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Abstract

Semi-linear n× n systems of the form A ∂u/∂x + B ∂u/∂y = f can generally be solved,
at least locally, provided data are imposed on non-characteristic curves. There are at most
n characteristic curves and they are determined by the coefficient matrices on the left-
hand side of the equation. We consider cases where such problems become degenerate as a
result of ambiguity associated with the definition of characteristic curves. In such cases, the
existence of solutions requires restrictions on the data and solutions might not be unique.

1 Introduction

It is well known that the Cauchy-Kowalevski Theorem tells us that problems of the form

A
∂u
∂x

+ B
∂u
∂y

= f , (1.1)

where u is an n-dimensional vector and A and B are n × n constant matrices, have analytic
solutions, at least locally, provided we have analytic data on a non-characteristic analytic curve.
The unique solution can be determined, locally, by solving n scalar equations given by (1.1), in
conjunction with the n found by differentiating the Cauchy data

u = U0(t) on x = x0(t) (1.2)

along the curve (x, y) = x = x0(t) = (x0(t), y0(t)), to find the 2n first partial derivatives ∂u/∂x
and ∂u/∂y. An entirely equivalent way of thinking about characteristics is to regard them as
curves across which u can have discontinuous first derivatives.

The Cauchy-Kowalevski argument fails when the curve is characteristic so that

λ =
dx

dt
, µ =

dy

dt
(not both zero) (1.3)

are such that (1.1) together with the equations got from differentiating (1.2), in vector form

λ
∂u
∂x

+ µ
∂u
∂y

= U′
0, (1.4)
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fail to have a unique solution. This of course happens with λ, µ such that

∣∣∣∣
A B
λI µI

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1n b11 . . . b1n
...

...
...

...
an1 . . . ann bn1 . . . bnn

λ . . . 0 µ . . . 0
...

. . .
...

...
. . .

...
0 . . . λ 0 . . . µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (1.5)

where I is the n× n identity matrix. Equivalently,
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µa11 − λb11 . . . µa1n − λb1n b11 . . . b1n
...

...
...

...
µan1 − λbn1 . . . µann − λbnn bn1 . . . bnn

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= |µA− λB| = 0. (1.6)

For “most” problems, with no sort of degeneracy associated with the left-hand side of (1.1),
the condition (1.5) would make the curve direction (λ, µ) that of the characteristic.

In the present paper we consider problems such that (1.5) holds for all λ, µ, so that, whatever
direction is used, the system (1.1) fails to have a unique solution. We anticipate that, since the
coefficient matrix of the combined system

(
A B
λI µI

)(
∂u/∂x

∂u/∂y

)
=

(
f

U′
0

)
(1.7)

is singular, whatever data curve is chosen, at least one compatibility condition relating f and
u0 has to be satisfied if the problem (1.1), (1.2) is to have a solution; moreover, that if this
condition holds the problem can have multiple solutions. It is clear that degeneracy is associated
with the rank of µA− λB being identically less than n.

We remark that the above comments and conditions apply both when we seek curves across
which ∂u/∂x and ∂u/∂y have jump discontinuities while u remains continuous, and when we
consider weak solutions for systems in which u itself has a jump discontinuity. Indeed, this
observation is one of the motivations for the present paper.

Although situations in which (1.6) holds for all λ and µ are not usually discussed in partial
differential equations texts, either from the analytical or numerical viewpoints, they can readily
occur in practice. For example, consider a simple normalised model for longitudinal elastic
waves where t is the time, x the displacement, u the velocity, σ the stress and X the Lagrangian
coordinate relative to the unstressed state:




1 0 0
0 1 0
0 0 0


 ∂

∂t




x
u
σ


 +




0 0 0
0 0 −1
1 0 0


 ∂

∂X




x
u
σ


 =




u
0
σ


 . (1.8)

In this case the matrix analogous to that in (1.6) has rank 2. We note that while trivial
manipulations reveal that any one of the dependent variables satisfies the scalar wave equation
with wave velocities ±1, (1.6) tells us nothing about the wave speeds. Of even more concern

is the fact that if the last equation is generalised to the visco-elastic law
∂x

∂X
− σ = ε

∂σ

∂t
, then
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(1.6) gives ελ3 = 0, suggesting that jump discontinuities in the derivatives only occur on t =
constant lines for ε → 0.

Another common situation concerns the derivation of Charpit’s equations for scalar non-
quasi-linear first-order equations of the form

F

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0. (1.9)

As in [5], for example, five different quasi-linear equations can easily be written down for the
vector (u, p, q), where p = ∂u/∂x, q = ∂u/∂y, and most subsets of three of these five equations
satisfy (1.6) identically.

An easily understood example with three independent variables is curl (u, v, w)> = 0. Then

(
A1

∂

∂x
+ A2

∂

∂y
+ A3

∂

∂z

) 


u
v
w


 = 0, (1.10)

where the generalisation of (1.6), namely

3∑

1

ξiAi =




0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


 ,

has rank 2. (This result gives no hint that (u, v, w)> is a gradient.)
Denoting the number of scalar equations by n1, the number of scalar dependent variables

by n2 and the number of independent variables by n3, other n1 × n2 × n3 examples are:

(i) Elastic waves in plane strain and in three dimensions.

Here there are three stress components, two displacements, all functions of (x, y, t) and
we have a 7× 7× 3 system in which, in the notation of (1.10), the 7× 7 matrix

∑3
1 ξiAi

has rank 4.

The analogous 12×12 matrix for general three-dimensional waves described by a 12×12×4
system has rank 6.

(ii) Maxwell’s equations.

Considering the 8× 6× 4 system

curlH = ε
∂E
∂t

, curlE = −µ
∂H
∂t

, divE = 0, divH = 0, (1.11)

we find that the four 8×6 matrices Ai are such that
∑4

1 ξAi has rank 6. However, choosing
just six equations to get a 6× 6× 4 system with four 6× 6 matrices Ai, the rank can be
either 5 or 6, depending on which two equations are dropped; with a “wrong” selection
the system is degenerate. The full 8× 6× 4 is non-degenerate, but over-determined. (See
[3] for a discussion of over-determined systems.)

(iii) The reduction of general elliptic systems to first-order systems.

