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April 2021

1 Introduction

The main result in these notes is the equivalence of the properties of reduc-
tivity and linear reductivity for algebraic groups over a field of characteristic
0. The main tool in the proof is the Lie algebra of an algebraic group, and
several results relating these two objects and their representations.

We start by giving a survey of the basic definitions and properties of
algebraic groups in Section 2. Then we introduce reductive groups. The
theory of reductive algebraic groups and their representations is very rich.
For instance, it is possible to classify split reductive groups and their ir-
reducible representations using root systems (see [4], Chapters 21 and 22),
and the theory even extends to group schemes over a general base (see [3]).
However, in these notes we do not go any deeper into the theory of reduc-
tive groups, and we hope that the reader is already be convinced of their
importance or will take it for granted.

We then introduce the Lie algebra of an algebraic group and prove some
of its basic properties. In Section 6, we prove further results relating repre-
sentations of a group and of its Lie algebra, culminating in the proof that
reductive group are linearly reductive in characteristic 0.

As a demonstration of the usefulness of the notion of linear reductivity,
we prove in Section 7 that the ring of invariants of a dual action of a linearly
reductive group on a finite type k-algebra is again of finite type.

In an attempt to compensate the lack of examples throughout these
notes, we have included a section on a simple class of algebraic groups, that
of diagonalisable groups.

None of the material presented here is original.
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2 Foundations

The choice of foundations for these notes is that of schemes, functors and
sheaves. When dealing with algebraically closed characteristic 0 base fields,
other foundations like the espaces algébriques de Serre suffice, but the author
wanted to get familiar with the more flexible language of schemes, that is
optimal to deal with non-algebraically closed or positive characteristic fields,
and eventually group schemes over a more general base. In this section there
are almost no proofs, limiting ourselves to give precise statements that will
be referred to in the rest of the notes.

2.1 Definitions

Let k be a field. We will denote Algk the category of k-algebras. By an al-
gebraic scheme over k we mean a scheme of finite type over k. Any algebraic
scheme X defines a functor Algk → Set : R 7→ X(R) = Homk(Spec(R), X),
its functor of points; and the functor from the category of algebraic schemes
to the functor category [Algk,Set] that associates an algebraic scheme over
k with its functor of points is fully faithful. We will thus adopt the functorial
point of view and identify an algebraic scheme with its functor of points.

2



We define the category of algebraic group functors over k to be the func-
tor category [Algk,Grp], where Grp is the category of groups. Morphisms
in this category are also called homomorphisms. We define the category of
algebraic groups over k to be the full subcategory of [Algk,Grp] consisting
of those functors G : Algk → Grp such that the composition of G with the
forgetful functor Grp → Set is an algebraic scheme. In that case we will
sometimes say that the functor G is representable by a scheme.

Alternatively, due to the Yoneda lemma, one may define an algebraic
group to be an algebraic scheme G endowed with maps µ : G×G→ G (the
multiplication), e : Spec(k)→ G (the identity element) and β : G→ G (the
inversion) such that the usual diagrams of associativity, inverses and identity
element commute. Then one may also define the notion of a homomorphism
by asking the suitable square to commute. If G is affine, this structure can
be defined “reversing all arrows” in the category of k-algebras, and one gets
the notion of Hopf algebra.

The scheme Spec(k) admits a unique structure of algebraic group, called
the trivial group and denoted 1. For any other algebraic group G, there is
a unique homomorphism 1→ G, whose image is the k-rational point e, the
identity element.

We will say that an algebraic group G is commutative if for all k-algebras
R, the group G(R) is commutative.

If k′ is a field extension of k, and G is an algebraic group over k, the
base change Gk′ = G×k Spec(k′) has a natural structure of algebraic group
over k′. We will sometimes need to base change to the algebraic closure k
of k to define some concepts or prove some properties.

2.2 Subgroups and kernels

We start by defining subgroups.

Definition 2.1. Let ϕ : H → G be a homomorphism of algebraic groups
over a field k. If ϕ is a closed immersion, then we say that H is a subgroup
of G (via ϕ) if ϕ is a closed immersion.

Subgroups of G form a subcategory of the category of algebraic groups
over G that is a preorder. As usual, we will tacitly identify two isomorphic
objects of the preorder of subgroups of G.

Note that ifG is an algebraic group and ϕ : X → G is a monomorphism of
algebraic schemes over k, then there is at most one algebraic group structure
on X that makes ϕ a homomorphism.

Now we define kernels.

Definition 2.2. Let ϕ : H → G be a homomorphism of algebraic groups
over a field k. The kernel ker(ϕ) of ϕ is the subfunctor R 7→ ker(H(R) →
G(R)) of H. It is an algebraic subgroup of H because it is represented by
the fibre product of H and 1 over G, and 1→ G is a closed immersion.
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We have the following characterisation of subgroups ([4], 5.31, 5.34):

Proposition 2.3. Let ϕ : H → G be a homomorphism of algebraic groups
over a field k. Then the following conditions on ϕ are equivalent:

1. ϕ is an immersion,

2. ϕ is a closed immersion,

3. for all k-algebras R, the map H(R)→ G(R) is injective,

4. ker(ϕ) = 1.

If these conditions hold we say that ϕ is injective.

A subgroup N of G is said to be normal if for all k-algebras R, N(R)
is normal in G(R). From the definition, it follows that the kernel of a
homomorphism is a normal subgroup.

Sometimes it can be checked whether two subgroups are equal on points:

Proposition 2.4. Let G be an algebraic group over a field k and let H and
H ′ be smooth subgroups of G. If there is a separably closed field extension
k′ of k such that H(k′) = H ′(k), then H = H ′.

For a proof, see [4], 1.18, 1.44.

2.3 Group sheaves

It is not trivial to define what a quotient (i.e. surjective in an adequate
sense) homomorphism of algebraic groups should be, nor is it to state and
prove the analogue for algebraic groups of the isomorphism theorems for
abstract groups. A too näıve idea would be to adopt the functorial point
of view and to do everything for abstract groups. A quotient map G → Q
would then be one such that G(R)→ Q(R) is surjective for all k-algebras R.
Unfortunately, many group homomorphisms that we would like to consider
as quotient maps do not satisfy this condition (for example Gm → Gm given
by a 7→ an on k-algebras, where the multiplicative group Gm is defined to
be Gm(R) = R×, the group of units, on k-algebras R). The functorial point
of view is still key, but one has to observe that representable functors are
sheaves for suitable Grothendieck topologies on Affop

k . The most convenient
Grothendieck topology to establish the isomorphism theorems for algebraic
groups turns out to be the fppf topology. See [8], 2.55, for a proof that the
fppf topology is subcanonical, i.e. that schemes (when seen as functors) are
sheaves. These observations bring our attention to sheaves of groups for a
moment.

Let C be a site with associated topos τ . We are interested in the category
Grpτ of group objects in τ , and in proving that the isomorphism theorems
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hold in this category. The category Grpτ is just the full subcategory of
the functor category [Cop,Grp] whose objects are sheaves. We will call the
objects of Grpτ group sheaves. In Grpτ there is the trivial group 1, and for
every two group sheaves H and G there is a unique homomorphism H → G
that factors through 1, called the trivial homomorphism and denoted e.

A map f : A → B in [Cop,Set] is said to be sheaf-surjective if for every
U ∈ obC and every b ∈ B(U), there is a covering sieve S of U such that for
every V → U in S, the restriction b|V of b lies in the image of fV : A(V )→
B(V ). If both A and B are sheaves, f is sheaf-surjective if and only if it is
an epimorphism in τ .

Definition 2.5. Let f : H → G be a homomorphism of group sheaves

1. The homomorphism f is said to be a quotient map if it is sheaf-
surjective.

2. The homomorphism f is said to be injective if for all objects U of C,
the homomorphism fU : H(U) → G(U) is injective. We will also say
that H is a subgroup of G.

3. If f is injective, then H is normal in G (through f) if for all U in C,
H(U) is normal in G(H).

4. The presheaf image impre f of f is the presheaf U 7→ im(fU ).

5. the image im f of f is the sheafification of impre f . It comes with a
morphism im f → G.

6. The kernel ker f of f is the equaliser eq(f, e) in Grpτ of f and the
trivial homomorphism e : H → G. It is a sheaf and it comes with an
injective morphism ker f → H through which ker f is normal in H.

7. If f is injective and H is normal in G, the presheaf quotient (G/H)pre
of G by H is the presheaf U 7→ G(U)/H(U).

8. If f is injective and H is normal in G, the quotient G/H of G by H is

the sheafification (G/H)#pre of the presheaf quotient. It comes with a
morphism G→ G/H.

With these definitions, we have:

Proposition 2.6. Let f : H → G be a homomorphism of group sheaves.
Then

1. The homomorphism f is injective if and only if ker f = 1.

2. If f is injective and H is normal in G, then the quotient of G by H is
the coequaliser (G→ G/H) = coeq(f, e) in Grpτ .
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3. The morphism im f → G is injective and f factors uniquely as H →
im f → G. Moreover, H → im f is a quotient map.

