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Abstract
We consider the motion of a thin filament of viscous fluid in a Hele-

Shaw cell. The appropriate thin film analysis and use of Lagrangian
variables leads to the Cauchy-Riemann system in a surprisingly direct
way. We illustrate the inherent ill-posedness of these equations in
various contexts.

1 Introduction

The displacement of a fluid by another of lower viscosity in a two-dimensional
porous medium or a Hele-Shaw cell is subject to the Saffman–Taylor instabil-
ity, which in practice often leads to what is known as viscous fingering. (An
early, and key paper in this subject was that of Saffman and Taylor [5], which
concerned the Hele-Shaw version of the problem but the paper of Hill [3] even
earlier had discussed the phenomenon in the context of miscible displacement
in porous media. A review of the subject can be found in Homsy [4].) In this
paper, we relate this instability to the Cauchy–Riemann equations of com-
plex analysis, for which the Cauchy problem is well known to be ill-posed.
In particular, we show that the motion of a thin filament of viscous fluid be-
tween two effectively inviscid fluids gives a physical realisation of this Cauchy
problem.
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In the Hele-Shaw problem with two incompressible fluids, of which one is
inviscid and the other has viscosity µ, the standard model leads to a moving
boundary problem with Laplace’s equation to be solved in the viscous fluid
and constant pressure in the inviscid fluid. The pressure p and velocity v in
the viscous fluid are, in suitable units, related by Darcy’s law

v = −∇p. (1)

For incompressible flow we have

∇2p = 0

in the respective fluid regions. At interfaces separating the fluids, we assume
the simple conditions

p = constant (2)

and

−∂p

∂n
= Vn, (3)

where ∂ /∂n is the derivative normal to the interface and Vn is its nor-
mal velocity. The effects of surface tension are ignored in these conditions.
The model is completed by appropriate singularities representing the driv-
ing mechanism for the fluid motion, and by fixed boundary conditions as
necessary.

The linear stability of a planar interface is a routine analysis. Suppose
the viscous fluid is to the right of a slightly perturbed planar interface x =
V t + εx̃(y, t) and the inviscid one to its left; when x̃(y, t) = eαt sin ky the
result of a linear analysis about a travelling-wave solution is that

α = V |k|. (4)

An interface with V > 0 is therefore unstable if the less viscous fluid displaces
the more viscous one, and the growth rate is proportional to the wavenum-
ber. This dispersion relation is itself reminiscent of the Cauchy–Riemann
equations. For example, suppose that we consider the Cauchy–Riemann sys-
tem

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

for y > 0, −∞ < x < ∞, thinking of y as a time variable and of data for u and
v as being given on y = 0. Solutions in which u(x, y) = U0e

ikxeαy, v(x, y) =
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V0e
ikxeαy lead to the dispersion relation α2 = k2 with catastrophic growth at

large y, due to the root α = |k|, similar to the large-time instability implied
by (4) with V = 1, but also with one stable root α = −|k|, corresponding
to V = −1 in (4). In the next section we describe a physical realisation
of this system. By using a thin filament of fluid with two free surfaces, we
are able to have a flow which simultaneously has a stable free surface and
an unstable one, and so is able to replicate the dispersion relation of the
Cauchy–Riemann system; indeed, it replicates the Cauchy–Riemann system
itself.

2 Motion of a filament in a porous medium

or Hele-Shaw cell

Suppose that the Hele-Shaw cell or porous medium is divided into two parts
by a thin filament of the viscous fluid, while the remainder is filled by the
inviscid fluid, and that a pressure difference ∆P = 1 (in dimensionless units)
is applied across the filament. This situation is illustrated in Fig. 1 for flow
in the region −∞ < x < ∞, −1 ≤ y ≤ 1 (in this case the filament is assumed
to be orthogonal to y = 0 and y = 1). The location of the centreline of the
filament is specified by the time-dependent curve

(x, y) = x(η, t),

parametrised by a Lagrangian variable η, and its thickness, assumed small
compared with the dimensions of the cell and the radius of curvature of the
centreline, is denoted by h(η, t).

