A CLASS OF CODIMENSION-TWO FREE BOUNDARY PROBLEMS 237

moreover, information about h is also prescribed on the noncontact region. This
suggests that if we can solve the relevant mixed boundary value problem for any
arbitrary position of the free points, we can then use the information about h to try
to find them. However, we shall soon see that this simple strategy is inadequate.

We note another common attribute of the problems listed in section 2, namely,
that they are mixed boundary value problems for Laplace’s equation or the bihar-
monic equation. In fact, we have deliberately chosen these examples because a well-
developed method exists for finding the solution to such problems [28, 75]. The theory
exploits the fact that they can be written in terms of Riemann problems for analytic
functions and, using the Plemelj formulae, as equivalent first-kind singular integral
equations with Cauchy kernels, the region of integration being either the contact or
noncontact region. Hence an existence/uniqueness theory can be developed that gen-
eralizes the Fredholm theory for nonsingular integral equations. It is based on the
observation that, when a Cauchy integral equation is posed on a smooth closed curve
Γ in the Argand diagram, the solution is uniquely determined in terms of the bound-
ary values of a function analytic away from Γ when the index of the related Riemann
problem vanishes. Although this is a very simple concept, it becomes cumbersome
to apply to situations in which, for instance, Γ is the real axis and the behavior at
infinity varies from problem to problem. Fortunately, our examples are sufficiently
simple that the relevant uniqueness results can be found in practice by noting that if
a function w(z) analytic in y < 0 has, say, a prescribed real part on y = 0, |x| > d
and an imaginary part on y = 0, |x| < d then w/(z2 − d2)1/2 satisfies a Dirichlet
problem on the whole real axis and can be written down as a Fourier integral to-
gether with eigensolutions that, by inspection, have a Laurent expansion in powers
of (z + d) and (z − d). Hence the coefficients in this Laurent expansion can be jug-
gled to satisfy the relevant singularity conditions at the free points y = 0, x = ±d
and give the necessary behavior at infinity. As stated above, our procedure will be
to try to write down conditions at the free points that ensure that φ = <{w} is
uniquely determined as a function of d and then use our extra information about
h to find d. However, it will sometimes turn out to be the case that the problem
for w must be deliberately overdetermined so that d emerges as an eigenvalue for
this problem. In any event, we will also have to ensure that the relevant inequali-
ties for h are satisfied and that the solution is compatible with any conditions that
could be determined on the basis of matched asymptotic expansions near the free
points.

We begin by analyzing some steady state situations.

3.1. Steady states. P1. Steady states in which seepage faces exist can only be
maintained in dam problems when there is some inflow of liquid as is the case when
hydrostatic pressure is applied at, say, x = 0, y < 0 as in Figure 12.

Then, after a conformal map into a half-plane in which we denote all variables by
a tilde, we obtain the codimension-two problem shown in Figure 13. We also demand
that h(0) + f(0) = 0 because a simple physical argument shows that there can be no
seepage face in the vicinity of the origin in Figure 12, either on the x- or y-axis.

In the quarter-plane, φ is linear in the radial variable r near the origin, which
becomes O(r̃1/2) after the conformal map. Similarly at infinity in the quarter-plane
∇φ decays as O(r−1), which means that ∇̃φ̃ ∼ O(r̃−1) in the half-plane. Concerning
the crucial question of the behavior near the free point x̃ = d2, ỹ = 0, we already
suggested in section 2 that φ̃ ∼ O(r̃3/2) is the appropriate singularity specification
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WATER

IN RESERVOIR
SATURATED

MEDIUM

MEDIUM

UNSATURATED

FIG. 12. The quarter-plane shallow dam problem with boundary conditions linearized onto the
x-axis in the codimension-two approximation.

FIG. 13. The mixed boundary value problem for the steady quarter-plane shallow dam problem,
after a preliminary conformal map.

in terms of distance from the free point r̃. In fact, the change from Dirichlet to
Neumann data at this point implies3 that |∇̃φ̃| ∼ O(r̃n+ 1

2 ), n ∈ Z, and it is easy
to see from the argument advanced at the beginning of this section that n = −1
guarantees uniqueness for φ̃. However, if we wrote down this solution and solved for
h, we would find d to be undetermined and the inequalities on either the contact or
noncontact region to be violated. Hence we deliberately overdetermine our problem
for φ̃ by insisting, as in section 2, that φ̃ ∼ O(r̃3/2) at the free point, leaving d to
be determined from a solvability condition. This implies that near the free point
h ∼ O(d − x)3/2 and the fluid velocity is finite here; it is also consistent with the
inequalities in Table 1 because h < 0 in 0 < x < d and φy < 0 in x > d. We can now
take Fourier/Hilbert transforms to deduce the singular integral equation

