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Abstract

The Muskat, or Muskat—Leibenzon, problem describes the evolution of the in-
terface between two immiscible fluids in a porous medium or Hele-Shaw cell under
applied pressure gradients or fluid injection/extraction. In contrast to the Hele-
Shaw problem (the one-phase version of the Muskat problem), there are few non-
trivial exact solutions or analytic results for the Muskat problem. For the stable,
forward Muskat problem, in which the higher viscosity fluid expands into the lower
viscosity fluid, we show global in time existence for initial data that is a small per-
turbation of a flat interface. The initial data in this result may contain weak (e.g.,
curvature) singularities. For the unstable, backward problem, in which the higher
viscosity fluid contracts, we construct singular solutions that start off with smooth

initial data, but develop a point of infinite curvature at finite time.

1 Introduction

The Muskat, or Muskat—Leibenzon, problem describes the evolution of the interface

between two immiscible fluids in a porous medium or Hele-Shaw cell under applied

*Department of Mathematical Sciences, New Jersey Institute of Technology. Email:

misieg@impulse.njit.edu
fDepartment of Mathematics, UCLA. Email: caflisch@math.ucla.edu.
tOCIAM, Mathematical Institute, Oxford University. Email: howison@maths.ox.ac.uk



pressure gradients or fluid injection/extraction. Originally proposed [11] as a simple
model for displacement of oil by water in a porous medium, it has since emerged as
a challenging free boundary problem in its own right. The one-phase version of the
problem, in which one of the fluids has zero viscosity (or infinite mobility) so that
it is purely passive, is commonly known as the Hele-Shaw problem (it is also the
zero-specific heat version of the one-phase Stefan problem) and has been intensively
studied for half a century. Significant progress has been made, largely exploiting the
convenient fact that, when surface tension is neglected, the pressure, which is a potential
for the flow, is harmonic and vanishes on the fluid interface. Many explicit solutions
can be constructed using complex variable methods [7], and based on these and on
more theoretical analyses, the following stylised (because subject to qualifications and
exceptions) facts are known.

The problem is time-reversible if injection is replaced by the equivalent extraction,
and following on from this, there is a diametric difference between ‘forward’ problems
in which the ‘active’ fluid region expands, and ‘backward’ ones in which it contracts.
The former are linearly stable with an exponential decay rate of small perturbations
proportional to wavenumber, while the latter are, by time-reversibility, correspondingly
unstable. Indeed, finite-time blow-up of the interface via a cusp or other singularity is
generic for backward problems; conversely, forward problems have interfaces that are
eventually smooth even if they start out with singularities. We say ‘eventually’ because,
as shown in [10], if the initial interface has a finite-angle corner there may be a ‘waiting
time’ during which the corner persists before eventually the interface becomes smooth.

Like the Hele-Shaw problem, the Muskat problem, in which the second fluid has
finite mobility, is time-reversible, and there is still a distinction on grounds of linear
stability between stable ‘forward’ problems in which the fluid with the greater viscosity
(lower mobility) expands, and unstable ‘backward’ problems in which it contracts; the
growth rate is again proportional to the wavenumber. However, the crucial step from
linear stability to nonlinear behaviour is much more difficult to make in this case,
largely because the interface pressure is unknown. For this reason, very little is known

either about explicit solutions (see [8]) or on general issues such as existence/uniqueness



of classical solutions. Weak solutions are defined in [9, 12], and a regularised model in
which the mobility is a smooth function of saturation is discussed in [15], but neither
of these approaches has led to progress on the question of classical solutions to sharp-
interface models.

In this paper, we prove a global existence theorem (Theorem 1) for the forward
case with small initial data satsfying certain smoothness conditions, and we address
the issues of whether a finite-time interface singularity can occur in the backward case.
Specifically, we are able to show the following regarding singularity formation (a precise
statement is given below, in Corollary 1): it is possible to construct solutions to the
backward problems that start with a smooth (analytic) interface, evolve for a finite time,
and then develop a curvature singularity in the interface. This therefore is a step in
the direction of showing that the Muskat problem can exhibit the full range of singular
behaviour of its one-phase version, the Hele-Shaw problem. Using these singularities,
one can show (Corollary 2) that the backward Muskat problem is ill-posed, in the sense
that singularities can form in an arbitrarily short time for arbitrarily small initial data,
as measured in a Sobolev norm.

It should be noted that this result, of finite-time blow-up, is not a foregone con-
clusion. Arguments for and against finite-time blow-up by a cusp are reviewed in [8];
briefly, the main arguments in favour are the linear stability result, and the detailed
numerical studies of [5] which indicate that cusps can form. Against cusp formation,
one can note that the travelling-wave ‘finger’ solution of [14], which for the one-fluid
case has infinite velocity as its width tends to zero, always has bounded velocity in
the two-fluid case, and insofar as this solution is relevant to the local behaviour near a
cusp tip, it suggests that infinite cusp velocity is not possible with two fluids. Loosely
speaking, one may say that the second fluid can transmit the pressure gradient, allow-
ing the interface pressure to drop below zero and thus weakening the ‘runaway’ that
leads to cusp formation. Finally, we may mention the results of [12, 13], in which a
weak formulation of the fingering problem is used to show that the ‘mixing zone’ can
only grow at finite speed. We have only shown blow-up via a curvature singularity,

and indeed, in view of the waiting-time behaviour for the one-phase problem referred



to above, it is likely that different techniques will be required to show whether or not
the Muskat problem can develop cusps, corners or other singularities of higher order
than ours.

The first result of our analysis, Theorem 1, is a global (in time) existence theorem
for initial data that is a small perturbation of a flat interface, in which the size of
the perturbation is measured in an L' Fourier norm. The initial data is allowed to
have a curvature singularity, but the solution is shown to be smooth (analytic) for all
subsequent times, and in the corollary, we appeal to time-reversibility of this solution
to show existence of a solution that blows up in finite time. The problem is first
reformulated as an integro-differential equation for the interface (cf. [3]) and the core
of the proof lies in showing that this has a solution with the required properties. The
estimates derived in order to do this require restrictions on the singular behaviour of
the initial interface, specifically that its first derivative is continuous but its second
derivative is singular, and hence confines us to the case of a curvature singularity.

This approach is similar to the analysis developed in [3] for constructing singular
solutions to the Kelvin-Helmholtz problem. New challenges presented by the Muskat
problem are that the nonlinear term is considerably more complicated and that there
is no natural parameterization of the interface. The additional nonlinearity of the
equation required considerable more care in the inequalities that are the essence of the
existence proof, but this was aided considerably by use of a Fourier norm, rather than
the Holder norms used in [3]. Lack of a natural parameterization results in the presence
of a nonphysical “reparameterization” mode. This mode, which is neutrally stable, is
in addition to the unstable physical mode of the backward Muskat problem. For the
Kelvin-Helmholtz problem, in contrast, there is always a single stable and a single
unstable mode. We are able to modify the analysis to accommodate this neutrally
stable mode by prescribing its data at infinity; i.e. by requiring it to go to 0 as t goes
to infinity. This results in an existence theorem, Lemma 1, for what appears to be a
restricted set of data. Finally, introduction of a reparameterization allows this result
to be converted to existence for any initial data, as in Theorem 1. To the best of our

knowledge this global existence result is the first that relies on a stable decay rate that



is proportional to k in order to show that solutions become analytic immediately after
the initial time.

After the basic formulation of the Muskat problem is detailed in section 2, in sec-
tion 3 we briefly present the linear theory in a form which shall be convenient for the
subsequent analysis. Statements of the main global existence results, Lemma 1 and
Theorem 1, are given in section 4. As a preliminary to presenting proofs for the exis-
tence results, section 5 derives equations for the nonlinear corrections to the solution
of linear perturbation theory. Proof of Lemma 1 through an iteration method is de-
scribed in section 6, with some inequalities deferred to the Appendix. Using Lemma 1,
Theorem 1 is proved in section 7 and the singularity formation and ill-posedness results

Corollaries 1 and 2 are proved in section 8. Conclusions are discussed in section 9.

