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Abstract

We develop approximations to the pricing of options on an asset which makes dis-
crete dividend payments, focusing on the case of frequent payments. The principal
mathematical tool is the method of multiple time scales, allied to matched asymp-
totic expansions. We first analyse European style options, deriving the continuously-
paid dividend equation from the relevant discrete problem, and we analyse the range
accrual note to compute the relevant ‘continuity correction’. We also carry out the
same analysis for Asian options with discrete averaging. We then give a detailed
description of the intricate exercise policies that arise for American put (and, to
a lesser extent, call) options when dividends are paid discretely, for the cases of
proportionate and fixed-amount dividends.

1 Introduction

It is common in analysis of derivatives to assume that dividend or coupon payments are
made continuously in time, or that averages for Asian options are computed continu-
ously. In practice, however, these processes are discrete in time. This paper deals with
asymptotic approximations, valid when the number of discrete events is large, for the
difference between the Black–Scholes prices obtained with the two regimes. Using the
method of multiple scales, we first consider two relatively straightforward cases: we anal-
yse European contracts on an asset paying discrete dividends, showing how the continuous
payment model is retrieved and characterising the difference between the two, and giving
the same treatment to Asian options with continuous and discrete averaging. We extend
the analysis to range accrual notes, calculating in addition the ‘continuity correction’ (an
expression for the difference between the discrete and continuous option values) applicable
to these contracts. We then turn to the more intricate case of American options.
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The Black–Scholes model for an American put option has been widely studied as a
canonical early-exercise problem. The majority of these studies have assumed a contin-
uously paid constant dividend yield (which is taken equal to zero in some cases). Apart
from existence/uniqueness studies, attention has been paid to the properties of the early
exercise boundary such as its convexity [4], and in particular its behaviour at times close
to expiry, where approaches divide between those that use the Green’s function to trans-
form the problem into an integral equation (see, for example, [2, 9, 10]) and those that
exploit matched asymptotic expansion methods directly on the underlying partial differ-
ential equation (for example, [8]).

Less attention has been paid to cases in which the contract has ‘discrete’ features.
The relationship between a Bermudan option with frequent exercise opportunities and
its continuously-exercisable equivalent is discussed in [6]; in this paper, we consider the
behaviour of a put option on an asset which pays a large number of discrete dividends,
which we refer to as the discrete version of the equivalent option with continuous dividend
payments (we return to the precise definition of these terms below). Rather than deriv-
ing a continuity correction, as in [1, 5] for discretely and continuously activated barrier
options and [6] for Bermudan and continuously-exercisable American ones, we focus on
the structure of the exercise region between dividend dates, which is quite intricate. This
has been recognised for some time: the current study was motivated by Figure 5-37 of
the early text [3], and by the numerical calculations of [11] which are illustrated with
similar figures. A sketch of the exercise boundary for a put option is given in Figure 1.
The exercise region for the continuous option is to the left of the dashed line, which is the
optimal exercise boundary for that contract. However, the exercise region for the discrete
option on an asset paying proportionate dividends consists of many disjoint portions, one
for each interval between dividend payments (plus final and initial ones), and its exercise
boundary, shown solid, has correspondingly many components; each of these, save only
the final one, extends to S = 0 as time approaches a dividend date from below, and then
the next component starts from a finite value of S. Furthermore, the exercise boundary
has very nearly constant speed for an appreciable fraction of the interval between payment
dates. This is the structure that we seek to explain; and having done so, we repeat the
analysis for call options, and for both puts and calls on an asset paying a fixed dividend.

2 General background

We work in a standard Black–Scholes model, considering American and European options
with start date t = 0 and expiry t = T on an asset that pays an annualised dividend
yield q. We compare two forms of dividend payment. In the first, the dividend is paid
continuously and the risk-neutral asset price satisfies

dSt

St

= (r − q) dt + σ dWt

where the interest rate r and volatility σ are constant and Wt is a standard Brownian
motion. For this process,

ST |St = St exp

(
(r − q − 1

2
σ2)(T − t) + σWT−t

)
.
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Figure 1: Sketch of the exercise boundaries (solid curves) for a put option with discrete
dividend payments. The exercise regions are indicated, and the exercise boundary for the
continuously paid case is the dashed curve.

We shall write P e
c (S, t) (resp., P a

c (S, t)) for the value of a European (resp., American)
put option in this model, the strike K being implicit. When making statements about
a generic option whose only cashflow is a payoff at time T , we replace P with V . A
European option satisfies the Black-Scholes partial differential equation (BSPDE)

Lq
BSV

e
c :=

∂V e
c

∂t
+ 1

2
σ2S2∂2V e

c

∂S2
+ (r − q)S

∂V e
c

∂S
− rV e

c = 0 (1)

for 0 < t < T , with the appropriate payoff condition.
In the second dividend model, dividends are paid at equal time intervals δt = T/N

with, for definiteness, the first payment immediately after the start, at t = 0+ and the
last immediately after expiry, at t = T+. (Other configurations are clearly possible, but
these details are not the main focus of this study. Our choice is consistent with Fig. 1.)
For this model, between the dividend dates ti = i δt, i = 0, 1, . . . , N − 1, the asset price
evolves according to

dSt

St

= r dt + σ dWt,

while the usual no-arbitrage condition at t = ti means that

Sti+ = Sti−e−q δt.

Hence

ST = S0

(
e−q δt

)N
exp

(
(r − 1

2
σ2)T + σWT

)

= S0 exp

(
(r − q − 1

2
σ2)T + σWT

)

in agreement with the continuous case.
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We shall write P e,a
d (S, t) for the value of European and American put options in this

model, again replacing P with V for a generic contract. European contracts in this model
satisfy the zero-dividend version of the BSPDE,

L0
BSV

e
d =

∂V e
d

∂t
+ 1

2
σ2S2∂2V e

d

∂S2
+ rS

∂V e
d

∂S
− rV e

d = 0 (2)

between dividend dates, at which times the value function is subject to jump/continuity
conditions, as follows.

Although the asset value in the discrete model falls by the amount of the dividend at
a dividend date, the option value is continuous in time at the dividend date because the
option holder receives no cash flow. This transfer,

OptionValue(AssetBeforeDividend, TimeBeforeDividend) =

OptionValue(AssetBeforeDividend − Dividend, TimeAfterDividend),

holds for all possible asset values and hence states that

Vd(S, ti−) = Vd(Se−q δt, ti+) (3)

for all S. Note immediately that, at fixed S, a decreasing value function, for example of
a contract such as a put option, has a jump decrease across the dividend time.

2.1 European contracts

We first establish some elementary properties of European contracts.

Proposition 1. With our assumption on the timing of dividend payments, the values of
generic European continuous and discrete options agree immediately before any dividend
date:

V e
d (S, ti−) = V e

c (S, ti−).

Proof. This follows directly from the representation of the option value as the discounted
risk-neutral expectation of the payoff, because for each asset value Sti−, the conditional
distribution of ST |Sti− is the same for both models. ¤

The equality does not hold in between dividend dates (because of the different drifts
in the two models), nor does it hold for American option (because of path-dependency).
If the final discrete dividend is paid immediately before the expiry time rather than after
it, equality holds at ti+ rather than at ti−, while if the expiry time is strictly between
two dividend payment dates, no simple general statement can be made, because of the
final partial interval tN < t < T .
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Proposition 2. With our convention on the timing of dividends, if the payoff is de-
creasing (resp. increasing) in S then the discrete option value is less (resp. greater) than
the continuous value between dividend dates: if q > 0 and V (S, T ) is decreasing then, for
0 < S < ∞, and for ti−1 < t < ti, i = 1, . . . , N ,

V e
d (S, t) < V e

c (S, t),

with the inequality reversed when V (S, T ) is increasing.

