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Introduction

Stacks are geometric spaces in algebraic geometry which generalize
schemes. Over a field K we have K-schemes ⊂ algebraic K-spaces
⊂ Deligne–Mumford K-stacks ⊂ Artin K-stacks, in (2-)categories

SchK ⊂ AlgSpK ⊂ DMStaK ⊂ ArtK .
Here SchK,AlgSpK are ordinary categories, or discrete
2-categories (i.e. a 2-category C in which any 2-morphism
η : f ⇒ f is the identity idf , so that C is essentially the same as
Ho(C)), and DMStaK,ArtK are genuine 2-categories, with
nontrivial 2-morphisms.
Each Artin stack X has isotropy groups IsoX (x) for each K-point
x in X , which are algebraic K-groups, such as GL(n,K).
Essentially, X is Deligne–Mumford if IsoX (x) is finite for all x , and
an algebraic space if IsoX (x) = {1} for all x . If an algebraic
K-group Γ acts on a K-scheme U then [U/Γ] is an Artin stack. It
is Deligne–Mumford if the stabilizer groups StabΓ(u) are finite for
u ∈ U, and an algebraic space if the action is free.
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If X is an Artin K-stack it has a smooth surjective morphism
π : U → X with U ∈ SchK, called an atlas. Here ‘smooth’ is in the
algebraic geometry sense of having smooth fibres (in differential
geometry it would be a submersion). If X is Deligne–Mumford or
an algebraic space we can take π to be étale (a covering map)
instead of smooth. Algebraic spaces are basically the quotients of
schemes by étale equivalence relations. It is difficult to write down
examples of algebraic spaces which are not schemes.
We do not really know what a stack X is — there is no beautiful
definition like that of a topological space, which would make a
geometer happy. However, we do know what a (1-)morphism
f : U → X is, when U is a (possibly affine) scheme. So the idea is
to concoct a definition of X solely in terms of (1-)morphisms
f : U → X for schemes U, and their relations. Then we pretend
that this is the real definition.
There are a lot of technicalities in the theory of stacks. I may lie a
little bit, e.g. I’m not sure (and don’t care) if a Deligne–Mumford
stack is exactly the same as an Artin stack with finite isotropy groups.
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Stacks were invented to handle moduli problems in which a moduli
scheme does not exist. Nearly all interesting moduli problems in
Algebraic Geometry have a moduli stack. In fact, this is almost a
tautology: we can write a moduli problem as a moduli functor
F : SchopK → Groupoids, where SchopK is the opposite category of
SchK. We define Artin K-stacks to be a class of functors
SchopK → Groupoids which have a bunch of properties we expect
of well behaved moduli functors. Then the moduli functor F is the
moduli stack.
If X is an Artin stack corresponding to a functor
F : SchopK → Groupoids, then for each U ∈ SchK, F (U) is a
groupoid, where objects f , g ∈ F (U) correspond to 1-morphisms
f , g : U → X in ArtK, and morphisms η : f → g in F (U)
correspond to 2-morphisms η : f ⇒ g in ArtK.
This is the sense in which although we don’t know what X is, we do
know what a (1-)morphism f : U → X is, for U an (affine) scheme.
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5.1. Moduli functors and moduli schemes

As an example, let X be a smooth projective K-scheme. We wish
to define a moduli spaceM of algebraic vector bundles (locally free
coherent sheaves) on X , possibly Gieseker or slope (semi)stable.
We could try this either in the world of schemes, or stacks.
For schemes, define a moduli functor FVect : SchopK → Sets by:
• For each K-scheme U, define FVect(U) to be the set of
isomorphism classes [E ] of vector bundles E → X × U, where we
may require E |X×{u} to be semistable for each u ∈ U.
• For each scheme morphism φ : U → V , define
FVect(φ) : FVect(V )→ FVect(U) to map [E ] 7→ [(idX ×φ)∗(E )],
where idX ×φ : X × U → X × V .
There are variations on this: we could replace SchopK by AlgSpopK
as in Laumon–Moret-Bailly, or by the category of K-algebras AlgK.
The difference is not important.
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Now let M be any K-scheme. We define the functor
FM = Hom(−,M) : SchopK → Sets by FM(U) = HomSchK(U,M)
and FM(φ) : α 7→ α ◦ φ for φ : U → V a morphism in SchK and
α : V →M. The Yoneda Lemma implies that FM determines M
up to canonical isomorphism.
We say that M is a fine moduli scheme for vector bundles on X if
there exists a natural isomorphism of functors η : FM ⇒ FVect. A
fine moduli scheme need not exist, but if it does it is unique up to
canonical isomorphism.
Now FM(M) = Hom(M,M) 3 idM, so η(idM) ∈ FVect(M).
Write η(idM) = [Euniv]. Then Euniv → X ×M is a vector bundle.
It has the universal property that whenever U is a K-scheme and
E → X × U a vector bundle (possibly (semi)stable over U) then
there is a unique morphism φ : U →M such that there exists an