4. If f is a quotient map, then the induced morphism H/ ker f → G is
an isomorphism.

5. The induced morphism H/ ker(f)→ im f is an isomorphism.

Proof. Points 1, 2 and 3 follow from the results for presheaves and some
properties of the sheafification, such as that it is exact and preserves colim-
its. Point 5 follows from point 4. For point 4, we have a homomorphism
(H/ ker f)pre → G that is injective and sheaf-surjective. When sheafifying,
we get that H/ ker f → G is still injective and sheaf-surjective, thus it is an
isomorphism because every topos is well-balanced (a morphism that is both
an epimorphism and a monomorphism is an isomorphism).

The rest of isomorphism theorems for group sheaves follow easily from
the proposition or just from the definitions and properties of the sheafi-
fication. We discuss briefly the case of product of subgroups, that we
will use later in these notes. Let G be a group sheaf and let H and N
be subgroups of G with N normal. We can define the presheaf group
(NH)pre : U 7→ N(U)H(U), and its sheafification NH = ((NH)pre)

#, which
is a subgroup of G. The intersection N ∩H is a group sheaf (because finite
limits of sheaves are sheaves) which is a normal subgroup ofH. The inclusion
H → G factors through (NH)pre, so it also factors as H → NH. Moreover,
the induced map H → (NH/N)pre is sheaf-surjective, so u : H → NH/N is
a quotient map. As sheafification is exact, the kernel of u equals the sheafi-
fication of the kernel of H → (NH/N)pre, which equals the sheafification
of the kernel of H → ((NH)pre/N)pre, which is N ∩ H (already a sheaf).
Therefore we have an isomorphism N/N ∩H ∼= NH/N by the proposition.

Proposition 2.6 allows us to define a short exact sequence of group
sheaves in two ways. If

1 N G Q 1a b

is a sequence of group sheaves, the following are equivalent:

1. a is injective, N is normal in G and Q ∼= G/N under G,

2. b is a quotient map and N ∼= ker b over G.

In that case we say that the sequence is exact.

2.4 Quotient maps and isomorphism theorems

The justification of our previous work with group sheaves is the following
theorem. In this section we will work with the site Algop

k endowed with the
fppf topology.
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Theorem 2.7. Let k be a field, let G be an algebraic group over k and let
N be a normal subgroup of G. Then the quotient group sheaf G/N is an
algebraic group and the morphism G→ G/N is faithfully flat. Moreover, if
G is affine, so is G/N .

The proof of this theorem is difficult. Very roughly, the idea is that G/H
is a separated algebraic space, and thus it has a nonempty dense schematic
locus that, by homogeneity, can be moved around to cover the whole of
G/H. For more on this, we reffer to [6]. For an elementary proof of the
theorem, see [4], Appendix B. We will at some points need the following
generalisation of the above theorem (see [4], 5.25, 5.28):

Theorem 2.8. Let k be a field, let G be an algebraic group over k and let
H be a subgroup of G. Let G/H be the (fppf) sheafification of the presheaf
R→ G(R)/H(R) on k-algebras R. Then the sheaf G/H is representable by
an algebraic scheme and the morphism G→ G/H is faithfully flat.

Now we can define the notion of quotient map of algebraic groups.

Proposition 2.9. Let k be a field and let ϕ : G → Q be a homomorphism
of algebraic groups over k. The the following are equivalent:

1. ϕ is faithfully flat,

2. ϕ is a quotient map of (fppf) group sheaves.

Theorem 2.7, together with our work on group sheaves makes the usual
Noether isomorphism theorems work for algebraic groups. For example, if
f : G → H is a homomorphism of algebraic groups, then im f , which in
principle is just a group sheaf, is an algebraic group, as im f ∼= G/ ker f and
this sheaf is representable, by 2.7.

We define a short exact sequence of algebraic groups to be one of fppf
group sheaves in which all objects are algebraic groups.

Under certain smoothness hypothesis, it can be checked that a morphism
is a quotient map on k-points. More precisely, we have (see [4], 5.47):

Proposition 2.10. Let ϕ : G→ H be a homomorphism of algebraic groups
over a field k. Then

1. If ϕ is a quotient map, then for all algebraically closed field extensions
k′ of k, the induced map G(k′)→ H(k′) is surjective.

2. If H is smooth and there is a separably closed field extension k′ of k
such that the induced map G(k′) → H(k′) is surjective, then ϕ is a
quotient map.
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2.5 Dimension

Dimension is especially well-behaved for algebraic groups ([4], page 17):

Proposition 2.11. Let G be an algebraic group over a field k and let C be
an irreducible component of G. Then dimG = dimC = dimOG,e.

The proposition means in particular that algebraic groups are equidi-
mensional.

Dimension behaves well with respect to taking quotients ([4], 5.23):

Proposition 2.12. Let G be an algebraic group over a field k and let H be
a subgroup of G (not necessarily normal). Then dimG = dimG/H+dimH.

2.6 Smoothness and reducedness

An algebraic group G is always separated ([4], 1.22). Algebraic groups need
not be smooth nor reduced. For example, the algebraic group µp defined
by the functor µn(R) = {a ∈ R : ap = 1} on k-algebras R over a field k of
characteristic p is represented by Spec(k[X]/(Xp − 1)) ∼= Spec(k[X]/(Xp)),
which is not reduced and not smooth. However, there is the following result
([4], 1.26 and 1.28):

Proposition 2.13. Let k be a field and let G be an algebraic group over k.
The following are equivalent:

1. G is smooth,

2. the local ring OG,e is regular,

3. G is geometrically reduced.

4. dim Lie(G) = dim(G)

If the field k is perfect, the previous conditions are equivalent to

4. G is reduced.

In the previous proposition, Lie(G) is the k-vector space

Lie(G) = Homk(mG,e/m
2
G,e, k)

which is just the tangent space of G at e. Later on (4) we will define a Lie
algebra structure on Lie(G).

In characteristic 0, one doesn’t have to worry about smoothness, as we
have ([4], 8.39):

Theorem 2.14. Any algebraic group over a field of characteristic 0 is
smooth.
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2.7 Connectedness

We have the following characterisation of connected algebraic groups ([4],
1.36).

Proposition 2.15. Let G be an algebraic group over a field k. Then the
following are equivalent:

1. G is connected,

2. G is geometrically connected,

3. G is irreducible.

The connected component G◦ of G containing e is called the identity
component of G. We have ([4], 1.34, 1.52)

Proposition 2.16. The identity component G◦ of G is a normal subgroup
of G.

The quotient of G by G◦ is denoted π0(G) and called the group of con-
nected components of G. We have the following characterisation of G◦ and
π0(G)([4], 5.58).

Proposition 2.17. Let G be an algebraic group over a field k. Then

1 G◦ G π0(G) 1

is the unique short exact sequence with G◦ connected and π0(G) étale (over
Spec(k)). It is called the connected-étale exact sequence.

The following lemma will be used in these notes.

Proposition 2.18. Let k be a field, let G be a smooth connected algebraic
group over k and let H be a smooth subgroup of G such that dimH = dimG.
Then H = G.

Remark 2.19. In the above proposition, as G and H are smooth, the condi-
tion dimk Lie(H) = dimk Lie(G) is equivalent to dimH = dimG.

Proof. By [4], 5.23, the dimension of the scheme G/H is 0. The map G →
G/H is surjective, so Gk → (G/H)k is surjective. As G is geometrically
connected ([4], 1.32), (G/H)k

∼= Spec(k). This forces H(k)→ G(k) to be a
bijection and thus G = H by 2.4
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2.8 Representations

For a vector space V over k, we define the group functor GLV : Algk →
Grp : R 7→ AutMod(R)(R ⊗k V ). If V is finite dimensional, GLV is repre-
sentable by Spec(Sym(V ∗⊗ V )[d−1]), where Sym(V ∗⊗ V ) is the symmetric
algebra on V ∗ ⊗ V and d is the element d = det(v∗i ⊗ vj), where (vi) is a
basis of V and (v∗i ) is its dual basis. The definition of d doesn’t depend
on the chosen basis. Therefore, GLV is an algebraic group if V is finite
dimensional.

