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Abstract

This paper deals with violent discontinuities in shallow water flows with
large Froude number F .

On a horizontal base, the paradigm problem is that of the impact of two
fluid layers in situations where the flow can be modelled as two smooth regions
joined by a singularity in the flow field. Within the framework of shallow wa-
ter theory we show that, over a certain timescale, this discontinuity may be
described by a delta-shock, which is a weak solution of the underlying con-
servation laws in which the depth and mass and momentum fluxes have both
delta function and step function components. We also make some conjectures
about how this model evolves from the traditional model for jet impacts in
which a spout is emitted.

For flows on a sloping base, we show that for flow with an aspect ratio
of O(F−2) on a base with an O(1) or larger slope, the governing equations
admit a new type of discontinuous solution that is also modelled as a delta-
shock. The physical manifestation of this discontinuity is a small ‘tube’ of
fluid bounding the flow. The delta-shock conditions for this flow are derived
and solved for a point source on an inclined plane. This latter delta-shock
framework also sheds light on the evolution of the layer impact on a horizontal
base.
Keywords: delta-shock, jet impact, hypercritical flow

1 Introduction

Inviscid, irrotational one-dimensional shallow water flow on a horizontal base is so
well studied that it is often used as a paradigm for the theory of hyperbolic systems
of partial differential equations. A theoretical difficulty can, however, arise for large
Froude number F = U/

√
gh, where U is a typical velocity and h a typical depth.

In the ‘hypercritical’ limit F → ∞, the underlying hyperbolic system becomes
∗Email address: howison@maths.ox.ac.uk
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degenerate in the sense that its characteristics coincide, even though they remain
real.

From a practical point of view, the typical scenario for discontinuous shallow
water flows is that of regions of smooth flow separated by bores, or hydraulic jumps,
at which Rankine–Hugoniot conditions for the conservation of mass and momentum
(but not energy) are applied. However, this model usually assumes implicitly that
F = O(1). What can happen when F À 1 is typified by two well-known problems
for the shallow water model

∂η

∂t
+

∂(uη)
∂x

= 0, (1.1)

∂u

∂t
+ u

∂u

∂x
+

1
F 2

∂η

∂x
= 0, (1.2)

where the depth η(x, t) and horizontal velocity u(x, t) have been made dimension-
less with h, U respectively, the horizontal distance x has been made dimensionless
with some wavelength L À h, and t with L/U .

The first problem we consider is the piston problem in which the fluid is initially
at rest with η = 1 in x > 0, and u = 1 at x = t for t > 0. The resulting flow
consists of two uniform regions separated by a discontinuity at x = xb(t). The
Rankine-Hugoniot conditions for conservation of mass and momentum across this
bore or shock are

dxb(t)
dt

=
[uη]+−
[η]+−

=
[ηu2 + 1

2F 2 η2]+−
[uη]+−

, (1.3)

where [ ]+− denotes the difference between the flow ahead of and behind the shock.
We find from the explicit solution of (1.1)–(1.3) that the depth behind the shock
ηb satisfies

η3
b − η2

b − ηb(1 + 2F 2) + 1 = 0 (1.4)

and, as F → ∞, the fluid between the piston and the bore has a depth of
√

2F
and horizontal extent t/(

√
2F ). This situation is reminiscent of shock layers in

hypersonic flow (Hayes & Probstein 1966).
The second problem we consider is the Riemann problem in which two liquid

layers moving towards each other, in x ≶ 0 respectively, impact at x = t = 0. In
particular, for two equal and opposite layers of unit depth and speed, using (1.3)
for shocks at x = ±V t, we find that, in |x| < V t, the velocity is zero and the
depth is again

√
2F , while V ∼ 1/(

√
2F ) as F →∞. For more general asymmetric

Riemann problems, we will get the scenario of Fig 1(a), where the speed of the
water in the column is of O(1).

For either of these problems, it is natural to contrast the predictions of the
shallow water model with those of the two-dimensional theory of free surface flows
in the absence of gravity; these are only at all easy to analyse in the case of steady
motion in some reference frame. The study of such flows suggests that in the fully
two-dimensional version of the second problem above, the initial collision of the
fluid region produces a jet or ‘spout’ in which fluid moves upwards with significant
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(a) (b)

Figure 1: (a) Schematic of the unsteady shallow water solution for the impact of
two fluid layers. Two shocks are generated between which the depth is O(F ); the
width of this region of shocked flow is O(tF−1). (b) A classical travelling wave jet
impact with F = ∞ in which a spout is formed and fluid escapes to infinity; the
schematic is drawn in the moving reference frame of the spout.

vertical velocity. Figure 1(b) illustrates the resulting configuration for the second
problem above after a sufficient time has elapsed for the flow to be steady in a frame
moving with the spout. As discussed in, say, Birkhoff & Zarantonello (1957), and
Milne-Thomson (1949), fluid is lost to the spout, which eventually develops into a
ballistic trajectory in an inertial frame; we return to the case of symmetric impact,
with a vertical spout, below.

One objective in this paper is to try to reconcile these two scenarios and we
will begin this in Section 2, where we restrict ourselves to considering flow on a
horizontal base. However, the shallow water model with F = 1 may also be used to
describe the flow of a thin layer over a gently sloping base, provided that the slope
is small enough; a famous example is that of flow on a sloping beach as described
in Carrier & Greenspan (1958). When the base slope is of order unity then, as long
as F À 1, the fluid will flow uphill at least for some distance. Taking this distance
as our length scale we will see in Section 3 that the aspect ratio of the flow δ is such
that δ ∼ O(F−2). Moreover, the flow is described by the constancy of pressure and
Bernoulli’s equation and hence the in-plane momentum equation does not involve
the layer depth, which is derived subsequently from conservation of mass. Hence
such uphill flows can be modelled by uncoupled hyperbolic differential equations
(Rienstra 1996). However, it is an everyday observation that when these flows are
steady and three-dimensional they cannot survive over long distances, and that
they eventually fall back in the form of a concentrated ‘mass tube’ located near an
unknown curve on the substrate (see Figure 2(a)).

