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11.1. Stable ∞-categories

Definition

Let Q be a quasicategory. A zero object is an object 0 ∈ Q which
is both an initial object and a terminal object.
Suppose Q has a zero object, and consider commuting squares

X HPf
//

0��

Y
g ��

0
0 // Z

(11.1)

in Q. This really means we have a map of simplicial sets

•
�0

�1

((

�1
//

�1 ��

•
�0

�1��
�2

•
�0

�2

�1
// •
�0

k−→
X

?
**

f //

0 ��

Y
g��

?

0
?

0
// Z .

⊂ Q.

So far (11.1) just means that g ◦ f = 0, so that X
f−→Y

g−→Z is

a complex. We call X
f−→Y

g−→Z a triangle in Q.
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Definition (Continued.)

We say that X
f−→Y

g−→Z is a fibre sequence, or exact triangle,
and write X = Ker g , if (11.1) is a homotopy Cartesian square
(∞-Cartesian square), i.e. if (11.1) is the limit in Q of the map of
simplicial sets

•
�0

�1��
•
�0

�1
// •
�0

k−→
Y

g��
0

0
// Z .

⊂ Q.

Dually, we say that X
f−→Y

g−→Z is a cofibre sequence, or
coexact triangle, and write Z = Coker f , if (11.1) is a homotopy
coCartesian square (∞-coCartesian square).
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Definition

A quasicategory Q is a stable ∞-category if

Q has a zero object 0.
Every morphism g : Y → Z in Q has a kernel (that is, g

extends to an exact triangle X
f−→Y

g−→Z ).
Every morphism f : X → Y in Q has a cokernel (that is, f

extends to a coexact triangle X
f−→Y

g−→Z ).
Every exact triangle is coexact, and vice versa.

This is a simple definition with remarkable consequences. There
are lots of stable ∞-categories in nature, and stable ∞-categories
have very good properties, you can do lots of beautiful
mathematics in them. For example:

Theorem 11.1

Let Q be a stable ∞-category. Then the homotopy category
Ho(Q) is a triangulated category.
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Theorem 11.1 is surprising as triangulated categories have lots of
extra structure which apparently wasn’t there in the definition of
stable ∞-category. For example, triangulated categories are
additive, so that Hom(X ,Y ) is an abelian group, but it is not
obvious why Ho(Q) should be additive.
Every object X in Q has a loop space ΩX in an exact triangle
ΩX → 0→ X , and a suspension ΣX in a coexact triangle
X → 0→ ΣX . These extend to ∞-functors Ω : Q → Q and
Σ : Q → Q. As exact and coexact triangles are the same we see
that Ω ◦ ΣX ' X and Σ ◦ ΩX ' X , and Ω,Σ are inverse functors
up to equivalence. On the homotopy triangulated category,
Ho(Σ) : Ho(Q)→ Ho(Q) is the shift functor [1].

If X
f−→Y

g−→Z is a (co)exact triangle then f extends

to W
e−→X

f−→Y , and one can show that W ∼= ΩZ . We get a long
exact sequence with each consecutive three terms a (co)exact triangle:

· · · // Ω2Z // ΩX // ΩY // ΩZ // X
f // Y

g // Z // ΣX // ΣY // ΣZ // Σ2X // · · ·
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For example: to define the loop space functor Ω : Q → Q we have
to make an infinite number of choices: on every object X
(0-simplex in Q) we choose a kernel ΩX for 0→ X , and similarly
for all n-simplices in Q. Each of these choices lies in a simplicial
set of possible choices, and the definition of limits in
quasicategories implies that this simplicial set is contractible.

General Principle

• When working in quasicategories, everything is a simplicial set.
• Something is ‘unique’ if it lies in a contractible simplicial set.

If Q is a quasicategory with a zero object, and all finite limits exist
in Q, then one can define the loop space ∞-functor Ω : Q → Q
as before. One can then define a stable ∞-category Sp(Q) of
spectra in Q, roughly by formally inverting Ω. Objects in Sp(Q)
are sequences (Ei )i∈Z of objects in Q with morphisms
Ei → Ω(Ei+1). When Q is the quasicategory of topological spaces
Top, this gives the usual notion of spectra in algebraic topology.
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Derived categories and stable ∞-categories

