Notes for a talk on the Hilbert-Mumford criterion

Andrés Ibáñez Núñez

June 2023

Contents

1 Some results on reductive actions on affine schemes

3.1 Relation to convex geometry . 5
3.2 Tuples of points in the projective line 5
3.3 Grassmannians as an affine GIT quotient 6

1 Some results on reductive actions on affine schemes

Lemma 1. Let k be a field and let G be a linea algebraic group over k, acting on an affine scheme $X=\operatorname{Spec}(A)$ of finite type over k. Let S be a closed G-subscheme of X. Then

1. There is a G-equivariant closed embedding $f: X \rightarrow V$, where V is a finite dimensional G-representation.
2. There is a G-equivariant morphism $f: X \rightarrow V$, where V is a finite dimensional G-representation, such that $f^{-1}(0)=S$.

Proof. Let $V^{\vee} \subset A$ be a finite dimensional G-subrep. This gives a map $\varphi: \operatorname{Sym} V^{\vee} \rightarrow$ A of k-algebras that is also a map of G-representations and hence a G-equivariant morphism $f: X \rightarrow V$. If V generates A as a k-algebra, then φ is surjective and f is a closed immersion. This proves the first part. In any case, $f^{-1}(0)$ is the closed subscheme of X whose ideal is that geneated by V, so we can choose V to generate the ideal of S, and hence the second part is proven. The crucial fact that we are using is that the G-subrepresentation (in this case of A) generated by a finite number of elements is finite dimensional.

Theorem 2. Let k be an algebraically closed field, let G be a connected reductive group over k and let X be an affine finite-type G-scheme over k. Let $x \in X(k)$ and let S be a closed G-subscheme of X. Suppose that $S \cap \overline{G x} \neq \varnothing$. Then there is a one-parameter subgroup $\lambda: \mathbb{G}_{m} \rightarrow G$ of G such that the limit $\lim _{t \rightarrow 0} \lambda(t) x$ exists and is in S.

Proof. Choose a point $y \in(S \cap \overline{G x})(k)$. Take an integral curve $C_{1} \subset \overline{G x}$ containing both x and y. Consider the orbit map $h: G \rightarrow X: g \mapsto g x$ and take a smooth projective curve C and a rational map $a: C \rightarrow G$ such that the composition $f=h \circ a$ dominates C_{1}. There is a point $\sigma \in C(k)$ such that $f(\sigma)=y$. Let $R=k \llbracket t \rrbracket$ and $K=k((t))$. Since the completion $\widehat{\mathcal{O}}_{C, \sigma} \cong R$, we get a diagram

To continue, we need Cartan-Iwahori decomposition, which states that

$$
G(K)=G(R) \operatorname{Hom}\left(\mathbb{G}_{m}, G\right) G(R)
$$

More precisely, for all $g \in G(K)$, there are $h_{1}, h_{2} \in G(R)$ and a cocharacter $\lambda: \mathbb{G}_{m} \rightarrow G$ such that $g=h_{1 \mid \operatorname{Spec} K} \cdot \lambda_{\mid \operatorname{Spec} K} \cdot h_{2 \mid \operatorname{Spec} K}$. Note that we can regard $G(R)$ as a subgroup of $G(K)$.

Using this for our particular $g \in G(K)$ above, we get

$$
y=\lim _{t \rightarrow 0} g(t) x=\lim _{t \rightarrow 0} h_{1}(t) \lambda(t) h_{2}(t) x
$$

and

$$
h_{1}(0)^{-1} y=\lim _{t \rightarrow 0} h_{1}(t)^{-1} g(t) x=\lim _{t \rightarrow 0} \lambda(t) h_{2}(t) x
$$