Proof. Take any i, noting that V e
d (S, ti−) = V e

c (S, ti−). Set Ṽ (S, t) = V e
d (S, t) −

V e
c (S, t). By subtracting the BSPDE (1) from (2), we have

L0
BSṼ = −qS

∂V e
c

∂S
,

with Ṽ (S, ti−) = 0. Because ∂V e
c /∂S < 0 (resp. > 0), solving the BSPDE backwards

from ti we have Ṽ (S, t) < 0 (resp. > 0) for S > 0, ti−1 < t < ti, as required. ¤

Note that other timings of the dividend payments lead to different orderings of contin-
uous and discrete value functions. As we shall see below, the difference Ṽ (S, t) is approxi-
mately a sawtooth function of time for each S, with upward-sloping portions separated by
jumps down. For the payment schedule of Proposition 2, this function is negative except
at t = ti−, where it vanishes. If the final dividend is paid immediately before the exercise
time. the ordering is reversed and the sawtooth is shifted up to be positive everywhere
except t = ti+. For intermediate schedules, it straddles the value zero.

Further insight into these results follows from consideration of the dividend-sensitivity
of the continuous option, a ‘Greek’ which surely should be termed Diva. Setting $ =
∂V e

c /∂q, differentiation of the BSPDE (1) with respect to q shows that

Lq
BS$ = S

∂V e
c

∂S
,

with $(S, T ) = 0. It follows that $ > 0, and in fact $ = −(T − t)S ∂V e
c /∂S. The effect

of dividends is to increase the value of an option with decreasing payoff compared with
the same option on a dividend-free asset (because the drift of the dividend-paying asset
is smaller). This gives rise to the upward-sloping parts of the sawtooth function above,
while the downward jumps stem from the drop in value of an option (for fixed S) at a
dividend date.

3 Asymptotic approximation to discrete options

We now return to a general contract, either European or American, and consider the
difference function Vd(S, t) − Vc(S, t) between the continuously and discretely sampled
versions. For frequent dividend payments, we give a detailed description of its structure
(in the American case, this description holds for asset values in the hold region and far
from any exercise boundary) and we obtain the continuous BSPDE (1) by a systematic
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asymptotic procedure. Unlike the analysis of the exercise region for the American prob-
lem to follow, this is not complicated; although it can presumably be established using
standard homogenisation techniques, our interest is in the structure of the difference be-
tween the value functions in the continuous and discrete problems, and we therefore use
the method of multiple scales.

The difference consists of two parts. One is a one-off ‘offset’ determined by the precise
timing of the final dividend payment, as discussed briefly above; we do not consider this
in detail. The other is the rapidly varying ‘local’ difference, which is more interesting,
and we look at its structure below. We also show that the term

−qS
∂Vc

∂S

in the continuous BSPDE (1) has its origin in an expansion of the jump condition (3):

Vd(S, ti−) = Vd(Se−q δt, ti+)

∼ Vd(S, ti+) +
(
e−q δt − 1

)
S

∂Vd

∂S
+ · · ·

∼ Vd(S, ti+)− q δtS
∂Vd

∂S
+ · · · .

We first carry out the preliminary scaling

t′ = σ2(T − t),

which we use throughout the paper (and we abuse notation by using V (S, t) and V (S, t′)
for the option value). It makes time nondimensional1 on the volatility timescale σ−2, and
converts the backward BSPDEs into forward ones. The zero-dividend BSPDE (which
holds between dividend dates for a generic function Vd(S, t′)) becomes

∂Vd

∂t′
= 1

2
S2∂2Vd

∂S2
+ ρS

∂Vd

∂S
− ρVd, (4)

where
ρ =

r

σ2

is the dimensionless interest rate (percent per inverse-squared-volatility-time). Likewise,
define the dimensionless dividend rate as

γ =
q

σ2
.

Also define
ε2 = σ2 δt,

the dimensionless dividend interval which, as is common for realistic parameter values,
we assume to be small: ε2 ¿ 1. Lastly, label the dividend dates as t′n.

1There is little to be gained in this problem from scaling either S or V , as the BSPDE is invariant
under scaling these quantities with constants, so we are content with a semi-nondimensionalisation.
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Now choose a specific dividend date t′n and write

t′ = t′n + ε2τ,

so that the interval to the ‘next’ dividend payment t′n+1 (counting backwards in calendar
time of course) is 0 < τ < 1. We use the method of multiple scales, writing the discrete
option value as a function of three variables, namely Vd(S, t′, τ), and thinking of τ as a
‘fast’ time.) Using the standard chain rule

∂

∂t′
7→ ∂

∂t′
+

1

ε2

∂

∂τ
,

the option value satisfies

1

ε2

∂Vd

∂τ
+

∂Vd

∂t′
= 1

2
S2∂2Vd

∂S2
+ ρS

∂Vd

∂S
− ρVd (5)

in the typical interval 0 < τ < 1, with the jump condition

Vd(Se−ε2γ, t′, 1−) = Vd(S, t′, 1+).

We now expand

Vd(S, t′, τ) ∼ V0(S, t′, τ) + ε2V2(S, t′, τ) + ε4V4(S, t′, τ) + · · ·

and substitute in (5), equating coefficients of powers of ε to find that

∂V0

∂τ
= 0,

∂V2

∂τ
= L′V0,

∂V4

∂τ
= L′V2,

where

L′ := − ∂

∂t′
+ 1

2
S2 ∂2

∂S2
+ ρS

∂

∂S
− ρ

is the scaled zero-dividend Black-Scholes operator. We also expand the jump condition
to O(ε4) (including e−ε2γ) , giving

V0(S, t′, 1+) = V0(S, t′, 1−), (6)

V2(S, t′, 1+) = V2(S, t′, 1−)− γS
∂V0

∂S
(S, t′, 1−), (7)

V4(S, t′, 1+) = V4(S, t′, 1−)− γS
∂V2

∂S
(S, t′, 1−)

+
1

2
γ2S

∂V0

∂S
(S, t′, 1−) +

1

2
γ2S2∂2V0

∂S2
(S, t′, 1−) (8)

In solving the problems for V0 etc., we must avoid secular terms : functions of τ that
grow unboundedly and invalidate the ordering of the expansion. We therefore impose the
condition that

V0(S, t′, τ), V2(S, t′, τ) and V4(S, t′, τ) are periodic in τ with period 1. (9)
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This does not mean that Vd(S, t′) is periodic, but rather that all the departure from strict
periodicity is via a modulation on the slow time scale t′ of the fast-timescale periodic
behaviour. We can therefore replace V0,2,4(S, t′, 1+) with V0,2,4(S, t′, 0+) in the jump con-
ditions (8). This allows us to close the system of equations, which was made indeterminate
by the introduction of the new variable τ .

We start with V0(S, t′, τ) which, being independent of τ is an as-yet unknown function
V0u(S, t′) of the spot and slow time variables only; it automatically satisfies the first of
the jump conditions (8). Then, we find that

V2(S, t′, τ) = τL′V0u(S, t′) + V2u(S, t′),

where V2u(S, t′) is also unknown at this stage. We now apply the second of the jump
conditions (8) (replacing 1+ with 0+) to find that

L′V0u = γS
∂V0u

∂S
,

which is the scaled continuous BSPDE for V0u. Applying the payoff condition,

V0u(S, t′) = Vc(S, t′)

and we have thus established leading-order convergence of the discrete problem to the
continuous one.

We are left with the function V2u(S, t′). Repeating the procedure above for V4, we find

V4(S, t′, τ) = 1
2
τ 2L′2V0u(S, t′) + τL′V2u(S, t′) + V4u(S, t′),

where V4u(S, t′) is again unknown. The third jump condition above, together with the
fact that if V (S, t′) is a solution of the BSPDE, so is S∂V/∂S (that is, L′ commutes with
S∂ /∂S), eventually shows that the solvability condition is

L′V2u = γS
∂V2u

∂S
.

That is, the O(ε2) correction also satisfies the continuous BSPDE. We can identify V2u

with the correction attributable to the interaction of the dividend payment schedule with
the expiry date, as discussed above.

