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1 Different kinds of spaces in algebraic geometry
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1. Different kinds of spaces in algebraic geometry

Algebraic geometry studies spaces built using algebras of functions.
Here are the main classes of spaces studied by algebraic geometers,
in order of complexity, and difficulty of definition:

Smooth varieties (e.g. Riemann surfaces, or algebraic complex
manifolds such as CPn. Smooth means nonsingular.)
Varieties (at their most basic, algebraic subsets of Cn or CPn.
Can have singularities, e.g. xy = 0 in C2, singular at (0, 0).)
Schemes (can be non-reduced, e.g. the scheme x2 = 0 in C is
not the same as the scheme x = 0 in C.)
Algebraic spaces (étale locally modelled on schemes.)
Stacks. Each point x ∈ X has a stabilizer group Iso(x), finite
for Deligne–Mumford stacks, algebraic group for Artin stacks.
Higher stacks.
Derived stacks, including derived schemes.
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1.1. The definition of schemes

Fix a field K, e.g. K = C. An affine K-scheme X = SpecA is
basically a commutative K-algebra A, but regarded as a geometric
space in the following way. As a set, define X to be the set of all
prime ideals I ⊂ A. If J is an ideal of A, define V (J) ⊆ X to be
the set of prime ideals I ⊆ A with J ⊆ I . Then T = {V (J) : J is
an ideal in A} is a topology on X , the Zariski topology.
We can regard each f ∈ A as a ‘function’ on X , where f (I )= f +I
in the quotient algebra A/I . For the subset X (K)⊆X of K-points
I with A/I ∼= K, f gives a genuine function X (K)→ K.
Thus, we have a topological space X called the spectrum SpecA
of A, equipped with a sheaf of K-algebras OX , and A is the
algebra of functions on X .
A general K-scheme X is a topological space X with a sheaf of
K-algebras OX , such that X may be covered by open sets U ⊆ X
with (U,OX |U) isomorphic to SpecA for some K-algebra A.
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Example 1.1

Cn is an affine C-scheme, the spectrum of the polynomial algebra
A = C[x1, . . . , xn]. Given polynomials p1, . . . , pk ∈ C[x1, . . . , xn],
we can define an affine C-subscheme X ⊆ Cn as the zero locus of
p1, . . . , pk , the spectrum of B = C[x1, . . . , xn]/(p1, . . . , pk). The
C-points X (C) are (x1, . . . , xn) ∈ Cn with p1(x1, . . . , xn) =
· · · = pk(x1, . . . , xn) = 0. Note that the (nonreduced) scheme
x2 = 0 in C is not the same as the scheme x = 0 in C, as the
algebras C[x ]/(x2) = C〈1, x〉 and C[x ]/(x) = C〈1〉 are different.
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1.2. Some basics of category theory

To prepare for moduli functors and stacks, we first explain some
ideas from category theory.

Definition

A category C consists of the following data:
A family Obj(C ) of objects X ,Y ,Z , . . . of C . (Actually
Obj(C ) is a class, like a set but possibly larger.)
For all objects X ,Y in C , a set Hom(X ,Y ) of morphisms f ,
written f : X → Y .
For all objects X ,Y ,Z in C , a composition map
◦ : Hom(Y ,Z )×Hom(X ,Y )→ Hom(X ,Z ), written
g ◦ f : X → Z for morphisms f : X → Y and g : Y → Z . It is
associative, (h ◦ g) ◦ f = h ◦ (g ◦ f ).
For all objects X in C an identity morphism
idX ∈Hom(X ,X ), with f ◦idX = idY ◦f = f for all f : X → Y .
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Categories are everywhere in mathematics – whenever you have a
class of mathematical objects, and a class of maps between them,
you generally get a category. For example:

The category Sets with objects sets, and morphisms maps.
The category Top with objects topological spaces X ,Y , . . .
and morphisms continuous maps f : X → Y .
The category SchK of schemes over a field K.

