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3 Slender body theory

3.1 Introduction

In §2 we considered problems where the geometry of the domain in which the equations are
posed is slender, and showed how the slenderness of the geometry can be expointed to derive
simplified models. Now we consider a dual class of problems in which the equations are posed
outside a slender region. The canonical example is flow past a slender obstacle, and the
slenderness of the obstacle may again be exploited to simplify the problem. The basic idea
of slender body theory is to approximate the effect of the obstacle on the flow by a distribu-
tion of singularities, whose strength must be determined by imposing the required boundary
conditions. Since the singularities are chosen to satisfy the field equations identically, this
approach removes the need to solve any PDEs. Inspead, one typically ends up with integro-
differential equations for the singularity distribution functions. We will show how the same
general approach applies for example to porous medium flow flow outside a thin porous tube
and to viscous flow outside a thin deforming bubble.

3.2 Slender body theory in potential flow

Model problem: flow past a thin projectile

Consider a thin rigid radially symmetric projectile moving at constant speed U through an
inviscid fluid. The projectile is assume to be thin in the sense that the aspect ratio ε = a/L
between its typical radius a and its half-length L is small. This situation might model a
javelin or a rocket moving through air, or a submarine moving through water. We adopt
cylindrical polar coordinates (r, θ, z) in a frame moving at speed U . As shown schematically
in Figure 3.1, the boundary of the projectile is then a fixed axisymmetric surface r = S(z)
and the surrounding fluid has uniform velocity Uez plus a small perturbation due to the
projectile. Assuming that the flow is inviscid, incompressible and irrotational, we can describe
the disturbance using a velocity potential φ which satisfies Laplace’s equation, i.e.

u = Uez + ∇φ, where ∇2φ = 0. (3.1)

On the boundary of the projectile, the normal velocity of the fluid must be zero, i.e.

∂φ

∂r
=

(
U +

∂φ

∂z

)
S′(z) at r = S(z), − L < z < L. (3.2)

We also require the fluid to revert to the given uniform flow in the far field, i.e.

∇φ→ 0 as r →∞. (3.3)
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Figure 3.1: Schematic of uniform flow past a thin projectile.

Figure 3.2: Schematic of the velocity field due to a point source.

We start by normalising the problem as follows:

(r, z) = L (r̃, z̃) , S = aS̃, φ =
Ua2

L
φ̃, (3.4)

so the governing equations and boundary conditions (3.1)–(3.3) are transformed to (with
tildes now dropped)

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂z2
= 0, (3.5a)

ε
∂φ

∂r
=

(
1 + ε2

∂φ

∂z

)
S′(z) at r = εS(z) , (3.5b)

∇φ→ 0 as r2 + z2 →∞, (3.5c)

where as above

ε =
a

L
. (3.6)

Our aim is to solve the problem (3.5) asymptotically in the limit ε→ 0.
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As a first step, consider the velocity potential

φs = − q

4π|r|
= − q

4π
√
r2 + z2

, (3.7)

where q is a constant. One can readily verify that the function φs satisfies Laplace’s equation
(3.5a) exactly everywhere except at the origin. Indeed it’s the fundamental solution or Green’s
function for Laplace’s equation in R3, satisfying

∇2φs = δ(x)δ(y)δ(z), (3.8)

where δ is the Dirac delta-function. Physically, (3.7) is the velocity potential due to a point
source of strength q at the origin. As illustrated in Figure 3.2, the velocity field points radially
outwards from the origin, and the net flux through any surface containing the origin is q, i.e.∫∫

∂D
∇φ · dS =

{
q if 0 ∈ D
0 otherwise.

(3.9)

Now we seek an approximate solution to the problem (3.5) in the form

φ(r, z) =

∫ 1

−1

−q(s) ds

4π
√
r2 + (z − s)2

. (3.10)

Assuming q is sufficiently smooth, this proposed potential automatically satisfies Laplace’s
equation outside the projectile (because (3.7) does). Physically, (3.10) represents a distribu-
tion of point sources along the z-axis, with source strength q(s)ds at z = s. The idea is to
try and choose the function q(s) such that the source distribution approximately mimics the
effect of the slender object inserted into the flow.

Now let us examine the behaviour of the potential (3.10) in the limit r → 0. If we just
näıvely try to set r = 0, then the integral on the right-hand side of (3.10) is divergent when
z ∈ [−1, 1]. Therefore we have to be more careful and split up the range of integration before
letting r → 0. We decompose φ into two integrals:

−4πφ(r, z) =

[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) ds√

r2 + (z − s)2︸ ︷︷ ︸
= I1(r, z; δ)

+

∫ z+δ

z−δ

q(s) ds√
r2 + (z − s)2︸ ︷︷ ︸

= I2(r, z; δ)

, (3.11)

where δ is a parameter chosen such that r � δ � 1.

In the first integral, since the singularity at s = z has now been removed, we can just let
r tend to zero to get

I1(r, z; δ) ∼
[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) ds

|z − s|
− r2

2

[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) ds

|z − s|3
+O

(
r4
)
. (3.12)

In the second integral, we make the change of variables s = z + rt to get

I2(r, z; δ) =

∫ δ/r

−δ/r

q(z + rt) dt√
1 + t2

∼ 2q(z)

∫ δ/r

0

dt√
1 + t2

+ r2q′′(z)

∫ δ/r

0

t2 dt√
1 + t2

, (3.13)
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where we have exploited the symmetry in the integrands about t = 0. Now we evaluate the
integrals and exploit the assumed largeness of δ/r to get∫ δ/r

0

dt√
1 + t2

= sinh−1
(
δ

r

)
∼ log

(
2δ

r

)
+

r2

4δ2
+O

(
r4

δ4

)
as

r

δ
→ 0, (3.14a)

∫ δ/r

0

t2 dt√
1 + t2

=
δ

2r

√
1 +

δ2

r2
− 1

2
sinh−1

(
δ

r

)
∼ δ2

2r2
+

1

4
− 1

2
log

(
2δ

r

)
+O

(
r2/δ2

)
as

r

δ
→ 0. (3.14b)

Now, when we add the contributions from I1 and I2, the terms involving δ should all
cancel: the asymptotic expansion should be independent of the choice of δ, provided it is in
the range r � δ � 1. Here we find that

I1 + I2 ∼
{[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) ds

|z − s|
+ 2q(z) log δ + 2q(z) log

(
2

r

)
+O

(
δ2
)}

+ r2
{
−1

2

[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) ds

|z − s|3
+
q(z)

2δ2
− q′′(z)

2
log δ

+
q′′(z)

4
− q′′(z)

2
log

(
2

r

)
+O

(
δ2
)}

+O
(
r4 log r

)
. (3.15)

In the first line of (3.15), the leading integral and the term proportional to log δ are both
singular as δ → 0. However, the singularities cancel (as they must if we have chosen δ
appropriately) and hence this leading term approaches a well defined finite value as δ → 0.