With the dividend payment schedule of Proposition 1, both V2(S, t′) and V4(S, t′)
vanish at τ = 0, and so the unknown functions V2u and V4u are absent. We have thus
shown that the difference between the discrete and continuous prices is

Vd(S, t′, τ)− Vc(S, t′) = ε2τγS
∂Vc

∂S
(S, t′) + 1

2
ε4τ 2γ2S

∂

∂S

(
S

∂Vc

∂S
(S, t′)

)
+ O(ε6)

and is therefore O(1/N). Reverting to original variables,

Vd(S, t)− Vc(S, t) = (ti − t)qS
∂Vc

∂S
+ 1

2
(ti − t)2q2S

∂

∂S

(
S

∂Vc

∂S

)
+ · · · ,

for ti−1 < t < ti, with periodic repetition as above; so the first term has the form ‘Diva ×
time to dividend’ as one might expect.
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3.1 Discrete and continuous Asian options

Let us now consider arithmetic (for simplicity only) Asian options. The continuous version
of this option has price V Asian

c (S, A, t) where the variable A is the running average whose
time-t value is

Ac,t =
1

T

∫ t

0

Su du.

(We have divided by T for simplicity in what follows; most texts use It =
∫ t

0
Su du and

divide by T in the payoff.) Then dAt = (St/T ) dt and the continuous Asian BSPDE is

∂Vc

∂t
+ 1

2
σ2S2∂2Vc

∂S2
+ rS

∂Vc

∂S
+

S

T

∂Vc

∂A
− rVc = 0.

The corresponding discretely averaged option uses the average

Ad,t =
1

N

ti∑
j=0

Stj ,

where the averaging dates are separated by a time interval δt and i = bt/δtc labels the last
averaging date before time t. In between the averaging dates, the option value satisfies
the ordinary BSPDE (no averaging term). The updating rule for the average is

Ad,ti+ = Ad,ti− +
Sti

N
.

Continuity at averaging dates of the option price for a price trajectory gives the updating
rule

V Asian
d (S, ti−, A) = V Asian

d (S, ti+, A + S/N)

for all S and A.
In this problem, rather than scaling time with σ−2, it is more transparent to scale it

with T and to use

ε2 =
δt

T
=

1

N

as the small parameter. Then the updating rule is approximated by

V Asian
d (S, ti−, A) = V Asian

d (S, ti+, A) + ε2S
∂V Asian

d

∂A
(S, ti+, A),

and exactly the same machinery as was used for the case of dividends leads directly to the
continuous version of the BSPDE and to a correction term which is, at leading order, equal
to τS∂V Asian

c /∂A. Although this analysis works for any averaging, it is particularly clear
when the average is arithmetic and the payoff is affine in S and A, say max(S−A−K, 0),
as following the similarity reduction V (S, A, t) = SV((A−K)/S, t) the effect of averaging
is the same as that of a (non-proportionate) dividend payment in the equation for V .
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3.2 Continuity corrections for range accrual notes

We next consider discrete and continuous payment in a range accrual note. This is a
contract which has no terminal payoff but pays a coupon whenever the underlying asset
price St lies within a specified range, SL < St < SU . The coupon may be modelled as
being continuously paid, or as a series of discrete payments at times ti, separated by δt.
We assume for simplicity that the coupon rate is a constant c in annualised units. A
contract with a coupon paid in SL < St < SU is the same as a long position in a contract
paying coupons in 0 < St < SU and a short position in one paying in 0 < St < SL, so
henceforth we only consider the former.

It is apparent that the discrete contract is simply a strip of binary (digital) calls and
has the model-independent representation

V ran
d (S, t) = c δt

∑
i

P b(S, t; SU , ti),

where P b(S, t; SL,U , ti) is the value of a binary put, the last two arguments indicating the
strike and expiry, and the sum is over all remaining dividend times. Letting δt → 0, we
have

V ran
c (S, t) = c

∫ T

t

P b(S, t; SU , s) ds,

a formula which can also be written using a Green’s function if one is available, as in (say)
the Black–Scholes model.

Now consider this contract in the Black–Scholes model (for simplicity, without divi-
dends). The continuous contract satisfies

L0
BSV

ran
c (S, t) + cI(0,SU ) = 0 (10)

with V ran
c (S, T ) = 0, and with continuity of V ran

c and ∂V ran
c /∂S at S = SU . The discrete

version satisfies
L0

BSV
ran
d (S, t) + c δt

∑
i

δ(t− ti)I(0,SU ) = 0,

where δ(·) is the delta distribution; this implies the jump condition

V ran
d (S, ti+)− V ran

d (S, ti−) + c δtI(0,SU ) = 0,

so that, across coupon dates, the option value is continuous in time outside the coupon-
paying interval, and has a jump equal to the cash flow, −c δt, within it.

The method of multiple scales can be used, just as above, to derive the continuous
BSPDE with a coupon, (10), in the coupon range and the normal coupon-less BSPDE
outside it. The correction to the continuously paid contract, V ran

d (S, t)−V ran
c (S, t), consists

of a sawtooth function of time within the coupon region (with boundary-layer smoothings
at the ends of this region), plus a solution of the BSPDE which vanishes at expiry and
is continuous, but has a derivative jump of −1

2
c δt at S = SU . This constitutes the

‘continuity correction’ for the range accrual note. In the Appendix, we give its derivation
and an explicit formula for it. Note that the correction is negative outside the coupon
region and positive inside it. This reflects the fact that in the discrete case, asset paths
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can dip into the coupon region between coupon dates without triggering any coupon
payment and, conversely, they can rise above SU between coupon dates without forfeiting
any payment. In the continuous case, the former paths would receive coupons while below
SU , and the latter would lose them above SU .

4 American put options

We now return to the put option, this time in its American form. The early-exercise
possibility forces the value function of both continuous and discrete options to lie on
or above the payoff. For the continuous option, this leads to the usual early-exercise
boundary as sketched in Fig. 1. For the discrete option, as noted above, at fixed S, the
value function (which is decreasing) falls at a dividend date. The corollary to this is rather
subtle: because the option value immediately after the dividend can be no less than the
payoff, it follows that, immediately before the dividend time, the option value is strictly
above the payoff (except, perhaps, at zero asset value) and at that instant, early exercise
is not optimal for any asset value. In other words, one would never exercise before the
dividend date when it is known that the asset is about to fall by the dividend, with a
consequent increase in the payoff of exercise. In fact, for a put option, we shall see that the
option value immediately after a dividend date has a conventional exercise region whose
boundary tends to S = 0 as the succeeding dividend date is approached, and, as has been
noted by several authors, the approximately straight part of the exercise boundary can
be explained as the asset value at which the gain from the uplift to the payoff due to the
dividend balances the time value of money on the strike.

Continuous options: basic properties. The continuous put option price P a
c (S, t)

satisfies

Lq
BSP

a
c =

∂P a
c

∂t
+ 1

2
σ2S2∂2P a

c

∂S2
+ (r − q)S

∂P a
c

∂S
− rP a

c = 0 (11)

for 0 < t < T , with the payoff constraint P a
c (S, t) ≥ max(K − S, 0). The exercise region

is 0 < S ≤ S∗c (t), which is an increasing convex function of t; as t ↑ T , it tends either to
K if 0 ≤ q ≤ r (the usual case in practice), or to rK/q if q > r. At S = S∗c (t), the smooth
pasting conditions

P a
c (S∗c (t), t) = K − S∗c (t),

∂P a
c

∂S
(S∗c , t) = −1

apply; from them, it follows by differentiation and use of the BSPDE that

∂P a
c

∂t
(S∗c , t) = 0, lim

S↓S∗c (t)

∂2P a
c

∂S2
(S, t) =

2(rK − qS∗c )
σ2S∗c

2 =
2(ρK − γS∗c (t))

S∗c
2 ,

where ρ = r/σ2 and γ = q/σ2 are as before.

Discrete option: problem statement. In between dividend dates, the discrete option
price satisfies

L0
BSP

a
d = 0
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for S∗d(t) < S < ∞, where S∗d(t) is its exercise boundary, at which the smooth pasting
conditions, and the corollary that ∂P a

d/∂t = 0 there, are the same as for the continuous
case. However, the Gamma at the exercise boundary is now

lim
S↓S∗d(t)

∂2P a
d

∂S2
(S, t) =

2rK

σ2S∗c
2 =

2ρK

S∗c
2 . (12)

The jump condition at a dividend date ti is

P a
d (S, ti−) = P a

d (Se−q δt, ti+).