When the elliptic equation
∂2u

∂x2
+

∂2u

∂y2
= 0 is replaced by

∂u1

∂x
+

∂u2

∂y
= 0 ,

∂u

∂x
− u1 = 0 ,

∂u

∂y
− u2 = 0 , (1.12)
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we obtain a degenerate system for u = (u, u1, u2)> in which

A =




0 1 0
1 0 0
0 0 0


 , B =




0 0 1
0 0 0
1 0 0


 .

Such systems have been treated in [1], [2] by allocating “weights” to both differentiated
and undifferentiated terms, and this always results in determinantal criteria that do not
degenerate. In the above example, the weights for the undifferentiated terms −u1 and
−u2 are equal to the coefficients of u1 and u2, in this case both equal to −1 and the
matrix µA− λB is replaced by




0 µ −λ
µ −1 0
−λ 0 −1


 ,

whose determinant does not vanish for real λ, µ. Indeed, in [2] it is proved that, if the
original higher-order system is elliptic, then, when suitable weights are introduced, the
resulting generalised determinant never vanishes for real parameters λ, µ. We shall return
to this result on page 20.

For linear systems with constant coefficients, the method of weights is equivalent to that
of seeking explicit exponential solutions, which is the approach we will adopt for most
of this paper. This will enable us to see, by elementary means, not only how to classify
given degenerate first-order systems, but also to identify the types of singularities they
can support and appropriate boundary conditions.

We also note that partial-differential-algebraic systems are inevitably degenerate when
thought of as quasi-linear systems of partial differential equations and the classification of such
systems has been discussed in [4]. While it is tempting to conjecture that degenerate systems
are, generally, differential-algebraic, we shall soon find that this is not the case.

General approach

In the following sections we shall only consider linear and semi-linear problems, with, for sim-
plicity, the coefficient matrices A and B being constant, although some of the results could be
generalised to allow them to vary with x and y. We take two points of view:

• We first ask whether or not the solutions can have discontinuous first derivatives across
any real curves. For simplicity here, we only consider constant-coefficient homogeneous
equations of the form

A
∂u
∂x

+ B
∂u
∂y

= Cu,

where the matrix C is also constant. We then consider the result of seeking a solution
with gradient discontinuities, of the form

u(x, y) = eαy−βx (H1(λy − µx)u0 +H2(λy − µx)u1 + · · · ) , (1.13)

where H1(·) is the integral if the Heaviside function H(·), H′2 = H1 and so on, and where
α, β and u0, u1 etc. are constant. However, as we shall see, α and β may often be ignored
in a local analysis. More precisely, it is only in cases where we need to consider several
terms in (1.13) simultaneously that the exponential dependence needs to be taken into
account for the purposes of studying singularity propagation. We shall often refer to u0

as an eigenvector. Note that, as we are only considering two dimensions, we are free to
take αλ + βµ = 0, and that not all components of u1 will be determined.
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• More generally, we then broaden the discussion to the case of semi-linear equations with
A, B still constant, from the point of view of the existence of solutions and appropriateness
of boundary data.

We start by considering 2× 2 systems in Sec. 2, and then look at 3× 3 systems in Secs. 3
- 4. Although our discussion will make use of trivial linear algebra and partial differentiation,
the combination of these ideas turns out to reveal some surprising results.

2 Two Equations with Two Dependent Variables

With two dependent variables, with f = (f, g)> the system of PDEs is now just

a11
∂u

∂x
+ a12

∂v

∂x
+ b11

∂u

∂y
+ b12

∂v

∂y
= f (= c11u + c12v in the linear homogeneous case),

a21
∂u

∂x
+ a22

∂v

∂x
+ b21

∂u

∂y
+ b22

∂v

∂y
= g (= c21u + c22v)

with the coefficients aij , bij , cij all constant. For the system not to be completely trivial (that
is, for it not simply to be the pair of algebraic equations (f = 0, g = 0), at least one of the
coefficients on the left-hand side must be non-zero; we can thus take a11 = 1 without loss of
generality.

The degeneracy condition (1.6) holding for all λ and µ here becomes

|µA− λB| = µ2|A|+ λµ(−a11b22 + a21b12 + a12b21 − a22b11) + λ2|B| = 0. (2.1)

Hence both A and B are singular,

|A| = 0, |B| = 0, (2.2)

and, additionally,
a11b22 + a22b11 = a12b21 + a21b12. (2.3)

Note that with a11 = 1 6= 0, we are free to change our dependent variables, if necessary, to make
a12 = 0 and add a multiple of the first equation to the second (if necessary) to make a21 = 0.
The first part of (2.2) reduces to a22 = 0 while (2.3) leads to b22 = 0.

The coefficient matrices are now

A =
(

1 0
0 0

)
, B =

(
b11 b12

b21 0

)
. (2.4)

A change of independent variables, replacing (x, y) by (x̂, ŷ) such that x = x̂, y = ŷ + b11x̂, i.e.
x̂ = x, ŷ = y − b11x, gives

∂u

∂x̂
=

∂u

∂x
+ b11

∂u

∂y
,

∂u

∂ŷ
=

∂u

∂y

(
∂u

∂x
=

∂u

∂x̂
− b11

∂u

∂ŷ
,

∂u

∂y
=

∂u

∂ŷ

)
,

and can be employed to ensure that b11 vanishes, in which case the second of (2.2) gives
b12b21 = 0.

Scaling (if needed) gives three canonical problems, for each of which rank (µA − λB) = 1.
We discuss each in turn, first as a homogeneous constant-coefficient linear system, then as a
semi-linear system, discussing all possible degeneracies.

Type 2.1. b12 = b21 = 0.

∂u

∂x
= f, 0 = g, µA− λB =

(
µ 0
0 0

)
. (2.5)
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Linear: Substituting the expansion (1.13) and equating coefficients of the most singular term,
namely H′1(λy−µx) (which is, of course, equal to H(λy−µx)), shows that, in the generic case
of c22 6= 0, u0 = (u0, v0)> can only be non-zero when µ = 0. Thus there is a single family of
‘characteristics’ y = constant. When we consider the next term in the expansion (1.13), we find
that u0 vanishes unless

|C + βA| =
∣∣∣∣
c11 + β c12

c21 c22

∣∣∣∣ = 0,

so that C determines both the x-dependence of u, via β, and its direction, i.e. the eigenvector
(u0, v0).