One way to evaluate this limit is to note that (by Leibniz’ rule)

d

dz

[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) sgn(z − s) log |z − s|ds

=

[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) ds

|z − s|
+ q(z − δ) log δ + q(z + δ) log δ, (3.16)

where sgn(z) denotes the sign of z. Taking the limit δ → 0, we therefore get[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) ds

|z − s|
+ 2q(z) log δ → d

dz

∫ 1

−1
q(s) sgn(z − s) log |z − s| ds. (3.17)

One other way to deal with the singular integral in equation (3.15) is to subtract off a
suitable function to remove the singularity, as follows:[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) ds

|z − s|
=

[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s)− q(z)
|z − s|

ds+ q(z)
[
−2 log δ + log

(
1− z2

)]
.

(3.18)
Hence equation (3.17) may alternatively be written in the form[∫ z−δ

−1
+

∫ 1

z+δ

]
q(s) ds

|z − s|
+ 2q(z) log δ →

∫ 1

−1

q(s)− q(z)
|z − s|

ds+ q(z) log
(
1− z2

)
as δ → 0.

(3.19)
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In either case, we define the regular part of the integral in equation (3.10) as follows:1

−
∫ 1

−1

q(s) ds

|z − s|
= lim

r→0

{∫ 1

−1

q(s) ds√
r2 + (z − s)2

− 2q(z) log

(
2

r

)}
(3.20a)

=
d

dz

∫ 1

−1
q(s) sgn(z − s) log |z − s| ds (3.20b)

=

∫ 1

−1

q(s)− q(z)
|z − s|

ds+ q(z) log
(
1− z2

)
. (3.20c)

Finally, then, we arrive at

φ(r, z) ∼ q(z)

2π
log
(r

2

)
− 1

4π
−
∫ 1

−1

q(s) ds

|z − s|
+O

(
r2 log r

)
as r → 0. (3.21)

The leading term proportional to log r shows that the posed distribution of point sources looks
like a line source of strength q as r → 0. In principle, the next correction can be evaluated
in a similar way. Considering the coefficient of r2 in equation (3.15), the singularity in the
integral cancels the factors involving δ−2 and log δ as δ → 0: see Exercise 1.

Now we are ready to apply the boundary condition (3.5b). We neglect theO
(
ε2
)

correction
on the right-hand side and use (3.21) to evaluate ∂φ/∂r. Thus we determine the required
strength of the effective source distribution, namely

q(z) = 2πS(z)S′(z) =
dA

dz
, (3.22)

where A(z) = πS(z)2 is the cross-sectional area of the projectile. Perhaps we could have
anticipated this dependence of the source strength on the rate-of-change of area.

Now that q has been determined, the disturbance potential is given by equation (3.10):

φ(r, z) = − 1

4π

∫ 1

−1

A′(s) ds√
r2 + (z − s)2

. (3.23)

In particular, in the very far field the projectile looks like a point source:

φ(r, z) ∼ − Q

4π
√
r2 + z2

as r2 + z2 →∞, (3.24)

where

Q =

∫ 1

−1
A′(s) ds =

[
A(s)

]1
−1. (3.25)

Hence this net source strength is identically zero for any projectile that is pointed at both
ends, like the one depicted in Figure 3.1.

There are still some technical points to be cleared up. First, the application of the
boundary condition (3.5b) required us to equate terms that are apparently of different order.
This slightly awkward step may be justified more systematically by analysing a boundary
layer where r = O(ε) — see Exercise 2. Second, it should be noted that the decomposition

1note that this definiton of the regular part is not unique: for example, the factor of −2q(z) log 2 has here
been incorporated into the definition of −

∫
for convenience
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Figure 3.3: Schematic of flow through a porous tube in a bioreactor.

(3.11) assumes that z is not too close to ±1, i.e. to either either end of the projectile. The
asymptoptic structure is slightly different in neighbourhoods of these end points, and requires
somewhat more careful treatment.

Finally, we recall the relation between log r and the fundamental solution for Laplace’s
equation in two dimensions, i.e.

∇2

(
1

2π
log r

)
= δ(x)δ(y), (3.26)

where r =
√
x2 + y2. Hence the velocity potential (3.10), with the logarithmic singularity as

r → 0 given by equation (3.21), may also be viewed as the solution of the singular Poisson
equation

∇ · u = ∇2φ = q(z)δ(x)δ(y). (3.27)

This again has the obvious interpretation of a distribution of sources along the z-axis.

Industrial problem: nutrient flow in a bioreactor

This problem concerns the growth of cells in a bioreactor for tissue engineering applications.
The cells are seeded in a saturated porous medium and are fed via small porous tubes through
the medium through which nutrient solution is injected. A mathematical model is needed to
determine how the nutrient solution spreads through the porous medium and to ensure that
the concentration is reasonably uniform throughout the bioreactor: any parts not reached
will result in cell death and poor performance of the reactor.

A simple version of the process is illustrated schematically in Figure 3.3. Here nutrient
solution is injected through a single porous tube of radius a, which is aligned with the z-axis.
The solution flows out through the wall of the tube into the surrounding porous medium at
a rate Q(z) which is to be determined. This setup could also model flow through a porous
underground pipe, for example in oil recovery, or a simple filtration process.
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Model for flow through a porous tube

Consider the setup illustrated in Figure 3.3. Flow through the porous medium surrounding
the tube is governed by Darcy’s law relating the liquid flux q to the pressure p:

q = −k
µ
∇p, (3.28)

where k is the permeability of the medium and µ is the viscosity of the liquid (both assumed
constant). The specific value of k depends on the detailed geometry of the microstructure;
however, k is generally of order d2, where d is a typical pore radius. In (3.28) we have
neglected te effects of gravity, which is certainly negligible on the scale of a typical bioreactor
but might be important in groundwater applications. If the porosity of the medium is also
constant, then conservation of mass leads to ∇ ·q = 0 and hence p satisfies Laplace’s equation

∇2p =
1

r

∂

∂r

(
r
∂p

∂r

)
+
∂2p

∂z2
= 0 (3.29)

in cylindrical polar coordinates (r, z).