Thus the second aim of this paper is to present a theory of such mass tubes
viewed as free boundaries for the equations of uphill hypercritical flow, and we will
find that this theory will also shed new light on the layer impact problem on a
horizontal base.
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(a) (b)

Figure 2: (a) A point source flow on an inclined plane as generated by the normal
impact of a jet: the coordinate system used to describe such planar flows in Section
3 is marked. (b) Photograph of the normal impact of a jet on a vertical plane
(γ = π/2). The impact of the jet sets up a thin layer flow on the surface which
can be idealised as being generated by a point source on the plane. The flow is
bounded by a small tube of fluid, which can be distinguished in the photograph as
the dark curve. (Photograph, and digital enhancement to bring out the mass tube,
by Tom R. Laman.)

2 Flows on a horizontal base

2.1 Delta-shocks

The two problems described in Section 1 suggest that for a hyperbolic system such
as (1.1), (1.2), which is degenerate as F → ∞, we can generalise the concept of
a weak solution beyond that of one in which u, η are smooth except for jump
discontinuities at which (1.3) are satisfied. The solutions of these problems suggest
that hypercritical flows might be modelled as solutions of the uncoupled degenerate
system obtained by letting F →∞ in (1.1), (1.2). These equations can be written
in conservation form as

∂(ηu)
∂t

+
∂(ηu2)

∂x
= 0,

∂η

∂t
+

∂(uη)
∂x

= 0 (2.1)

as long as we allow u and η to have delta-function behaviour as well as jumps
at their singularities. Such a delta-shock theory has been developed rigorously in
Bouchut (1994), Keyfitz (1999), Li (2001), Li, Zhang & Yang (1998), Yang (1999),
and here we will only be concerned with the practicalities of the theory which can
be described using ad hoc expansions for the variables. In particular, we avoid the
technicalities of the precise definition of products of distributions. We also note
that an effective computational algorithm for (2.1) has been proposed in LeVeque
(2004) that is capable of predicting profiles such as that shown schematically in
Figure 1(a).
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Assuming a delta-shock at x = xs(t) we write

η = ηs(t)δ(x− xs(t)) + (ηr(x, t)− ηl(x, t))H(x− xs(t)) + ηl(x, t), (2.2)
ηu = Ms(t)δ(x− xs(t)) + (ηr(x, t)ur(x, t)− ηl(x, t)ul(x, t))H(x− xs(t))

+ ηl(x, t)ul(x, t), (2.3)

and

ηu2 = Es(t)δ(x− xs(t)) + (ηr(x, t)u2
r (x, t)− ηlu

2
l (x, t))H(x− xs(t))

+ ηl(x, t)u2
l (x, t), (2.4)

where δ(·) and H(·) are the delta and Heaviside functions respectively. Since the
degenerate shallow water system (2.1) is easily solved by the method of character-
istics the functions ul,r and ηl,r are assumed to be known continuous solutions of
(2.1) in x < xs(t) and x > xs(t) respectively; we will shortly give an a posteriori
justification of this assumption for a specific flow configuration.

The functions ηs(t), Ms(t), Es(t) and xs(t) are unknown, and the first three
quantities can be interpreted as the amount of mass that has been absorbed into
the delta-shock at time t, the momentum of this mass ηs(t) when transported
at speed ẋs(t) and twice the kinetic energy of this absorbed mass respectively.
Substituting (2.2)–(2.4) into the governing equations (2.1) then gives, to lowest
order as F →∞,

dηs

dt
δ(x− xs(t))− ηs

dxs

dt
δ′(x− xs(t))− (ηr(x, t)− ηl(x, t))

dxs

dt
δ(x− xs(t))

+ Msδ
′(x− xs(t)) + (ηr(x, t)ur(x, t)− ηl(x, t)ul(x, t))δ(x− xs(t)) = 0 (2.5)

and

dMs

dt
δ(x− xs(t))−Ms

dxs

dt
δ′(x− xs(t))

− (ηr(x, t)ur(x, t)− ηl(x, t)ul(x, t))
dxs

dt
δ(x− xs(t)) + Esδ

′(x− xs(t))

+ (ηr(x, t)u2
r (x, t)− ηl(x, t)u2

l (x, t))δ(x− xs(t)) = 0. (2.6)

Equating coefficients of δ and δ′ in (2.5)–(2.6) we obtain the delta-shock conditions

Ms = ηs
dxs

dt
, (2.7)

dηs

dt
= [η]+−

dxs

dt
− [ηu]+−, (2.8)

Es = Ms
dxs

dt
, (2.9)

dMs

dt
= [ηu]+−

dxs

dt
− [ηu2]+−, (2.10)

where, as before, u±, η± are the values of ur,l and ηr,l evaluated either side of
the discontinuity. To find the delta-shock position xs(t) we must now solve the
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four dimensional system of differential equations (2.7)–(2.10) along with the field
equations instead of the traditional Rankine–Hugoniot shock conditions (1.3).