Let A be an abelian category satisfying suitable conditions. Then
(Lurie) the derived categories D(A),D±(A),Db(A) can be written
as (equivalent to) the homotopy categories of stable ∞-categories
D(A),D±(A),Db(A). For example, if A has enough projectives,
then we can define D−(A) to be the nerve of the full simplicial
subcategory of projective complexes in Com−(A).
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11.2. Dg-categories, Segal categories

Definition

Let K be a field. A dg-category over K is a category C enriched in
Z-graded chain complexes over K. That is, C has objects
X ,Y , . . ., and for all X ,Y we have a chain complex Hom•(X ,Y ):

· · · dk−1
// Homk(X ,Y )

dk // Homk+1(X ,Y )
dk+1

// · · ·

and for all X ,Y ,Z associative unital morphisms of complexes
µXYZ : Hom•(Y ,Z )⊗K Hom•(X ,Y )→ Hom•(X ,Z ).
Given a dg-category C , one can form an ordinary category H0(C )
with the same objects and with morphisms
HomH0(C )(X ,Y ) = H0(Hom•(X ,Y )).
There is a notion of pretriangulated dg-category C , which has a
suspension functor Σ and a class of distinguished triangles (being
pretriangulated is a property of C , not extra structure). Then
H0(C ) is a triangulated category.
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Dg-categories are a kind of K-linear ∞-category, which predate the
development of ∞-categories. Pretriangulated dg-categories were
important as an enhanced notion of triangulated category, in which
one could deal with problems such as the nonfunctoriality of the
cone. Many derived categories such as Db coh(X ) are of the form
H0(C ) for a pretriangulated dg-category C .

Definition

For dg-categories C ,D , a dg-functor F : C → D is defined in the
obvious way, mapping X 7→ F (X ) on objects, and morphisms of
complexes FX ,Y : Hom•C (X ,Y )→ Hom•D(F (X ),F (Y )) preserving
all the structure. We call F a quasi-equivalence if FX ,Y is a
quasi-isomorphism for all X ,Y and H0(F ) : H0(C )→ H0(D) is an
equivalence of ordinary categories.
Dg-categories form a model category dg-Cat in which the weak
equivalences are quasi-equivalences.

From an ∞-category point of view, dg-categories are more-or-less
equivalent to K-linear stable ∞-categories.
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Segal categories

Segal categories are yet another model for ∞-categories, a weak
form of simplicial categories. Roughly, a Segal category has a
set/class of objects X ,Y ,Z , . . . , and for all objects X ,Y a
simplicial set Hom(X ,Y ), and for all X ,Y ,Z a diagram of
simplicial sets

Hom(X ,Y ,Z )
' ιXYZ��

µXYZ
// Hom(X ,Z )

Hom(Y ,Z )×Hom(X ,Y ),

with ιXYZ a weak equivalence. The idea is that composition
Hom(Y ,Z )×Hom(X ,Y )→ Hom(X ,Z ) is µXYZ ◦ ι−1

XYZ , except
that ι−1

XYZ doesn’t exist until we invert weak equivalences in SSets.
So as in quasicategories, composition of morphisms is not unique,
but involves a choice.
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11.3. Derived Algebraic Geometry: foundations

As far as I am concerned, there are two main foundational theories
of Derived Algebraic Geometry on the market:

Bertrand Toën and Gabriele Vezzosi, a series of papers from
2001, an important one being ‘HAG II’, math.AG/0404373.
Jacob Lurie’s 2006 PhD thesis, which mutated into ‘Derived
Algebraic Geometry I–XIV’, and then into > 3 enormous
books ‘Higher Topos Theory’ math.CT/0608040, ‘Higher
Algebra’, and ‘Spectral Algebraic Geometry’.

There is also a series of books by Dennis Gaitsgory and Nick
Rozenblyum called ‘A study in Derived Algebraic Geometry’, but I
don’t count these, as Gaitsgory–Rozenblyum seem to be obsessed
by ind-coherent sheaves, which I don’t see as the main point of
DAG (the main point being extending schemes, stacks, Hartshorne,
etc. to the ‘derived’ world?). I guess Gaitsgory–Rozenblyum
mostly want to prove geometric Langlands.
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Toën–Vezzosi (which I know better than Lurie) work with model
categories, simplicial categories, and dg-categories — older
technology now — and their focus is more clearly on doing
Algebraic Geometry and dragging Hartshorne into the 21st century
(or at least into the 1990s). Lurie works in quasicategories — new
and shiny — and developed much of the ∞-category theory
himself. He cares about derived schemes and derived stacks, but
also about a bunch of other things as well — ∞-categories have
applications in Algebraic Topology, TQFTs, etc. Lurie is a
towering figure in mathematics. You can find lots of his writings
(1000s of pages) on his webpage. They are usually very long, but
very clear and beautifully written.
It is generally believed that the Toën–Vezzosi and Lurie theories
should be equivalent on their intersection. I cite references to
both, and usually get away with it.
For short introductions I recommend two survey papers on DAG by
Bertrand Toën, arXiv:1401.1044 and math.AG/0604504.
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Higher stacks