However, for c22 = 0, various special cases can occur. In particular, if c12 = c22 = 0, v can
take any values, with singularities along any curves; with c21 = 0 = c12 = c22, u again satisfies
a first-order PDE with a µ = 0 characteristic, while for c21 6= 0 = c12 = c22, u ≡ 0. Next, for
c22 = 0, c21 6= 0, c12 6= 0, u ≡ v ≡ 0 and, finally, with c22 = c21 = 0, c12 6= 0, both u and v are
indeterminate although they are related through the first PDE.

Semi-linear: If g depends on v, the second of (2.5) is solved to get

v = V (x, y, u) (2.6)

and this is then substituted into the first of (2.5):
∂u

∂x
= f , which can be solved as a family of

ODEs given initial data on a curve y = Y (x); v is then determined from (2.6). It is clear that
for us to have a solution, any initial data prescribed for v must satisfy (2.6).

If g is independent of v but varies with u, the second of (2.5) is solved to get u = U(x, y).
Any data prescribed must be consistent with this. Then the first of (2.5) fixes v, provided that
f depends on v; specified data must be consistent. For f independent of v, the first equation
is either an identity or cannot hold.

If g depends upon neither u nor v, the second equation is either impossible to satisfy or an
identity. In the latter case, at least v is then indeterminate.

Type 2.2. b12 = 1, b21 = 0.

∂u

∂x
+

∂v

∂y
= f, 0 = g. µA− λB =

(
µ −λ
0 0

)
. (2.7)

Linear: We now need µc22 + λc21 = 0 so that the single family of characteristics is now C-
dependent, with a single eigenvector satisfying c21u0 + c22v0 = 0, as long as c21 and c22 do not
both vanish. In this case, C determines both the direction of propagation of singularities and
the mode of propagation, i.e. the eigenvector u0. In the extra-degenerate case of c21 = c22 = 0,
u and v are indeterminate, and we can have any sort of singularities on any line, as long as
they are compatible with ∂u/∂x + ∂v/∂y = c11u + c12v.

Semi-linear: With g depending on v, the second equation can be solved and the result used
in the first, to get a single, generally quasi-linear, PDE for u. Alternatively, u dependence of g
can be used to eliminate u and get a single PDE for v. In either case, any initial data must be
consistent with g = 0 for there to be a solution. Should g not vary with either of u or v, the
second of (2.7) either (i) holds trivially, with the first not giving a unique solution for u, v, or
(ii) fails to be satisfied so the problem has no solution.
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Type 2.3. b12 = 0, b21 = 1.

∂u

∂x
= f,

∂u

∂y
= g, µA− λB =

(
µ 0
−λ 0

)
. (2.8)

Linear: We now have to consider the first two terms in (1.13). Taking u1 = (u1, v1)>, this
reveals that u0 = 0 and −µu1 = c12v0, λu1 = c22v0. Now it is only when c12 and c22 do not
both vanish that there is a single family of C-dependent characteristics c22y + c12x = constant,
with a single eigenvector (0, v0)>. In this case, C again determines the direction and mode of
singularity propagation. Again, with c12 = c22 = 0, singularities in v can be arbitrary.

Semi-linear: If neither f nor g has dependence on v, (2.8) requires a compatibility condition,

∂

∂y
f =

∂f

∂y
+ g

∂f

∂u
=

∂

∂x
g =

∂g

∂x
+ f

∂g

∂u
,

to get u; v is then indeterminate. If one, but not both, of f and g depends on v, the correspond-
ing equation can be used to find v in terms of u, with the other equation being an ODE for u;
initial data for v must be consistent. Should both f and g vary with v, v can (in principle) be
eliminated to get a (generally fully non-linear) PDE for u. This determines u and then v can
be got from either part of (2.8); specified data has to be consistent.

It is clear that, in the forms written, Type 2.1 and Type 2.2 are algebraic-differential systems,
while only differential equations make up Type 2.3.

It is easily checked that introducing extra independent variables does not change these types
of degenerate system.

3 Three Equations with Three Dependent Variables

We now turn to non-trivial problems for u = (u, v, w)>, with A and B both constant 3 × 3
matrices. The right-hand side is now (f, g, h)>, and in the homogeneous linear case




f
g
h


 = Cu =




c11u + c12v + c13w
c21u + c22v + c23w
c31u + c32v + c33w


 .

We can again take a11 = 1, then redefine the dependent variables and take linear combinations
of the equations, if necessary, to make a12 = a13 = a21 = a31 = 0.

There are now two main cases, since we still need |A| = |B| = 0 so both matrices have rank
less than three:

Case 1. Rank (A) = 1, so

A =




1 0 0
0 0 0
0 0 0


 ;
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Case 2. Rank (A) = 2 so, after another change of dependent variables and another new com-
bination of equations if needed,

A =




1 0 0
0 1 0
0 0 0


 .

We sub-divide Case 1 into sub-cases 1(i) and 1(ii) according to:

Case 1(i). b22 = b23 = b32 = b33 = 0;

Case 1(ii). At least one of b22, b23, b32, b33 is non-zero. From 0 = |µA − λB| = λ2µ(b22b33 −
b23b32) − λ3|B|, b22b33 = b23b32, and further manipulation of the second and third rows
and columns can be used to get b22 = 1, b23 = b32 = b33 = 0.

For Case 2, the coefficient of λµ2 in the expansion of |µA−λB| is −b33 so (1.6) gives b33 = 0
and then

|µA− λB| =
∣∣∣∣∣∣

µ− λb11 −λb12 −λb13

−λb21 µ− λb22 −λb23

−λb31 −λb32 0

∣∣∣∣∣∣
= −λ3|B| − λ2µ(b13b31 + b23b32) = 0, (3.1)

with corresponding PDEs

∂u

∂x
+ b11

∂u

∂y
+ b12

∂v

∂y
+ b13

∂w

∂y
= f,

∂v

∂x
+ b21

∂u

∂y
+ b22

∂v

∂y
+ b23

∂w

∂y
= g, b31

∂u

∂y
+ b32

∂v

∂y
= h.