For simplicity we suppose in the first instance that the porous medium surrounding the
tube is infinite so the far-field condition for (3.29) is simply

p→ Pa as r →∞, (3.30)

where Pa is some constant ambient pressure. The flux Q(z) entering the porous medium
through the tube wall corresponds to the boundary condition

−k
µ

∂p

∂r
= Q(z) at r = a. (3.31)

Now, assuming that the tube is long and thin, we can model the flow inside it using
lubrication theory. In cylindrical polars, the lubrication equations for the pressure P and
liquid velocity u = uer + wez read

1

r

∂

∂r
(ru) +

∂w

∂z
= 0,

∂P

∂r
= 0,

∂P

∂z
=
µ

r

∂

∂r

(
r
∂w

∂r

)
. (3.32a)

At the tube wall we specify zero slip and now relate the radial velocity to the flux through
the wall:

w = 0, u = Q(z) at r = a. (3.32b)

(It is known that flow past a porous boundary can experience an effective slip boundary
condition, but this effect is small if the permeability of the medium is relatively small, and
we will neglect it.)

It is straightfoward to integrate the problem (3.32) and hence find that the pressure P (z)
in the tube satisfies the equation

d

dz

(
−πa

4

8µ

dP

dz

)
= −2πaQ(z). (3.33)
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The term in brackets on the left-hand side of (3.33) is the flux of fluid along the tube, which
is related to the pressure gradient through the Poiseuille law ; the right-hand side represents
fluid loss through the tube wall. Equation (3.33) is easily rearranged to

d2P

dz2
=

16µQ(z)

a3
. (3.34)

Finally, the problem is closed by equating the pressures at the tube wall, i.e.

p(a, z) = P (z). (3.35)

This assumes that the wall of the tube has no intrinsic resistance to flow. One could easily
incorporate a semi-permeable tube wall by modifying (3.35) to

Q(z) = λ
(
P (z)− p(a, z)

)
, (3.36)

where λ is the effective permeability of the tube wall; then (3.35) is just the limiting case of
a completely permeable wall with λ→∞.

We will consider for the moment a semi-infinite tube, with a specified inlet pressure Pin at
the end z = 0. We also expect the pressure eventually to equilibrate a long way downstream.
We therefore apply the boundary conditions

P (0) = Pin, P (z)→ Pa as z →∞. (3.37)

on the tube pressure P (z).

Slender body approximation

Now we non-dimensionalise the problem as follows:

(r, z) = ` (r̃, z̃) , p = Pa + (Pin − Pa)p̃, P = Pa + (Pin − Pa)P̃ , Q =
k(Pin − Pa)

µa
Q̃,

(3.38)

where ` is an intrinsic length-scale for the problem. A balance in both equations (3.31) and
(3.34). suggests the choice

` =
a2

4
√
k
. (3.39)

The corresponding dimensionless tube radius is given by

ε =
a

`
=

4
√
k

a
= O

(
d

a

)
, (3.40)

where we recall that d is a typical pore radius. We expect the pores in the porous medium to
be much smaller than the tube drilled through it, and this is consistent with ε being a small
parameter.

The dimensionless pressure in the porous medium thus satisfies the problem (with tides
now dropped)

∇2p = 0 r > ε, (3.41a)

p = P (z), −ε∂p
∂r

= Q(z) r = ε, (3.41b)

p→ 0 r →∞. (3.41c)
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Since we are considering here a semi-infinite tube, we have Q(z) = 0 for z < 0.

By comparing with equations (3.10) and (3.21), we can simply read off the solution

p(r, z) =

∫ ∞
0

Q(s) ds

2
√
r2 + (z − s)2

, (3.42)

as well as the following relation between P (z) and Q(z):

P (z) = Q(z) log

(
2

ε

)
+

1

2
−
∫ ∞
0

Q(s)

|z − s|
ds. (3.43)

We also have the dimensionless version of (3.34)

d2P

dz2
= Q(z). (3.44)

The slender-body model for the flow consists of the coupled integro-differential equations
(3.43) and (3.44), which are to be solved subject to the boundary conditions

P (0) = 1, P (z)→ 0 as z →∞. (3.45)

The slender body approach removes the need to solve any PDEs: the only remaining un-
knowns are functions only of z. However, the pressure outside the tube does satisfy Laplace’s
equation, subject to global boundary conditions. This non-local effect is captured by the
integral term in equation (3.43): the pressure at a point z depends on the entire flux profile,
not just the local behaviour of Q(z).

In general we should solve the problem (3.43)–(3.45) numerically. A leading-order approx-
imation may be obtained by letting ε → 0 so that the first term on the right-hand side of
equation (3.43) dominates. We thus obtain the leading-order governing equation

d2P0

dz2
= ν2P0, (3.46)

where

ν2 =
1

log(2/ε)
� 1, (3.47)

and leading-order solution is thus

P0(z) = e−νz, Q0(z) = ν2e−νz. (3.48)

This gives qualitatively reasonable behaviour, with the tube pressure P0 decaying in z as
the fluid leaks out of the tube. However, this solution is unlikely to be very quantitatively
accurate unless ε is extremely small.

The leading-order approximation (3.48) is also asymptotically nonuniform as z → 0 and
as z → ∞. To see this, we can calculate the first correction to the flux by plugging the
leading-order solution (3.48) back into equation (3.43) to get

Q(z) ∼ ν2e−νz − ν4

2
−
∫ ∞
0

e−νs ds

|z − s|
+O

(
ν6
)
, (3.49)
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where

−
∫ ∞
0

e−νs ds

|z − s|
=

d

dz

∫ ∞
0

e−νs sgn(z − s) log |z − s| ds

= e−νz
(
Ei(νz)− 2γ − 2 log ν

)
, (3.50)

where γ is the Euler–Mascheroni constant, and Ei denotes the exponential integral function.
Since

e−νz
(
Ei(νz)− 2γ − 2 log ν

)
∼

log
(z
ν

)
− γ as z → 0,

1

νz
as z →∞,

(3.51)

it is clear that the second term in the expansion (3.49) becomes larger than the first, so the
expansion becomes nonuniform, both as z → 0 and as z →∞.

3.3 Slender body theory in Stokes flow

Model problem: slow flow past a slender projectile

Now let us consider the flow problem depicted in Figure 3.1 in the opposite limit where the
external fluid is extremely viscous (in the sense that the Reynolds number is small), so that
the velocity u and pressure p satisfy the Stokes equations

∇ · u = 0, ∇p = µ∇2u, (3.52)

where µ is the viscosity (assumed constant). Again we impose a uniform flow with speed U
in the far field, so that

u→ Uez as r →∞, (3.53)

where ez is a unit vector in the z-direction, which is also parallel to the axis of the projectile.
In a viscous fluid, we must impose the no-slip boundary condition of zero velocity on the
projectile, i.e.

u = 0 on r = S(z), − L < z < L. (3.54)

In contrast with the inviscid problem analysed in §3.2, it is no longer possible to linearise
about the uniform flow. Since the velocity is zero on the boundary of the projectile, it is not
true that u− Uez is everywhere small.