Classical Artin K-stacks are functors F : Schop
K → Groupoids, or

equivalently F : AlgK → Groupoids. Morally, these have two
essentially orthogonal directions of generalization:

Higher Artin stacks HArtK, in which we replace the target
Groupoids by the ∞-category SSets (basically ∞-groupoids).
Derived Artin stacks DArtK, in which we replace the domain
AlgK by an ∞-category of derived algebras, either simplicial
K-algebras SAlgK, or (when charK = 0) cdgas cdgaK.

Actually it doesn’t really make sense to talk about ∞-functors into
an ordinary (2-)category Groupoids, so for derived stacks we
consider ∞-functors SAlgK → SSets, so one defines derived stacks
as generalizations of higher stacks. But there is an ∞-subcategory
DArt1

K ⊂ DArtK of derived Artin 1-stacks, which on the classical
level are Artin rather than higher stacks.
I’ll start with higher stacks, and go on to derived stacks next lecture.
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What are higher stacks for? Moduli spaces for Db coh(X )

Let X be a smooth projective K-scheme (this can be weakened a lot).
Then people care about the categories
Vect(X ) ⊂ coh(X ) ⊂ Db coh(X ). The moduli stacks
MVect(X ) ⊂Mcoh(X ) of objects in Vect(X ) and coh(X ) exist as

Artin K-stacks. However, no moduli stack of objects in Db coh(X )
exists, as an Artin K-stack. We can define a moduli functor
F : Schop

K → Groupoids parametrizing objects E • in Db coh(X ),
but it is not a stack, that is, it is not a 2-sheaf over (fppf, smooth
etc.) open covers {Ui ↪→ U, i ∈ I} in SchK.
This is because (say perfect) complexes E • → U × X do not form
a 2-sheaf over U if Extk(E •,E •) 6= 0 for k < 0, that is, if there are
nontrivial morphisms E • → E •[k] for k < 0. This does not happen
for sheaves E ∈ coh(X ) ⊂ Db coh(X ), which have Extk(E ,E ) = 0
for k < 0. The problem is negative Exts Ext<0(E •,E •) in Db coh(X ).
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For the next bit of the lecture I am going to use ‘∞-category’ to
mean some suitable version of (∞, 1)-categories (model categories,
simplicial categories, Segal categories, quasicategories,
dg-categories, . . . ) without caring exactly which kind.
The solution to defining moduli stacks in Db coh(X ) is to pass
from the ordinary category Db coh(X ) to an ∞-category version
Db coh(X ), and define an ∞-categorical notion of ∞-sheaf
(homotopy sheaf), which given an open cover {Ui ↪→ U, i ∈ I} in
SchK, involves choosing (n − 1)-morphisms in SSets on n-fold
overlaps U1 ∩ · · · ∩ Un for all n > 1. Then complexes E • → U × X
in Db coh(U × X ) form an ∞-sheaf over U. So when we define a
moduli ∞-functor F : Schop

K → SSets, it has an ∞-sheaf property
over open covers {Ui ↪→ U, i ∈ I} in SchK.
We define an ∞-category HStaK of higher stacks, the full
∞-subcategory of all F in Fun∞(Schop

