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Introduction
In this lecture ‘∞-category’ always means ‘(∞, 1)-category’, that
is, all n-morphisms are invertible for n > 2. (Although
‘n-morphism’ may not make sense, depending on your model for
∞-categories.)
There are a bunch of different but related structures which are
more-or-less kinds of ∞-category:

Model categories.
Categories enriched in topological spaces.
Simplicial categories; simplicial model categories.
Quasicategories.
. . . .

Of these, model categories are the oldest (Quillen 1967), and look
least like an ∞-category (they have no visible higher morphisms).
But most of the other kinds of ∞-category use model categories
under the hood. Toën–Vezzosi’s DAG is written in terms of model
categories and simplicial categories. Lurie works with
quasicategories, which may be the best/coolest version.
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To see why model categories belong in the list, consider:

General Principle

If you start with an ordinary category C and invert some class of
morphisms W in C (‘weak equivalences’), the result C [W −1]
should really be an ∞-category ((∞, 1)-category), with homotopy
category Ho(C [W −1]) an ordinary category.

I’ll return to this in ‘Dwyer–Kan localization’. Model categories
give you C ,W and some other data, and give you techniques for
computing things in Ho(C [W −1]), plus some things which secretly
come from the (not explicitly defined) ∞-category C [W −1], e.g.
you can define ‘homotopy fibre products’, which are really fibre
products in the ∞-category C [W −1], pushed down to Ho(C [W −1]).
As an example, consider derived categories D(A) constructed from
Ho(Com(A)) by inverting the class W of quasi-isomorphisms.
Really D(A) = Ho(D(A)) for a stable ∞-category D(A).
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Recall that a (2,1)-category C is basically a ‘category enriched in
groupoids’, that is, Hom(X ,Y ) is a groupoid rather than a set for
objects X ,Y ∈ C, where objects and morphisms in Hom(X ,Y ) are
1- and 2-morphisms in C.
Similarly, an (∞, 1)-category is really a ‘category enriched in
∞-groupoids’. But what is an ∞-groupoid? Two models for the
(model/∞-)category of ∞-groupoids are topological spaces Top
(up to homotopy), and simplicial sets SSets. This is why
categories enriched in topological spaces, and simplicial categories,
are possible definitions of ∞-category.
As Top and SSets are Quillen equivalent as model categories,
theories of ∞-categories based on Top and SSets are essentially
equivalent. But noone uses categories enriched in Top except as
motivation, as far as I know.
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9.1. Model categories

Model categories were invented by Quillen to abstract methods of
homotopy theory into category theory; a model category is one in
which one can ‘do homotopy theory’.

Definition

A model category is a complete and cocomplete category M (i.e.
all small limits and colimits exist) equipped with three
distinguished classes of morphisms, the weak equivalences W , the
fibrations F , and the cofibrations C . These must satisfy:

(i) W ,F ,C are closed under composition and include identities.
(ii) W ,F ,C are closed under retracts. Here f is a retract of g if

there exist i , j , r , s such that the following diagram commutes:

X
idX --

f ��
i

// Y
g��

r
// X

f��
X ′

idX ′
11

j // Y ′
s // X ′.
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Definition (Continued.)

(iii) For f : X → Y , g : Y → Z in M , if two of f , g , g ◦ f are in
W then so is the third.

(iv) A (co)fibration which is also a weak equivalence is called
acyclic. Acyclic cofibrations have the left lifting property with
respect to fibrations, and cofibrations have the left lifting
property with respect to acyclic fibrations. Explicitly, if the
square below commutes, where i is a cofibration, p is a
fibration, and i or p is acyclic, then there exists h as shown:

A
f

//

i ��

X
p��

B
g //

h
44

Y .

(v) Every morphism f in M can be written as f = p ◦ i for a
fibration p and an acyclic cofibration i .

(vi) Every morphism f in M can be written as f = p ◦ i for an
acyclic fibration p and a cofibration i .
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Two of W ,C ,F determine the third, so it is enough to define two.

