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Abstract

In this paper we suggest derivative contracts related to the Greeks of options; we show how

to value them and how they can be used to manage the risk of a portfolio of derivatives. We

further describe certain types of these options, namely those related to the Delta and Gamma,

which can be regarded as a form of insurance against liquidity holes and transaction costs for

the writer of the contract representing the underlying.
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1 Introduction

In the financial literature and practice the sensitivities of portfolios of derivatives with respect

to parameters like the underlying spot prices or their volatilities are referred to as the Greeks.

Mathematically the latter are calculated as various partial derivatives of the portfolio value with

respect to the parameters. Important ones are the Delta and the Gamma, the first and second

derivative with respect to the underlying spot price, respectively. Another important one is the

Vega, or the sensitivity with respect to changes in the volatility of the underlying. One of the main
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tasks of traders of structured derivatives is to manage the risk of their book. This is done by closely

observing their portfolio Greeks and keeping them in acceptable ranges. If the underlying is a traded

asset, e.g. a stock, it will usually be used as one of the main hedging instruments. Then, under

standard Black–Scholes assumptions, the Delta represents the fraction of underlying notional that

the trader has to hold against the portfolio to make it instantaneously hedged against changes in

spot. The Gamma is then closely related to the amount of the underlying that has to be added to

or removed from the current Delta in response to the change. Similarly, as an additional way of

hedging Greeks the Gamma and the Vega can further be balanced by adding suitable options to the

portfolio as it is linear and the Greeks thus additive.

In reality, however, contrary to the Black–Scholes assumptions, (re-)hedging will necessarily take

place at discrete time intervals and, if the market for the underlying is illiquid, it may be expensive

because of transaction costs. Furthermore, there may be ‘liquidity holes’ during which it is impossible

to trade at all or only with vastly increased bid-ask spreads; and yet further, the process of hedging

may aggravate this lack of liquidity. (One particular such incident occurred on the London Stock

Exchange FTSE 100 index on Friday, 20 September 2002, a ‘triple-witching day’, when options on

both single equity and the index, as well as the index future expire and their settlement prices are

determined by the average price within a 20 minute interval. On this particular day the swings in

the index amounted to almost 8%, with some components swinging almost 100% within seconds.)

These considerations suggest that there is a market need for some form of ’liquidity contract’ and

indeed this proposal was recently made by Scholes [1]. Such contracts would offer opportunities

to market participants with different levels of access to the market. Those facing high levels of

transaction costs, or who are concerned about lack of liquidity, could pay a small liquidity premium

to other participants with lower costs or access to liquidity elsewhere in their book.

A very simple example of such a contract would be an ‘American or Bermudan (also termed

cancellable or callable) forward’ - a forward contract that is exercisable by its holder at any time (or

exercisable according to a set schedule). In a Black–Scholes world it is easy to show that, depending

on circumstances, this contract is optimally exercised either as early as possible (a dividend capture

strategy) or as late as possible (Mitton [2]). In some cases its value is the same as a European

forward, but in others the possibility of early exercise adds value. In the real world, however, issues

such as transaction costs and, especially, liquidity should add a small premium to the Black–Scholes

value. This premium would be set by the market, and different participants would find different

aspects (long, short, holder, writer) of the contract attractive depending on their own model (however

imprecise) of the costs and risks associated with illiquidity.
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A rather more complex (and common) situation arises when a trader has a position which, for

certain future scenarios, may have a large Gamma, with attendant liquidity and/or transaction costs

risks as the Delta is adjusted. For example, a European Call has large Gamma if the asset is close

to the strike at expiry. A liquidity derivative based on the Gamma of such an option would allow

this liquidity risk to be transferred to a counterparty in exchange for a premium, as mentioned

above. The counterparty in this case would probably have greater access to the market and/or

internal synergies (with other positions elsewhere) not available to the original trader. Another way

of saying this is that liquidity will obviously be cheaper for, say, a large investment bank than for

one of their corporate clients, and thus Pareto efficient, i.e. non-zero sum, contracts may exist.

Overall, options on the Greeks of portfolios may embed a combination of static and dynamic

hedging strategies in a single contract and thus represent a form of ‘pre-packaged’ liquidity, as

mentioned by Merton [3]. As outlined above, the writer of a liquidity derivative will first exploit

all the netting-off and static hedging possibilities elswhere in their portfolio, and then price and

hedge the residual risk with an appropriate liquidity and/or transaction cost model (see for example

Leland [4] and Hoggard, Whalley & Wilmott [5], Rutkowski [6] for the former, and Jarrow [7], Frey

[8], Schönbucher & Wilmott [9], Bakstein & Howison [10], etc. for the latter). The Leland model is

one such, and since for single-signed Gamma it reduces to the Black–Scholes model with an adjusted

vol, we begin in section 2 with the simple case of liquidity derivatives in a Black–Scholes world. We

recognise the limitations of this model but the alternatives are too varied and model-dependent to

be addressed in detail here. In section 3 we will address the American early-exercise version of these

contracts. Finally section 4 concludes the paper.