2 Governing Equations

Consider the flow of two immiscible, incompressible fluids in a Hele-Shaw cell or porous
medium. The fluids are assumed to be separated by a sharp interface which is 2x-
periodic in the z- direction. The fluid motion is driven by a prescribed far-field pressure
gradient, leading to a constant fluid velocity Vj as y — £o0o, where j is a unit vector
in the y-direction. We denote the domain of the upper fluid by D; and the lower fluid
by D,, while the interface is denoted by 0D. Physical quantities associated with the
upper or lower domain are indicated by a subscript 1 or 2, respectively.

The equations governing flow in the cell are Darcy’s law
w; = Vj—kiVp; (2.1)
together with the incompressibility condition
V-u; =0

for # = 1,2. Here we have introduced the velocities w;(z,y) = (u;i(z,y),vi(z,v)),
pressures p;(z,y), and fluid mobilities k; which in a Hele-Shaw cell are equal to =
h?/(12p;), where h is the gap width and y; are the viscosities. The velocity at infinity
has been explicitly represented in (2.1), so that the far-field boundary condition is



u; — 0 as y — Foo. This is equivalent to performing a Galilean transformation to a
frame moving with velocity Vj with respect to the laboratory frame. In the following,
all velocities (e.g. fluid, interface velocities) are measured with respect to the moving

frame. The boundary conditions at the interface 9D are

Pt = p2 (2.2)

u'n = us-n=V,

where V}, is the normal velocity of dD. Note that in (2.2) we have assumed that there
is no surface tension.

The interface between the fluids is a ‘vortex sheet’ since the tangential velocity may
be discontinuous there. An integro-differential equation governing the evolution of the
sheet is derived from the governing differential equations and boundary conditions in
[4, 16]. We use here a form of the equation which employs complex variable notation,
following the presentation of [4]. Let z(¢,t) = z(&,t) + iy(€,t) denote the location of
the interface in the complex £ + 4y plane as a function of the parameter £ and time
t. Define also the complex interface velocity w(&,t) = u — 4v. The evolution equation

takes the form

o0z*

== W), (2.3
o (wle") () — iz(€)
w6 = v [ oo< ) ) e, (2.4)

where for £ real the operator * denotes the complex conjugate. However, as discussed
in [4] it is useful to analytically extend the governing equations to complex values of &

by extending the complex conjugate via Schwarz reflection. More precisely, we define

fr&1) = f(&1)

where the overbar denotes the usual complex conjugate. In addition, we have intro-

duced the operator (f), which is given by

(fy=r+1"
The parameter A which appears in (2.4) is the Atwood number and is defined by

_ M2 :k1—k2
p1+pe kit ke
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Note that A is positive when the displacing fluid 2 is more viscous (the stable case). The
integral in (2.4) is in the Cauchy principal value sense. In deriving (2.4) we have chosen
the interface velocity to be the average of the upper and lower fluid velocities adjacent
to the interface, which is permissible since it provides the required normal velocity. The
assumption V' = 1 has also been made, which is equivalent to nondimensionalization
of the velocity using the far-field value (the far-field velocity is assumed to be in the
positive y-direction for ¢ increasing). Equations (2.3), (2.4) are the main results of this

section.

3 Linearized Theory

The flat interface described by z = &, w = 0 is an exact steady solution to (2.3,
2.4) which describes a planar interface propagating with velocity j in the laboratory
frame. Consider a small perturbation to this solution; the perturbed sheet is denoted
by z = £+ s(&,t), w = w’(&,t). Linearization of the governing equations about the flat

interface gives

ds* sx
o0~ U
w' = AH((w — isg)), (3.1)

where H is the Hilbert transform, defined by

the last equality being one of the Plemelj formulae. Here we denote by f1 = >, f (k)etke
the projection onto positive wavenumber Fourier modes, i.e., the part of f that is an-
alytic in the upper half-plane. Similarly f_ = Y7, f(k)e*€ is the projection onto
negative wavenumber modes, i.e., the part that is analytic in the lower half-plane. The
zero wavenumber mode is denoted by fy. Substituting the representation of the Hilbert

transform in terms of + and — functions into (3.1) leads to the equivalent linear system

83_|_ 1A x

5 - W= - (546 = 5%), (3.3)
Os* s % iA N

5 = W = 5 (s — s, (3.4)



where we employ the notation f* = (f_)*, fi = (f+)*. In deriving (3.3), (3.4) we have
used the identity H(f*) = —H(f)*. Also, for convenience the equations are presented
in terms of upper analytic functions, which will be a convention used throughout this
paper. Note that there is no kK = 0 mode for s, which follows from the equality in flux
magnitudes at y — £oo together with the incompressibility assumption.

It is easily seen that the linearized equation has normal mode solutions which are
constant multiples of (s4,s* , w3, w®") = (1,1, — Ak, Ak)e= AR+ and (1,1,0,0)e™€,
for £ > 0. The first set of modes are linearly stable (unstable) for A > 0 (< 0), and
correspond to a purely imaginary perturbation of the interface, while the second set
of modes are neutrally stable and represent a purely ‘real’ deformation of the interface
along itself. This stability result is in agreement with the analysis of Saffman and
Taylor [14] and the switch in stability when A changes sign is equivalent to a switch in

stability under time-reversal.

4 Existence Theory

In order to specify the analytic properties of functions and quantify their magnitudes

we Introduce the Fourier norm

o0

1FG 0l = 32 eHIf kD) (4.1)

k=—o00

where f(k,t) are the Fourier coefficients of f. If this norm is finite for p > 0, the Fourier
inversion formula can be used to show that f is an analytic function in [Im&| < p and
that sup|1m§|<p\f\ <||fl|p- Other useful properties are (i) ||fgl|l, < [|fll,ll9|, and (ii)
|11, = [|f*||p- Although it is usual to restrict p > 0, we will use p < 0 in conditions on
the initial data and to simplify some derivations. Properties (i) and (ii) remain valid
for p < 0.

From now on, we assume the stable case A > 0 unless otherwise noted. For the
existence theory we shall construct solutions for initial data of the form z(£,0) =

€ 4+ So(¢) where the function Sy(§) is assumed to satisfy the following:

1. Sp(€) is small (of size €) and purely imaginary, i.e., Sy gives initial data only for

the stable (linearized) problem.



2. Sy has at most a singularity in the 1 + p derivative for 0 < p < 1. A convenient

(for the subsequent analysis) way of stating this is

1S0ll-p + 1S0ell-p < cee™ (4.2)

1Sogell—p < cee™(1+p"7) (4.3)

for any p > 0. Note that we do not require analyticity of Sy, since the bounds

hold for any function in a Sobolev space of high enough order.

Our general strategy to show existence for the stable problem A > 0 is to begin by
deriving a preliminary existence result. This involves constructing a particular class of

solutions to (2.3), (2.4) of the form

z(,1) £+ (6 t) +7(8,1), (4.4)
w(é;t) = w(¢ 1) +w (&) (4.5)

where the dominant terms s, w® constitute an exact decaying solution of the linearized
system (3.3), (3.4) and the remainder terms r, w" are negligible in a sense which will
be explained shortly. The part of the initial data given by sy = s(¢,0) is assumed to
satisfy assumptions 1-2, but ry = r(£,0) is a function of sy and in general is nonzero.

The linearized solutions s, w* satisfy

—A
lIsllp + Ilsellp + [[w?]l, < cee?~ 4 (4.6)

lseellp + [wgll, < ceer= (14 (At = py™") (4.7)

for p < At and (different) constant c. These inequalities follow from (4.2), (4.3) (with
So replaced by sg) upon noting that ||8§s||p(t) = ||3§30Hp—At for i = 0,...,2, and
using ||6gw5||p < ||6gs§||p for j = 0,1. The terms s, w® are therefore allowed to be
singular at ¢t = 0, are analytic in the time dependent strip |Im¢| < At for ¢ > 0, and
decay to zero as t — 0o. The general existence theorem is proven from the preliminary
existence result by showing, via a reparameterization, that there exists an sy such that
z(€,0) = & + so + 19, where z(£,0) is general initial data specified as above and ry

depends on sg.



An explicit example of functions s, w® satisfying the requirements above can be

given in terms of the decaying (linearized) normal mode solutions as

[e.e]
5(£at) = ce€ Z ki(p+2) eiAtk(eikf _ e*ikf)’
k=1
o
w'(€,t) = —cAe) f= (1) o= Ath (gikE _ =ikey
k=1

for which the perturbed interface is given by y = 2ce > po; k~(P+2) Atk gin k. The
exponential decay with ¢ in this solution guarantees analyticity in a strip of width
p < At for t > 0. The algebraic decay ensures that s and s¢ are bounded at ¢t = 0, but
is not strong enough to give finiteness of s¢e. Indeed, it is easy to see that (4.6) and
(4.7) are satisfied, and that sge ~ O(€P71) at ¢t = 0 and for ¢ near 0.