Example 9.1

(a) The category Top of topological spaces has a model structure
with W the weak homotopy equivalences, and F the Serre
fibrations (maps with the homotopy lifting property for CW
complexes).
(b) If R is a commutative ring then Com(R-mod) has a model
structure with weak equivalences quasi-isomorphisms and fibrations
morphisms φ : E •→F • with φk : E k→F k surjective for all k∈Z.
(c) Let A be a Grothendieck abelian category (an abelian category
with extra conditions on coproducts and limits; includes qcoh(X )
for any scheme X ). Then Com(A) has a model structure with
weak equivalences quasi-isomorphisms and cofibrations
morphisms φ : E •→F • with φk : E k→F k injective for all k∈Z.
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Definition

Any model category M has an initial object ∅ and a terminal
object ∗. An object X in M is called fibrant if X → ∗ lies in F ,
and cofibrant if ∅ → X lies in C .
If X ∈M and there is a weak equivalence w : C → X with C
cofibrant then C is a cofibrant replacement for X . If there is a
weak equivalence w : X → F with F fibrant then F is a fibrant
replacement for X . Such replacements always exist.
If X ∈M , a cylinder object is an object X × [0, 1] in M with a

factorization X q X
c−→X × [0, 1]

w−→X of the codiagonal
X q X → X , with c a cofibration and w a weak equivalence.
Cylinder objects exist by (vi).
A path object is an object Map([0, 1],X ) in M with a factorization

X
w−→ Map([0, 1],X )

f−→X ×X of the diagonal X → X ×X , with
w a weak equivalence and f a fibration. Path objects exist by (v).
Morphisms f , g : X → Y are called (left) homotopy equivalent if
there exists h : X × [0, 1]→ Y with h ◦ c = f q g .
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Definition

The homotopy category is Ho(M ) = M [W −1], the category
obtained from M by formally inverting all weak equivalences.
Note that this is independent of C ,F .

The problem with M [W −1] is that it is difficult to say what the
morphisms are. However, we have:

Theorem (Fundamental Theorem of Model Categories.)

Ho(M ) is equivalent to the category whose objects are
fibrant-cofibrant objects in M , and whose morphisms are
homotopy classes of morphisms in M .

That is, if we restrict to fibrant-cofibrant objects X ,Y then
morphisms Hom(X ,Y ) in M [W −1] are easy to compute, and
every object in M [W −1] is isomorphic to a fibrant-cofibrant object.
In Example 9.1, the homotopy category Ho(M ) is (a) the
homotopy category hTop of homotopy types and (b),(c) the
derived categories D(R-mod) and D(A).
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Homotopy fibre products and homotopy pushouts

In Top, fibre products X ×f ,Z ,g Y and pushouts X qf ,Z ,g Y exist,
but if we change f , g by homotopies, then X ×f ,Z ,g Y , X qf ,Z ,g Y
need not stay homotopy equivalent. So fibre products and
pushouts in Top are the wrong idea for homotopy theory. Instead
one defines the homotopy fibre product

X ×h
f ,Z ,g Y = X ×f ,Z ,ρ0 Map([0, 1],Z )×ρ1,Z ,g Y ,

where ρi : Map([0, 1],Z )→ Z are evaluation at i = 0, 1 in [0, 1],
and fibre products on the right are in Top. Then X ×h

f ,Z ,g Y is
homotopy invariant, so the construction descends to Ho(Top).
Similarly one defines the homotopy pushout

