Notes for a talk on the Hilbert-Mumford criterion

Andrés Ibáñez Núñez

June 2023

Contents

1	Some results on reductive actions on affine schemes	1
2	Hilbert-Mumford criterion	3
3	Examples	5
	3.1 Relation to convex geometry	5
	3.2 Tuples of points in the projective line	5
	3.3 Grassmannians as an affine GIT quotient	6

1 Some results on reductive actions on affine schemes

Lemma 1. Let k be a field and let G be a linea algebraic group over k, acting on an affine scheme X = Spec(A) of finite type over k. Let S be a closed G-subscheme of X. Then

- 1. There is a G-equivariant closed embedding $f: X \to V$, where V is a finite dimensional G-representation.
- 2. There is a G-equivariant morphism $f: X \to V$, where V is a finite dimensional G-representation, such that $f^{-1}(0) = S$.

Proof. Let $V^{\vee} \subset A$ be a finite dimensional G-subrep. This gives a map $\varphi \colon \operatorname{Sym} V^{\vee} \to A$ of k-algebras that is also a map of G-representations and hence a G-equivariant morphism $f \colon X \to V$. If V generates A as a k-algebra, then φ is surjective and f is a closed immersion. This proves the first part. In any case, $f^{-1}(0)$ is the closed subscheme of X whose ideal is that generated by V, so we can choose V to generate the ideal of S, and hence the second part is proven. The crucial fact that we are using is that the G-subrepresentation (in this case of A) generated by a finite number of elements is finite dimensional.

Theorem 2. Let k be an algebraically closed field, let G be a connected reductive group over k and let X be an affine finite-type G-scheme over k. Let $x \in X(k)$ and let S be a closed G-subscheme of X. Suppose that $S \cap \overline{Gx} \neq \emptyset$. Then there is a one-parameter subgroup $\lambda \colon \mathbb{G}_m \to G$ of G such that the limit $\lim_{t\to 0} \lambda(t)x$ exists and is in S. Proof. Choose a point $y \in (S \cap \overline{Gx})(k)$. Take an integral curve $C_1 \subset \overline{Gx}$ containing both x and y. Consider the orbit map $h: G \to X: g \mapsto gx$ and take a smooth projective curve C and a rational map $a: C \dashrightarrow G$ such that the composition $f = h \circ a$ dominates C_1 . There is a point $\sigma \in C(k)$ such that $f(\sigma) = y$. Let R = k[t] and K = k((t)). Since the completion $\widehat{\mathcal{O}}_{C,\sigma} \cong R$, we get a diagram

(1)
$$\begin{array}{ccc} \operatorname{Spec} K \longrightarrow \operatorname{Spec} R & 0 \\ g & \downarrow & & \downarrow \\ G & \xrightarrow{h} X & y \end{array}$$

To continue, we need Cartan-Iwahori decomposition, which states that

$$G(K) = G(R) \operatorname{Hom}(\mathbb{G}_m, G)G(R).$$

More precisely, for all $g \in G(K)$, there are $h_1, h_2 \in G(R)$ and a cocharacter $\lambda \colon \mathbb{G}_m \to G$ such that $g = h_{1|\operatorname{Spec} K} \cdot \lambda_{|\operatorname{Spec} K} \cdot h_{2|\operatorname{Spec} K}$. Note that we can regard G(R) as a subgroup of G(K).

Using this for our particular $g \in G(K)$ above, we get

$$y = \lim_{t \to 0} g(t)x = \lim_{t \to 0} h_1(t)\lambda(t)h_2(t)x$$

and

$$h_1(0)^{-1}y = \lim_{t \to 0} h_1(t)^{-1}g(t)x = \lim_{t \to 0} \lambda(t)h_2(t)x.$$

Replacing x by $h_2(0)$ we may assume $h_2(0) = e \in G(k)$, the identity element. Claim 3. $\lim \lambda(t)x$ exists.

Proof of Claim. By the first part of Lemma 1, we may assume that X = V a vector space and that $G = \operatorname{GL}(V)$. Choosing coordinates on which λ acts diagonally, we write. We also write $\lambda(t) = \operatorname{diag}(t^{n_1}, \ldots, t^{n_l})h_2(t) = (a_{ij})$ with $a_{ii} = 1$ and $a_{ij} \in (t) \subset k[t]$ if $i \neq j$. Therefore $\lambda(t)h_2(t)x = (t^{n_i}x_i + t^{n_i}(t))$, and this limits exists when $t \to 0$. So if $x_i \neq 0$, then $n_i \geq 0$. Therefore $\lim_{t\to 0} \lambda(t)x$ also exists.