(3.2)
If b13 6= 0, b23 6= 0, we can take a linear combination of the first and second of (3.2) to get

rid of the ∂w/∂y in the first equation. If b13 6= 0 = b23, we can swap the first two equations,
and u with v. Hence we can always assume that b13 = 0, while with a change of independent
variables we may take b11 = 0:

|B| =
∣∣∣∣∣∣

0 b12 0
b21 b22 b23

b31 b32 0

∣∣∣∣∣∣
= b12b23b31 = 0 and b23b32 = 0 (3.3)

from (3.1). We can consider the following sub-cases:

Case 2(i). b31 = 0, b32 6= 0;

Case 2(ii). b31 = 0, b32 = 0;

Case 2(iii). b31 6= 0, b32 6= 0;

Case 2(iv). b31 6= 0, b32 = 0.

In the remainder of this section, we catalogue the canonical types, based on consideration of
the left-hand sides of the equations. For each type we will only consider the basic degeneracies
that can occur for the linear problem in which the right-hand side is Cu. Hence each type
will not be covered in detail as in Sec. 2, where we discussed all the higher-order degeneracies.
Discussion of the resulting semi-linear problems is left until Sec. 4.

We remark that the method of weights, as described in the Introduction, would immediately
tell us that Type 3.1 - Type 3.3 below are in general equivalent to first-order scalar equations,
while Type 3.4 - Type 3.13 are equivalent to second-order scalar equations. This already
gives general clues about the types of singularity the systems can support and the boundary
conditions they can satisfy. However, we shall find that there are many special cases to consider.
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3.1 Case 1(i)

Combining the last two equations and the last two dependent variables as necessary, the system
can be written as

∂u

∂x
+ b11

∂u

∂y
+ b12

∂v

∂y
= f, b21

∂u

∂y
= g, 0 = h, (3.4)

where f , g and h are (potentially) functions of both the independent variables x and y and the
unknowns u, v and w. Again making a change of variable x = x̂, y = ŷ + b11x̂ if needed, the
system may be supposed to be of the simpler form

∂u

∂x
+ b12

∂v

∂y
= f, b21

∂u

∂y
= g, 0 = h. (3.5)

Depending on whether or not b12 or b21 vanishes, there are then four possibilities, after further
rescaling if needed:

Type 3.1. b12 = b21 = 0.

∂u

∂x
= f, 0 = g, 0 = h, µA− λB =




µ 0 0
0 0 0
0 0 0


 . (3.6)

With u0 = (u0, v0, w0)> in (1.13), we have µu0 = 0 and there appear to be two possibilities.
However, for u0 = 0, we require (

c22 c23

c32 c33

)
(3.7)

to be singular; we do not consider this special degeneracy further.
We are left with µ = 0, as in Type 2.1, but now needing c22c33 6= c23c32. Again, β is

determined from C, now by the condition that

|C + βA| =
∣∣∣∣∣∣

c11 + β c12 c13

c21 c22 c23

c31 c32 c33

∣∣∣∣∣∣
= 0,

which also determines the mode of propagation (u0, v0, w0) along the characteristics y =
constant. ¤

Type 3.2. b12 = 1, b21 = 0.

∂u

∂x
+

∂v

∂y
= f, 0 = g, 0 = h, µA− λB =




µ −λ 0
0 0 0
0 0 0


 . (3.8)

For the generic case, in which
∣∣∣∣
c21 c23

c31 c33

∣∣∣∣ and
∣∣∣∣
c22 c23

c32 c33

∣∣∣∣
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are not both zero, we have −µu0 + λv0 = 0, so that the characteristics are determined in terms
of C by ∣∣∣∣∣∣

−µ λ 0
c21 c22 c23

c31 c32 c33

∣∣∣∣∣∣
= 0,

with u0 being an eigenvector of this matrix. ¤

Type 3.3. b12 = 0, b21 = 1.

∂u

∂x
= f,

∂u

∂y
= g, 0 = h, µA− λB =




µ 0 0
−λ 0 0
0 0 0


 . (3.9)

For the generic case, in which
∣∣∣∣
c12 c13

c32 c33

∣∣∣∣ and
∣∣∣∣
c22 c23

c32 c33

∣∣∣∣

are not both zero, we have u0 = 0 as in Type 2.3, and, since

−µu1 = c12v0 + c13w0, (3.10)
λu1 = c22v0 + c23w0, (3.11)

0 = c32v0 + c33w0, (3.12)

singularities can propagate in the C-dependent direction given by
∣∣∣∣∣∣

−µ c12 c13

λ c22 c23

0 c32 c33

∣∣∣∣∣∣
= 0,

with associated eigenvector (0, v0, w0)>. ¤

Type 3.4. b12 = b21 = 1.

∂u

∂x
+

∂v

∂y
= f,

∂u

∂y
= g, 0 = h, µA− λB =




µ −λ 0
−λ 0 0
0 0 0


 . (3.13)

We note that for the generic case of c33 6= 0, w can be eliminated to obtain a non-degenerate,
but special, 2 × 2 system with a unique characteristic direction: λ = 0 is a double root of the
characteristic equation and the reduced problem for u, v is of parabolic type. ¤

For each of the above four types of system, whether linear or semi-linear, the solutions
depend sensitively upon the right-hand sides of the equations, as in Type 2.1 - Type 2.3.

3.2 Case 1(ii)

Here (1.6) gives

0 = |µA− λB| =
∣∣∣∣∣∣

µ− λb11 −λb12 −λb13

−λb21 −λ 0
−λb31 0 0

∣∣∣∣∣∣
= λ3b13b31
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so at least one of b13 and b31 vanishes. There are then three possibilities which can be written
as follows:

For b13 = b31 = 0,

∂u

∂x
+ b11

∂u

∂y
+ b12

∂v

∂y
= f, b21

∂u

∂y
+

∂v

∂y
= g, 0 = h.

Taking v̂ = v + b21u if b21 6= 0 and with another change of independent variables if need be, the
system becomes

∂u

∂x
+ b12

∂v

∂y
= f,

∂v

∂y
= g, 0 = h.

Then adding a multiple of the second equation to the first gives

Type 3.5. b13 = 0, b31 = 0.