The aforementioned preliminary existence result, on which the main existence the-

orem of this paper is based, is the following:

Lemmal Let A > 0 and 0 < p < 1, and let € > 0 be a sufficiently small real
number. Let s and w® solve the linearized equations (3.3), (3.4), with purely imaginary
periodic initial data sy satisfying the bounds (4.2) and (4.3). Then there are functions
r(&,t), w(&,t), and a constant k > 1 such that (4.4), (4.5) is an analytic solution
of the system (2.3), (2.4) for t > 0 and |[Im&| < At/k. The decaying mode r1 =
r+ — 1% can be initially chosen as zero and the neutral mode ro = r4 + r* satisfies
limy ,oo 79 = 0, although ro(t = 0) is generally nonzero. Moreover, there erists a

constant ¢y (independent of €) such that r and w" satisfy

2
o€ —At
rllo + ||rello + [|w" [0 < e 7,
Irllo =+ lirello + 11w llo <~
2
Co€ —_ At —1
o < 1+ (At)? 4.
Imeello +Ilwllo < 75 r—g5e ™ (1+(48)"™), (48)

i.e., v and w" are negligible compared to s, w®.

The preliminary existence result is converted into a general existence theorem in
section 7. This requires an additional assumption on the initial data, namely, that
2¢(€,0) € Lip,[0,27] for some 0 < v < 1. Here, Lip,[0,27] refers to the subspace of

continuous 2m-periodic functions for which

[f(€+R) - F(O)]

I1f|Lip, = Slgp If(E)] + sup BE < oo

R0
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Alternatively, we can require that the fractional derivative 09z /9¢? satisfy ||09z/0&9 |y <

oo for some 1 < ¢ < 2. The general existence theorem is:

Theorem 1 Let A > 0 and let € > 0 be a sufficiently small real number. Let z(£,0) =
£+ So(§) be initial data satisfying conditions 1 and 2 and with ||So¢(€)|Lip, < 0o for
some 0 < v < 1. Then there are functions s(£,t), w*(&,t), r(&,t), w" (1) satisfying
the conditions of Lemma 1 and a constant k > 1 such that (4.4), (4.5) is a solution of
the system (2.3), (2.4) with the given initial data; the solution is analytic in |Im &| <
At/k for t > 0. Moreover, r satisfies the bounds (4.8) i.e., r and w" are negligible

compared to s, w®. This solution is unique.

Additionally, time reversal of an initially singular solution leads to a solution of the
Muskat problem which develops a finite time singularity from smooth initial data, as
shown in section 8.

In the next section we derive equations for the remainder terms r, w", and write

these equations in a convenient form. The proof of Lemma 1 then follows in section 6.

5 Equations for remainder terms r, w"

5.1 Characteristic form

We substitute the decomposition (4.4), (4.5) in the governing equations (2.3), (2.4) and

use the fact that s and w® solve the linear system (3.1) exactly to obtain

867; = ™ (5.1)
o = iPV 00 <wrl — 1 r'£> N <w* 1(5'6 + ’r'g)>
271 —o0 5' - f fl - 6
r+s—r —4d <w*’zg’—izé> '
+ ( £_g > p—— d§ (5.2)
= Bj + B; (5.3)

where B} denotes the purely linear (first) integral term in (5.2) and Bj represents the

remaining terms. Here the primes denote evaluation of a function at &'. The above
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P chlaracteristic

&1 =Al/K
E| =—Atk

& =At

&

Figure 1: Sketch of the r; and 7 characteristics emanating from the point (&, t), shown
in the ¢t vs. & plane (where £ = &r + i€ and £ is fixed). The wide-angle wedge
depicts the domain of analyticity of s(£,t), w®(&,t), while the narrower wedge shows

the domain of analyticity of r(&,t),w" (&, )
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expression is further simplified by noting that the linear term B} can be evaluated

using the Hilbert transform relation (3.2). Doing so yields

A * . *
B1+ = —5 [’LU:_ =+ U]',; — ’L(T'_|_§ — T_g)] (54)

= —B;_ (5.5)

The functions w’, and w” * may be eliminated from (5.4) using w'y, = B4 + Bo and

w'* = B}f_ + B;_ (see (5.3)) to give
A * . * %
Biy = -5 [Boy +Bs_ —i(rye —r2¢)] = —Bi_. (5.6)

where we have used (5.5) to simplify the resulting expression. Hence from (5.1), (5.3)

and (5.6)

or* 1A . A A,
o - o2 (rye —rle) + §B2+ + 1+ 5)32_, (5.7)
ory A . A A,
T g e Hm B = 5B (58)

The relation (5.6) may also be applied to replace the term Bj in (5.3), yielding

' Z.A * * '
w = e —r et it + glnurl(E 5.9)
where
A A A A
Plr,w"](€,t) = (1 - §)B2+ + §B;+ +(1+ 5)32— - 535—- (5.10)

It is convenient to implement a change of variable so that (5.7), (5.8) are in char-

acteristic form. Define ry =7y — r* and ro =74 + 7’ as in Lemma 1. Then
ory . 0r «
or .
8—t2 = Boy + By =B(61). (5.12)

Note that 71, 2, a, and S are upper analytic, that is, their Fourier series contain only
positive £ wavenumbers.

Equations (5.9-5.12) give the desired relations for the remainder terms r, w" and
are the main result of this section. We shall prove existence of analytic solutions for
t > 0 by transforming this system into a set of integral equations and then solving

by iteration. In the next section we first rewrite the differential equation for 1 as an

13



integral equation by employing a Green’s function. This provides a representation of
the solution for real ¢, and hence for complex £ via analytic continuation. An integral
equation representation of the equation for ry is obtained by integrating in ¢ using
data posed for complex ¢ as t — oco. Equation (5.9) for w" is already in the form of
an integral equation. The decay of the Fourier coefficients in the solutions to these
equations will be analyzed to show that r1, ro and w" are analytic in a time-dependent

strip containing the real-£-axis.

5.2 Integral equation formulation

We first seek a Green’s function solution for r1(¢,t) for £ real. The requirements are
that the solution r; is 2w-periodic, has only positive wavenumber components, and
vanishes as ¢ — oo. For convenience we also specify that (¢t = 0) = 0. The solution
is easily computed by taking the Fourier transform of (5.11) and solving the resulting
ODE for the Fourier coefficients 71 (k,t) using a Green’s function, which yields

t '
P (k, ) = /0 e~ A=) (k1) i, (5.13)

for k = 1,2,.... Although this expression for 7#; will prove to be of more use to us (in
view of the choice of Fourier norm), we note in passing that a formula for r1(¢,?) is

easily found from (5.13) as

2r A(t—t")+i€’
S 27r/ / == o — &) dldt, (5.14)

which holds for ¢ real but may be extended off the real line through analytic continu-
ation. Equivalently, values of r1(£,t) for complex ¢ can be found by direct integration
of (5.12) along complex characteristics. An integral equation formulation for 7o is

obtained by assuming ro — 0 as ¢ — oo and then integrating, i.e.,

nie.t) = [ Bl d, (.19

which holds for ¢ complex. The Fourier coefficients of ry are

t
Po(k,t) = / Bk, ¢ dt', (5.16)

14



for £ > 1. The function r = 4 + r_ is recovered from r; and ro via the relation
1 * *
r= 5(7‘1-[—7"2—7‘1 +75). (5.17)

Let I[r,w"] denote the combination of the right-hand sides of (5.14) and (5.15) corre-
sponding to the right-hand side of (5.17), and J [r, ¢ [r, w"]] the right hand side of (5.9).
Then the original governing equations (2.3), (2.4) for z =€+ s+, w = w® + w" can

be rewritten as

r = I[rw", (5.18)

w' = Jr¢r,uw"]], (5.19)

which hold for complex ¢ via analytic continuation. In the next section we demonstrate
the convergence of an interation method for solving this system, thus providing a proof

of Lemma 1.