In order to give further confidence that (2.1) and (2.7)–(2.10) provides the
correct scenario within which to solve the hypercritical shallow water equations,
let us consider the solution of a smooth initial value problem for η, u rather than
the initially discontinuous problems of Section 1. Suppose, for example, that

η(x, 0) = 1, u(x, 0) = 1 + cos x. (2.11)

Then the solution for u is, for 0 ≤ t < 1,

u(x, t) = 1 + cos s where x = t(1 + cos s) + s. (2.12)

This is the leading-order term in a regular expansion of (1.2) for F À 1. From
(1.1)

η(x, t) =
1

1− t sin s
, (2.13)

and both ∂u/∂x and η first become infinite as t ↑ 1 at s = π/2, x = 1 + π/2. In
the absence of any jump discontinuities, the solutions (2.12), (2.13) are as shown
in Figure 3. Moreover, it is impossible to find a traditional weak formulation for
t > 1 in which u and η each have a single jump discontinuity.

We can also note that in the region near t = 1, x = 1 + π/2 and in particular
|s− π/2| = O(ε) for some ε ¿ 1, we can set

u = 1 + εû, t = 1 + ε2τ, η = ε−2η̂ (2.14)

and focus on a region close to the characteristic x = t + π/2 by writing

x− t− π/2 = ε3ξ. (2.15)

When we substitute these scalings, the original system (1.1), (1.2) becomes

∂û

∂τ
+ û

∂û

∂ξ
+

1
F 2ε4

∂η̂

∂ξ
= 0, (2.16)

∂η̂

∂τ
+

∂(ûη̂)
∂ξ

= 0. (2.17)

Hence by choosing ε = F−1/2, we return to the full shallow water model no matter
how large F is. From (2.12), (2.13), suitable matching conditions as τ → −∞ are

û ∼ −ζ and η̂ ∼ 2
ζ2 − 2τ

, (2.18)

where ζ satisfies the equation

ζ3 − 6τζ − 6ξ = 0. (2.19)
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Figure 3: The depth η (dashed line) and velocity u (solid line) profiles (2.12), (2.13)
at: (a) t = 0.4, (b) t = 1, (c) t = 2.

Hence

ζ = (3ξ +
√

9ξ2 − 8τ3)
1
3 + (3ξ −

√
9ξ2 − 8τ3)

1
3 . (2.20)

A better appreciation of this scenario is gained by comparison with accurate
computation of the solution of (1.1), (1.2) subject to (2.11) for F = 30. These
calculations, kindly performed by P.J. Dellar, are shown in Figure 4. They clearly
reveal the emergence of a liquid column bounded by two closely spaced shocks,
giving us confidence that we are witnessing the birth of what would become a
delta-shock in the limit as F →∞. For finite F , the shallow water equations (1.1),
(1.2) remain non-degenerate as a hyperbolic system and the numerical solutions
were obtained using finite volume techniques for hyperbolic systems, the local Lax–
Friedrichs or Rusanov (1961) scheme, and its second order extension by Kurganov
& Tadmor (2000). Neither scheme requires the solution of the Riemann problem,
only the determination of the fluxes as functions of the conserved variables η and
ηu, and a bound on the maximum wave speed, taken as |u|+√η/F . Both schemes
lead to systems of ODEs for cell-averaged quantities that were integrated in time
using the second order, total variation diminishing, Runge–Kutta method of Shu
& Osher (1989). The second order extension gave no noticeable improvement for
the very fine grid of 16384 points used in these computations.

We must add that, as shown in Chen & Liu (2003), and Yang (1999), it is
necessary to impose an additional selection criterion in order to determine the shock
speed uniquely from the delta-shock conditions, just as for traditional Rankine–
Hugoniot shocks. We may either invoke causality, which requires that there are no
outgoing characteristics, or require that energy is lost, which can be shown to be
equivalent to the assertion that the ‘mass’ of the delta-shock ηs(t) increases with
time. For (2.1) the fact that all the characteristics are incoming has the added
effect of decoupling the field equations from the shock conditions (2.7)–(2.10).

2.2 Discontinuities with loss of mass and momentum

As mentioned in the introduction, the traditional model for the zero-gravity impact
of two jets of liquid is as depicted in Figure 1(b). This flow is described by the full
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Figure 4: The solution of (1.1), (1.2) subject to (2.11). (Figure provided by P.J.
Dellar). (a) The velocity profile u at t = 0.4 (dotted line), t = 1 (dashed line),
t = 2 (solid line). (b) The depth η at t = 0.4 (dotted line), t = 1 (dashed line),
t = 2 (solid line); the depth attained by the flow at t = 1 is 36.5.

Euler equations, including the velocity in the vertical direction, z, with F = ∞ as
compared with the shallow water model in which the time scale is long enough for
the vertical velocity term to be of lower order than the hydrostatic term F−2∂η/∂x
(see (1.2)). In a frame of reference moving with the spout root, the flow is a steady
Helmholtz flow. Hence we can use conservation of mass and momentum, and the
Bernoulli condition on the free streamlines, to find the spout root position xsp(t),
spout inclination β (measured from the positive x-axis in the moving frame), spout
thickness ηsp and the velocity along the spout Usp as

dxsp

dt
=

u+ + u−

2
, (2.21)

ηsp = η+ + η−, (2.22)

cos β =
η− − η+

η+ + η−
, (2.23)

and

Usp =
u− − u+

2
, (2.24)

where, as before, u± and η± are the values of the outer flow on either side of the
spout. Even when the outer flow is unsteady on the timescale of L/U where L À h,
in a frame of reference moving with the spout the local flow is steady to lowest
order and so (2.21)–(2.23) still determine the spout geometry as in Figure 1(b).