∂u

∂x
= f,

∂v

∂y
= g, 0 = h, µA− λB =




µ 0 0
0 −λ 0
0 0 0


 . (3.14)

For the generic case in which c33 6= 0, u0 and v0 cannot both vanish. The problem then has
two characteristic directions, with (λ, µ) parallel to (0, 1) or (1, 0). We have the two possibilities:

(a) λ = 0, u0 = 0, which requires that
∣∣∣∣
c22 − α c23

c32 c33

∣∣∣∣ = 0,

and (0, v0, w0)> is a corresponding eigenvector. As in Type 3.1(b), C determines the
mode of propagation and its x-dependence along the characteristics.

(b) µ = 0, v0 = 0, which requires that
∣∣∣∣
c11 + β c13

c31 c33

∣∣∣∣ = 0,

and (u0, 0, w0)> is a corresponding eigenvector; this situation is analogous to (a) above.
¤

For b13 = 0, b31 = 1,

∂u

∂x
+ b11

∂u

∂y
+ b12

∂v

∂y
= f, b21

∂u

∂y
+

∂v

∂y
= g,

∂u

∂y
= h,

which, proceeding much as for Type 3.5, can be written as

Type 3.6. b13 = 0, b31 = 1.

∂u

∂x
= f,

∂v

∂y
= g,

∂u

∂y
= h, µA− λB =




µ 0 0
0 −λ 0
−λ 0 0


 . (3.15)

We have µu0 = −λv0 = −λu0 = 0, with the following cases for the generic situation, c33 6= 0:
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(a) λ = 0, u0 = 0, which leads to the same situation as Type 3.5(a) above.

(b) u0 = v0 = 0 and

−µu1 = c13w0 ,

λv1 = c23w0 ,

λu1 = c33w0 ,

so that (λ, µ) = (c33,−c13) and singularities can occur across c13x+ c33y = constant with
eigenvector (0, 0, w0)>. ¤

For b13 = 1, b31 = 0,

∂u

∂x
+ b11

∂u

∂y
+ b12

∂v

∂y
+

∂w

∂y
= f, b21

∂u

∂y
+

∂v

∂y
= g, 0 = h,

which, on replacing v by v̂ = v + b21u and w by ŵ = w + b11u + b12v is then

Type 3.7. b13 = 1, b31 = 0.

∂u

∂x
+

∂w

∂y
= f,

∂v

∂y
= g, 0 = h, µA− λB =




µ 0 −λ
0 −λ 0
0 0 0


 . (3.16)

Similar to Type 3.5 and Type 3.6, for the generic case in which c33 6= 0 there are the
following possibilities:

(a) λ = 0, u0 = 0; we retrieve Type 3.5(a), in which singularities can occur across x =
constant.

(b) v0 = 0; we now find that −µu0 + λw0 = 0 and c31u0 + c33w0 = 0, so that C defines both
the eigenvectors and the characteristic directions. ¤

3.3 Case 2(i)

Now b31 = 0 6= b32 so, because of (3.1), b23 = 0, and the third equation may be scaled:

∂u

∂x
= f,

∂v

∂x
+ b21

∂u

∂y
= g,

∂v

∂y
= h.

If b21 = 0, this is equivalent to Type 3.6, and otherwise the system can be rewritten as

Type 3.8. b31 = 0 6= b32, b23 = 0.

∂u

∂x
= f,

∂v

∂x
+

∂u

∂y
= g,

∂v

∂y
= h, µA− λB =




µ 0 0
−λ µ 0
0 −λ 0


 . (3.17)

To lowest order, −µu0 = λu0 − µv0 = λv0 = 0. Hence u0 = v0 = 0 and, since

−µu1 = c13w0,

λu1 − µv1 = c23w0,

λv1 = c33w0,

12



λ and µ must satisfy ∣∣∣∣∣∣

µ 0 c13

−λ µ c23

0 −λ c33

∣∣∣∣∣∣
= 0, (3.18)

giving
c33µ

2 + c23λµ + c13λ
2 = 0. (3.19)

For the generic case in which not all of c13, c23 and c33 vanish, we have the possibility of
two characteristics, which may be real or, for the first time, complex according to the sign of
c2
23 − 4c13c33. However, only one eigenvector, namely (0, 0, w0)>, can propagate singularities,

so the situation is far from that of conventional hyperbolicity, where two Riemann invariants
are associated with two real characteristics. ¤

3.4 Case 2(ii)

With b31 = 0 = b32, w may be redefined to give us

∂u

∂x
+ b12

∂v

∂y
= f,

∂v

∂x
+

∂w

∂y
= g, 0 = h.

First suppose that b23 6= 0.
If b12 = 0 we get a system like Type 3.7, while for b12 6= 0 some rescaling leads to

Type 3.9. b31 = 0 = b32, b12 6= 0.

∂u

∂x
+

∂v

∂y
= f,

∂v

∂x
+

∂w

∂y
= g, 0 = h, µA− λB =




µ −λ 0
0 µ −λ
0 0 0


 . (3.20)

Since, to lowest order, µu0 − λv0 = µv0 − λw0 = 0, the eigenvector u0 is determined by the
propagation direction. But since




µu1 − λv1

µv1 − λw1

0


 = −




c11 + β c12 − α c13

c21 c22 + β c23 − α
c31 c32 c33







u0

v0

w0


 ,

we require that c31u0 + c32v0 + c33w0 = 0. Hence, for the generic case in which c32 6= 0, the
propagation direction satisfies the quadratic equation c31λ

2 + c32λµ + c33µ
2 = 0. However,

in contrast to Type 3.8, there will generally be a different eigenvector for each propagation
direction. ¤

Returning to the general discussion, now take b23 = 0 so the system is

∂u

∂x
+ b12

∂v

∂y
= f,

∂v

∂x
+ b21

∂u

∂y
+ b22

∂v

∂y
= g, 0 = h. (3.21)

With b12 6= 0, b21 6= 0, appropriate scaling of v and y provides

Type 3.10. b12 6= 0, b21 6= 0, b22 6= 0.

∂u

∂x
± ∂v

∂y
= f,

∂v

∂x
+

∂u

∂y
+ b22

∂v

∂y
= g, 0 = h, µA− λB =




µ ∓λ 0
−λ µ− λb22 0
0 0 0


 .

(3.22)
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The sign for the second term in the first equation is that of b12b21. It is not possible to rescale
again to remove the constant b22.