Definition

A category C is a subcategory of a category D , written C ⊂ D , if
Obj(C ) ⊆ Obj(D), and for all X ,Y ∈ Obj(C ) we have
HomC (X ,Y ) ⊆ HomD(X ,Y ), and composition and identities in
C ,D agree on HomC (−,−). It is a full subcategory if
HomC (X ,Y ) = HomD(X ,Y ) for all X ,Y in C .

The category Schaff
K of affineK-schemes is a full subcategory of SchK.
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Functors between categories

Functors are the natural maps between categories.

Definition

Let C ,D be categories. A functor F : C → D consists of the data:
A map F : Obj(C )→ Obj(D).
Maps F : HomC (X ,Y )→ HomD(F (X ),F (Y )) for all
X ,Y ∈ Obj(C ), with F (g ◦ f ) = F (g) ◦ F (f ) for all
composable f , g in C and F (idX ) = idF (X ) for all X in C .

The identity functor idC : C → C maps X 7→ X and f 7→ f .
There is a ‘forgetful functor’ F : Man→ Top taking a
manifold X to its underlying topological space F (X ), and a
smooth map f : X → Y to its underlying continuous map.
If C ⊂ D is a subcategory, the inclusion functor i : C ↪→ D .
For k > 0, Hk : Top→ AbGp (abelian groups) maps a
topological space X to its kth homology group Hk(X ;Z).
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Our definition of functors are sometimes called covariant functors,
in contrast to contravariant functors F : C → D which reverse the
order of composition, F (g ◦ f ) = F (f ) ◦ F (g), such as the
cohomology functors Hk : Top→ AbGp. We prefer to write
contravariant functors as (covariant) functors F : C op → D , where
C op is the opposite category to C , the same as C but with order
of composition reversed. For example, in scheme theory the
spectrum functor maps Spec : (AlgK)op → Schaff

K ⊂ SchK, where
AlgK is the category of K-algebras.
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Natural transformations and natural isomorphisms

There is also a notion of morphism between functors:

Definition

Let C ,D be categories, and F ,G : C → D be functors. A natural
transformation η from F to G , written η : F ⇒ G , assigns the data
of a morphism η(X ) : F (X )→ G (X ) in D for all objects X in C ,
such that η(Y ) ◦ F (f ) = G (f ) ◦ η(X ) : F (X )→ G (Y ) for all
morphisms f : X → Y in C .
We call η a natural isomorphism if η(X ) is an isomorphism
(invertible morphism) in D for all X in C .
Given natural transformations η : F ⇒ G , ζ : G ⇒ H, the
composition ζ � η : F ⇒ H is (ζ � η)(X ) = ζ(X ) ◦ η(X ) for X in
C .
The identity transformation idF : F ⇒ F is
idF (X ) = idF (X ) : F (X )→ F (X ) for all X in C .
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Note that in the ‘category of categories’ Cat, we have objects
categories C ,D , . . . , and morphisms (or 1-morphisms), functors
F ,G : C → D , but also ‘morphisms between morphisms’ (or
2-morphisms), natural transformations η : F ⇒ G . This is our first
example of a 2-category, defined in lecture 3.
In category theory, it is often important to think about when
things are ‘the same’. For objects X ,Y in a category C , there are
two notions of when X ,Y are ‘the same’: equality X = Y , and
isomorphism X ∼=Y , i.e. there are morphisms f :X→Y , g :Y→X
with g ◦f = idX , f ◦g = idY . Usually isomorphism is better.
For functors F ,G : C → D , there are two notions of when F ,G
are ‘the same’: equality F = G , and natural isomorphism F ∼= G ,
that is, there exists a natural isomorphism η : F ⇒ G . Usually
natural isomorphism, the weaker, is better.
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Equivalence of categories

For categories C ,D , there are three notions of when C ,D are ‘the
same’: strict equality C = D ; strict isomorphism C ∼= D , that is,
there exist functors F : C → D , G : D → C with G ◦ F = idC ,
F ◦ G = idD ; and equivalence:

Definition

An equivalence between categories C ,D consists of functors
F : C → D , G : D → C and natural isomorphisms
η : G ◦F ⇒ idC , ζ : F ◦G ⇒ idD . We say that G is a quasi-inverse
for F , and write C ' D to mean that C ,D are equivalent.