isomorphism α : E
∼=−→ (idX ×φ)∗(Euniv). (Note that α need not

be unique.) This property of M,Euniv characterizes M uniquely.
Taking U = SpecK shows K-points of M are in 1-1 correspondence
with isomorphism classes of (semistable) vector bundles E → X .
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This notion of fine moduli schemes is good when it works, but
often it doesn’t. There are far more functors F : SchopK → Sets up
to natural isomorphism than there are schemes, so for a random F
it is very unlikely that there exists a scheme M with F ∼= FM.
As a general rule, if the objects in your problem (e.g. vector
bundles) have nontrivial automorphisms, fine moduli schemes may
not exist. This is because the moduli space M should have a
geometric structure encoding automorphism groups – as in
isotropy groups of stacks.
If a fine moduli scheme does not exist, one may be able to define a
coarse moduli scheme, which is a scheme M with a natural
transformation η : FVect ⇒ FM (not a natural isomorphism) which
is ‘as close to being a natural isomorphism as possible’.
It turns out that (at least to a first approximation):
• Fine and coarse moduli schemes of all vector bundles don’t exist.
• Fine moduli schemes of stable bundles exist.
• Coarse moduli schemes of semistable bundles exist.
Making nice moduli schemes was why (semi)stability was invented.
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Sheaf property of the functors FM
Let M be a scheme, so we have FM = Hom(−,M) : SchopK → Sets.
Let U ∈ SchK, and let {Ui : i ∈ I} be an open cover of U (Zariski
or étale) with inclusions ιi : Ui ↪→ U. Then we have sets
FM(U),FM(Ui ) and morphisms FM(ιi ) : FM(Ui )→ FM(U).
Now morphisms f : U →M form a sheaf on U. That is, if we are
given morphisms fi : Ui →M for i ∈ I with fi |Ui∩Uj

= fj |Ui∩Uj
for

i , j ∈ I , then there is a unique f : U →M with f |Ui
= fi for i ∈ I .

We can express this sheaf property solely in terms of the functor
FM and open covers in SchK. So it makes sense to say that a
functor F : SchopK → Sets is a sheaf on SchopK .
However, the functor FVect : SchopK → Sets need not be a sheaf on
SchopK , and if it is not then no fine moduli space exists. The reason
is that we defined FVect by taking sets of isomorphism classes of
vector bundles E ,F , but if there are more than one isomorphism
E ∼= F this forgets information. For example, isomorphism classes
of line bundles on CP1 cannot be glued from the open cover
CP1 \ {[1, 0]}, CP1 \ {[0, 1]}.
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Functors to groupoids and the stack property

We can fix this problem by not taking isomorphism classes. Recall
that groupoids are categories in which every morphism is an
isomorphism. They form a category (in fact, a 2-category)
Groupoids. Let us define a functor F̄Vect : SchopK → Groupoids as
before, but instead of taking isomorphism classes, we just define
F (U) to be the groupoid with objects vector bundles E → X × U,
and morphisms isomorphisms of such bundles. Our previous
functor FVect is the composition of F̄Vect with the functor
Groupoids→ Sets taking isomorphism classes of objects.
Now vector bundles on X × U can be glued over an open cover
{Ui : i ∈ I} of U, in a 2-categorical sense: given vector bundles
Ei → X × Ui for i ∈ I , and isomorphisms ηij : Ei |X×Uij

→ Ej |X×Uij

with ηjk ◦ ηij |Uijk
= ηik |Uijk

, etc., there is a vector bundle E → X
with isomorphisms E |Ui

= Ei . That is, vector bundles over X × U
are a 2-sheaf or stack on U. We can express this 2-sheaf property
solely in terms of the functor F̄Vect and open covers in SchK. So it
makes sense to say that F̄ : SchopK → Groupoids is a stack on SchopK .
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5.2. The definition of stacks (first version)

