Plan of talk:

3. \mathcal{C}^∞-Algebraic Geometry
 3.1 \mathcal{C}^∞-rings
 3.2 Sheaves
 3.3 \mathcal{C}^∞-schemes
3. \mathcal{C}^∞-Algebraic Geometry

Our goal is to define the 2-category of d-manifolds dMan. First consider an algebro-geometric version of what we want to do. A good algebraic analogue of smooth manifolds are complex algebraic manifolds, that is, separated smooth \mathbb{C}-schemes S of pure dimension. These form a full subcategory AlgMan_C in the category Sch_C of \mathbb{C}-schemes, and can roughly be characterized as the (sufficiently nice) objects S in Sch_C whose cotangent complex L_S is a vector bundle (i.e. perfect in the interval $[0,0]$).

To make a derived version of this, we first define an ∞-category DerSch_C of derived \mathbb{C}-schemes, and then define the ∞-category DerAlgMan_C of derived complex algebraic manifolds to be the full ∞-subcategory of objects S in DerSch_C which are quasi-smooth (have cotangent complex L_S perfect in the interval $[-1,0]$), and satisfy some other niceness conditions (separated, etc.).

Thus, we have ‘classical’ categories $\text{AlgMan}_C \subset \text{Sch}_C$, and related ‘derived’ ∞-categories $\text{DerAlgMan}_C \subset \text{DerSch}_C$.

David Spivak, a student of Jacob Lurie, defined an ∞-category $\text{DerMan}_{\text{Spi}}$ of ‘derived smooth manifolds’ using a similar structure: he considered ‘classical’ categories $\text{Man} \subset \text{C}^\infty\text{Sch}$ and related ‘derived’ ∞-categories $\text{DerMan}_{\text{Spi}} \subset \text{DerC}^\infty\text{Sch}$. Here $\text{C}^\infty\text{Sch}$ is C^∞-schemes, and $\text{DerC}^\infty\text{Sch}$ derived C^∞-schemes. That is, before we can ‘derive’, we must first embed Man into a larger category of C^∞-schemes, singular generalizations of manifolds. Our set-up is a simplification of Spivak’s. I consider ‘classical’ categories $\text{Man} \subset \text{C}^\infty\text{Sch}$ and related ‘derived’ 2-categories $\text{dMan} \subset \text{dSpa}$, where dMan is d-manifolds, and dSpa d-spaces. Here dMan, dSpa are roughly 2-category truncations of Spivak’s $\text{DerMan}, \text{DerC}^\infty\text{Sch}$ — see Borisov arXiv:1212.1153. This lecture will introduce classical C^∞-schemes.
Algebraic geometry (based on algebra and polynomials) has excellent tools for studying singular spaces – the theory of schemes. In contrast, conventional differential geometry (based on smooth real functions and calculus) deals well with nonsingular spaces – manifolds – but poorly with singular spaces.

There is a little-known theory of schemes in differential geometry, C^∞-schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes, ... in synthetic differential geometry in the 1960s-1980s. C^∞-schemes are essentially algebraic objects, on which smooth real functions and calculus make sense.

The theory works by replacing commutative rings or \mathbb{K}-algebras in algebraic geometry by algebraic objects called C^∞-rings.

Definition 3.1 (First definition of C^∞-ring)

A C^∞-ring is a set \mathcal{C} together with n-fold operations $\Phi_f : \mathcal{C}^n \to \mathcal{C}$ for all smooth maps $f : \mathbb{R}^n \to \mathbb{R}$, $n \geq 0$, satisfying:

Let $m, n \geq 0$, and $f_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \ldots, m$ and $g : \mathbb{R}^m \to \mathbb{R}$ be smooth functions. Define $h : \mathbb{R}^n \to \mathbb{R}$ by

$$h(x_1, \ldots, x_n) = g(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1 \ldots, x_n)),$$

for $(x_1, \ldots, x_n) \in \mathbb{R}^n$. Then for all c_1, \ldots, c_n in \mathcal{C} we have

$$\Phi_h(c_1, \ldots, c_n) = \Phi_g(\Phi_{f_1}(c_1, \ldots, c_n), \ldots, \Phi_{f_m}(c_1, \ldots, c_n)).$$