X qh
f ,Z ,g Y = X qf ,Z ,ι0 ([0, 1]× Z )qι1,Z ,g Y ,

where ιi : Z → [0, 1]× Z maps ιi : z 7→ (i , z).
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Since path objects Map([0, 1],Z ) and cylinder objects [0, 1]× Z
make sense in any model category M , we can make the same
definitions of homotopy fibre product and homotopy pushout in M .
What do these mean? In both Ho(Top) and Ho(M ), in general
homotopy fibre products and pushouts are not fibre products and
pushouts (do not satisfy universal properties) in either the ordinary
categories Top,M , or the ordinary categories Ho(Top),Ho(M ).
Instead, the correct interpretation is that there are secretly
(∞, 1)-categories Top∞, M∞ with homotopy categories
Ho(Top),Ho(M ), and homotopy fibre products and pushouts are
actually ∞-category fibre products and pushouts in Top∞, M∞.
While the input data X ,Y ,Z , f , g for an ∞-category fibre product
makes sense in the homotopy category Ho(Top∞),Ho(M∞), the
fibre product is characterized by a universal property involving
n-morphisms in Top∞,M∞ for all n.
Thus model category techniques effectively give ways to do
constructions in an ∞-category, without defining ∞-categories.
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General Principle

Model categories are strict forms of (∞, 1)-categories.

That is, composition of morphisms in a model category is strictly
associative (other notions of (∞, 1)-category have composition
non-associative, or even not uniquely defined).
There are ‘strictification theorems’ which allow you to pass from
looser forms of (∞, 1)-categories (e.g. Segal categories) to model
categories. Typically, general constructions are done in the looser
kinds of (∞, 1)-category, and explicit computations are done in
model categories.
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9.2. Simplicial sets

Definition

The simplex category ∆ has objects set [n] = {0, 1, . . . , n} for
n > 0 and morphisms f : [n]→ [m] the order preserving functions,
that is, if 0 6 i 6 j 6 n then f (i) 6 f (j).
A simplicial set is a functor F : ∆op → Sets. A morphism of
simplicial sets η : F → G is a natural transformation of functors
η : F ⇒ G . This makes simplicial sets into a category SSets.

Definition

The topological n-simplex ∆n
top is

∆n
top =

{
(x0, . . . , xn) ∈ Rn+1 : xi > 0, x0 + · · ·+ xn = 1

}
.

If f : [n]→ [m] is order-preserving we define ftop : ∆m
top → ∆n

top by

ftop(x0, . . . , xm) = (y0, . . . , yn), yi =
∑

j∈{0,...,m}:f (j)=i xj .

This defines a functor G :∆op→Top mapping [n] 7→∆n
top, f 7→ ftop.
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Definition

Let X be a (compactly-generated, Hausdorff) topological space. A
triangulation of X is data (f ni : ∆n

top → X )i∈I n for n > 0, where I n

is an indexing set, such that f ni is a homeomorphism with a closed
subset Im f ni ⊆ X , and for each j = 0, . . . , n the restriction of f ni
to the face xj = 0 of ∆n

top is f n−1
i ′ for some i ′ ∈ I n−1, that is,

f ni (x0, . . . , xj−1, 0, xj+1, . . . , xn) = f n−1
i ′ (x0, . . . , xj−1, xj+1, . . . , xn),

and X =
∐

n>0

∐
i∈I n f

n
i ((∆n

top)◦) is a stratification of X into
locally closed sets, satisfying some topological conditions.

Think of a surface divided into triangles.
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Definition

Let F : ∆op → Sets be a simplicial set. We define a topological
space XF with a triangulation, the topological realization of F , by

XF =
(∐

n>0 F ([n])×∆n
top

)/
∼,

where the equivalence relation ∼ is generated by

(s, ftop(x0, . . . , xm)) ' (F (f )s, (x0, . . . , xm)),

for all f : [n]→ [m] in ∆, s ∈ F ([n]) and (x0, . . . , xm) ∈ ∆m
top.

The maps f ni : ∆n
top → X in the triangulation of X come from the

inclusions ∆n
top → {s} ×∆n

top for s ∈ F ([n]) which are
nondegenerate, that is, s is not in the image of
F (g) : F ([m])→ F ([n]) for some m < n and g : [n]→ [m].
In this way we can define a topological realization functor
TR : SSets→ CGHaus ⊂ Top, for CGHaus the subcategory of
compactly generated Hausdorff spaces. It is a right Kan extension

∆op
Yoneda embedding

//

G ..

