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Abstract

Modern financial practice depends heavily on mathematics and a cor-
respondingly large theory has grown up to meet this demand. This paper
focuses on the use of matched asymptotic expansions in option pricing; it
presents illustrations of the approach in ‘plain vanilla’ option valuation, in
valuation using a fast mean-reverting-stochastic volatility model, and in
a model for illiquid markets. A tentative framework for matched asymp-
totic expansions applied directly to stochastic processes of diffusion type
is also proposed.
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1 Preface

It is an honour to have been asked write the 2005 James Lighthill Memorial
Paper, and I am most grateful to the Editors of the Journal of Engineering
Mathematics for their invitation. When I was a graduate student Lighthill was
one of a very small number of colossi of applied mathematics in the UK and I
was fortunate to hear a number of talks by him, given in his characteristic style.

I have been asked to write on the subject of mathematical finance, an area
in which as far as I am aware Lighthill never worked, although he included a
chapter on the subject in [1]. However, one of Lighthill’s best-known works is
the book Introduction to Fourier Analysis and Generalised Functions [2] which
introduced many, many applied mathematicians to the idea of the delta func-
tion as a limit of a sequence of ‘normal’ functions, for example parametrised
continuously by a parameter t which may be thought of as time; Lighthill devel-
oped the theory of distributions within this framework. This idea sees a natural
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interpretation in finance, where option prices in the standard Black–Scholes the-
ory demonstrate just such a smoothing effect on singular ‘payoff’ functions as
time to expiry increases; indeed, the ‘Gamma’ of a vanilla call or put option is
exactly equal to the delta function at the expiry date. The theme of this paper,
therefore, is to illustrate how the smoothing idea can fruitfully be combined
with the techniques of matched asymptotic expansions in a variety of models in
finance.

2 Introduction

The modern theory of finance, and especially of financial derivatives and finan-
cial engineering, depends absolutely on mathematics. Since the subject was
kick-started by the work of Black & Scholes [3] and Merton [4] there has been
a very fruitful two-way technology transfer between a range of areas of math-
ematics and the financial applications, the principal mathematical area being
applied probability and in particular applied and numerical stochastic analysis.
However, the fact that the Black–Scholes methodology leads, via Itô calculus,
to partial differential equations, has led many physical applied mathematicians
to contribute to the field; this is the impetus behind, for example, the early
text [5]. Much of this activity has focused on obtaining exact solutions (which
are particularly useful in the financial context) to certain boundary value prob-
lems representing the prices of options, or on numerical methods. The purpose
of the current article is to illustrate the scope for another technique, asymptotic
analysis, to make a useful contribution to the solution of financial problems,
with a particular emphasis on the use of matched asymptotic expansions.

We begin in Section 3 with some simple examples of matched asymptotic
expansions applied to vanilla options close to their expiry date. In Section 4 we
consider a nonlinear model arising from the study of illiquid markets, and we
contrast the smoothing of the payoff singularity by nonlinear diffusion with the
effect of linear diffusion demonstrated in Section 3. In Section 5 we turn to a
model of fast mean-reverting stochastic volatility and we show how to construct
the boundary layer near expiry for European options. Finally in Section 6 we
speculate on the possibility of applying the methodology of matched asymptotic
expansions directly to stochastic processes, without going via the associated
Kolmogorov partial differential equations.

Before proceeding, we recall the standard Black–Scholes formulation of deriva-
tives pricing (see [5]). We consider options on an asset whose price St is modelled
as a function1 of time t by the stochastic differential equation

dSt

St
= µ dt + σ dWt,

in which dWt is the increment of a standard Brownian Motion and µ and σ are,
respectively, the drift and volatility of the asset, taken to be constant, except in

1We include the customary subscript t on variables such as St when we wish to emphasise
the time-evolution of the process. In other contexts it may be omitted.
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Section 5 where σ is also taken to be stochastic. Given an option whose price
V (S, t) depends only on S and t, application of Itô’s formula to the evolution of
a hedged portfolio Π = V −∆S, consisting of one option and −∆ of the asset,
shows that the risk in the option is perfectly correlated with that of the asset
and that the choice

∆ =
∂V

∂S

renders the portfolio instantaneously risk-free. In the absence of arbitrage and
transaction costs, the portfolio must then earn the risk-free rate r, also taken to
be constant, so that dΠ = rΠ dt; in the absence of dividends this leads to the
Black–Scholes equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.

In the simplest cases this backward parabolic equation is to be solved with a
terminal condition V (S, T ) = P (S) where P (S) is the payoff received at the
expiry date t = T , and in the absence of barriers S ranges from 0 to ∞. The
simplest (‘plain vanilla’) options are call and put options, whose payoffs are
max(S − K, 0) and max(K − S, 0) respectively; they represent the terminal
value of an option to buy (call) or sell (put) the asset at time T for the fixed
price K, called the strike price.

An alternative view of the hedging strategy is that it entails pricing with
respect to a probability measure Q that is risk-neutral, rather than the objective
(observed) measure P associated with the stochastic differential equation for the
asset price cited above. That is, for pricing purposes, the asset is assumed to
follow

dSt

St
= r dt + σ dWt,

where r is the risk-free rate, and then the value of the option is

V (St, t) = EQ[P (ST )|St].

By the Feynman-Kac formulas, this expectation is equivalent to the solution of
the Black–Scholes equation.

As an aside, we comment that in practice the hedging strategy above is
impractical and in particular it is impossible to hedge continuously in time:
even if the Wiener process were an exact description of asset prices rather than a
good approximation, it would still be impossible to trade either instantaneously
or at each t. For this reason the hedge parameter termed Gamma,

Γ =
∂2V

∂S2
,

is of enormous practical importance as it is a measure of the risk incurred
in rehedging at non-infinitesimal time intervals. To see this, suppose that a
portfolio Π = V − ∆tS, where ∆t = ∂V/∂S evaluated at (St, t), is perfectly
hedged at time t, and that no trading takes place over the interval (t, t + δt).
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Using Taylor’s theorem, the change in the portfolio over this interval is δΠ =
δV − ∆tδS which, in the infinitesimal limit where δt becomes dt, is equal to
the risk-free return rΠdt. Over the non-infinitesimal interval the hedging error
(the difference between the return on the portfolio and the risk-free rate) is

δΠ−Π
(
erδt − 1

)
=

∂V

∂t
δt +

1
2

∂2V

∂S2
δS2 − r

(
V − ∂V

∂S
δS

)
δt + o(δt)

=
1
2
σ2S2

t

(
δW 2 − δt

) ∂2V

∂S2
+ o(δt)

where we have used the Black–Scholes equation and the fact to this order δS2 =
σ2S2δW 2, the random variable δW , whose distribution is N(0, δt), being the
small change in the Wiener process W . The error is seen to be proportional
to the random variable δW 2 − δt, whose expectation is zero, multiplied by the
option’s Gamma; the calculation is equivalent to comparing tangent-plane and
quadratic approximations to the value surface. For a call option, we have

Γ(S, T ) =
d2

dS2
max(S −K, 0) = δ(S −K)

where δ( · ) is the delta function, and the same for a put. Bearing in mind that for
a call option without dividends [∆]S=∞

S=0 = 1 for all t, so that
∫∞
0

Γ(S, t) dS = 1,
we see that as t → T the Gamma of such an option is an approximation of the
delta function in the spirit of [2].