We will define a notion of when a functor F : SchopK → Groupoids
is a stack. This is just a categorical/sheafy concept; to get stacks
which act like nice geometric spaces we need to impose extra
conditions, giving Deligne–Mumford or Artin stacks, say.
To define stacks we need a notion of open cover in SchK (Zariski,
étale, fppf, smooth, . . . ), that is, when a collection of morphisms
{ιi : Ui → U, i ∈ I} in SchK is an open cover of U. For now, we
assume we know what open covers are, and explain more later.
Here SchopK is an ordinary category, but Groupoids is a 2-category.
We can regard SchopK as a 2-category with only identity
2-morphisms (a discrete 2-category), and then functors
SchopK → Groupoids are the same as 2-functors. This is helpful as
then Fun2(SchopK ,Groupoids) is a 2-category, with objects
2-functors, 1-morphisms 2-natural transformations, and
2-morphisms modifications. As all morphisms in groupoids are
isomorphisms, it is a (2,1)-category.
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Definition 5.1

A (2-)functor F : SchopK → Groupoids is a stack if whenever
{ιi : Ui → U, i ∈ I} is an open cover of U in SchK, then:

(i) If X ,Y ∈ F (U) and ϕi : X |Ui
→ Y |Ui

are morphisms in F (Ui )
for i ∈ I with ϕi |Uij

= ϕj |Uij
for i , j ∈ I then there exists

η : X → Y with η|Ui
= ϕi for i ∈ I .

(ii) If X ,Y ∈ F (U) and ϕ,ψ : X → Y are morphisms in F (U)
with ϕ|Ui

= ψ|Ui
for i ∈ I then ϕ = ψ.

(iii) If Xi ∈ F (Ui ) and ϕij : Xi |Uij
→ Xj |Uij

are morphisms in
F (Uij) with ϕjk |Uijk

◦ ϕij |Uijk
= ϕik |Uijk

for all i , j , k ∈ I then
there exists X ∈ F (U) and ϕi : X |Ui

→ Xi for i ∈ I such that
ϕij ◦ ϕi |Uij

= ϕj |Uij
for i , j ∈ I .

Here we use the notation that if X ∈ F (U) then
X |Ui

= F (ιi )(X ) ∈ F (Ui ). Also Uij = Ui ×ιi ,U,ιj Uj (think of as
Ui ∩ Uj) and Uijk = Ui ×U Uj ×U Uk (think of as Ui ∩ Uj ∩ Uk).
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All of (i)–(iii) are properties you would expect of something which
is a sheaf in a reasonable sense, e.g. if F (U) is the groupoid of
some kind of sheaves on X × U.
Write StaK ⊂ Fun2(SchopK ,Groupoids) for the full 2-subcategory
of stacks. Functors SchopK → Groupoids are sometimes called
prestacks. We can regard prestacks as a class of (generally very
horrible) spaces, and stacks as (slightly less horrible) spaces. Both
are still too horrible to do geometry on in a meaningful way.
We can include the discrete 2-category SchK of schemes, and the
2-category GQuotK of global quotients [V /G ] in §4, as full
2-subcategories SchK ⊂ GQuotK ⊂ StaK ⊂ Fun2(SchopK ,Groupoids).
To do this for SchK, we include SchK → Fun(SchopK ,Sets) by
mapping M 7→ Hom(−,M) as before, and compose with the
functor Sets ↪→ Groupoids taking a set S to the groupoid with
objects S and only identity morphisms.
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Defining stacks using ‘categories fibred in groupoids’

There is an alternative version of stacks which defines a stack not
as a functor F : SchopK → Groupoids, but as a category C with a
functor Π : C → SchK. For the moduli stack of vector bundles on
X , we define CVect to be the category with objects (U,E ) where
U ∈ SchK and E → X × U is a vector bundle, and morphisms
(φ, η) : (U,E )→ (V ,F ), where φ : U → V is a morphism in SchK
and η : E → (idX ×φ)∗(F ) is an isomorphism of vector bundles.
The functor ΠVect : CVect→SchK maps (U,E ) 7→U and (φ, η) 7→φ.
To model functors to Groupoids rather than Cat, we require
Π : C → SchK to be a category fibred in groupoids, which roughly
means that for each U ∈ SchK the full subcategory C U ⊂ C with
oibjkects

{
X ∈ C : Π(X ) = U

}
is a groupoid.