A representation of an algebraic group G (or G-representation) is a pair
(V, r), where V is a vector space over k and r : G→ GLV is a group functor
homomorphism. We say that the representation is finite dimensional if V
is finite dimensional and that it is trivial if r factors through 1. If (W, s) is
another representation, then a morphism of representations from V to W is a
linear map V →W such that for all k-algebras R, the induced R-linear map
R⊗V → R⊗W is a morphism of representations of the abstract group G(R).
Given a G-representation (V, r) and a vector subspace W ≤ V , there is at
most one G-representation structure on W such that W → V is a morphism
of representations. If this structure exists, we say that W is G-invariant,
or that W is a subrepresentation (or G-subrepresentation if we want to
specify the group) of V . For an arbitrary representation V of G, there
exists a unique maximal trivial subrepresentation of V , denoted V G. A G-
representation (V, r) is said to be simple (or irreducible) if it has exactly two
subrepresentations. A G-representation (V, r) is said to be semisimple if it
is a direct sum of simple subrepresentations. The category Rep(G) of finite
dimensional representations of G is an abelian category, and the forgetful
functor Rep(G)→Mod(k) is exact and faithful. The same is true for the
category of all representations of G. We say that an abelian category A is
semisimple if every short exact sequence in A splits. It is checked easily that
the category Rep(G) of finite dimensional representations of an algebraic
group G is semisimple if and only if every finite dimensional representation
of G is semisimple.

We can now formulate one of the important definitions of these notes:

Definition 2.20. Let k be a field and let G be an algebraic group over k.
The group G is said to be linearly reductive if it is affine, smooth, connected
and every finite dimensional representation of G is semisimple.

If the algebraic group G is affine, giving a representation (V, r) of G is
equivalent to giving a k-linear map r̂ : V → O(G) ⊗k V , the dual action,
satisfying idV = (ê ⊗ idV ) ◦ r̂ and (idO(G) ⊗ r̂) ◦ r̂ = (µ̂ ⊗ idV ) ◦ r̂, where
ê and µ̂ are respetively the counit ê : O(G) → k and the comultiplication
µ̂ : O(G)→ O(G)⊗k O(G) of G.

It is an elementary but important fact that any representation of an
affine algebraic group is the union of its finite dimensiona subrepresenta-
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tions. This contrasts with the case of Lie algebras, where there are simple
representations of infinite dimension. A precise statement is:

Lemma 2.21. Let G be an affine algebraic group over k, let V be any
representation of G and let v ∈ V . Then there is a finite dimensional
subrepresentation W ≤ V with v ∈W .

For a proof, see [5], Lemma in page 25. A consequence of this lemma is

Proposition 2.22. Let k be a field and let G be an algebraic group over k.
Then G is a affine if and only if there is a finite dimensional k-vector space
V and an injective homomorphism G→ GLV .

The result justifies that affine algebraic groups are many times referred
to as linear algebraic groups.

3 Solvable, unipotent, semisimple and reductive
groups

We start by defining the notions of solvable and nipotent groups.

Definition 3.1. An algebraic group G over a field k is said to be solvable
if there is a sequence of subgroups

1 = G0 ≤ G1 ≤ · · · ≤ Gn = G

such that for each i ∈ J0, n − 1K, Gi is normal in Gi+1 and the quotient
Gi+1/Gi is abelian.

An algebraic group G is said to be unipotent if every nonzero repre-
sentation V of G contains a nonzero trivial subrepresentation (i.e. V G is
nonzero).

In order to define the solvable and unipotent radicals of a group we need
the following lemma.

Lemma 3.2. Let P be a class of algebraic groups, closed under isomorphism.
We will say that P is stable if it satisfies

1. if N is a normal subroup of G and both N and G/N are in P, then G
is in P,

2. if N is a normal subroup of G and G is in P, then so is G/N .

If P is a stable class of algebraic groups, then every algebraic group G
contains a largest smooth connected normal subgroup in P.
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Proof. Let say that a subgroup of G is pink if it is smooth, connected,
normal, and it is in P. Among pink subgroups of G pick one, H, of maximal
dimension. If H ′ is pink and H ⊂ H ′, then by 2.18 and maximality of
dimension, we have H = H ′. Hence H is maximal among pink subgroups.
If N is another maximal pink subgroup, then NH is connected, normal and
NH/H ∼= N/N ∩H, so NH is pink and by maximality NH = N = H. As
any pink subgroup is contained in a maximal dimension pink subgroup, and
hence in a maximal pink subgroup, H is the unique largest pink subgroup.

By ordinary manipulations with series of subgroups, the class of solvable
groups is stable. The class of unipotent groups is also stable. Indeed, if G
has a unipotent normal subgroup N with unipotent quotient G/N , we have
that V N is naturally a representation of G/N and that V G = (V N )G/N .
On the other hand, if G is unipotent and Q is a quotient of G, then any
representation V of Q can be regarded as a representation of G, and V Q =
V G.

Definition 3.3. Let G be an algebraic group.
The unique largest connected normal solvable subgroup of G is called

the radical of G and denoted R(G). The group G is said to be semisimple
if it is affine, smooth, connected and R(Gk) = 1.

The unique largest connected normal unipotent subgroup of G is called
the unipotent radical of G and denoted Ru(G). The group G is said to be
reductive if it is affine, smooth, connected and Ru(Gk) = 1.

The assumptions of affinness and connectedness in the above definitions
may vary in the literature.

In characteristic 0, the condition Ru(Gk) = 1 can be weaken (see see [4],
19.11):

Proposition 3.4. Let k be a perfect field and let G be an affine connected
algebraic group over k. Then G is reductive if and only if Ru(G) = 1.

4 The Lie algebra of an algebraic group

In this section we introduce the Lie algebra of an algebraic group. We will
first define it as a vector space, and later we will define the Lie algebra
structure on it. The Lie algebra of an algebraic group is especially useful in
characteristic 0. The main illustration in this section is Theorem 4.12 that
the functor “taking Lie algebra” is faithful, whose proof we only sketch.

4.1 Definition and basic properties

Definition 4.1. Let G be an algebraic group over a field k. The Lie algebra
Lie(G) of G is the vector space Lie(G) = HomMod(k)(mG,e/m

2
G,e, k). Here,
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e is identity point of G, which is k-rational, and mG,e is the maximal ideal of
the stalk OG,e of the structure sheaf of G at e. A homomorphism f : G→ H
induces a map of local rings OH,e → OG,e, which in turn induces a linear
map df : Lie(G) → Lie(H). We get a functor Lie from the category of
algebraic groups over k to the category of k-vector spaces.

The Lie algebra Lie(G) is just the Zariski tangent space, and G is smooth
if and only if dimk Lie(G) = dimG.

If V is a vector space over k, it is possible to see V as a group functor
by setting V (R) = R ⊗k V for a k-algebra R. If V is finite dimensional, its
group functor is represented by Spec(Symk(V

∗)) and it is thus an algebraic
group. The Lie algebra of V is V itself. More interestingly, the Lie algebra
of GLV is Lie(GLV ) = gl(V ), as we will later see.

We will denote by ε a variable such that ε2 = 0, i.e., for a ring R, R[ε] is
short for R[X]/(X2). For an algebraic group G, we set TG to be the group
functor R 7→ G(R[ε]) (TG is actually an algebraic group, for example as a
consequence of the following proposition, that implies TG = Lie(G) × G,
but we will not need that). For a k-algebra R we have the homomorphism
R[ε] → R : ε 7→ 0. This induces a homomorphism TG → G of group
functors.

Proposition 4.2. There is a split short exact sequence (described in the
proof), natural in G

1 Lie(G) TG G 1eε·

Moreover, the action of TG on Lie(G) by conjugation, via the second arrow
above, is k-linear.

Proof. There is a homomorphism G→ TG given by the morphism R→ R[ε]
on k-algebras. As the composition R → R[ε]→ R is the identity on R, the
composition G → TG → G is the identity on G. This gives exactness at G
and proves that the short exact sequence is split if it exists.

Let K be the kernel of the map TG → G. An element f ∈ K(R) is an
arrow Spec(R[ε])→ G such that the square

Spec(R[ε]) G

Spec(R) Spec(k)

f

u e

commutes. As |u| is a homeomorphism (the bars denote the map of under-
lying topological spaces), |f | is the constant map with value e, the identity
element. Thus f is given by a sheaf morphism |f |−1OG → R[ε]. As |f |−1OG
is the sheafification of the constant presheaf of value OG,e, f is given by a
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map of k-algebras r : OG,e → R[ε]. The commutativity of the above square
amounts to the commutativity of

OG,e R[ε]

k R

r

γ

where γ is induced by the identity e : Spec(k) → G. Using that OG,e =
k ⊕mG,e via the split short exact sequence

0 mG,e OG,e k 0
γ

we see that the last square is commutative if and only if r(mG,e) ⊂ Rε. As
ε2 = 0, using Rε ∼= R, this gives an element of

Lie(G)(R) = HomMod(k)(mG,e/m
2
G,e, R)

Conversely, given an element of Lie(G)(R), we get a map of k-modules
mG,e → Rε, and direct summing it with the structure homomorphism k →
R, we get a map of k-modules OG,e → R[ε] that is actually a k-algebra
homomorphism. This gives an isomorphism K ∼= Lie(G) (naturality on R is
straigthforward).