Claim 4. $\lim \lambda(t)x$ equals y.

Proof of Claim. By the second part of Lemma 1 we may assume V = X is a *G*-representation, $S = \{0\}$ and $G = \operatorname{GL}(V)$. Since $\lim_{t\to 0} \lambda(t)h_2(t) = 0$, in the expression above we must have that if $x_i \neq 0$ then $n_i > 0$. Therefore $\lim_{t\to 0} \lambda(t)x = 0$ also. \Box

Remark 5. We may reformulate the Theorem in stacky language as follows. Consider $\mathcal{X} = X/G$ and $\mathcal{Z} = S/G$ which is a closed substack of \mathcal{X} and let $x \in \mathcal{X}(k)$. If \mathcal{Z} intersects the closure of $\{x\}$, then there is a map $\lambda \colon \Theta_k \to \mathcal{X}$ such that $\lambda(1) = x$ and $\lambda(0)$ is in \mathcal{Z} . Here $\Theta_k = \mathbb{A}_k^1/\mathbb{G}_{m,k}$. One advantage of this is that we may reduce to the case where the group is GL_n . Indeed, we can always find a closed embedding $G \to \mathrm{GL}_n$, and then $X/G = X \times^G \mathrm{GL}_n / \mathrm{GL}_n$ and $G \times^G \mathrm{GL}_n$ is affine. We also see that connectedness of G is actually not important.

While Cartan-Iwahori decomposition can be difficult to prove in general, it is easy for GL_n . Indeed, let $g \in GL_n(K)$. We can find $g_1, g_2 \in GL_n(R)$ such that g_1gg_2 is diagonal (we can do this over PID's). An element of the diagonal is $a \in K^{\times}$, so there is a unique $n \in \mathbb{Z}$ such that $t^{-n}a \in R^{\times}$. The t^n give a cocharacter $\lambda \colon \mathbb{G}_m \to \mathrm{GL}_n$ so that $g_1gg_2\lambda^{-1} \in \mathrm{GL}_n(R)$, as desired.

Lemma 6. Let G be linearly reductive over a field k acting on an affine scheme X = Spec A. Suppose Z_1, Z_2 are disjoint closed G-subschemes of X. Then there is $a \in A^G$ such that $a_{|Z_1|} = 1$ and $a_{|Z_2|} = 0$.

Proof. Write $Z_i = \operatorname{Spec} A/I_i$. We have that $I_1 \oplus I_2 \to I_1 + I_2$ is surjective, so $I_1^G \oplus I_2^G \to (I_1 + I_2)^G$ is surjective too, by exactness of invariants, that is, $(I_1 + I_2)^G = I_1^G + I_2^G$. Now $1 \in I_1 + I_2$, so $1 \in (I_1 + I_2)^G$ too and there are elements $g \in I_1^G$ and $f \in I_2^G$ such that 1 = g + f. Then $f = a \in A^G$ is the sought-after element. \Box

2 Hilbert-Mumford criterion

We place ourselves in the following setup. We work over an algebraically closed field k, and consider a linearly reductive group G over k. Let X be a projective-over-affine finite-type scheme over k, endowed with an action of G and an ample linearisation \mathcal{L} .

Let $x \in X(k)$. Let $\lambda \colon \mathbb{G}_m \to G$ be a one-parameter subgroup such that the limit $\lim_{t\to 0} \lambda(t)x = y$ exists. The multiplicative group \mathbb{G}_m acts on X via λ and $y \colon \operatorname{Spec} k \to X$ is a fixed point, so $y^*\mathcal{L}$ is a \mathbb{G}_m -quivariant line bundle on $\operatorname{Spec} k$. Thus $\Gamma(\operatorname{Spec} k, y^*\mathcal{L}) \cong k \cdot s$ and $\lambda(t) \cdot s = t^n s$ for a unique $n \in \mathbb{Z}$ (the *weight*).

Definition 7. We denote

$$m(x,\lambda) = n$$

and call it the *Hilbert-Mumford* weight.