The total mass (area) of the filament in any interval [η0, η1] satisfies the
integral balance

∫ η1

η0

m(η) dη =

∫ η1

η0

h(η, t)
√

xη
2 + yη

2 dη

where subscripts denote derivatives, and where the mass (area) per unit
length of the filament at time t = 0 is m(η). It follows that

h(η, t)
√

xη
2 + yη

2 = m(η). (5)

Because the fluid either side of the filament is inviscid, the pressure on
one side of the filament, say to its right in the geometry of Figure 1, can be
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p = 1 p = 0

flow direction

Figure 1: Geometry of a viscous filament

taken as everywhere equal to zero, while on the other side it is equal to 1.
Because the filament is thin, pressure gradients across it are much bigger than
those along it. Hence the pressure gradient is to leading order in the normal
direction and the fluid in the filament moves approximately in a direction
normal to the filament. By Darcy’s law (1), a point x(η, t) moves according
to

xt = −n

h

where n is the unit normal to the filament, given by

n =
(yη,−xη)√
xη

2 + yη
2
.

Hence the equation of motion becomes

xt =
(yη,−xη)

h
√

xη
2 + yη

2
.

Using (5), it follows that

xt =
yη

m(η)
, yt = − xη

m(η)
.

The final transformation to a mass-weighted variable satisfying

dξ = m(η) dη

leads directly to the Cauchy-Riemann equations

xt = yξ, yt = −xξ,
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stating that x + iy is an analytic function of ξ − it. As stated earlier, these
equations are well known to be ill-posed. Suppose, for example, that the
filament initially lies along the y axis, that the high pressure region is to the
left of the y axis, and that the filament has initial thickness h0(y). Defining
g(y) by dg/dy = h0(y), g(0) = 0, we have x+ iy = ig−1(ξ− it), or g(y− ix) =
ξ − it. Taking h0(y) = 1 − a2sech2y, with 0 < a < 1 so that the filament
is thinnest at x = 0, we have g(y) = y − a2 tanh y. Blow-up occurs at the
first zero of the derivative of g as we move away from the real axis, namely
when cosh2(y − ix) = a2, and so the first blow-up, in which the filament
develops a cusp whose tip moves with infinite speed, is at x + iy = cos−1 a,
corresponding to t = cos−1 a−(1−a2)

1
2 . (If −1 < a2 < 0, so that the filament

initially has a bulge at the origin, the blow-up occurs simultaneously at two
points off the axis of symmetry.)

This analysis is much as one would expect given that one side of the
filament is a retreating interface. Unlike the standard Hele-Shaw model in
which time-reversal of an ill-posed problem leads to a well-posed one, here
both the forward and backward problems are ill-posed: whichever way the
filament moves, it always has a retreating interface. Extra physics, such as
surface tension or miscibility with hydrodynamic dispersion, is needed to
make a well-posed model.

3 Accelerating travelling-wave solutions, mo-

tion by mean curvature and the Saffman–

Taylor finger

In this section, we consider filaments that propagate along a channel (the
geometry of Figure 1) without changing their shape. We show that they
have the shape of the ‘Grim Reaper’ of curvature flow, or the Saffman–Taylor
‘λ = 1

2
’ finger.

It is more convenient here to use an Eulerian description of the motion
of the filament. Suppose that its centreline is represented by y = f(x, t), the
thickness by H(x, t), and that the angle between the normal to the curve and
the positive x axis is θ, as shown in Figure 2.