3 Vanilla options near expiry

Our first example is the behaviour near expiry of a call option (or, by put-call
parity, a put option) in the standard Black–Scholes model. Here the payoff is
P (S) = max(S − K, 0) and there is a famous explicit formula for the option
value,

V (S, t) = SN(d+)−Ke−r(T−t)N(d−),

where

d± =
log(S/K) +

(
r ± 1

2σ2(T − t)
)

σ
√

T − t
,

and

N(d) =
1√
2π

∫ d

−∞
e−s2/2 ds

is the standard Normal cumulative density function. For small time, we can
derive an approximation to this formula as follows.

First we make some preliminary scalings: we measure time backwards from
expiry and scale it with σ2, writing t = T − t′/σ2. The Black–Scholes equation
becomes

∂V

∂t′
=

1
2
S2 ∂2V

∂S2
+ αS

∂V

∂S
− αV,
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where α = r/σ2 is dimensionless (at this stage, V and S are still dimensional).
Now suppose that α = O(1), but that scaled time is small, so that

t′ = ε2τ

where 0 < ε ¿ 1. The Black–Scholes equation is now

1
ε2

∂V

∂τ
=

1
2
S2 ∂2V

∂S2
+ αS

∂V

∂S
− αV.

If the spot is far from the strike, we have a regular outer expansion

V (S, τ) ∼ V0(S, τ) + ε2V1(S, τ) + · · ·
where

∂V0

∂τ
= 0,

∂V1

∂τ
= α

(
S

∂V0

∂S
− V0

)

and so on, which with the final condition gives

V0 + ε2V1 =

{
S −K(1− ε2ατ) S −K À εK, far above the strike,
0 K − S À εK, far below the strike.

This is just the first two terms in the small time expansion (in unscaled variables)
of the function {

S −Ke−r(T−t) S > Ke−r(T−t),

0 S < Ke−r(T−t),

whose components are the value of the forward contract in which the option
holder is compelled to buy the asset, corresponding to certain exercise, and
zero, corresponding to no exercise.

However, as remarked earlier we expect large Gamma near the strike, and
hence the second S-derivative term cannot be ignored. We deal with this by
rescaling near the strike, introducing an inner variable

S = K(1 + εx),

and at the same time rescaling

V (S, τ) = εKv(x, τ).

The Black–Scholes equation becomes the non-dimensional equation

1
ε2

∂v

∂τ
=

1
2ε2

(1 + εx)2
∂2v

∂x2
+

α

ε
(1 + εx)

∂v

∂x
− αv,

and the payoff is
v(x, 0) = εmax(x, 0).

Having calculated the solution to this inner problem, we will match it with the
outer solution.
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We now expand

v(x, τ ; ε) ∼ v0(x, τ) + εv1(x, τ) + O(ε2).

Collecting together terms of O(1), the problem for v0 is

∂v0

∂τ
=

1
2

∂2v0

∂x2
, v0(x, 0) = max(x, 0).

The conditions at x = ±∞ for this equation are, consistently with the payoff,

v(x, τ) ∼ x, x → +∞, v(x, τ) → 0, x → −∞.

They can also be obtained by matching, using the Van Dyke rule. This is
accomplished by first writing the one-term outer expansion V0(S, τ) in terms of
the inner variables and then expanding to one term in ε; the resulting expression
is the large-x behaviour of the one-term inner expansion v0(x, τ).

This inner problem is much simpler than the original problem, and it has a
similarity solution

v0(x, τ) =
√

τf(x/
√

τ)

where, with x/
√

τ = ξ,
f ′′ + ξf ′ − f = 0,

and with the boundary conditions

f → 0 as ξ → −∞, f ∼ ξ as ξ →∞.

The solution is readily found (it is convenient to differentiate the equation
for f first) to be

v0(x, τ) = xN(x/
√

τ) +
√

τ n(x/
√

τ)

where N(·) is as above and n(·) is its derivative, e−x2/2/
√

2π.
The approximation just found is valid in the inner region, while in the outer

region we have the outer expansion found earlier. In more complicated problems,
one can often find a uniformly valid expansion, holding in both inner and outer
regions, by calculating ‘outer + inner − common’, in which ‘outer’ and ‘inner’
are the expansions already found and ‘common’ is the intermediate limiting
behaviour of these expansions used in matching (i.e, the large-x behaviour of
the inner expansion or the small |S −K| behaviour of the outer expansion). In
our case the outer expansion is so simple that it and the common expansion
coincide, and so the inner expansion is in fact uniformly valid and can be used
as an approximation for all S and small t′. In these original variables, this
expression is

V (S, t) ∼ (S −K)N
(

S/K − 1
σ
√

T − t

)
+ σ

√
T − tK n

(
S/K − 1
σ
√

T − t

)
.

Note that the parameter ε, which is artificial, does not appear in this expression.
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It is not hard to proceed further, to find the two-term inner expansion v0 +
εv1. The problem for v1 is

∂v1

∂τ
− 1

2
∂2v1

∂x2
= x

∂2v0

∂x2
+ α

∂v0

∂x
, v1(x, 0) = 0.

As v0 satisfies the diffusion equation, a particular solution is readily found2 and,
as it vanishes at τ = 0 it is the solution we need:

v1(x, τ) = xτ
∂2v0

∂x2
+

1
2
τ2 ∂3v0

∂x3
+ ατ

∂v0

∂x

=
1
2
x
√

τn(x/
√

τ) + ατN(x/
√

τ).

Furthermore, the two-term inner expansion εK(v0 + εv1) is again uniformly
valid. In the original variables, this expression now reads

V (S, t) ∼ (S −K + r(T − t)) N

(
S/K − 1
σ
√

T − t

)
+σ

√
T − t(S +K) n

(
S/K − 1
σ
√

T − t

)
.

It is also straightforward to show that these expressions agree to O(ε2) with the
small-time expansion of the exact solution.

The approximation is remarkably good for practical parameter values, as
shown by the example in Figure 1. Even with a time to expiry of 1 year, for
which with σ = 0.3 we have σ2T = 0.09, the maximum relative pricing error
is about 2.5%; furthermore the approximate expression can be differentiated to
calculate the ‘Greeks’ (the industry term for ∆, Γ and other partial derivatives
of the option price, needed for hedging) as well as the price itself.

As a further test of the accuracy of the approximation, we calculate the
error divided by K(e−r(T−t) − (1− r(T − t))) and, as shown in Figure 2, this
is always bounded and tends to 1 as S →∞; one expects the errors associated
with approximating the discounting to be O((r(T − t))2) which is small for re-
alistic values, and the figure confirms that the errors associated with the second
derivative (volatility) term are not significantly bigger than those arising from
approximate discounting.