Now, through b22, B plays an additional role because

−µu0 ± λv0 = 0, λu0 + (λb22 − µ)v0 = 0,

so that µ2 − (b22µ ± λ)λ = 0. Note that, through w0, C still plays a role in determining the
eigenvectors, and can also be responsible for higher degeneracy of non-generic cases. ¤

Returning again to the general discussion, with b12 = 0 6= b21, scaling gives
∂u

∂x
= f,

∂v

∂x
+

∂u

∂y
+ b22

∂v

∂y
= g, 0 = h.

If b22 = 0 this is equivalent to Type 3.4. However, for b22 6= 0, scaling to make b22 = 1,
adding the first equation to the second, replacing v by v̂ = u+v, and changing the independent
variables leads to

∂u

∂x
= f,

∂v

∂y
= g, 0 = h,

which is the same as Type 3.5.
Next, for b12 6= 0 = b21, the system is, after some scaling,

∂u

∂x
+

∂v

∂y
= f,

∂v

∂x
+ b22

∂v

∂y
= g, 0 = h.

With b22 = 0 this is equivalent to Type 3.4. For b22 6= 0, we have, with a possible change of y,
∂u

∂x
+

∂v

∂y
= f,

∂v

∂x
+

∂v

∂y
= g, 0 = h.

Subtracting the second equation from the first, replacing u by û = u − v, and a change of
independent variables leads to

∂u

∂x
= f,

∂v

∂y
= g, 0 = h,

which is again the same as Type 3.5.

Finally for this sub-case, b12 = 0 = b21 and
∂u

∂x
= f,

∂v

∂x
+ b22

∂v

∂y
= g, 0 = h.

For b22 6= 0, a change of independent variable makes the system identical to Type 3.5 once
again. However, if b22 = 0, we have a new type:

Type 3.11. B = 0.

∂u

∂x
= f,

∂v

∂x
= g, 0 = h, µA− λB =




µ 0 0
0 µ 0
0 0 0


 . (3.23)

Since µu0 = µv0 = 0, we have µ = 0 and the characteristics are y = constant. However, we
now require that

(C + βA)u0 =




c11 + β c12 c13

c21 c22 + β c23

c31 c32 c33


u0 = 0,

so that, for the generic case of c33 6= 0, C again determines the eigenvector and the exponential
variation of the solution along the characteristic. ¤
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3.5 Case 2(iii)

Now b31 6= 0, b32 6= 0 and so b23 = 0 from (3.3):

∂u

∂x
+ b12

∂v

∂y
= f,

∂v

∂x
+ b21

∂u

∂y
+ b22

∂v

∂y
= g,

∂u

∂y
+

∂v

∂y
= h .

with appropriate scaling. Subtracting a multiple of the third equation from the second yields

∂u

∂x
+ b12

∂v

∂y
= f,

∂v

∂x
+ b21

∂u

∂y
= g,

∂u

∂y
+

∂v

∂y
= h .

Taking b12 = b21 = 0, replacing v by v̂ = u + v, and adding the first equation to the second
gives a problem equivalent to Type 3.6.

If b12 6= 0 = b21, with suitable scaling, the system is

∂u

∂x
+

∂v

∂y
= f,

∂v

∂x
= g,

∂u

∂y
+

∂v

∂y
= h.

Replacing u by û = u + v and adding the second equation to the first shows that this system
is equivalent to Type 3.8.

For b12 = 0 6= b21, with suitable scaling, the system is

∂u

∂x
= f,

∂v

∂x
+

∂u

∂y
= g,

∂u

∂y
+

∂v

∂y
= h.

Manipulations as immediately above indicate that this is also equivalent to Type 3.8.
With b12 6= 0, b21 6= 0, we can write the system as

∂u

∂x
+

∂v

∂y
= f,

∂v

∂x
+ b21

∂u

∂y
= g,

∂u

∂y
+

∂v

∂y
= h.

A change of independent variables and the subtraction of the third equation from the first
produce

∂u

∂x
− (1 + b21)

∂u

∂y
= f,

∂v

∂x
= g,

∂u

∂y
+

∂v

∂y
= h.

Taking b21 = −1, replacing v by v̂ = u + v, and adding the first equation to the second gives a
system equivalent to (3.16). Trying b21 6= −1, the problem scales to

∂u

∂x
+

∂u

∂y
= f,

∂v

∂x
= g,

∂u

∂y
+

∂v

∂y
= h.

Replacing u by û = u + v, adding the second equation to the first and subtracting the third
from the first leads to a problem like Type 3.8.

3.6 Case 2(iv)

Here b31 6= 0 = b32 and, because b31 6= 0, (3.3) gives b12 = 0 and/or b23 = 0 in

∂u

∂x
+ b12

∂v

∂y
= f,

∂v

∂x
+ b22

∂v

∂y
+ b23

∂w

∂y
= g,

∂u

∂y
= h,

where the third equation has been used to simplify the second.
For b12 = b23 = 0, adding a multiple of the third equation to the second puts it in the form

∂u

∂x
= f,

∂v

∂x
+ b22

∂v

∂y
= g,

∂u

∂y
= h.
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For b22 = 0 this is equivalent to Type 3.6, while for b22 6= 0, the problem scales to

Type 3.12. b22 6= 0, b23 = 0, b31 6= 0.

∂u

∂x
= f,

∂v

∂x
+

∂v

∂y
= g,

∂u

∂y
= h, µA− λB =




µ 0 0
0 µ− λ 0
−λ 0 0


 . (3.24)

To lowest order, −µu0 = (−µ + λ)v0 = λu0 = 0 and thus we generically have u0 = v0 = 0,
which implies that

−µu1 = c13w0, (−µ + λ)v1 = c23w0, λu1 = c33w0.

Hence ∣∣∣∣∣∣

−µ 0 −c13

0 −µ + λ −c23

λ 0 −c33

∣∣∣∣∣∣
= 0,

giving (λ− µ)(c33µ + c13λ) = 0. Clearly, for the generic case of c13, c33 not both zero, we have
another case of two real characteristics; they are coincident if c13 = −c33. ¤

Returning for the last time to the general discussion, taking b23 = 0 6= b12 leads to

∂u

∂x
+ b12

∂v

∂y
= f,

∂v

∂x
+ b22

∂v

∂y
= g,

∂u

∂y
= h.