SSets
TR��

CGHaus .
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We can think of a simplicial set F : ∆op → Sets as basically a
topological space XF with a triangulation. However, F ([n]) is not
the set I n of n-simplices of the triangulation of XF , because of
degenerate simplices: F ([n]) must also contain points coming from
m-simplices of XF for m = 0, 1 . . . , n − 1, corresponding to all
surjective simplicial maps ∆n

top → ∆m
top. For example, when m < n

the maps f : [m]→ [n], g : [n]→ [m] given by f (i) = i and
g(j) = max(i ,m) have g ◦ f = id[m]. Hence
F (g) : F ([m])→ F ([n]) has a left inverse F (f ), and is injective, so
F ([n]) is at least as big as F ([m]) for all n > m.
So even a simplicial set F : ∆op → Sets corresponding to a
topological space with finitely simplices is quite a lot of data: we
have |F ([n])| → ∞ as n→∞.
There is a good notion of products of simplicial sets (as fibre
products over the terminal object in SSets). In topological
realizations, this involves dividing ∆m

top ×∆n
top into m + n-simplices.
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The singular functor

There is also a functor Sing : Top→ SSets which maps a space X to
the functor F : ∆op → Sets with F ([n]) = MapC0(∆n

top,X ) for objects
[n] and F (f ) = − ◦ ftop : MapC0(∆n

top,X )→ MapC0(∆m
top,X ) for

morphisms f : [m]→ [n], so that ftop : ∆m
top → ∆n

top.
There are model category structures on Top and SSets such that
TR : SSets→ Top and Sing : Top→ SSets are homotopy
inverses (Top and SSets are Quillen equivalent model categories),
and the homotopy categories Ho(Top) and Ho(SSets) are
equivalent categories.
The weak equivalences in the model category SSets are morphisms
η for which TR(η) is a weak homotopy equivalence of topological
spaces. The fibrations are ‘Kan fibrations’, and the cofibrations
morphisms η : F ⇒ G such that η([n]) : F ([n])→ G ([n]) is
injective for all n. All simplicial sets are cofibrant. The fibrant
objects are called ‘Kan complexes’.
The category SSets is used as a model for ∞-groupoids.
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9.3. Simplicial categories

Definition

A simplicial category S is a category enriched in simplicial sets.
That is, S is a ‘category’ in which for all objects X ,Y in S , the
morphisms Hom(X ,Y ) is a simplicial set, and composition
µX ,Y ,Z : Hom(Y ,Z )×Hom(X ,Y )→ Hom(X ,Z ) is a morphism
of simplicial sets. Composition is strictly associative, that is,
µW ,Y ,Z ◦(idHom(Y ,Z)×µW ,X ,Y ) = µW ,X ,Z ◦(µX ,Y ,Z× idHom(W ,X )),
rather than ‘associative up to homotopy’.

Before we have met things like additive categories, in which
Hom(X ,Y ) is an abelian group. This is still an ordinary category,
with Hom(X ,Y ) a set, but Hom(X ,Y ) also has the additional
structure of an abelian group.
For simplicial categories, it is probably best not to think of
Hom(X ,Y ) as a set with extra structure (though you could think
of the underlying set as TR(Hom(X ,Y ))), so a simplicial category
is not an ordinary category with extra structure.
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Here is a related notion:

Definition

A simplicial object in Cat is a functor F : ∆op → Cat.