Replacing x by $h_{2}(0)$ we may assume $h_{2}(0)=e \in G(k)$, the identity element.
Claim 3. $\lim \lambda(t) x$ exists.
Proof of Claim. By the first part of Lemma 1, we may assume that $X=V$ a vector space and that $G=\mathrm{GL}(V)$. Choosing coordinates on which λ acts diagonally, we write. We also write $\lambda(t)=\operatorname{diag}\left(t^{n_{1}}, \ldots, t^{n_{l}}\right) h_{2}(t)=\left(a_{i j}\right)$ with $a_{i i}=1$ and $a_{i j} \in(t) \subset k \llbracket t \rrbracket$ if $i \neq j$. Therefore $\lambda(t) h_{2}(t) x=\left(t^{n_{i}} x_{i}+t^{n_{i}}(t)\right)$, and this limits exists when $t \rightarrow 0$. So if $x_{i} \neq 0$, then $n_{i} \geq 0$. Therefore $\lim _{t \rightarrow 0} \lambda(t) x$ also exists.

Claim 4. $\lim \lambda(t) x$ equals y.
Proof of Claim. By the second part of Lemma 1 we may assume $V=X$ is a G representation, $S=\{0\}$ and $G=\mathrm{GL}(V)$. Since $\lim _{t \rightarrow 0} \lambda(t) h_{2}(t)=0$, in the expression above we must have that if $x_{i} \neq 0$ then $n_{i}>0$. Therefore $\lim _{t \rightarrow 0} \lambda(t) x=0$ also.

Remark 5. We may reformulate the Theorem in stacky language as follows. Consider $\mathcal{X}=X / G$ and $\mathcal{Z}=S / G$ which is a closed substack of \mathcal{X} and let $x \in \mathcal{X}(k)$. If \mathcal{Z} intersects the closure of $\{x\}$, then there is a map $\lambda: \Theta_{k} \rightarrow \mathcal{X}$ such that $\lambda(1)=x$ and $\lambda(0)$ is in \mathcal{Z}. Here $\Theta_{k}=\mathbb{A}_{k}^{1} / \mathbb{G}_{m, k}$. One advantage of this is that we may reduce to the case where the group is GL_{n}. Indeed, we can always find a closed embedding $G \rightarrow \mathrm{GL}_{n}$, and then $X / G=X \times{ }^{G} \mathrm{GL}_{n} / \mathrm{GL}_{n}$ and $G \times{ }^{G} \mathrm{GL}_{n}$ is affine. We also see that connectedness of G is actually not important.

While Cartan-Iwahori decomposition can be difficult to prove in general, it is easy for GL_{n}. Indeed, let $g \in \mathrm{GL}_{n}(K)$. We can find $g_{1}, g_{2} \in \mathrm{GL}_{n}(R)$ such that $g_{1} g g_{2}$ is
diagonal (we can do this over PID's). An element of the diagonal is $a \in K^{\times}$, so there is a unique $n \in \mathbb{Z}$ such that $t^{-n} a \in R^{\times}$. The t^{n} give a cocharacter $\lambda: \mathbb{G}_{m} \rightarrow \mathrm{GL}_{n}$ so that $g_{1} g g_{2} \lambda^{-1} \in \mathrm{GL}_{n}(R)$, as desired.

Lemma 6. Let G be linearly reductive over a field k acting on an affine scheme $X=\operatorname{Spec} A$. Suppose Z_{1}, Z_{2} are disjoint closed G-subschemes of X. Then there is $a \in A^{G}$ such that $a_{\mid Z_{1}}=1$ and $a_{\mid Z_{2}}=0$.

Proof. Write $Z_{i}=\operatorname{Spec} A / I_{i}$. We have that $I_{1} \oplus I_{2} \rightarrow I_{1}+I_{2}$ is surjective, so $I_{1}^{G} \oplus I_{2}^{G} \rightarrow$ $\left(I_{1}+I_{2}\right)^{G}$ is surjective too, by exactness of invariants, that is, $\left(I_{1}+I_{2}\right)^{G}=I_{1}^{G}+I_{2}^{G}$. Now $1 \in I_{1}+I_{2}$, so $1 \in\left(I_{1}+I_{2}\right)^{G}$ too and there are elements $g \in I_{1}^{G}$ and $f \in I_{2}^{G}$ such that $1=g+f$. Then $f=a \in A^{G}$ is the sought-after element.

