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Abstract. A minor error in Howison, Ockendon & Oliver (J. Eng. Math. 48:321–
337, 2004) obscured the fact that the points at which the free surface turns over in
the solution of the Wagner model for the oblique impact of a two-dimensional body
are directly related to the turnover points in the equivalent normal impact problem.
This note corrects some of the earlier results given in Howison, Ockendon & Oliver
(2004) and discusses the implications for the applicability of the Wagner model.

1. Introduction

Water impact problems have important applications in areas ranging
from the shipbuilding industry to ink-jet printing. The simplest model
for the entry of a solid into a liquid half-space has a long history going
back to [11]. One aspect that is the subject of much current research
is that of oblique entry.

There is a wealth of literature regarding the constant velocity oblique
water-entry of a rigid wedge, for which there is a similarity solution.
This scenario is considered in, for example, [1, 2, 3]. For a review of
these and others see [10] and the references within. The small-time
oblique water-entry of a parabola is considered in [4].

This note looks at more general impactors and, in particular, is
concerned with phenomena that can occur when the impact is nearly
tangential. Our approach is based on the analysis given in [7], who use
the ideas of [11] and the method of matched asymptotic expansions to
model general geometries. We will find that the correction of an error
made in [7] in the specific example of oblique wedge impact leads to a
surprising observation, which applies not only in that example, but also
for more general cases. We note how a transformation of the leading-
order problem allows us to readily write down the solution and describe
the results of this observation on the pressure on the impactor and the
splash jets.

Section 2 of [7] describes the dimensionless Wagner model for the
oblique impact of a rigid two-dimensional body into an ideal, incom-
pressible liquid half-space beneath an initially horizontal free surface.
We start from the dimensional model, in which the liquid lies in the
lower half-space y∗ < 0, where (x∗, y∗) are Cartesian coordinates with
origin at the point of impact, which is taken to begin at time t∗ = 0.
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Here and hereafter an asterisk indicates a dimensional variable. The
body profile is f and its position is given by

y∗

L
= f

(

εx∗

L
− Ut∗

T

)

− s

(

t∗

T

)

,

where Ls is a typical penetration depth; ε is a typical ‘deadrise’ angle
between the tangent to the impactor and the undisturbed free surface;
T is a typical impact timescale, so that L/T is a typical normal impact
speed; and UL/εT is a typical tangential impact speed, so that U/ǫ is
the dimensionless ratio of the tangential to the normal impact speeds.
We assume that f(0) = 0 and f increases as |x| increases. For example,
for a parabola whose radius of curvature at the origin is R and whose
centre of curvature lies above its minimum, we set f(x) = x2/(2R),
with ε =

√

L/R. We consider the distinguished limit examined in [7]
in which U = O(1) as ε → 0, so that the angle of attack of the impactor
to the undisturbed free surface is comparable to the deadrise angle.

After scaling distances (x∗, y∗), time t∗, the free surface elevation h∗,
the velocity potential φ∗and the pressure p∗ with L/ε, T , L, L2/εT and
ρL2/εT 2, respectively, where ρ is the liquid density, the dimensionless
body profile becomes

y = ε (f(x− Ut)− s(t))

and we obtain, as described in, for example, [9], the mixed boundary
value problem for the velocity potential φ(x, y, t) and free surface y =
εh(x, t) shown in Figure 1. The two turnover points (where ∂h/∂x is
infinite) are x = d±(t), y = 0 to lowest order.

We will now describe the surprising consequences of the fact the 3/4
in the coefficient of the square-root term in (6) in §2.2.1 of [7] should
actually be a 3/2. We note that the 3/4 in the coefficient of the arcsine

φy = ht

d−(t) d+(t)

φy = htφ = 0, φ = 0,φy = −ṡ(t)− Uf ′ (x− Ut)

∇2φ = 0

Figure 1. The linearised leading-order outer problem for the velocity potential. The
far-field conditions are given by φ(x, y, t) = O(1/r) as r2 = x2 + y2 → ∞ and
h(x, t) → 0 as |x| → ∞. The initial conditions are given by h(x, 0) = 0, and
d±(0) = 0. The velocity potential has square-root behaviour at the turnover points
x = d±(t). The problem is closed by the Wagner conditions holding at each free
point, namely h(d±(t), t) = f(d±(t)− Ut)− s(t).
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term remains correct. Even though this equation was written down
for the special case of wedge impact, our remarks will apply to more
general impactors. We will also highlight the resulting corrections to
the leading-order behaviour of the free points, free surface and pressure
on the impactor.

2. Location of the turnover points for wedge impacts

If we define the displacement potential by

Ψ(x, y, t) = −
∫ t

0
φ(x, y, τ)dτ,

the mixed boundary value problem becomes that displayed in Figure 2.
The important thing to note here is that this problem contains no time
derivatives and that Ψ, unlike φ, has bounded gradient at the turnover
points. The solution of the resulting Riemann-Hilbert problem of index
−1 is given by (3) in [7], with consistency conditions (4).