0 =
∫ d2

0

h̃′(s) + f̃ ′(s)
x̃− s

ds+
∫ ∞

d2

f̃ ′(s)
x̃− s

ds,(9)

3This kind of estimate can of course be made more precise by using the theory of Sobolev spaces
[76]. If we assume on physical grounds that |∇̃φ̃|2 is locally integrable, then φ̃ ∈ H1(Ω) where Ω is
ỹ < 0 so that the trace theorem [74] implies the boundary data is an element of H1/2(∂Ω), thereby
ruling out any cases where φ̃ is infinite at a free point.
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with relevant solution for 0 < x̃ < d2

h̃′(x̃) + f̃ ′(x̃) =
1
π

√
d2 − x̃

x̃

∫ d2

0
K(s)

√
s

d2 − s

ds

x̃− s
,(10)

where

K(s) =
∫ ∞

d2

f̃ ′(ξ)
s− ξ

dξ.

Integrating and using the fact that h̃(0) + f̃(0) = h̃(d2) = 0, after some simplification
we obtain the required solvability condition in the form

f̃(d2) =
1
π

∫ d2

0

√
s

d2 − s

∫ ∞

d2

f̃ ′(ξ)
s− ξ

dξds.(11)

Thus we have been able, on purely theoretical grounds, to solve our codimension-
two problem uniquely. It is gratifying to note that the conditions for a unique solution
are in accordance with the physically motivated requirement that |∇φ(d, 0)| be finite.

We also note that if, in the configuration of Figure 1, an impermeable base is
introduced, there are infinitely many steady state solutions; they all have φ ≡ 0, and
f + h is any constant less than or equal to the smallest value of the height of the
upper surface of the dam. Thus in these solutions the fluid region lies entirely below
the top of the dam and there are no seepage faces. We return to this indeterminacy
of steady states for codimension-two problems below.

P3. In this problem we have less insight into the behavior near the free points
than in P1, although the photographs in [13] (similar experiments are described in
the more accessible [9]) suggest that h is much smoother at the leading edge x = d1

than at x = d2. The singularities at both these points are again φ ∼ O(rni+ 1
2 ) as

r → 0; however, negative values of ni give unbounded values of h and the values ni =
1, 3, 5, . . . violate the inequalities in Table 1. When we again solve the problem for φ
by the procedure outlined at the beginning of this section (suitably modified to cater
for asymmetry), we find a unique solution for given di when n1 = n2 = 0. However,
this choice would lead to an acceptable formula for h for arbitrary di and we now
have to “doubly” overdetermine the problem for φ. Choosing n1 = 2, n2 = 0 because
of the photographic evidence mentioned above (these singularities are in agreement
with the Brillouin condition [7]), we find it is a simple matter to solve the integral
equation for h in the form

hx =
1
π

√
x− d1

d2 − x

∫ d2

d1

1
2 − κ2t2

x− t

√
d2 − t

t− d1
dt.(12)

Integrating (12) with the correct singularity at x = d1 and the condition that h(d1) =
h(d2) = 0 gives two conditions on the free points, and we find that

d1 = −
√

(2/5)/κ, d2 = −5d1.(13)

Again we note the concordance of the mathematical and physical requirements for d1
and d2 to be determined uniquely. Indeed, we find that we can construct an inner
solution near x = d2 using matched asymptotic expansions, and the solution is the
same as in the jet formation region in P2 described above. Moreover, the singularity
at x = d1 is so weak that no inner expansion is necessary to lowest order. Furthermore,
the comparison of this solution with experimental evidence that is presented in [13]
is sufficiently encouraging to suggest that an attempt to generalize the model to
axisymmetric or even fully three-dimensional flow would be justified.
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240 S. D. HOWISON, J. D. MORGAN, AND J. R. OCKENDON

3.2. Evolution problems. Our strategy immediately becomes more compli-
cated when we must solve an evolution problem for d(t). Fortunately, there are some
models where we can do this explicitly.