Definition 5.1 of stacks has an analogue for categories fibred in
groupoids. It is easy to translate between the two pictures, e.g.
given F : SchopK → Groupoids define C to have objects (U,E ) for
U ∈ SchK and E ∈ F (U), and morphisms (φ, η) : (U,E )→ (V ,E ′)
for φ : U → V in SchK and η : E → F (φ)(E ′) in F (U).
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What we mean by ‘open cover’ in SchK

The most obvious notion of open cover of schemes is an open cover
in the Zariski topology, in the usual sense of topology. However,
this turns out to be too coarse to be useful (for example, a
principal Z2-bundle P → U in the Zariski topology is automatically
trivial). Grothendieck introduced a more general notion of open
cover (Grothendieck topology) in Algebraic Geometry. An étale
open cover {ιi : Ui → U, i ∈ I} is a collection of schemes Ui and
étale morphisms (covering maps) ιi : Ui → U such that∐

i∈I ιi :
∐

i∈I Ui → U is surjective. For example, the map
C∗ → C∗ mapping z 7→ zk for 0 6= k ∈ Z is an étale open cover.
A smooth open cover is similar, but the morphisms ιi : Ui → U
must be smooth (basically the fibres are smooth, so morally ιi
looks locally like a projection U × Ak → U).
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5.3. Deligne–Mumford and Artin stacks

Deligne–Mumford (and Artin stacks) are nice classes of stacks
in the étale (or smooth) topologies. Before we define them, we need
some properties of objects and 1-morphisms in the 2-category StaK.

Definition

An object X in StaK is representable if it is equivalent in the
2-category StaK to a scheme (i.e. an object of the discrete
2-subcategory SchK ⊂ StaK).
It is a fact that all fibre products exist in the 2-category StaK (we
can write down an explicit construction). Hence products
X × Y = X ×SpecK Y exist.
A 1-morphism f : X → Y in StaK is called representable if
whenever g : U → Y is a 1-morphism in StaK with U
representable, then X ×f ,Y ,g U is representable. Roughly, this
means that all the fibres of f : X → Y are schemes.
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Definition

Every stack X in StaK has a natural diagonal 1-morphism
∆X : X → X × X . We often require ∆X to be a representable
1-morphism. Suppose U,V are K-schemes and f : U → X ,
g : V → X are 1-morphisms. Then
U ×f ,X ,g V ∼= (U × V )×f×g ,X×X ,∆X

X , so if ∆X is representable
then U ×f ,X ,g V is a K-scheme. As this holds for all g : V → X ,
this implies that f : U → X is representable if U is a K-scheme.
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Definition

Fix a Grothendieck topology (étale, smooth) used to define stacks.
Let P be a property of morphisms of schemes f : U → V which is
local on the target in the chosen topology, and stable under base
change. Then we say that a representable 1-morphism f : X → Y
of stacks has property P if for all 2-Cartesian squares

U HPg
//

��
V
��

X
f // Y

with V a scheme (hence U is a scheme as f is representable), then
the K-scheme morphism g has property P.
In this way we can define when a representable 1-morphism of
stacks is quasi-compact, separated, étale, smooth, . . . .
Think of V as an ‘open set’ in Y , and U as the ‘pullback open set’
in X . When f is representable, if V is a scheme then U is too.
Thus representable 1-morphisms are locally modelled on scheme
morphisms, and we can transfer property P to stack 1-morphisms.
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Definition

Define StaK using the étale topology. We call X ∈ StaK a
Deligne–Mumford K-stack if:

(i) The diagonal morphism ∆X : X → X × X is representable.

(ii) ∆X is quasi-compact and separated.

(iii) There exists a K-scheme U ∈ SchK ⊂ StaK (called an atlas)
and a morphism φ : U → X which is étale and surjective.

We write DMStaK ⊂ StaK for the full 2-subcategory of
Deligne–Mumford stacks.

Here ∆X and φ are representable by (i), so the conditions on
∆X , φ in (ii)–(iii) make sense. Think of U =

∐
i∈I Ui where

Ui → X is an ‘étale open set’ (actually, U → X is one big ‘étale
open set’), and could take Ui = SpecAi to be affine. So X admits
an étale open cover by affine K-schemes.
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Let x : ∗ → X be a K-point, where ∗ = SpecK. Write IsoX (x) for
the group of 2-morphisms η : x ⇒ x . As φ : U → X is surjective, x
factors via φ. There is a diagram of 2-Cartesian squares

Iso(x) IQ
DL ,,
π

//

π

��

∗
��

x





V = U ×X U HP
s //

t ��
U
φ ��

∗
x

11// U
φ // X .