K ,SSets) satisfying the
∞-sheaf condition. Then we define an ∞-subcategory
HArtK ⊂ HStaK of higher Artin stacks, which satisfy inductive
conditions involving atlases.
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What are higher stacks like?
Unfortunately I haven’t got a very good answer to this.
Ordinary stacks X have isotropy groups Iso(x) at each point
x ∈ X . For a moduli stack M of sheaves E , we have
Iso([E ]) = Aut(E ) ⊂ Ext0(E ,E ).
A higher stack X has higher isotropy groups Isoi (x) for
i = 0, 1, . . . at each point x , with Isoi (x) abelian for i > 0 and
Isoi (x) = 0 for i � 0, where for a moduli stack of complexes E •,
we have Iso0([E •]) ∼= Aut(E •) ⊂ Ext0(E •,E •) and
Isoi ([E •]) ∼= Ext−i (E •,E •) for i > 0.
If Isoi (x) = 0 for i > n then Iso0(x), . . . , Ison−1(x) should be the
homology of an n-group. I’m not sure n-groups are properly
defined yet, but 2-groups at least are well studied. A 2-group is a
quadruple (G0,G1, ρ, ω), where G0 is a group, G1 an abelian group,
ρ : G0 → Aut(G1) a morphism and ω ∈ H3(BG0,G1).
So, our favourite local model for a higher Artin stack might be
something like ‘the quotient [V /G ] of a K-scheme V by an
algebraic n-group G .’
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Simple examples of higher stacks

Let G be an abelian algebraic K-group, e.g. G = Z2. People often
write the quotient stack [∗/G ] as BG . There is a higher Artin
stack B2G which classifies principal [∗/G ]-bundles. This is the
functor F : Schop

K → (2-groupoids) ⊂ SSets such that F (U) is the
2-groupoid (2-category with all 1-morphisms equivalences) of
principal [∗/G ]-bundles π : P → U, in the sense of Artin stacks.
Here U is a K-scheme, but P is an Artin stack which looks locally
like U × [∗/G ].
Then B2G is [∗/G ] for G the 2-group ({1},G , 0, 0).
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Homotopy sheaves

Given a topological space X and ordinary open covers {Ui ↪→ U,
i ∈ I} of open U ⊂ X , or more generally given a K-scheme X and
Grothendieck open covers (étale, smooth, . . . ) of U ↪→ X , or on
the site SchK, in §4.3, §5.1 and §5.2 we defined sheaves and
2-sheaves (stacks) on X . To define higher and derived stacks, we
need an ∞-categorical notion of sheaf.
To do this, one starts with ‘hypercovers’: a simplicial notion of
open cover, which is a simplicial object U• : ∆op → SchK in SchK
satisfying conditions. For an open cover {Ui ↪→ U, i ∈ I} of U, the
corresponding hypercover is

∐
i1∈I

Ui1
//

∐
i1,i2∈I

Ui1i2 =∐
i1,i2∈I

Ui1×UUi2

oo
oo //

//

∐
i1,i2,i3∈I

Ui1i2i3 =∐
i1,i2,i3∈I

Ui1×UUi2×UUi3

oo
oo
oo

· · · .

U is the colimit of this diagram in SchK, we glue the Ui to make U.
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A homotopy presheaf is an (∞-)functor F : Open(X )op → SSets.
For each hypercover U• : ∆op → Open(X ) of U ∈ Open(X ) we
get a corresponding cosimplicial object F ◦ U• : ∆→ SSets.
Pullbacks along Ui1···ik ↪→ U induce a natural transformation
F (U)⇒ F ◦ U•, where F (U) : ∆→ SSets is the constant functor
with value F (U). We call F a homotopy sheaf (∞-sheaf ) if for all
such U• → U, the induced morphism F (U)→ holim(F ◦ U•) is a
weak equivalence in SSets, where holim(F ◦ U•) is the homotopy
limit of F (U) : ∆→ SSets in SSets.
The homotopy sheaf condition involves data and conditions on all
n-fold overlaps Ui1 ∩ · · · ∩ Uin , packaged neatly using the language
of simplicial sets.
We can then define the ∞-category HStaK of higher K-stacks to
be the full ∞-subcategory of F in Fun∞(Schop

K ,SSets) or
Fun∞(AlgK,SSets) which satisfy the homotopy sheaf condition for
all hypercovers U• → U, in some choice of Grothendieck topology.
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Higher Artin stacks

Definition

Suppose we have defined the ∞-category HStaK of higher
K-stacks, with discrete ∞-subcategories AffK ⊂ SchK ⊂ HStaK,
and all (homotopy) fibre products exist in HStaK.
We define a notion of n-Artin stack for n > −1, by induction on n:
• A −1-Artin stack is an affine scheme.
• A morphism h : Y → Z in HStaK is −1-representable, or affine,
if X ×g ,Z ,h Y is an affine scheme for all g : X → Z with X ∈ AffK.
• Suppose by induction that (n − 1)-Artin stacks and
(n − 1)-representable morphisms are defined. Then X ∈ HStaK is
an n-Artin stack if there exists an (n − 1)-representable, smooth,
surjective morphism π : U → X with U a disjoint union of affine
schemes. A morphism h : Y → Z in HStaK is n-representable if
X ×g ,Z ,h Y is an n-Artin stack for all g : X → Z with X ∈ AffK.
• A stack X which is locally an n-Artin stack for some n is a
higher Artin stack.
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n-Artin stacks and Artin n-stacks