We consider the case of symmetric wedge impact, for which f(x) =
|x|, with s(t) = t, in which case the turnover points can be written as
d± = a±t. Correcting 3/4 to 3/2 in the coefficient of the square-root
term in (6) of [7], we make the change of variable

a± 7→ U ± a±,

in the resulting equations, so that, upon defining q1 = a+ + a− and
q2 = a+−a−, we can reduce the problem to finding q1 and q2 such that

q2 arcsin

(

q2
q1

)

= π −
√

q21 − q22, πq21 = (q21 − q22)
3/2. (1)

Ψ = 0,

d−(t)

Ψ = 0,

d+(t)

Ψy = −hΨy = −h Ψy = s(t)− f (x− Ut)

∇2Ψ = 0

. The displacement potential has (3/2)-power behaviour at the turnover
points x = d±(t).

Figure 2. The linearised leading-order outer problem for the displacement potential.
The far-field conditions are given by Ψ(x, y, t) = O(1/r) as r2 = x2 + y2 → ∞ and
h(x, t) → 0 as |x| → ∞. The initial condition is given by d±(0) = 0
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Assuming that the free surface does not separate from the wedge apex
and that the turnover points are advancing, we must force d− < Ut <
d+, i.e. −q1 < q2 < q1 and q1 > 0. It is then possible to show by
elementary methods that the unique solution to (1) is given by q1 = π,
q2 = 0. Thus the turnover points for an obliquely impacting wedge are
given by d± = (U ± π/2)t.

This means that the critical tangential impact speed, U∗, at which
the model breaks down in the vicinity of the trailing turnover point,
is in fact U∗ = π/2 rather than 0.4853 as given in [7]. At this critical
value, the trailing turnover point stops advancing, leading to a local
instability to disturbances out of the (x, y)-plane as described in [8].

The correct form of the turnover points gives that, surprisingly, the
leading-order outer free surface in the oblique wedge entry problem is
still symmetric about the apex of the wedge, x = Ut, at leading order,
even though the wedge is moving rapidly horizontally.

To see why the symmetry persists and to extend our analysis to
more general profiles, we note that under the change of variables

d± 7→ Ut+ d±, z 7→ Ut+ z, ζ 7→ Ut+ ζ

where z = x+ iy, equation (3) in [7] reduces to

Ψx−iΨy =
i
√

(z − d+) (z − d−)

π

∫ d+

d−

s(t)− f (ζ)
√

(d+ − ζ) (ζ − d−)

dζ

(ζ − z)
, (2)

with the consistency conditions
∫ d+

d−

(s(t)− f (ζ)) ζj
√

(d+ − ζ) (ζ − d−)
dζ = 0 (3)

for j = 0, 1.
These are exactly the form of the solution to the corresponding

normal impact problem for the body y = f(x) − s(t). Hence, if the
normal impact problem has a solution, say with turnover points d±(t),
leading-order outer free surface h(x, t) and leading-order displacement
potential Ψ(x, y, t), then d±(t)+Ut are the turnover points, h(x−Ut, t)
is the leading-order outer free surface and Ψ(x−Ut, y, t) is the leading-
order displacement potential for the corresponding oblique impact. In
the particular example of a symmetric body profile, the turnover points,
displacement potential and free surface are symmetric about the mini-
mum of the impactor, although we note that the velocity potential and
pressure are not. We note that this is in agreement with the prediction
in [4] that the leading-order displacement potential and turnover points
in the oblique impact of a parabola at small times are unaffected by
the oblique component of impact velocity.
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Pressure on an obliquely entering wedge for various values of U
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Figure 3. The pressure (in similarity form) on the contact set for a wedge-shaped
impactor for various values of U . The wedge apex is at η = U . The pressure about
the apex is asymmetric; as we increase U up to the critical velocity U = π/2 where
d− = 0, the pressure at d− decreases to zero. The pressure is always negative and
infinite at the moving apex, but is non-singular when U = 0.

These results generalise to an arbitrary oblique impact component
of velocity, say a body profile of the form y = f(x−X(t))− s(t).

3. Implications of the corrected theory

For the example of wedge entry with s(t) = t, the above points imply
that Figures 4a-c in [7] are incorrect. Figures 4a-b should both indicate
the symmetry; the former plot of the turnover points as a function of
U should be the straight lines x = (U ± π/2)t and the latter should
depict a free surface profile symmetric about the wedge apex, obtained
by translating the normal impact free surface by Ut in the x-direction.