6 Proof of Lemma 1

6.1 Iteration Method

We solve the system (5.18), (5.19) by iteration. Define 7 = 0 and w™® = 0. For n > 0

n+1 ryn+1

we let ¥ w satisfy

= I, W™, (6.1)
whtl = J[r"“, o[r™, w""]. (6.2)
For convenience the local term in (6.2) is evaluated at iterate m + 1, whereas the

nonlocal term ¢ is taken at iterate n. In terms of equations (5.14) and (5.15), the

iteration scheme takes the form

Pt o A=) +iE 't
(&1) = 27r// 1 e AG—t)+ie ¢ o™M(E =& 1) de'dt (6.3)

for £ real (and hence complex & through analytic continuation) and

(e 1) / e, ) (6.4)
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for complex £, where " and " are defined as in (5.11), (5.12) but with 7" and w""

replacing 7 and w". The Fourier coefficients satisfy

n+1(k ) = /t —Ak(t—t") o n(k,t') dt’, (6.5)
n+1(k t) = /t Br(k,t') dt', (6.6)

for k > 1. The iteration scheme for equation (6.2) takes the form
W — 73;4( nl ) g (6.7)

where ¢" is defined as in (5.10) but with " and w™" replacing r and w".

To show convergence of the iterates we obtain estimates on the differences

n+l _ . n+l n, n+1
Ri™ =] R,

— i n+l _  n, Wn—|—1 — ,wr,n—}—l

=Tg 23 nr,

—w

We shall also use the following differentiated equations for (6.3, 6.4):

8iRn+1(£ t) _ °n Al '[Ozn _ an—l] dfldt’
&l ? ~ on 1 — e—A(t—t)+ig'

ORI (¢,) /Oo é[ﬁ" - dt

for i = 1,2 and n > 0 (with ! = =1 = 0), or equivalently in terms of the Fourier

coefficients
ORI (k1) = / e M=) [gian — dian1] dt'
0

AR k) = [ [ o] at, (©9)

o0
for i = 1,2 and k£ > 1. We shall repeatedly use the fact that, for the Fourier norm
defined in (4.1), the Cauchy estimate for the derivative of a function f is

HF G Dl

et olly < 2 (6.9)

if p < p’. Note that analyticity of f is not needed for p < p’ < 0.
Crucial estimates on the nonlocal term By are derived in the Appendix. These
estimates are repeatedly used in the subsequent sections. The estimates are summarized

below, where we use the notation By = Ba[3,%°,,w"]. We also introduce ||r,w"||, =
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[I7{lp+[lw"[], and [|r, w"{[;, = ||r[l, + ||lw"[l, + |7l +[|@"[] p, with the obvious extension

for more functions.

|1 B2ls, w®,rw']ll, < e A] [[sg, w”s e, w” ||, |[ses rello (6.10)

N

1Bagls, w?,rulll, < enlAl{llse ellp llwg, wEllp + [15¢, %, e, 7 lpllseeeellp ) (6.11)
B2 = Ball, < ealAl llse w*,re, wlly {llse = elly + lire — fell, + [l — " l,} (6.12)
1Bz — Baelly < erlAl {llse.w’,rewlly [llsec — eello + llree — Feell + lluf — L]

+ lseer wgs ree wElly [lise — Fellp + llre — ello + [[w” = 5[]} . (6.13)

In deriving these estimates we have assumed that € is small enough so that

lIrellp < [lsell, < C < 5. (6.14)

N =

This condition will be checked at every stage of the iteration. The constant c; is
independent of €, p and ¢, although it may tend to infinity as ||s¢||, and ||r¢||, (and
hence C) tend to 1/2. Note that we have used (3.3) and (3.4) to eliminate ||w® — @*||,
and ||wg — w¢||, in favor of ||s — 8[|, and ||s¢ — 3¢[[,- In subsections 6.4 and 6.5 these
estimates are applied for s = § and w® = w?, in which case several terms are eliminated.

The full estimates are utilized in section 7.

6.2 First approximation

Set 7* = 0, w™® = 0. The bounds (4.6), (4.7) and (6.11) and the definition of o and S

imply that
loll, + 11821, < 311BYll, < dA0~40 [1 4 (At —pp~']  (6.15)

where d = 3c;c? and it is assumed that p < At. It then follows from (6.5) that for
p < At

t i~
e*Ak(t*t)‘ag(k,t') dt’

o0
rkell, < S e [

0

k=1
K 0 !
= [ Nl at
I(t) (6.16)

17



where we have introduced the quantity
pr=p—Alt—t)<p< At fort <t. (6.17)

Note that p; < 0 over the interval [0,¢ — p/A]. We use (6.15) to estimate the integral

I as
I() < dAe /0  2or-at) [1+ (At — p)r1] at,
= dAEeX P Aty [1 + (At — p)pfl] using At' — p; = At — p,
= deé?e" I, (t) + L(t)], (6.18)
where

L(t) = e~ (At —p)[1+ (At - p)!]

b(t) = e *p1+(At—p!.
The term I is easily seen to satisfy
Ii(t) <2 (6.19)

using At > p and the fact that sup,,,e ™27 < 1 for ¢ = 1 or ¢ = p. In order to
estimate I it is necessary to shrink the wedge of existence, thereby obtaining stricter
control over ||7‘}§|| p- This is effectively achieved by replacing the requirement p < At
with

Kkp < At (6.20)

where Kk = 1 + 0 with 0 < § < 1. This reduction in size of the domain of existence
forces the boundaries of the wedge to be transverse to the characteristic directions of the
PDE (5.11). Thus integration along characteristics effectively reduces the order of the
singularity. The reduction in wedge size only need be performed once, i.e., the domain
of existence does not need to shrink at each step of the iteration as in a ‘Nash—Moser’
type of proof.

With the aforementioned reduction, I is estimated as

L(t) < pe%° (1+(5p)p_1)
< % (6.21)

18



using the comment following (6.19). Combining the estimates (6.18), (6.19) and (6.21)

leads to

4de* | 4

Irielly < —5—€” (6.22)

Next we estimate Hr%&Hp. We have, from (6.5),
o ok [T Ak(—t) |5

— — '
Z e’ /0 e~ AR(E=Y) ‘agg(k,t)
k=1

t
| logelln, at
J(t), (6.23)

!

IN

||7"%§g||p

where p; is defined in (6.17). The integral J is approximated using the Cauchy esti-

mate (6.9). Let

At — At
p2 = p1+ 5 P _ Pl‘; . (6.24)

Then

t ao
J(t) < /mdt’
0

p2 — p1
2/ ||a §||P2 "
At'—Pl

Next we apply (6.15), which is allowed in view of the fact that py; < At' for ¢ < t. This

gives
t ’ r_ p—1
J(t) < 2dAé / eQWrAt)[H(At p2)’ 1]
0 At — p1
-p _
- 2dA62/ pnr[LH27P(AL = )7
0 At —p
where
i) = M 142177 (AL - p)r ]
< 2t [14 (At - oY (6.26)
and

1+ 2P(At — p)P~t

1) = At—p
Jo(t) = e Pp At —p

19



Now apply the reduced domain, which leads to the bound (At — p)~! < 1/(dp). It

easily follows that

Jo(t) < %aﬂf‘t [1+ (At — py ] (6.27)

for p < At. Combining the estimates (6.25), (6.26), and (6.27) leads to

8de? _
Irfeelly < =5—e/~* [1+ (At = rp)"™'] (6.28)

for kp < At.
Next we consider estimates on ||r%§\|p and Hr%&Hp for p < At. We have from (6.6)

and (6.15)

oo
rkelle < [ 11881, d

00 !
dAeQ/t *p=At) [1 + (At — p)p_l] dt'

IA

2
3d€ 2 p-an) (6.29)
p

using (11.21) in the Appendix (set A = 2 and x = 1 in the formula there). The norm
||T%€§||p is bounded using the Cauchy estimate (6.9). From (6.6) we have

N

1 oo 0 !
kel < [ 168l at

oo |10
[0 (6.30)
t P3—P

IN

where we have defined
At' —p
p3=p+ 5

Note that p3 < At' for p/A < t' < oo, so that (6.15) may be applied to (6.30), with the

result

! p—1
dAé? /oo e2(p3—At') [1 (A~ ) ]
t p3—p

00 , ! pfl
4dA€2/ ep—At []‘ + (At, p) ] dt,
t At —p

dt'

IA

||7"%§§| |p

IA

16de?
ﬁeﬂ—f‘t [1+ (4t — py1] . (6.31)

IA

using the estimate (11.24) in the Appendix (with A =k = 1).
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Finally, from (5.17) it follows that H@érlﬂp < ||827"%H,, + ||6gr%||p for i = 1,2 so that
combining the estimates (6.22) and (6.29) and the estimates (6.28) and (6.31) leads to

2
%ew—’“ (6.32)
24de?
rk < —
|| §§||P = 5p(1_p)

VAN

lIrells

e oA 1+ (At — rp)P7] (6.33)

where for convenience we have replaced At — p with At — kp. This change anticipates
the form of the singularity in the subsequent iterates due to the use of the Cauchy
estimate in the induction step.