Recall the following definitions in Geometric Invariant Theory. The point x is

- 1. semistable if there is n > 0 and $a \in \Gamma(X, \mathcal{L}^{\otimes n})^G$ such that $a(x) \neq 0$. There is a *G*-equivariant open subscheme X^{ss} consisting of the semistable points;
- 2. polystable if it is semistable and Gx is closed in X^{ss} ;
- 3. stable if it is polystable and dim $G_x = 0$, where G_x is the stabiliser of x.

Theorem 8 (Hilbert-Mumford criterion). The point x is $\begin{cases} semistable \\ polystable \\ stable \end{cases}$ if and only

if for all $\lambda \colon \mathbb{G}_m \to G$ such that $\lim_{t\to 0} \lambda(t)x$ exists, we have that

 $\begin{cases} m(x,\lambda) \leq 0\\ m(x,\lambda) \leq 0 \text{ with equality } \iff \exists g \in P(\lambda), \ \lambda^g \text{ is in } G_x\\ m(x,\lambda) \leq 0 \text{ with equality } \iff \lambda = 0. \end{cases}$

Above $P(\lambda)$ is the *parabolic subgroup* of λ , whose k-points are those $g \in G(k)$ such that $\lim_{t\to 0} \lambda(t)g\lambda(t)^{-1}$ exists in G.

Proof. Let $A = \bigoplus_{n \in \mathbb{N}} A_n = \bigoplus_{n \in \mathbb{N}} H^0(X, \mathcal{L}^{\otimes n})$, so $X = \operatorname{Proj} A$ because X is projectiveover-affine. By replacing \mathcal{L} by a high enough tensor power, we may assume A is generated in degree 1. Therefore, the projectivisation of the normal cone of Spec A at Spec A_0 is isomorphic to X, and we have a cartesian diagram

of G-equivariant morphisms, where σ is the zero section and f is identified with the blow-up of Spec A along Spec A_0 and it is thus proper.

Let $x^* \in \mathbb{A}(\mathcal{L}^{\vee})(k)$ be a lift of x to the total space $\mathbb{A}(\mathcal{L}^{\vee}) = \operatorname{Spec} \bigoplus_{n \in \mathbb{N}} \mathcal{L}^{\otimes n}$ of \mathcal{L}^{\vee} not in the zero section. Let $\lambda \colon \mathbb{G}_m \to G$ be such that $\lim_{t\to 0} \lambda(t)x$ exists in X. Claim 9. We have $m(x,\lambda) > 0$ if and only if $\lim_{t\to 0} \lambda(t)x^*$ exists and lies in $\sigma(X)$.

Indeed, since the limit $\lim_{t\to 0} \lambda(t)x$ exists in X, by pulling back $\mathbb{A}(\mathcal{L}^{\vee})$ along the induced \mathbb{G}_m -equivariant morphism $\mathbb{A}^1_k \to X$ we may assume that $X = \mathbb{A}^1_k$ and $G = \mathbb{G}_m$ acts by scaling. Then $\lim_{t\to 0} \lambda(t)x^*$ exists and lies in the zero section if and only if \mathcal{L}^{\vee} has an invariant section that vanishes at 0 but not at 1, and this is equivalent to $m(x,\lambda) > 0$. The claim follows. The figures below representing the trajectories of $\lambda(t)x^*$ in the three cases $m(x,\lambda) < 0, = 0$ and > 0 provide a good intuition for the claim.

Now, we have that the following statements are equivalent:

- 1. there is $\lambda \colon \mathbb{G}_m \to G$ such that $\lim_{t\to 0} \lambda(t)x$ exists and $m(x,\lambda) > 0$;
- 2. there is $\lambda \colon \mathbb{G}_m \to G$ such that $\lim_{t\to 0} \lambda(t) x^*$ exists and belongs to $\sigma(X)$;
- 3. there is $\lambda \colon \mathbb{G}_m \to G$ such that $\lim_{t\to 0} \lambda(t) f(x^*)$ exists and belongs to Spec A_0 ;
- 4. $\overline{Gf(x^*)} \cap \operatorname{Spec} A_0 \neq \emptyset;$
- 5. there is no $a \in A^G$ with $a(f(x^*)) \neq 0$ and $a_0 = a_{|\operatorname{Spec} A_0} = 0$;
- 6. there is no n > 0, no $a \in A_n^G$ with $a(f(x^*)) \neq 0$;
- 7. x is not semistable.