We now check that the isomorphism K ∼= Lie(G) is a group homomor-
phism. The multiplication G×G→ G induces on stalks, as e is k-rational,
a local k-algebra homomorphism OG,e → OG,e⊗kOG,e. Moreover, the com-
positions

OG,e OG,e ⊗k OG,e OG,e ⊗k k ∼= OG,e
me id⊗µe

and

OG,e OG,e ⊗k OG,e k ⊗k OG,e ∼= OG,e
me µe⊗id

are both the idenditiy on OG,e. Using the isomorphism OG,e ⊗k OG,e =
k⊕(k⊗mG,e)⊕(mG,e⊗k)⊕(mG,e⊗mG,e), this gives thatme(a+b) = a+1⊗b+
b⊗1+o(b), for a ∈ k and b ∈ mG,e, where o(b) ∈ mG,e⊗mG,e. If f, g ∈ K(R),
f, g, fg correspond as before to k-algebra maps r(f), r(g), r(fg) : OG,e →
R[ε] such that the image of mG,e is contained in Rε. As fg is the composition

Spec(R[ε]) G×G G
(f,g) m

we have that r(fg) is the composition

OG,e OG,e ⊗k OG,e R[ε]
me r(f)tr(g)

14



From the above observation aboutme we get that r(fg)|mG,e = r(f)|mG,e+
r(g)|mG,e and thus the isomorphism K(R) → Lie(G)(R) is a group homo-
morphism. This gives the short exact sequence stated in the lemma. We
omit the proof that it is natural in G, but it is easy.

It is left to prove that the action by conjugation of TG on Lie(G) is
k-linear. As the action of Lie(G) on itself by conjugation is trivial, Lie(G)
being commutative, the action of TG descends to an action of G on Lie(G)
and it is enough to prove that this action is k-linear. Let g ∈ G(R). Con-
jugation by g induces a group automorphism GR → GR, where GR =
G×Spec(k) Spec(R). This induces a map of stalks at the identity that in turn
induces an R-linear map T : R ⊗k mG,e → R ⊗k mG,e. If f ∈ Lie(G)(R),
extending schalars, f gives R ⊗k mG,e → R, precomposing this map with
T and then restricting scalars we obtain an element of Lie(G)(R). As T
is R-linear, the map Lie(G)(R) → Lie(G)(R) induced by the action of g is
R-linear.

We will now introduce a convenient notation. Let R be a k-algebra, let
S be an R-algebra and let β ∈ S be an element with β2 = 0. There is a
unique map of R-algebras R[ε] → S sending ε to β. If X ∈ Lie(G)(R), we
define eβX ∈ G(S) to be the image of X via the composition

Lie(G)(R) G(R[ε]) G(S)

As the maps involved are group homomorphisms, we have eβ(X+Y ) = eβXeβY .
Now, let a ∈ R and let ua : R[ε] → R[ε] be the unique map of R-algebras
sending ε 7→ aε. We get a commutative diagram

Lie(G)(R) G(R[ε]) G(S)

Lie(G)(R) G(R[ε]) G(S)

·a

ε7→aβ

ua id

ε7→β

where the proof of 4.2 shows that the left vertical arrow is multiplication
by a. Thus we get the equality eβ(aX) = e(βa)X . A similar argument shows
that if α, β ∈ S have zero square, then eα(βX) = e(αβ)X .

Definition 4.3. The linear action of G on Lie(G) gives a representation

Ad: G→ GLLie(G)

called the adjoint representation. Taking Lie, we get a k-linear map

ad: Lie(G)→ gl(Lie(G))
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For x, y ∈ Lie(G), we define the bracket

[x, y] = ad(x)(y)

By 4.2 and by definition, this bracket is k-bilinear

Remark 4.4. By definition of Ad, we have that, if R is a k-algebra, x ∈ G(R)
and X ∈ Lie(G)(R), then we have the equality eεAd(x)(X) = xeεXx−1.

Proposition 4.5 (Functoriality of Ad). If f : G → H is a group homo-
morphism, then the induced map Lie(G) → Lie(H) is a morphism of G-
representations, where Lie(H) is a G-representation via G→ H.

Proof. Let g = Lie(G) and h = Lie(H). We have to see commutativity of

G× g g

H × h h

Ad

f×df df

Ad

If x ∈ G(R) and X ∈ g(R), the top arrow sends (x,X) to df(Ad(x)(X))
whereas the bottom arrow sends it to Ad(f(x))(df(X)). Applying eε·, which
is injective, we get

eεdf(Ad(x)(X)) = f(eεAd(x)(X)) = f(xeεXx−1) = f(x)eεdf(X)f(x)−1 =

= eεAd(f(x))(df(X))

as required.

Recall that for a k-vector space V , the Lie algebra gl(V ) is the k-vector
space Endk(V ) endowed with the commutator bracket.

Proposition 4.6. Let V be a finite dimensional k-vector space. Then
Lie(GLV ) = gl(V ) and the adjoint representation

Ad : GLV → GLgl(V )

is given by conjugation. Moreover,

ad : gl(V )→ gl(gl(V ))

is the usual adjoint representation for the Lie algebra gl(V ).

Proof. For a k-algebra R, GLV (R) ⊂ EndR(VR), where VR = V ⊗k R. The
map R → R[ε] induces an injection EndR(VR) ⊂ EndR[ε](VR[ε]) and we
have the equality EndR(VR) ⊕ εEndR(VR) = EndR[ε](VR[ε]). The equality
GLV (R[ε]) = GLV (R) ⊕ εEndR(VR) inside EndR[ε](VR[ε) (where here ⊕
should really be ×) is readily checked.
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The short exact sequence

1 EndR(VR) = gl(V )(R) GLV (R[ε]) GLV (R) 1u v

where u : A 7→ IV + εA and v : B + εC 7→ B, identifies gl(V ) ∼= Lie(GLV )
(actually it should be checked that this isomorphism is also k-linear, not
just a group homomorphism). Once we have this, the fact that Ad is given
by conjugation is tautological from its definition.

Let us compute ad. By 4.2, there is a commutative square

gl(V ) T GLV

gl(gl(V )) T GLgl(V )

eε·

ad T Ad

eε·

If R is a k-algebra and A ∈ gl(V )(R), the top arrow of the square sends A
to

T Ad(eεA) = conjIV +εA = (B 7→ (IV + εA)B(IV + εA)−1) =

= (B 7→ (IV + εA)B(IV − εA)) = (B 7→ B + ε(AB −BA)) =

= Igl(V ) + ε(LA −RA) = eε(LA−RA)

where LA ∈ gl(V ) is left multiplication by A and RA is right multiplication
by A. The bottom arrow of the square is eε ad(A) so, eε· being injective, we
have that ad(A) = LA −RA, as desired.

Remark 4.7. Suppose that r : G → GLV is a reprsentation and call g =
Lie(G). Then if v ∈ VR for a k-algebra R and if X ∈ g(R), then we have
the equality

v + εdr(X)(v) = eεdr(X)(v) = r(eεX)(v)

in VR[ε]. Indeed, I+εdr(X) = eεdr(X) by the proof of the above proposition.
If we apply this to r = Ad, we get that for X,Y ∈ g(R), we have the

equality Y + ε[X,Y ] = Ad(eεX)(Y ) inside g(R[ε]).

Proposition 4.8. For an algebraic group G, the bracket on Lie(G) as de-
fined above gives Lie(G) the structure of a Lie algebra over k. Moreover, if
f : G→ H is a group homomorphism, the induced map Lie(G)→ Lie(H) is
a morphism of Lie algebras.

Proof. Call Lie(G) = g. We first show the second statement, namely that

df([X,Y ]) = [df(X), df(Y )]
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for X,Y ∈ g. The equality holds if

df(Y ) + εdf [X,Y ] = df(Y ) + ε[df(X), df(Y )]

inside (k[ε]). The left hand side is df(Y + ε[X,Y ]) = df(Ad(eεX)(Y )) by
the previous remark, whereas the right hand side is Ad(eεdf(X))(df(Y )), and
both are equal by 4.5.

The above fact applied to Ad: G → GLg implies that ad: g → gl(g)
preserves the bracket, i.e. that the Jacobi identity holds. To prove that g is
a Lie algebra, it is only left to show that [X,X] = 0 for X ∈ g. We give the
proof assuming G is affine. By 2.22, take r : G → GLV injective, where V
is some finite dimensional k-vector space. Then, by 4.10, dr : g → gl(V ) is
injective too, so dr[X,X] = [dr(X), dr(X)] = 0 (by 4.6), and thus [X,X] =
0.