After suitable non-dimensionalisation, the problem reads

∇ · u = 0, (3.55a)

∇p = ∇2u, (3.55b)

u→ ez as r →∞, (3.55c)

u = 0 on r = εS(z), − 1 < z < 1, (3.55d)

where ε� 1 is the aspect ratio of the projectile.

Assuming the flow is axisymmetric, with u = u(r, z)er + w(r, z)ez, we can write out
(3.55a) in the form

∇ · u =
1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (3.56)
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and it follows that there exists a potential function ψ(r, z) (called the Stokes streamfunction)
such that

u = −1

r

∂ψ

∂z
, w =

1

r

∂ψ

∂r
, (3.57)

or, equivalently,

u = ∇ ∧
(
ψ

r
eθ

)
, (3.58)

where eθ = ez ∧ er is the unit basis vector in the θ-direction with respect to cylindrical polar
coordinates (r, θ, z). Then by taking the curl of (3.55b) we find that ψ must satisfy

curl4
(
ψ

r
eθ

)
= 0. (3.59)

Now, a direct calculation shows that

curl2
(
ψ

r
eθ

)
= −L[ψ]

r
eθ, (3.60)

(this is the vorticity of the flow) where L denotes the linear differential operator

L[ψ] =
∂2ψ

∂r2
− 1

r

∂ψ

∂r
+
∂2ψ

∂z2
. (3.61)

Hence we deduce that ψ(r, z) must satisfy the fourth-order linear PDE

L2ψ = 0, (3.62a)

and the boundary conditions corresponding to (3.55c) and (3.55d) are

ψ ∼ r2

2
as r →∞, (3.62b)

ψ =
∂ψ

∂r
= 0 at r = εS(z), − 1 < z < 1. (3.62c)

(Here we have fixed an arbitrary integration constant by setting the constant value of ψ on
the projectile to zero.)

In §3.2, in the case of inviscid flow, we were able to satisfy (at least approximately) the
boundary condition of zero normal velocity on the projectile by adding a suitable distribution
of point sources along the z-axis. We recall that the velocity potential for an inviscid point
source at the origin is given by (3.7), with corresponding velocity field

us =
q

4π

r

|r|3
=

q

4π

rer + zez

(r2 + z2)3/2
. (3.63)

For viscous flow, there is no velocity potential (because the vorticity is generally not zero),
but we can easily find the Stokes streamfunction corresponding to (3.63), namely

ψs =
−qz

4π
√
r2 + z2

. (3.64)
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By analogy with the inviscid case, we might similarly try to solve the problem (3.62) with
a source distribution, i.e.

ψ(r, z) =
r2

2
+ ε2

∫ 1

−1

−q(s)(z − s) ds

4π
√
r2 + (z − s)2

. (3.65)

(We have anticipated that, as in §3.2, the source strength will be O
(
ε2
)

compared with the
undisturbed uniform flow.) Unfortunately this approach does not work. The source distribu-
tion function q(z) may be chosen to make the normal component of velocity equal to zero at
the projectile boundary, but the tangential component will still be nonzero. Equivalently, we
can use the function q(z) to impose one of the boundary conditions (3.62c), namely ψ = 0
at r = εS(z), but generally ∂ψ/∂r will remain nonzero. To have a chance of satisfying both
boundary conditions, we must include a second distribution of singularities along the z-axis.

To motivate the approach taken, consider the problem of slow flow at speed U past a
sphere of radius a. The corresponding problem for the Stokes streamfunction ψ(r, z) is

L2[ψ] = 0 r2 + z2 > a2, (3.66a)

ψ ∼ Ur2

2
z2 + z2 →∞, (3.66b)

ψ =
∂ψ

∂r
= 0 r2 + z2 = a2. (3.66c)

The solution is given by

ψ(r, z) =
Ur2

2
+

f

8πµ

(
r2√

r2 + z2
− a2r2

3 (r2 + z2)3/2

)
, (3.67)

where

f = −6πµUa. (3.68)

The easiest way to obtain this solution is to use spherical polar coordinates: see Exercise 6. Al-
ternatively, one can easily verify that the streamfunction (3.67) identically satisfies Laplace’s
equation for r > 0 and also satisfies the boundary conditions (3.66c) if f is given by (3.68).

Far from the sphere, when r2 + z2 is large, the first bracketed term (of order |r|) in (3.67)
dominates the final term (which is of order |r|−1). Therefore the first correction to the outer
flow due to the presence of the sphere takes the form

ψSt =
fr2

8πµ
√
r2 + z2

, (3.69)

and the corresponding pressure and velocity components are given by

pSt =
fz

4π (r2 + z2)3/2
, uSt =

frz

8πµ (r2 + z2)3/2
, wSt =

f
(
r2 + 2z2

)
8πµ (r2 + z2)3/2

. (3.70)

These may be rearranged to

pSt =
f · r

4πµ|r|3
, uSt =

(f · r)r + |r|2f
8πµ|r|3

, (3.71)
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where f = fez. This is the flow due to a point singularity at the origin called a Stokeslet. As
we have just shown, it is the leading-order far-field correction caused by a spherical obstacle
in a uniform flow. It may also be interpreted as the flow due to a point force of magnitude f
in the z-direction: Exercise 7 shows that the flow (3.71) satisfies the forced Stokes equations

∇ · uSt = 0, ∇pSt − µ∇2uSt = fδ(x), (3.72)

where δ denotes the three-dimensional delta-function.
Therefore, the spherical obstacle effectively applies a force f to the flow, and the flow

exerts an equal and opposite force −fez on the obstacle, where f is given by equation (3.68).
This is called the Stokes drag experienced by a spherical obstacle moving at low Reynolds
number through a viscous fluid.