Usually equivalence of categories, the weakest, is the best notion of
when categories C ,D are ‘the same’.
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The Yoneda embedding

Let C ,D be categories. Then Fun(C ,D) is a category with
objects functors F : C → D , morphisms natural transformations
η : F ⇒ G , composition ζ � η, and identities idF . A natural
transformation η : F ⇒ G is a natural isomorphism if and only if it
is an isomorphism in Fun(C ,D).

Definition

Let C be any category. Then Fun(C op,Sets) is also a category.
Define a functor YC : C → Fun(C op,Sets) called the Yoneda
embedding by, for each X in C , taking YC (X ) to be the functor
Hom(−,X ) : C op → Sets mapping Y 7→ Hom(Y ,X ) on objects
Y ∈ C , and mapping ◦f : Hom(Z ,X )→ Hom(Y ,X ) for all
morphisms f : Y → Z in C ; and for each morphism e : W → X in
C , taking YC (e) : YC (W )→ YC (X ) to be the natural
transformation e ◦ : Hom(−,W )→ Hom(−,X ).

13 / 40 Dominic Joyce, Oxford University Lecture 1: Algebraic Geometry and Category Theory



Different kinds of spaces in algebraic geometry
What is derived geometry?

The definition of schemes
Some basics of category theory
Moduli spaces and moduli functors
Algebraic spaces and (higher) stacks

The Yoneda Lemma

The Yoneda Lemma says YC : C → Fun(C op,Sets) is a full and
faithful functor, i.e. the maps YC : HomC (W ,X )→
HomFun(C op,Sets)(YC (W ),YC (X )) are injective and surjective.
Call a functor F : C op → Sets representable if F is naturally
isomorphic to YC (X ) = Hom(−,X ) for some X ∈ C , which is
then unique up to isomorphism. Write Rep(C ) for the full
subcategory of representable functors in Fun(C op,Sets). Then
YC : C → Rep(C ) is an equivalence of categories.
Basically, the idea here is that we should understand objects X in
C , up to isomorphism, by knowing the sets Hom(Y ,X ) for all
Y ∈ C , and the maps ◦f : Hom(Z ,X )→ Hom(Y ,X ) for all
morphisms f : Y → Z in C .
If C ⊂ D is a subcategory, there is a functor D → Fun(C op,Sets)
mapping X 7→ Hom(C ,X ) for X ∈ D .
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(Affine) schemes as functors AlgK → Sets

Since Spec : (AlgK)op → Schaff
K is an equivalence of categories,

and (AlgK)op is equivalent to the full subcategory of representable
functors in Fun(AlgK,Sets), we see that Schaff

K is equivalent to
the full subcategory of representable functors in Fun(AlgK,Sets).
There is also a natural functor SchK → Fun(AlgK,Sets), mapping
a scheme X to the functor A 7→ HomSchK(SpecA,X ). This
functor is full and faithful because, as X can be covered by open
subschemes SpecA ⊆ X , we can recover X up to isomorphism
from the collection of morphisms SpecA→ X for A ∈ AlgK.
Thus, SchK is equivalent to a full subcategory of Fun(AlgK,Sets).
Since we consider equivalent categories to be ‘the same’, we can
identify SchK with this subcategory of Fun(AlgK,Sets), and we
can consider schemes to be special functors AlgK → Sets.
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1.3. Moduli spaces and moduli functors

Moduli spaces are a hugely important subject in algebraic
geometry. They were also the motivation for inventing most of the
classes of spaces we are discussing – algebraic spaces, stacks,
derived stacks, . . . – as interesting moduli spaces had these
structures, and simpler spaces were not adequate to describe them.
Suppose we want to study some class of geometric objects X up to
isomorphism, e.g. Riemann surfaces of genus g . Write M for the
set of isomorphism classes [X ] of such X . A set on its own is
boring, so we would like to endow M with some geometric
structure which captures properties of families {Xt : t ∈ T} of the
objects X we are interested in. For example, if we have a notion of
continuous deformation Xt : t ∈ [0, 1] of objects X , then we should
give M a topology such that the map [0, 1]→M mapping
t 7→ [Xt ] is continuous for all such families Xt : t ∈ [0, 1].
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We would like the geometric structure we put on M to be as
strong as possible (e.g. for Riemann surfaces not just a topological
space, but a complex manifold, or a C-scheme) to capture as much
information as we can about families of objects {Xt : t ∈ T}.
To play the moduli space game, we must ask three questions:

(A) What kind of geometric structure should we try to put on M
(e.g. topological space, complex manifold, K-scheme, . . . )?