(5.1)

As φ is representable, étale and quasicompact, so are s, t and π.
As π : Iso(x)→ ∗ is étale and quasicompact, we see that Iso(x) is
a K-scheme, discrete (as étale) and compact in the Zariski
topology (as quasicompact), so Iso(x) is a finite group.
Thus, isotropy groups of Deligne–Mumford stacks are finite
groups. Quotients [U/Γ] for U a K-scheme and Γ a finite group
are Deligne–Mumford stacks.
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Definition

Define StaK using the smooth topology (technically should use the
‘fppf topology’ with an ‘fppf open set’ being a finitely presented
flat morphism U → X , because of better descent properties).
We call X ∈ StaK an Artin K-stack if:

(i) The diagonal morphism ∆X : X → X × X is representable.

(ii) ∆X is quasi-compact and separated.

(iii) There exists a K-scheme U ∈ SchK ⊂ StaK (called an atlas)
and a morphism φ : U → X which is smooth and surjective.

We write ArtK ⊂ StaK for the full 2-subcategory of Artin stacks.

The argument of the previous slide using (5.1) shows that for each
K-point x : ∗ → X , Iso(x) is a smooth K-scheme, and thus an
algebraic K-group, such as GL(n,K). Quotients [U/Γ] for U a
K-scheme and Γ an algebraic K-group are Artin K-stacks.
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Definition

A groupoid object (U,V , s, t, u, i ,m) in a category C , or simply
groupoid in C , consists of objects U,V in C and morphisms
s, t : V → U, u : U → V , i : V → V and m : V ×s,U,t V → V
satisfying the identities

s ◦ u = t ◦ u = idU , s ◦ i = t, t ◦ i = s, s ◦m = s ◦ π2,

t ◦m = t ◦ π1, m ◦ (i × idV ) = u ◦ s, m ◦ (idV ×i) = u ◦ t,
m ◦ (m × idV ) = m ◦ (idV ×m) : V ×U V ×U V −→ V ,

m ◦ (idV ×u) = m ◦ (u × idV ) : V = V ×U U −→ V , (5.2)

where we suppose all the fibre products exist.

A groupoid in Sets is a groupoid in the usual sense, where U is the
set of objects, V the set of morphisms, s : V → U the source of a
morphism, t : V → U the target of a morphism, u : U → V the
unit taking X 7→ idX , i the inverse taking f 7→ f −1, and m the
multiplication taking (f , g) 7→ f ◦ g when s(f ) = t(g). Then (5.2)
reduces to the usual axioms for a groupoid.
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Stacks in terms of groupoids in schemes

Let X be a Deligne–Mumford or Artin stack, and φ : U → X a
choice of atlas. Form the 2-Cartesian square

V = U ×X U HP t
//

s��

U
φ ��

U
φ // X

(5.3)

Then V is a K-scheme, and s, t : V → U are K-scheme morphisms
which are étale (for Deligne–Mumford) or smooth (for Artin).
Define morphisms u : U → V , i : V → U, m : V ×U V → V by
the diagrams

U

idU   

idU

$$
u
  
V BJ t

//
s��

U
φ ��

U
φ// X

V

t
��

s

$$
i
  
V BJ t

//

s��
U
φ ��

U
φ // X

V ×s,U,t V

m

**

//

��

V s
//

t��

U

φ

��
V s

//

t��
U φ

&&
U

φ // X

V .

aa

t

kk
s

WW

Then (U,V , s, t, u, i ,m) is a groupoid in SchK.
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Thus, given a Deligne–Mumford or Artin K-stack X , we can
construct a (nonunique) groupoid (U,V , s, t, u, i ,m) in SchK,
where s, t are étale in the Deligne–Mumford case, and smooth in
the Artin case. We can reconstruct X from this groupoid by taking
(5.3) to be a 2-coCartesian square in StaK, so that X is a pushout
U qV U. It is possible to develop the theory of stacks so that
stacks are defined to be suitable groupoids in SchK, rather than
functors. See for example Moerdijk, Orbifolds as groupoids: an
introduction, math.DG/0203100 on this approach for orbifolds.
Here are two examples: suppose that (s, t) : V → U × U is an
embedding, making V into a subscheme of U × U. Then we can
regard V as the graph of an equivalence relation ∼ on U, where
(5.2) is the equivalence relation axioms, and X = U/ ∼ as the
quotient of U by an equivalence relation. It is an algebraic space.
Suppose that a finite/algebraic group G acts on U by
ρ : G × U → U. Take V = G × U, s = πU , t = ρ, u = (1G , idU),
and i ,m to come from inverses and multiplication in G . This
defines a groupoid in SchK, the corresponding stack is X = [U/G ].
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Plan of talk:

6 Abelian categories, coherent and quasicoherent sheaves

6.1 Abelian categories

6.2 Coherent and quasicoherent sheaves

6.3 Examples and properties of coherent sheaves
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Introduction

Let X be a K-scheme. Then we can define algebraic vector
bundles E → X . One way to define them is that E is a K-scheme,
with a smooth morphism π : E → X , and the fibres Ex = π−1(x)
of E are given a K-vector space structure, and X may be covered
by Zariski open U ⊆ X such that π−1(U) ∼= U × Ar for
r = rankE , such that π|π−1(U) : π−1(U)→ U is identified with
the projection U × Ar → U, and the vector space structure on the
fibres Eu for u ∈ U is identified with that on {u} × Ar ∼= Ar .
A second way to define vector bundles is as a special kind of
coherent sheaf, see below.
If E ,F → X are vector bundles, we can also define morphisms
φ : E → F , which are scheme morphisms φ : E → F such that
π ◦ φ = π and φ|Ex : Ex → Fx is linear for each x ∈ X . Write
Vect(X ) for the category of algebraic vector bundles on X .
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Then Vect(X ) is a K-linear category (i.e. Hom(E ,F ) is a K-vector
space for all E ,F ∈ Vect(X ), and composition is bilinear), with a
zero object 0→ X , direct sums ⊕, and tensor products ⊗. There
is also a notion of exact sequence

0 // E
φ // F

ψ // G // 0, (6.1)

in Vect(X ), such that ψ ◦ φ = 0, and for each x ∈ X , the
restriction of (6.1) to x is an exact sequence of K-vector spaces.
This makes Vect(X ) into an exact category. However, an arbitrary
morphism φ : E → F may not have kernel or cokernel in Vect(X )
— that is, φ may not extend to an exact sequence in Vect(X )

0 // Kerφ // E
φ // F // Cokerφ // 0,

as the dimensions of the kernel and cokernel of φx : Ex → Fx may
vary discontinuously with x ∈ X .
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General Principle (Grothendieck)

It is better to work with a category that has nice properties, but
which has nasty objects, than with a category that has nasty
properties, but which has nice objects.

The category of coherent sheaves coh(X ) is an enlargement of
Vect(X ) which is not just a K-linear exact category, but an abelian
category (it has a good notion of exact sequence, and every
morphism has a kernel and a cokernel). It is in some sense the (or
better, a) smallest abelian category containing Vect(X ), and can
be regarded as a ‘completion’ of Vect(X ) by adding kernels and
cokernels. Objects of coh(X ) can be like singular vector bundles,
or vector bundles supported on subschemes of X .
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6.1 Abelian categories

Definition

Let C be a category, and K a field. We say that:

C is preadditive if Hom(X ,Y ) has the structure of an abelian
group for all X ,Y ∈ C , and composition is biadditive. It is
K-linear if instead Hom(X ,Y ) is a K-vector space and
composition is bilinear.
C is additive if it is preadditive, and it has a zero object
0 ∈ C which is both an initial and a terminal object, and for
all X ,Y ∈ C there is a direct sum X ⊕ Y which is both a
product (fibre product X ×0 Y over 0) and a coproduct
(pushout X q0 Y over 0).
C is preabelian if it is additive and every morphism
f : X → Y has both a kernel and a cokernel.
C is abelian if it is preabelian, and every injective morphism is
a kernel, and every surjective morphism is a cokernel.
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Note here that several concepts which are familiar from linear
algebra actually have purely category-theoretic definitions, and so
make sense in every (additive etc.) category.
For example, let C be a preadditive category. Then Hom(X ,Y ) is
an abelian group for X ,Y ∈ C , so there is a unique zero morphism
0 : X → Y . Then for any morphism f : X → Y , a kernel
κ : K → X for f is an equalizer for f : X → Y and 0 : X → Y .
That is, f ◦ κ = 0 ◦ κ, and κ has the universal property that if
κ′ : K ′ → X has f ◦ κ′ = 0 ◦ κ′ then there is a unique morphism
ι : K ′ → K with κ′ = κ ◦ ι. Similarly, a cokernel γ : Y → C for f
is a coequalizer for f : X → Y and 0 : X → Y , satisfying the dual
universal property. Kernels and cokernels need not exist, but if
they do they are unique up to canonical isomorphism.
If C is preadditive with a zero object, a morphism f : X → Y is
injective if its kernel is the unique morphism 0 : 0→ X , and
surjective if its cokernel is 0 : Y → 0. This has nothing to do with
injectivity of maps of sets, they are purely category-theoretic.
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Example 6.1

• The category Ab of abelian groups is an abelian category.
• The category VectK of K-vector spaces over a field K is K-linear
abelian.
• If R is a ring, the category R-mod of (left) R-modules is abelian.
• If A is a K-algebra, the category A-mod of A-modules is K-linear
abelian.
• There are lots of abelian full subcategories of the above with
objects satisfying suitable conditions. For example, the
subcategories of finite abelian groups, and of finitely generated
abelian groups in Ab, and of finite-dimensional K-vector spaces in
VectK, and if R is a noetherian commutative ring, the subcategory
of finitely generated R-modules in R-mod, are all abelian.