P2. When we use the same singularity arguments as above, the condition at
infinity is such that there is a unique solution for φ if φ ∼ O(r1/2) as r → 0, where r
is the distance from either free point; hence

φ = −y + <
{√

(x+ iy)2 − d2(t)
}
.(14)

In this case we do not need to overspecify the problem for φ as we did in the steady
states described above. In fact, we find h(x, t) by a simple integration of the kinematic
condition φy = ht on y = 0, |x| > d(t), and the condition that the free surface meets
the impacting body at x = d(t) is

f(d(t)) =
∫ t

0

d(t)√
d2(t) − d2(τ)

dτ.(15)

Solving this Abel integral by setting d(t) = x, d(τ) = ξ, we find that

d−1(t) =
2
π

∫ t

0

f(ξ)√
t2 − ξ2

dξ.(16)

It is, of course, fortunate that this solution can be written down explicitly, and again
it gives us an easy comparison with experimental results [42]. Moreover, when the
impacting body is a wedge, a rigorous analytical verification of (16) is also possible
[24]. For asymmetric or three-dimensional impacts, or if the ship has a large enough
horizontal velocity, the equation corresponding to (15) becomes more complicated and
must be solved numerically [55].

We also note that there is no unique steady state for this problem as posed.
Indeed, φ ≡ 0 satisfies P2 whenever V = 0, and h can then be arbitrary. This
situation is reminiscent of the indeterminacy of steady states for P1.

P4. In principle, biharmonic mixed boundary value problems can also be solved
as Riemann–Hilbert problems, but the codimension-two problem in Figure 7 can, like
the water entry problem, be solved by inspection. Using the index theory described
in [28, p. 256], we expect there to be a unique solution for the problem for ψ when
ψ = O(r1/2) near the free points and ψ = O(r) as r → ∞. Thus, combining functions
of the form

√
z ± d and (z ± d)/

√
z ± d, where z = x+ iy, gives

ψ = <
{
d(t)
2π

z2 + zz − 2d2(t)√
z2 − d2

}
,(17)

and the solvability condition that h(d) = 0 gives, after a calculation similar to that
leading to (16) (again with no overspecification in the problem for ψ), d(t) =

√
2 t, in

accordance with the small-time expansion4 of the exact solution given in [35].
P5. The Hele–Shaw problems are all mathematically very similar to the ship

impact problem P2 and can be solved in the same way; in fact, a simple transformation
can be used to turn the symmetrical “two-source” problem into exactly P2. Using
the explicit solutions of [67] for the coalescing circles, or of [37] for the self-similar

4In the unscaled variables,
√

2t becomes
√

2T/ log T .
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A CLASS OF CODIMENSION-TWO FREE BOUNDARY PROBLEMS 241

growth of an elliptical bubble, or of [21] for the evolution of an ellipse placed in
the straining dipole flow φ = A(x2 − y2), gives limiting agreement in all cases. It is
especially worth mentioning that in the latter case the codimension-one free boundary
is elliptical for all time and its semimajor axis tends to infinity in finite time; this
behavior is reproduced exactly by the codimension-two approximation (the theory of
long thin morphologies in Hele–Shaw flows is developed further in [34] and references
therein). Finally, the local analysis of cusps also retains all the essential features of
the full problem with the generic 3/2-power blow-up.

P1. We may now dispense with the pumping mechanism introduced earlier and
revert to the problem in Figure 1. We are not fortunate enough to be able to find
explicit solutions for this problem and the singularity at a free point is time dependent,
being O(rα) where tanαπ = −1/ḋ and 1 ≤ α ≤ 2. Such time-dependent exponents
also occur in models of crack propagation [25, p. 174] and in electropainting [8].
However, the same solution procedure can be followed as in the steady case to give
the generalization of (9) as

ht =
1
π

∫ d2(t)

d1(t)
hξ(ξ, t)

dξ

x− ξ
+

1
π

∫ ∞

−∞
f ′(ξ)

dξ

x− ξ
.(18)

However, the possibility now arises that d1 and d2 instantaneously move to infinity.
Indeed if we assume that, at least for some sufficiently small positive t, d2 = −d1 = ∞
then (18) states that h+ f is an analytic function of x+ it, and so

h(x, t) =
t

π

∫ d2(0)

d1(0)

h(ξ, 0)
t2 + (x− ξ)2

dξ +
t

π

∫ ∞

−∞

f(ξ)
t2 + (x− ξ)2

dξ − f(x)(19)

satisfies (18). The inequality h < 0 can easily be verified in certain cases, for example,
when f = 0 and the initial free boundary is h = 0 for |x| > 1 and h = x2 − 1 for
|x| < 1, but it is interesting to consider the precise conditions on f and h at t = 0 for
the free boundary to remain below the dam surface. If it does not, then the nonlinear
singular integro-differential equation (18) must be solved under the side conditions
h(di) = 0 and may require, say, a generalization of the numerical techniques used in
[63]. If it does, then the open question of whether the solution of (19) can tend to
any of the “horizontal” steady states mentioned in section 2.1 arises.