We turn now to the first approximation w™!, which is easily bounded. From (6.7)
"], < llrellp + 21| Ba[w™, 7],
so that by (4.6), (4.7), (6.10) and (6.32),
7d
[w™]], < (5— + 20102) 2R AL (6.34)
p

where we have also used A < 1. Similarly,

51 T,
lwg lly < llrgellp + 211 Bag[w™, O],
24d
< 92¢1c2 ) €2 (kp—At) 1 At — p—1 .
< <5p(1—p)+ cw)ee [+( t — Kkp) ], (6.35)

where we have used (6.11) and (6.33).

A compact representation of these estimates may be obtained by introducing the

norm ||| - |||, defined by
||u§||P ) At—k :|
_ n ol 6.36
llel[] = sup [(HUIIp 15 (At rp)p 1) © (6.36)
t>0, kp<At

In terms of this norm, (6.32) and (6.33) become

31de?
1 1
et < _— .
I Rell] = [llrelll < S —p)’ (6.37)
whereas (6.34) and (6.35) take the form
31de?
T = PUI < 22" 4 Aeq 22, .
WA = lfw |||_5p(1_p)+ cice (6.38)

The estimates (6.37, 6.38) are the main result of this section.
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6.3 Induction Hypothesis

The induction argument is related to that used in the proof of the abstract Cauchy-
Kowalewski theorem given in [2], but with changes necessitated by the particular ap-

plication here. To begin, define

31d

=2 | ——— +4c1c?| € = ape 6.39
a 5p(1 = p) +4cic”| € = ape”, (6.39)
so that from (6.37), (6.38)
IRl = lllrelll < a/2
W = Il < a/2. (6.40)
By way of induction, assume that
el < a, [l <a (6.41)

for 2 < k < n, and estimate \HR?'H||| and ||[W™||]. It will frequently be necessary

to use the bound

-1 -1
llog — g™l + 116 = B¢ llo

IN

3HB§L§ — ng_lnp

< bAe A {||R?§||p + W,

+ [1 + (At — /ﬁp)p_l] (||R?Hp + ||Wn||/’)}
(6.42)

where b = 3¢ (2¢ + 4age), with ag defined in (6.39). This estimate readily follows from
(4.6), (4.7), (6.13) (with s = §) and the induction hypothesis. Note in particular that

Kp—At

the expression (2c + 4age) € e arises in bounding the first primed norm on the

right hand side of (6.13); this same expression, when multiplied by [1 + (At — kp)P ]

bounds the second primed norm there.

6.4 Estimate of [||R}1!|]]

First we bound HR’fgral for p < At/k. We have, from (6.8),

— k t Ak 4
S e / o A(t—t)
— 0

k=1
t
= [ g = oz~ (6.43)

IR QR (k,t) = of (k,t)| dt

IN
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where we have used the definition of p; given in (6.17). Now, using (6.42)
t !
B, < bde [ e Ry + W,

+ [1 + (At’ _ /q;pl)p_l] <||R7§1le + ||Wn||p1)} dt'

IN

t !
bAe (IR -+ W) [ e =40 14 (A = wpy)p =] at
0

bAe (J[1RZII|+ W™ Il) K (). (6.44)

An estimate for the integral term K (t) is given in the appendix (see (11.23) with A = 2).
It immediately follows that

3be _ " n
IREE 1, < Teer0 (JLRg| + W), (6.45)
for p < At/k.
Next we estimate ||R?gg1|| p for p < At/k. Employing the first equation of (6.8), we
have
1R, < Ze”k/ e AR |G (k, 1) — af, Lk, ¢)| d’
= [ ot~ ol (6.46)
Define
At — kpy
= _— 6.47
pa=p1+ P (6.47)
Then from the Cauchy estimate
o — o™
R, < / i S S 6.48
IRl < [ SR (6.49
Note that kps < At' for ¢ < ¢ so that (6.42) may be applied. Then
t 7
IR, < bAe [ e oy — p1) {|1Rgell + W
+ [+ At = ko] (B2 s + [1W"l,0) }
N[+ (A — kpa)P?
< bA6(|||R |||+‘HW”|||)/ (kpa— At)[ ‘|'( KSP4) ] dt!
P4 — pP1
1-p At’ _ p—1
_ n n Kkp1— At [1 +2 ( Kvpl) ] '
= 2bne (JIREI+ ) [ oo
using At' — kpy = (At' — Kkp1)/2 and py — p1 = (At — Kkp1)/2
1
0 n Kkp1—At [1 + (At B ’%pl)p ] !
< avane (IR ) [ e Tt

abAre (||| BE|I| + [[W™[]) L()-
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The integral L(¢) is estimated in the appendix (see (11.25) with A = 1). It follows that

16bke _ _
IR Nl < T AR+ W™ 1) [1+ (At = mp)~] (6.49)
for p < At/k.

We next estimate HRSS’IHP for p < At/k. From (6.8) it follows that

oo
R, < [ -, a

o0 J
bie [~ e {|[Rgel, + Wl

+ [ = (B + W)}

IN

< bde (JIRE+ W) [ e A0 [u (ar = rpy ]
3be . _
< e (IR + W) (6.50)

using the estimate (11.21) in the appendix with A = 2.
The bound on HR’;&IH p for p < At/k is obtained using the Cauchy estimate (6.9).
We have

A

o
Rl < [ 108 - B

-1
/WIIﬂ?—ﬁQ [lps
t ps =P

dt’

IN

where
At' — kp
2k

Note that kps < At’ for kp/A < t < t' < co. Thus using (6.42)

ps=p+ (6.51)

9] , B
B, < bAe [ e (= )7 {IIRE s + W s

+ 1 (At = ps)P ] (I1RE s + W™ llos) }

n n © o |1+ (At — kps)Pt
< vac (Rl + ) [ erersman DAL Zme )L g
t pPs — P
o0 ! _ p—1
n n Kp— At [1 + (At ’%p) ] !
< dowe (IR + W) [ e T dt
using At' — kps = (At' — kp)/2 and p5 — p = (At — kp) /2K
16bke _ _
< g (NBEN+ W) eso=2 [+ (Ae = o] (6.5

using the estimate (11.24) in the appendix with A = 1.
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In summary, estimates (6.45) and (6.49) imply that

19bke
Rn+1 < T Rn Wn
IR < s (B + 1 11)

whereas (6.50) and (6.52) show that

19bke
R < R+ [[IW™|]) -
5 1< s (IR -+ 1w i)
Therefore, from (5.17)
38bke
n+1 < n n
I < oy (IR W) (6.53)

for n > 1, which is the main result of this section. The following estimates, which

result from (6.45, 6.50) and (6.49, 6.52), will also be useful in the next section:

6be

IRl < e (IR + W) (6.54)
n 32bk € n .
B o < g ye™ (IREN+ W) [ (a6 = o] (655)
for n > 1.

6.5 Estimate of |||[W" |||

It is easily seen from the integral equation for w” given by (5.9), (5.10) and the iteration

scheme specified by (6.7) that
W™, < NIRgFH], + 21188 — B3,
Hence from (6.12)

W+,

IN

IRl + bee (IR I, + [W"]l,)

IN

[IRE ], + bee A% (|1RE[I|+ W)

where the constant b arises in the bound on ||Bf — By ||, as noted in the discussion
following equation (6.42). Note that b incorporates the induction hypothesis through
the presence of the term ag, defined in (6.39). Substitution of (6.54) then leads to

6b -
W, < (54 0) e (IREI+ W1 (6.56
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Similarly, we have
IWEH], < IRgEHI, + 211 B — By 'l
so that from (6.13) and (6.55)

—A
IWEHl, < IRE llp + bee™ = IRl + W2l

£ [ A= wor ] (18g+ 19711,)}

32bk Kp—At p—1 7 n
< (—5(1 5 b) e~ [1 4 (At — kp)*~!| (IIRE| + [IW™]11) (6:57)
Therefore, we can write

W] < ave (|[1REI] + [IW™]]]) , (6.58)

where a1 = 38bk/(dp(1 — p)) + 2b. Equation (6.58) is the main result in this section.