This leads us to consider an alternative approach to modelling a singularity
through which mass and momentum as well as energy are lost into the z-dimension;
we will do this in the spirit of the theory of weak solutions of the outer conservation
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laws. Indeed, in Yarin & Weiss (1995), the concept of a ‘kinematic discontinuity’
was introduced as a model for a splash crown formed by a droplet impact, which
locally has the structure of a spout. This kinematic discontinuity is described by
introducing sinks into the conservation laws so as to model a spout in which both
mass and momentum are lost. Thus the flow is modelled by

∂η

∂t
+

∂(ηu)
∂x

= −Mloss(t)δ(x− xsp(t)), (2.25)

∂(ηu)
∂t

+
∂(ηu2)

∂x
= −Eloss(t)δ(x− xsp(t)), (2.26)

where Mloss, Eloss and the spout location xsp are unknown functions of time.
Integrating (2.25), (2.26) across the discontinuity gives that

−Mloss = [ηu]+− − [η]+−
dxsp

dt
, (2.27)

−Eloss = [ηu2]+− − [ηu]+−
dxsp

dt
, (2.28)

and the obvious way to close the system is to assume that the discontinuity struc-
ture is a spout with dxsp/dt being determined by (2.21). A consequence of this
assumption is that, relative to an inertial frame, the mass and momentum condi-
tions for the spout flow of Figure 1(b) are, from (2.21)–(2.24),

[
η

(
dxsp

dt
− u

)]+

−
= Uspηsp, (2.29)

[
η

(
dxsp

dt
− u

)2
]+

−
= −U2

spηsp cosβ. (2.30)

Hence, for this particular model, Mloss = Uspηsp and Eloss − Mlossdxsp/dt =
U2

spηsp cos β, which implies that

Eloss = Uspηsp

(
Usp cosβ +

dxsp

dt

)
= MlossV, (2.31)

say, where V is the horizontal velocity in the spout in the inertial frame. The
relation (2.31) was proposed by Yarin & Weiss (1995).

The description (2.27), (2.28) can be generalised to more general impacts. For
example, if two unequal layers impact and generate a vortex sheet within the jet,
as in Curtis & Kelly (1994), the total heads on either side will differ by H0(t), and
then we simply replace (2.21) by

dxsp

dt
=

u+ + u−

2
+

H0(t)
(u− − u+)

. (2.32)
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2.3 Examples

Although the two theories described in Sections 2.1, 2.2 lead to models that are
different mathematically, their predictions are often very similar. Suppose, for
example, that we return to the symmetric problem of the impact of two equal
layers of unit depth moving with velocity ±1. The delta-shock prediction from
(2.7)–(2.10) with ηs = Ms = Es = 0 at t = 0 is that

ηs = 2t, xs(t) = 0, (2.33)

while (2.21) and (2.27) predicts that

xsp(t) = 0 (2.34)

and the spout flux is Uspηsp = 2 corresponding to a mass growth of1 2t.
Asymmetric impact is less easy to analyse but as an example2 we will consider

the impact of a layer in which u(0, t) = 1/(1− t), η(0, t) = 1− t on stationary fluid
with η = 1 in x > 0 at t = 0. The solution of (2.1) is, for 0 < t < 1,

η(x, t) =
{ 1−t

(1−x)2 , x < X(t),
1, x > X(t),

(2.35)

u(x, t) =
{

1−x
1−t , x < X(t),
0, x > X(t),

(2.36)

except near x = X(t), which separates the moving and quiescent fluid layers.
When we assume the delta-shock relations (2.7)–(2.10), we find that the coef-

ficient of the mass delta function ηs(t) and the position of the shock X(t) = xs(t)
are

ηs(t) = xs(t) +
t− 1

1− xs(t)
+ C, (2.37)

ηs(t)
dxs

dt
= ln

∣∣∣∣A
(

1− xs(t)
1− t

)∣∣∣∣ , (2.38)

where A and C are constants. The initial conditions for the delta-shock are

ηs(0) = 0 and xs(0) = 0, (2.39)

which gives C = 1 and, provided the shock velocity is bounded as t ↓ 0, A = 1. We
eliminate ηs from (2.37) and (2.38) and integrate to give

1
2
(xs(t) + 1)2 + (1− t)

(
ln

∣∣∣∣
1− xs(t)

1− t

∣∣∣∣ + 1
)
− 3

2
= 0. (2.40)

1It can be shown more generally that the two models will give the same shock position whenever
u±, η± are constant with η+ = η−, i.e. with spout angle β = π/2.

2In Howison, Ockendon & Oliver (2002) this flow was shown to be relevant to the impact of
a rectangular impactor on a quiescent layer. The impactor squeezed out fluid into the quiescent
layer and the resulting interaction was modelled as a spout.
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Figure 5: The solid line is the position x = X(t) = xs(t) of the singularity for the
impact problem as predicted by the delta-shock conditions, and given by (2.40).
The dashed line is the spout position x = X(t) = xsp(t) as given by (2.41).

By choosing the solution for xs(t) that satisfies the causality conditions, this leads
to a unique positive solution for xs(t), and hence for ηs(t), which increases with
time for 0 < t < 1.

On the other hand, for a discontinuity with loss and no vortex sheet, the position
X(t) = xsp is given by (2.21) as

xsp = 1−√1− t. (2.41)

The numerical solution of (2.40) is plotted in Figure 5 alongside the spout root
position as given by (2.41). For small times the two solutions only differ by O(t3),
but as mass accumulates in the delta-shock and ηs(t) increases, so the delta-shock
gains inertia and lags behind the spout, through which mass is continually lost.