Write HArtK ⊂ HStaK for the full ∞-subcategory of higher Artin
stacks. Confusingly, there is a slightly different notion of Artin n-stack :

Definition

Let X be a higher Artin stack. We say that X is a (higher) Artin
n-stack if for all A ∈ AlgK, the simplicial set X (A) is n-truncated,
that is, πi (X (A)) = 0 for all i > n. Then

n-Artin stacks ⊂ Artin n + 1-stacks.

The notion of Artin n-stack is more useful than n-Artin stack.
Artin 1-stacks are equivalent to ordinary Artin stacks. Artin
0-stacks are more-or-less the same thing as algebraic spaces. The
moduli stack of complexes E • in Db coh(X ) with
Ext6−n(E •,E •) = 0 is an Artin n-stack.
Write HArtnK ⊂ HArtK for the full ∞-subcategory of higher Artin
n-stacks.

22 / 39 Dominic Joyce, Oxford University Lecture 11: More∞-categories, beginnings of DAG



More∞-categories, beginnings of DAG
Derived schemes and derived stacks

Stable∞-categories
Dg-categories, Segal categories
Derived Algebraic Geometry: foundations. Higher stacks

One nice fact about higher moduli stacks

Toën–Vaquié prove that if X is a smooth projective K-scheme then
the moduli stack MDb coh(X ) of objects in Db coh(X ) exists as a
higher Artin K-stack.
In general I find higher stacks difficult to visualize and say anything
meaningful about. But one thing does work nicely: over K = C a
higher C-stack X has a ‘topological realization’ X top, a topological
space natural up to homotopy equivalence, so we can define the
(co)homology H∗(X ) := H∗(X

top), H∗(X ) := H∗(X top).
It turns out that the (co)homology of the higher stack MDb coh(X )

is often computable, and is much nicer than the (co)homology of
the Artin stack Mcoh(X ), which is usually not computable.
Basically this is because Mcoh(X ) is like an ‘abelian monoid in
stacks’, with addition ⊕ in coh(X ). But MDb coh(X ) is like an

‘abelian group in stacks’, as [1] : Db coh(X )→ Db coh(X ) acts like
an (up to homotopy) inverse for addition ⊕ in Db coh(X ); and
abelian groups are much simpler than monoids.
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12.1. Definitions of derived schemes and derived stacks

It turns out there is a good notion of derived scheme (Toën
arXiv:1401.1044, Lurie), although the early Toën–Vezzosi theory
went straight to derived stacks without discussing derived schemes.

Definition

Let K be a field. A derived ringed K-space X = (X ,OX ) is a
topological space X with a homotopy sheaf (∞-sheaf) OX of
simplicial commutative K-algebras. Then π0(OX ) is an ordinary
sheaf of ordinary commutative K-algebras, and πi (OX ) is an
ordinary sheaf of modules over π0(OX ) for all i > 0.
We call X = (X ,OX ) (usually just abbreviated to X ) a derived
K-scheme if (X , π0(OX )) is an ordinary K-scheme, and
πi (OX ) ∈ qcoh(X , π0(OX )) for all i > 0. We call (X ,OX ) an
affine derived K-scheme if also (X , π0(OX )) is an affine K-scheme.
Write DAffK ⊂ DSchK for the ∞-categories of derived (affine)
K-schemes.
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There is a global sections ∞-functor Γ : DAffop
K → SAlgK mapping

(X ,OX ) 7→ π∗(OX ), where π : X → ∗ is the projection. It is an
equivalence of ∞-categories, with a homotopy inverse
Spec : SAlgK → DAffop

K . Thus, we can alternatively define an
affine derived K-scheme as SpecA• for A• a simplicial commutative
K-algebra, and a derived K-scheme to be a derived ringed K-space
(X ,OX ) which is locally equivalent to derived affine K-schemes.
There is an inclusion i : AlgK ↪→ SAlgK which is right adjoint to
π0 : SAlgK → AlgK. These extend to adjunctions