Given a simplicial category S , we can define FS : ∆op → Cat, a
simplicial object in Cat, by taking FS ([n]) to be the category with
the same objects as S and with morphisms X → Y to be the set
HomS (X ,Y )([n]), and for a morphism f : [m]→ [n] in ∆ the
functor FS : FS ([n])→ FS ([m]) acts as the identity on objects
and as HomS (X ,Y )(f ) : HomS (X ,Y )([n])→ HomS (X ,Y )([m])
on morphisms.
Then simplicial categories correspond to special simplicial objects
F : ∆op → Cat, those in which the set of objects of the category
F ([n]) is independent of [n], and F (f ) acts as identity on sets of
objects for all f : [m]→ [n] in ∆.
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Any ordinary category C can be made into a simplicial category S
by defining HomS (X ,Y ) to map [n] 7→ HomC (X ,Y ) and
f 7→ idC (X ,Y ) and for all [n] and f : [m]→ [n].
Simplicial categories can be used as models for (∞, 1)-categories.
To work in ∞-categories one does homotopy theory in the
simplicial sets Hom(X ,Y ), using the model structure on SSets.
Because of the Fundamental Theorem of Model Categories it is
helpful to restrict to simplicial categories S such that Hom(X ,Y )
is a fibrant-cofibrant object in SSets (a ‘Kan complex’) for all
X ,Y ∈ SSets. So we could define an (∞, 1)-category to be a
simplicial category in which all Hom sets are Kan complexes. But
we won’t do this; instead, our preferred definition of ∞-category is
quasicategories (next lecture).
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10.3 Quasicategories
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10.1. Simplicial sets and simplicial objects
Face and degeneracy maps of simplicial sets

Return to the simplicial category ∆. Define morphisms in ∆, the
face maps δn,i : [n − 1]→ [n] and degeneracy maps
σn,i : [n + 1]→ [n] for i = 0, . . . , n by

δn,i (j) =

{
j , j < i ,

j + 1, j > i ,
σn,i (j) =

{
j , j 6 i ,

j − 1, j > i .

That is, δn,i misses i , and σn,i repeats i . These satisfy the identities
δn,j ◦ δn−1,i = δn,i ◦ δn−1,j−1, 0 6 i < j 6 n,

σn,j ◦ σn+1,i = σn,i ◦ σn+1,j+1, 0 6 i 6 j 6 n,

σn,j ◦ δn+1,i = δn,i ◦ σn−1,j−1, 0 6 i < j 6 n,

σn−1,j ◦ δn,i = δn−1,i−1 ◦ σn−2,j , 0 6 j < j + 1 < i 6 n,

σn,j ◦ δn+1,i = id, i = j or j + 1.

(10.1)

The category ∆ is generated by the δn,i , σn,i subject only to the
relations (10.1).
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Now let S : ∆op → Sets be a simplicial set. Write Sn = S([n]) and
define face maps dn,i = S(δn,i ) : Sn → Sn−1 and degeneracy maps
sn,i = S(σn,i ) : Sn → Sn+1. Reversing directions of morphisms,
these satisfy

dn−1,i ◦ dn,j = dn−1,j−1 ◦ dn,i , 0 6 i < j 6 n,

sn+1,i ◦ sn,j = sn+1,j+1 ◦ sn,i , 0 6 i 6 j 6 n,

dn+1,i ◦ sn,j = sn−1,j−1 ◦ dn,i , 0 6 i < j 6 n,

dn,i ◦ sn−1,j = sn−2,j ◦ dn−1,i−1, 0 6 j < j + 1 < i 6 n,

dn+1,i ◦ sn,j = id, i = j or j + 1.

(10.2)

As ∆ is generated by the δn,i , σn,i subject to (10.1), to define a
simplicial set S it is enough to give sets Sn for n > 0 and maps
dn,i : Sn → Sn−1 and sn,i : Sn → Sn+1 for 0 6 i 6 n satisfying
(10.2), and all the other morphisms S(f ) in S for f : [k]→ [l ] can
be written as compositions of the dn,i , sn,i .
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This gives us a way to draw a picture of a simplicial set:

S0
s0,0 // S1

d1,0oo

d1,1oo s1,0 //

s1,1 //

S2

d2,0oo

d2,1oo

d2,2oo s2,0 //

s2,1 //

s2,2 //

S3

d3,0oo

d3,1oo

d3,2oo

d3,3oo

· · · . (10.3)
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Simplicial objects in categories