Also defining $\pi_j : (x_1, \ldots, x_n) \mapsto x_j$ for $j = 1, \ldots, n$ we have

$$\Phi_\pi_j : (c_1, \ldots, c_n) \mapsto c_j.$$

A morphism of C^∞-rings is a map of sets $\phi : \mathcal{C} \to \mathcal{D}$ with $\Phi_f \circ \phi^n = \phi \circ \Phi_f : \mathcal{C}^n \to \mathcal{D}$ for all smooth $f : \mathbb{R}^n \to \mathbb{R}$. Write C^∞-Rings for the category of C^∞-rings.
Definition 3.2 (Second definition of C^∞-ring)

Write Euc for the full subcategory of manifolds Man with objects \mathbb{R}^n for $n = 0, 1, \ldots$. That is, Euc is the category with objects Euclidean spaces \mathbb{R}^n, and morphisms smooth maps $f : \mathbb{R}^m \to \mathbb{R}^n$. A C^∞-ring is a product-preserving functor $F : \text{Euc} \to \text{Sets}$. That is, F is a functor with functorial identifications $F(\mathbb{R}^{m+n}) = F(\mathbb{R}^m \times \mathbb{R}^n) \cong F(\mathbb{R}^m) \times F(\mathbb{R}^n)$ for all $m, n \geq 0$.

A morphism $\phi : F \to G$ of C^∞-rings F, G is a natural transformation of functors $\phi : F \Rightarrow G$.

Definitions 3.1 and 3.2 are equivalent as follows. Given $F : \text{Euc} \to \text{Sets}$ as above, define a set $\mathcal{C} = F(\mathbb{R})$. As F is product-preserving, $F(\mathbb{R}^n) \cong F(\mathbb{R})^n = \mathcal{C}^n$ for all $n \geq 0$. If $f : \mathbb{R}^n \to \mathbb{R}$ is smooth then $F(f) : F(\mathbb{R}^n) \to F(\mathbb{R})$ is identified with a map $\Phi_f : \mathcal{C}^n \to \mathcal{C}$. Then $(\mathcal{C}, \Phi_f, f : \mathbb{R}^n \to \mathbb{R})$ is a C^∞-ring as in Definition 3.1. Conversely, given \mathcal{C} we define F with $F(\mathbb{R}^n) = \mathcal{C}^n$.

Manifolds as C^∞-rings

Let X be a manifold, and write $\mathcal{C} = C^\infty(X)$ for the set of smooth functions $c : X \to \mathbb{R}$. Let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth. Define $\Phi_f : C^\infty(X)^n \to C^\infty(X)$ by $\Phi_f(c_1, \ldots, c_n)(x) = f(c_1(x), \ldots, c_n(x))$ for $x \in X$. These make $C^\infty(X)$ into a C^∞-ring as in Definition 3.1. Define $F : \text{Euc} \to \text{Sets}$ by $F(\mathbb{R}^n) = \text{Hom}_{\text{Man}}(X, \mathbb{R}^n)$ and $F(f) = f \circ : \text{Hom}_{\text{Man}}(X, \mathbb{R}^m) \to \text{Hom}_{\text{Man}}(X, \mathbb{R}^n)$ for $f : \mathbb{R}^m \to \mathbb{R}^n$ smooth. Then F is a C^∞-ring as in Definition 3.2.

If $f : X \to Y$ is smooth map of manifolds then $f^* : C^\infty(Y) \to C^\infty(X)$ is a morphism of C^∞-rings; conversely, if $\phi : C^\infty(Y) \to C^\infty(X)$ is a morphism of C^∞-rings then $\phi = f^*$ for some unique smooth $f : X \to Y$. This gives a full and faithful functor $F : \text{Man} \to C^\infty\text{Rings}^{\text{op}}$ by $F : X \mapsto C^\infty(X)$, $F : f \mapsto f^*$. Thus, we can think of manifolds as examples of C^∞-rings. But there are many more C^∞-rings than manifolds. For example, $C^0(X)$ is a C^∞-ring for any topological space X.
Every \mathcal{C}^∞-ring \mathcal{C} is a commutative \mathbb{R}-algebra, where addition is $c + d = \Phi_f(c, d)$ for $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x + y$, and multiplication is $c \cdot d = \Phi_g(c, d)$ for $g : \mathbb{R}^2 \to \mathbb{R}$, $g(x, y) = xy$, multiplication by $\alpha \in \mathbb{R}$ is $\alpha c = \Phi_h(c)$ for $h : \mathbb{R} \to \mathbb{R}$, $h(x) = \alpha x$.