In general, categories of (sheaves of) modules tend to be abelian.
An advantage of abelian categories is that lots of homological
algebra (exact sequences etc.) works nicely in them.
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6.2. Coherent and quasicoherent sheaves

Let X be a K-scheme. Then we have a category Vect(X ) of
algebraic vector bundles. It is a K-linear additive category which is
an exact category (it has a distinguished class of ‘short exact
sequences’ 0→ E → F → G → 0 satisfying some axioms), but it
is not abelian if dimX > 0. We would like to embed Vect(X ) into
an abelian category coh(X ), where coh(X ) is ‘as small as possible’.
To do this we first rewrite Vect(X ) as a category of modules.
Recall that X has a structure sheaf OX , a sheaf of commutative
K-algebras. Thus we can consider OX -modules E → X , which are
sheaves (in the Zariski topology) in which for each open U ⊆ X ,
E(U) has the structure of a module over the K-algebra OX (U),
and for V ⊆ U ⊆ X the restriction morphism ρEUV : E(U)→ E(V )

is a module morphism over ρOX
UV : OX (U)→ OX (V ).
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Such OX -modules form an abelian category OX -mod. This is not
trivial: for an exact sequence 0→ E → F → G → 0 in OX -mod, if
U ⊆ X is open, it is generally not true that
0→ E(U)→ F(U)→ G(U)→ 0 is exact in the abelian category
OX (U)-mod (F(U)→ G(U) may not be surjective), so we can’t
just deduce the abelian category axioms from the abelian category
property of OX (U)-mod for each open U ⊆ X . However, for each
(scheme-theoretic) point x ∈ X , the sequence of stalks
0→ Ex → Fx → Gx → 0 is exact in the abelian category
OX ,x -mod, and we prove OX -mod abelian using properties of stalks.
The action of OX on itself makes OX into an object in OX -mod.
If π : E → X is an algebraic vector bundle (defined as a scheme
morphism with extra structure), we can define the sheaf of sections
E of X , such that E(U) is the OX (U)-module of sections
s : U → E |U with π|U ◦ s = idU of E |U . Then E ∈ OX -mod. An
object of OX -mod comes from an algebraic vector bundle iff it is a
locally free sheaf, i.e. it is locally isomorphic to O⊕r

X = OX ⊕ · · · ⊕ OX .
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The category OX -mod is too large, and its objects too horrible
(infinite-dimensional, etc.) to work with. We will define better
behaved abelian subcategories coh(X ) ⊂ qcoh(X ) ⊂ OX -mod,
such that Vect(X ) (considered as a subcategory of OX -mod) is a
subcategory of coh(X ).
We define K-schemes using the spectrum functor
Spec : AlgopK → RingedSpacesK. For each A ∈ AlgK with
SpecA = U, an affine scheme, there is a corresponding module
spectrum functor MSpec : A-mod→ OU-mod. For a K-scheme
X , we call E in OX -mod quasi-coherent if we can cover X by open
affine U ⊆ X with E|U ∼= MSpecM for some OX (U)-module M.
When X is locally noetherian (assume this from now on, e.g. it
holds for quasiprojective K-schemes), we call E coherent if the
same is true with M a finitely generated OX (U)-module.
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Locally on X , any quasicoherent sheaf E may be written as a
cokernel OX ⊗K V → OX ⊗K W → E → 0, where V ,W are
possibly infinite-dimensional K-vector spaces. A coherent sheaf is
the same, but with V ,W finite-dimensional. Thus, a coherent
sheaf looks locally like the cokernel of a morphism of vector bundles.
Think of vector bundles of infinite rank as typical objects in
qcoh(X ). Although the objects of qcoh(X ) are not nice, the
category qcoh(X ) has some good categorical properties (for
example, arbitrary infinite direct sums exist) which make it useful
for some constructions.
If X is a projective K-scheme, we can characterize coh(X ) as the
full subcategory of compact objects in qcoh(X ) (an object
E ∈ qcoh(X ) is compact if Hom(E ,−) commutes with infinite
filtered colimits in qcoh(X ),Sets).
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6.3. Examples and properties of coherent sheaves

Example

Let X be a K-scheme and x ∈ X be a K-point. We define the
skyscraper sheaf Ox , a coherent sheaf, by, for all open U ⊆ X

Ox(U) =

{
K, x ∈ U,

0, x /∈ U.