For the case where G is not affine, we have the left translation action
G → Aut(G), where Aut(G) is the group functor Aut(G)(R) = AutR(GR).
There is a general formalism for Lie algebras of group functors (defined by
the short exact sequence of 4.2), and one can compute that Lie(Aut(G)) =
Der(OG), the Lie algebra of the structure sheaf of G (that is a Lie algebra).
Then the fact that Lie(G) → Lie(Aut(G)) is injective gives the result. For
the details of this argument, see [2], II, §4, no4, 4.5, and for a beautiful
formalism for Lie algebras of group functors and algebraic groups, see the
whole section II, §4, Calcul différentiel sur les schémas en groupes.

Remark 4.9. For an algebraic group G, let Rep(G) be the category of finite
dimensional representations of G, and for a finite dimensional Lie algebra
L over k, let Rep(L) be the category of finite dimensional representations
of L. If (V, r) is a finite dimensional representation of G, applying Lie to
the map G → GLV we get Lie algebra homomorphism dr : LieG → gl(V )
thus obtaining a Lie algebra representation (V, dr) of Lie(G) on V . If (W, s)
is another G-representation and f : V → W is a map of G-representations,
then it is a map of Lie(G)-representations as well. Indeed, for a k-algebra
R, v ∈ VR and x ∈ G(R), we have r(x)f(v) = f(s(x)v), and we want to
prove that if X ∈ Lie(G) then dr(X)(f(v)) = f(ds(X)(v)). This will follow
from the equality

f(v) + εdr(X)(f(v)) = f(v) + εf(ds(X)(v))

inWR[ε]. The left hand side is eεdr(X)(f(v)) = r(eεX)(f(v)) = f(s(eεX)(v)) =
f(v + εds(X)(v)), which equals the right hand side. Here we used 4.7.

We thus get a functor Rep(G) → Rep(Lie(G)) that relates represen-
tations of the group G and of its Lie algebra. Understanding properties of
this functor will sometimes allow us to reduce problems of algebraic groups
to problems of Lie algebras.
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Proposition 4.10. Let k be a field. The functor Lie from the category of
algebraic groups over k to Lie algebras over k preserve limits. In particular
it preserves kernels, which precisely means that if ϕ : G→ H is a homomor-
phism of algebraic groups over k, then the induced morphism of Lie algebras
Lie(kerϕ)→ ker(Lieϕ) is an isomorphism.

The idea of the proof is that the Lie algebra is the kernel of some homo-
morphism, and kernels commute with limits. For details, see [4], 10.14. The
fact that the functor Lie preserves limits makes us suspect that it may have
a left adjoint. This is indeed the case if we asume that the characteristic
of k is 0 and we restrict to semisimple algebraic groups and semisimple Lie
algebras. This is essentially the content of [4], 23.70, that uses Tannaka
reconstruction theorem to construct an algebraic group from the category
of finite dimensional representations of a Lie algebra. I don’t know what
happens in general, and I ask

Question 4.11. Does the functor Lie defined in 4.10 has a left adjoint in
general? In that case, can we identify its essential immage with the simply
connected groups?

The following result in characteristic 0 is very powerful.

Proposition 4.12. Let k be a field of characteristic 0. Then the functor
G 7→ Lie(G) from the category of affine connected algebraic groups over k
to the category of Lie algebras over k is faithful.

Proof sketch. As G is smooth over Spec(k), the irreducible components of
G are disjoint open subschemes, so that G being connected implies that G is
irreducible. As G is also reduced, it is integral. This implies that the functor
G 7→ OG,e is faithful. As OG,e is a Noetherian local domain, it injects into

its completion ÔG,e, so that the functor G 7→ ÔG,e is also faithful. It turns

out that ÔG,e has the additional structure of a formal group, and that in fact

we have a faithful functor G 7→ ÔG,e from the category of affine connected
algebraic groups over k to the category of formal groups over k. There is
the notion of the Lie algebra of a formal group, and the Lie algebra of ÔG,e
is just Lie(G). The result follows because, over a field of characteristic 0,
the functor that sends a formal group to its Lie algebra is an equivalence
of categories (see [7], page 146, Theorem 3. See also sections 6 and 7 of
Chapter IV of the same book for the definition of a formal group, and the
Wikipedia page on formal groups for a nice survey).

4.2 Internal Hom for representations

Let G be an algebraic group over a field k and let (V, v) and (W,w) be rep-
resentations of G with V finite dimensional. We can define a representation
(Homk(V,W ), o) of G functorially on k-algebras R, sending g ∈ G(R) to the
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automorphism of Homk(V,W ) ⊗k R ∼= HomR(V ⊗k R,W ⊗k R) (note that
this holds because V is finite dimensional) that sends f to w(g) ◦ f ◦ v(g)−1.

Proposition 4.13. In the set up of the above paragraph, we have

1. If f ∈ Homk(V,W ), then f is a morphism of representations of G if
and only if k〈f〉 is a trivial subrepresentation of Homk(V,W ).

2. The induced representation (Homk(V,W ), do) of Lie(G) is given by
Lie(G)→ gl(Homk(V,W )) : x 7→ (f 7→ dw(x) ◦ f − f ◦ dv(x)).

3. If f ∈ Homk(V,W ), then f is a morphism of representations of Lie(G)
if and only if k〈f〉 is a trivial Lie(G)-subrepresentation of Homk(V,W ).

Proof. The first statement follows from the definition of u and the third fol-
lows from the second. To prove the second statement, we use the naturality
of the short exact sequence of 4.2, which gives the commutative square

Lie(G) gl(Homk(V,W ))

TG T (GLHomk(V,W ))

do

eε· eε·

To

Evaluating on a k-algebra R, and taking x ∈ Lie(G)⊗k R, we get

eεdo(x) = f 7→ Tw(eεx) ◦ f ◦ (Tv(eεx))−1 = f 7→ eεdw(x) ◦ f ◦
(
eεdv(x)

)−1
=

= f 7→ (I+εdw(x))◦f ◦ (I−εdv(x)) = f 7→ f +ε (dw(x) ◦ f − f ◦ dv(x)) =

= I + ε
(
Ldw(x) −Rdv(x)

)
= eε(Ldw(x)−Rdv(x))

where I denotes each time the identity on the corresponding space and L
and R denote left and right multiplication. As eε· is injective, this gives the
result.

5 Diagonalisable groups

The aim of this section is to introduce one of the simplest class of algebraic
groups, diagonalisable algebraic groups, and to prove that they are linearly
reductive. We fix a field k.

Recall that a character of an affine algebraic group G over k is a ho-
momorphism χ : G → Gm. It corresponds to a k-algebra homomorphism
ϕ : k[T, T−1]→ O(G), which in turn corresponds to an element ϕ(T ) = a ∈
O(G)×. Let µ̂ denote the comultiplication of G. The homomorphism ϕ
determines a group homomorphism if and only if the square
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k[T, T−1] O(G)

k[T, T−1]⊗k k[T, T−1] O(G)⊗k O(G)

ϕ

µ̂

ϕ⊗ϕ

commutes, where the first vertical arrow sends T 7→ T ⊗ T . This happens if
and only if µ̂(a) = a⊗a, and an element a ofO(G)× with this property is said
to be group-like. Thus the characters X(G) of G are in bijection with group-
like elements of O(G). The set of group-like elements forms a subgroup of
O(G)×, so X(G) inherits an abelian group structure. Functorially, the sum
of two characters χ and χ′ is described by the property that for all k-algebras
R and for all g ∈ G(R), (χ + χ′)(g) = χ(g)χ′(g). We shall denote by a(χ)
the group-like element associated with a character χ.

Now, let M be a finite type abelian group, written multiplicatively. The
functor

D(M) : Algk → Grp : R 7→ HomMod(Z)(M,R×)

is representable by the k-algebra k[M ] that has M as a vector space basis
and where multiplication is induced by the group law on M . The k-algebra
k[M ] is of finite type because M is an abelian group of finite type. Hence
D(M) is an algebraic group. An algebraic group is said to be diagonalisable
if it is isomorphic to D(M) for some finite type abelian group M . We have
the following

Proposition 5.1. The group-like elements of an affine algebraic group G
are k-linearly independent. Moreover, the group G is diagonalisable if and
only if the group-like elements form a k-vector space basis of O(G).

Proof. We prove by induction thatj n + 1 distinct group-like elements of
O(G) are linearly independent. For n = 0, a group-like element is a unit,
so not 0. For n > 0, suppose that e and e1, . . . , en are distinct group-like
elements and e =

∑
i ciei, with the ci ∈ k non-zero. The equality µ̂(e) = e⊗e

gives ∑
i

ciei ⊗ ei =
∑
i

cicjei ⊗ ej

Using that the ei are k-linearly independent by induction hypothesis we get
that cici = ci for all i, so all ci = 1. But we also have cicj = 0 for i 6= j,
which gives n = 1 and e = e1, a contradiction.