In this particular example, the outer expansion is simply the outer expansion
of the inner problem and the error incurred in simply using the inner expansion
is, in fact, exponentially small in σ2(T − t); in effect, the inner solution is an
expansion of the exact solution in terms of this quantity. If the payoff had been
more complicated then the outer expansion would have been non-trivial, and
another example in which the method yields non-trivial results is described in
the following section.; for more complicated illustrations of the potential of the
method in a Black–Scholes setting, see [6].

2We use the following: (i) if uτ − 1
2
uxx = 0 and vτ − 1

2
vxx = u, then a particular solution

is τu; (ii) if u is as above and vτ − 1
2
vxx = xu, then a particular solution is v = xτu+ 1

2
τ2ux;

(iii) N ′′(ξ) + ξN ′(ξ) = 0.
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Figure 1: Approximate call value minus exact value, scaled with the at-the-
money value, as a function of moneyness S/K. Time to expiry one year and
0.25 year. Volatility is σ = 0.3, r = 0.05.
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Figure 2: Approximate call value minus exact value, scaled with the discounting
error, as a function of moneyness S/K. Time to expiry one year and 0.25 year.
Volatility is σ = 0.3, r = 0.05.
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3.1 CEV models

The methodology above can be applied to the constant-elasticity-of-variance
(CEV) model in which the Black–Scholes equation is replaced by

∂V

∂t
+

1
2
σ2S2

0

(
S

S0

)γ
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.

The difference from the previous model is that the volatility is now S–dependent
for γ 6= 2 (the model is used to represent a ‘leverage’ effect whereby the impact
of a given stochastic change dWt is assumed to be greater when the asset price
is small than when it is large, and γ is thus taken to be less than the Black–
Scholes value of 2). The parameters S0 and σ are not independent, but writing
the equation in this form allows one to compare option prices with the same
volatility at a given price level; for example, choosing S0 = K gives the same
at-the-money volatility for options with strike K as γ varies.

It is now much less straightforward to calculate explicit solutions, but the
asymptotic procedure is virtually the same as for the case γ = 2, the Black–
Scholes model. Indeed, the outer expansion is unchanged, while with the scalings
previously used, the inner equation becomes

∂v

∂τ
=

1
2
κ2(1 + εx)γ ∂2v

∂x2
+ εα(1 + εx)

∂v

∂x
− ε2αv,

where κ2 = (S0/K)2−γ , with the same payoff as before. If we rescale time
by setting τ = τγ/κ2 and expand to two orders in ε, we recover precisely the
previous problem for v0, so the solution is the same but written in terms of the
new time variable τγ . The equation for v1 is

∂v1

∂τγ
− 1

2
∂2v1

∂x2
=

1
2
γx

∂2v0

∂x2
+ αγτγ

∂v0

∂x
, v1(x, 0) = 0.

where αγ = α/κ2 (note that ατ = αγτγ). We can, therefore, easily adapt the
earlier result to write down the inner solution (which is the uniformly valid
expansion to this order) as

v0 + εv1 = (x + εατ)N(κx/
√

τ) + κ
√

τ(1 + εγx/4)n(κx/
√

τ),

which reduces to the previous expression when γ = 2. In original variables, we
have the approximation

V (S, t) ∼ (
S −K + r(T − t)

)
N

(
κ(S/K − 1)

σ
√

T − t

)

+ κσ
√

T − t

(
γS + (4− γ)K

4

)
n

(
κ(S/K − 1)

σ
√

T − t

)
.

The accuracy of the approximation is illustrated in Figure 3, which compares
the error relative to the at-the-money option value for three different values of
γ. The ‘true’ value was calculated numerically by an explicit finite difference
scheme. The approximation is even better for γ < 2 than it is for the Black–
Scholes case γ = 2, and appears to improve as γ decreases.
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Figure 3: Approximate CEV call value minus numerically calculated value,
scaled with the at-the-money numerical value, as a function of moneyness S/K.
Time to expiry 0.25 year. At-the-money volatility is 0.3 for all options and
r = 0.05.

4 Vanilla options in an illiquid market

The standard assumptions of the Black–Scholes model include that of perfect
liquidity: it is possible to trade an arbitrary amount of the asset at the price St

without incurring transaction costs and without changing the price by trading.
In practice this is simply not true, and in this section we consider an aspect of
a model for the effects of illiquidity.

Illiquidity is manifest in three forms in most markets. First, there is a
difference, called the bid-offer spread, between the prices for buying and selling
even a small amount of the asset. Second, the price paid for trading the asset
depends on the amount traded; for example, a trader wishing to buy a large
amount of the asset will have to pay a price per unit of the asset that increases
with the amount traded, because there is only a limited amount on offer at the
lowest offer price (there are usually offers to sell at higher prices as well). This
we term the liquidity cost. Third, the action of trading a large amount may itself
move the asset price independently of the effect of other random innovations due
to external news and the effect of smaller trades. This is termed market impact.

In this section we assume that the bid-offer spread is small and we focus on
the effect of liquidity cost and market impact. These have been considered by
a number of authors (see [7, 8, 9, 10, 11, 12] and references therein), and the
common thread is that where a ‘Black–Scholes equation’ can be formulated as a
result of a continuous-time trading strategy or a continuous-time approximation
to a discrete-time strategy, it is nonlinear (the precise form of the nonlinearity
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depends on the model used). This is not surprising as whenever costs of any
sort are incurred, the total value of two positions held separately is in general
distinct from the value of the net position, an extreme example being that of
a trader who is both long (has bought) and short (has sold) the same contract
and whose net exposure is therefore precisely zero and so does not need to be
hedged: hedging the two positions separately incurs two sets of costs and thus
results in long and short prices whose difference is not zero.

Our interest here is how the nonlinearity affects the valuation of a call or
put option near expiry, as in Section 3. As a representative of the class of
models used we consider that of [8]. In this model, the price paid to trade a
number N of the asset is Ste

λN , where St is the asset price before the trade and
λ > 0 is a parameter measuring the liquidity of the market; it is always small
in practice, but markets with relatively small λ are more liquid than those with
relatively large λ. If N < 0, representing a sale, the price received is less than
St, while if N > 0 the price paid to buy is greater than St. The market impact is
represented by assuming that, after the trade, the asset price moves to Ste

βλN ,
where the parameter β measures the market impact, β = 0 representing a trader
whose impact on the market is negligible. While the parameter λ is typically
very small, β may be O(1).

With these dynamics superposed on the standard asset price random walk,
it is shown in [8] that the model possesses a continuous-time limit in which the
value of an option satisfies the nonlinear equation

Vt +
1
2
σ2S2VSS + λσ2S2V 2

SS +
1
2
λ2β2σ2S4V 3

SS + rSVS − rV = 0

(in this section we consistently use subscripts for partial derivatives). Recall that
the Gamma, VSS , of this option is a delta-function at expiry; following [13], we
show how the nonlinear equation for V handles this singularity.