2 Valuation of Options related to Greeks

In a Black–Scholes world of perfect liquidity the options are not needed to complete the market, and

are thus redundant. But the same could be said about contracts like volatility swaps, although they

too are traded. A justification for this is that Black–Scholes assumptions of, for example, constant

volatility or zero transaction costs do not hold in reality and the contract as such, even when it

can be replicated by portfolios of simple options, offers an efficient ‘pre-packaged’ way of isolating

a particular risk factor. Notwithstanding this, we still commence by analysing options on Greeks

in a Black–Scholes world, as it provides us with a number of closed-form solutions wherein, when

introducing some particular market models of finite liquidity, only the volatility parameter needs to
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be modified.

For simplicity we assume that the underlying asset, with spot price S, is traded and thus can be

employed to hedge a portfolio of derivatives with value v(S, t) written on it, which we refer to as the

underlying derivative or option. We assume that S follows standard geometric Brownian motion

dS = µSdt + σSdW, (1)

with drift µ, volatility σ and a Wiener process dW . If the underlying derivative has a sufficiently

simple structure, then it satisfies the standard Black & Scholes [11] partial differential equation

(PDE)

LS,tv =
∂v

∂t
+ rS

∂v

∂S
+

1

2
σ2S2 ∂2v

∂S2
− rv = 0, (2)

along with the payoff v(S, Tv) at time Tv; here r is the risk-free rate. A second option V (Γv, t) on,

say, the Gamma Γv(S, t) = ∂2v/∂S2 of the portfolio v then also satisfies

LS,tV = 0

with a terminal value V (Γv, TV ) to be specified in terms of Γv. For the contract to have a sensible

interpretation, the respective expiries must satisfy TV ≤ Tv; the contract could also have an Ameri-

can early-exercise clause as will be discussed in section 3. Since V satisfies the Black–Scholes PDE,

it can, in general, be calculated through the Feynman-Kač formula

V (S, t) = e−r(TV −t)E[V (Γv, TV )], (3)

where the expectation E[·] is taken with respect to the risk-neutral probability, i.e. with the moments

of S derived from (1) with µ = r. This pricing framework could be extended to a vast number of

options on different Greeks of a potentially unlimited number of underlying portfolios. If the formulae

for the Greeks exist in a closed form, then the option values are usually tractable as well (see the

paper by Carr [12] on this topic). Otherwise standard numerical techniques like finite differences

or Monte-Carlo methods can be applied in a straightforward way. We now illustrate these general

remarks with some specific contracts.

2.1 Options on Gamma

The most immediate possibility for an option on a Greek is one on the Gamma, although many others

are possible. Under Black–Scholes assumptions of perfect liquidity and continuous-time trading a

hedger holds S∆v per unit notional to replicate an option position v. The total cost (or revenue) of
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the amount of stock that needs to be added (or removed) in time dt to rebalance the Gamma of the

position is

Sd∆v = S(ΓvdS + O(dt)), (4)

where Γv = ∂2v/∂S2 and dS is proportional to S. In order to obtain a ‘Dollar’-value for the Gamma

contract, i.e. one that can be compared with the option value itself, we multiply SΓv by S again

and consider if a contract V with S2Γv as its underlying ‘asset’, which we will term ‘cash Gamma’.

If, for example, a Call with payoff

V (Γv, TV ) = max(S2Γv − KV , 0),

were available, the writer or holder of v could employ V to rehedge their positions in the event that

the asset price path crosses the ‘high-Gamma’ region. Explicit solutions for this contract exist for

most options that have closed-form formulas for their Gamma terms. For instance the Gamma of a

vanilla Call with strike Kv expiring at Tv is given by

Γv(S, t) =
1

Sσ
√

2π(Tv − t)
e−

1

2
(d1(S,t))2 .

Then, again employing (3), after some cumbersome arithmetic, the solution emerges as

V (S, t) = S2Γv(S, TV )N(d) − KV e−r(TV −t)N(dV ), (5)

where d1(S, t) and dV are as above and

d =
ln(Kv/S∗)(TV − t) + ln(S/S∗)(Tv − TV )

σ
√

(Tv − TV )(TV − t)(Tv − t)
,

with S∗ such that (S∗)2Γv(S∗, TV ) − KV = 0. It can be observed that if TV = Tv the contract has

zero value, unless S = Kv, when the contract has infinite value, as the Gamma of a Call option is

a Dirac-delta function at expiry. This problem can be avoided easily by choosing TV < Tv. (Note

also that although S2Γv is a solution of the Black–Scholes equation, it does not have a natural

financial interpretation, the least artificial probably being in terms of the strike sensitivity of the

corresponding asset-or-nothing option or an Arrow-Debreu price.)