An ideal $I \subseteq \mathcal{C}$ in a \mathcal{C}^∞-ring \mathcal{C} is an ideal in \mathcal{C} as an \mathbb{R}-algebra. Then the quotient vector space \mathcal{C}/I is a commutative \mathbb{R}-algebra.

Proposition 3.3

If \mathcal{C} is a \mathcal{C}^∞-ring and $I \subseteq \mathcal{C}$ an ideal, then there is a unique \mathcal{C}^∞-ring structure on \mathcal{C}/I such that the projection $\pi : \mathcal{C} \to \mathcal{C}/I$ is a morphism of \mathcal{C}^∞-rings.

Definition

A \mathcal{C}^∞-ring \mathcal{C} is called finitely generated if $\mathcal{C} \cong \mathcal{C}^\infty(\mathbb{R}^n)/I$ for some ideal $I \subseteq \mathcal{C}^\infty(\mathbb{R}^n)$.

Proof of Proposition 3.3

Let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth, and $c_1 + I, \ldots, c_n + I \in \mathcal{C}/I$. For $\pi : \mathcal{C} \to \mathcal{C}/I$ to be a morphism of \mathcal{C}^∞-rings, we are forced to set

$$
\Phi_f(c_1 + I, \ldots, c_n + I) = \Phi_f(c_1, \ldots, c_n) + I,
$$

which determines the \mathcal{C}^∞-ring structure on \mathcal{C}/I completely. The only thing to prove is that this is well-defined. That is, if $c'_1, \ldots, c'_n \in \mathcal{C}$ with $c_i - c'_i \in I$, so that $c_1 + I = c'_1 + I, \ldots, c_n + I = c'_n + I$, we must show that

$$
\Phi_f(c_1, \ldots, c_n) - \Phi_f(c'_1, \ldots, c'_n) \in I.
$$
Proof of Proposition 3.3

Lemma 3.4 (Hadamard’s Lemma)

Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is smooth. Then there exist smooth \(g_i : \mathbb{R}^{2n} \to \mathbb{R} \) for \(i = 1, \ldots, n \) such that for all \(x_j, y_j \) we have

\[
f(x_1, \ldots, x_n) - f(y_1, \ldots, y_n) = \sum_{i=1}^{n} g_i(x_1, \ldots, x_n, y_1, \ldots, y_n) \cdot (x_i - y_i).
\]

Note that \(g_i(x_1, \ldots, x_n, x_1, \ldots, x_n) = \frac{\partial f}{\partial x_i}(x_1, \ldots, x_n) \), so Hadamard’s Lemma gives an algebraic interpretation of partial derivatives. The definition of \(C^\infty \)-ring implies that

\[
\Phi f(c_1, \ldots, c_n) - \Phi f(c'_1, \ldots, c'_n) = \sum_{i=1}^{n} \Phi g_i(c_1, \ldots, c_n, c'_1, \ldots, c'_n) \cdot (c_i - c'_i),
\]

which lies in \(I \) as \(c_i - c'_i \in I \), as we have to prove.

Example 3.5 (Finitely presented \(C^\infty \)-rings. Compare Example 1.1.)

Suppose \(p_1, \ldots, p_k : \mathbb{R}^n \to \mathbb{R} \) are smooth functions. Then \(C^\infty(\mathbb{R}^n) \) is a \(C^\infty \)-ring, and so an \(\mathbb{R} \)-algebra. Write \(I = (p_1, \ldots, p_k) \) for the ideal in \(C^\infty(\mathbb{R}^n) \) generated by \(p_1, \ldots, p_k \). Then \(C^\infty(\mathbb{R}^n)/(p_1, \ldots, p_k) \) is a \(C^\infty \)-ring, by Proposition 3.3. We think of it as the \(C^\infty \)-ring of functions on the smooth space \(X = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : p_i(x_1, \ldots, x_n) = 0, i = 1, \ldots, k\} \). Note that \(X \) may be singular.