Supposing for the moment that there is indeed an exercise region at ti+, we then have
Pd(S, ti+) = K − S for 0 ≤ S ≤ S∗d(ti+). Thus,

P a
d (S, ti−) =

{
K − Se−q δt 0 ≤ S ≤ S∗d(ti+)eq δt,

P a
d (Se−q δt, ti+) S > S∗d(ti+)eq δt;

the latter of these update conditions, in the continuation region (in which the value
function is above the payoff), is the same as for the European case. The former, however,
shows (as noted earlier) that the value function lies above the payoff for all S > 0 at
time ti−. The value function at this instant, which forms the initial value for the solution
of the BSPDE backwards to time ti−1, is thus a C1 function with a known jump, given
by (12), in its second derivative at S = S∗d(ti+)eq δt.

4.1 Asymptotic analysis

We proceed as before to analyse this problem for small ε2 = σ2 δt, using the backwards
time variables t′ and τ in a multiple scales expansion of the discrete option value. In
a typical time interval 0 < τ < 1 (with periodicity in τ), we distinguish two principal
regimes, separated by a transition. As illustrated in Figure 2, the asset price range is
also divided into regions. In the first time region, which starts at τ = 0 and matches into
the transition around τ = qS∗c (t

′)/rK, the difference between the value function and the
payoff has:

• A small ‘travelling-wave’ region IS, of size O(ε2K), around the discrete exercise
boundary; this moves from S = 0 at τ = 0 and approaches S∗c as τ approaches
qS∗c (t

′). In this region, the dominant balance in (13) below is between the first term
on the left and the first and last on the right, the others being smaller.

• A region IIS, overlapping with region IS and ending close to S∗c , in which the differ-
ence in the value function is approximately linear in S. Here the dominant balance
is between the first term on the left of (13) and the last on the right, representing
diffusive smoothing of the curvature discontinuity.

• A region IIIS around S = S∗c (t
′), in which we write

S = S∗c (t
′)(1 + εx);

in this region the value function makes the transition from linear to quadratic, and
the dominant balance involves the first term on each side of (13) and the last on
the right.
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Figure 2: Schematic of the regions in an interval between two dividend payments.

• An outer region IVS, in which we retrieve the continuous option value, matching
with the value function in region IIIS. Here there is no immediate dominant balance
in (13); instead, the solvability condition for the first higher-order term in a regular
expansion determines the solution.

In the second time interval, from τ near qS∗c (t
′)/rK to τ = 1, the discrete exercise

boundary has reached region IIIS and remains there; the value function has just two
regions, regions IS and IIS being subsumed into region IIIS. The transition from the first
regime to the second is more complicated, and is described below.

It is convenient to subtract the payoff from the option value, writing the value function
and exercise boundary in the multiple-scales form

P a
d (S, t′) = K − S + W (S, t′, τ), S∗d(t

′) = s∗(t′, τ),

and we shall suppress the dependence on t′ wherever it is not misleading to do so, in
particular writing S∗c (t

′) = S∗c . Then,

1

ε2

∂W

∂τ
+

∂W

∂t′
= 1

2
S2∂2W

∂S2
+ ρS

∂W

∂S
− ρW − ρK, s∗(t′, τ) < S < ∞, (13)

with the constraint W ≥ 0 implying the smooth-pasting conditions

W = 0,
∂W

∂S
= 0 at S = s∗(t′, τ),

and the initial condition (approximating e−ε2γ by 1− ε2γ)

W (S, t′, 0) ∼
{

ε2γS, 0 ≤ S ≤ (1 + ε2γ)s∗(t′, 1)

W (S(1− ε2γ), t′, 1), (1 + ε2γ)s∗(t′, 1) ≤ S < ∞.

Note, again, that W (S, t′, 0) is C1 and its second derivative has a jump at the switch
point from linear to nonlinear. It is also very important in the analysis to follow that
the value surface is exactly linear at τ = 0+, having been ‘wiped clean’ by exercise of
the option. Lastly we have periodicity in τ (as already implicit in the second part of the
initial condition above).
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We observe immediately that W (S, t′, 0) is of O(ε2) relative to the payoff for S < S∗c .
We thus expect W (S, t′, τ) also to be of O(ε2) in this range for S. This is why we
subtracted the payoff earlier.

We begin with the two regions in which S is unscaled.

The outer region IVS. In this region, the expansion procedure is the same as for a
European contract, giving

W (S, t′, τ) ∼ W0(S, t′) + εW1(S, t′) + ε2W2(S, t′, τ) + · · · .

The analysis of §3 can be repeated to show that W0(S, t′) satisfies the continuous BSPDE
with a continuous dividend yield q. This solution is to be matched with the solution in
region IIIS. However, as argued above (and justified in more detail below), the solution
in region IIIS is of O(ε2). Just as in the analysis of §3.2, we conclude from matching
at O(1) and at O(ε) that, as S ↓ S∗c , W0(S, t′), ∂W0/∂S and W1(S, t′) all tend to zero.
This is enough to show that W0(S, t′) satisfies the same smooth pasting conditions as the
continuous option price, and is therefore equal to it (and so the choice of S∗c as the leading-
order location of the transition is justified a posteriori). It then follows that W1(S, t′) ≡ 0,
and the ‘continuity correction’ for the discrete option is at O(ε2) (that is, O(1/N)). This
is to be expected, given that the value function and its Delta are continuous for both
the continuous and discrete problems; for essentially the same reason, the correction is
equally small for the range accrual note considered above and for Bermudan options [6],
while for barrier options, with a discontinuous Delta at the barrier, the correction is of
O(ε) (that is, O(1/

√
N)).

It only remains to state the matching behaviour of the outer solution: as S ↓ S∗c , and
written in inner variables (that is, for large x),

W (S, t′, τ) ∼ ε2
(
2(ρK − γS∗c )x

2 + O(1)
)
,

where ‘O(1)’ is in fact equal to W2(S
∗
c , t

′, τ); as (for reasons given below) we do not
compute a continuity correction for this contract, we do not need this term.

Region IIS. The main driver of the difference between continuous and discrete option
prices is region IIS, and the main driving term is −ρK in (13) (this discounting term is,
indeed, responsible for the existence of an exercise region in the continuous problem).

The initial data suggests that solution takes the form

W (S, t′, τ) ∼ ε2W2(S, t′, τ) + O(ε3),

where
∂W2

∂τ
= −ρK, W2(S, t′, 0) = γS, 0 < S < S∗c ,

so that
W2(S, t′, τ) = γS − ρτK.

Because W ≥ 0, this solution is only valid for ρτK/γ < S < S∗c , and thus only for
0 < τ < γS∗c/ρK = qS∗c/rK = τ ∗, say. It is easy to show that τ ∗ < 1: if q < r, this holds
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because S∗c < K, while if q > r, we use the fact that S∗c (t
′) has initial (in t′; terminal in

t) value rK/q and then decreases.
We therefore see the division of the interval 0 < τ < 1 described above. The exercise

boundary is close (in a way to be made more precise below) to S = ρτK/γ, which is
where W2 vanishes. It moves rapidly, taking the fraction τ ∗ of the dividend interval to
move from S = 0 to a neighbourhood of S∗c , and its speed is determined only by the
competing effects of dividend payments (via the initial condition) and the interest rate
(via the BSPDE); diffusion plays no role in this region at leading order. Indeed, iteration
of the expansion (which essentially completes rt to ert − 1) shows that the solution is
affine in S at all orders in ε. The only way that curvature of the value surface can enter
this region is by diffusion from its ends, via exponentially small terms, an important fact
in what follows.