As λ is small, we construct a regular outer expansion

V (S, t;λ) ∼ V0(S, t) + λV1(S, t) + λ2V2(S, t) + O(λ3),

in which
LBSV0 = 0, V0(S, T ) = P (S)

(we anticipate that the payoff condition should be applied to this function; in
this problem the interest is in a small inner region near the strike),

LBSV1 = −σ2S2V 2
0SS , V1(S, T ) = 0,

LBSV2 = −2σ2S3V0SSV1SS − 1
2
β2σ2S4V 3

0SS , V2(S, T ) = 0,

and so on, where LBS is the standard Black–Scholes differential operator. Suc-
cessive terms can be calculated in integral form with the aid of a Green’s function
or, more likely, numerically (numerical comparisons showing excellent agreement
are given in [8]). The expansion is valid provided that higher-order terms remain
smaller than lower-order ones, and breakdown first occurs when the magnitudes

11



of V0 and λV1 become comparable. This is for asset values near the strike
and for times near expiry, specifically (recalling the results of Section 3) for
|(S − K)/K| = O(λ) and σ2(T − t) = O(λ2). We therefore rescale, writing
σ2(T − t) = λ2τ and S = K(1 + λx), and V (S, t) = λv(x, τ). The leading order
term in an expansion in powers of λ in the inner region then satisfies

v0τ =
1
2
v0xx + v2

0xx +
1
2
β2v3

0xx, v0(x, 0) = max(x, 0).

This problem is itself intractable but its small and large time behaviour can
be calculated. The large-time behaviour is straightforward, as for large times
the dominant term on the right-hand side is 1

2v0xx, namely a linear diffusion
term, and the asymptotic behaviour is that of linear diffusion, matching with
the inner limit of the outer solution as discussed in Section 3. The short-time
behaviour is, conversely, dominated by the balance between v0τ and 1

2β2v3
0xx.

We analyse this by first setting τ = ετ̄ , x = ε
1
2 x̄, v0(x, τ) = ε

1
2
√

2v̄(x̄, τ̄)/β,
where ε is an artificial small parameter, to find

v̄τ̄ = v̄3
x̄x̄ + (

√
2/β)ε

1
2 v̄2

x̄x̄ +
1
2
εv̄x̄x̄, v̄(x̄, 0) = (β/

√
2)max(x̄, 0).

By differentiating twice and making the substitution v̄x̄x̄ = u, the equation for
v can be transformed into one of a type familiar in nonlinear diffusion, namely

uτ̄ =
(

u3 + (
√

2/β)ε
1
2 u2 +

1
2
εu

)

x̄x̄

, u(x̄, 0) = (β/
√

2)δ(x̄).

The leading order behaviour as τ → 0 is described by the solution of

u0τ̄ =
(
u3

0

)
x̄x̄

, u0(x̄, 0) = (β/
√

2)δ(x̄),

and this is given by the Barenblatt–Pattle similarity solution

u0(x̄, τ̄) =





1√
12τ̄

1
2

(
c2τ̄

1
2 − x̄2

) 1
2

, |x̄| < cτ̄
1
4 ,

0 |x̄| > cτ̄
1
4 ,

where c2 = 2
√

6β/π. This solution, which is integrated twice to recover the
original option value function, has compact support and indicates, in effect, that
for short times near expiry, the option value is equal to the payoff (discounting
takes effect at higher order) except in the sharply-defined small region |S−K| <
Kλc

(
σ2(T − t)

) 1
4 ; in the linear diffusion case, by contrast, the region where the

option value is non-trivial merges smoothly into the outer region.
Still following [13], it is possible to push the analysis a little further by

considering the transitions near x̄ = ±cτ̄
1
4 , via which the non-zero part of the

solution above joins onto the zero parts. The Barenblatt–Pattle solution has
infinite gradient at x̄ = ±cτ̄

1
4 and vanishes for |x| > cτ̄

1
4 , but the original

differential equation for u contains a linear term and its solution is strictly

12



positive for positive initial data. The discrepancy is resolved as in a similar
problem from a model of semiconductor fabrication [14] by introducing a further
inner layer near (say) x̄ = s̄(τ̄) = cτ̄

1
4 in which x̄ = s̄(τ̄) + εX, u = ε

1
2 U , to find

that

ε
1
2 Uτ̄ − ṡUX =

(
U3 + (

√
2/β)U2 +

1
2
U

)

XX

,

with U → 0 as X → +∞ and matching with the Barenblatt–Pattle solution as
X → −∞. To leading order the solution is the travelling wave U(X, τ̄) = U0(X)
where

ṡ
dU0

dX
+

d2

dX2

(
U3

0 + (
√

2/β)U2
0 +

1
2
U0

)
= 0,

so that integrating once and using the condition at X = ∞ we have

ṡU0 +
d

dX

(
U3

0 + (
√

2/β)U2
0 +

1
2
U0

)
= 0.

A second integration shows that

3
2
U2

0 +
2
√

2
β

U0 +
1
2

log U0 = −ṡ(X −X0),

where X0 is a centering constant which can only be determined at higher or-
der. We therefore have exponential decay in the solution as X → +∞, while
matching as X → −∞ shows that

U0 ∼
(
−2

3
ṡX

) 1
2

,

which is indeed consistent with the expansion of the Barenblatt–Pattle solution
near x = s(τ̄) = cτ̄

1
4 , and this completes the asymptotic analysis of this problem.

5 Fast mean-reverting volatility

Our final example of the applicability of boundary-layer techniques is in the
analysis of fast-mean-reverting stochastic volatility models [15]. In these models
the volatility itself is assumed to follow a stochastic process while the asset price
is assumed to follow the lognormal process as before. That is, we assume that

dSt

St
= µ dt + σt dWt, dσt = Mt dt + Σt dW̃t

where Mt and Σ are the drift and volatility of the volatility and the instanta-
neous correlation between the Brownian motions Wt and W̃t is denoted by ρ.
A commonly used example is the Heston model [16]. This is

d(σ2
t ) = −κ

(
σ2

t − σ2
∞

)
dt + θσt dW̃t

13



for constant κ, θ and σ∞; it will be noted that the volatility exhibits mean-
reversion to the long-term level σ∞. (Although the model is written in terms
of the instantaneous variance σ2

t , it can be transformed into one for σt via the
Itô formula.)

When using such a model, perfect hedging is no longer possible and there is
no unique pricing measure. Instead, a standard analysis shows that there is a
market price of volatility risk, denoted by λ (which may be a function of any of
S, σ and t) and pricing is done with respect to the measure associated with the
processes

dSt

St
= r dt + σt dWt, dσt = (Mt − λΣ)dt + Σt dW̃t.

