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An American option is a contract giving its holder the right to buy (call
option) or sell (put option) one unit of an underlying security of value S for
a prearranged amount. This right can be exercised at any time prior to the
expiration date T. In contrast, a European option can be exercised only at
the expiry. Define the amount paid to the holder of an American option at the
moment of exercise, the payoff, as ¥(S,t) > 0; a standard contract is a put
option where ¥ = max(K — S,0) and K is the strike price. The discounted
exercise value of the option is Z(t) = ¥(¢t)/B(t), where B(t) is the value at
time ¢ of $1 invested in a riskless money market account at ¢ = 0. American
option valuation can be characterised as an optimal stopping problem. The
time 0 value of an American option is given by

V(0) = OEBETE[Z(T)] (1)

where the supremum is taken over all the possible stopping times 7 less than
the expiration date T, and the expectation is taken over the risk-neutral prob-
ability density. This is the primal problem.

The overwhelming majority of traded options are of American type. Yet
their valuation, even in the standard case of a lognormal process for the un-
derlying asset, remains a topic of active research. In general it is not possible
to find explicit formulae for American option prices, and numerical techniques
or approximation schemes are required for option evaluation. The literature
concerning the numerical solution of (1) is vast; for a summary see [2] and
references therein. While simulation techniques have been used extensively
to price European style derivatives, only recently have there been attempts
to extend the method to price American-style claims [6]. The problem lies
in the estimation of the exercise boundary; the Monte Carlo (MC) method
entails the simulation of the evolution of the asset prices forward in time, but
the determination of the optimal exercise policy requires a backward style
algorithm. To make an exercise decision for a specific price path at a specific
time, one needs to know the holding value of the option, i.e. the discounted
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expected value from one time period ahead, which is not directly provided by
the method.

In general terms, many papers use simulation in some way to derive a
stopping rule by comparing the current value of stopping with some estimate
(based on simulated paths) of the value of waiting. This will provide a lower
bound to the price, since this stopping rule is almost surely sub-optimal. In
contrast, we investigate a new approach using MC techniques reported by
Rogers [5] which makes no attempt to determine an approximate exercise
policy, but instead gives an upper bound for the true price. Two other recent
papers have independently used the same theory to obtain an upper bound,
but differ in their implementation [1, 4]. In §1 we introduce this method to
obtain an upper bound to the price. This approach is investigated in §2 where
we demonstrate methods to improve the upper bound. Finally, we summarise
our work in §3.

1 Theory

For an arbitrary martingale M (t), we define a dual function F(t, M) as

Ty =P | (70~ M| + ) ¥

The dual problem is to minimise the dual function at time 0 over all mar-
tingales M (t). Let U(0) denote the optimal value of the dual problem, so
that

U0) = iilef FO,M) = ilr\lle [Orgnrang (Z(r) - M(T))] + M(0). (3)

The main result is that the optimal values of the dual and primal problems
coincide.

Proof: For an arbitrary (adapted) martingale M (t), we have

V()= sup E[Z(r)] = sup E[Z(7)— M(r)+ M(7)]

0<7<T 0<T<T
= sup E[Z(r)— M(7)]+ M(0)
0<r<T

< B | max (2(r) - M(7)| + M(0)
where the second equality follows from the optional sampling theorem. Since
M (t) was an arbitrary martingale, the inequality will hold after taking the
infimum, implying V' (0) < U(0).

The “duality gap” will be zero if the upper bound holds with equality.
The discounted value of an American option is a supermartingale, due to the
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loss of exercise rights as time progresses. The supermartingale property of
V(t)/B(t) allows for a Doob-Meyer decomposition of the form

B = M) - A), (4)

where M(t) is a martingale, and A(¢) is a previsible integrable increasing
process with A(0) = 0. Using this martingale in the dual problem gives

v(t) V@)
U(0)<E [o?%XT (B(t) B@) A(t))] + V(0). (5)
Since V(t) > ¥(t) for all ¢, we conclude that V(0) > U(0). Therefore V(0) =
U(0) when M (t) is taken to be the martingale component of the discounted
American option price process V(t)/B(t). When the optimal martingale is
used, both the expectation and the variance of the lookback option are equal
to zero, i.e.

E olgnrang(Z(T) —M(r))| =0 and  Var olgnragXT(Z(T) —M(7))| = 0.
The variance may provide an empirical measure of the distance to optimality
for a given martingale [3].

2 Implementation

This theorem demonstrates that an upper bound on the price of an American
option can be constructed by evaluating the dual function using an arbitrary
martingale M (t),

F(0,M) = E | max (2(t) - M(1))| +M(0) > V(0). (6)

The choice of martingale is crucial, since the tightness of the upper bound
will depend on this. To obtain a good upper bound, (5) suggests that a suit-
able choice of M (t) is one that approximates the martingale component of
the discounted price of the American option. A sensible place to start is to
consider the martingale part of the corresponding European option; in his
paper, Rogers reports some encouraging results with errors in the region of 1—-
2%. The martingale can be refined by including a weighting coefficient, which
is determined by a numerical optimisation procedure on an initial subsam-
ple of size Ny, followed by a simulation of Ny paths. The main difficulty in
this approach is choosing an appropriate martingale. In contrast, [1, 4] form
a martingale from a calculation of the lower bound. This approach is more
general, but is computationally more intensive. The Rogers approach is quick
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to calculate, but requires a careful choice of martingale. We direct our efforts
towards choosing such a martingale.