3.3. Further remarks. We have discussed P1–P6 to try to see how the stan-
dard theory of mixed boundary value problems can shed light on a representative
group of codimension-two free boundary problems. This theory is, of course, of much
less value when the geometry is more complicated or the codimension-two field equa-
tions or boundary conditions are nonlinear. The latter situation occurs in [63], where
a nonlinear version of (9) is encountered; as discussed there, such situations need to
be considered on an ad hoc basis, with even more reliance on physical intuition than
was necessary above. Nonetheless, we believe the following general methodological
framework can form a basis for tackling a wide class of codimension-two problems.
State the problem in its naive form as in P1–P6 and

1. attempt to use asymptotic methods and/or physical arguments to obtain
bounds on the allowable singularities at the free points,

2. use theoretical arguments to select those singularities that guarantee a unique
solution for the relevant mixed boundary value problem for any arbitrarily
prescribed free boundary position,
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242 S. D. HOWISON, J. D. MORGAN, AND J. R. OCKENDON

FIG. 14. Half-plane problem for a propagating crack. Suitable conditions are prescribed at a
finite or infinite distance.

3. either
(a) use this solution, together with hitherto unexploited information about

h to find the free points and hence h or
(b) if the information about h contained in the boundary data is insufficient,

prescribe singularities that overdetermine the problem for φ as a function
of the free point and hence find the free point as an eigenvalue.

However, we have failed to find any rules for resolving the determinacy problem
when applying this methodology to codimension-two problems in general. Moreover,
the whole question of the determinacy of steady states seems to be as open as it is
for codimension-one problems.

We conclude this section with a very brief description of a mixed boundary formu-
lation of a codimension-two problem that has perhaps been studied more intensively
than any other. This is the theory of rectilinear crack propagation in elastic materi-
als, with the implicit assumption that the crack width 2h ≥ 0. In the static case the
problem of fracture is usually posed only for a prescribed crack geometry but several
theories are also available for crack tip motion [25]. The displacements are all small,
and we shall denote them in the case of a type III crack by φ(x, y, t); we also denote
the shear wave speed by cs.

In the static case it is traditional to assume a switch from zero traction to zero
strain at the crack tip in the limit as h tends to zero. Unless some regularizing
mechanism is introduced this inevitably leads to singularities at the tip such that

φ ∼ <
{
K(x+ iy)1/2

}
,(20)

where the constant K is the “stress intensity factor” and depends on the global ge-
ometry and applied tractions. Also, the local solution will be such that h ∼ O(x1/2)
as x → 0.

Now suppose we consider an evolution problem in which the tip x = d(t), y = 0
advances with a speed that is not known a priori. One procedure would be to compute
K as a function of the tip position and assert that this stress intensity factor must
equal some critical value imposed by external considerations such as an energy balance
for a locally parabolic tip [29]. Alternatively, we could assume that the tip ultimately
becomes cuspidal and that its motion is governed by a cohesive force g(x, t) that acts
over a small region in the vicinity of the tip [3]. Then, using matched asymptotic
expansions, it is possible to equate the critical stress intensity factor to an integral
of g over the cohesive region which is found to be proportional to (1 − ḋ2/c2s)

1/2 [56].
However, neither of these procedures is satisfactory for predicting more commonly
occurring practical situations where motion is initiated at a critical value of K and
the tip speed then rapidly increases to a value near cs.