With this description, the normal velocity of the filament is

Vn =
ft

(1 + f 2
x)

1
2

,
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Figure 2: Eulerian description of a filament.

the angle θ satisfies

fx = − cot θ, sin θ =
1

(1 + f 2
x)

1
2

, cos θ = − fx

(1 + f 2
x)

1
2

,

and the local mass density is H/ sin θ. Conservation of mass takes the form

∂

∂t

(
H

sin θ

)
+

∂

∂x

(
H

sin θ
Vn cos θ

)
= 0.

This equation can be rewritten in the equivalent forms

∂

∂t

(
1

Vn sin θ

)
+

∂

∂x
cot θ = 0, (6)

(
1 + f 2

x

ft

)

t

− fxx = 0,

and
f 2

t fxx − 2fxftfxt + (1 + f 2
x)ftt = 0.

A linearisation of the last of these about the straight solution, writing H(x, t) =

1 + εH̃(x, t), f(x, t) = t + εf̃(x, t), leads to f̃xx + f̃tt = 0, in accordance with
the results of the previous section. (It is remarkable that the transforma-
tions of the previous section, and the use of Lagrangian variables, reduce
these nonlinear partial differential equations to the linear Cauchy–Riemann
system.)
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Suppose now that we look for a solution f(x, t) = F (x − d(t)), which
propagates without change of shape. Thus θ is also a function of x − d(t),
say θ = Θ(x− d(t)), and Vn = ḋ cos Θ, where ˙ = d /dt. Then (6) becomes

∂

∂t

(
1

ḋ cos Θ sin Θ

)
+

∂

∂x
cot Θ = 0,

and noting that sin Θ∂ /∂x = −∂ /∂s, where s is arclength moving with the
curve, a short calculation shows that

dΘ

ds
=

d̈

ḋ2
cos Θ. (7)

Thus d̈/ḋ2 is a constant which, by suitably scaling x, y and d may be set equal
to one, and (7) becomes precisely the equation for the ‘λ = 1

2
’ Saffman–Taylor

finger. This curve also arises in analysis of motion by mean curvature, as (7)
with d̈/ḋ2 = 1 is the equation of motion for a curve whose normal velocity is
equal to its curvature, and which propagates with unit velocity and constant
shape. (This curve is known as the Grim Reaper, although we note that in
our application the velocity is by minus the curvature, another manifestation
of the ill-posed nature of our system. Note also that unsteady curvature flows
lead to a parabolic equation rather than an elliptic one, so the coincidence
is only in the travelling-wave case.)

Solving for d(t), we find

d(t) = constant− log(t− t∗)

where t∗ is a blow-up time at which the accelerating filament reaches infinity.
This blow-up time is determined by the thickness of the filament at the initial
time.

The solution just derived is the limit of the solution presented by [2], who
presents exact solutions for the evolution of a region of viscous fluid between
two inviscid fluids in a channel, that is without the assumption of slenderness;
these solutions have subsequently been generalised by [1]. Unfortunately the
time-change employed by [2] obscures the interesting finite-time blow-up of
his solutions.

4 Concluding Remarks

The Cauchy-Riemann equations are one of the canonical systems of partial
differential equations. The phenomenon of viscous fingering is of funda-
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mental interest in applied mathematics. Thus the heuristic direct physical
interpretation of the Cauchy-Riemann equations as a model for the motion
of a viscous filament may be of general interest. The model can be shown
to be an exact limiting case when the thickness of a two-dimensional ribbon
is taken to zero as the viscosity tends to infinity with the viscosity-thickness
product held to unity. (It would be interesting to derive this result from a
Birkhoff-Rott integral equation formulation for the evolution [7]; presumably
the result is the Dirichlet-to-Neumann operator for x + iy as an analytic
function of ξ − it. It would be still more interesting to be able to shed
light on the question of blow-up for the Muskat problem, in which the sec-
ond fluid has non-zero viscosity; to date, all that is known is that curvature
singularities can form in its interface [6].) The ill-posed nature of viscous
fingering is thus clearly exposed, as the model is an initial value problem on
the Cauchy-Riemann equations, a standard example of an ill-posed problem.
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