2.4 Discussion

We will now make some conjectures concerning the relationship between delta-
shocks and discontinuities with loss based on the consideration of the full two-
dimensional Euler equations in the (x, z) plane for the symmetric impact problem.
Assuming potential flow, in which the velocity potential φ has been made dimen-
sionless with Uh, x and z with h and t with h/U , and in the absence of vortex
sheets, we have to solve

∂2φ

∂x2
+

∂2φ

∂z2
= 0 in 0 < z < η(x, t), (2.42)
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(a) (b)

Figure 6: (a) Schematic of flow resulting from the impact of two symmetric jets
after a time t ∼ O(F 2) in a frame moving with the spout root. (b) Schematic of
the flow after the collapse of the fluid column shown in (a); the flow evolves into a
connected region bounded by bores.

where η may well be multi-valued, with

∂φ

∂z
=

∂η

∂t
+

∂φ

∂x

∂η

∂x
on z = η(x, t), (2.43)

∂φ

∂t
+

1
2
|∇φ|2 +

1
F 2

η = 0 on z = η(x, t), (2.44)

∂φ

∂z
= 0 on z = 0. (2.45)

The initial conditions are appropriate to the jet collision problem under discussion.
Hence, over this timescale, we have an ‘unsteady Helmholtz flow’ for which, as
discussed in King & Needham (1994) even the small time solution is very compli-
cated. Nonetheless, we anticipate that this solution will describe the growth of a
vertical column of liquid centred near the initial impact point and that, as t →∞
with F = ∞, the flow will tend to a steady Helmholtz flow in a frame moving with
the spout. However, we expect gravitational effects to become important at the
apex of the column at dimensional times of O(U/g), i.e. when in (2.42)–(2.45),
t ∼ O(F 2).

The column may be modelled as a vertical thin jet of water along which gravity
acts. It occupies the region −H(z, t) < x < H(z, t), z À 1, in which H and the
vertical velocity w(z, t) satisfy

∂H

∂t
+

∂(wH)
∂z

= 0, (2.46)

∂w

∂t
+ w

∂w

∂z
= − 1

F 2
, (2.47)
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with matching to the Helmholtz flow at the base; see Figure 6(a). Rescaling via
z = F 2Z, t = F 2T , we retrieve the same equations with −1/F 2 replaced with −1,
and with w = 1, H = 1 at Z = 0 for T > 0 (T = 0 being the initial collision time
of the jets on this scale). The solution is

w(Z, T ) =
√

1− 2Z, H(Z, T ) =
1√

1− 2Z
, 0 < Z < T − 1

2
T 2, 0 < T < 1,

(2.48)
the first of which states that the fluid travels ballistically, and the second that as
it travels up it ‘fills’ the space between the fixed curves x = ±1/

√
1− 2Z (the

discontinuity at the top of the jet, Z = T − 1
2T 2, is a classical shock satisfying the

Rankine–Hugoniot conditions for (2.46)).
As the jet nears the top of its trajectory at time T = 1, Z = 1

2 , this model gives
way to a fully two-dimensional flow, in which the scales are such that the local
Froude number is unity. This occurs when Z = 1

2 + O(F−
4
3 ), at which point the

lateral extent of the jet 1/
√

1− 2Z and the vertical scale 1
2 − Z both translate to

the same dimensional lengthscale of O(F
2
3 h), with the velocities being O(F−

2
3 U).

The relevant timescale is F
4
3 h/U , which is much longer than the time O(Fh/U)

that a ballistic particle takes to turn round at the top of its trajectory. This flow
is complicated but we conjecture that it leads to the formation of a blob of area
O(F

4
3 h2), which will be unstable. The geometry may distort dramatically with

many changes in connectivity and consequent turbulent dissipation. However, we
expect it eventually to collapse into a connected central region of area O(F 2h2)
bounded by bores at each end (Figure 6(b)). By the end of Section 3, we will be
able to present a model for the collapse of the spout but here we simply note that
if the collapse does generate such a central core, this core can, when viewed from
sufficiently far away, be considered as a delta-shock. We remark that this scenario
is qualitatively similar to some of the predictions of the numerical calculations by
Anderson, Diver & Peregrine (1990). However, these authors make the cautionary
comment that a wild variety of shapes can occur depending on the initial conditions.

3 Uphill shallow water flows

We now return to the modelling of flow over a non-horizontal base, and in particular
on an inclined plane as illustrated in Figure 2. If the slope of the base is sufficiently
small, specifically of O(δ), where δ is the aspect ratio of the layer, then, with
F = O(1), the flow may be described by the traditional model for shallow water
flow on a sloping base (Carrier & Greenspan 1958, Stoker 1957). If, however, the
slope of the base exceeds O(δ) then shallow water flow can only be sustained if it
is fast enough that the Froude number is large. In this regime, we show that it is
possible for a new type of discontinuity to form, consisting of a small tube of fluid
bounding the flow, as seen in Figure 2. Our objective in this section is to find a
realistic model for this tube,3 and we will concentrate on the specific problem of a

3A geometrically similar phenomenon to this tube can be seen at the edge of free sheets, i.e.
sheets without a supporting substrate, by, for example, holding a spoon under a tap (Bush &
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point source flow, as shown in Figure 2.
Uphill flows have a characteristic length scale independent of the initial condi-

tions, namely the maximum distance the fluid can travel up the plane under the
action of gravity, i.e. U2/2g sin γ, where γ is the slope of the plane. Within the
framework (2.42)–(2.45), and using the notation of Figure 2, it is now more appro-
priate to scale the horizontal and uphill distances x and y with4 L = U2/g sin γ,
the potential with UL, the time with L/U and z, the distance perpendicular to the
plane, with h. Then we obtain

∂2φ

∂z2
+ δ2

(
∂2φ

∂x2
+

∂2φ

∂y2

)
= 0, (3.1)

with

∂φ

∂z
= δ2

(
∂η

∂t
+

∂φ

∂x

∂η

∂x
+

∂φ

∂y

∂η

∂y

)
(3.2)

and

1
2

(
∂φ

∂z

)2

+ δ2

(
∂φ

∂t
+

1
2

(
∂φ

∂x

)2

+
1
2

(
∂φ

∂y

)2

+ y − 1
2

)
+ δ3(η − η0) cot γ = 0

(3.3)

on z = η(x, y), where η0 is a reference level, and

∂φ

∂z
= 0 (3.4)

on z = 0, where δ = h/L = sin γ/F 2 ¿ 1.
We will consider the steady problem of a point source with no directivity at

x = y = 0, as shown in Figure 2. To lowest order we see that φ ∼ φ(x, y) + O(δ2)
where