Given a category C , a simplicial object in C is a functor
F : ∆op → C . Thus a simplicial set is a simplicial object in Sets.
One often abbreviates ‘simplicial object in things’ to ‘simplicial
thing’. For example, a simplicial commutative K-algebra (simplicial
object in AlgK) is a functor A : ∆op → AlgK. We can draw a
picture of a simplicial commutative K-algebra as a diagram (10.3),
where the Si are commutative K-algebras and the dn,i , sn,i are
algebra morphisms.
This will be important for Derived Algebraic Geometry as one
model for ‘derived commutative K-algebras’ are simplicial
commutative K-algebras. (If charK = 0, another model is cdgas in
degrees 6 0.) So roughly speaking, a derived scheme should be a
topological space with a homotopy sheaf (∞-sheaf) of simplicial
commutative K-algebras.
A cosimplicial object in C is a functor F : ∆→ C . Thus a
simplicial commutative K-algebra is a cosimplicial affine K-scheme.
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(Higher) stacks as simplicial schemes

In Lecture 5 I explained that, given a (Deligne–Mumford or Artin)
K-stack X and an atlas u : U → X , one can construct a groupoid
object (U,V , s, t, u, i ,m) in SchK, where V = U ×X U, and
s, t : V → U, u : U → V , m : V ×U V → V . In fact this is just
part of a simplicial K-scheme (simplicial object in SchK):

U
u // V =
U ×X U

soo

too //

∆V//
V ×U V =
U×XU×XU

Π1oo

Π2oo

moo //

//

//

U×XU×XU×XU · · · .

oo

oo

oo

oo

Pridham arXiv:0905.4044 explains that one can model higher
K-stacks — a generalization of stack, where for example moduli
stacks of objects in Db coh(X ) should be higher stacks rather than
Artin stacks – as a special kind of simplicial K-scheme.
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Ordinary stacks are functors AlgK → Groupoids. To generalize
them in the ‘higher’ direction, we need to replace Groupoids by
SSets (∞-groupoids), which corresponds to replacing K-schemes
by simplicial K-schemes. To generalize them in the ‘derived’
direction, we need to replace AlgK by simplicial algebras, or
equivalently, replace affine K-schemes by cosimplicial affine
K-schemes. So the most general kind of derived higher K-stack is
like a ‘simplicial cosimplicial K-scheme’.
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Dwyer–Kan localization

Let M be a model category. Then we can define an explicit
simplicial category MDK called the Dwyer–Kan localization or
hammock localization of M , where objects of MDK are objects of
M , and in the simplicial set HomDK(X ,Y ), n-simplices are
equivalence classes of commutative diagrams for m > 0

K10
∼��

L10
∼oo //

∼��
K20
∼��

L20
∼oo //

∼��
K30
∼��

// · · · Lm0
∼ ��

∼oo

  K11
∼��

L11
∼��

∼oo // K21
∼��

L21
∼oo //

∼��

K31
∼��

// · · · Lm1
∼ ��

∼oo
**

X

>>

44

  

Y ,
· · ·
∼��

· · ·
∼��

· · ·
∼��

· · ·
∼��

· · ·
∼��

· · · · · ·
∼ ��

K1n L1n
∼oo // K2n L2n

∼oo // K3n
// · · · Lmn

>>

∼oo

with n + 1 rows, where morphisms ‘∼’ are weak equivalences, and
the equivalence relation omits identities and composes composable
morphisms, changing m, and for m = 0 we take morphisms X → Y .
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Then regarding the ordinary category M as a simplicial category,
there is a simplicial functor M →MDK mapping morphisms
X → Y to the same morphisms with m = 0. The homotopy
category Ho(MDK) is Ho(M ) = M [W −1], where by definition
the morphisms X → Y in Ho(MDK) are the connected
components of the simplicial set HomDK(X ,Y ).
We regard MDK as the ∞-category associated to the model
category M . In the last lecture I claimed:

General Principle

If you start with an ordinary category C and invert some class of
morphisms W in C (‘weak equivalences’), the result C [W −1]
should really be an ∞-category ((∞, 1)-category), with homotopy
category Ho(C [W −1]) an ordinary category.