The exercise boundary for 0 < τ < τ ∗: Region IS. While 0 < τ < τ ∗, the exercise
boundary S = s∗(τ) is near S = ρKτ/γ, where W2 = 0. It is necessary to restore diffusion
in order to allow the two smooth pasting conditions to hold, and to rescale W2 (because
it is small). Specifically, set

S =
ρK

γ
τ + ε2Kξ, W2(S, t′, τ) = ε2W ∗

2 (ξ, τ),

note that the inner limit of the outer solution W2(S, t′, τ) in these variables is then γS −
ρKτ ∼ ε2γξ + O(1). The term O(1) here simply determines any offset of the exercise
boundary on the inner scale (the inner problem is autonomous in ξ); this is determined by
higher-order terms (which we do not compute) in the outer solution, and we may assume
that the exercise boundary is at ξ = 0.

The inner problem is then

−ρ

γ

∂W ∗
2

∂ξ
=

1

2

∂2W ∗
2

∂ξ2
− ρK + o(ε)

(the o(ε) terms include the τ -derivative of W ∗
2 ), with W ∗

2 (0, τ) = 0, ∂W ∗
2 /∂ξ(0, τ) = 0 and

W ∗
2 (ξ, τ) ∼ γKξ + O(1) as ξ →∞. The solution is a function only of the travelling-wave

variable ξ, namely

W ∗
2 (ξ, τ) = γK

(
ξ − γ

2ρ

(
1− e−2ρξ/γ

))
.

Region IIIS: 0 < τ < τ ∗. Near S = S∗c , we again seek a balance between the first term
on each side of (13), but as the initial data is prescribed, we cannot rescale W2. We write

S = S∗c (1 + εx∗ + εx), W2(S, t′, τ) = w2(x, τ)

where x∗ is defined below. The leading order problem for w2 is then

∂w2

∂τ
=

1

2

∂2w2

∂x2
− ρK, (14)
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with
w2(x, 0) = γS∗c + F (x)

where F (x) is generated by the periodicity condition. Because the shift induced by the
dividend payment is of O(ε2), it can be ignored at this order of accuracy. However,
the location of the exercise boundary at τ = 1, namely S = s∗(t′, 1) = S∗c (1 + εx∗(t′)),
say, corresponding to x = x∗(t′), say, is unknown, albeit constant on the fast timescale.
Thus, F (x) is smooth (analytic) except at x = 0, where its second derivative has a jump.
Specifically,

• F (x) vanishes for x < 0 (the exercise region at τ = 1−);

• F (0) = 0, F ′(0) = 0, and F ′′(0+) = 2ρK (the smooth pasting conditions and their
corollary);

• F (x) ∼ (ρS∗c − γK)(x + x∗)2(1 + o(x)) as x →∞ (the matching condition with the
outer solution).

Determination of x∗ should lead to a continuity correction for this contract, as in [6],
probably via the vanishing of the linear component in the asymptotic behaviour of F (x)
as x → ∞; unfortunately the added complexities due to the exercise boundary have
precluded completing his part of the solution.

Because F (x) is unknown, we cannot compute w2(x, τ), but we can make progress by
using its asymptotic behaviour as x → −∞. After subtracting the particular solution
γS∗c −ρKτ , we are left with a solution of the heat equation with initial data that vanishes
for x < 0. The far-field behaviour (x → −∞, τ = O(1) is determined entirely by the
behaviour of the initial data near x = 0, and in this case takes the form ρKτf(x/

√
τ),

where f(−∞) = 0 and f(η) ∼ η2 as η →∞. We have

f(η) = η2 + 1 +
1√
2π

(
ηe−η2/2 − (η2 + 1)

∫ ∞

η

e−s2/2 ds

)
,

and the asymptotic behaviour of f(η) as η → −∞ is

f(η) ∼ −
√

2

π

e−η2/2

η3
,

so that the far-field behaviour of w2(x, τ) as x → −∞ is

w2(x, τ) ∼ γS∗c − ρKτ − ρK

√
2

π

τ
5
2

x3
e−x2/2τ . (15)

In what follows we shall also need some information about the next term in the inner
expansion, namely w3(x, τ). Its initial data w3(x, 0) contains a term γS∗cx, −∞ < x < ∞,
which arises from the dividend-shift of the payoff; the rest of its initial data is only non-
zero for x > 0 (which matches with the outer solution as x → ∞, growing cubically
there). The function w3(x, τ) satisfies (14) with a different inhomogeneous term having
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the important feature that it decays rapidly as x → −∞. It follows that w3(x, τ) contains
a term γS∗cx for 0 < τ < τ ∗, and the far-field behaviour of the inner solution is

γS∗c − ρK

(
τ +

√
2

π

τ
5
2

x3
e−x2/2τ

)
+ εγS∗cx + · · · .

It is worth noting that the term γS∗cx matches directly with the corresponding term from
the solution W2(S, τ) in region IIS, when the latter is written in inner variables.

Region IIIS: τ ∗ < τ < 1. In this time interval, the exercise boundary reaches region
IIIS, because at this time w2(x, τ) first falls to zero, at x = −∞. Its behaviour for τ
shortly after τ ∗ is thus determined by the far-field behaviour of w2(x, τ), specifically by
where this function vanishes. setting x = s∗(t′, τ) in (15) and solving approximately, we
have

s∗(t′, τ) ∼ −
√
−2τ ∗ log(τ − τ ∗)

as τ increases away from τ ∗. Thereafter, s∗(t′, τ) increases, finally tending to s∗(t′, 1) = 0
as τ → 1, and the cycle repeats.

The transition though τ = τ ∗: intermediate region IIS/IIIS. The solution w2(x, τ)+
εw3(x, τ) with no exercise boundary in region IIIS described above is valid from τ = 0 until
shortly before τ = τ ∗, at which time it first approaches zero, for large negative values of x.
The fall to zero of w2 + εw3 triggers the initiation, at x = −∞, of the exercise boundary
in region IIIS, moving in from region IIS. In so doing, the exercise boundary must slow
down greatly; having moved from S = 0 to near S = S∗c in the interval 0 < τ < τ ∗, it
remains near S = S∗c for the remaining time interval τ ∗ < τ < 1.

Writing τ ′ = τ−τ ∗, which we expect to be small, we make the ansatz that the exercise
boundary x = s∗(t′, τ ′) satisfies the equation

−ρK

√
2

π

τ ∗
5
2

s∗3
e−s∗2/2τ∗ + εγS∗c s

∗ = ρKτ ′; (16)

we have kept τ = τ ∗ except in the discounting term because τ ′ is small. As in region IIS,
this is to assume that the second x–derivative of w can be neglected on the appropriate
length scales, and a posteriori verification shows this to be the case, so that smooth
pasting is achieved via a small travelling wave region (which is, indeed, the continuation
in τ of region IS). The left-hand side of (16) is an increasing function of s∗ which it is
most convenient to examine working backwards in τ ′. When τ ′ is small and positive, s∗

is large and negative. Provided that τ ′ is not too small, the term εγS∗c s
∗ can be neglected

(because ε ¿ 1), and iteration shows that

s∗(t′, τ ′) ∼ −
√
−2τ ∗ log τ ′ +

3

2

√
2τ ∗ log

√−2τ ∗√− log τ ′

This putative balance holds until s∗ is large enough that the neglected linear term comes
into play. All three terms in (16) balance over a short interval τ ′ = ε

√
| log ε| τ̃ ′, with the
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appropriate scale for s∗ being

s∗ ∼ −
√

2τ ∗

(
−

√
| log ε| − 2 log

√
| log ε|√

| log ε| − s̃∗

2
√
| log ε|

)
,

and then we have, approximately,

ρKτ ∗

2
√

π
ees
∗
+ γ

√
2τ ∗S∗c

(
−1− 2ε

| log ε| +
s̃∗(t′, τ ′)
2| log ε|

)
= ρKτ ′.

It follows that in this regime,

s̃∗(t′, τ̃ ′) ∼ log

(
2
√

πτ ′

τ ∗

)
.

The final regime is found as τ̃ ′ → 0, being a balance between the last two terms in (16),
and it gives

s∗(t′, τ) ∼ ρK

εγS∗c
τ ′

as τ ′ → −∞, matching with the solution in region IIS.