6.6 Completion of Induction Proof

Choose €y small enough so that a1€yp < 1/4 (which also implies that [38bk/(dp(1 — p))] € <
1/4). Then (6.53) and (6.58) imply that

[ibzramll

IA

(B2 1+ 11wm))

(RN +11wm]))

AN
NN

1
W]

for 0 < € < €. The above inequalities combined with (6.40) therefore show that
I|RZ]|| < a/2" and [|[W"|[| < a/2" for n > 1, which in turn implies that

[4 4] [4
g <Rl + -+ MR < 5+ 7+ 4 5 <a,

and similarly

[ H]] < a.

This completes the induction step. Since R’g and W™ are geometrically decreasing in
size it follows that " — 7 and w™" — w" in the norm ||| - |||, with the pair (r,w")
solving (2.3), (2.4) and with |||r||| < |||r¢l|| < a, |||w"||| < a. Here we recall that ||| - |||
is defined in (6.36) and a = age? is given by (6.39), with § = x — 1. This completes the

proof of Lemma, 1.
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7 Existence for General Initial Data

The analysis above produces a solution with initial data from a special class. In par-
ticular at t = 0, sg = s(&,0) is purely imaginary and 71 (€,0) = 0, which in turn implies
(via (5.17)) that 7o = r(£,0) is real. In order to produce a general solution from the
special initial data, a reparameterization is required.

Consider initial data Sy which satisfies conditions 1 and 2 of section 4. We find

functions sy which is of size €, ¢ which is real and O(1), and rg[sq] of size €2 so that

¢(&) + So(C(€)) = € + s0(&) + ro[s0](£), (7.1)

where we use the notation ry[sg] to signify the initial value (i.e., at ¢ = 0) produced by

the above iteration. Since &, ¢ and rg[s¢] are real, while Sy and sy are imaginary, then

so(§) = So(C(¢)) (7.2)
¢(€) = &+rolSo(¢(-)](&)- (7.3)

The equations (7.2, 7.3) are solved by an iteration method of the form,

so 1 (€) S50(¢"™(€)) (7.4)
O = & mo[So(¢M(DIE)- (7.5)

with ¢0(¢) = €. To show convergence of the iteration scheme, introduce the norms

[, ]
_ 7.6
il = sup [1+< paenre iR (7.6)
t>0,kp< At
ol ]
u = su _— .
el 0<p£oo [1+pp1

Since part of ry is determined by integrating in time (see (5.15)) we need to go to ¢t > 0
to show convergence of (7.4, 7.5), and this is reflected in the norm (7.6). This norm will
be applied to functions even with a bounded p-norm as a way of controlling singular
terms that are generated through use of the Cauchy estimate.

The main result used to show convergence of the iteration scheme (7.4, 7.5) is the

following:
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Lemma 2 Let s, w® and §, W° be any two sets of functions satisfying the conditions
of Lemma 1, and let r, w" and 7, @" be the corresponding solutions to (5.1), (5.2).
Also, let 7o and 79 denote the value of v and 7 at t = 0 for prescribed data sg, Sp.

Then under the assumptions of Lemma 1

N coe N
_ <— 2 |lls—- .
I[[r =7l < (1_p)(ﬁ_1)|l|3 3[llo (7.7)
and
3 coe 3
- <2 Ise — . .
I[[ro — 7olllx < (l_p)Q(K_l)mso Sol[ 1 (7.8)

Proof: Introduce the notation
RZT—f, RjZTj—’l:j fOI‘j=1,2,
W=w"—w", and S =s— 3.
We make frequent use of the following inequality, which is easily derived from the
definitions of o, & = «[3,7], 3, and B = B3, 7] in (5.11), (5.12) as well as the inequality
(6.12):
o= @l + 118 = Blly < diAee™ 4 {[S¢ll, + 1 ell, } (7.9

where d; is a constant independent of e. Note that the term [[W||, which would
normally appear in (7.9) has been eliminated in favor of ||S¢||, + ||R¢||,. This is done

by following the analysis of subsection 6.5 to derive the bound
IW1lp < [|Rellp + doee™ = (1|S¢ll, + || Rellp + [1W],)

from which a bound on ||[W||, in terms of ||S¢||, + ||R¢||, is easily obtained. Now,

arguing as in subsection 6.4, we have

|1 Rall,

IN

t
/ |la — @l||,, dt’ where p; is defined in (6.17)
0
t !
< dyde [ e A (gl + I|Relly,) dt' using (7.9)
0
Next apply the Cauchy estimate to obtain

t !
|R1l|, < diAex / erp1—AL Wﬁ' where p; is defined in (6.47)
0 4 — P1

t 14 (A — kpy)P™!
< ayAe(ISllo + 1Rl [ e EHAEZ IR gy g (7.6
0 pPs—pP1
b _ap 1+ (At — kp )Pt
< 4d A Kkp1—At !
< adiden (I1Sllo+ I1R]lo) [ e el
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after eliminating p4 in favor of p;. Upon bounding the integral using (11.25) with A =1

we obtain the estimate

16d;ex

< 7
||R1||P = 5(1 _p)

(118 Nlo + 11Rllo) [+ (At — mpy=] (7.10)
Similarly, from (7.9)

oo ~
IRally < [ 118 =Bl a'

o

< die [ e (IS¢l + | Rell) d'
o0 S R

< dlAe/ e“”_Atht' where ps is defined in (6.51)
t 5 —

o0 1+ (At — kp5)P~t
glr— Al all rips) dt' using (7.6)

< die(|lSlllo +1I1Ell) [

pPs —p
© 14+ (At — kp)P1
< kp—At r .
< adiAen (lISllo +1IIRllo) [~ e St

After estimating the integral using (11.24) with A =1, it follows that

16d;ex
1-p

|1Rall, < (IS0 + 11R1l10) [1 + (At — p)~] . (7.12)

Adding the estimates (7.10) and (7.12), dividing by 1 + (At — kp)? ! and taking the
sup we obtain, after some redefinition of constants, equation (7.7).
To obtain the estimate (7.8), we set t = 0 in (7.12) and consider p < 0. After

eliminating ||| R|||o from this equation using (7.7) we can write
co€ _
I1Rello < sz ISl (1+1pl") fort=0, p<0 (7.13)

for a constant ¢ which is independent of e. But upon noting that ||s||,(¢) = ||s||—» (0)

where p' = At — p > 0, it is easily seen that

S
‘HS”'O < _;E£m1+(xll|t|‘—pﬂ)p_l
t>0,kp< At
< il
0<p'<oo 1+ p'?
= ISl (7.14)

We next eliminate |||S]||o from (7.13) in favor of |||S]||; by using the above, then divide
both sides of the resulting equation by 1 + |p[P~! and take the sup over —oo < p < 0

to obtain (7.8). This completes the proof of the Lemma.
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An additional estimate is needed to show convergence of the iteration scheme (7.4,
7.5). As discussed, this estimate requires a further assumption on Sp, namely, that

So¢ € Lip,[0,27] for some 0 < v < 1. The desired estimate is given by

Lemma 3 Let € > 0 and let So(C) satisfy (4.2, 4.8) and ||So¢()||Lip, < 0o for some
0 < v < 1. Purthermore, let C(&) = € + 19(€) and C(€) = & + 79(€), with 7o and 7o

defined as in Lemma 2. Then there exists a constant ¢ independent of € such that

1150(¢()) = So(C(:D)-p < cell¢ = Il (7.15)
for p> 0.
Proof: Define
S0(C(€) = So(S(&) 4 :
e — . for 00 # (0 716
Soc(¢(€)) for ¢(¢) = ¢(&)

where the definition (7.16) for ¢(¢) = (¢) is dictated by the requirement of continuity
for h(€). Then

150(¢) = So(O)ll-p = RO = Ol
1BOI-pl1¢ = ClI-p

e A lzipy I ~ Iy for constant e,

IN

IA

(7.17)

where in the last line above we have used the inequality ||h(-)|[-, < [|A(-)]|o < cy|[h(-)]]Lip,
(see [17], p. 136) which holds for functions h of bounded variation and satisfying
h € Lip, for some «y > 0; the constant ¢, depends only on «y. The function A is clearly
of bounded variation; the finiteness of ||A(-)||zip, (Which is of size €) follows from the
boundedness assumption on ||So¢(+)||zip,- The result (7.15) immediately follows.