(B) Does M actually have this structure?
(C) If it does, can we describe M in this class of geometric spaces

completely, or approximately (e.g. ifM is a complex manifold,
can we compute its dimension, and Betti numbers bk(M))?

There are two main reasons people study moduli spaces. The first
is classification: when you study some class of geometric objects X
(e.g. vector bundles on curves), people usually consider that if you
can fully describe the moduli space M (with whatever geometric
structure is appropriate), then you have classified such objects.
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The second reason is invariants. There are many important areas
of mathematics (e.g. Gromov–Witten invariants) in which to study
some space S (e.g. a symplectic manifold) we form moduli spaces
M of secondary geometric objects X associated to S (e.g.
J-holomorphic curves in S), and then we define invariants I (S) by
‘counting’ M, to get a number, a homology class, etc.
We want the invariants I (S) to have nice properties (e.g. to be
independent of the choice of almost complex structure J on S).
For this to hold it is essential that the geometric structure on M
be of a very special kind (e.g. a compact oriented manifold), and
the ‘counting’ be done in a very special way.
Theories of this type include Donaldson, Donaldson–Thomas,
Gromov–Witten, and Seiberg–Witten invariants, Floer homology
theories, and Fukaya categories in symplectic geometry.
This is actually an important motivation for Derived Algebraic
Geometry: proper quasi-smooth derived schemes and Deligne–
Mumford stacks can be ‘counted’ in this way to define invariants.
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Moduli schemes and representable functors

In algebraic geometry there is a standard method for defining
moduli spaces as schemes, due to Grothendieck. Suppose we want
to form a moduli scheme M of some class of geometric objects X
over a field K. Suppose too that we have a good notion of family
{Xt : t ∈ T} of such objects X over a base K-scheme T . We then
define a moduli functor F : AlgK → Sets, by for each A ∈ AlgK

F (A)=
{

iso. classes [Xt : t∈SpecA] of families {Xt : t∈SpecA}
}
,

and for each morphism f : A→ A′ in AlgK, we define
F (f ) : F (A)→ F (A′) by

F (f ) : [Xt : t ∈ SpecA] 7−→ [XSpec(f )t′ : t ′ ∈ Spec(A′)].

If there exists a K-scheme M (always unique up to isomorphism)
such that F is naturally isomorphic to Hom(Spec−,M), we say F
is a representable functor, and M is a (fine) moduli scheme.
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1.4. Algebraic spaces and (higher) stacks
When schemes are not enough

Unfortunately there are lots of interesting moduli problems in
which one can define a moduli functor F : AlgK → Sets, but F is
not representable, and no moduli scheme exists.
Sometimes one can find a K-scheme M which is a ‘best
approximation’ to F (a coarse moduli scheme). But often, to
describe the moduli space M, we have to move out of schemes,
into a larger class of spaces.
The simplest such enlargement is algebraic spaces, which are
defined to be functors F : AlgK → Sets which can be presented as
the quotientM/∼ of a schemeM by an étale equivalence relation
∼. For example, moduli spaces of simple complexes E• of coherent
sheaves on a smooth projective K-scheme S are algebraic spaces.
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Introduction to stacks