Some justification is that it is natural to define HomC [W −1](X ,Y )

as the connected components of a simplicial set, so C [W −1] is
naturally the homotopy category of a simplicial category.
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10.2. Kan complexes and weak Kan complexes

Definition

For n > 0, the standard n-simplex �n is the simplicial set
Hom(−, [n]) : ∆op → Sets. Define morphisms of simplicial sets
�n,i : �n−1 → �n for i = 0, 1 . . . , n by �n,i = − ◦ δn,i , where
δn,i : [n − 1]→ [n] is the face map. Then �n,i is an injective
morphism in SSets, and �n,i (�n−1) is a simplicial subset of �n,
that is, �n,i (�n−1)([k]) ⊆ �n([k]) in Sets for each k > 0.
Define the n − 1-sphere ∂�n, as a simplicial subset of �n, by

∂�n =
⋃

i=0,...,n �
n,i (�n−1),

where for each k > 0 we take the union in subsets of �n([k]). It is
a simplicial set with an inclusion ∂�n ↪→ �n. For k = 0, . . . , n,
define the k-horn �n

k , as a simplicial subset of �n, by

�n
k =

⋃
i=0,...,n: i 6=k �

n,i (�n−1).

It is a simplicial set with an inclusion �n
k ↪→ �n. It is an inner horn

if 0 < k < n.
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Definition

A simplicial set S is a Kan complex if for all 0 6 k 6 n and all
f : �n

k → S in SSets, there exists a (not necessarily unique)
morphism g : �n → S making the following diagram commute:

�n
k f

//� {

--
S .

�n g
11

Then we say that all horns in S have fillers.
We call S a weak Kan complex if the above holds for all
0 < k < n. Then we say that all inner horns in S have fillers.

Lemma

If X is a topological space then Sing(X ) is a Kan complex.

Proof.

We must fill in the diagram in Top:

TR(�n
k ) f

//
� {

--
X .

TR(�n) g
11

This is possible as TR(�n) retracts onto TR(�n
k).
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The nerve of a category

Kan complexes are the fibrant-cofibrant objects in the model category
SSets. Here is a construction which yields weak Kan complexes:

Definition

Let C be a small category. (Small means the objects form a set.)
Define a simplicial set N (C ) called the nerve of C as follows:

0-simplices (elements of N (C )([0])) are objects X ∈ C .

1-simplices (in N (C )([1])) are morphisms X0
f1−→X1 in C .

n-simplices are sequences X0
f1−→X1 · · ·Xn−1

fn−→Xn in C .
Face maps dn,i : N (C )([n])→ N (C )([n− 1]) omit X0, f1 for
i =0, omit Xn, fn for i = n, and compose fi , fi+1 for 0< i<n.
Degeneracy maps sn,i : N (C )([n])→ N (C )([n + 1]) insert
idXi

: Xi → Xi into the sequence.

Functors F : C → D induce morphisms N (C )→ N (D).
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We can characterize when a simplicial set is a nerve via horn-filling.

Proposition 10.1

(a) A simplicial set S is isomorphic to the nerve N (C ) of a small
category C iff all inner horns f : �n

k → S have unique fillers.
This implies that N (C ) is a weak Kan complex for all C .
(b) A simplicial set S is isomorphic to the nerve N (C ) of a small
groupoid C iff all horns f : �n

k → S for n > 1 have unique fillers.
(c) The nerve N (C ) of a small category C is a Kan complex iff
C is a groupoid.

Proposition 10.1 suggests that we can see weak Kan complexes as
generalizations of categories, and Kan complexes as generalizations
of groupoids. We already know that Kan complexes are the
fibrant-cofibrant objects in SSets, so by the fundamental theorem
of model theory, the category with objects Kan complexes and
homotopy classes of morphisms between them is equivalent to
Ho(SSets), so a model for ∞-groupoids.
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10.3. Quasicategories

Quasicategories are a model (arguably the best) for (∞, 1)-categories,
developed by Joyal and Lurie. Lurie went on to use them as the
foundation for his theory of Derived Algebraic Geometry.