4.2 Non-proportional dividend payments

We now consider the payment of a constant, rather than proportional, dividend at each
dividend date. This case was also considered by [11], who reported an exercise boundary
which, like the proportionate case, restarts (working in backward time) from S = 0 at each
dividend date; however, instead of increasing linearly for part of the inter-dividend period
as in the proportionate case, he reported an apparent jump in the exercise boundary from
zero to a finite (order-one) value at a time which agreed well with the result of a simple
ost-of-money calculation. We now investigate this structure in more detail; it is illustrated
in Figure 3.

Suppose that the payment is D δt (independently of S). Then we have

Sti+ = Sti− −D δt

with the zero-dividend geometric Brownian motion between dividend dates. We see im-
mediately that this model is problematic because Sti+ is negative if Sti− < D δt. In [11],
this issue was dealt with by applying a boundary condition that the put value is equal
to the discounted strike at SDe−r(ti−t), where SD = D δt), for ti−1 < t < ti (an improved
version of this condition is given in [12]). Here we use a slightly different condition which
allows us to solve for all 0 < S < ∞, arguing below that the overall impact of the spe-
cific choice is small. We assume that the dividend paid is max(D δt, Sti−): that is, if the
asset value just before a dividend date is less than the dividend, the asset pays out all
its remaining value. Thereafter, the asset value remains at zero. Hence, just before the
dividend date the value of a put option on the asset is equal to K if 0 ≤ Sti− ≤ D δt. The
jump condition (3) for a put option becomes

Pd(S, ti−) =

{
Pd(S −D δt, ti+), D δt < S < ∞
Ka,e 0 ≤ S ≤ D δt,
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Figure 3: Schematic of the structure (in backwards time) of the exercise boundary for a
fixed dividend payment.

where

Ka,e =

{
K for an American option,

Ke−r(T−ti) for a European option,

reflecting the time at which the payoff occurs. That is, as we work backwards from expiry,
at each dividend date the value function is shifted to the right by D and the gap left for
0 ≤ S < D δt is filled by setting the value equal to K, as sketched in Figure 4.

The zero-dividend Black–Scholes equation is solved between dividend dates, but only
in the hold region S∗d(t) < S < ∞. Far away from S = 0 and, for American options, away
from exercise boundaries, the multiple scales ideas used before show that, as δt → 0, the
appropriate limiting PDE is

∂V

∂t
+ 1

2
σ2S2∂2V

∂t2
+ (rS −D)

∂V

∂S
− rV = 0

(this equation has no simple explicit solutions except for cash and the discounted asset-
dividend combination; a version of it follows from the similarity reduction of arithmetic
Asian options with affine payoffs). We expect a corresponding continuously-sampled ex-
ercise boundary S = S∗c (t).

Turning to the regions near and below S = S∗c (t), matters are simplified by the way
in which the American option wipes the slate clean at each dividend date via its exer-
cise region.2 We make the additional, and realistic, assumption that D < rK (roughly
equivalent to q < r for a proportionate dividend yield: see below for why). We recall the
scaled BSPDE

∂P a
d

∂t′
= 1

2
S2∂2P a

d

∂S2
+ ρS

∂P a
d

∂S
− ρP a

d ,

to be solved between dividend dates. As before, it is convenient to set P a
d (S, t′) = K −

S + W (S, t′, τ), S∗d(t
′) = s∗(t′, τ), where W (S, t′, τ) satisfies (13). and then we expand

2For a European put, we have to impose a boundary condition on S = 0 and then the repeated shifting
of the payoff leads to a complicated region near S = 0 which we do not analyse here.
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Figure 4: Shifting of the value function at a dividend date: constant dividend payment.

W (S, t′, τ) as earlier. Now, however, the initial value of the excess over the payoff is

W (S, t′, 0) ∼





ε2S, 0 ≤ S ≤ SD = ε2sD := σ2δtD,

ε2sD, ε2sD < S < s∗(t′, 1) + ε2sD,

W (S − ε2sD, t′, 1), s∗(t′, 1) + ε2sD ≤ S < ∞

(see Figure 4): this function is the difference between the two bold curves). It is helpful to
decompose this into the portfolio of one long asset, one short call with strike ε2sD, and one
long power-type call with strike K∗ = s∗(t′, 1) + ε2sD; the important feature of the payoff
of the last of these is that, near K∗, it has the local behaviour ρK (max(S −K∗))2 /S∗d

2.
The value of an option with this payoff can readily be calculated in terms of vanilla call
prices. Also as before, it is crucial that the initial value is exactly constant in S over the
majority of the interval (0, s∗(t′, 0)), as once again the behaviour of the exercise boundary
will be determined by diffusion in from the ends of this interval.

The dominant feature of the behaviour is again that the option value decreases lin-
early in τ ; the reader should envisage the upper bold curve in Figure 4 descending at
a constant rate. The optimal exercise boundary then accommodates the payoff con-
straint. Specifically, the structure is as follows. The interval 0 < τ < 1 is divided into
0 < τ < τ ∗D = D/rK and τ ∗D < τ < 1. From τ = 0 until shortly before τ = τ ∗D, the
principal (leading order) features are:

• The ‘horizontal part’ of the initial value descends at the rate −ε2ρK, so that in, but
away from the ends of, the interval ε2ρKτ < S < ε2sD, W (S, τ) ∼ S − ε2ρKτ .

• At the left-hand end of this interval there is a small travelling wave region S =
ε2ρKτ (1 + O(ε2)) in which the smooth-pasting conditions are accommodated.
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• Meanwhile, the ‘corner’ of the initial value at S = ε2sD smooths by diffusion (the
short-time asymptotics of a call option, see [7]) in a region S = ε2sD (1 + O(ε))).

• The constant section of the initial value function decreases without changing shape
(apart from exponentially small incursions from its ends) until it touches down at
τ = τ ∗D (to leading order).

• The curvature discontinuity at S = K∗ diffuses exactly as before. Now, however, we
shall need its asymptotics for the whole range of S below the discontinuity, rather
than simply in a small neighbourhood of it.

Now if there were no diffusion at all, at time3 τ = τ ∗D = D/rK the translated initial value
of Figure 4 would sit exactly on its untranslated version for ε2sD < S < s∗(t′, 0) and the
exercise boundary would jump instantaneously from ε2sD to s∗(t′, 0), near K∗. However,
both the discontinuities in the initial value contribute small tails which smooth off the
jump over a very short timescale. The short call part of the initial value gives a negative
contribution which has two effects. First, and before τ = τ ∗D, the exercise boundary
rapidly (taking a (τ) time of O(ε)) traverses the region around its ‘strike’ S = ε2sD as the
discounting term pulls the value function down to the payoff (except for a minute region
very close to the corner, the location of the exercise boundary is still just determined by
the intersection of the no-exercise solution with the payoff, smoothed off by a travelling
wave near this intersection point). Then, the intersection point (with associated travelling
wave region) moves much more rapidly to the right and its location is determined by the
intersection of the right-hand tail of the call option with the payoff, as the discounting
term pulls it down, much as for the proportionate case above. This stage, which is still
before τ = τ ∗D because the contribution from the call is negative, lasts until the influence
of the left tail of the power call with strike at K∗, whose contribution is positive; there is
a momentary transition when the two tails balance, very close to τ = τ ∗D, and then the
exercise boundary is determined by the left tail of the power call (the tail of the other call
then being exponentially negligible). It moves, still very rapidly, until it comes into the
region S = K∗(1 + O(ε)) where, just as for the proportionate yield, it slows down rapidly
and remains close to S = K∗ until the next dividend date.