Example 3.6

Let \(I \subset C^\infty(\mathbb{R}) \) be the ideal of all smooth \(f : \mathbb{R} \to \mathbb{R} \) with \(f(x) = 0 \) for all \(x \geq 0 \). Then \(I \) is not finitely generated, so \(C^\infty(\mathbb{R}) \) is not noetherian as an \(\mathbb{R} \)-algebra. This is one way in which \(C^\infty \)-algebraic geometry behaves worse than ordinary algebraic geometry. We think of \(C^\infty(\mathbb{R})/I \) as the \(C^\infty \)-ring of smooth functions \(f : [0, \infty) \to \mathbb{R} \).
Definition

A C^∞-ring \mathcal{C} is a C^∞-local ring if as an \mathbb{R}-algebra, \mathcal{C} has a unique maximal ideal m, with $\mathcal{C}/m \cong \mathbb{R}$.

Example 3.7

Let X be a manifold, and $x \in X$. Write $C^\infty_x(X)$ for the C^∞-ring of germs of smooth functions $f : X \to \mathbb{R}$ at x. That is, elements of $C^\infty_x(X)$ are \simeq-equivalence classes $[U, f]$ of pairs (U, f), where $x \in U \subseteq X$ is open and $f : U \to \mathbb{R}$ is smooth, and $(U, f) \sim (U', f')$ if there exists open $x \in U'' \subseteq U \cap U'$ with $f|_{U''} = f'|_{U''}$. Then $C^\infty_x(X)$ is a C^∞-local ring.

Definition

An ideal $I \subseteq C^\infty(\mathbb{R}^n)$ is called fair if for $f \in C^\infty(\mathbb{R}^n)$, $\pi_x(f) \in \pi_x(I)$ for all $x \in \mathbb{R}^n$ implies that $f \in I$, where $\pi_x : C^\infty(\mathbb{R}^n) \to C^\infty_x(\mathbb{R}^n)$ is the projection. A C^∞-ring \mathcal{C} is called fair if $\mathcal{C} \cong C^\infty(\mathbb{R}^n)/I$ for $I \subseteq C^\infty(\mathbb{R}^n)$ a fair ideal.

Modules over C^∞-rings

Definition

Let \mathcal{C} be a C^∞-ring. A module over \mathcal{C} is a module over \mathcal{C} as an \mathbb{R}-algebra.

You might expect that the definition of module should involve the operations Φ_f as well as the \mathbb{R}-algebra structure, but it does not.

Example 3.8

Let X be a manifold, and $E \to X$ a vector bundle. Then $C^\infty(X)$ is a C^∞-ring, and the vector space $C^\infty(E)$ of smooth sections of E is a module over $C^\infty(X)$.
Cotangent modules

Definition

Let \mathcal{C} be a C^∞-ring, and M a \mathcal{C}-module. A C^∞-derivation is an \mathbb{R}-linear map $d : \mathcal{C} \to M$ such that whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth map and $c_1, \ldots, c_n \in \mathcal{C}$, we have

$$d \Phi_f(c_1, \ldots, c_n) = \sum_{i=1}^n \Phi \frac{\partial f}{\partial x_i}(c_1, \ldots, c_n) \cdot dc_i.$$

Note that d is not a morphism of \mathcal{C}-modules. We call such a pair $\Omega_{\mathcal{C}}, d_{\mathcal{C}}$ a cotangent module for \mathcal{C} if it has the universal property that for any \mathcal{C}-module M and C^∞-derivation $d : \mathcal{C} \to M$, there is a unique morphism of \mathcal{C}-modules $\phi : \Omega_{\mathcal{C}} \to M$ with $d = \phi \circ d_{\mathcal{C}}$.

Every C^∞-ring has a cotangent module, unique up to isomorphism.

Example 3.9

Let X be a manifold, with cotangent bundle T^*X. Then $C^\infty(T^*X)$ is a cotangent module for the C^∞-ring $C^\infty(X)$.

3.2. Sheaves

Sheaves are a central idea in algebraic geometry.