Suppose that the abelian group M of group-like elements generate is a
basis of O(G). As O(G) is a finite type k-algebra, there is a finite number of
elements a1, . . . , an of M that generate O(G) as a k-algebra. Using the linear
independence of elements of M , this implies that M is finitely generated as
Z-module. As a k-algebra, k[M ] = O(G), and the fact that µ̂(e) = e⊗ e for
e ∈ M determines the Hopf algebra structure of O(G) and gives D(M) ∼=
G.
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The characters of diagonalisable groups are easy to understand, from the
following proposition we deduce that the character group X(D(M)) of the
diagonalisable group D(M) is isomorphic to M .

Proposition 5.2. The group-like elements of k[M ] are the elements of M .

Proof. From the functorial definition of D(M), one finds that the comulti-
plication is given by µ̂(m) = m ×m for m ∈ M , so the elements of M are
group-like. Suppose that a =

∑
m∈M cmm (cm ∈ k) is group-like. Then

µ̂(a) =
∑
m∈M

cmm⊗m =
∑

m,n∈M
cmcnm⊗ n

so that cmcn = δmncm for all m,n ∈ M . As a 6= 0, we find that one of the
cm should be 1 and the others should all be 0.

Our definition of D(M) immediately gives that D(M1⊕M2) ∼= D(M1)×
D(M2). From this and the classification of finite type abelian group we see
that any diagonalisable algebraic group is a product of copies of D(Z) = Gm

and D(Z/nZ) = µn. Exploiting this fact and with some more work one can
prove

Theorem 5.3. The functor D : M 7→ D(M) from the opposite category
of finite type abelian groups to the category of algebraic groups over k is
fully faithful and faithfully exact. Quotients and subgroups of diagonalis-
able algebraic groups are again diagonalisable. Commutative extensions of
diagonalisable algebraic groups are again diagonalisable.

For the proof, see [4], 12.9.
From the theorem we deduce that the only short exacts sequences with

Gm as middle term are isomorphic to

1 µn Gm Gm 1r 7→rn

for some n ∈ N.
We now study representations of diagonalisable algebraic groups, but

first let us define some new terminology. If G is an affine algebraic group,
χ : G → Gm is a character of G and V is a representation of G with dual
action σ̂, then G is said to act on V through χ if the corresponding map
G→ GLV factors as

G Gm GLV
χ

where the second map corresponds to the structure Gm-action on V . This
happens if and only if for all v ∈ V , σ̂(v) = a(χ) ⊗ v. Note that if V is
one-dimensional, as GLV ∼= Gm, G acts on V by some uniquely determined
character. More generally, if G doesn’t act through χ on V , we can still
consider the subspace Vχ = {v ∈ V : σ̂(v) = a(χ) ⊗ v} of V , which is the
biggest subrepresentation of V on which G acts through χ. We have
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Proposition 5.4. Let G be an affine algebraic group over k, and let V be
a representation of G. Then the subrepresentations (Vχ)χ∈X(G) have direct
sum.

Proof. Let (χi)
n
i=1 be different characters of G, and let vi ∈ Vχi such that∑

i vi = 0. Applying the dual action we find that
∑

i a(χi)⊗ vi = 0. As the
a(χi) are linearly independent (5.1), this forces vi = 0 for all i.

The main result on the representations of diagonalisable algebraic groups
is

Theorem 5.5. Let G be an affine algebraic group over k. The following are
equivalent:

1. G is diagonalisable,

2. for every representation V of G we have V =
⊕

χ∈X(G) Vχ,

3. every representation of G is sum of one-dimensional representations.

As a consecuence, every diagonalisable group is linearly reductive.

Proof. 1. 1 implies 2. We already know that the Vχ have direct sum.
Let M be the set of group-like elements of O(G) and let v ∈ V . Then
σ̂(v) =

∑
m∈M m ⊗ vm for some vm ∈ V , where σ̂ is the dual action.

If e is the unit of G, then (ê ⊗ 1V ) ◦ σ̂ = 1V , so v =
∑

m vm. On the
other hand (µ̂⊗ 1V ) ◦ σ̂ = (1O(G) ⊗ σ̂) ◦ σ̂, so that

∑
mm⊗m⊗ vm =∑

mm⊗ σ̂(vm), which implies σ̂(vm) = m⊗vm by linear independence
of the m. Thus vm ∈ Vχm if χm is the character corresponding to the
group-like element m, and v ∈

⊕
χ Vχ.

2. 2 implies 3. Indeed, the Vχ are sum of one-dimensional representa-
tions.

3. 3 implies 2. Indeed, each one-dimensional subrepresentation of V is
contained in one of the Vχ.

4. 2 implies 1. Let us apply this fact to the regular representation of G,
in which the underlying verctor space is O(G) and the dual action is
the comultiplication µ̂. Let M be the set of group-like elements. It
is enough to prove that the elements of M span O(G) (see 5.1). Let
r ∈ O(G)χ and let m = a(χ). Then µ̂(r) = m ⊗ r and by the unit
identity r = ê(r)m. Thus O(G)χ = k〈m〉 and the elements of M span
O(G).

As every representation of a diagonalisable group is sum of simple repre-
sentations, every representation is semisimple, so every diagonalisable group
is linearly reductive.
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The class of diagonalisable algebraic groups can be enlarged a little bit:

Definition 5.6. An affine algebraic group G over k is said to be of multi-
plicative type if there is a field extension k′ of k such that the base change
Gk′ is a diagonalisable algebraic group over k′.

Among groups of multiplicative type, those that become isomorphic to
a finite product of copies of Gm after a field base change are called torus. A
split torus is a group isomorphic to a finite product of copies of Gm. For a
representation V of a torus T , the characters χ of T such that Vχ 6= 0 are
called the weights of the representation, and the corresponding Vχ’s are the
weight spaces.

Using Galois descent and little more, one can prove:

Theorem 5.7. Algebraic groups of multiplicative type are linearly reductive.

For a proof, see [4], 12.30.
A final comment on diagonalisable algebraic groups over a field of char-

acteristic 0: if G is one such group, then Lie(G) is the abelian Lie algebra
of dimension dimG. This follows from the fact that diagonalisable groups
are of the form µn1 × · · ·µnk

×Gm× · · · ×Gm, that the µni are discrete (in
characteristic 0) and that taking the Lie algebra behaves well with products
of groups, together with the fact that Lie(Gm) = Lie(GLk) = gl(k). Note
however that representations of abelian Lie algebras need not be semisim-
ple, so we have found a family of examples of linearly reductive groups G
for which the functor Rep(G)→ Rep(Lie(G)) is not essentially surjective.

6 Semisimplicity

The main result in this section is Theorem 6.6 that allows us to compare
categories of representations of a connected algebraic group and its Lie al-
gebra in characteristic 0. The main application we will give is a proof of
the fact (6.10) that reductivity and linear reductivity coincide in character-
istic 0. Along the way, we also prove that the Lie algebra of a semisimple
group is semisimple (6.5). We start with several technical results that will
be necessary for our goals.

6.1 Technical preliminaries

Proposition 6.1. Let G be an affine algebraic group over a field k, let V
be a representation of G and let W be a vector subspace of V . Define the
group functor

StabG(W ) : R 7→ {g ∈ G(R) : g(WR) ⊂WR}

where WR = W ⊗kR. Then StabG(W ) is representable, and it is thus an al-
gebraic subgroup of G. Moreover, via the induced inclusion Lie(StabG(W ))→
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Lie(G) we have that Lie(StabG(W )) = StabLie(G)(W ), where StabLie(G)(W )
is the stabiliser of W for the induced representation of Lie(G) on V .

Proof. Let A = OG(G) and let ρ : V → V ⊗k A be the coaction. Let
(ei)i∈ItJ be a basis of V such that (ei)i∈I is a basis of W . Let g ∈ G(R) =
HomAlgk

(A,R). There are (aij) in A such that ρ(ei) =
∑

j ej⊗aji for every
i ∈ I t J . The homomorphism g induces

g : W → V ⊗R

and we want to see when g(W ) ⊂W ⊗R. We have

∀i ∈ I, g(ei) =
∑
j∈ItJ

ej ⊗ g(aji) ∈W ⊗R ⇐⇒ ∀i ∈ I, ∀j ∈ J, g(aji) = 0

Therefore, g ∈ StabG(W )(R) if and only if g : A → R factors through A →
A/I, where I is the ideal of A generated by the aij with i ∈ I and j ∈ J .
Thus StabG(W ) is represented by Spec(A/I).