In effect, the market price of volatility risk represents the extra return required
by the market for taking on this (untradable) risk. A standard analysis then
shows that the price V (S, σ, t), which now depends on the instantaneous volatil-
ity σ as well as the spot price and time, satisfies the backward parabolic equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ ρSσΣ

∂2V

∂S∂σ
+

1
2
Σ2 ∂2V

∂σ2
+ rS

∂V

∂S
+(M −λΣ)

∂V

∂σ
− rV = 0,

which evidently contains the Black–Scholes equation as a special case.
We assume for simplicity (as is reasonable in practice) that the drift and

volatility of the volatility are functions only of σ, not of S or t. Let us consider
the commonly occurring situation in which the volatility process is fast mean-
reverting, in which the timescale for mean-reversion is much shorter than that
for the evolution of the asset price, their ratio ε being small.3 (In the Heston
model above, this ratio is σ2

∞/κ.) Then Mt and Σt are written

Mt =
mt

ε
, Σt =

ςt
ε1/2

;

the relative sizes of these coefficients are chosen so that σt has a nontrivial
invariant distribution

lim
t→∞

p(σt, t|σ0, 0)

where p(σt, t|σ0, 0) is the transition density function for σt starting from σ0 at
time zero, which satisfies the forward Kolmogorov equation

∂p

∂t
=

∂

∂σ

(
1
2
Σ2 ∂p

∂σ

)
− ∂

∂σ
(Mp) .

We denote this time-independent invariant distribution by p∞(σ).
With these assumptions the pricing equation becomes

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+

ρς

ε
1
2
σS

∂2V

∂S∂σ
+

1
2

ς2

ε

∂2V

∂σ2
+rS

∂V

∂S
+

(
m

ε
− λς

ε
1
2

)
∂V

∂σ
−rV = 0.

3We use ε rather than ε2 (which would have been consistent with the usage of Section 3)
in conformity with existing literature, especially [15, 17]. Note also that, for the same reason,
we do not make the pricing equation dimensionless. In this problem, there is little advantage
to be gained by so doing.
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It is possible to construct asymptotic approximations to the solutions of
this equation, valid as ε → 0, and this approach was pioneered by Fouque,
Papanicolaou & Sircar; it is summarised in their book [15]. They construct ap-
proximations correct to O(ε

1
2 ) which are valid everywhere except in a boundary

layer near expiry. In later work, Rasmussen & Wilmott [18] extended the outer
expansion to O(ε). However, the solution to this order contains an arbitrary
function which can only be determined by a boundary layer analysis which they
do not carry out, and this gap is filled in the current paper. Our analysis paral-
lels that of [17] who analysed products whose payoff depends on some measure
of the realised volatility and who also analysed the boundary layer, although
they did not construct as many terms as are needed for the accuracy we now
achieve. In related work, [19, 20] consider the question of convergence of the
asymptotic series to the exact solution, and derive formulas similar to ours, al-
though they do not exploit the boundary-layer structure. The work in [20], in
particular, was carried out simultaneously with ours although independently of
it, and derives similar formulas in a rather different setting. It is a pleasure to
acknowledge helpful comments from one of the authors of this paper.

5.1 The outer expansion

We begin with the outer expansion. We write the fast mean-reverting pricing
equation in the form

(
1
ε
L0 +

1
ε1/2

L 1
2

+ L1

)
V = 0

where

L0 =
1
2
ς2 ∂2

∂σ2
+ m

∂

∂σ
,

L 1
2

= ρςσS
∂2

∂S∂σ
− λς

∂

∂σ
,

L1 =
∂

∂t
+

1
2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
− r;

note that L1 is the Black–Scholes operator with volatility σ. Because L0 is the
generator of the backward Kolmogorov equation for σt, its adjoint L∗0 is the
generator of the forward equation and so p∞(σ) satisfies

L∗0p∞ =
∂2

∂σ2

(
1
2
ς2p∞

)
− ∂

∂σ
(mp∞) = 0.

Assuming that ς2, m are such that p∞ exists, it is then proportional to

e−2
R σ m(s)/ς2(s) ds/ς2(σ).

The standard integration-by-parts identity

〈L0u, v〉 = −〈u,L∗0v〉
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for suitable functions u and v, where 〈 · , · 〉 is the usual inner product over
0 < σ < ∞, will prove useful.

We now expand

V (S, σ, t) ∼ V0(S, σ, t)+ε
1
2 V 1

2
(S, σ, t)+εV1(S, σ, t)+ε

3
2 V 3

2
(S, σ, t)+ε2V2(S, σ, t)+· · ·

and substitute into the pricing equation. Equating coefficients of powers of ε,
we obtain in increasing order of the power the equations

L0V0 = 0,

L0V 1
2

+ L 1
2
V0 = 0,

L0V1 + L 1
2
V 1

2
+ L1V0 = 0,

L0V 3
2

+ L 1
2
V1 + L1V 1

2
= 0,

L0V2 + L 1
2
V 3

2
+ L1V1 = 0.

At lowest order, we have L0V0 = 0 and so V0 is a function V0(S, t) of S and
t alone, since L0 consists only of σ-derivatives (the particular solutions that
depend on σ are ruled out by the conditions at large and/or small S). However,
V0 is as yet undetermined and this is the principal feature of the analysis. In
approximating, we have replaced the non-degenerate stochastic volatility differ-
ential operator by the degenerate operator L0 which has no S or t derivatives.4

In consequence, the solution contains eigenfunctions (of which V0(S, t) is one)
which can only be determined by application of the Fredholm Alternative at
higher order.

As V0 is a function of (S, t) alone, we have L 1
2
V0 = 0 and so V 1

2
is also a

function, also as yet unknown, of (S, t) alone, V 1
2
(S, t). Thus L 1

2
V 1

2
= 0 and so

we have
L0V1 = −L1V0.

Because the operator L0 is degenerate, by the Fredholm Alternative this equa-
tion only has solutions if the right-hand side is orthogonal to the relevant eigen-
function of L∗0, namely p∞. Thus, 〈L1V0, p∞〉 = 0; carrying out the integration,
bearing in mind that the only σ-dependence is in the volatility coefficient σ2,
we find that

L1V0 = 〈L1V0, p∞〉 =
∂V0

∂t
+

1
2
σ2S2 ∂2V0

∂S2
+ rS

∂V0

∂S
− rV0 = 0,

where σ2 = 〈σ2, p∞〉 =
∫∞
0

σ2p∞(σ) dσ (the notation σ2 thus represents the
average of σ2 with respect to the invariant distribution p∞). This is the Black–

Scholes equation with averaged volatility
(
σ2

)1/2

. The solution can be calcu-
lated by standard Black–Scholes techniques once a suitable final value is given.
As we show below, this value is the payoff P (S), and so V0(S, σ, t) = V0(S, t)

4A similar situation occurs when, in a classical ‘lubrication theory’ analysis in a long thin
domain, an elliptic operator is replaced by a parabolic one [21].
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is the Black–Scholes value of the option with constant volatility equal to the
square root of the stationary mean of the variance. This is intuitively reason-
able in view of the fact (see [5]) that if the volatility in a Black–Scholes equation
is a given deterministic function σ(t) of time, the option value can be calculated
by replacing σ in the relevant constant-volatility formula by

(
1

T − t

∫ T

t

σ2(s) ds

) 1
2

,

so that we have, in effect, an application of the law of large numbers.
We now calculate V1. As L1V0 = 0, we have by subtraction

L1V0 = L1V0 − L1V0 =
1
2
(σ2 − σ2)S2 ∂2V0

∂S2
,

thereby replacing the majority of the source terms in L0V1, leaving

L0V1 =
1
2
(σ2 − σ2)S2 ∂2V0

∂S2
.