It would of course be possible to give more detail of all these stages in the evolution
along the lines of the proportionate case. In view of the modelling uncertainties near
S = 0, we simply calculate where the influence of this region becomes subordinate to that
of the curvature discontinuity at S = K∗. This entails knowledge of the tail behaviour
of the difference between a call option price and its asymptotes. A long (because terms
cancel) calculation based on the explicit formulae, or a rather shorter one using the short-
time asymptotics of the heat equation, shows that the value of a call option with expiry
T and strike K on an asset with volatility σ differs from its asymptotes by

K(σ2T )
3
2

(log(S/K))2

(
S

K
)−r/σ2+ 1

2

exp
(− (log(S/K))2 /2σ2T

)
,

3With exact discounting, this is (σ2/ε2r) log(1 + ε2D/σ2K), which, after translation of notation, is
the time at which the apparent jump in [11] occurred. With his boundary condition, the put value is
specified at S = ε2sD to be a decresaing function which first reaches the payoff at τ = τ∗D and there is
no exercise boundary until this time.
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as T → 0, for both S > K and S < K. The dominant feature of this expression is
the exponential. For our problem, we wish to find the value of S at which the small-time
values of an option with strike ε2sD and one with strike K∗ are comparable, and at leading
order this means that we need (log(S/ε2sD))

2
= (log(S/K∗))2, so that the switchover we

seek is at S ∼ ε
√

sDK∗. For larger values of S than this, the behaviour is likely to be
independent of the particular modelling assumption made near S = 0, as any suitable
modelling assumption leads to the same exponential behaviour, with only the prefactor
differing according to the details near the origin.

5 American call options

5.1 Proportional dividend payments

American call options with frequent dividend payments are very different from put options.
The continuously sampled option only has an exercise region when q > 0, and in this case
its value Ca

c (S, t) satisfies the BSPDE Lq
BSC

a
c = 0 for 0 < S < S∗c (t), with the value-

matching and smooth pasting conditions Ca
c = S − K, ∂Ca

c /∂S = 1 at S = S∗c (t).
For larger S, early exercise is optimal to capture the dividends on the asset, and so
Ca

c = S−K for S > S∗c (t). When q = 0, there is no early exercise, and the American and
European calls have the same value function; we recall that, as S →∞, it is asymptotic
to S −Ke−r(T−t).

Now consider what happens to a discretely sampled contract, with value Ca
d(S, t), as

we move backwards in time from expiry to the final dividend date tN . For tN < t < T ,
with no dividends remaining, the option is a vanilla call. The value function satisfies the
zero-dividend BSPDE and lifts off the payoff max(S−K, 0) until at t = tN+, just after the
dividend date, it lies above the payoff everywhere and is asymptotic to S −Ke−r δt. Now
the jump condition (3) is applied, shifting the value function to the right. For large S,
the shifted asymptotic behaviour lies below the payoff because S is replaced with Se−q δt,
while for small S the shifted value function still lies above the payoff. Hence there is
a value of S, say S = S∗N (which can easily be shown to be unique), where the payoff
and the shifted value function are equal; for S > S∗N , the option should be exercised at
t = tN− (because holding would lead to an option value below the payoff at t = tN+),
while for S < S∗N the option should be held.

What now happens, for tN−1 < t < tN : is there an exercise boundary (as for the put
option) or not? We show that the latter is correct. Write

VN(S) = max (max(S −K, 0), V a
d (S, tN+))

=

{
S −K, S ≥ S∗N ,

V a
d (S, tN+), S < S∗N ;

this is the value of the discretely sampled option at t = tN−. Then clearly VN(S) is no
less than max(S − K, 0), and hence the value of an option with time-tN payoff VN(S)
is no less than the value of a call with the same expiry; and in turn, recalling that no
continuous dividends are paid, this call option value lies (strictly) above max(S −K, 0)
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for times tN−1 < t < tN . Hence there is no early exercise here either: the only time that
early exercise is optimal is at the dividend date.

This pattern is clearly repeated for all the other dividend dates, and hence the scenario
that emerges is that the option is essentially a Bermudan one — not because the exercise
dates are pre-specified, but because the optimal exercise policy dictates that exercise
should only take place immediately before dividend dates ti, and then only for S > S∗i
calculated recursively as above. In the limit δt → 0, we expect the discretely sampled
values S∗i to lie close to the continuously sampled exercise boundary S = S∗c (t), while for
S < S∗c (t) we recover via multiple scales the non-zero dividend BSPDE Lq

BSC
a
c = 0. The

difference between the continuous and discrete values is of O(ε2) and can be characterised
as a combination of a ‘sawtooth’ correction as described in Section 3 and a Bermudan-
style continuity correction almost identical to those analysed in [6], and we do not give
details here.

5.2 Non-proportional dividend payments

The case of a constant dividend payment D δt at each dividend date is very similar to
that of proportional payments just discussed. One point to note is that the shift of the
value function across a dividend date takes its argument from S to S−D, a constant shift
rather than a proportional one. When this is applied at large S, it takes the asymptotic
value S −Ke−r δt to S −D δt−Ke−rδt, and this only lies below the payoff S −K if

D δt > K(1− e−r δt).

Hence, expanding for small δt, if D < rK (1 + O(r δt)), there is no early exercise at
all. This simply states that the constant dividends are not large enough to trigger early
exercise for dividend capture. With this caveat, the derivation of the appropriate version
of the BSPDE, and the form of the correction terms, are sufficiently close to those of the
proportionate case that no more details need be given.

6 Discussion

We have given a systematic presentation of the asymptotics for the difference between
continuously and discretely sampled options in a Black–Scholes framework. The method
of multiple scales reveals the local-in-time structure as being periodic, with slower mod-
ulations. When the options concerned are American, the exercise region has multiple
components, and it is interesting to note that, although the continuous exercise boundary
emerges naturally as δt → 0, within the continuous exercise region the ratio of hold to
exercise in a diagram such as Fig. 1 or Fig. 3 tends to a fixed value strictly between 0
and 1. This is reminiscent of the mushy regions found in Stefan problems with volumetric
heating, but it should be noted that the probability that the asset ever enters the ‘long
thin’ excursions of the hold region into the continuous exercise region is vanishingly small
in the limit.

Our discussion has been confined to the simple Black–Scholes model, but in principle
the method can be applied to other models such as local volatility, CEV etc., with the
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proviso that the analytic treatment is less clean; substantial parts of it will, however,
carry over because of the relatively small role played by the volatility. in principle, jump
diffusion models can also be at least partly treated because the contribution of the jump
terms is tractable, and at least the general structure will carry over to multidimensional
models (several assets, or stochastic volatility). Our final comment is that, even though
we included a precautionary O(ε) (or O(1/

√
N)) term at places in the analysis, all these

terms vanished and the correction terms we have calculated are an order of magnitude
smaller, namely O(1/N). This is attributable to the extra degree of smoothness possessed
by our contracts, in contrast with barrier options with their nonzero boundary Delta.
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Appendix: the range accrual note

Write the difference between the discretely and continuously paid range accrual notes as

V ran
d (S, t′)− V ran

c (S, t′) =

{
W (S, t′) 0 < S < SU (inside the coupon region),

W (S, t′) SU < S < ∞ (outside it).

Then using the two time scales t′ and τ we have

1

ε2

∂W

∂τ
= L′W,

1

ε2

∂W

∂τ
= L′W − κ

in their respective domains of definition; here, κ = c/σ2 is the rescaled coupon payment.
The cash-flow jump conditions are that that

[
W (S, t′, τ)

]τ=1+

τ=1− = ε2κ,
[
W (S, t′, τ)

]τ=1+

τ=1− = 0,

and periodicity in τ states that W (S, t′, 0+) = W (S, t′, 1−), with the same condition for
W .

Much as in Section 3, we find that the first three terms in an expansion in powers of
ε (including O(ε) in view of the boundary layer analysis to follow) have the form

W (S, t′, τ) ∼ W0u(S, t′) + εW1u(S, t′) + ε2W2u(S, t′),

where the subscript u indicates that the function it decorates is, at this stage, unknown
except that it satisfies the scaled BSPDE L′(·) = 0; and similarly

W (S, t′, τ) ∼ W 0u(S, t′) + εW 1u(S, t′) + ε2
(
W 2u(S, t′)− κτ

)
, (17)

in which the last term on the right is interpreted as being periodic in τ . We naturally
expect, and show below, that W0u,W 0u ≡ 0; slightly less obviously, we have W1u,W 1u ≡ 0
also.