A change of independent variable, addition of a multiple of the third equation to the first and
a scaling give a problem equivalent to Type 3.8.

For b23 6= 0 = b12, a redefinition of w puts the system into the form

Type 3.13. b22 = 0, b23 6= 0, b31 6= 0.

∂u

∂x
= f,

∂v

∂x
+

∂w

∂y
= g,

∂u

∂y
= h, µA− λB =




µ 0 0
0 µ −λ
−λ 0 0


 . (3.25)

In this situation, −µu0 = −µv0 + λw0 = λu0 = 0, giving u0 = 0, λw0 = µv0. Generically
this implies that

−µu1 = c12v0 + c13w0, −µv1 + λw1− βu0 + αw0 = c22v0 + c23w0, λu1 = c32v0 + c33w0.

Hence singularities can propagate as long as (c12v0 + c13w0) λ = − (c32v0 + c33w0) µ, and we see
that there are two families of characteristics, determined in terms of C by c33µ

2+(c13 + c32) λµ+
c12λ

2 = 0; the respective eigenvectors depend correspondingly on C. This generic case demands
that at least one of c33, c13+c32 and c12 be non-zero, along with c12c33 6= c13c32, see Sub-Sec. 4.2.

This system has such a wide variety of higher-order degeneracies that we will discuss it in
further detail in Sec. 4.

We note that the system (1.8) is of this type. ¤
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3.7 Summary

Concerning singularity propagation, the most striking feature of the above catalogue are the
roles played by

(i) the degeneracy of the matrix µA− λB in determining the propagation directions, and

(ii) the matrix C which usually decides the propagation directions and always decides the
propagating eigenmodes.

Concerning the directions of propagation, we can classify the generic degeneracies according
to :

1. Type 3.1 - Type 3.3 have a single characteristic, generalising the cases of Type 2.1 -
Type 2.3.

2. Type 3.4 and Type 3.11 have one double characteristic.

3. Type 3.5 - Type 3.7, Type 3.10 and Type 3.12 have two real characteristics.

4. Type 3.8, Type 3.9 and Type 3.13 have two, possibly complex, characteristics.

4 Summary of Three-by-Three System Types

We now briefly generalise our discussion of the systems listed above to situations where they
are semi-linear.

4.1 Semi-Linear Degenerate Systems

We first note some obvious facts regarding Type 3.1 - Type 3.7.

• Type 3.1 is generically equivalent to Type 2.1, needing two constraints on the data.

• Type 3.2 is generically equivalent to Type 2.2, needing two constraints on the data.

• Type 3.3 is generically equivalent to Type 2.3, needing two constraints on the data.

• Type 3.4 is generically equivalent to a 2 × 2 system, needing one constraint on the
Cauchy data.

• Type 3.5 is generically equivalent to a 2 × 2 system, needing one constraint on the
Cauchy data.

• Type 3.6, rather like Type 2.3 for 2 × 2 systems, unless w appears nowhere in the
right-hand sides of (3.15), w can be eliminated to get a generally fully non-linear 2 × 2
system, needing one constraint on the Cauchy data. If w is completely absent from the
system, a compatibility condition must be satisfied by the equations.

• Type 3.7, for the generic case of h depending upon w, is again equivalent to a (quasi-
linear) 2× 2 system, needing one constraint on the Cauchy data.
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Type 3.1 - Type 3.3 The first three canonical forms are differential-algebraic equations
and doubly degenerate, turning out to be generically equivalent to 2× 2 degenerate problems:
Provided that h depends upon w, w can be found from the third equation and substituted into
the first two to get a degenerate pair of PDEs for u and v.

Should h be independent of w, unless h is identically constant, u or v can then be got
from the third equation and eliminated from the first two, to get a pair of equations involving
derivatives of the remaining unknown, v or u respectively. With w appearing in neither f nor
g, this reduced problem is as for the corresponding 2×2 case. With w in one but not the other,
there is one semi-linear equation which can be solved for the surviving unknown, and the other
two unknowns are got from the other two equations. With w in both f and g, it is eliminated
to get a (generally quasi-linear) PDE for the survivor of u and v; the other and w are then
determined explicitly.

For these problems, only one set of Cauchy data can be imposed.

Type 3.4, Type 3.5, Type 3.10 and Type 3.11 The last equation is again algebraic and
no derivatives of w appear. It is easily checked that the first two PDEs form a non-degenerate
system, regarded as a problem for u and v alone. This means that as long as h depends on w,
w can be eliminated and we have a 2× 2 system. Two sets of Cauchy data are required.

If h does not depend on w then, excluding the trivial possibility of it’s being a function of
x and y only, it must depend on one of the remaining dependent variables, say u. Using the
last equation to eliminate u from the first two equations gives two equations involving v and its
derivatives. For Type 3.10 it is possible that this pair of equations has extra degeneracy, with
the two left-hand sides being proportional. If precisely one of f and g depends on w, we have
one equation for v alone; this gives v and the other two equations then determine u and w. If
both f and g depend on w, w is eliminated to give a single (possibly fully non-linear) PDE for
v; the solution of this can again be used in the other equations to provide u and w. In both
these cases with h independent of w, we should only impose one set of Cauchy data.

If none of f , g and h depends upon w, for there to be a solution the equations must be
consistent. For example, with the left-hand sides of the first two equations proportional, the
same constant of proportionality must clearly relate the right-hand sides. The data for u and
v must be consistent and w is indeterminate.

Type 3.7 and Type 3.9 These are also differential-algebraic equations, with their third
equation being algebraic, but, in contrast to those just considered, they contain a derivative of
w in their first two equations. For h dependent on at least one of the dependent variables, say
w, w may be found from the last equation and substituted into the first two equations to get
a (generally quasi-linear) 2 × 2 system. The other unknowns are found from this system and
they then fix w. Clearly only two sets of Cauchy data are needed. If h = 0 gives w as a linear
combination of u and v, this elimination procedure could produce a degenerate 2 × 2 system,
as in Sec. 2.