We assume that the asset price S satisfies the lognormal risk-neutral pro-
cess dS = rS dt + oS dW, where ¢ is the volatility. For each sample path,
the process is simulated at () equally spaced discrete times. We base our first
investigations on the American 1D put option, but this approach is extensi-
ble to options on multiple assets. There are two natural ways of defining a
martingale based on the European put:

MA(t) = B(t) VeuroS(t), K, 0,T — t,7] — Veuro[S(0), K, 0, T, 7], (7a)
MP(t) = VeurolS(t), K, 0,T = t,7] = B(t)Veuro[S(0), K, 0, T, ], (7b)

where V.., is the Black—Scholes value of the European put, and we have
assumed a deterministic short-rate 7.

To understand this method more clearly, we investigate where the pathwise
maximum (pwm) occurs. Specifically, we are interested in the shape of the
surface Z(t) — M (t), and where the pwm occurs for simulations of the asset
price since this ultimately determines the option price, see (6). Graphs of the
surface Z(t) — M(t) for both martingales, together with the location of the
pwm for each simulation, can be seen in Fig. 1. From these it is apparent that
the M® surface has a higher value than M4 around S = 70, giving rise to a
greater value of the mean pwm. This implies M is a better martingale than
MB.
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Fig. 1. Plot of Z(t) — M(t) for (a) M*, giving V = 9.976 and (b) M?Z, giving
V = 10.092. Each cross represents the position of the pwm during a simulation of
the asset price. N1 = 300, N2 = 5000, Q = 50. Parameter values were K = 100,
r =0.06, T = 0.5 and o = 0.4. The true American option price = 9.9458.
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2.1 Adding additional European martingales

In this section we consider creating the martingale from multiple European
contracts. We consider

M= Z AmenTe, (8)

where 7¢%"° is the martingale part of a European option calculated using (7a).

We take w5“"° to be a European option with the same contract parameters as
the American option, and by adding n extra martingales we seek to improve
the martingale and reduce the upper bound. The \;’s are found by numerical
optimisation to minimise the sum of the pwms.

We add one extra martingale (n = 1), based on either a put or a binary put,
but with a different strike price K;. By looking at the surface plot of Z — M in
Fig. 1(a), it seems sensible to choose the additional martingale contract with
a strike close to 70 since this is the region where the pwms have their highest
value. If we can reduce the value of the pwms, we can lower the value of the
upper bound. The optimal strike K; for the European put was found to be
close to 74, which is consistent with our initial estimate. The addition of the
European contract lowers the surface near S = K; = 74, decreasing the mean
of the pwms. In Table 1 we compare the MC value using a martingale based
on 1 or 2 European put options. The addition of the extra contract within the
martingale leads to an improved upper bound in each case.

Table 1. Calculation of upper bound for 1D American put option using a martingale
based on 1 option : M(t) = Aom;“"°, or a combination of 2 options : M(t) =
Qoo "+ A1 °. Parameter values as before, with N1 = 5000, N2 = 50000, @ = 50,
Ky, = 174.

S(0) American (True) MC : 1 option MC : 2 options

80 21.6059 21.6689 21.6102
85 18.0374 18.0854 18.0396
90 14.9187 14.9559 14.9209
95 12.2314 12.2591 12.2333
100 9.9458 9.9674 9.9482
105 8.0281 8.0428 8.0289
110 6.4352 6.4447 6.4351
115 5.1265 5.1330 5.1265
120 4.0611 4.0645 4.0601

2.2 Analytic approximation

As discussed in §1, the value of the optimal martingale at ¢ = 0 is equal to
the value of the American option itself. This implies that if we have found
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the optimal martingale (or one close to it), then evaluating this at time zero
will provide a good approximation to the American option price.! Having
determined a martingale suitable for a specific value of S(0) using MC sim-
ulation, we then have an analytic expression for the martingale at £ = 0 and
can calculate M as a function of S. This provides an approximation to the
American option value at asset prices near S(0), without having to perform a
full MC simulation each time the asset price changes slightly. In this manner,
it is possible to provide a very quick approximation to the American option
price over a range of S values once the martingale has been determined.

3 Concluding remarks

The quality of the upper bound depends on the martingale chosen. We have
taken steps towards improving the determination of a ‘good’ martingale, but
have yet to find an efficient framework for valuing any high-dimensional Amer-
ican option. An area of further research would be to develop a recursive
method to iteratively reduce the greatest pwms by gradually altering the mar-
tingale used. This could possibly be accomplished using Green’s functions, by
incorporating a cash payment within the martingale designed to reduce the
value of the Z — M surface in the area of the greatest pwms. To reduce the
variance of the final result, it may also be appropriate to increase the value
of the smallest pwms during this process.
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! The values obtained using this method are no longer upper bounds, since we are
just evaluating the martingale at ¢ = 0.