Indeed, 1 is equivalent to 2 by the Claim; 2 is equivalent to 3 by properness of f and cartesianity of the square above; 3 is equivalent to 4 by Theorem 2; 4 is equivalent to 5 by Lemma 6; 5 is equivalent to 6 because if $a \in A^G$ satisfies the condition in 5, then the degree n part a_n of a will also satisfy it for some n > 0; and, finally, 6 is equivalent to 7 because $A_n^G = H^0(X, \mathcal{L}^n)^G$ and $a(f(x^*)) \neq 0$ if and only if $a(x) \neq 0$. This finishes the proof of the Hilbert-Mumford criterion in the semistable case.

Assume now that x is semistable. By covering X^{ss} by G-equivariant open subsets that are saturated with respect the good quotient $X^{ss} \to X^{ss} /\!\!/ G$ and applying Theorem 2 on each of them, we see that the orbit Gx is closed in X^{ss} if and only if for every $\lambda \colon \mathbb{G}_m \to G$ such that $y = \lim_{t\to 0} \lambda(t)x$ exists and lies in X^{ss} , we have that actually y is in the orbit Gy. As it can be seen, for example, by considering the stack $Gx/G \cong BG_x$, the statement that y lies in Gx is equivalent to the existence of an element $g \in P(\lambda)(k)$ such that λ^g is in G_x . The Hilbert-Mumford criterion in the polystable case now follows from the following key fact that is of independent interest. Claim 10. If $\lambda : \mathbb{G}_m \to G$ is such that $y = \lim_{t\to 0} \lambda(t)x$ exists in X, then y lies in X^{ss} if and only if $m(x, \lambda) = 0$.

We sketch a proof of the Claim. If y is in X^{ss} , we can take $s \in H^0(X, \mathcal{L}^{\otimes n})^G$ such that $s(y) \neq 0$. Then $s(x) \neq 0$ and thus $m(x, \lambda) = 0$. Conversely, suppose that y is not in X^{ss} and assume that $m(x, \lambda) = 0$. We can find $\mu : \mathbb{G}_m \to G$ such that $\lim_{t\to 0} \mu(t)y$ exists and $m(y,\mu) > 0$. By conjugating λ and μ inside their parabolic subgroups, we may assume that λ and μ commute. Then $\lim_{t\to 0} \lambda^n \mu(t)x$ exists for big enough n and $m(x, \lambda^n \mu) > 0$, a contradiction with semistability of x.

If x is polystable, then the stabiliser G_x is reductive. Thus it has dimension 0 if and only if it has no nontrivial one-parameter subgroups. This proves the stable case. \Box

3 Examples

We assume that k is an algebraically closed field of characteristic 0.

3.1 Relation to convex geometry

Let $T = \mathbb{G}_m^l$ be a torus acting linearly on a finite dimensional vector space V, and let $x \in \mathbb{P}(V)(k)$ and $x^* \in V \setminus \{0\}$ a lift of x to V. We consider the linearlisation $\mathcal{O}(1)$ on $\mathbb{P}(V)$. We choose coordinates on which T acts diagonally by characters $\alpha_1, \ldots, \alpha_n \colon T \to \mathbb{G}_m$. If $x^* = (x_1, \ldots, x_n)$, then $tx^* = (\alpha_1(t)x_1, \ldots, \alpha_n(t)x_n)$.

Let $\Xi = \{\alpha_i \mid x_i \neq 0\} \subset \Gamma_{\mathbb{Z}}(T) \subset \Gamma_{\mathbb{R}}(T) \coloneqq \Gamma_{\mathbb{Z}}(T) \otimes_{\mathbb{Z}} \mathbb{R}$, where $\Gamma_{\mathbb{Z}}(T)$ is the group of characters of T. For $\lambda \colon \mathbb{G}_m \to T$, we have that $m(x, \lambda) = \min_{\alpha \in \Xi} \langle \lambda, \alpha \rangle$. Therefore, x is semistable if and only if 0 is in the convex hull conv (Ξ) of Ξ . We can also check that x is polystable if and only if 0 is in the relative interior of conv (Ξ) (relative to the vector subspace of $\Gamma_{\mathbb{R}}(T)$ generated by Ξ) and that x is stable if and only if 0 is in the interior of conv (Ξ) .

More generally, if T is a maximal torus of a reductive group G acting on V, then x is semistable for the action of G if and only if gx is semistable for the action of T for every $g \in G(k)$.