2 Hilbert-Mumford criterion

We place ourselves in the following setup. We work over an algebraically closed field k, and consider a linearly reductive group G over k. Let X be a projective-over-affine finite-type scheme over k, endowed with an action of G and an ample linearisation \mathcal{L}.

Let $x \in X(k)$. Let $\lambda: \mathbb{G}_{m} \rightarrow G$ be a one-parameter subgroup such that the limit $\lim _{t \rightarrow 0} \lambda(t) x=y$ exists. The multiplicative group \mathbb{G}_{m} acts on X via λ and $y:$ Spec $k \rightarrow X$ is a fixed point, so $y^{*} \mathcal{L}$ is a \mathbb{G}_{m}-quivariant line bundle on Spec k. Thus $\Gamma\left(\operatorname{Spec} k, y^{*} \mathcal{L}\right) \cong k \cdot s$ and $\lambda(t) \cdot s=t^{n} s$ for a unique $n \in \mathbb{Z}$ (the weight).

Definition 7. We denote

$$
m(x, \lambda)=n
$$

and call it the Hilbert-Mumford weight.
Recall the following definitions in Geometric Invariant Theory. The point x is

1. semistable if there is $n>0$ and $a \in \Gamma\left(X, \mathcal{L}^{\otimes n}\right)^{G}$ such that $a(x) \neq 0$. There is a G-equivariant open subscheme X^{ss} consisting of the semistable points;
2. polystable if it is semistable and $G x$ is closed in X^{ss};
3. stable if it is polystable and $\operatorname{dim} G_{x}=0$, where G_{x} is the stabiliser of x.

Theorem 8 (Hilbert-Mumford criterion). The point x is $\left\{\begin{array}{l}\text { semistable } \\ \text { polystable if and only } \\ \text { stable }\end{array}\right.$ in if for all $\lambda: \mathbb{G}_{m} \rightarrow G$ such that $\lim _{t \rightarrow 0} \lambda(t) x$ exists, we have that

$$
\left\{\begin{array}{l}
m(x, \lambda) \leq 0 \\
m(x, \lambda) \leq 0 \text { with equality } \Longleftrightarrow \exists g \in P(\lambda), \lambda^{g} \text { is in } G_{x} \\
m(x, \lambda) \leq 0 \text { with equality } \Longleftrightarrow \lambda=0 .
\end{array}\right.
$$

Above $P(\lambda)$ is the parabolic subgroup of λ, whose k-points are those $g \in G(k)$ such that $\lim _{t \rightarrow 0} \lambda(t) g \lambda(t)^{-1}$ exists in G.

Proof. Let $A=\bigoplus_{n \in N} A_{n}=\bigoplus_{n \in \mathbb{N}} H^{0}\left(X, \mathcal{L}^{\otimes n}\right)$, so $X=\operatorname{Proj} A$ because X is projective-over-affine. By replacing \mathcal{L} by a high enough tensor power, we may assume A is generated in degree 1. Therefore, the projectivisation of the normal cone of $\operatorname{Spec} A$ at Spec A_{0} is isomorphic to X, and we have a cartesian diagram

of G-equivariant morphisms, where σ is the zero section and f is identified with the blow-up of $\operatorname{Spec} A$ along $\operatorname{Spec} A_{0}$ and it is thus proper.