We use (7.7), (7.8) and (7.15) to show that the iteration (7.4, 7.5) converges to a
solution sy and ¢ solving the original equations. Introduce the notation r” = r[sj]. We
estimate

n+1

lsg ™t = stll-p = 1150(¢™) = So(¢"H)l|-p,
< eel|¢" = ¢"7Y|-, using (7.15),

< cellrf — 15 Hl-p by (75),
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so that, upon dividing by 1+ pP~! and taking the sup over p > 0,

n+1

1s5" = ol < celllrf =67l

2
cco€ _
———lllsg — 55" llh

6(1 —p)?

by (7.8), which shows that for sufficiently small e the iteration is contracting and

IN

therefore converges.
The uniqueness of the solution easily follows from the uniqueness of the fixed point
(which implies that the representation (7.1) is unique), combined with the inequality

(7.7). This finishes the proof of Theorem 1.

8 Demonstration of Ill-Posedness

Theorem 1 is used to derive solutions to the Hele-Shaw equations (2.3), (2.4) that
develop singularities in finite time during unstable evolution (i.e., with A < 0) starting
from analytic initial data. This is then used to show that the initial value problem for
these equations is ill-posed in the Sobolev space H* for k > 3/2.

Following the related analysis for the Birkhoff-Rott equation [3] we use three sym-
metry properties to obtain the desired results. Let z(&,t), w(&,t, A) be a solution of
(2.3), (2.4). Then it is easily seen that the following are also solutions: (i) z;(,t) =
25 (&, —t), wi(§,t) = —w* (&, —t, —A); (ii) 22(§, 1) = 2(§,t—t0), w2(,t) = w(&,t—to, A);
(iii) z3(¢,t) = N712(NE, Nt), ws(é,t) = w(NE, Nt, A). Properties (i) and (ii) imply
that zp = 2*(&,t0 — t), wp = —w*(€,t9 — t,—A) is a solution to (2.3), (2.4) that is
analytic at time zero but which develops a (curvature) singularity at time ¢y. Thus we

have

Corollary 1 There exists initial data z,(€,0) = 2*(&, o) which is analytic in a neigh-
borhood of & real, such that the solution zy(&,t), wy(&,t) of system (2.8), (2.4) in the
unstable case (A < 0) develops an infinite (1 + p)th derivative at a finite time to.

Note that setting t9 = 0 in corollary 1 gives a solution zy(¢,¢) which is defined for
t < 0, decays to zero as t — —o0, and has a singularity in the (14 p)th derivative at t =

0. This fact is combined with the rescaling of z to zx to show ill-posedness of the initial
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value problem in the unstable case. Specifically, let zy(&,%) = N™22,(N2¢, N2t — 2N)
so that Sy = zy — ¢ = N728,(N2%¢, Nt — 2N). Then at t = 0 the H* norm of Sy
satisfies the bound

ISn (>t =0)lge < N**73S(, =2N)|| g
< K N2k_362At

— 0as N - o0 (8.1)

where K is a constant independent of N and A < 0. However, the time T of singularity

formation satisfies Ty = 2/N — 0 as N — oo. This proves

Corollary 2 Let A < 0. For any positive € there is initial data z = ( + Sy with
[1Sol|gx < € such that ||S||gx — oo for t = to, where tg > 0 and k > 3/2. In other
words, the initial value problem for (2.3), (2.4) is ill-posed in the Sobolev spaces H*
for k> 3/2.

9 Conclusion

The analysis presented above establishes global existence for the stable Muskat problem
with small initial data that may contain singularities, showing that the solutions are
analytic immediately after the initial time. It also shows existence of singular solutions
for the unstable case of the Muskat problem. The singular solutions start with smooth
initial data and develop singularities of order 1 + p, with p < 1, at a finite time. Since
the singularity time can be made arbitrarily small by adjusting the choice of initial data,
this shows that the unstable case of the Muskat problem is ill-posed. The construction
of singular solutions for the unstable problem is effected by applying time reversal to
solutions of the stable Muskat problem with singular initial data. This construction
uses analyticity and a version of the abstract Cauchy—Kowalewski Theorem, but it
does not require analyticity of the initial data to show global existence for the stable
Muskat problem. As (one of) the first analytic results on the Muskat problem, this
construction delineates some of the boundaries for possible further existence results.
The construction of singular solutions presented here is made possible by an un-

stable growth rate that is proportional to k (the wavenumber), as in [3]. The global
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existence result is (to the best of our knowledge) the first result that relies on a stable
decay rate that is proportional to k£ in order to show that solutions become analytic
immediately after the initial time.

The singularities found here are important for applications because they indicate
the onset of complex geometry and evolution for two-phase fronts in Hele-Shaw systems.
The present analysis does not include corners or cusps, but it does not rule them out
either. Further work is required to assess the possibility of these stronger singularities

and to determine the typical, or generic, singularity types.
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11 Appendix

In this section we derive important estimates on the nonlocal term By;. We begin with

a Lemma which proves useful in constructing the estimates.

Lemma 4 Let fi,..., [, and g be any functions satisfying || fil|,o < 00, ||g]lps < 0

for some pyg > 0. Define

PV/ ( fil6+9) - f(§)>9(€+7’)d7,

!

v y
Then
n
FO@®) <m > |g(knga)| TT ki fi(ks)] (11.1)
k1, ...,kn_|_1 i=1
ki+..+knt1=k
and
n
IF™]), < 7llgll, TT 11 iell, (11.2)
i=1

for p < po (p may be negative), where F(™ (k) denotes the kth Fourier coefficient of
F™,
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Proof. The proof is a straightforward extension of a result in [1]. Define

e = ([ HE ) =) fe )
i=1

Taking a Fourier transform in ¢ gives

M) =Y <ﬁ ﬁ(kz.)e““”’l—1> (?(knﬂ)fiknﬂv’)'

-1 v Y

ki, ..y kny1
ki+...+knt1=k
Therefore,
n
FMk)y = Y (H fz'(kz')) g(knt1)J (K1, ..o kny1) (11.3)
kiyeees kg1 =1
ki+..+knt1=k
where

n eiki’)” _ 1) eik‘n+1'7’ .

o0
J(k1,..., ky :PV/ d
(1 +1) _oo<i:1_[1 ~ ! Y

with the interchange of sum and integral allowed in view of the analyticity of f; and g.

Now,
7 o ik /2¢tkn 172 (1 sin(kiy' /2)
J(kla' . '7kn+1) = (—’L) PV ‘/_oo ,),I Zzl_Il ,),//2 d’)’,
_ gyt [Csin((ktka1)y'/2) (ypsinta//2))
A v L) @
= —(—4)""I,. (11.4)

An exact formula ([6] formula 3.746) for the integral I, is I, = 7 [[;— k; (i-e., the result

is independent of k + k,11) so that
n
)< T (11.5)
i=1

Equations (11.3) and (11.5) then imply (11.1), while (11.2) readily follows from (11.1).