Now, returning to flow past a slender projectile, it seems reasonable that the obstacle
should exert an effective tangential force on the fluid, as well as an effective source. Therefore
we seek a solution to the problem (3.62) in the form

ψ(r, z) =
r2

2
+ ε2

∫ 1

−1

−q(s)(z − s) ds

4π
√
r2 + (z − s)2

+

∫ 1

−1

f(s)r2 ds

8π
√
r2 + (z − s)2

, (3.73)

where both functions q(z) and f(z) are to be determined by satisfying (at least approximately)
both boundary conditions (3.62c). The corresponding pressure and velocity components are
given by

p =

∫ 1

−1

f(s)(z − s) ds

4π (r2 + (z − s)2)3/2
, (3.74a)

u =

∫ 1

−1

ε2q(s)r ds

4π (r2 + (z − s)2)3/2
+

∫ 1

−1

f(s)r(z − s) ds

8π (r2 + (z − s)2)3/2
, (3.74b)

w = 1 +

∫ 1

−1

ε2q(s)(z − s) ds

4π (r2 + (z − s)2)3/2
+

∫ 1

−1

f(s)
(
r2 + 2(z − s)2

)
ds

8π (r2 + (z − s)2)3/2
. (3.74c)

These are solutions of the inhomogeneous Stokes equations

∇ · u = ε2q(z)δ(x)δ(y), ∇p−∇2u = f(z)δ(x)δ(y)ez, (3.75)

where we now have a distribution of mass sources and point forces along the z-axis.
To apply the no-slip boundary conditions on the projectile boundary, we need to calculate

the asymptotic behaviour of the integrals in equation (3.73) as r → 0. By analogy with
equation (3.21), we find that∫ 1

−1

−q(s)(z − s) ds

4π
√
r2 + (z − s)2

∼
∫ 1

−1

q(s) sgn(s− z)
4π

ds+O
(
r2 log r

)
(3.76a)∫ 1

−1

f(s)r2 ds

8π
√
r2 + (z − s)2

∼ r2

8π

(
2f(z) log

(
2

r

)
+−
∫ 1

−1

q(s) ds

|z − s|

)
+O

(
r4 log r

)
, (3.76b)

for z ∈ (−1, 1). Now we can evaluate ψ and ∂ψ/∂r on the projectile boundary r = εS(z),
and we find that

ψ|r=εS ∼ ε
2

{
C +

S2

2

[
1 + 2A+ 2B log

(
εS

2

)]}
, (3.77a)

∂ψ

∂r

∣∣∣∣
r=εS

∼ εS
[
B + 1 + 2A+ 2B log

(
εS

2

)]
, (3.77b)
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where we use the shorthand

A =
1

8π
−
∫ 1

−1

f(s) ds

|z − s|
, B = −f(z)

4π
, C =

1

4π

∫ 1

−1
q(s) sgn(s− z) ds. (3.78)

Therefore the boundary conditions (3.62c) lead to the relations

C =
BS2

2
, A = −1

2
− B

2
−B log(εS/2), (3.79)

which may be rearranged to

q(z) =
1

4

d

dz

(
f(z)S(z)2

)
, (3.80a)[

2 log

(
2

εS(z)

)
− 1

]
f(z) +−

∫ 1

−1

f(s) ds

|z − s|
= −4π. (3.80b)

Given the projectile radius profile S(z), in principal we can solve the integral equation
(3.80b) for the force distribution f(z), and the source distribution q(z) is then determined by
equation (3.80a). In the limit ε → 0, the first term in equation (3.80b) formally dominates
the second, which suggests the leading-order approximation

f(z) ∼ −4π

2 log
(

2
εS(z)

)
− 1

. (3.81)

This approximation makes errors of order 1/ log(1/ε) and therefore is unlikely to be very
accurate unless ε is extremely small. However, it does suggest a possible route to solve
(3.80b) numerically, namely to iterate on the equation

f(z) =
−4π

2 log
(

2
εS(z)

)
− 1

(
1 +

1

4π
−
∫ 1

−1

f(s) ds

|z − s|

)
, (3.82)

with (3.81) as the first iteration.

Generalisations

We have assumed so far that the projectile is stationary (in our reference frame) and that
the outer flow is purely in the z-direction, i.e. parallel to the axis of the projectile. We could
also consider transverse motion of the outer flow and/or of the obstacle by including force
distributions in the x- and y-directions, with corresponding Stokeslet distributions analogous
to (3.71).

We can also consider cases where the obstacle is not a rigid projectile but is itself deform-
ing. For example, consider the axisymmetric slow viscous flow caused by a deforming filament
aligned with the z-axis whose boundary is given by r = εS(z, t) with respect to dimensionless
cylindrical polar coordinates (r, z). Let the normalised axial velocity of the filament be given
by W (z, t), so that the fluid velocity u = uer + wez must satisfy the boundary conditions

w(r, z, t) = W (z, t), u(r, z, t) = ε
∂S

∂t
+ εW

∂S

∂z
at r = εS(z, t). (3.83)
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We again suppose that the effect of the filament is modelled by a distribution of sources
and Stokeslets along the z-axis as in equation (3.73), i.e.

ψ(r, z, t) = ε2
∫ ∞
−∞

−q(s, t)(z − s) ds

4π
√
r2 + (z − s)2

+

∫ ∞
−∞

f(s, t)r2 ds

8π
√
r2 + (z − s)2

. (3.84)

The effective source and Stokeslet strengths q and f now depend on time t as well as z; both
will be zero outside a finite interval if the filament is of finite extent.

As shown in Exercise 9, the source and Stokeslet distribution functions q(z, t) and f(z, t)
are related to the filament velocity W (z, t) and radius S(z, t) by the equations

4πW =

[
2 log

(
2

εS

)
− 1

]
f +−

∫ ∞
−∞

f(s, t)

|z − s|
ds (3.85a)

q =
1

4

∂

∂z

(
fS2

)
+
∂

∂t

(
πS2

)
+

∂

∂z

(
WπS2

)
. (3.85b)

If the deformation of the filament is specified, then in principle (3.85) determines f(z, t) and
q(z, t). The dimensionless drag force per unit length exerted on the filament by the fluid is
then found to be given by −f(z, t)ez, as might have been anticipated.

Industrial problem: bubble deformation in glass

In glass manufacture, air bubbles may become entrained at various stages as the liquid glass
is formed and processed. The presence of even small bubbles may cause an unacceptable
reduction in both strength and optical integrity, and lead to expensive and wasteful quality
control failures. It is therefore important to understand how small entrained bubbles behave
as they are convected and deformed by the flowing liquid glass.

A small bubble will convect with the bulk glass flow, and therefore experience to leading
order a linear straining flow. To see this, suppose we are in a frame that moves with the
centroid of the bubble, which we assume is convected with the local glass velocity. Therefore,
relative to this moving frame, the glass velocity field u(x, t) is zero at x = 0. By Taylor
expansion, the local velocity field experienced by the bubble is therefore given by

u(x, t) ∼ (x ·∇)u(0, t) +O
(
|x|2

)
. (3.86)

The right-hand side gives a locally linear flow as anticipated. If we assume that the glass is
undergoing an extensional flow, as would be the case in a stretching fibre or sheet for example,
then this local velocity will be a straining flow of the form

u(x, t) ∼

a(t)x
b(t)y
c(t)z

 (3.87)

with respect to suitably chosen axes, where a+ b+ c ≡ 0 by incompressibility.
For additional simplicity, we will suppose further that the flow is axisymmetric, so that

a = b and

u(x, t) ∼ α(t)

−x/2−y/2
z

 = −α(t)r

2
er + α(t)z ez, (3.88)
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Figure 3.4: Schematic of a small bubble being convected and elongated in an extensional flow.

r  S(z, t)

α

α

z

r

Figure 3.5: Schematic of a thin bubble subject to a straining flow of strength α.

with respect to cylindrical polar coordinates (r, z). Then c(t) = α(t) is the axial strain rate.
This sort of local flow would occur, for example, in the case of a bubble being convected along
the axis of a stretching fibre, as shown schematically in Figure 3.4.