The solution of this equation has the form

V1(S, σ, t) = g1(σ)S2 ∂2V0

∂S2
+ V1(S, t)

where V1(S, t) is another eigenfunction of L0 which can only be determined by
a solvability condition at the next order; g1(σ) satisfies

1
2
ς2(σ)

d2g1

dσ2
+ m(σ)

dg1

dσ
=

1
2
(σ2 − σ2)

and can be written in integral form (one of the “complementary solutions” is
a constant and can be absorbed into V1(S, t), and the other is unbounded at
infinity).

Although we have calculated V0, at this stage V 1
2

and V1 are still undeter-
mined to within an eigenfunction, and furthermore V1 depends explicitly on σ,
which is not consistent with a σ-independent payoff P (S). We deal with the
former difficulty by going to higher order in the expansion, and the latter by a
boundary layer analysis.

Before proceeding further, we outline the pattern followed by successive it-
erations of the solution procedure. We first solve equation n, namely L0Vn =
−L 1

2
Vn− 1

2
−L1Vn−1 for Vn(S, σ, t) (the right-hand side is assumed known from

earlier stages), finding a particular solution vn(S, σ, t) and an eigenfunction
Vn(S, t) (for the case n = 0 dealt with above, the former is zero and the latter
is V0(S, t)). We repeat this process for Vn+ 1

2
, obtaining a further particular

solution vn+ 1
2

and a further eigensolution Vn+ 1
2

(note that the eigensolution Vn

is annihilated by L0). Finally we substitute the functions just found into the
right-hand side of the equation for Vn+1, namely L0Vn+1 = −L 1

2
Vn+ 1

2
−L1V n;
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again the eigenfunction Vn+ 1
2

is annihilated, so the right-hand side is known in
terms of the particular solutions just found. We can now apply the solvability
condition 〈L0Vn+1, p∞〉 = 0 for existence of a solution to obtain an equation
from which the eigenfunction Vn(S, t) can, in principle and given appropriate
terminal conditions, be found; this equation is

L1Vn = −L 1
2
vn+ 1

2
− L1vn.

Having dealt with n = 0 above, we now apply this procedure to the case n =
1
2 . We have already found V 1

2
(S, σ, t) and V1(S, σ, t) up to eigenfunctions, so we

need only apply the solvability condition to the equation L0V 3
2

= −L 1
2
V1−L1V 1

2
,

noting that L 1
2
V1 = 0. This gives

L1V 1
2

= −ρςσg′1S
∂

∂S

(
S2 ∂2V0

∂S2

)
+ λςg′1S

2 ∂2V0

∂S2

where g′1 = dg1/dσ. Using a manoeuvre similar to that employed for the heat
equation in Section 3, and assuming pro tem that the correct final condition
(from matching) is V 1

2
(S, T ) = 0, we find

V 1
2
(S, σ, t) = (T − t)

(
A 1

2 ,1S
2 ∂2V0

∂S2
+ A 1

2 ,2S
∂

∂S

(
S2 ∂2V0

∂S2

))

where V0 is already known and A 1
2 ,1 = λςg′1, A 1

2 ,2 = −ρςσg′1 (as noted earlier,
V 1

2
is independent of σ). This result, and elaborations thereof, is an important

practical consequence of the method since, as described in [15], it allows cali-
bration of the three constants σ2, ρςσg′1 and λςg′1 to market prices of options
(as represented by an implied volatility surface) in a simple manner: the key
point is that only these directly deducable constants are needed, rather than
the unobservable functions M(σ, t) and Σ(σ, t).

We need to carry out one more iteration. For ease of notation, we set

D = S
∂

∂S
,

equivalent to using a logarithmic price variable as in [20]. We first calculate

L0V 3
2

=
[
ςg′1(λ− ρσD) +

1
2

(
σ2 − σ2

)
(T − t)

(
A 1

2 ,1 + A 1
2 ,2D

)
(D2 −D)

−A 1
2 ,1 −A 1

2 ,2D
]
(D2 −D)V0

From this, we find V 3
2

in the form

V 3
2
(S, σ, t) =

[
g2(σ) + g3(σ)D + g1(σ)(T − t)

(
A 1

2 ,1 + A 1
2 ,2D

)
(D2 −D)

]
(D2−D)V0

where g2(σ) and g3(σ) satisfy the same equation as g1(σ) but with the relevant
inhomogeneous terms taken from the equation for V 3

2
; that is, for g2(σ) the
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inhomogeneous term is λςg′1(σ) − A 1
2 ,1, and for g2(σ) it is −ρσςg′1(σ) − A 1

2 ,2

(recall that ρ, λ and ς may depend on σ). Then, the solvability condition for V2,
applied to the equation L0V2 = −L 1

2
V 3

2
− L1V1, gives, after some calculation,

L1V1 =
[
(A1,1 + A1,2D)D

+(T − t)
(
A 1

2 ,1 + A 1
2 ,2D(D2 −D)

)(
A 1

2 ,1 + A 1
2 ,2D

)]
(D2 −D)V0,

where the new constant coefficients are

A1,1 = ςg′2(σ)(λ− ρσ), A1,2 = ςg′3(σ)(λ− ρσ).

The relevant particular solution with zero payoff condition is

−
[
(T − t)(A1,1 + A1,2D)D

+
1
2
(T − t)2

(
A 1

2 ,1 + A 1
2 ,2D(D2 −D)

)(
A 1

2 ,1 + A 1
2 ,2D

)]
(D2 −D)V0;

however, we leave open the possibility of adding a further solution V ′1(S, t) if
the payoff, determined by matching into the boundary layer, dictates that we
should do so. Likewise, the σ-dependence of the solution can only be resolved
by matching.

5.2 Boundary layer analysis

We introduce a boundary layer in t near t = T , of size O(ε), defining the inner
time variable τ via

t = T + ετ, τ < 0,

so that the pricing equation for Ṽ (S, σ, τ) = V (S, σ, t) is

1
ε

∂V

∂τ
+

1
2
σ2S2 ∂2V

∂S2
+

ρς

ε
1
2
σS

∂2V

∂S∂σ
+

1
2

ς2

ε

∂2V

∂σ2
+rS

∂V

∂S
+

(
m

ε
− λς

ε
1
2

)
∂V

∂σ
−rV = 0.

We write this as (
1
ε
L̃0 +

1
ε1/2

L̃ 1
2

+ L̃1

)
Ṽ = 0,

where

L̃0 =
∂

∂τ
+ L0 =

∂

∂τ
+

1
2
ς2 ∂2

∂σ2
+ m

∂

∂σ
,

L̃ 1
2

= L 1
2

= ρςσS
∂2

∂S∂σ
− λς

∂

∂σ
,

L̃1 =
1
2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
− r,
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(note that L̃0, unlike L0, contains the time derivative ∂/∂τ ; this effectively
removes the degeneracy that made the outer expansion so complicated) and we
expand

Ṽ ∼ Ṽ0 + ε1/2Ṽ 1
2

+ εṼ1 + · · · .