Let $x^{*} \in \mathbb{A}\left(\mathcal{L}^{\vee}\right)(k)$ be a lift of x to the total space $\mathbb{A}\left(\mathcal{L}^{\vee}\right)=\operatorname{Spec} \bigoplus_{n \in \mathbb{N}} \mathcal{L}^{\otimes n}$ of \mathcal{L}^{\vee} not in the zero section. Let $\lambda: \mathbb{G}_{m} \rightarrow G$ be such that $\lim _{t \rightarrow 0} \lambda(t) x$ exists in X.
Claim 9. We have $m(x, \lambda)>0$ if and only if $\lim _{t \rightarrow 0} \lambda(t) x^{*}$ exists and lies in $\sigma(X)$.
Indeed, since the limit $\lim _{t \rightarrow 0} \lambda(t) x$ exists in X, by pulling back $\mathbb{A}\left(\mathcal{L}^{\vee}\right)$ along the induced \mathbb{G}_{m}-equivariant morphism $\mathbb{A}_{k}^{1} \rightarrow X$ we may assume that $X=\mathbb{A}_{k}^{1}$ and $G=\mathbb{G}_{m}$ acts by scaling. Then $\lim _{t \rightarrow 0} \lambda(t) x^{*}$ exists and lies in the zero section if and only if \mathcal{L}^{\vee} has an invariant section that vanishes at 0 but not at 1 , and this is equivalent to $m(x, \lambda)>0$. The claim follows. The figures below representing the trajectories of $\lambda(t) x^{*}$ in the three cases $m(x, \lambda)<0,=0$ and >0 provide a good intuition for the claim.

Now, we have that the following statements are equivalent:

1. there is $\lambda: \mathbb{G}_{m} \rightarrow G$ such that $\lim _{t \rightarrow 0} \lambda(t) x$ exists and $m(x, \lambda)>0$;
2. there is $\lambda: \mathbb{G}_{m} \rightarrow G$ such that $\lim _{t \rightarrow 0} \lambda(t) x^{*}$ exists and belongs to $\sigma(X)$;
3. there is $\lambda: \mathbb{G}_{m} \rightarrow G$ such that $\lim _{t \rightarrow 0} \lambda(t) f\left(x^{*}\right)$ exists and belongs to Spec A_{0};
4. $\overline{G f(x *)} \cap \operatorname{Spec} A_{0} \neq \varnothing$;
5. there is no $a \in A^{G}$ with $a\left(f\left(x^{*}\right)\right) \neq 0$ and $a_{0}=a_{\mid \text {Spec } A_{0}}=0$;
6. there is no $n>0$, no $a \in A_{n}^{G}$ with $a\left(f\left(x^{*}\right)\right) \neq 0$;
7. x is not semistable.

Indeed, 1 is equivalent to 2 by the Claim; 2 is equivalent to 3 by properness of f and cartesianity of the square above; 3 is equivalent to 4 by Theorem $2 ; 4$ is equivalent to 5 by Lemma 6. 5 is equivalent to 6 because if $a \in A^{G}$ satisfies the condition in 5 , then the degree n part a_{n} of a will also satisfy it for some $n>0$; and, finally, 6 is equivalent to 7 because $A_{n}^{G}=H^{0}\left(X, \mathcal{L}^{n}\right)^{G}$ and $a\left(f\left(x^{*}\right)\right) \neq 0$ if and only if $a(x) \neq 0$. This finishes the proof of the Hilbert-Mumford criterion in the semistable case.

Assume now that x is semistable. By covering $X^{\text {ss }}$ by G-equivariant open subsets that are saturated with respect the good quotient $X^{\text {ss }} \rightarrow X^{\text {ss }} / / G$ and applying Theorem 22 on each of them, we see that the orbit $G x$ is closed in $X^{\text {ss }}$ if and only if for every $\lambda: \mathbb{G}_{m} \rightarrow G$ such that $y=\lim _{t \rightarrow 0} \lambda(t) x$ exists and lies in $X^{\text {ss }}$, we have that actually y is in the orbit $G y$. As it can be seen, for example, by considering the stack $G x / G \cong B G_{x}$, the statement that y lies in $G x$ is equivalent to the existence of an element $g \in P(\lambda)(k)$ such that λ^{g} is in G_{x}. The Hilbert-Mumford criterion in the polystable case now follows from the following key fact that is of independent interest.

Claim 10. If $\lambda: \mathbb{G}_{m} \rightarrow G$ is such that $y=\lim _{t \rightarrow 0} \lambda(t) x$ exists in X, then y lies in $X^{\text {ss }}$ if and only if $m(x, \lambda)=0$.