Let us now prove the equality Lie(StabG(W )) = StabLie(G)(W ). Just
looking at the definition of StabG(W ), we see that

StabG(W ) = G×GLV
StabGLW

(W )

As taking the Lie algebra preserves limits (4.10), and assuming that the
result is true for GLV , we get that

Lie(StabG(W )) = Lie(G)×gl(V ) Lie(StabGLV
(W )) =

= Lie(G)×gl(V ) Stabgl(V )(W ) = StabLie(G)(W )

and thus we can assume that G = GLV and we have the standard represen-
tation on V . We have a diagram of short exact sequences

1 Lie(StabGLV
(W )) T StabGLV

(W ) StabGLV
(W ) 1

1 gl(V ) T GLV GLV 1

where the vertical arrows are injective and thus the square on the left is
cartesian. For a k-algebra R and a ∈ gl(V )(R), we have

a ∈ Lie(StabGLV
(W ))(R) ⇐⇒ 1V + εa ∈ T StabGLV

(W )(R) =

= StabGLV
(W )(R[ε]) ⇐⇒ (1V + εa)(WR ⊕ εWR) ⊂WR ⊕ εWR ⇐⇒

⇐⇒ a(WR) ⊂WR ⇐⇒ a ∈ Stabgl(V )(W )(R)

as desired.
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Corollary 6.2. Let G be an affine connected algebraic group over a field
k of characteristic 0 and let V be a finite dimensional representation of G.
Let W ≤ V be a subspace. Then W is a G-subrepresentation of V if and
only if it is a Lie(G)-subrepresentation of V (for the induced representation
of Lie(G) on V ).

Proof. The subspace W is G invariant if and only if StabG(W ) = G. By
2.18, this happens if and only if dim Lie(StabG(W )) = dim Lie(G) and as
Lie(StabG(W )) = StabLie(G)(W ) by the previous proposition, this is equiv-
alent to StabLie(G)(W ) = Lie(G), i.e. to W being Lie(G)-invariant.

Proposition 6.3. Let G be an affine connected algebraic group over a field
k and assume either that G is reductive or that char(k) = 0. Then Z(G) =
ker(Ad), where Z(G) is the centre of G and Ad is the adjoint representation
Ad : G → GLLie(G). In particular, under the assumptions, the Lie algebra
Lie(Z(G)) of the centre of G equals the centre Z(Lie(G)) of the Lie algebra
of G.

Proof. The centre ofG is the subgroup functor Z(G)(R) = {g ∈ G(R) : ∀R′ ∈
obAlgR, gR′ ∈ Z(G(R′))}. It is representable by a scheme ([4] 1.92), so it
is an algebraic subgroup of G. To prove Z(G) = ker Ad it is enough ([4],
1.44) to see that Z(G)(k) = ker Ad(k) and we may as well assume that k
is algebraically closed, as Z(Gk) = Z(G)k and the same holds for ker Ad.
Let g ∈ G(k). Then g ∈ Z(G)(k) if and only if the conjugation by g homo-
morphism conjg : G→ G is the identity. By 4.12, conjg = idG if and only if
Lie(conjg) = Ad(g) = idLie(G), which precisely means g ∈ ker Ad(k).

Proposition 6.4. Let G be an affine connected algebraic group over a field
k of characteristic 0 and let H ≤ G be a subgroup. Suppose that Lie(H) is
an ideal of Lie(G). Then the identity component H◦ of H is normal in G.

Proof. As Lie(H) = Lie(H◦) we may assume that H is connected. We may
define the normaliser NG(H) of H in G functorially as NG(H)(R) = {g ∈
G(R) : ∀R′ ∈ obAlgR, gR′H(R)g−1R′ ⊂ H(R)}. It is representable by [4],
1.83. Moreover, by [4], 10.48, we have the equality Lie(NG(H))/Lie(H) =
(Lie(G)/Lie(H))H , where the last. As H is connected, (Lie(G)/Lie(H))H =
(Lie(G)/Lie(H))Lie(H), the biggest Lie(H)-invariant subspace of Lie(G)/Lie(H)
where Lie(H) acts via the 0 homomorphism. Indeed, call V = Lie(G)/Lie(H).
A subspace W of V is H-invariant if and only if it is Lie(H)-invariant by
6.2. Moreover, in that case the induced H → GLW is trivial if and only if
Lie(H)→ gl(W ) is trivial, by 4.12.

Now, the subalgebra Lie(H) of Lie(G) is an ideal if and only if

Lie(NG(H))/Lie(H) = (Lie(G)/Lie(H))Lie(H) = Lie(G)/Lie(H)

which happens if and only if Lie(NG(H)) = Lie(G), which is true (2.18) if
and only if NG(H) = G, i.e. if H is normal in G.
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6.2 Main results

Proposition 6.5. Let G be a semisimple algebraic group over a field k of
characteristic 0. Then Lie(G) is a semisimple Lie algebra.

Proof. It is enough to prove that any commutative ideal n C Lie(G) is 0.
As G is connected and n is an ideal of Lie(G), n is stable under the adjoint
action of G on Lie(G) by 6.2. We thus have a representation (n, ρ) of G,
where ρ : G → GLn, and the induced representation (Lie(G), dρ) of Lie(G)
on n, which is given by the Lie bracket. Let H = ker ρ. Then

Lie(H) = ker dρ = {h ∈ Lie(G) : [h, n] = 0}

by 4.10. Note that Lie(H) is an ideal of Lie(G), as if x ∈ Lie(G), h ∈ Lie(H)
and n ∈ n, then

[[x, h], n] = [x, [h, n]] + [h, [n, x]] = [x, 0] + 0 = 0

By 6.4, this implies that H◦ C G is normal. Thus the center Z(H◦) C G
is normal and abelian, and it is therefore finite by semisimplicity of G.
Therefore 0 = Lie(Z(H◦)) = Z(Lie(H◦)) = Z(Lie(H)) ⊃ n by 6.3, and thus
n = 0.

Theorem 6.6. Let k be a field of characteristic 0 and let G be an affine
connected algebraic group over k. Then the functor

Rep(G)→ Rep(Lie(G))

from 4.9 is fully faithful and, identifying Rep(G) with its essential image in
Rep(Lie(G)), the following property holds: if

0 W V U 0

is a short exact sequence in Rep(Lie(G)) and V is in Rep(G), then W and
U are also in Rep(G).

Proof. Let us first prove that the functor is fully faithful. Let (V, v) and
(W,w) be representations of G and let f ∈ Homk(V,W ). Recall that there
is a representation (Homk(V,W ), o) of G described in 4.13. We have to prove
that f is a morphism of G-representations if and only if f is a morphism of
the induced Lie(G)-representations. By 6.2, k〈f〉 is a G-subrepresentation
of (Homk(V,W ), o) if and only if k〈f〉 is a Lie(G)-subrepresentation of
(Homk(V,W ), do). Moreover, in that case, 4.12 implies that k〈f〉 is triv-
ial as G-representation if and only if k〈f〉 is trivial as Lie(G)-representation.
Then 4.13 implies that f is a morphism of G-representations if and only if
f is a morphism of Lie(G)-representations. This proves fully faithfulness.
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Now suppose that

0 W V U 0a b

is a short exact sequence in Rep(Lie(G)) and V is in Rep(G). Note that
there is a unique Lie(G)-representation structure on W (resp. U) such that
a (reps. b) is a morphism, because a (resp. b) is injective (resp. surjec-
tive). The vector space W is a Lie(G)-invariant subspace of V , so it is
also G-invariant by 6.2 and thus inherits a unique G-representation struc-
ture such that a is a morphism of G-representations. This also gives U a
structure of G-representation such that b is a morphism, and we thus get a
short exact sequence of G-representations. By the uniqueness of structure of
Lie(G)-representations mentioned before, the induced short exact sequence
of Lie(G)-representations must be the original one, and we are done.

Corollary 6.7. Let k be a field of characteristic 0, let G be an affine con-
nected algebraic group over k and let (V, r) be a finite dimensional represen-
tation of G. Then (V, r) is semisimple if and only if the induced represen-
tation (V, dr) of Lie(G) is semisimple.

In particular, if G is semisimple, then every finite dimensional represen-
tation of G is semisimple (i.e. G is linearly reductive).

Proof. The first part follows trivially from 6.6. For the second part we have
that Lie(G) is semisimple if G is, by 6.5, and that by Weyl’s theorem ([7],
Theorem in page 46), every finite representation of Lie(G) is semisimple.
This, together with the first part, implies the result.

Question 6.8. Can we relax hypothesis on the group and characteristic? In
particular, does it hold for arbitrary semisimple groups?

Question 6.9. Are there linearly reductive groups that admit infinite dimen-
sional representations that are not semisimple?

The following is one of the most important result in these pages, that
characterises reductive groups over a field of characteristic 0 in terms of
representations.

Theorem 6.10. Let k be a field of characteristic 0, and let G algebraic
group over k. Then G is reductive if and only if G is linearly reductive.