We shall look for a transition solution near S = SU , periodic in τ , in which standard
boundary layer scalings dictate the use of the inner variable

S = SU(1 + εx),

and correspondingly we write W (S, t′, τ) = w(x, t′, τ) (and we shall omit the argument t′

when it is not ambiguous to do so), and W (S, t′, τ) = w(x, τ). For the matching to come,
we first write the outer expansion (17) in terms of the inner variable x and expand to
O(ε2) so that for x > 0 the two-term inner expansion of the two-term outer expansion is

W (SU(1 + εx), t′, τ) ∼ W0u + εxSUW0u,S +
1

2
ε2x2S2

UW0u,SS

+ εW1u + ε2xSUW1u,S

+ ε2W2u

+ O(ε3),
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and for x < 0 it is

W (SU(1 + εx), t′, τ) ∼ W0u + εxSUW0u,S +
1

2
ε2x2S2

UW0u,SS

+ εW1u + ε2xSUW1u,S

+ ε2
(W2u − κτ

)

+ O(ε3).

Here (for example) W2u,S means ∂W2u/∂S (SU , t′). Expanding

w(x, t′, τ) ∼ w0(x, t′, τ) + εw1(x, t′, τ) + ε2w2(x, t′, τ) + · · · ,

w(x, t′, τ) ∼ w0(x, t′, τ) + εw1(x, t′, τ) + ε2w2(x, t′, τ) + · · · ,

matching dictates that

w0(x, t′, τ) ∼ W0u(t
′),

w1(x, t′, τ) ∼ W1u(t
′) + xSUW0u,S(t′),

w2(x, t′, τ) ∼ W2u(t
′) + xSUW1u,S(t′) +

1

2
x2S2

UW0u,SS(t′)

as x →∞, and

w0(x, t′, τ) ∼ W0u(t
′),

w1(x, t′, τ) ∼ W1u(t
′) + xSUW0u,S(t′),

w2(x, t′, τ) ∼ W2u(t
′)− κτ + xSUW1u,S(t′) +

1

2
x2S2

UW0u,SS(t′)

as x → −∞.
The PDE gives

1

ε2

∂

∂τ

(
w
w

)
=

1

2

(1 + εx)2

ε2

∂2

∂x2

(
w
w

)
+ ρ(1 + εx)

∂

∂x

(
w
w

)
− ρ

(
w
w

)
∂

∂t′

(
w
w

)
+

(
0
−κ

)

in their respective domains, and the final piece of the set-up is that both w(x, t′, τ) and
w(x, t′, τ) are periodic functions of τ , and ∂w/∂x = ∂w/∂x at x = 0.

At leading order, w0(x, t′, τ) and w0(x, t′, τ) both satisfy the heat equation in x and
τ and are asymptotic to W0u(τ) and W0u(τ) respectively as x → ±∞. Continuity of
the functions and their x derivatives at x = 0 means that they are the restrictions to
−∞ < x < 0, 0 < x < ∞ respectively of a periodic solution of the heat equation on
−∞ < x < ∞ with bounded asymptotic behaviour, and the only such is a constant.
Hence, W0u(t

′) = W0u(t
′) and ∂w0/∂x = 0, ∂w0/∂x = 0. The same argument can now be

applied to w1 and w1, with a minor modification to accommodate the linear asymptotic
behaviour, and leads to the conclusion that they are the restrictions of an affine function of
x with τ -independent coefficients. Thus, matching gives that W0u,S(t′) = W0u,S(t′) (from
the coefficient of x) and W1u(t

′) = W1u(t
′) (from the O(1) terms), and w1(x, t′, τ) =

SUW0u,S(t′)x +W1u(t
′).
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We now return to the outer region and conclude from continuity of the value functions
and their derivatives at S = SU that W0u and W 0u are the restrictions of a solution of the
BSPDE in 0 < S < ∞ with zero terminal data, which therefore vanishes. Hence, these
leading-order correction terms are absent (and the first order inner solution w1 (resp.w1)
is a function of t′ only). If we can show continuity of the S derivative of the O(ε) outer
correction (we already have continuity of the correction itself), that function too must
vanish.

To this end, we consider the O(ε2) terms in the inner expansion. Incorporating what
we already know about the expansion, we have

∂

∂τ

(
w2

w2

)
=

1

2

∂2

∂x2

(
w2

w2

)
+

(
0
−κ

)

with
w2 ∼ xSUW1u,S(t′) +W2u(t

′), w2 ∼ xSUW1u,S(t′) +W2u(t
′)− κτ,

as x → ±∞ respectively; the periodicity condition is w2(x, t′, 1−) = w2(x, t′, 0+) and
w2(x, t′, 1−) = w2(x, t′, 0+) − κ. Just as above, the terms linear in x tell us that
W1u,S(t′) = W1u,S(t′), from which we deduce that W1u(S, t′) ≡ 0 and W 1u(S, t′) ≡ 0.
Then, the functions w2(x, t′, τ)−W2u(t

′) and w2(x, t′, τ)−W2u(t
′)+κτ are properly peri-

odic in τ (no jump at τ = 1) and decay at x = ±∞; so they have eigenfunction expansions
of the form ∑

m6=0

a±me2πimτf±m(x),

where ± refers to x ≷ 0 respectively. The coefficients are found from continuity of the
value function and its x derivative at x = 0; the absence of a term corresponding to
m = 0, necessary for decay at x = ±∞, leads to the solvability condition (which can also
be derived by integrating x times the solution over the solution domain and using the
divergence theorem) ∫ 1

0

κτ −W2u(t
′) dτ =

∫ 1

0

−W2u(t
′) dτ,

and so
W2u(t

′)−W2u(t
′) = −1

2
κ = −1

2
c/σ2.

This jump condition at S = SU for the O(ε2) correction is supplemented with continuity
of its S derivative there, which follows from consideration of the terms linear in x at O(ε3)
in the inner expansion, a calculation (omitted here) very similar to those above.

It remains to find the outer correction; here we revert to the original, unscaled time
variable t. Apart from the prefactor ε2 (= σ2 δt) which cancels some denominators σ2

below, this has the form of a solution of the BSPDE, W2u(S, t), for S > SU , and a
solution of the BSPDE, W 2u(S, t) plus a sawtooth function for S < SU . At S = SU ,
W2u(SU+, t′)−W 2u(SU−, t′) = −1

2
c/σ2 (the jump is of course smoothed off on the inner

scale) and ∂W2u/∂S(SU+, t′) = ∂W 2u/∂(SU−, t′). Both solutions of the BSPDE decay at
S = 0 and S = ∞ respectively, and both vanish at expiry t = T .
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The first step is to subtract a suitable static solution, here the function

W2u0(S) =

{
A−S/SU , S < SU ,

A+(S/Su)
−2r/σ2

S > SU ,

= A−S/SUIS<SU
+ A+(S/Su)

−2r/σ2IS>SU
,

where
A− =

rc

σ2(σ2 + 2r)
, A+ = − c

2(σ2 + 2r)
,

which removes the discontinuity at the expense of introducing a nonzero payoff. Then,
we price this payoff, which is equivalent to

• A short position in A− gap options with payoff (S/SU)I(0,SU );

• a long position in A+ power gap options with payoff (S/SU)−2r/σ2IS>SU
. This payoff

can also be written (
S

SU

)1−2r/σ2

1

(S/SU)
IS2

U/S<SU

which reveals it as the reflection (in the sense of the method of images applied to
the BSPDE) of the payoff of the first gap option. Hence the value of this power gap
option before expiry is also the reflection of the value of the first power gap option.

The first gap option has time-t value

V gap(S, t) =
S

SU

− 1

S U
Cv(S, t; SU)− Cb(S, t; SU),

where Cv/b(S, t; SU) is the value of a vanilla/binary call with strike SU . Hence the value
of the power gap option is

V Pgap(S, t) =

(
S

SU

)1−2r/σ2

V gap(SU/S, t),

and the value of the whole second-order outer correction to the range accrual note is

A− ((S/SU)IS<SU
− V gap(S, t)) + A+(S/Su)

1−2r/σ2

(
Su

S
IS>SU

− V gap(SU/S, t)

)
.
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