When the tip speed is comparable to the elastic wave speed, we have the codimen-
sion-two problem shown in Figure 14 and, unless we are considering a subsonic trav-
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A CLASS OF CODIMENSION-TWO FREE BOUNDARY PROBLEMS 243

FIG. 15. Electropainting the inside of a rectangle Ω. The boundary conditions on the right-hand
side of the rectangle also hold on the upper and lower faces.

elling wave solution, we cannot reduce the field equation to Laplace’s equation. How-
ever, all the available solutions exhibit a local behavior in which

φ ∼ <
{
K∗(1 − ḋ2/c2s)

1/2(x− d+ iy)1/2
}

(21)

near the tip for some constant K∗. This again allows the tip velocity to be read off if
the “dynamic stress intensity factor” is known, and such an approach often suggests
that the tip speed is close to cs. However, if cohesion ideas are used as a velocity selec-
tion mechanism, the matching between the linear travelling wave cohesion problem5

and (21) gives K∗(1− ḋ2/c2s)
1/2 to equal the aforementioned (1− ḋ2/c2s)

1/2 multiplied
by an integral of g. Hence cohesion cannot be used to select the velocity on the basis
of a codimension-two analysis. This is just one reason why we shall not discuss these
difficult modelling issues further here.

4. Generalized solutions and numerical methods. The theory of some
codimension-two free boundary problems is intimately related to that of variational
inequalities. Indeed, as mentioned in the introduction, the study of elastic contact
problems was a principal motivation for a large part of the general theory of free
boundary problems. The prototypical Signorini problem, listed in Table 1 as P10,
can easily be formulated as the problem of minimizing the strain energy over displace-
ments that are such that there is no interpenetration of the contacting bodies. This
follows because the “stress-free” boundary conditions that apply outside the contact
area are the natural boundary conditions for this variational problem. It was the pre-
cise connection between this minimization statement and the free boundary problem
cited in Table 1 that led to the introduction of variational inequalities [23]; however,
it is the minimization formulation that is so useful for rapid and relatively accurate
computations.

Variational inequality ideas can be shown to apply directly to P1 and P6 and
indirectly to P2 and P5. Consider, for example, the steady state of P6 for a ge-
ometry shown in Figure 15, which represents the process of painting the interior of
a rectangular box Ω. The Neumann data is the natural boundary condition for the
Dirichlet integral and so, instead of trying to solve a mixed boundary value problem
as in Figure 9, we simply minimize

1
2

∫∫
Ω

|∇φ|2dxdy + j0

∫
Γ
φds,(22)

5When linear friction is introduced, this becomes another situation where the free point singu-
larity exponent is time dependent as in P1.

D
ow

nl
oa

de
d 

01
/0

8/
15

 to
 1

29
.6

7.
11

9.
86

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



244 S. D. HOWISON, J. D. MORGAN, AND J. R. OCKENDON

where φ = 1 on the left-hand side of the rectangle but on the workpiece Γ, which
consists of the remaining three edges of the rectangle, φ(φn − j0) = 0 with φ ≥ 0
and φn ≤ j0. The proof of the equivalence of statements (22) and Figure 15 uses the
variational inequality∫∫

Ω
∇φ · ∇(v − φ)dxdy + j0

∫
Γ
(v − φ)ds ≥ 0(23)

for suitable test functions v, as explained in [2].
We can similarly formulate P1 (Figure 1) as the minimization [19] of∫∫

y≤0
|∇v|2dxdy

over test functions v ≤ f on y = 0 having suitable behavior at infinity. In this case
it is even possible to formulate the evolution problem as the parabolic variational
inequality

1
2

∫∫
y≤0

∇φ · ∇(v − φ) +
∫

y=0
φt(v − φ) ≥ 0(24)

for suitable test functions v.
It is clear that the possibility of the formulation of a codimension-two problem as

a variational inequality demands that both the field equation be the Euler–Lagrange
equation of a minimization problem and the boundary conditions be natural on either
the contact or noncontact region. However, it is also crucial that the solution be
sufficiently regular at the free boundary for the existence of the estimates that are
necessary for a variational inequality to be relevant. Indeed, the key mathematical
distinction between the fracture problem for a crack in tension mentioned at the end
of the last section and the contact problem (or the closing of a crack in compression)
is that the degree of freedom offered by the presence of the free boundary in the
contact problem allows the singularity there to be weaker than in the corresponding
fracture problem. While problems P1 and P6 have this flexibility, P2 and P5 do not,
and their Dirichlet integrals are unbounded at the free points; their free boundary
motion, like that of crack tips, is determined by something other than a smoothness
condition on the field variable. However, using a smoothing transformation that was
introduced in [47] and is reminiscent of a traditional “Baiocchi” transformation,6 this
difficulty can be overcome. When we define Φ∗ to be the negative of the displacement
potential,

Φ∗(x, t) = −
∫ t

0
φ(x, τ)dτ,(25)

we find that Φ∗ satisfies the codimension-two problem in Figure 16. There is now
sufficient smoothness at x = ±d for us to be able to assert that this problem has the
variational formulation as the minimization of

1
2

∫∫
y≤0

|∇Φ∗|2 +
∫

y=0
(t− f)Φ∗dx,(26)

with Φ∗ ≤ 0 on y = 0.