A moduli K-scheme M or moduli functor F : AlgK → Sets
classifies objects X up to isomorphism, so that K-points of M are
isomorphism classes [X ] of objects X . For each X we have a group
Iso(X ) of isomorphisms i : X → X .
Usually, if Iso(X ) is nontrivial, then F is not representable, and M
does not exist as either a scheme or an algebraic space. Roughly,
the reason is that we should expect M to be modelled near [X ] on
a quotient [N/ Iso(X )] for a scheme N , but schemes and algebraic
spaces are not closed under quotients by groups (though see GIT).
Stacks are a class of geometric spaces M in which the geometric
structure at each point [X ] ∈M remembers the group Iso(X ).
They include Deligne–Mumford stacks, in which the groups Iso(X )
are finite, and Artin stacks, in which the Iso(X ) are algebraic
K-groups. For almost all classical moduli problems a moduli stack
exists, even when a moduli scheme does not.
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Groupoids and stacks

A groupoid is a category C in which all morphisms are
isomorphisms. They form a category Groupoids in which objects
are groupoids, and morphisms are functors between them.
Any set S can be regarded as a groupoid with objects s ∈ S , and
only identity morphisms. This gives a full and faithful functor
Sets→ Groupoids, so Sets ⊂ Groupoids is a full subcategory.
You can also map (essentially small) groupoids to sets by sending
C to the set S of isomorphism classes in C .
A stack is defined to be a functor F : AlgK → Groupoids
satisfying some complicated conditions. Since (affine) schemes and
algebraic spaces can all be regarded as functors F : AlgK → Sets,
and Sets ⊂ Groupoids, we can consider (affine) schemes and
algebraic spaces as functors F : AlgK → Groupoids, and then they
are special examples of stacks.
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Stacks as moduli functors

As for moduli schemes, there is a standard method for defining
moduli stacks. Suppose we want to form a moduli stack M of
some class of geometric objects X over a field K. We define a
moduli functor F : AlgK → Groupoids, by for each A ∈ AlgK

F (A)=
{

groupoid of families {Xt : t∈SpecA}, with

morphisms isomorphisms of such families
}
,

and for each morphism f : A→ A′ in AlgK, we define
F (f ) : F (A)→ F (A′) to be the functor of groupoids mapping

F (f ) : {Xt : t ∈ SpecA} 7−→ {XSpec(f )t′ : t ′ ∈ Spec(A′)}.
If F satisfies the necessary conditions, then F is the moduli stack.

23 / 40 Dominic Joyce, Oxford University Lecture 1: Algebraic Geometry and Category Theory



Different kinds of spaces in algebraic geometry
What is derived geometry?

The definition of schemes
Some basics of category theory
Moduli spaces and moduli functors
Algebraic spaces and (higher) stacks

With some practice you can treat stacks as geometric spaces –
they have points, a topology, ‘atlases’ which are schemes, and so
on. Stacks X are often locally modelled on quotients Y /G , for Y
a scheme, and G a group which is finite for Deligne–Mumford
stacks, and an algebraic group for Artin stacks.
Above we saw that categories form a 2-category Cat, with objects
categories, 1-morphisms functors, and 2-morphisms natural
transformations. As groupoids are special categories, Groupoids is
also a 2-category. Since all natural transformations of groupoids
are natural isomorphisms, all 2-morphisms in Groupoids are
invertible, i.e. it is a (2,1)-category.
Stacks ⊂ Fun(AlgK,Groupoids) also form a (2,1)-category, with
2-morphisms defined using natural isomorphisms of groupoids.
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Higher stacks

There are some moduli problems for which even stacks are not
general enough. A typical example would be moduli spaces M of
complexes E• in the derived category Db coh(S) of coherent
sheaves on a smooth projective scheme S . The point is that M
classifies complexes E• not up to isomorphism, but up to a weaker
notion of quasi-isomorphism. Really Db coh(S) is an ∞-category.
For such moduli problems we need higher stacks, which are
functors F : AlgK → SSets. Here SSets is the (∞-)category of
simplicial sets, which are generalizations of groupoids, so that
Sets ⊂ Groupoids ⊂ SSets. Higher stacks form an ∞-category,
meaning that there are not just objects, 1-morphisms, and
2-morphisms, but n-morphisms for all n = 1, 2, . . . .
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Plan of talk:

2 What is derived geometry?

2.1 Derived schemes and derived stacks

2.2 Commutative differential graded K-algebras

2.3 Fibre products
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2. What is Derived Algebraic Geometry?

Derived Algebraic Geometry (DAG) is the study of ‘derived’ spaces
in Algebraic Geometry, derived schemes and derived stacks. It has
a reputation for difficulty and abstraction, with foundational
documents running to 1000’s of pages (Lurie, Toën–Vezzosi).
Today we begin with an introduction to DAG, to give some idea of
what ‘derived’ spaces are, why they were introduced, and what
they are useful for. An essential point is that derived geometry
happens in higher categories (e.g. 2-categories or ∞-categories).
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2.1. Derived schemes and derived stacks

In §1 we saw that in classical algebraic geometry, we have spaces

affine schemes ⊂ schemes ⊂ algebraic spaces ⊂ stacks ⊂ higher stacks,

which can be defined as classes of functors F : AlgK → Sets or
Groupoids or SSets, where Sets ⊂ Groupoids ⊂ SSets.
Such a space X is completely described by knowing the family (set,
or groupoid, or simplicial set) of all morphisms f : SpecA→ X , for
all K-algebras A, plus the family of all commutative triangles

SpecA′

Specα
��

f ′

++SpecA
f // X ,

for all morphisms of K-algebras α : A→ A′.
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To do derived geometry, instead of enlarging the target category
Sets, we enlarge the domain category AlgK. So, a derived stack
over a field K is defined to be a functor F : CDGAlgK → SSets
satisfying complicated conditions, where CDGAlgK is the category
of commutative differential graded K-algebras (cdgas) in degrees
6 0, which we explain shortly. An alternative definition, essentially
equivalent when charK = 0, uses functors F : SAlgK → SSets,
where SAlgK is the category of simplicial K-algebras.
One might guess that derived schemes should be functors
F : CDGAlgK → Sets, and derived stacks functors
F : CDGAlgK → Groupoids, and derived higher stacks functors
F : CDGAlgK → SSets. In fact only functors
F : CDGAlgK → SSets are considered. This is because Derived
Algebraic Geometers always make things maximally complicated.
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Any K-algebra A can be regarded as a cdga A• concentrated in
degree 0, giving a full subcategory AlgK ⊂ CDGAlgK. Thus, any
functor F : CDGAlgK → SSets restricts to a functor
t0(F ) = F |AlgK : AlgK → SSets, called the classical truncation of
F . If F is a derived scheme, or derived Deligne–Mumford / Artin
stack, or derived stack, then t0(F ) is a scheme, or
Deligne–Mumford / Artin stack, or higher stack, respectively.
So, derived stacks do not allow us to study a larger class of moduli
problems, as algebraic spaces/stacks/higher stacks do. Instead,
they give us a richer geometric structure on the moduli spaces we
already knew about in classical algebraic geometry.
This is because a derived stack X knows about all morphisms
SpecA• → X for all cdgas A•, but the corresponding classical
stack X = t0(X ) only knows about all morphisms SpecA→ X for
all K-algebras A, which is less information.
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2.2. Commutative differential graded K-algebras

Cdgas in derived geometry replace algebras in classical geometry.

Definition

Let K be a field. A commutative differential graded K-algebra
(cdga) A• = (A∗, d) in degrees 6 0 consists of a K-vector space
A∗ =

⊕−∞
k=0 A

k graded in degrees 0,−1,−2, . . . , together with
K-bilinear multiplication maps · : Ak × Al → Ak+l for all k , l 6 0
which are associative and supercommutative (i.e.
α · β = (−1)klβ · α for all α ∈ Ak , β ∈ Al), an identity 1 ∈ A0 with
1 · α = α · 1 = α for all α ∈ A∗, and K-linear differentials
d : Ak → Ak+1 for all k < 0, which satisfy d2 = 0 and the Leibnitz
rule d(α · β) = (dα) · β + (−1)kα · (dβ) for all α ∈ Ak and β ∈ Al .