The corrected pressure plot becomes more interesting. The pressure
is given by p = −φt = Ψtt. Given the symmetry in the problem,
we can evaluate (2) on the impactor, integrate, return to the original
coordinates and then twice differentiate with respect to t to explicitly
calculate an expression for p(x, t) = P (η) where η = x/t:

P =
(π/2)2 − U2 + 2Uη
√

(π/2)2 − (η − U)2
+
2U2

π
log

∣

∣

∣

∣

∣

∣

π/2−
√

(π/2)2 − (η − U)2

η − U

∣

∣

∣

∣

∣

∣

. (4)
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We plot this in Figure 3 for various values of U . The pressure becomes
negative and infinite at the apex as expected. Although this negative
pressure persists for all U > 0, as we increase U , the region of negative
pressure grows, particularly on the trailing side of the wedge. At break-
down, we have U = π/2 and the point of zero pressure on the trailing
side coincides with the turnover point. We can verify this by noting the
expansion of the pressure on the body near the trailing turnover point
is given by

P (η) =
(U − π/2)2

√
π
√

η − (U − π/2)
+O

(

√

η − (U − π/2)
)

,

as η − (U − π/2) ↓ 0. Hence, the coefficient of the inverse square-root
singularity vanishes when U = π/2. Naturally, this also applies to the
inverse square-root singularity in the leading-order outer velocity.

The presence of a region of negative pressure on the wedge raises
the possibility of cavitation occurring prior to breakdown. It is possible
that a patch cavity forms on the impactor in this region of negative
pressure. The dynamics of such cavities are discussed in [5, 6]. Our
analysis has implicitly assumed that this does not happen, and also
does not affect the breakdown caused by the trailing turnover point no
longer advancing.

The breakdown near the trailing edge as we approach the critical ve-
locity has implications for the splash jet there. The splash jet forming at
each turnover point emanates from a jet-root region near these points,
which are described by Helmholtz flows, as discussed in [8]. In local
coordinates moving with the body, the flow in the splash jets is governed
by the zero-gravity shallow-water equations for the jet thickness h̃ and
tangential velocity component ũ, as described in [8]. These need to
satisfy boundary data at the leading and trailing turnover points each
one of which is modelled in [9] by

h̃ =
π

16

S2

U2
, ũ = 2U , (5)

where S is the coefficient of the square root in the leading-order outer
velocity potential as we near the respective turnover points and U is
their speed. The coefficient of the square root in the leading-order outer
velocity potential can be calculated from a time differentiation of (2).
The factor of 2 in (5) arises from the fact that the jet-root region moves
with speed U , in addition to the asymptotic value of the fluid velocity
in the jet in the Helmholtz flow, as discussed in [8].

It is simple to show that the leading and trailing splash jets are
not symmetric and that the length of the trailing jet is given by (π/2−
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U)t, which vanishes as we approach the critical velocity. The maximum
thickness of the trailing splash jet is found at the turnover point and
is given by t/4. Thus, as we approach the critical forward velocity, the
aspect ratio of the maximum width to the length of the jet blows up.
This means that our assumption of a long, slender jet breaks down
as U ↑ π/2. Furthermore, since the characteristics for the zero-gravity
shallow-water equations are given by particle paths, at breakdown the
characteristics are parallel to the boundary curve and hence the model
is no longer valid.

4. Generalisations

It is natural to ask whether we can deduce something similar for a
more general symmetric body profile, say f(x) = |x|n and more general
impact speed, say s(t) ∝ tm where m > 0 and n ≥ 1. Given the
symmetry of the body we may still seek a solution d± = Ut ± d(t).
Hence, the consistency condition for j = 1 in (3) is trivially satisfied,
whilst the second consistency condition can be integrated upon making
the substitution ζ = d(t) sin θ. We find

d± = Ut±
(

π

2nB((n+ 1)/2, (n+ 1)/2)

)1/n

tm/n,

where B(·, ·) is the beta function.
Breakdown occurs when the trailing turnover point stops advancing.

Thus we can enumerate the following cases:

• for m < n, this happens after a finite time when

t =

(

π

Un2nB((n+ 1)/2, (n+ 1)/2)

)1/(n−m)

;

• for m = n, this happens at t = 0 when

U =
π

2nB((n+ 1)/2, (n+ 1)/2)
,

with the solution valid for all time for U less than this critical
value, and the behaviour unclear for U larger than this critical
value;

• for m > n, this happens at t = 0 for all U > 0.