Let us now consider how such a contract might be used. Suppose that at any point in time

there were a number of liquidly traded contracts v, for example index options, of different expiries

Tv and strikes Kv. Each of those could have a number of contracts on its S2Γv with different

expiries TV < Tv and strikes KV . Then a trader who is exposed to a particular v, depending on her

individual needs and usage of models, could buy or sell an amount c in the Gamma contracts per

unit underlying option to manage the risk of her original position. As an example of an application
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Figure 1: Shape of S2Γ of underlying Call with r = 0.05, σ = 0.2, Kv = 100.

of this contract we modify the Black–Scholes assumptions using the Leland model. As is well known,

transaction costs are an increasing function of the Gamma. Therefore, by employing cash Gamma

options the writer of v can cap her exposure to the liquidity of the market and the associated

transaction costs when rehedging. For this purpose the hedger has to choose both an appropriate

strike KV and amount of options c.

Firstly, to find a suitable strike level KV , the hedger could, as a point of reference, observe the

maximum value that S2Γv may take at TV . Figure 1 shows the generic shape of S2Γv(S, t) for an

underlying Call option. Its maximum occurs at

Sc = Kve(
1

2
σ2

−r)(Tv−TV ),

which after substitution results in the maximum of

S2
c Γv(Sc, TV ) =

Kve
−r(Tv−TV )

σ
√

2π(Tv − TV )
.

So the hedger could choose her KV as a fraction of this maximum attainable value.

Secondly, to determine the amount c that she needs to buy, we try to capture the magnitude

of the frictions in the market which this contract is intended to address. For this we rewrite the

strategy (4) for discrete time intervals:

Sδ∆̃v = S(Γ̃vδS + O(δt)), (6)

where ∆̃v and Γ̃v are the discrete time modifications of ∆v and Γv, which are model-dependent (and

chosen by the individual trader). Since we assume that transaction costs are a fixed percentage k of
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Figure 2: Value of a cash Gamma Call relative to its underlying Call with r = 0.05, σ = 0.2,

Kv = 100, Kv = 100, Tv = 1, δt = 1/365, TV = Tv − δt.

the total notional traded over δt, their expected value to leading order is

kSE[|δ∆̃v|] = kSE[|Γ̃vδS|]. (7)

Now, Leland [4] shows that for positions with positive Gamma (e.g. long Call or Put) we then obtain

kSE[|Γ̃vδS|] = kSΓ̃E[|δS|] = kσ

√

2δt

π
S2Γ̃v, (8)

and the modified Delta and Gamma are given by replacing their Black–Scholes volatility with

σ̃ = σ

√

1 ∓
k

σ

√

2

πδt
. (9)

Hence for the purpose of protecting against transaction costs a reasonable strategy would be to buy

c = kσ
√

2δt/π contracts V with strike KV . Figure 2 shows the value of such an insurance, relative

to the underlying position, for representative parameter values.

Although the values shown are small, it would be necessary to hold several such contracts to

obtain adequate coverage over the period leading to expiry. As an alternative these contracts could

indeed be bundled together in an OTC transaction as a series of strips or a swing-style option, where

the holder can, say, choose m out of n given expiry dates. An additional enhancement would include

making the contract American, which is discussed in a subsequent section.
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2.2 Greek caps and barriers

A further possibility to deal with the liquidity risk of a position due to hedging would be for the

buyer and writer to agree on limits on the theoretical Gamma of a contract, in the form of Gamma

caps or barriers. Depending on the triggering conditions and effects, this may make the contract

cheaper or transactionally more efficient. For example it could be agreed that the option should

settle early at its theoretical Black–Scholes value once its Gamma reaches a certain specified level

Γ0. This would, in effect, be a ‘capped Gamma’ contract. Now in a Black–Scholes world of no

transaction costs and perfect liquidity, the value of this contract would be exactly the Black–Scholes

value. In practice, however, this contract removes the uncertainty for both the buyer and the seller

as to whether the contract will be in or out of the money as expiry approaches, and may thus save

on large transaction costs and slippage effects due to hedging activities.

As a valuation example, if we resort to the Leland model, then the cost of the discrete hedging

strategy, hence of the option, will correspond to modifying the Black–Scholes volatility as in (9)

when valuing the option and hence the hedger, by using a modified volatility, will have a nontrivial

problem to solve. Indeed, if we still refer to the theoretical Black–Scholes Gamma as the barrier,

then the contract becomes cheaper, because it now represents an indirect cap on the Gamma, rather

than a contract whose own Gamma is capped. Again assuming that rehedging takes place daily,

table 1 gives the Black–Scholes value, the Leland transaction cost premium and the reduced premium

with the barrier contract clause for a European Call. It becomes apparent that the cap is relatively

cheap. Further modifications to optimise the contract according to the counterparties’ requirements

may include e.g. making the barrier level a function of expiry etc.