Write Hk(A•) = Ker(d : Ak → Ak+1)/ Im(d : Ak−1 → Ak) for the
cohomology of A•. Then H∗(A•) is a graded K-algebra, and
H0(A•) an ordinary K-algebra.
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Example 2.1 (Our main example of cdgas and derived schemes)

Let m, n > 0, and consider the free graded C-algebra
A∗ = C[x1, . . . , xm; y1, . . . , yn] generated by commutative variables
x1, . . . , xm in degree 0, and anti-commutative variables y1, . . . , yn
in degree −1. Then Ak = C[x1, . . . , xm]⊗C (Λ−kCn) for
k = 0,−1, . . . ,−n, and Ak = 0 otherwise.
Let p1, . . . , pn ∈ C[x1, . . . , xm] be complex polynomials in
x1, . . . , xm. Then as A∗ is free, there are unique maps
d : Ak → Ak+1 satisfying the Leibnitz rule, such that
dyi = pi (x1, . . . , xm) for i = 1, . . . , n. Also d2 = 0, so A• = (A∗, d)
is a cdga. We have H0(A•) = C[x1, . . . , xm]/(p1, . . . , pn), where
(p1, . . . , pn) is the ideal generated by p1, . . . , pn. Hence
SpecH0(A•) is the subscheme of Cm defined by p1 = · · · = pn = 0.
We interpret the derived scheme SpecA• as the derived
subscheme of Cm defined by the equations p1 = · · · = pn = 0.
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What data does a derived scheme remember?

Consider the solutions X of p1 = · · · = pn = 0 in Cm as
(a) a variety, (b) a scheme, and (c) a derived scheme.
The variety X remembers only the set of solutions (x1, . . . , xm) in
Cm. So, for example, x = 0 and x2 = 0 are the same variety in C.
The scheme X remembers the ideal (p1, . . . , pn), so x = 0, x2 = 0
are different schemes in C as (x), (x2) are distinct ideals in C[x ].
But schemes forget dependencies between p1, . . . , pn. So, for
example, x2 = y2 = 0 with n = 2 and x2 = y2 = x2 + y2 = 0 with
n = 3 are the same scheme in C2.
The derived scheme X remembers information about the
dependencies between p1, . . . , pn. For example x2 = y2 = 0 and
x2 = y2 = x2 + y2 = 0 are different derived schemes in C2, as the
two cdgas A•, Ã• have H−1(A•) 6∼= H−1(Ã•). In this case, X has a
well-defined virtual dimension vdimX = m − n.
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Bézout’s Theorem and derived Bézout’s Theorem

Let C ,D be projective curves in CP2 of degrees m, n. If the
classical scheme X = C ∩ D has dimension 0, then Bézout’s
Theorem says that the number of points in X counted with
multiplicity (i.e. length(X )) is mn. But if dimX 6= 0,
counterexamples show you cannot recover mn from X .
Now consider the derived intersection X = C ∩ D. It is a proper,
quasi-smooth derived scheme with vdimX = 0, even if dimX = 1,
and so has a ‘virtual count’ [X ]virt ∈ Z, which is mn.
This is a derived version of Bézout’s Theorem, without the
transversality hypothesis dimC ∩ D = 0. It is possible as X
remembers more about how C ,D intersect. This illustrates:

General Principles of Derived Geometry

Transversality is often not needed in derived geometry.
Derived geometry is useful for Bézout-type ‘counting’ problems.
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Patching together local models