3.2 Tuples of points in the projective line

Consider the action of SL(2) on $(\mathbb{P}^1)^n$ with the linearisation $\mathcal{O}_{\mathbb{P}^1}(1) \boxtimes \cdots \boxtimes \mathcal{O}_{\mathbb{P}^1}(1)$. Let $\lambda \colon \mathbb{G}_m \to \mathrm{SL}(2) \colon t \mapsto \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$, which is a maximal torus of SL(2).

Assume first that n = 1 and take $z = [a, b] \in \mathbb{P}^1(k)$. We have that

$$\lim_{t \to 0} \lambda(t)z = \lim_{t \to 0} [ta, t^{-1}b] = \begin{cases} 0, & z \neq \infty \\ \infty, & z = \infty, \end{cases}$$

where $\infty = [1, 0]$ and $0 = [0, 1] \in \mathbb{P}^1(k)$. We thus have

$$m(z,\lambda) = \begin{cases} 1, & z = \infty, \\ -1, & z \neq \infty \end{cases}$$

and

$$m(z, \lambda^{-1}) = \begin{cases} 1, & z = 0\\ -1, & z \neq 0. \end{cases}$$

For general n, let $(z_1, \ldots, z_n) \in (\mathbb{P}^1)^n(k)$ and denote $k = \#\{i \mid z_i = \infty\}$ and $l = \#\{i \mid z_i = 0\}$ we have

$$m((z_1, \dots, z_n), \lambda) = \sum_i m(z_i, \lambda) = \#\{i \mid z_i = \infty\} - \#\{i \mid z_i \neq \infty\} = 2k - n$$

and

$$m((z_1, \dots, z_n), \lambda^{-1}) = \sum_i m(z_i, \lambda^{-1}) = 2l - n.$$

Thus (z_1, \ldots, z_n) is semistable for $\lambda(\mathbb{G}_m)$ if and only if $k, l \leq n/2$. We have that (z_1, \ldots, z_n) is semistable for SL(2) if and only if $g(z_1, \ldots, z_n)$ for all $g \in SL(2)(k)$. Since the action of SL(2) on \mathbb{P}^1 is 3-transitive, this happens if and only if no more than n/2 of the z_i are equal. If n is odd, any semistable point is stable. If n is even, the strictly semistable points have half of the z_i equal to one point of \mathbb{P}^1 and the other half equal to a different point of \mathbb{P}^1 . The stabiliser of such points is \mathbb{G}_m which is reductive. Hence all strictly semistable points are polystable.

3.3 Grassmannians as an affine GIT quotient

Let V and W be two finite-dimensional vector spaces, and conside the obvious action of GL(V) on Hom(V, W). We choose the linearisation of the action corresponding to the character det: $GL(V) \to \mathbb{G}_m$. Choose some coordinates on V and W so that we write elements of Hom(V, W) with matrix notation. Let $T = \{ diag(t_1, \ldots, t_n) \}$ be the maximal torus corresponding to the choice of coordinates.

Let $x = (a_{ij}) \in \text{Hom}(V, W)$. For $\lambda : \mathbb{G}_m \to T$, write $\lambda(t) = \text{diag}(t^{m_1}, \ldots, t^{m_n})$, where *n* is the dimension of *V*. We have $\lambda(t)x = (t^{m_i}a_{ij})$, and the limit when *t* tends to 0 exists if and only if we have $m_i \geq 0$ whenever the *i*th row of *x* is not 0. In that case, the Hilbert-Mumford weight is $m(\lambda, x) = (\det^{-1}, \lambda) = -\sum_i m_i$. Thus *x* is semistable for the action of *T* if and only if every row of *x* is nonzero. In that case, *x* is stable. The point *x* is semistable for the action of GL(V) if and only if each *gx* is semistable for the action of *T*, for all $g \in GL(V)(k)$. This happens precisely when *x* is full rank, and in that case the stabiliser group G_x is trivial.

Hence the GIT quotient $\operatorname{Hom}(V, W)^{\operatorname{ss}} /\!\!/ \operatorname{GL}(V)$ is isomorphic to the Grassmannian $\operatorname{Gr}_{n,W}$ of *n*-dimensional subspaces of W. Since all stabilisers are trivial, the GIT quotient $\operatorname{Hom}(V, W)^{\operatorname{ss}} /\!\!/ \operatorname{GL}(V)$ equals the stack quotient $\operatorname{Hom}(V, W)^{\operatorname{ss}} / \operatorname{GL}(V)$.