1
2

(
∂φ

∂x

)2

+
1
2

(
∂φ

∂y

)2

=
1
2
− y, (3.5)

(conservation of energy) and then mass conservation is expressed as

∂

∂x

(
η
∂φ

∂x

)
+

∂

∂y

(
η
∂φ

∂y

)
= 0. (3.6)

Equations (3.5) and (3.6) may be written in conservation form as

∇ · (ηu) = 0, (3.7)
∇ · (ηuu) = 0, (3.8)
∇ · (ηvu) = −η (3.9)

Hasha 2004, Clark & Dombrowski 1971, Taylor 1959, Taylor 1960, Taylor & Howarth 1959). In
these flows it is surface tension that generates and sustains the tube.

4For arithmetic convenience we take L to be twice the maximum distance that the fluid can
travel up the plane.
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where we have introduced u = ∂φ/∂x and v = ∂φ/∂y, and ∇ = (∂/∂x, ∂/∂y).
We note that this model can be generalised to hypercritical flows over curved

surfaces as in Rienstra (1996); on a curved surface ∇ is interpreted as the surface
gradient operator while (3.8)–(3.9) become

∇ · (ηu⊗ u) = −ηk (3.10)

where a⊗b is the tensor product of the vectors a and b, and k is the unit vertical
vector. Note that in this case we take L as the radius of curvature of the surface.
Care has to be taken to ensure that the layer does not separate from the substrate
as it is now possible for the pressure at the bottom of the fluid layer to become
negative. This occurs when the centrifugal force induced by the curvature of the
surface overcomes gravity, i.e. when |u|2κ > k · n where κ is the normal curvature
of the surface in the direction u and n is the unit normal of the surface.

The eikonal equation (3.5) may be solved by Charpit’s method. The character-
istics, which are the particle paths, are parametrised by τ as

x = p0τ, (3.11)

y = q0τ − τ2

2
, (3.12)

where p0, q0 are the values of ∂φ/∂x, ∂φ/∂y on each particle path at τ = 0. For the
point source we take p0 = sin θ, q0 = cos θ, where θ parametrises the streamlines
and θ = 0 on x = 0, y > 0; (3.11), (3.12) then give the velocity as

∂φ

∂x
= sin θ, (3.13)

∂φ

∂y
= cos θ − τ. (3.14)

Equation (3.6) for η can be rewritten as

d
dτ

(ηJ) = 0 (3.15)

where J = ∂(x, y)/∂(τ, θ), and hence η is given by5

η =
1

τ(1− τ cos θ)
. (3.16)

Figure 7 shows the particle paths and their envelope or caustic y = 1
2 − 1

2x2. On
the caustic J = 0, and the depth is infinite, which motivates the introduction of a
generalised solution in the spirit of Section 2.1.

Recalling that what we see in Figure 2 is a fast thin sheet bounded by a small
tube of fluid with no fluid beyond it, we will now idealise the tube as a line con-
densation to which mass and momentum are continually added from the sheet, and

5The constant of integration in (3.16) can be taken as unity by scaling the velocity U appro-
priately in terms of the flux.
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Figure 7: The characteristics, or particle paths, for a point source flow on an
inclined plane.

along which there are mass and momentum fluxes. It forms a bounding disconti-
nuity in the flow whose position must be determined by appropriate free boundary
conditions. In the next section, we will use the idea of delta-shocks for the degen-
erate hyperbolic system (3.7)–(3.8) to determine the position of this tube, showing
that the presence of the tube causes a significant decrease in the maximum distance
up the slope attained by the layer as it flows uphill compared with the distance
U2/2g sin γ of the apex of the caustic.

3.1 Modelling a mass tube as a delta-shock

The equations to be solved are (3.7)–(3.9). We write the mass tube Γ as y = ym(x).
We also assume that the surface is dry in y > ym(x). Referring to Figure 8, we
define a unit tangent tm in the direction of the flow in the mass tube, and a normal
nm into the tube from the sheet, and measure the arc length s along the tube
from x = 0 in the direction of tm. We model the mass tube as a delta-shock and
introduce a delta function supported on Γ, which we denote by δΓ, into the film
thickness, and into the film mass and momentum fluxes. Thus, following (2.2)–(2.4)
we replace η by the distribution

A(s)δΓ + η(x, y)HΓ, (3.17)

and ηu, ηuu and ηvu by the distributions

M(s)tmδΓ + ηuHΓ, (3.18)
E(s)(tm · ex)tmδΓ + ηuuHΓ, (3.19)
E(s)(tm · ey)tmδΓ + ηvuHΓ, (3.20)

respectively, where HΓ is a Heaviside function that is unity in y < ym(x), and ex,y

are unit vectors in the x, y directions respectively, and (3.18)–(3.20) are defined in a
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Figure 8: A schematic of the bounding tube of fluid y = ym(x) generated by a
point source flow on a base with an O(1) slope.

distributional sense by their scalar-product action on a vector valued test function.
The weight A(s) can be interpreted as the area of cross section of the tube, while
M(s) and E(s) can be interpreted as the mass and momentum fluxes along the
tube respectively, and so M2 = EA.