At leading order we have the one-term inner solution which satisfies

L̃0Ṽ0 = 0, Ṽ0(S, σ, 0) = P (S);

the solution is
Ṽ0(S, σ, τ) = P (S)

and it matches automatically with the one-term outer solution V0(S, t) as t → T ,
τ → −∞.

At the next order, we have

L̃0Ṽ 1
2

= −L 1
2
Ṽ0 = 0, Ṽ 1

2
(S, T ) = 0;

the solution is Ṽ 1
2

= 0, and this is consistent with matching with the two-term
outer expansion V0 + ε1/2V 1

2
, since in inner variables the T − t in V 1

2
means that

this term only contributes O(ε3/2) to the inner expansion of the outer solution.
We now see the correctness of ignoring the possible added eigenfunction at this
order in the outer expansion.

At the next order we have

L̃0Ṽ1 = −L̃1Ṽ0 = −L̃1P, Ṽ1(S, σ, 0) = 0,

which, noting that ∂P/∂τ = 0, can be written as

∂Ṽ1

∂τ
+ L0Ṽ1 =

1
2

(
σ2 − σ2

)
S2 ∂2P

∂S2
− L1P, Ṽ1(S, σ, 0) = 0.

We now need the limiting behaviour of the solution of this equation as τ →
−∞ in order to match with the three-term outer solution. A particular solution
is

Ṽ1

∞
= g1(σ)S2 ∂2P

∂S2
− τL1P + Ṽ1(S)

where Ṽ1(S) is arbitrary, and this is in fact the correct form for the asymptotic
behaviour of Ṽ1(S, σ, τ) as τ → −∞. To see this, we first note that

〈L̃0Ṽ1, p∞〉 = 〈∂Ṽ1

∂τ
+ L0Ṽ1, p∞〉 = 〈∂Ṽ1

∂τ
, p∞〉

since 〈L0Ṽ1, p∞〉 = 0. Furthermore,

∂

∂τ
〈Ṽ1, p∞〉 = 〈∂Ṽ1

∂τ
, p∞〉 = −〈L1P, p∞〉 = −L1P
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and so, integrating and using Ṽ1(S, σ, 0) = 0,

〈Ṽ1, p∞〉 = −τL1P.

However, using the solution found for Ṽ1, we also have that

〈Ṽ∞
1 , p∞〉 = −τL1P + g1(σ)S2 ∂2P

∂S2
+ Ṽ1(S).

Comparing these two expressions for the inner product, we see that

Ṽ1(S) = −g1(σ)S2 ∂2P

∂S2
.

Thus, as τ → −∞,

V1 ∼ Ṽ∞
1 =

(
g1(σ)− g1(σ)

)
S2 ∂2P

∂S2
− τL1P,

since what is left after subtracting the particular solution, Ṽ1− Ṽ∞
1 , satisfies the

homogeneous version of the parabolic equation, has initial data that vanishes
at large and small σ, and therefore vanishes as τ → −∞.

5.3 Matching

We can now complete the matching. From the outer expansion, written in inner
variables, we have

V0(S, σ, T + ετ) + ε
1
2 V 1

2
(S, σ, T + ετ) + εV1(S, σ, T + ετ)

∼ V0(S, σ, T ) + ε
1
2 V 1

2
(S, σ, T ) + ε

(
τ

∂V0

∂t
(S, σ, T ) + V1(S, σ, T )

)

= V0(S, T ) + ε

(
τ

∂V0

∂t
(S, T ) + g1(σ)S2V0SS + V ′1(S, T )

)

= P (S) + ε
(−τL1P (S) + g1(σ)S2V0SS + V ′1(S, T )

)
;

because, from one-term matching, V0(S, T ) = P (S) and L1V0 = 0, we have
∂V0/∂t = −L1P , a result used in deriving the last line of this equation. This
is the three-term outer expansion, in inner variables; note that the particular
solutions in V 1

2
and V1 that are multiplied by T − t do not contribute to it.

As demonstrated in Section 5.2, the large-τ behaviour of the three-term inner
expansion is

P (S, I) + ε

(
−τL1P +

(
g1(σ)− g1(σ)

)
S2 ∂2P

∂S2

)
.

Matching these two expressions, the missing final condition for V ′1(S, t) is

V ′1(S, T ) = −g1(σ)S2 ∂2P

∂S2
.
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Hence, as S2V0SS is itself a solution of L1V = 0, we have

V ′1(S, t) = −g1(σ)S2 ∂2V0

∂S2

and the complete outer expansion to three terms is

V (S, σ, t) ∼ V0(S, t) + ε
1
2 (T − t)

(
A 1

2 ,1 + A 1
2 ,2D

)
(D2 −D)V0

+ ε
[
g1(σ)− g1(σ)− (T − t)(A1,1 + A1,2D)D

−1
2
(T − t)2

(
A 1

2 ,1 + A 1
2 ,2D(D2 −D)

)(
A 1

2 ,1 + A 1
2 ,2D

)]
(D2 −D)V0;

again, we recall that D = S∂ /∂S.
This result can be used to refine the O(ε

1
2 ) calibration [15] to market data; it

should be noted that at O(ε) this involves the determination not only of the two
new constants A1,1 and A1,2 but also of the function g1(σ)− g1(σ). In practice,
the contribution from the latter is likely to be relatively small as the average
of g1(σ) is subtracted from g1(σ) itself. The calibration is described in detail
in [20].

The analysis just presented must be modified if the payoff has a gradient
discontinuity (or a jump), as then S2V0SS is large near expiry for certain values
of S; an example would be a call option with large Gamma near the strike
K. This case can be treated by invoking a further inner region, in which S =
K(1 + ε

1
2 x), t = T + ετ , in which the leading order equation to be solved for

v(x, σ, τ) = V (S, σ, t) is

∂v

∂τ
+

1
2
σ2 ∂2v

∂x2
+

1
2
ς2 ∂2v

∂σ2
+ m

∂v

∂σ
= 0

with v(x, σ, 0) = max(x, 0). Unfortunately the coupling via the coefficient of
∂2v/∂x2 means that explicit progress is unlikely for this problem, although its
very short-time behaviour will be as in Section 3.