Type 3.6, Type 3.8 and Type 3.12 These have derivatives in all three equations, and so
are purely differential equations, but no derivative of w appears. Should precisely one of f , g
and h depend on w, the corresponding equation can fix w, with the other two PDEs forming a
2 × 2 system for u and v. For Type 3.6 and Type 3.12, if it is g which depends on w so that
the first and last equation make up the 2 × 2 system, this will then be degenerate, as in Sec. 2.
Otherwise the 2 × 2 system is non-degenerate and two sets of Cauchy data are required.

With at least two of f , g and h depending upon w, w is eliminated to give a (generally fully
non-linear) problem for u and v; two sets of conditions are imposed. Should the 2 × 2 system
be linear or semi-linear, it is possible that this is degenerate, as in Sec. 2.
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If none of f , g and h varies with w, some consistency condition is needed between the PDEs
and w is indeterminate.

Type 3.13 We are left with this as the only case with both:

• all three equations containing derivatives;

• derivatives of all dependent variables in the system.

It is clearly another purely partial differential-equation system. Its special status motivates the
more detailed consideration in Sub-Sec. 4.2 below.

4.2 Problems of Type 3.13

The problem has the general form
∂u

∂x
= f, (4.1)

∂v

∂x
+

∂w

∂y
= g, (4.2)

∂u

∂y
= h. (4.3)

The generic case has f and h dependent on v and w so that (4.1) and (4.3) can be solved
to get v and w in terms of u and its derivatives. Substitution into (4.2) gives a second-order
(usually quasi-linear) PDE for u. Depending on the nature of this equation, we would normally
expect to impose either two initial conditions or one boundary condition.

A more special case is when (4.1) and (4.3) themselves add a further level of degeneracy, so
that (4.1) and (4.3) provide a first-order PDE for u, and an equation relating v and w (and u,
∂u/∂x and/or ∂u/∂y). This PDE is solved and substitution for v (or w) in (4.2) gives another
PDE for w (or v). Two sets of Cauchy data are needed.

The most degenerate case has both f and h independent of v and w. A compatibility
condition for f and h has to hold. Assuming that it does, u can be found (applying one initial
condition) but v and w are indeterminate.

To see more clearly what might happen, we look at cases which are linear and, for simplicity,
autonomous, so that

f = Cu ,

with C constant. As before, u = (u, v, w)> and f = (f, g, h)>.

The generic case has c12c33 6= c13c32 so that the subsidiary matrix

Cs =
(

c12 c13

c32 c33

)
(4.4)

has rank 2, and (4.1) and (4.3) can be solved to get

v =
[(

c33
∂u

∂x
− c13

∂u

∂y

)
+ (c13c31 − c11c33)u

]/
(c12c33 − c13c32)

and

w =
[(

c12
∂u

∂y
− c32

∂u

∂x

)
+ (c11c32 − c12c31)u

]/
(c12c33 − c13c32).
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Substitution into (4.2) gives a PDE

c33
∂2u

∂x2
− (c32 + c13)

∂2u

∂x∂y
+ c12

∂2u

∂x2
= d1u + d2

∂u

∂x
+ d3

∂u

∂y
(4.5)

where the di are constant. This equation is clearly

• elliptic if 4c12c33 > (c13 + c32)2,

• hyperbolic if 4c12c33 < (c13 + c32)2,

• either parabolic or a second-order ODE if 4c12c33 = (c13 + c32)2.

(Note that, for the generic case, at least one of c12, c13, c32 and c33 is non-zero.)
We remark that, had we used the method of weights described in the Introduction, we would

have been immediately led to the differential operator on the left-hand side of (4.5), and hence
identified that (1.12) is elliptic.

The last case admits the the extra-degenerate possibility of c12 = c33 = 0 with c13 = −c32 6=
0. Here v and w can be eliminated to get the first-order hyperbolic equation for u:

(c23 − c31)
∂u

∂x
+ (c11 − c22)

∂u

∂y
= (c23c11 − c22c31 + c32c21)u .

The characteristic direction is (λ, µ) = ((c23 − c31), (c11 − c22)).

For c12c33 = c13c32 with at least one of c12, c13, c32, c33 non-zero, say c12, so that Cs now
has rank 1, we have

c32
∂u

∂x
− c12

∂u

∂y
= (c11c32 − c12c31)u (4.6)

with

v =
(

∂u

∂x
− c11u− c13w

)/
c12. (4.7)

The PDE (4.6) is solved for u, then (4.7) is substituted into (4.2) to give

∂w

∂y
− c13

c12

∂w

∂x
+

(
c13c22

c12
− c23

)
w =

(
c21 − c22c11

c12

)
u +

(
c22

c12
+

c11

c12

)
∂u

∂x
− 1

c12

∂2u

∂x2
.

This may be solved to find w and hence v. (The appearance of the second derivative of u in
the PDE for w might indicate that care should be taken in a numerical method based on this
way of solving the system.)

The most special case is when Cs = 0 so that

∂u

∂x
= c11u,

∂u

∂y
= c31u .

If c11 = c31, we have a single PDE for u. On the other hand, for c11 6= c31, u must be identically
zero. In both cases v and w cannot be determined. (Note that if the problem were to be
generalised by including constant terms on the right-hand sides of (4.1), (4.3), a solution might
not exist. Supposing now that ∂u/∂x = c11u + c10 and ∂u/∂y = c31u + c30, the compatibility
condition c11c30 = c31c10 has to be satisfied to get a solution.)

We conclude this sub-section with a few specific examples.
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4.2.1
∂u

∂x
= 0,

∂u

∂y
= w,

∂v

∂x
+

∂w

∂y
= 0.

Solving directly gives u = U(y), w = U ′(y), v = V (y)− U ′′(y)x, with U and V being fixed by
two boundary conditions.

In this case c12c33 = c13c32 = 0 6= c33 so the system has one extra level of degeneracy.

4.2.2
∂u

∂x
= w,

∂u

∂y
= v,

∂v

∂x
+

∂w

∂y
= 0.

The system has general solution v = V (y), w = W (x), u =
∫ x

W (ξ) dξ +
∫ y

V (η) dη and is
clearly hyperbolic.

4.2.3
∂u

∂x
= ±v,

∂u

∂y
= w,

∂v

∂x
+

∂w

∂y
= u.

Here
∂2u

∂y2
± ∂2u

∂x2
= u,

which illustrates how easily degenerate systems can conceal ellipticity and hyperbolicity.
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