11.1 Estimates on Bs[s, w®, 7, w"]

Employing the change of variable v/ = ¢’ — ¢ we write By as (see (5.2))

B A - /oo {<w*'(s'§+ré)>

2 1

271 — 00 0%
S s <w*'z'§—izé> ,
dy (11.6)
! v +s+r—s—r)
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where we use the notation f' = f(£ + /). Assume
1
lIrellp < llsell, < C < 3 (11.7)
Then we can expand B, as
oo
= Z B2n
n=0

where B3, is the first term in (11.6) and

! I nor
B;” — pv/ 1+" (M) g_/ d’y'
Y Y

for n > 1. Here we have defined
=gl +7) = (W (€ +7)ze(E+7) —ize(§ +7))- (11.8)
Now, from Lemma 4,

14]
[1Banllp < - lgllollse +7ell} (11.9)

for n > 1. Furthermore, B3y = (A/2)(h4 — h_) where h = (w*(s¢ + r¢)). This in turn

implies that

4 & . A
1Baolly = 15155 erlige,o) = Slia,
k=—o00
< 1Al s + el (11.10)

where in the last inequality we have used the definition of & and the fact that ||f*||, =
| f||p- Summing (11.9) over n and adding the result to (11.10) yields

llgll,
|1Ball, < [A] [[Jwl], + (llsellp + [Irello)- (11.11)
’ * 21— lsell, — llrello) | 50 T EN

Finally, substituting the inequality
llgllp < 2[[fwll, (1 + [lsell, + lIrelly) +llsellp + [Irell,] (11.12)
and using (11.7), we may write (11.11) in simplified form as
|1 Ballp < er|Al(llw?[lp + [lw"llp + [[sellp + [I7ellp) (llselly + llrell,),

which is the desired estimate. The constant ¢; is independent of ¢, p, and ¢. A similar
calculation leads to the estimate (6.11). (The constant ¢; is chosen large enough so that
each of the estimates in this and the next subsection apply.) Note that these estimates

also hold for negative values of p.
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11.2 Estimates on ||Bs[s, w®, r,w"] —

BQ[ga ws’ f, W]Hp

We also need to estimate || By — By||, where By = By[3,w°, 7, 4"]. We write

1Bz = Ball < ||Bals,w",r, w']

and first estimate ||Ba[s, w®,r,w"]

temporarily suppress writing the s,w® in the argument list of Bs.)

matter to bound

_Bz[sawsafawr]np—'—||B2[37w8

- BQ[S,wSaF,wT]“P'

_BQ[ga wsafawr]np

(11.13)

Y f’ w’r]

(To simplify the notation we

It is a simple

|| Baolr, w"]=Bao[r, @]l p < [A[{l|sellpllw" — " ||, + [[wllpllre = Tellp + [I7elll[w" — @[]}

where we have used the identity rew* — 7ew*

(11.14)
= (r¢ — fe)w* + F¢(w* — w*). Note that

the estimate (11.14) is not symmetric in r and 7 or w" and @" in view of this choice of

identity. Nevertheless we shall later add terms to make the final relation symmetric.

More work is necessary to estimate || Bay[r, w"] —

Boy[F,w"]||, for n > 1. Denote by

g’ the quantity in (11.8), but with % = w® + @" and Z replacing w and z, respectively.

Also introduce

p =s+r, p=3s+Tr,
s+ —s—r s+ —(s+T
q = - and ¢= ,( )
¥ v
Then
Y . A o0 .
1Bonlrwt] = Bl < 21|V [T (g —ag) 2
T —o »
4] /oo ! dy'
- “Aipy n (g — i
o [(¢" —d")g +3d"(¢' — )] i
A
- M PV/ (a—a)(g" "t +¢" %G+
27
d'
+ 4@+ + T — )] e
p

so that upon applying Lemma 4

L A
\Bonlr, ] = Bl i}, < 2]
< A

- 2

B 1Bl gl + el 39 — ll, }

{IIre = 7ell, (lipel
{Ilre =7elly n (llpelly ™+ 15ellp ) llgll + llpel 3 1lg = Glo}
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Summing over n, substituting for p, p and using the triangle inequality then gives

|| Belr,w'] = Bo[r, a']|l, < |A|{ (llsellp +[17ellp) [lw" = @"[lp + [Jwllpllre — 7l

1 1
+ gl [ + . e — 7ell
2L Isello —llrell)? @ —[[sell, — N7l 2] "¢ ¢
(lsellp + II7ell o) _
g —dllp ¢ (11.15)
1 —[Isell, — [|7¢ll, g

where the first line above comes from the estimate for Byg in (11.14). We next substitute

(11.12) and the easily derived inequality

g = gllp < 2{(1 +[lsellp + [Irellp)lw™ = @"[l, + |l@llllre = 7ellp} -
into (11.15). The result may be written in simplified form as

1Bals, w0~ Bols, w7, |, < | A] {[ls,relly (07—, + Ilsesw®re, [l [ — 7ell, )
(11.16)
where we have used the notation of subsection 6.1. In going from (11.15) to (11.16)
we have added terms so that the estimate is symmetric in r, 7 etc., and used (6.14) to
simplify the resulting estimate.
We next estimate ||Ba[s, w?®,7,w"] — Ba[5,w*,7,w"]||,. Note that Bs is invariant

under the interchange s <> r and w® <> w", so it immediately follows from (11.16) that

|[Bals, w*, 7, 3"] = Bl5, &, 70|, < cilA] {llserelll [lw* —@°|,

+ llsew®,re,w' |l llsg — 5ellp} - (11.17)
The term ||w® — @*||, may be replaced using the identity
o = @[], < lls = (11.18)

which is easily derived from (3.3), (3.4). Together, (11.13) and (11.16)-(11.18) imply
the final estimate (6.12). Note that some terms have been added to the final inequality

in order to give the estimate a compact form. A similar calculation is used to derive

(6.13).
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11.3 Bounds on Time Integrals
We derive estimates on the time integrals that arise in the proof of Lemma, 1.

1. (a) We first estimate

F(t) = / eArp—AL) (1 + (At — /ﬁp)pfl) dt’
t

where A > 0. After the substitution u = At' — kp the integral becomes

1 o0

F(t) e M [1 + upfl] du. (11.19)

A At—kp

The integerand is bounded above by e A=52)(1 4 y»~1), and this estimate is used
to simplify the integerand when At — kp < 1 and u € [At — kp,1]. For u > 1 the

integerand is simplified by using 1 + «?~! < 2. These remarks justify the inequality

_ _ 1 00
Fit) < HL (it Kp)]e’\(At"p)/ (1 + upfl) du + % e du
At—kp At—kp

Fi(t) + Fa(t)

where H|z] is the Heaviside function. and F; and F refer to the two integral terms

above. Now, by direct calculation

_ _ _ — kp)P
Fi (t) _ H[l (At ﬁp)]e—)\(/lt—np) 1_ (At _ K)p) + 1 (At ﬁp)
A p
2 _\aAt-
< 2 o MAt—kp) )
< e : (11.20)
and
2¢~MAt—kp)
.7:2(75) = A
It follows that
-1
Ft) < 2F2 (11.21)
Ap

which is the desired result.

(b) A related integral which we also estimate is

t
6(1) = [ A0 14 (4t — wpr)r ]
0
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where p; is defined in (6.17). After the substitution u = At' — kp; the integral is written

as

1 Kk(At—p) At
_ - p—1
G = 5 s e (1 +u ) du

1 o0

S R
Ad At—kp

e (14 wr™) du (11.22)

Noting the similarity with (11.19), we can immediately write

2+ 2)\_16—A(At—np)_

<
= Adp

(11.23)

2. (a) We similarly estimate

o0 _amy [1+ (At — kp)P~1]
T(t) = A(kp—At") [ 3
) /t e e dt

Changing variables we have

1 o e—)\u (1 +up—1)

I(t)=—
() AAt—np U

du.

Following the arguments in 1, we have

— — 1 p—1 o0
I(t) < H[l (At ’ip)] e—)\(At—K,p)/ 1+7u du + E/ e M du
A At—kp u A

1 (t) + Ty (t) .

By direct calculation

H[1 — (At — 1 — (At — kp)P~1
Il(t) _ [ ( l K/p)] e—)\(At—np) l_ln (At _ K,p) + ( i Hp) ]
A p—1
< Le—)\(At—np) [1 + (At B K‘,p)p_l] ’
A(1 —p)
since |In z| < zlp_—; for 0 <z <1andO0<p< 1. Also,
26—)\(At—np)
L) = ——7—
It follows that
242270 _
< 227 —MAt—kp) o \p—1 _
I(t) < T [1+ (At = rp)r~], (11.24)

which is the desired estimate.
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(b) We also give an estimate for

t n[1+ (At — kp1)P~1]
A(kp1—At') [ 1 !
J(t) = /0 e y ) dt.

The estimate is obtained by following the steps leading to (11.23), with the result

j(t) < ﬂ

—A(At—kp) _ p—1
< Ba [1+ (At = rppr~] . (11.25)
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