6In fact, a Baiocchi transform can also be used to good effect for the codimension-one Hele–Shaw
problem [20], but not for the codimension-one water entry problem.
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A CLASS OF CODIMENSION-TWO FREE BOUNDARY PROBLEMS 245

FIG. 16. Codimension-two problem for the transformed impact problem.

It is also interesting to study the behavior of the so-called weak formulation of
some codimension-one free boundary problems in the codimension-two limit. Suppose,
for example, that we consider the classical two-phase codimension-one Stefan problem
for the temperature φ in the geometry of Figure 17(a). In this configuration, the phase
boundary φ = 0 lies at y = εh(x, t), and we also assume that y = 0 is a thermally
insulating boundary. Then consider the distributional formulation

Et = ∇2φ,

where the enthalpy E is related to φ and the latent heat L∗ by

E =
{
φ+ L∗ in Phase II,
φ in Phase I.

Assuming that the temperature gradients are initially smaller than O(1/ε), the
codimension-two limit is appropriate when the latent heat is large, specifically, L∗ =
L/ε. (If L∗ is smaller, say O(1), a rescaling of time shows that the evolution of
the phase boundary is entirely governed by the gradient of the initial temperature,
which does not change before Phase II disappears.) A formal asymptotic calculation
then gives that E ∼ εL∗h in Phase II, and the codimension-two problem is as in
Figure 17(b). Again |∇φ| is unbounded at the free points, but we can adopt the same
smoothing as in [18] to write

Φ(x, t) =
∫ t

0
φ(x, τ)dτ.

The resulting codimension-two problem is shown in Figure 17(c), where φ0 is the
initial temperature (note that the free points move inward). This problem admits
a parabolic variational inequality formulation and is, in fact, the codimension-two
limit of the variational formulation introduced for the classical Stefan problem in
[18]. In the special case when the codimension-one problem has an explicit similarity
solution with an elliptical free boundary [30, 38], the codimension-two approximation
is confirmed as correct.

Numerical algorithms for most of the above variational formulations have been
implemented in the references cited. It seems that in each case reasonably reliable
answers have been obtained whenever it has been possible to compare numerical
solutions with explicit analytical solutions. However, few error estimates are available,
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a

b

c

FIG. 17. The Stefan problem: (a) codimension-one version; (b) codimension-two formulation;
(c) codimension-two formulation in the transformed variables.

especially concerning the position of the free boundary. Of course, there is no point in
obtaining any accuracy greater than that of the power of ε that appears in the spatial
scaling demanded by a matched asymptotic expansion procedure in the vicinity of the
codimension-two free point.
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When a variational inequality is unavailable, direct discretizations can also be
attempted for any singular integral equation representation that may be available.
The best philosophy seems to be to invert any singular integral terms that involve
derivatives of h and then integrate with respect to arc length so as to build in all the
available information about h before, say, making a piecewise-constant approximation.
Other ad hoc discretizations have been constructed for evolution problems; e.g., it is
possible to time-step the unsteady version of P6 and obtain results that tend to the
correct steady state [2, 8].

5. Perturbation theory and stability. Perturbation methods have provided
great insight into the structure of many venerable codimension-one free boundary
problems. For the purposes of this article, we shall consider perturbation expansions
only in terms of a small geometric parameter, there being two basic regimes in which
such expansions have been successful for codimension-one problems. The first involves
linearization about a simple explicit classical solution and is traditional, for example,
in the theory of small amplitude surface gravity waves or the initiation of morpho-
logical instabilities in Stefan problems. The second considers long wavelength, but
not necessarily small amplitude, variations in the free boundary location, as say in
hydraulics or the Dupuit approximation in aquifer flows. No systematic extension
of these ideas to codimension-two problems appears to be available, so we will just
describe two relatively simple cases from which some surprising features emerge.