It is a familiar observation that a small bubble subjected to such a stretching flow rapidly
becomes elongated, thin and “pointy”. For example, if a jet of honey is dripped from a spoon,
one can easily observe that small bubbles become stretched out as they are convected by the
flow. Hence we can try to describe the behaviour illustrated in Figure 3.4 using a version of
slender body theory.

Axisymmetric model of a thin deforming bubble

We will consider the model problem illustrated in Figure 3.5. A thin axisymmetric bubble
along the z-axis is subject to a straining flow of strength α. The flow in the surrounding fluid
is governed by the Stokes equations (3.52). The velocity approaches the specified linear flow
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in the far field, i.e.

u ∼ −α(t)r

2
er + α(t)z ez as r →∞. (3.89)

This corresponds to a far-field Stokes streamfunction

ψ ∼ αr2z

2
as r →∞. (3.90)

On the bubble surface r = S(z, t) we have the kinematic and dynamic boundary conditions

u =
∂S

∂t
+ w

∂S

∂z
σ · n = (−P + γκ)n, (3.91)

where σ is the stress tensor, P (t) is the pressure inside the bubble, γ is the surface tension;
n and κ are the unit normal and curvature of the bubble surface, given by

n =
er − Sz ez√

1 + S2
z

, κ =
1

S
√

1 + S2
z

− Szz

(1 + S2
z )3/2

. (3.92)

(Here we have used the shorthand Sz = ∂S/∂z, Szz = ∂2S/∂z2.)

The bubble pressure P (t) is determined by conservation of the gas inside the bubble. If
this gas is incompressible, then the net volume of the bubble is specified, i.e.∫ `

−`
πS(z, t)2 dz ≡ V ≡ 4πa3

3
, (3.93)

where ` is the half-length of the bubble. Here for later convenience we have introduced the
radius a of the sphere with the same volume as the bubble. One can easily generalise (3.93)
to the case of a compressible gas, with the pressure and volume related through Boyle’s Law
(for example).

Now we non-dimensionalise the problem to exploit the assumed slenderness of the bubble.
Suppose that the bubble length and radius are of order L and εL respectively, where ε� 1.
We also assume that the (possibly time dependent) strain rate α is of order ᾱ. We then non-
dimensionalise the spatial cordinates r, time t, bubble radius S, streamfunction ψ, pressure
p and stress tensor σ as follows:

r = L r̃, t = ᾱ−1 t̃, S = εL S̃, (3.94a)

ψ = ᾱL3 ψ̃, p = µᾱ p̃. σ = µᾱ σ̃. (3.94b)

As shown in Exercise 11, the boundary conditions (3.91) on the bubble surface are transformed
to (with tildes now dropped)

u = ε
∂S

t
+ εw

∂S

∂z
, σrr = −P +

1

CaS
+O

(
ε2
)
, σrz = ε

∂S

∂z
(σzz − σrr) +O

(
ε3
)

(3.95)

at r = εS(z, t), where P (t) is the dimensionless bubble pressure and

Ca =
µᾱεL

γ
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is a scaled capillary number. Next considering the volume constraint (3.93) in dimensionless
form we obtain ∫ `

−`
S(z, t)2 dz ≡ 4a3

3ε2L3
, (3.96)

where the bubble half-length ` is made dimensionless with the length-scale L.
Now we can choose our scalings L and εL for the bubble length and radius respectively

such that both Ca and the right-hand side of equation (3.96) are identically equal to 1. This
choice leads to the definitions

L =

(
4

3

)1/3

a ε−2/3, ε =
3

4

(
γ

µᾱa

)3

. (3.97)

Hence our assumption that the bubble is long and thin is valid provided µᾱa/γ is large. This
dimensionless parameter measures the ability of the viscous stress caused by the straining
flow to overcome surface tension and stretch out the bubble. If this parameter is not large,
then surface tension dominates, and the bubble is not deformed signifcantly by the flow but
remains approximately spherical.

From equation (3.95), we see that the shear stress σrz at the bubble surface is of order ε.
On the other hand, Exercise 9 shows that σrz is of order f(z, t)/ε at r = εS, where f(z, t) is
the Stokeslet distribution strength (in the notation of equation (3.73)). Hence the Stokeslet
distribution must be of order ε2, and we therefore seek solutions for the streamfunction and
pressure of the forms

ψ(r, z, t) =
αr2z

2
+ ε2

∫ `

−`

−q(s, t)(z − s) ds

4π
√
r2 + (z − s)2

+ ε2
∫ `

−`

f(s, t)r2 ds

8π
√
r2 + (z − s)2

, (3.98a)

p(r, z, t) = ε2
∫ `

−`

f(s, t)(z − s) ds

4π (r2 + (z − s)2)3/2
. (3.98b)

By expanding the velocity and stress as r → 0 and applying the boundary conditions
(3.95), as shown in Exercise 11, we then find that the bubble radius S(z, t) satisfies the
equation

∂S

∂t
+ αz

∂S

∂z
+

(
α− P

2

)
S +

1

2
= 0, (3.99)

with respect to suitable dimensionless variables. The dimensionless bubble pressure P (t) is
then determined by the volume requirement (3.96), which reads∫ `

−`
S(z, t)2 dz ≡ 1, (3.100)

when the definitions (3.97) are adopted.
Once the strain rate α(t) is specified, equation (3.99) gives a linear first-order PDE for

S(z, t). However, the function P (t) is unknown a priori and must be found as part of the
solution from the nonlinear constraint (3.100). This coupled problem appears formidable
in general, but actually it admits a lot of analytical solutions. In particular, it is easily
verified that (3.99) may be satisfied identically whenever S(z, t) is a polynomial in z with
time-dependent coefficients, i.e.

S(z, t) =

N∑
n=0

cn(t)z2n, (3.101)
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where we have assumed symmetry about z = 0 and therefore ignored odd powers of z.
Substitution of (3.101) into (3.99) yields a system of ODEs for the coefficients cn(t).