We sketch a proof of the Claim. If y is in $X^{\text {ss }}$, we can take $s \in H^{0}\left(X, \mathcal{L}^{\otimes n}\right)^{G}$ such that $s(y) \neq 0$. Then $s(x) \neq 0$ and thus $m(x, \lambda)=0$. Conversely, suppose that y is not in $X^{\text {ss }}$ and assume that $m(x, \lambda)=0$. We can find $\mu: \mathbb{G}_{m} \rightarrow G$ such that $\lim _{t \rightarrow 0} \mu(t) y$ exists and $m(y, \mu)>0$. By conjugating λ and μ inside their parabolic subgroups, we may assume that λ and μ commute. Then $\lim _{t \rightarrow 0} \lambda^{n} \mu(t) x$ exists for big enough n and $m\left(x, \lambda^{n} \mu\right)>0$, a contradiction with semistability of x.

If x is polystable, then the stabiliser G_{x} is reductive. Thus it has dimension 0 if and only if it has no nontrivial one-parameter subgroups. This proves the stable case.

3 Examples

We assume that k is an algebraically closed field of characteristic 0 .

3.1 Relation to convex geometry

Let $T=\mathbb{G}_{m}^{l}$ be a torus acting linearly on a finite dimensional vector space V, and let $x \in \mathbb{P}(V)(k)$ and $x^{*} \in V \backslash\{0\}$ a lift of x to V. We consider the linearlisation $\mathcal{O}(1)$ on $\mathbb{P}(V)$. We choose coordinates on which T acts diagonally by characters $\alpha_{1}, \ldots, \alpha_{n}: T \rightarrow \mathbb{G}_{m}$. If $x^{*}=\left(x_{1}, \ldots, x_{n}\right)$, then $t x^{*}=\left(\alpha_{1}(t) x_{1}, \ldots, \alpha_{n}(t) x_{n}\right)$.

Let $\Xi=\left\{\alpha_{i} \mid x_{i} \neq 0\right\} \subset \Gamma_{\mathbb{Z}}(T) \subset \Gamma_{\mathbb{R}}(T):=\Gamma_{\mathbb{Z}}(T) \otimes_{\mathbb{Z}} \mathbb{R}$, where $\Gamma_{\mathbb{Z}}(T)$ is the group of characters of T. For $\lambda: \mathbb{G}_{m} \rightarrow T$, we have that $m(x, \lambda)=\min _{\alpha \in \Xi}\langle\lambda, \alpha\rangle$. Therefore, x is semistable if and only if 0 is in the convex hull $\operatorname{conv}(\Xi)$ of Ξ. We can also check that x is polystable if and only if 0 is in the relative interior of $\operatorname{conv}(\Xi)$ (relative to the vector subspace of $\Gamma_{\mathbb{R}}(T)$ generated by $\left.\Xi\right)$ and that x is stable if and only if 0 is in the interior of $\operatorname{conv}(\Xi)$.

More generally, if T is a maximal torus of a reductive group G acting on V, then x is semistable for the action of G if and only if $g x$ is semistable for the action of T for every $g \in G(k)$.

3.2 Tuples of points in the projective line

Consider the action of $\operatorname{SL}(2)$ on $\left(\mathbb{P}^{1}\right)^{n}$ with the linearisation $\mathcal{O}_{\mathbb{P}^{1}}(1) \boxtimes \cdots \boxtimes \mathcal{O}_{\mathbb{P}^{1}}(1)$. Let $\lambda: \mathbb{G}_{m} \rightarrow \mathrm{SL}(2): t \mapsto\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)$, which is a maximal torus of $\mathrm{SL}(2)$.

Assume first that $n=1$ and take $z=[a, b] \in \mathbb{P}^{1}(k)$. We have that

$$
\lim _{t \rightarrow 0} \lambda(t) z=\lim _{t \rightarrow 0}\left[t a, t^{-1} b\right]=\left\{\begin{array}{lc}
0, & z \neq \infty \\
\infty, & z=\infty
\end{array}\right.
$$

where $\infty=[1,0]$ and $0=[0,1] \in \mathbb{P}^{1}(k)$. We thus have

$$
m(z, \lambda)=\left\{\begin{array}{lc}
1, \quad z=\infty \\
-1, \quad z \neq \infty
\end{array}\right.
$$

and

$$
m\left(z, \lambda^{-1}\right)=\left\{\begin{array}{lc}
1, & z=0 \\
-1, & z \neq 0
\end{array}\right.
$$