6 Discussion

We have discussed a number of applications of the method of matched asymp-
totic expansions in finance, focusing on European vanilla options in several
models. It is clear that the method can be applied in a much wider variety
of situations, and although few of these opportunities have yet been exploited,
there is corresponding work on American put options close to expiry where both
conventional asymptotics and ray methods have been applied (see the recent pa-
per [22] and references therein) and on discretely sampled barrier options [23].
But perhaps the most intriguing possibility is that of translating the techniques
of matched asymptotic expansions so that they apply directly to the stochastic
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processes, rather than going via the partial differential equation for the proba-
bility density. For example, in Section 5, we introduced the process

dσt = −m

ε
dt +

ς

ε
1
2

dWt.

for a fast mean-reverting volatility. Given the starting value σ0 of σt, it is
intuitively clear that over a timescale of O(ε) the exponential decay associated
with the mean reversion acts to ‘erase’ the initial condition and that for longer
timescales, say t = O(1), all that we can say at time t is that σt is sampled from
its stationary distribution p∞(·); the ‘memory’ of the initial condition is then
O(e−mt/ε), i.e. exponentially small. Similarly, the values of σt at two times
t1 and t2 separated by O(1) are effectively independent samples from p∞ even
though they are linked by a sample path.

To make this concept more precise, we first need to extend the traditional
definition of an asymptotic expansion, which we do in conformity with the
standard weak (in distribution) and strong (pathwise) convergence for stochastic
processes. We propose the definition that a stochastic process Xε

t depending on
a parameter ε has the expansion

Xε
t

P∼ X
(0)
t + εX

(1)
t + ε2X

(2)
t + · · · as ε → 0

over a given time interval if, for each fixed t in this interval, one can find processes
X

(0)
t , X

(1)
t , . . . such that, for each N , the error

1
εN


Xε

t −
N∑

j=1

εjX
(j)
t




converges in probability to zero as ε → 0. This is a pathwise asymptotic expan-
sion in the sense that the sample paths of the expansion converge to those of
the target process Xε

t , and it corresponds to a conventional regular expansion.
Likewise we propose that

Xε
t

D∼ X
(0)
t + εX

(1)
t + ε2X

(2)
t + · · · as ε → 0

if the same error converges to zero in distribution as ε → 0, interpreted as

|F
S

(N)
t

− FXε
t
|/εN → 0 as ε → 0,

where S
(N)
t is the sum of the first N terms in the expansion and F is the

cumulative density function. We term this type of expansion distributional.
By way of example, consider the slowly mean-reverting Ornstein–Uhlenbeck

(O–U) process
dXt = −εXt dt + dWt,

with the starting value X0 = x0 given. Posing a regular (pathwise) expansion
as above, and equating coefficients of powers of ε in the usual way, we find the
set of equations

dX
(0)
t = dWt, X

(0)
0 = x0,
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Figure 4: Numerical simulation, by explicit forward scheme with timestep 0.01,
of the O–U process dXt = −εXt dt + dWt, ε = 0.05, and of the two-term
asymptotic approximation. Divergence clearly becomes significant when εt =
O(1).

dX
(1)
t = −X

(0)
t dt, X

(1)
0 = 0,

and so on; their solutions are

X
(0)
t = x0 + Wt, X

(1)
t = −x0t−

∫ t

0

Ws ds

and these are in accordance with the exact solution, obtained with an integrating
factor:

Xε
t = x0e

−εt +
∫ t

0

e−ε(t−s)dWs

= x0(1− εt) +
∫ t

0

(1− ε(t− s)) dWs + O(ε2)

= x0 + Wt + ε

(
−x0t− [(t− s)Ws]

t
0 −

∫ t

0

Ws ds

)
+ O(ε2);

in this calculation we have a conventional expansion in the second line, and we
have integrated by parts; the endpoint contributions vanish on using W0 = 0. Of
course, the same sample path for the Brownian motion must be used throughout.
It should be noted that the expansion is only valid for t ¿ O(1/ε), as higher
order terms become comparable with those considered above when t = O(1/ε).
A sample simulation is shown in Figure 4.
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Figure 5: Difference between numerical simulations of the nonlinear process
dXt = −εX2

t dt + dWt, ε = 0.02 and ε = 0.1, and of their two-term asymptotic
approximations. Divergence clearly becomes significant when εt = O(1) and
increases with ε. Explicit forward scheme with timestep 0.004.

Although this example is trivial, the same technique can also be applied to
problems such as

dXε
t = −ε(Xε

t )
2dt + dWt, X0 = x0,

for which the exact solution is less straightforward; however, taking x0 = 0 for
simplicity, successive approximation readily gives

Xε
t

P∼ Wt − ε

∫ t

0

W 2
s ds + O(ε2);

the last term can be integrated by parts to give

Xε
t

P∼ Wt + ε

(
1
2
t2 − tW 2

t + 2
∫ t

0

sWs dWs

)
+ O(ε2).

A numerical simulation of the error is shown in Figure 5.
For a simple example of an asymptotic approximation valid in distribution,

we could consider the O–U process

dXε
t = −1 + ε

ε
Xε

t dt +
1√
ε
dWt, Xε

0 = x0,
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for which if t = O(1) the distribution is approximately the stationary distribu-
tion of the leading-order process

dX
(0)
t = −1

ε
X

(0)
t dt +

1√
ε
dWt,

all information about the initial value x0 (and hence about the path) being
exponentially small and hence invisible at this order. It can be seen for how
long this information is significant by making the time-change t = ετ , giving

dXε
τ = −(1 + ε)Xτ dτ + dWτ

(note the effect of changing the timescale on the Brownian motion W ), and a
regular expansion can be made, although as noted above it becomes invalid for
τ = O(1/ε), at which time the initial information has effectively been forgotten.

It remains to consider the analogue of conventional matching. Bearing in
mind the examples above, we formulate a tentative conjecture: matching à la
Van Dyke corresponds to moving from a pathwise expansion to a distributional
one. That is, specific information about the path is lost by a matching pro-
cess, but distributional information is preserved. Thus, in the O–U example
just cited, the pathwise information in the ‘inner layer’ t = O(ε) is lost, but
the limiting distribution for large τ of the ‘inner’ process Xτ is, to leading or-
der, identical with the leading-order ‘outer’ stationary distribution. Whether
this formulation is reasonable and the conjecture correct and, if so, whether the
idea can give new information about other problems such as discretely sam-
pled barrier options or stochastic processes other than Wiener processes, are all
interesting questions for future research.

7 Conclusion

This paper deals with a small number of the many possible applications of
matched asymptotic expansions in finance. As mentioned earlier, this is just
one example of the kind of technology transfer that has enabled the subject of
mathematical finance to develop from its infancy. It would be fair to say that,
in the early days of the subject, this transfer was mostly from established areas
of mathematics (probability, partial differential equations) to finance, with the
primary novelty being in the modelling of financial contracts. Now, however,
one may reasonably say that the level of mathematical difficulty inherent in
financial models has risen to match that of the modelling: in a sense, the easy
mathematical pickings are over. Current models are characterised, for example,
by complexity, as they attempt to deal with more realistic problems than single
options; by mathematical technicalities and difficulties such as those that arise
when Levy processes are used to model asset prices, or when inverse problems
are solved to determine model parameters, or when nonlinearities arise as in
models of illiquid markets; by large scale of computation, as banks may have
to value thousands of contracts to determine their overall mark-to-market po-
sition; and most of all by the difficulties of modelling an ever-changing market
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environment. Although the subject is ‘mature’, it still presents many challenges
to the mathematician and financial engineer alike.
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