Let X be a (say separated) classical K-scheme. Then we can cover
X by Zariski open subschemes SpecA ∼= U ⊆ X . Given two such
SpecA ∼= U, Spec Ã ∼= Ũ, we can compare them easily on the
overlap U ∩ Ũ: there exist f ∈ A, f̃ ∈ Ã such that U ∩ Ũ is
identified with {f 6= 0} ⊆ SpecA and {f̃ 6= 0} ⊆ Spec Ã, and there
is a canonical isomorphism of K-algebras A[f −1] ∼= Ã[f̃ −1], where
A[f −1]=A[x ]/(xf −1) is theK-algebra obtained by inverting f inA.
For a derived scheme X , really X is a functor CDGAlgK → SSets,
but we can at least pretend that X is a space covered by Zariski
open SpecA• ∼= U ⊆ X . Given two SpecA• ∼= U , Spec Ã• ∼= Ũ ,
we can find f ∈ A0, f̃ ∈ Ã0 such that U ∩ Ũ is identified with
{f 6= 0} ⊆ SpecA• and {f̃ 6= 0} ⊆ Spec Ã•. However, in general
we do not have A•[f −1] ∼= Ã•[f̃ −1] in CDGAlgK. Instead,
A•[f −1], Ã•[f̃ −1] are only equivalent cdgas, in a weak sense.
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The problem is that CDGAlgK is really the wrong category. A
quasi-isomorphism is a morphism f : A• → Ã• in CDGAlgK such
that H∗(f ) : H∗(A•)→ H∗(Ã•) is an isomorphism on cohomology.
The correct statement is that A•[f −1], Ã•[f̃ −1] should be
isomorphic in a ‘localized’ category CDGAlgK[Q−1] in which all
quasi-isomorphisms in CDGAlgK have inverses. This is difficult to
work with, and should really be an ∞-category.

General Principles of Derived Geometry

You can usually give nice local models for ‘derived’ spaces X .
However, the local models are glued together on overlaps not
by isomorphisms, but by some mysterious equivalence relation.
We often study categories C of differential graded objects A•,
in which quasi-isomorphisms Q are to be inverted. The
resulting C [Q−1] must be treated as an ∞-category, as too
much information is lost by the ordinary category.
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2.3. Fibre products

To explain why we need higher categories in derived geometry, we
discuss fibre products in (ordinary) categories (more in §3.2).

Definition

Let C be a category, and g : X → Z , h : Y → Z be morphisms in
C . A fibre product (W , e, f ) for g , h in C consists of an object W
and morphisms e : W → X , f : W → Y in C with g ◦ e = h ◦ f ,
with the universal property that if e ′ : W ′ → X , f ′ : W ′ → Y are
morphisms in C with g ◦ e ′ = h ◦ f ′, then there is a unique
morphism b : W ′ →W with e ′ = e ◦ b and f ′ = f ◦ b.
We write W = X ×g ,Z ,h Y or W = X ×Z Y .
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Intersections of subschemes, or submanifolds, are examples of fibre
products. If C ,D ⊆ S are K-subschemes of a K-scheme S , then by
the K-subscheme C ∩ D, we actually mean the fibre product
C ×i ,S ,j D in SchK, with i : C ↪→ S , j : D ↪→ S the inclusions.
Recall our ‘derived Bézout’s Theorem’. We claimed that given
curves C ,D ⊂ CP2 of degree m, n, there is a ‘derived intersection’
X = C ∩ D, which is quasi-smooth with dimension vdimX = 0,
and has a ‘virtual count’ [X ]virt ∈ Z, which is mn.
This statement cannot be true if X is the fibre product C ×i ,CP2,j D
in an ordinary category dSchC of derived C-schemes. For example,
if C = D (or if C is a component of D), then in an ordinary
category we must have C ×CP2 D = C , so that vdimX = 1.
However, it can be true if dSchC is a higher category (e.g. an
∞-category, or a 2-category), and fibre products in dSchC satisfy a
more complicated universal property involving higher morphisms.
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General Principles of Derived Geometry

Derived geometric spaces should form higher categories (e.g.
∞-categories, or 2-categories), not ordinary categories.

In fact any higher category C has a homotopy category Ho(C ),
which is an ordinary category, where objects X of Ho(C ) are
objects of C , and morphisms [f ] : X → Y in Ho(C ) are
2-isomorphism classes of 1-morphisms f : X → Y in C . So we can
reduce to ordinary categories, but this loses too much information.

The ‘correct’ fibre products (etc.) in C satisfy universal
properties in C involving higher morphisms. This does not
work in Ho(C ), where no universal property holds.
In Ho(C ), morphisms [f ] : X → Y are not local in X . That
is, if U ,V ⊆ X are open with X = U ∪ V , then [f ] is not
determined by [f ]|U and [f ]|V . To determine f up to
2-isomorphism you need to know the choice of 2-isomorphism
(f |U)|U∩V → (f |V )|U∩V , not just the existence.
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