Definition

A quasicategory is a weak Kan complex.

Based on our definition of the nerve N (C ) of a category C , we
will explain how to treat a quasicategory like an (∞-)category.

Definition

Let Q be a quasicategory.

An object X of Q is a 0-simplex (element X ∈ Q([0])).
A 1-morphism f : X → Y of Q is a 1-simplex (element
f ∈ Q([1])) with face maps d1,1(f ) = X and d1,0(f ) = Y .
The identity 1-morphism is idX = s0,0(X ), from the
degeneracy map s0,0 : Q([0])→ Q([1]).
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Definition (Continued.)

Let f : X → Y and g : Y → Z be 1-morphisms in Q. We say
that h : X → Z is a choice of composition in Q if there exists
a 2-simplex η ∈ Q([2]) with d2,2(η) = f , d2,0(η) = g and
d2,1(η) = h. We think of η : g ◦ f ⇒ h as a 2-morphism in Q,
and draw it as a picture of a 2-simplex, with X ,Y ,Z as the
vertices, f , g , h as the edges, and η as the 2-simplex:

Y g

**
η
��X

f
44

h
// Z .

Note that compositions are nonunique. But as Q is a weak
Kan complex, compositions always exist, as X ,Y ,Z , f , g
define a morphism �2

1 → Q, and h, η fill the horn to a
morphism �2 → Q.
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Definition (Continued.)

Let f , f ′ : X → Y be 1-morphisms. We say that f , f ′ are
2-isomorphic, or homotopic, written f ∼ f ′, if there exists

X
f

**
η
��X

idX
44

f ′
// Y .

This is an equivalence relation on f , f ′.
Using the horn-filling condition for 3-horns we can show that
if h1, h2 are possible compositions g ◦ f then h1 ∼ h2.
The homotopy category Ho(Q) is the category with objects
X the objects X of Q, and morphisms [f ] : X → Y the
∼-equivalence classes of 1-morphisms f : X → Y . Identity
morphisms are [idX ] : X → X . The composition of
[f ] : X → Y and [g ] : Y → Z is [g ] ◦ [f ] = [h] : X → Z ,
where h : X → Z is a choice of composition of 1-morphisms
in Q, and [h] is independent of choices.
If Q = N (C ) then Ho(Q) ' C .

39 / 41 Dominic Joyce, Oxford University Lecture 10: More about∞-categories



∞-categories
More about∞-categories

Simplicial sets and simplicial objects
Kan complexes and weak Kan complexes
Quasicategories

Many definitions in category theory have well-behaved analogues
for quasicategories. Here are some examples:

Definition

• Let Q,R be quasicategories. A functor F : Q → R is a
morphism of simplicial sets.
• If F ,G : Q → R are functors, a natural transformation
η : F ⇒ G is a morphism of simplicial sets η : �1 ×Q → R which
restricts to F on 0×Q and to G on 1×Q.
• Let Q be a quasi-category and X ,Y be objects in Q. Define the
right Hom object HomR

Q(X ,Y ) to be the simplicial set whose
n-simplices are morphisms �n+1 → Q which restrict to the
constant map to X on δn+1,n+1(�n) ⊂ �n+1, and restrict to Y on
vertex n + 1 of �n+1.
• An object Y in Q is a terminal object in Q if HomR

Q(X ,Y ) is
contractible for all objects X .
• Left Hom objects HomL

Q(X ,Y ) and initial objects have the dual
definition.
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Definition

• Let K be a simplicial set and k : K → Q a morphism. We can
define a quasicategory Q/k with objects (X , η) an object X in Q
and a natural transformation η : 1X ⇒ k, where 1X : K → Q is
the constant functor with value X . A limit of k : K → Q is a
terminal object in Q/k . So, for example, a fibre product
X ×g ,Z ,h Y in Q is a limit of the morphism

•
�0

�1 ''
•
�0

�1ww•
�0

k−→
X

g ''
Y

hwwZ .

The theory of quasicategories is very well developed, and works
really well.
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