We can again relate this to the pressure. Upon evaluating (2) on
the impactor, a simple asymptotic expansion near the trailing turnover
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Pressure on an obliquely entering parabola where U = 1, for various values of t
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Figure 4. The pressure on a parabolic impactor for various times with U = 1.
The critical time at which the trailing turnover point stops advancing is given
by t = 1/2. It is clear that the pressure vanishes at d− = −1/2 when
t reaches this critical value. At times t = 0.1, 0.2, 0.4, 0.5 respectively the
pressure minimum is at x = −0.1764, −0.2423, −0.1937, −0.1181, with value
p = 1.1377, 0.2359, −0.4222, −0.6006.

point, Ut− d(t), allows us to find the coefficient of the inverse square-
root singularity in the pressure near there. We find that

p ∼ A(t)
√

x− (Ut− d(t))
as x → Ut− d(t),

where

A(t) =

√

d(t)√
2π

(U − ḋ(t))2 ×

lim
γ→0

[
∫ d

−d+γ

1

(ξ + d)3/2
s(t)− f(ξ)√

d− ξ
dξ −

(

s(t)− f(−d)√
d

)
√

2

γ

]

,(6)

so that the coefficient of the inverse square-root singularity vanishes as
the speed of that turnover point tends to zero. This is consistent with
the wedge example we described previously.

The case m = 1, n = 2 is displayed in Figure 4. In this case, d± =
Ut ±

√
2t and the critical time at which the trailing turnover point

stops advancing is t = 1/(2U2). Prior to breakdown, we can clearly see
a region of negative pressure forming on the impactor, particularly on
the trailing side. This region grows in size as we approach the critical
time, and the trailing point of zero pressure coincides with the trailing
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Figure 5. Characteristic diagram of the leading-order trailing splash jet problem for
the constant-speed oblique impact of a parabola. The bold curve is the turnover
curve, x̃ = d(t). We parametrise the boundary data, as given by (5), by s on
this curve. The straight lines are the characteristics, along which time-of-travel is
parametrised by τ , depicted emanating from this curve. Note that as we approach
the critical time, depicted by the dashed line, the slope of the characteristics becomes
unbounded.

turnover point at t = 1/(2U2), with the inverse square-root singularity
vanishing.

As in the case of wedge impact, we have the possibility of cavitation
occurring on the impactor prior to breakdown due to this region of
negative pressure.

Considering the example of the parabola, it is simple to solve the
zero-gravity shallow-water equations governing the jet problem using
the method of characteristics. We parametrise along a characteristic
by τ and parametrise the boundary data on the turnover curve given
by (5) by s ∈

(

0, 1/2U2
)

. Breakdown corresponds to s → 1/(2U2).
If, in local coordinates moving with the body, we denote the distance
along the body by x̃ and the corresponding component of velocity in
the x̃-direction by ũ, it is trivial to note that the leading-order char-
acteristics are particle paths, as shown in, for example, [9]. We depict
the characteristic diagram in Figure 5. We note that

∂x̃

∂τ
= ũ = 2

(

U − 1√
2s

)

→ 0 as s → 1

2U2
,
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so that no information is carried into the jet at breakdown, as was the
case with the wedge impact. Equivalently, there is no flow of fluid into
the jet at this time, although the thickness of the jet at the turnover
curve remains finite. It can be shown that this form of breakdown in
the trailing splash jet extends to more general profiles where m < n.

5. Summary

Having corrected an apparently minor error in [7], we discussed the
solution and breakdown of Wagner theory for two-dimensional oblique
impact problems. In particular, the absence of any time dependence
in the displacement potential formulation of the leading-order outer
problem enabled us to transform the oblique impact problem to the
corresponding normal impact problem. We were thus able to show that
the leading-order turnover points and leading-order outer free surface
are readily determined from their normal impact counterparts. In the
particular example of a symmetric body profile, the turnover points
and free surface are symmetric about the minimum of the impactor
to leading-order. There is no symmetry, however, in the leading-order
outer velocity potential or pressure.

Our model for oblique impacts breaks down at the first instant
that one of the turnover points stops advancing. This breakdown is
characterised in several ways:

• The local-in-space-and-time linear stability analysis of [8] dictates
that the problem is no longer stable to out-of-plane perturbations
when the turnover point is not advancing.

• Solving the hyperbolic problem for the leading-order outer free
surface is no longer possible as we lose causality; the characteristics
are exiting the turnover curve rather than entering it. Thus we
cannot determine the width of the equivalent flat plate in Wagner
theory and hence the location of the turnover points.

• The coefficients of the inverse-square root singularities in the ex-
pansions of the leading-order outer pressure on the impactor and
leading-order outer velocity at the trailing turnover point vanish
at breakdown.

• The solution to the zero-gravity shallow water equations in the
splash jet problem becomes invalid as the characteristics are par-
allel to the boundary curve.
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We finally noted that, in both the oblique impact of a wedge and
of a parabola, regions of negative pressure form on the impactor prior
to breakdown. These regions grow in size as we approach breakdown,
with the trailing points of zero pressure coinciding with the trailing
turnover point at breakdown. Hence, it is possible that a patch cavity,
as modelled in [6], forms on the impactor due to this negative pressure.

The ideas outlined in this paper extend to three-dimensional oblique
impact problems. Work on this is currently ongoing, and will be re-
ported elsewhere.
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