Definition

Let X be a topological space. A presheaf of sets \mathcal{E} on X consists of a set $\mathcal{E}(U)$ for each open $U \subseteq X$, and a restriction map $\rho_{UV} : \mathcal{E}(U) \to \mathcal{E}(V)$ for all open $V \subseteq U \subseteq X$, such that:

(i) $\mathcal{E}(\emptyset) = \ast$ is one point;
(ii) $\rho_{UU} = \text{id}_{\mathcal{E}(U)}$ for all open $U \subseteq X$; and
(iii) $\rho_{UV} = \rho_{VV} \circ \rho_{UV}$ for all open $W \subseteq V \subseteq U \subseteq X$.

We call \mathcal{E} a sheaf if also whenever $U \subseteq X$ is open and $\{V_i : i \in I\}$ is an open cover of U, then:

(iv) If $s, t \in \mathcal{E}(U)$ with $\rho_{UV_i}(s) = \rho_{UV_i}(t)$ for all $i \in I$, then $s = t$;
(v) If $s_i \in \mathcal{E}(V_i)$ for all $i \in I$ with $\rho_{V_i(V_i \cap V_j)}(s_i) = \rho_{V_j(V_i \cap V_j)}(s_j)$ in $\mathcal{E}(V_i \cap V_j)$ for all $i, j \in I$, then there exists $s \in \mathcal{E}(U)$ with $\rho_{UV_i}(s) = s_i$ for all $i \in I$. This s is unique by (iv).
Definition

Let \mathcal{E}, \mathcal{F} be (pre)sheaves on X. A morphism $\phi : \mathcal{E} \to \mathcal{F}$ consists of a map $\phi(U) : \mathcal{E}(U) \to \mathcal{F}(U)$ for all open $U \subseteq X$, such that $\rho_{UV} \circ \phi(U) = \phi(V) \circ \rho_{UV} : \mathcal{E}(U) \to \mathcal{F}(V)$ for all open $V \subseteq U \subseteq X$. Then sheaves form a category.

If \mathcal{C} is any category in which direct limits exist, such as the categories of sets, rings, vector spaces, C^∞-rings, ..., then we can define (pre)sheaves \mathcal{E} of objects in \mathcal{C} on X in the obvious way, and morphisms $\phi : \mathcal{E} \to \mathcal{F}$ by taking $\mathcal{E}(U)$ to be an object in \mathcal{C}, and $\rho_{UV} : \mathcal{E}(U) \to \mathcal{E}(V)$, $\phi(U) : \mathcal{E}(U) \to \mathcal{F}(U)$ to be morphisms in \mathcal{C}, and $\mathcal{E}(\emptyset)$ to be a terminal object in \mathcal{C} (e.g. the zero ring). So in particular, we can define sheaves of C^∞-rings on X.

Almost any class of functions on X, or sections of a bundle on X, will form a sheaf on X. To be a sheaf means to be ‘local on X', determined by its behaviour on any cover of small open sets.

Stalks of sheaves

Definition

Let X be a topological space, and \mathcal{E} a (pre)sheaf of sets (or C^∞-rings, etc.) on X, and $x \in X$. The stalk \mathcal{E}_x of \mathcal{E} at x is

$$\mathcal{E}_x = \lim_{\xrightarrow{x \in U \subseteq X}} \mathcal{E}(U),$$

where the direct limit (as a set, or C^∞-ring, etc.) is over all open $U \subseteq X$ with $x \in U$ using $\rho_{UV} : \mathcal{E}(U) \to \mathcal{E}(V)$ for open $x \in V \subseteq U \subseteq X$. That is, for all open $x \in U \subseteq X$ we have a morphism $\pi_x : \mathcal{E}(U) \to \mathcal{E}_x$, such that for all $x \in V \subseteq U \subseteq X$ we have $\pi_x = \pi_x \circ \rho_{UV}$, and \mathcal{E}_x is universal with this property.