AffK
i // DAffK,
t0

oo SchK
i // DSchK .
t0

oo

That is, ordinary (affine) K-schemes X include into derived (affine)
K-schemes X = i(X ), and each derived (affine) K-scheme
X = (X ,OX ) has a classical truncation t0(X ) = (X , π0(OX )).
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Derived stacks

Definition

In §11.3 we defined the ∞-category HStaK of higher K-stacks to
be the full ∞-subcategory of F in Fun∞(AlgK,SSets) satisfying
the homotopy sheaf condition for all hypercovers U• → U, in some
choice of Grothendieck topology (use fppf for the Artin case below).
Similarly, we define the ∞-category DStaK of derived K-stacks to
be the full ∞-subcategory of F in Fun∞(SAlgK,SSets) satisfying
the homotopy sheaf condition for all hypercovers U• → U, in some
choice of Grothendieck topology.
The Yoneda embedding gives an ∞-functor Y : SAlgop

K → DStaK.
We think of objects in the essential image of Y as derived affine
K-schemes, considered as derived stacks.
We then define derived n-Artin stacks for n > −1 by induction,
exactly as for higher stacks, but starting with derived −1-Artin
stacks being derived affine schemes. A derived stack X which is
locally a derived n-Artin stack for some n is a derived Artin stack.
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If X is a derived Artin stack then t0(X ) is a higher Artin stack.
(So ‘derived’ includes ‘higher’ for derived stacks.) We call X a
derived Artin n-stack if t0(X ) is a higher Artin n-stack. If X is a
derived Artin 1-stack then t0(X ) is an ordinary Artin stack.
Write DArtK ⊂ DStaK for the full ∞-subcategory of derived Artin
stacks, and DArtnK ⊂ DArtK for the full ∞-subcategory of derived
Artin n-stacks. Then

DSchK ⊂ DArt0
K ⊂ DArt1

K ⊂ · · · ⊂ DArtnK ⊂ DArtK .

We have adjunctions

HArtK
i // DArtK,
t0

oo HArtnK
i // DArtnK .
t0

oo

The (co)units of the adjunctions give morphisms

t0 ◦ i(X )
∼=−→X , i ◦ t0(X )

ι
↪→X .

If X ∈ DArtK with classical truncation X = t0(X ) = i ◦ t0(X )
there is an inclusion morphism ι : X ↪→ X . Think of X as an
infinitesimal formal thickening of X , like a scheme X is a formal
thickening of its reduced subscheme X red ↪→ X .
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Locally finitely presented derived schemes and stacks

There is a notion of when a simplicial commutative K-algebra A• is
finitely presented. Roughly, it means there are only finitely many
generators and (higher) relations. When charK = 0, the parallel
notion for cdgas A• = (A∗,d) is that A∗ is a free graded polynomial
K-algebra with finitely many generators, all in degrees 6 0.
A derived K-scheme or K-stack X is locally finitely presented if it
is locally modelled on SpecA• for finitely presented A•. Locally
finitely presented X are particularly nice. They have perfect
(co)tangent complexes LX ,TX (later).
If X is a smooth projective K-scheme then the derived moduli
stack M of objects in Db coh(X ) is a locally finitely presented
derived Artin stack (Toën–Vaquié).
Note that if X is a singular scheme or stack then i(X ) is generally
not locally finitely presented, so i(X ) is not ‘nice’ as a derived stack.
Often it is better to consider a derived version X of X with X 6= i(X ).
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12.2. Cotangent complexes of derived stacks

A smooth n-manifold X has a cotangent bundle T ∗X , a rank n
vector bundle T ∗X → X . Smooth maps g : X → Z , h : Y → Z
are called transverse if for all x ∈ X , y ∈ Y with
g(x) = h(y) = z ∈ Z , the linear map
Dxg ⊕ Dyh : T ∗z Z → T ∗x X ⊕ T ∗y Y is injective. If g , h are
transverse, a fibre product W = X ×g ,Z ,h Y exists in Man, with
dimW = dimX + dimY − dimZ , in a Cartesian square

W
f

//

e
��

Y
h ��

X
g // Z .