5.1. Linear stability theory. It is important to consider how the stability of
the solutions of codimension-two problems reflect those of their progenitors, espe-
cially as it is well known that many codimension-one solutions can easily switch from
being linearly stable to linearly unstable when, say, the direction of motion of the
free boundary is reversed [59]. In section 2, we commented on this state of affairs
in the context of two-dimensional models, and our objective here is to point out a
new undesirable attribute that a codimension-two problem which is modulated along
the free curve can acquire when the direction of motion of the free boundary is re-
versed. Hence P2 seems a good example to study because it has a simple explicit
two-dimensional solution and we know from experience that the flows generated by
the entry and exit of rigid bodies in liquid half-spaces are not time reversals of each
other. However, the mathematical model, as in Figure 3(b), is time reversible, and we
seek to explain this situation in terms of a linear stability analysis in the same spirit
as that used to distinguish between injection and suction in Hele–Shaw flows [59].

As is often the case for codimension-one problems, it is much easier to consider a
local stability analysis of the solution near a free point in a coordinate system (here
denoted by hatted variables) moving with the free point at speed V (V > 0 for entry
and V < 0 for exit), so we shall only consider perturbations to the solution of

∇2Φ̂ = 0 in ŷ < 0,(27)
Φ̂ŷ = 0 on ŷ = 0, x̂ < 0,(28)

−V ĥx̂ + ĥt̂ = Φ̂ŷ

Φ̂ = 0

}
on ŷ = 0, x̂ > 0,(29)

ĥ(0, t̂) = 0,(30)

where we have assumed that variations in the ẑ-direction are going to be sufficiently
rapid so that the velocity of the impacting body can be neglected in (28). The steady
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solution to (27)–(30), which matches with the outer solution in (14), is

Φ̂ = Ar̂1/2 sin(θ̂/2),(31)

ĥ = −A

V
x̂1/2,(32)

where A and V are constants determined by the global motion. Note that A/V > 0
since ĥ(x̂) < 0.

Now small oscillations are imposed on the free curve in the ẑ-direction. A pertur-
bation of (27)–(30) is sought where the free curve is situated at x̂ = δeσt̂ cosnẑ+o(δ),
where δ � 1 and n > 0 are given and σ is to be determined. The relevant perturba-
tions to the potential and free boundary are

Φ̂ ∼ Ar̂1/2 sin(θ̂/2) + δB
sin(θ̂/2)
r̂1/2 e−nr̂+σt̂ cosnẑ + · · · ,(33)

ĥ ∼ −A

V
x̂1/2 + δĥ(1)(x̂)eσt̂ cosnẑ + · · · .(34)

Substituting ĥ and Φ̂ into the kinematic boundary condition (29) gives a differential
equation for ĥ(1), namely,

Be−nx̂

2x̂3/2 = −V dĥ
(1)

dx̂
+ σĥ(1),(35)

which can be integrated to give

ĥ(1) =
B

V
eσx̂/V

[
x̂−1/2 exp

{
−

( σ
V

+ n
)
x̂
}

+
(
n+

σ

V

) ∫ x̂

0
s−1/2 exp

{
−

( σ
V

+ n
)
s
}
ds+K

]
,(36)

where K is a constant. Physically acceptable solutions have ĥ(1)(x̂) ∼ o(x̂1/2) as
x̂ → ∞. If σ/V ≤ 0, this is always true and so, although σ is undetermined, entry
problems (V > 0) are stable and exit problems are unstable. We still must deal with
the possibility σ/V > 0, and we claim that this leads to a contradiction and is thus
impossible.

If σ/V > 0, then a physically acceptable solution for ĥ(1) must have

K = −
(
n+

σ

V

) ∫ ∞

0

e−(n+σ/V )s
√
s

ds = −π1/2
(
n+

σ

V

)1/2
.(37)

Now, as suggested in [55], an inner region near the free point must be constructed.
Although this calculation is rather long and cumbersome, it reveals that the free
boundary condition is violated unless K = 0, whence σ/V = −n < 0, contradicting
the assumption σ/V > 0. Recently, a global linear stability analysis was presented in
[11].

In summary, although we have shown that σ should have the opposite sign to V ,
we have been unable to obtain a dispersion relation of the conventional type. Clearly
much further work needs to be carried out in this area if a sensible comparison is to
be made with the relatively straightforward stability analysis of the codimension-one
water entry problem which, in this parameter regime, gives neutral stability.
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FIG. 18. Long wavelength approximation for the shallow dam.

painted

painted

bare

bare

FIG. 19. Electropainting in a long thin box.