For general n, let $\left(z_{1}, \ldots, z_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n}(k)$ and denote $k=\#\left\{i \mid z_{i}=\infty\right\}$ and $l=\#\left\{i \mid z_{i}=0\right\}$ we have

$$
m\left(\left(z_{1}, \ldots, z_{n}\right), \lambda\right)=\sum_{i} m\left(z_{i}, \lambda\right)=\#\left\{i \mid z_{i}=\infty\right\}-\#\left\{i \mid z_{i} \neq \infty\right\}=2 k-n
$$

and

$$
m\left(\left(z_{1}, \ldots, z_{n}\right), \lambda^{-1}\right)=\sum_{i} m\left(z_{i}, \lambda^{-1}\right)=2 l-n
$$

Thus $\left(z_{1}, \ldots, z_{n}\right)$ is semistable for $\lambda\left(\mathbb{G}_{m}\right)$ if and only if $k, l \leq n / 2$. We have that $\left(z_{1}, \ldots, z_{n}\right)$ is semistable for $\mathrm{SL}(2)$ if and only if $g\left(z_{1}, \ldots, z_{n}\right)$ for all $g \in \operatorname{SL}(2)(k)$. Since the action of $\operatorname{SL}(2)$ on \mathbb{P}^{1} is 3 -transitive, this happens if and only if no more than $n / 2$ of the z_{i} are equal. If n is odd, any semistable point is stable. If n is even, the strictly semistable points have half of the z_{i} equal to one point of \mathbb{P}^{1} and the other half equal to a different point of \mathbb{P}^{1}. The stabiliser of such points is \mathbb{G}_{m} which is reductive. Hence all strictly semistable points are polystable.

3.3 Grassmannians as an affine GIT quotient

Let V and W be two finite-dimensional vector spaces, and conside the obvious action of $\mathrm{GL}(V)$ on $\operatorname{Hom}(V, W)$. We choose the linearisation of the action corresponding to the character det: $\mathrm{GL}(V) \rightarrow \mathbb{G}_{m}$. Choose some coordinates on V and W so that we write elements of $\operatorname{Hom}(V, W)$ with matrix notation. Let $T=\left\{\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)\right\}$ be the maximal torus corresponding to the choice of coordinates.

Let $x=\left(a_{i j}\right) \in \operatorname{Hom}(V, W)$. For $\lambda: \mathbb{G}_{m} \rightarrow T$, write $\lambda(t)=\operatorname{diag}\left(t^{m_{1}}, \ldots, t^{m_{n}}\right)$, where n is the dimension of V. We have $\lambda(t) x=\left(t^{m_{i}} a_{i j}\right)$, and the limit when t tends to 0 exists if and only if we have $m_{i} \geq 0$ whenever the i th row of x is not 0 . In that case, the Hilbert-Mumford weight is $m(\lambda, x)=\left(\operatorname{det}^{-1}, \lambda\right)=-\sum_{i} m_{i}$. Thus x is semistable for the action of T if and only if every row of x is nonzero. In that case, x is stable. The point x is semistable for the action of $\mathrm{GL}(V)$ if and only if each $g x$ is semistable for the action of T, for all $g \in \operatorname{GL}(V)(k)$. This happens precisely when x is full rank, and in that case the stabiliser group G_{x} is trivial.

Hence the GIT quotient $\operatorname{Hom}(V, W)^{\mathrm{ss}} / / \mathrm{GL}(V)$ is isomorphic to the Grassmannian $\mathrm{Gr}_{n, W}$ of n-dimensional subspaces of W. Since all stabilisers are trivial, the GIT quotient $\operatorname{Hom}(V, W)^{\mathrm{ss}} / / \mathrm{GL}(V)$ equals the stack quotient $\operatorname{Hom}(V, W)^{\mathrm{ss}} / \mathrm{GL}(V)$.