(12.1)

There is an exact sequence of cotangent bundles

0 // (g ◦e)∗(T ∗Z )
e∗(Dg)⊕f ∗(Dh)// e

∗(T ∗X )
⊕f ∗(T ∗Y )

De⊕−Df // T ∗W // 0. (12.2)

We would like to generalize all this to (derived) schemes and stacks.
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If X is a classical K-scheme, there is a notion of cotangent sheaf
ΩX , which lies in coh(X ) if X is locally of finite type, and is a
vector bundle if X is smooth. But given a Cartesian square (12.1)
in SchK, the analogue of (12.2) for cotangent sheaves ΩX is only
left exact unless (12.1) satisfies strong transversality conditions.
There is a theory of (co)tangent complexes for derived (and
classical) schemes and stacks. Here are some important features:
(i) When going from classical to derived we replace bundles and
sheaves by complexes. So the cotangent complex LX of a derived
stack X is a complex, in a derived category of quasicoherent sheaves.
(ii) For each X = (X ,OX ) there is a triangulated category
Lqcoh(X ) of sheaves of OX -modules with quasicoherent
cohomology. It has a t-structure with heart
qcoh(X ) ∼= qcoh(t0(X )). But if X 6∼= i(X ) then
Lqcoh(X ) 6∼= D(qcoh(X )) in general.
(iii) Morphisms f : X → Y give exact pullback functors
f ∗ : Lqcoh(Y )→ Lqcoh(X ).
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(iv) Under very mild conditions, each derived stack X has a
cotangent complex LX in Lqcoh(X ). Each morphism f : X → Y
induces a morphism Lf : f ∗(LY )→ LX in Lqcoh(X ).
(v) If X is a derived K-scheme with classical truncation X = t0(X )
then LX has cohomology in degrees (−∞, 0] in the t-structure on
Lqcoh(X ), and H0(LX ) ∼= ΩX is the classical cotangent sheaf.
(vi) If X is locally finitely presented then LX is a perfect complex
(locally modelled on a bounded complex of vector bundles
E• = (0→ E a → E a+1 → · · · → Eb → 0) on X ).
A perfect complex E• has a rank rank E• =

∑
k(−1)k rankE k in

Z, locally constant on X . We define the virtual dimension
vdimX = rankLX .
Although duality DX = Hom(−,OX ) may not be well behaved on
Lqcoh(X ) (does not square to the identity), it is well behaved on
perfect complexes. So in this case we define the tangent complex
TX = L∨X , and LX ∼= T∨X .
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(vii) Let X be a smooth projective K-scheme. Then there exists a
derived moduli stack M of objects E • in Db coh(X ), which is a
locally finitely presented derived Artin
K-stack. At each point [E •] ∈M the (co)tangent complexes satisfy
Hk(TM|[E•]) ∼= Extk−1(E •,E •), Hk(LM|[E•]) ∼= Ext1−k(E •,E •)∗.
Thus the (co)tangent complexes TM,LM know about the full
deformation theory Ext∗(E •,E •) of M near E •.
(viii) Suppose we are given a homotopy Cartesian square in DArtK:

W
GO

η
f

//

e
��

Y
h ��

X
g // Z .

(12.3)

Then there is a distinguished triangle of cotangent complexes

(g ◦e)∗(LZ )
e∗(Lg )⊕f ∗(Lh)// e∗(LX )⊕ f ∗(LY )

Le⊕−Lf // LW
[+1] // . (12.4)

It is an important and remarkable fact that this holds without any
transversality conditions on g ,h. It is evidence that we have found
the ‘right’ definition of derived schemes and stacks.
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In fact cotangent complexes LIll
X for classical schemes X were

defined by Illusie in the ’70s, and are compatible with the derived
version by LIll

X
∼= Li(X ), considering i(X ) as a derived scheme.

However, Illusie’s cotangent complexes do not satisfy the
analogues of (vi)–(viii), they are not as well behaved.
For (viii), note that although t0 : DSchK → SchK preserves
(homotopy) fibre products (i.e. t0(X ×Z Y ) ∼= t0(X )×t0(Z) t0(Y )),
i : SchK → DSchK does not. Thus, given morphisms g : X → Z ,
h : Y → Z of classical K-schemes, they have fibre products
W = X ×h,Z ,h Y in SchK and W = X ×h,Z ,h Y in DSchK with
W ∼= t0(W ), but W 6∼= i(W ) in general. The distinguished
triangle (12.4) computes LW , not LW .