For example, consider the simple case where N = 1 so that S(z, t) is just a quadratic
function of z. Since S(z, t) = 0 at the two ends z = ±`(t), it must take the form

S(z, t) = c(t)
(
`2 − z2

)
. (3.102)

We then find from the volume constraint (3.100) that c(t) =
√

15/4`5/2, i.e.

S(z, t) =

√
15

4`5/2
(
`2 − z2

)
. (3.103)

Finally, plugging (3.103) into equation (3.99), we find that

P (t) = α(t) +

√
5`(t)

3
, (3.104)

where `(t) satisfies the ODE
˙̀(t)

`(t)
= α(t)−

√
`(t)

15
. (3.105)

In the steady case where α is constant, we therefore predict a steady state bubble length
` = 15α2. This shows how the bubble becomes increasingly elongated as the strength α of the
applied straining flow increases. Also note that the quadratic solution (3.103) gives pointed
tips at the two ends z = ±` of the bubble, in agreement with observations of bubbles in honey
or syrup, for example.

Exercises

1. Evaluate the coefficient of r2 in the expansion (3.15) in the limit δ → 0, and hence show
that

φ(r, z) ∼ q(z)

2π
log
(r

2

)
− 1

4π
J(z) + r2

{
−q
′′(z)

8π
log
( r

2e

)
+

1

16π

d2J

dz2

}
as r → 0, where J(z) is shorthand for

J(z) = −
∫ 1

−1

q(s) ds

|z − s|
.

Reach the same conclusion by seeking a solution of Laplace’s equation (3.5a) with
behaviour

φ(r, z) ∼ q(z)

2π
log
(r

2

)
− 1

4π
J(z) + C1(z)r

2 log r + C2(z)r
2 + · · · as r → 0.

2. Consider the problem (3.5) in a boundary layer of thickness order ε near the projectile.
Show that the rescaling

r = εR, φ(r, z) = Φ(R, z)
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results in the leading-order inner problem

1

r

∂

∂r

(
r
∂Φ

∂r

)
= 0 R > S(z),

∂Φ

∂R
= S′(z) R = S(z).

Deduce that the boundary condition (3.5b) can be replaced by the matching condition

φ(r, z) ∼ S(z)S′(z) log r as r → 0.

3. The disturbance velocity potential φ(r, z) for flow past a slender projectile with bound-
ary r = εS(z) satisfies the problem (3.5). Show that the velocity at the surface of the
projectile is of magnitude

1 + ε2vs where vs =
∂φ

∂z

∣∣∣∣
r=εS(z)

+
S′(z)2

2
.

Suppose the projectile is ellipsoidal, with dimensionless radius profile r = εS(z) where

S(z) =
√

1− z2.

Use equations (3.21) and (3.22) to evaluate q(z) and the resulting behaviour of φ(r, z)
as r → 0. Hence show that the surface velocity correction in this case is given by

vs = log

(
2

ε

)
− 2− z2

2 (1− z2)
.

[This predicts infinite velocity at z = ±1: the slender body limit fails in neighbourhoods
of these two end points.]

4. We wish to calculate the electric potential φ(r, z) due to a thin charged metal rod with
dimensionless radius profile r = εS(z) for −1 < z < 1. In dimensionless variables, φ
satisfies the normalized problem

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂z2
= 0,

φ = 1 at r = εS(z) ,

φ→ 0 as r2 + z2 →∞,

and the normalised capacitance of the rod is then given by

C = −2π

∫ 1

−1
r
∂φ

∂r

∣∣∣∣
r=εS(z)

dz.

Seek a solution for φ in the form (3.10). Show that

C = −
∫ 1

−1
q(z) dz,
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where q(z) satisfies the integral equation

2q(z) log

(
2

εS(z)

)
+−
∫ 1

−1

q(s) ds

|z − s|
= −4π. (?)

Deduce that

q(z) ∼ − 2π

log(2/ε)
+O

(
1

log2(2/ε)

)
as ε→ 0.

Show that the leading-order approximation is exact for the case of an ellipsoid where
S(z) =

√
1− z2. [This logarithmic approximation will not be very accurate in general

unless ε is extremely small! For moderately small ε it is usually better to solve the
integral equation ∫ 1

−1

q(s) ds√
ε2S(z)2 + (z − s)2

= −4π

numerically.]

5. Consider a porous bioreactor consisting of a single tube of dimensionless radius ε,
length L and variable permeability λ(z). The walls z = 0 and z = L of the porous
medium are impermeable. The dimensionless input and outlet pressures are equal to 1
and Pout ∈ (0, 1) (where the pressure as r →∞ has been normalised to zero).

The dimensionless pressure p(r, z) in the porous medium satisfies the problem

∇2p = 0 r > ε, 0 < z < L,

−r∂p
∂r

= Q(z) r = ε, 0 < z < L,

p ∼ −q log(r) + o(1) r →∞, 0 < z < L,

∂p

∂z
= 0 r > ε, z = 0 and z = L,

where Q(z) is the flux out of the tube and q =
1

L

∫ L

0
Q(z) dz.

The tube pressure P (z) satisfies the problem

P ′′(z) = Q(z) = λ(z)
[
P (z)− p(ε, z)

]
0 < z < L,

P = 1 z = 0,

P = Pout z = L.

(a) Consider the case λ = constant. By separating the variables, show that

Q(z) =
c0
2

+
∞∑
n=1

cn cos
(nπz
L

)
,

p(ε, z) =
c0
2

log

(
1

ε

)
+

∞∑
n=1

(
K0(nπε/L)

(nπε/L) K1(nπε/L)

)
cn cos

(nπz
L

)
,

P (z) = 1 +mz +
c0z

2

4
+

∞∑
n=1

L2cn
n2π2

[
1− cos

(nπz
L

)]
,
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for some constants cn, where K denotes the modified Bessel function of the second
kind and where m = P ′(0) is related to the outlet pressure by the equation

1 +mL+
c0L

2

4
+
∞∑
n=1

L2cn
n2π2

[1− (−1)n] = Pout.

Hence obtain a linear system of equations for the coefficients cn and solve the
problem numerically by truncating at a large but finite value of n.

(b) Now consider the case where the permeability λ is a function of z. Suppose we wish
to design the permeability profile λ(z) such that the flux into the porous medium
is uniform, i.e. Q is independent of z.

For what permeability profile λ(z) is Q(z) constant? For what range of parameter
values does such a profile exist?