3 American options on Greeks

If options on the Gamma of another portfolio of options are indeed regarded as a liquidity protection,

then the holder would certainly prefer to be able to choose the moment of exercise. We mentioned

the swing-style contract where exercise may be chosen at discrete points in time; an extension is

a Bermudan contract where there exist time windows of exercise; finally in the limit an American

contract grants the possibility of exercise at any time. Under the Black–Scholes assumptions, there

is a simple test to examine whether early exercise is never optimal (as for a vanilla Call with no

dividends) or may be optimal (as for a vanilla Put). Writing the the payoff of an option V as P (S, t),
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Table 1: Relative Gamma cap discount of a European Call under Leland transaction cost with

r = 0.05, σ = 0.2, Kv = 100, Tv = 1, δt = 1/365.
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which can be time-dependent, the linear complementarity formulation, see e.g. Wilmott et al. [13],

is given by

LS,tV ≤ 0 and V ≥ P (S, t), (10)

with

LS,tV (V − P ) = 0 and V (S, T ) = P (S, T ).

Now, because in the early exercise region R we necessarily have V (R) = P (R), if LS,tV (R) =

LS,tP (R) > 0, then this represents a contradiction to (10). Therefore in this case early exercise can

never be optimal, as for instance for a Call option with payoff P (S, T ) = max(S − K, 0) and

LS,t max(S − K, 0) =
1

2
σ2K2δ(S − K) + rKH(S − K) ≥ 0,

where δ and H represent the Dirac delta and Heaviside functions, respectively. Conversely, if V (A) <

P (A) for some region A, then there must be a non-empty exercise region. As an example, for a Put

option with P (S, T ) = max(K − S, 0) we have that

V (0, t) = Ke−r(T−t) < P (0, T ) = K,

and there is an early exercise region near S = 0.

For options on Greeks we can check for non-optimality of early exercise (the first possibility

above), by deriving the PDEs for the respective Greeks. For Γv this is done by taking twice the

partial derivative with respect to S of (2), resulting in

∂Γv

∂t
+ (r + 2σ2)S

∂Γv

∂S
+

1

2
σ2S2 ∂2Γv

∂S2
+ (r + σ2)Γv = 0.

As an example we consider a cash Gamma Put. In this case the option satisfies

LS,tv ≤ 0 and v ≥ max(KV − S2Γv, 0),

but if the option is exercised we find after some calculation that

LS,t max(KV − S2Γv, 0) = −rKV H
(

KV − S2Γv

)

+
1

2
σ2K2δ

(

KV − S2Γv

)

(

2SΓv + S2 ∂Γv

∂S

)2

.

(11)

Here (11) is negative when KV − S2Γv > 0, hence for this contract it may be optimal to exercise

prior to expiry and this is indeed the case; the early exercise region here is far from the strike of

the underlying option. Figure 3 shows the relative early exercise premium, calculated numerically

through finite difference methods.
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Figure 3: Early exercise premium of American cash Gamma Put on underlying Call as fraction of

European cash Gamma Put with r = 0.05, σ = 0.2, KV = 50, Kv = 100, Tv = 1, δt = 1/365,

TV = Tv − δt.

4 Conclusion

We have discussed options on the Greeks of derivative portfolios and presented simple applications

to the dynamic hedging of the Gamma of vanilla options under both the Black–Scholes assumptions

of continuous-time trading, no transaction costs and perfect liquidity as well as under the Leland

[4] transaction cost model. But given the vast number of portfolios, Greeks and models that may

describe the risk characteristics of a particular portfolio, the applications, designs of particular

contracts and approaches to their valuation seem unlimited. For example one other possibility of

hedging these contracts that we did not discuss is the use of static hedges in liquidly traded options,

with the aim of replicating the payoff of the option as closely as possible. In this case a local

volatility grid for the hedging instruments would be required, but should be straightforward. In

fact, combination trades in simple options are very common on derivatives exchanges and their

volatilities are usually lower than the sum of their parts, so that it may indeed represent a suitable

alternative hedging strategy of these contracts.

However, one apparent problem that would arise with all options on Greeks is to find a consensus

measure of unobservable variables and functions thereof. The solution to this would necessarily

involve proxies, as for instance known closed form formulae for the Greeks, implied and/or realised

volatilities observed in the market at particular times etc. Obviously all of these would need to be

agreed by the counterparties a priori and eventually standardised. But with industry having already

standardised contracts such as volatility swaps and the fact that in reality there does not even exist
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something as simple as ‘one’ spot price, this problem could be overcome and is more legal than

mathematical.
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