Using the expressions (3.17)–(3.20), the delta-shock conditions for this steady
flow may be derived rigorously by a measure theoretic argument. However, we
can use a similar argument to that of Section 2.1 and substitute (3.17)–(3.20) into
(3.7)–(3.9). Interpreting the divergence of (3.18)–(3.20) in a distributional sense
this gives the delta-shock conditions as

dM

ds
= η−(u− · nm), (3.21)

d(Etm)
ds

= η−u−(u− · nm)− M2

E
ey; (3.22)

here η− denotes the depth in the sheet evaluated at y = y ↑ ym(x), with the velocity
u− similarly defined. The mass conservation equation (3.21) tells us that all the
fluid entering the tube is absorbed by it. The momentum equation (3.22) can be
expressed in terms of its components in the tangential and normal directions tm

and nm as

dE

ds
= η−(u− · tm)(u− · nm)− M2

E
ey · tm, (3.23)

E
dtm

ds
· nm = η−(u− · nm)2 − M2

E
ey · nm, (3.24)

where (dtm/ds) · nm is the curvature of the tube; in (3.24) the centrifugal force
due to the flow down the tube is balanced with the force exerted on the tube by
the incoming sheet, and gravity, while (3.23) represents the tangential momentum
balance.
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We remark that if the surface is not planar then we can again use the argument
above to derive the delta-shock conditions. In this case we substitute (3.17) and
(3.18) into (3.7), and (3.10) but we must also replace ηu⊗ u with

E(s)tm ⊗ tmδΓ + ηu⊗ uHΓ, (3.25)

taking an appropriate distributional definition for the divergence of (3.25). We
find that (3.21), (3.22) still describe the position of the singularity, but with ey

replaced by k. However, the vector d(Etm)/ds has a component in the direction of
the normal to the surface n. Additionally, the gravitational body force −(M2/E)k
has a component into the surface along n. Thus, we see that if

(
E

dtm

ds
+

M2

E
k
)
· n < 0 (3.26)

then there is a resultant force on the mass tube out of the surface, which may cause
it to detach from the surface.

In order to complete the solution for the point source flow we must solve the
equations (3.21) and (3.23)–(3.24) with the outer solution being given in terms of
the ray variables θ, τ . We thus represent the mass tube by τ = τm(θ). The velocities
are u− = u(τm(θ), θ), v− = v(τm(θ), θ), and η− = η(τm(θ), θ) as given by (3.13),
(3.14), (3.16) and we introduce, with a slight abuse of notation, xm(θ) = τm sin θ
and ym(θ) = τm cos θ − τ2

m/2. Thus, writing ′ = d/dθ

tm =
1√

x′2m + y′2m
(x′m, y′m), nm =

1√
x′2m + y′2m

(−y′m, x′m), (3.27)

and the mass tube equations (3.21) and (3.23)–(3.24) may be expressed as

M ′ =
−y′m sin θ + (cos θ − τm)x′m

τm(1− τm cos θ)
= 1, (3.28)

E′ =
x′m sin θ + (cos θ − τm)y′m√

x′2m + y′2m
− M2

E
y′m, (3.29)

E
−x′′my′m + x′my′′m

x′2m + y′2m
=

−y′m sin θ + (cos θ − τm)x′m√
x′2m + y′2m

− M2

E
x′m. (3.30)

Assuming that the mass flux is zero at the highest point of the flow, (3.28) has the
exact solution M(θ) = θ, and we need only solve (3.29) and (3.30) for E(θ) and
τm(θ).

It would be natural to assume that the highest point of the tube is at the top
of the caustic, i.e. at y = 1

2 , but it can be shown via a local expansion that this
implies a contradiction. Thus instead we let τm(0) = τ0 with τ0, which is expected
to be less than unity, to be determined as part of the local solution. We expand
τm and E as

E ∼ m0θ
2 + m1θ

4 . . . , (3.31)
τm ∼ τ0 + τ1θ

2 + . . . , (3.32)
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Figure 9: The solid line corresponds to the solution of the mass tube equations
(3.28)–(3.30). The dotted lines are the characteristics of the flow as calculated
from (3.5). The mass tube is the physical bound for the fluid with the surface dry
above it.

for small θ, where the forms of these expansions are determined by the symmetry
of the mass tube about x = 0 and from a consideration of the possible expansions
of (3.29) and (3.30). Equating powers of θ in the expansions of (3.29) and (3.30)
we find that τ0 = 1/3, m0 = 1/2, τ1 = 23/234 and m1 = 5519/109512. In x, y
coordinates this gives the start of the tube as (0, 5/18) rather than (0, 1/2).

We can now use this local solution to provide the initial conditions for solving
(3.28)–(3.30) by a fourth–order Runge–Kutta method, and the result is plotted in
Figure 9 (incidentally the solution is not a parabola), in which the characteristics
on the equation (3.5) are also plotted for comparison. The tube lies below the
envelope of characteristics and represents the bounding curve for the fluid with the
surface dry above it.

The shape of the mass tube we have calculated is qualitatively similar to the
mass tube of Figure 2(a), but calculations based on rough measurements in this
kitchen-sink experiment suggest that the rise is about 1

3 of that predicted by our
theory. Viscous drag is a plausible candidate to account for the shortfall, and we
briefly consider its effects. We suppose that a jet of radius a impinges normally
with speed U on a vertical plate and estimate some orders of magnitude for various
properties of the flow. For our experiment U is about 1.8 m s−1 and a = 2×10−3 m
with ν ∼ 10−6 m2 s−1; thus at a distance O(a) from the jet the Reynolds number
is Ua/ν ∼ O(103) and the Froude number is U/

√
ga ∼ O(10). Hence the theory

described in this paper applies to this flow. Now we move away from the jet to a
radial distance R and suppose that the mean velocity has not changed by an order
of magnitude. Then the layer thickness will be H ∼ O(a2/R) and the Froude
number will be U/

√
gH ∼ O(U

√
R/ga2), which is large over the entire range of

our experiment. The reduced Reynolds number, which measures the importance
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of viscosity in the layer, is UH2/Rν ∼ O(Ua4/R3ν) and when this drops to O(1)
then our inviscid theory will no longer apply. For our experiment this happens
when R is approximately 2 cm. Hence we expect viscosity to influence the flow
appreciably as the mass tube is approached. It would be interesting to perform the
experiment for larger values of U and a, with U/

√
ga held fixed but this proved to

be impossible with the simple equipment at hand.