6. Slow flow past a sphere
Transform the problem (3.66) to spherical polar coordinates (R,φ) ∈ [0,∞)× [0, π] such
that z = R cosφ, r = R sinφ. Show that, if ψ is of the form

ψ(R,φ) = f(R) sin2 φ,

then

L[ψ] =

(
d2f

dr2
+

2f

R2

)
sin2 φ,

and deduce that solutions exist of the form f(R) ∝ Rk, with k = −1, 1, 2 or 4. Hence
show that the solution of the problem (3.66) is

ψ = U sin2 φ

(
R2

2
− 3aR

4
+
a3

4R

)
=
Ur2

2
− 3Uar2

4
√
r2 + z2

+
Ua3r2

4 (r2 + z2)3/2
.

7. Stokeslet as a point force
Here we use a three-dimensional Fourier transform, defined for a (suitably integrable)
function F : R3 → R by

F̂ (k) =

∫∫∫
R3

F (x)e−ik·x dx,

where x = (x, y, z) and k = (k, `,m) is the vector of transform variables. The corre-
sponding inverse transform is

F (x) =
1

8π3

∫∫∫
R3

F̂ (k)eik·x dk.

Consider Stokes flow due to a point force at the origin of strength fez, so the velocity
u and pressure p satisfy equations (3.72). Show that the Fourier transformed pressure
and velocity components are given by

µû

f
=

−km
(k2 + `2 +m2)2

,
µv̂

f
=

−`m
(k2 + `2 +m2)2

,

µŵ

f
=

k2 + `2

(k2 + `2 +m2)2
,

p̂

f
=

−im

k2 + `2 +m2
.
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Given [or you could try to calculate this if you like] that the appropriate inverse trans-
form for p is

p =
fz

4π (x2 + y2 + z2)3/2
,

deduce that the corresponding velocity components are given by

u =
fxz

8πµ (x2 + y2 + z2)3/2
, v =

fyz

8πµ (x2 + y2 + z2)3/2
, w =

f
(
x2 + y2 + 2z2

)
8πµ (x2 + y2 + z2)3/2

,

which are equivalent to (3.70).

8. Show that, for an ellipsoidal projectile, with S(z) =
√

1− z2, the integral equation
(3.80b) is solved exactly by a constant force distribution

f =
−4π

2 log(2/ε)− 1
,

and find the corresponding source distribution q(z). Try to solve (3.80b) numerically
for general S(z), and use this exact solution as a test case. [You may find it easier to
formulate the problem in the form

f(z)−
∫ 1

−1

f(s) ds√
ε2S(z)2 + (z − s)2

= 4π.]

9. Show that, as r → 0, the leading-order behaviour of the streamfunction ψ in equation
(3.84) is given by

ψ(r, z, t) ∼ A(z, t)r2 +B(z, t)r2 log(r/2) + ε2C(z, t),

where the functions A, B, C are as in equation (3.78), i.e.

A(z, t) =
1

8π
−
∫ ∞
∞

f(s, t)

|z − s|
ds, B(z, t) = −f(z, t)

4π
, C(z, t) =

1

4π

∫ ∞
−∞

q(s, t) sgn(s− z) ds.

Show that the velocity components and pressure are locally given by

u ∼ −∂A
∂z

r − ∂B

∂z
r log(r/2)− ε2

r

∂C

∂z
,

w ∼ 2A+B + 2B log(r/2),

p ∼ −2
∂A

∂z
− 2

∂B

∂z
log(r/2).

By evaluating the velocity at the filament surface r = εS, show that

W = 2A+B + 2B log

(
εS

2

)
,

∂

∂z

(
BS2 − 2C

)
=

∂

∂t

(
S2
)

+
∂

∂z

(
WS2

)
,

and hence obtain the relations (3.85).

Evaluate the stress components and deduce that the leading-order dimensionless stress
at the filament surface r = εS(z, t) is given by

σ · n ∼
(

2

S2

∂C

∂z
− 2

S

∂

∂z
(BS)

)
er +

2B

εS
ez.
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Deduce that the net drag force per unit length exerted on the filament by the fluid is
given by

D =

∫ 2π

0
σ · n εS dθ = −f(z, t)ez.

[Thus the drag force distribution by the fluid on the filament is equal and opposite to the
force distribution by the filament on the fluid, as expected.]

10. Viscous drag in fibre drawing
Return to the fibre-drawing problem described in §2.4. Consider a viscous fibre with
radius S(z, t) and axial velocity w(z, t) (made dimensionless as in §2.4). Now suppose
that the external atmosphere exerts a shear stress (εµVin/L)τ(z, t) at the boundary
r = S(z, t) (so that τ is dimensionless).

Show that the Trouton model (2.69) is modified to

∂

∂t

(
S2
)

+
∂

∂z

(
wS2

)
= 0,

∂

∂z

(
3S2∂w

∂z

)
= −2Sτ.

Now suppose that the fibre is surrounded by a Newtonian fluid with much smaller
viscosity µ̃, such that

µ̃

µ
= ε2λ,

with λ = O(1). Assuming that inertia effects are negligible, deduce that the cross-
sectional area A(z, t), extensional velocity w(z, t) and net drag force f(z, t) satisfy the
coupled equations

∂A

∂t
+

∂

∂z
(wA) = 0,

∂

∂z

(
3A

∂w

∂z

)
= λf,

f log

(
4π

ε2eA

)
+−
∫ ∞
∞

f(s, t)

|z − s|
ds = 4πw.

11. Consider the deformation of a slender bubble in a viscous fluid subject to the linear
straining flow (3.89). Perform the non-dimensionalisation (3.94) and hence obtain the
approximate boundary conditions (3.95).

Now suppose that the streamfunction and pressure are written in the form (3.98). By
using the results of Exercise 9, deduce that

u ∼ −αr
2

+
ε2q(z)

2πr
, w ∼ αz, σrr ∼ −α−

ε2q(z)

πr2

as r → 0. By applying the boundary conditions (3.95), show that the bubble radius
S(z, t) satisfies equation (3.99).

12. Show that the substitution

`(t) = 60

(
φ̇(t)

φ(t)

)2

transforms equation (3.105) to

φ̈(t)− α(t)

2
φ̇(t) = 0.
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Consider the steady drawdown of a fibre, with axial velocity w(z) given by equation
(2.72), i.e.

w(z) = emz,

where m = logD and D > 1 is the draw ratio. Suppose a small bubble starts at t = 0
at the top of the fibre axis, i.e. r = z = 0, and is then convected along the fibre by the
flow. Show that the distance z moved by the bubble along the fibre and the axial strain
rate α experienced by the bubble at time t are given by

z =
1

m
log

(
1

1−mt

)
. α(t) =

m

1−mt
.

Show that the general solution of equation (3.105) in this case is given by

`(t) =
15m2

(1−mt)
(
k −
√

1−mt
)2 ,

where the integration constant k is related to the initial bubble length `0 = `(0) by

k = 1 +m

√
15

`0
.