5.2. Long wavelength approximations. We recall two illustrations of this
kind of approximation. The first concerns P1 when an impermeable base is introduced
much nearer to the dam surface than d, as in Figure 18. Then, as in [39],

φ ∼ φ0(x, t) − 1
2

(
(y + b)2φ0xx + b2φ2(x, t)

)
+ · · · as b → 0(38)

and, after a rescaling in time with τ = bt, the boundary condition yields

φ0τ = φ0xx for x < d(τ),(39)

with φ0(d(t), t) = −g(d(t)) and φ0x(d(t), 0, t) = −g′. Writing ψ = φ0 + g(x), we have

ψτ = ψxx + g′′(x) for x < d(τ),
ψ = ψx = 0 for x ≥ d(τ).

Since ψ ≥ 0, ψ satisfies a version of the so-called oxygen consumption problem [15]
with consumption when g′′ < 0 and replenishment when g′′ > 0. This permits
discontinuous motion of d for certain g. Also, as remarked in [39], the fact that the
well posedness of the oxygen problem does not depend on the sign of ḋ is evidence
that the codimension-two dam model in Table 1 is well posed either in the presence
of inflow or outflow.

Second, we may again follow [39] and consider P6 in a long thin box as in Figure 19
when j0 � 1 and the edges of the box are at ±j0α for some O(1) constant α.

The analogue of (38) is now

φ ∼ φ0(x, t) − 1
2
y2φ0xx + j20φ2(x, t) + · · · .
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It is again necessary to rescale time via t = j−1
0 τ , and then the boundary conditions

on y = ±αj0 lead to the third-order system

hτ = αφ0xx − 1, αhφ0xx = φ0(40)

for 0 < x < d(t), where there is paint, and φ0 = φ0x = h = 0 at x = d(t). In contrast
to (39), this is an almost unstudied codimension-one free boundary problem because
the presence of third-order space derivatives precludes any standard treatment.

6. Conclusions. We have tried to present as comprehensive an account as pos-
sible of the current status of the theory of codimension-two free boundary problems.
We have primarily restricted our attention to two-dimensional problems where the
field equation is either Laplace’s equation or the biharmonic equation; even within
this class, only a few codimension-one progenitor problems have exact solutions, but
in every case these confirm the correctness of the codimension-two approximation.
However, the scarcity of exact solutions in itself indicates the need for a more thor-
ough theoretical investigation. In particular, we cite the following deficiencies and
requirements:

1. The lack of a theory of weak solutions when the problem does not have any
obvious variational formulation.

2. The need for the development of numerical algorithms that can locate the
codimension-two free points accurately. In the absence of a variational for-
mulation, such algorithms have been proposed only on an ad hoc basis.

3. A rationalization of the methodology outlined at the end of section 3, espe-
cially concerning the question of the degree of indeterminacy of the solution
of the relevant mixed boundary value problem.

4. The lack of an existence, uniqueness, and regularity theory for evolution prob-
lems.

While there is a vital practical need for answers to the second and third of these,
we regard the fourth as the most challenging and important theoretical question.
Throughout our review, we have come across manifestations of singular behavior;
there is the likely ill posedness of P1, P2, and P5 for many classes of driving mecha-
nism, the possible instantaneous movement of the free point in P1 as described by (18)
or under approximation (39), and finally the instability demonstrated in section 5.
All of these points lead us to pose the question of the relationship between the sta-
bility of codimension-two problems and that of their codimension-one progenitors. In
particular, despite the absence of any kind of traditional stability theory, as in [60],
we make the following conjectures:

• If a codimension-one problem is stable or unstable, then the corresponding
codimension-two problem will have the same behavior.

• If a codimension-one problem is neutrally stable, then the stability of the
corresponding codimension-two problem can be categorized in terms of the
dynamics of the contact region. In certain cases, if the contact region is
expanding, the problem is stable, and if it is contracting, the problem is
unstable.

Beyond these concerns, there is the more fundamental possibility that if any gen-
eral theory is to emerge it will have to encompass configurations that have not been
mentioned in this review. For example, codimension-three problems could be contem-
plated, say, when two sessile lenses meet at a point [65]. An even more fascinating
possibility is illustrated by the inviscid version of P4. The configuration (in three
dimensions) is described in [62], together with some experimental and numerical ev-
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idence concerning the codimension-one formulation. But a glance at the proposed
multiply-connected morphology in that problem suggests how conservative we have
been in our description of the whole subject, at least as far as the number of free
points and the nature of their singularities is concerned.
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