3.2 Implications for horizontal layer impact

We now revisit the symmetric impact problem of Section 2.1 in the light of the
discussion above. We recall that, in Section 2.4, we proposed that, over dimensional
times of O(U/g), gravity would bring the apex of the vertical spout to rest. Let us
therefore consider the possibility of modelling the subsequent effect of gravity as
being such as to create an unsteady horizontal mass tube as in Figure 6(a) bounding
a flow of a sheet up a vertical plane γ = π/2. The corresponding unsteady version
of (3.7)–(3.9) for a spout of thickness 2H and vertical velocity w in the z direction
is as in Section 2.4

∂H

∂t
+

∂(Hw)
∂z

= 0, (3.33)

∂(Hw)
∂t

+
∂(Hw2)

∂z
= −H. (3.34)

The mass tube is characterised by a delta-shock at z = zm(t) whose thickness, mass
and momentum are A(t), M(t) and E(t) respectively.

Replacing

H by Aδ(z − zm) + HH(z − zm), (3.35)
Hw by Mδ(z − zm) + HwH(z − zm), (3.36)

Hw2 by Eδ(z − zm) + Hw2H(z − zm), (3.37)

where H is again the Heaviside function and is unity in z < zm, we find that

A
dzm

dt
= M, (3.38)

dA

dt
= H−

(
w− − dzm

dt

)
, (3.39)

dM

dt
= H−w−

(
w− − dzm

dt

)
−A, (3.40)

M
dzm

dt
= E, (3.41)

where − denotes the value of a variable as it enters the mass tube. Also the steady
flow in the sheet implies from (3.33), (3.34) that

w− =
√

1− 2zm, H− =
1√

1− 2zm
, (3.42)
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as derived in Section 2.4. When we choose the origin of time as that at which the
spout apex is brought to rest, which is U/g in dimensional variables, the initial
conditions are

M(0) = 0, A(0) = 0, zm(0) =
1
2
. (3.43)

The system (3.38)–(3.40) has enough symmetry for us to be able to integrate
twice to obtain

zm =
1
2
− 1

8
t2, A =

3
2
t, M = −3

8
t2. (3.44)

This implies that the mass tube descends with one quarter of the acceleration of
gravity and hits the base after a fall time twice that taken for the spout apex to
reach its apogee. Of course a new model is needed to describe the way in which
the mass tube evolves into the expanding, increasingly high aspect ratio central
region proposed in Section 2.4. This model will presumably comprise the full Euler
equations over the birth of the region on the timescale U/g, but with allowance
made for energy dissipation at the edge of the central region.

4 Conclusion

This paper has reviewed the traditional models for the sudden geometrical changes
that can sometimes occur in shallow water flows, and has suggested some new
models for flows with large Froude number F . When F is of O(1), shallow wa-
ter flows are well-described by smooth solutions of the equations of shallow water
theory, joined by discontinuities whose positions are determined by the traditional
Rankine–Hugoniot relations. If, however, F is large, with inertia dominating grav-
ity, then this hyperbolic model becomes nearly degenerate, with its two character-
istics coinciding at lowest order. This, in turn, leads to the presence of very strong
hydraulic jumps, which may be so close together as to invalidate the shallow water
model. This means that new singularities such as delta-shocks or ‘discontinuities
with mass loss’ must be brought into play.

This situation has motivated our investigation into the relative importance of
shallow water theory and fully two-dimensional zero-gravity unsteady ‘Helmholtz
flows’ in modelling high-speed shallow flows. These are the only two asymptotic
simplifications that can be made in the full equations for the surface gravity waves
on a horizontal base: in the shallow water limit, the aspect ratio δ tends to zero
before the small gravity limit and in unsteady Helmholtz flows these limits are
reversed. However, in any practical problem, F and δ have to be determined as
part of the solution and hence we have restricted attention to two case studies.

In Section 2, we have considered the impact of two fast thin sheets flowing
horizontally. The predictions of shallow water theory with delta-shocks have been
compared with those whose mass loss is incorporated at the discontinuity. While
these predictions are in general agreement with each other, neither can describe
the detailed temporal evolution of the impact. Hence we have proposed a scenario
involving a sequence of

(i) an unsteady Helmholtz flow at very short times;
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(ii) classical shallow water theory as the impacting layers move in a vertical
spout, with a quasi-steady Helmholtz flow at its base;

(iii) a second unsteady Helmholtz flow at the apex of the spout;
(iv) a downward shallow water flow with a delta-shock;
(v) another, more complicated unsteady Helmholtz flow describing the collapse

of the spout;
(vi) a shallow water flow behind a Rankine-Hugoniot shock emitted into the

original layer.
In Section 3, we have considered high Froude number flow of a layer on a tilted

base. Traditional shallow water theory does not describe such uphill flows but, in
steady flow, the solution of the eikonal equation to which the energy equation is
equivalent will in general have caustics and the eikonal model breaks down before
this caustic is reached. We have proposed a scenario in which the caustic is avoided
by the introduction of a condensed mass tube that bounds the flow, this tube having
cross-sectional dimension much greater than the layer thickness but much less that
the overall flow dimensions. The tube is modelled as a delta-shock in the shallow
water equations of motion of the layer in conservation form and the numerical
solution for such a delta-shock resulting from a point source flow shows qualitative
agreement with crude experimental observations.
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