Proof. First, suppose that G is reductive and let V be a finite dimensional
representation of G. By 6.6, we only have to prove that the induced rep-
resentation (V, ρ) of Lie(G) on V is semisimple. By [4], Proposition 21.60,
there is an exact sequence

1 F T × S G 1
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where T is a (non-necessarily split) torus and S is semisimple. It is thus
enough to prove the result for G = T × S. In this case, Lie(G) = Lie(T )×
Lie(S) by 4.10. Note that T is connected, because after a base change of field
it is a finite product of schemes of the form Spec(k[X,X−1]), connected. We
know 5.7 that V is semisimple as a representation of T . By 6.6, this implies
that V is semisimple as a representation of Lie(T ). The fact that T is abelian
implies that Lie(T ) is abelian (indeed, Ad is trivial, so ad is trivial). Take
x1, . . . , xl ∈ Lie(T ) a basis of Lie(T ). If λi1, . . . , λimi are the eigenvalues of
xi, then V decomposes as direct sum of the subspaces V (a1, . . . , al), ai ∈
J1,miK, defined by the property that ρ(xi) acts centrally on V (a1, . . . , al)
with eigenvalue λiai . If y ∈ Lie(G) and v ∈ V (a1, . . . , al), then ρ(xi)ρ(y)v =
ρ(y)ρ(xi)v = λiaiρ(y)v, so the V (a1, . . . , al) are Lie(G)-invariant. Therefore,
changing V by each of the V (a1, . . . , al), we may assume that each ρ(xi) act
centrally on V with eigenvalue βi. In particular, every subspace of V is a
Lie(T )-subrepresentation of V . As Lie(S) is semisimple (see 6.5), there is a
direct sum decomposition V =

⊕n
i=1 Vi of V where each Vi is an irreducible

Lie(S)-subrepresentation of V . As the Vi are also Lie(T )-invariant, they are
Lie(G)-invariant. Being irreducible as a representation of Lie(S), each Vi
is also irreducible as a representation of Lie(G). Thus V is a semisimple
representation of Lie(G). This proves one implication.

Now suppose that G is linearly reductive. It is enough to prove (3.4) that
the unipotent radical N = Ru(G) of G is trivial. Let (V, r) be a nonzero
faithful finite dimensional representation of G. As N is normal in G, the
subspace V N = {v ∈ V : ∀R ∈ obAlgk, ∀h ∈ N(R), h(v⊗1) = v⊗1} of V is
G-invariant. As G is linearly reductive, there exists a G-invariant subspace
W ⊂ V such that V = V N ⊕W . As WN ⊂ V N , we have WN = 0, and as N
is unipotent, this implies W = 0. Therefore V N = V , so that N ⊂ ker r = 1,
and therefore N = 1.

Remark 6.11. A less elementary proof of 6.10 can be found in [2], page 507,
Proposition 3.3. Milne’s proof ([4], Theorem 22.42) seems to be incorrect.

Let us finish this section with a tangential question.

Question 6.12. Let G be an algebraic group over a field k, and let k′ be a
separable extension of k. Suppose that Gk′ is linearly reductive. Can we
conclude that G is linearly reductive?

7 Finite generation of the invariants

In this section we prove one of the main consequences of linear reductivity
of an algebraic group G, namely that the ring of invariants R0 of a dual
action of G on a finite type k-algebra R is again a finite type k-algebra.
This is true more generally when G is reductive (which, we recall, is only
equivalent to linearly reductive in characteristic 0), but the proof is more
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dificult and we will content ourselves with the linearly reductive case. This
finite generation result is the starting point of Geometric Invariant Theory
(see [5]). In this section, k is a field.

An immediate but important consequence of 2.21 is the following

Lemma 7.1. Let G be an affine algebraic group over k and let σ̂ : R→ O⊗R
be a dual action of G on a finite type k-algebra R, where O is the ring of
G. Then there is a finite dimensional invariant vector subspace V of R
generating R as a k-algebra.

We now are ready to define the Reynolds operator, starting by defining
the notion of invariants.

Definition 7.2. Let G be an affine algebraic group over k. Let V be a
representation of G, with dual action σ̂ : V → O ⊗ V . An element v ∈ V is
said to be an invariant if σ̂(v) = 1⊗v. We will denote V0 the set of invariant
elements elements of V .

The set V0 is actually a subrepresentation of V , and it is the biggest
trivial subrepresentation of V . If R is a k-algebra and σ̂ : R → O ⊗ R is
a dual action, then R0 is actually a subring of R: it is called the ring of
invariants of the dual action.

Proposition 7.3. Let G be a linearly reductive affine algebraic group over
k, and let A be the category of (arbitrary dimensional) representations of G.
There is a unique natural endomorphism E of the identity functor 1A such
that

1. E2 = E,

2. for every representation V , imEV = V0, the set of invariants.

The endomorphism E of 1A is called the Reynolds operator.

Proof. Let V be a finite dimensional representation. By linear reductivity,
there is a subrepresentation V1 of V such that V = V0⊕V1, where V0 is the in-
variant subrepresentation. Let S be any nontrivial simple subrepresentation
of V , then the map S → V/V1 ∼= V0 has to be 0, as any subrepresentation of
V0 is trivial. Thus S ⊂ V1. At the same time, V1 is sum of simple subrepre-
sentation, by semisimplicity. Therefore V1 is the sum of all simple nontrivial
subrepresentations of V , so it is uniquely determined. If f : V → W is a
map of finite dimensional representations, and S is a simple subrep of V ,
then f(S) is trivial if S is, and if S is nontrivial, then f(S) is nontrivial or
0. This proves that f(V0) ⊂ W0 and f(V1) ⊂ W1 (let us call this property
naturality of the splitting).

If V has arbitrary dimension, we define V1 to be the sum of all the W1,
for finite dimensional subrepresentations W of V . Then by Lemma 2.21 we
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still have V = V0 ⊕ V1 and the splitting is natural. We define EV to be the
composition V → V/V1 ∼= V0 → V (i.e. the projection onto V0). Naturality
of E follows from naturality of the splitting, and conditions 1 and 2 are
obvious from the definition. Uniqueness of E follows from uniqueness in the
finite dimensional case proven above, Lemma 2.21 and naturality.

Proposition 7.4 (Reynolds identity). Let G be a linearly reductive affine
algebraic group over k, let R be a k-algebra and let σ̂ : R→ O⊗R be a dual
action. Then the associated Reynolds operator (regardin R just as a linear
representation) ER : R → R is R0-linear. In particular, R1 = kerER is an
R0-module.

Proof. We have the direct sum R = R0 ⊕ R1, so it suffices to prove that
R0 ·R1 ⊂ R1, so that R1 is an R0-module. Let r ∈ R0. Multiplication by r
induces a morphism of linear representations R→ R, as for all x ∈ R we have
σ̂(rx) = σ̂(r)σ̂(x) = (1⊗r)σ̂(x). If S is a simple nontrivial subrepresentation
of R, then r · S is thus either 0 or nontrivial, so r · S ⊂ R1. As R1 is the
sum of all simple nontrivial subrepresentations of R, we are done.

We are ready to prove the most important result of this section.

Theorem 7.5. Let G be a linearly reductive affine algebraic group over k,
let R be a k-algebra and let σ̂ : R→ O⊗R be a dual action. Suppose that R
is of finite type as k-algebra, then the ring of invariants R0 is also a finite
type k-algebra.

Proof. The result is a consequence of a series general statements.

1. If R is Noetherian, then R0 is Noetherian.

Let I be an ideal of R0. The extended ideal is RI = (R0 ⊕ R1)I =
I ⊕ R1I, and the last sum is direct because R1I ⊂ R1, R1 being an
R0-module. Thus RI ∩R0 = I and therefore the poset of ideals of R0

injects into the poset of ideals of R, from which the conclusion follows.

2. If R is of finite type and there is an N-grading on R, R =
⊕

n∈NR
(n),

such that R(0) = k and the grading is compatible with the action of G
(i.e. for all n ∈ N, σ̂(R(n)) ⊂ O⊗R(n)), then R0 is of finite type (say
that R is respected if it admits such a grading).

By the previous statement, R0 is Noetherian. It also admits an N-

grading with R
(0)
0 = k, as a consequence of R being respected. It

follows that R0 is of finite type (see [1], Proposition 10.7).

3. If R is of finite type, there is a finite type k-algebra R′ endowed with a
dual action of G and an equivariang surjection R′ → R such that R′

is respected.
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Let V be a finite dimensional invariant vector subspace of R containing
a set of generators. There is a unique dual (k-algebra) action of G
on Sym(V ) such that V → Sym(V ) is equivariant, and this action
is readily seen to be respected. The induced map Sym(V ) → R is
equivariant and surjective.

4. If R′ is another k-algebra equipped with a dual action of G and f : R′ →
R is an equivariant surjective k-algebra homomorphism, then the in-
duced map f0 : R′0 → R0 is surjective.

By naturality of the Reynolds operator E, we have R0 = E(R) =
E(f(R′)) = f(E(R′)) = f(R′0).

Starting with R of finite type, statement 3 gives as a surjection R′ → R
with R′ of finite type and respected. By statement 4, we get a surjection
R′0 → R0, and by statement 2, R′0 is of finite type. This implies that R0 is
of finite type.
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