General Principle

Results for classical schemes/stacks which hold under
transversality/smoothness/flatness assumptions often hold for
derived schemes/stacks without such assumptions.
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12.3. Examples of derived schemes and stacks

Morally, smooth K-schemes (and stacks) are the same in the
classical and derived worlds, but singular derived schemes have
more complicated structure at their singularities than singular
classical schemes. ‘Nice’ derived schemes (e.g. locally finitely
presented) may be built from smooth schemes by repeated fibre
products. So my favourite example of a derived scheme W is a
fibre product W = X ×Z Y of smooth classical schemes X ,Y ,Z .
For instance, X ,Y could be smooth subschemes of a smooth
scheme Z which intersect non-transversely, and W = X ∩ Y could
be their derived intersection. Equation (12.4) implies that W has
cotangent complex perfect in degrees [−1, 0]:

LW '
[
T ∗Z
−1
|W

Dg⊕Dh // T ∗X |W ⊕ T ∗Y |W
0

]
.

A derived scheme W with LW perfect in [−1, 0] is called
quasi-smooth. (If W is smooth then LW is perfect in [0, 0].)
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More generally, if V is a smooth K-scheme, E → V is a vector
bundle, and s : V → E a section then the derived zero locus
X = s−1(0) is quasi-smooth with cotangent complex

LX '
[
E ∗|X
−1

Ds // T ∗V |X
0

]
.

When charK = 0 we can write affine derived K-schemes as
SpecA• for A• a cdga over K in degrees 6 0. Take A• = (A∗,d) to
be finitely presented. That is, as a graded K-algebra we have
A∗ = K[x ij : (i , j) ∈ I ] the polynomial superalgebra generated by

finitely many graded variables x ij for (i , j) in a finite indexing set I ,

with deg x ij = i 6 0, where x ij is an even (odd) variable if i is even

(odd). Then d : A∗ → A∗+1 is generated by choices of d(x ij ) with

deg(d(x ij )) = i + 1, and must satisfy d2 = 0.
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For example, take A∗ = K[x1, . . . , xl , y1, . . . , ym, z1, . . . , zn] with
deg xi = −2, deg yj = −1, deg zk = 0. We must have dzk = 0 as
dzk ∈ A1 = 0. Also dyj ∈ A0 = K[z1, . . . , zn], so
dyj = fj(z1, . . . , zn) for polynomials f1, . . . , fm. And
dxi ∈ A−1 = K[z1, . . . , zn]〈y1, . . . , ym〉, so
dxi =

∑m
j=1 gij(z1, . . . , zn)yj . For d2 = 0 we must have∑m

j=1 gij(z1, . . . , zn)fj(z1, . . . , zn) = 0, i = 1, . . . , l . (12.5)

We have H0(A•) = K[z1, . . . , zn]/(f1 = 0, . . . , fm = 0). Thus the
degree −1 variables y1, . . . , ym correspond to relations fj = 0 on
the degree 0 variables z1, . . . , zn. By (12.5), the degree −2
variables x1, . . . , xl correspond to relations on the relations, linear
dependencies between the equations fj = 0 for j = 1, . . . ,m.
The derived scheme X = SpecA• has classical truncation
X = t0(X ) the subscheme {(z1, . . . , zn) ∈ An : fj(z1, . . . , zn) = 0,
j = 1, . . . ,m

}
, independent of the xi . The cotangent complex is

LX '
[
Ol

X
−2

(gij )
j6m
i6l // Om

X
−1

(∂fj/∂zk )k6n
j6m // On

X
0

]
.
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Thus, a derived scheme remembers not just classical (degree 0)
variables zi , but also relations on the zi (in degree −1), relations
on the relations (in degree −2), relations on the relations on the
relations (in degree −3), and so on.
Many moduli problems in Algebraic Geometry have a moduli stack
M, as an Artin (or higher) stack, obtained by defining a moduli
functor F : AlgK → Groupoids (or SSets), where F (A) is the
(∞-)groupoid of families of objects in the moduli problem over the
base K-scheme U = SpecA, and proving F is an Artin stack.
Similarly, many moduli problems have a derived moduli stack M
with M = t0(M), obtained by defining a moduli ∞-functor
F : SAlgK → SSets, where F (A•) is the ∞-groupoid of families of
objects in the moduli problem over the base derived K-scheme
U = SpecA•. Then M is an enhancement of M containing more
information, and LM encodes the deformation theory of objects in
the moduli problem better than LM. Results of Toën–Vaquié
prove the existence of a derived moduli stack M of objects in
many dg-categories T , such as that with Ho(T ) = Db coh(X ).
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