Define the action of OX (U) on Ox(U) by f ∈ OX (U) acts by
multiplication by f (x) ∈ K if x ∈ U, and f acts trivially if x /∈ U.

Every E ∈ coh(X ) has a support supp E ⊆ X , the smallest closed
subset in the Zariski topology such that E|X\supp E ∼= 0. Then
suppOx = {x}. Take X to be smooth projective. The dimension
of E is dim supp E . Then dimOx = 0. We call E a torsion sheaf if
dim E < dimX . We call E torsion-free if E has no nonzero
subobject 0 6= F ⊆ E with F a torsion sheaf.
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Example

Let [x , y ] ∈ CP1. There is a nonzero section s ∈ H0(OCP1(1)),
unique up to scale, such that s|[x ,y ] = 0. Then we have an exact
sequence in coh(X )

0 // OCP1
s // OCP1(1) // O[x ,y ]

// 0.

Torsion sheaves often appear as cokernels of morphisms of vector
bundles like this. But a torsion sheaf cannot be the kernel of a
morphism of vector bundles; only torsion-free sheaves can. We can
think of coh(X ) (say for projective X ) as the abelian category
made by starting with Vect(X ) and adding cokernels of all morphisms.
We could instead have added all kernels; the result would have
been the opposite category coh(X )op, with the inclusion
Vect(X ) ↪→ coh(X )op mapping E to its dual E∗.
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If k > 1 there is a coherent sheaf O(k)
[x ,y ] in an exact sequence

0 // OCP1
s⊗

k

// OCP1(k) = OCP1(1)⊗
k // O(k)

[x ,y ]
// 0,

with O(k)
[x ,y ](U) ∼= Ck if x ∈ U and O(k)

[x ,y ](U) = 0 otherwise.

Proposition (Classification of coherent sheaves on CP1.)

Every E ∈ coh(CP1) is a finite direct sum of objects OCP1(n) for

n ∈ Z and O(k)
[x ,y ] for [x , y ] ∈ CP1 and k > 1. The summands are

unique up to order. Also E is a vector bundle, and torsion-free, iff

there are no summands O(k)
[x ,y ], and E is torsion iff there are no

summands OCP1(n).

Example (Ideal sheaf of a point.)

Let X be a K-scheme and x ∈ X be a K-point. Define the ideal
sheaf Ix to be the subsheaf of sections s of OX such that s|x = 0.
Then Ix is torsion-free and there is an exact sequence

0 // Ix
inc // OX

// Ox
// 0.
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If dimX = 1 then Ix is a vector bundle, e.g. if X = CP1 then
I[x ,y ]

∼= OCP1(−1). But if dimX > 2 then Ix is not a vector
bundle, but a torsion-free sheaf with a singularity at x .

Example (Torsion-free sheaves as limits of vector bundles.)

Let CP2 have homogeneous coordinates [x , y , z ], so that
H0(OCP2(1)) = 〈x , y , z〉C. Let δ ∈ C, and consider the sheaf Eδ
defined by the exact sequence in coh(CP2)

0 // OCP2

(y ,z,δ id) // OCP2(1)⊕OCP2(1)⊕OCP2 // Eδ // 0.

Then Eδ is a vector bundle isomorphic to OCP2(1)⊕OCP2(1) if
δ 6= 0, and a torsion-free sheaf, non-vector bundle isomorphic to
(I[1,0,0] ⊗OCP2(2))⊕OCP2 if δ = 0. This shows that torsion-free
sheaves which are not locally free can be limits of vector bundles.
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One reason to be interested in coherent sheaves is that, say when
X is a smooth projective K-scheme of dimension > 2, moduli
spaces of vector bundles are generally noncompact, but (coarse)
moduli schemes of (Gieseker semistable) coherent sheaves with
fixed Chern character are proper (compact and Hausdorff).
So, we can compactify moduli spaces of (semistable) algebraic
vector bundles by extending them to moduli spaces of (semistable)
torsion-free coherent sheaves, which may be thought of algebraic
vector bundles with mild singularities. Being able to form compact
(proper) moduli schemes is essential in defining invariants.
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