Example 3.10

Let X be a manifold. Define a sheaf of C^∞-rings O_X on X by $O_X(U) = C^\infty(U)$ for all open $U \subseteq X$, as a C^∞-ring, and $\rho_{UV} : C^\infty(U) \to C^\infty(V)$, $\rho_{UV} : f \mapsto f|_V$ for all open $V \subseteq U \subseteq X$. The stalk $O_{X,x}$ at $x \in X$ is $C^\infty_x(X)$ from Example 3.7.
Sheafification and pullbacks

Definition

Let X be a topological space and \mathcal{E} a presheaf (of sets, C^∞-rings, etc.) on X. A sheafification of \mathcal{E} is a sheaf \mathcal{E}' and a morphism of presheaves $\pi : \mathcal{E} \to \mathcal{E}'$, with the universal property that any morphism $\phi : \mathcal{E} \to \mathcal{F}$ with \mathcal{F} a sheaf factorizes uniquely as $\phi = \phi' \circ \pi$ for $\phi' : \mathcal{E}' \to \mathcal{F}$.

Any presheaf \mathcal{E} has a sheafification \mathcal{E}', unique up to canonical isomorphism, and the stalks satisfy $\mathcal{E}_x \cong \mathcal{E}'_x$.

Definition

Let $f : X \to Y$ be a continuous map of topological spaces, and \mathcal{E} a sheaf on Y. Define a presheaf $\mathcal{P}f^{-1}(\mathcal{E})$ on X by

$$\mathcal{P}f^{-1}(\mathcal{E}) = \lim_{\longrightarrow} V \supseteq f(U) \mathcal{E}(V),$$

where the direct limit is over open $V \subseteq Y$ with $f(U) \subseteq V$. Define the *pullback sheaf* $f^{-1}(\mathcal{E})$ to be the sheafification of $\mathcal{P}f^{-1}(\mathcal{E})$.

We can now define C^∞-schemes almost exactly as for schemes in algebraic geometry, but replacing rings or K-algebras by C^∞-rings.

Definition

A C^∞-ringed space $X = (X, \mathcal{O}_X)$ is a topological space X with a sheaf of C^∞-rings \mathcal{O}_X. It is called a *local C^∞-ringed space* if the stalks $\mathcal{O}_{X,x}$ are C^∞-local rings for all $x \in X$.

A morphism $f : X \to Y$ of C^∞-ringed spaces is $f = (f, f^\#)$, where $f : X \to Y$ is a continuous map of topological spaces, and $f^\# : f^{-1}(\mathcal{O}_Y) \to \mathcal{O}_X$ is a morphism of sheaves of C^∞-rings on X.

Write $C^\infty\text{RS}$ for the category of C^∞-ringed spaces, and $LC^\infty\text{RS}$ for the full subcategory of local C^∞-ringed spaces.
Definition

The global sections functor \(\Gamma : \mathcal{L}C^\infty RS \to C^\infty \text{Rings}^{\text{op}} \) maps \(\Gamma : (X, \mathcal{O}_X) \mapsto \mathcal{O}_X(X) \). It has a right adjoint, the spectrum functor \(\text{Spec} : C^\infty \text{Rings}^{\text{op}} \to \mathcal{L}C^\infty RS \). That is, for each \(C^\infty \)-ring \(\mathcal{C} \) we construct a local \(C^\infty \)-ringed space \(X = \text{Spec} \mathcal{C} \). Points \(x \in X \) are \(\mathbb{R} \)-algebra morphisms \(x : \mathcal{C} \to \mathbb{R} \) (this implies \(x \) is a \(C^\infty \)-ring morphism). Then each \(c \in \mathcal{C} \) defines a map \(c : X \to \mathbb{R} \). We give \(X \) the weakest topology such that these \(c : X \to \mathbb{R} \) are continuous for all \(c \in \mathcal{C} \). We don’t use prime ideals.

In algebraic geometry, \(\text{Spec} : \text{Rings}^{\text{op}} \to \mathcal{L}RS \) is full and faithful. In \(C^\infty \)-algebraic geometry, it is full but not faithful, that is, \(\text{Spec} \) forgets some information, as we don’t use prime ideals. But on the subcategory \(C^\infty \text{Rings}^{\text{fa}} \) of fair \(C^\infty \)-rings, \(\text{Spec} \) is full and faithful.

Definition

A local \(C^\infty \)-ringed space \(X \) is called an affine \(C^\infty \)-scheme if \(X \cong \text{Spec} \mathcal{C} \) for some \(C^\infty \)-ring \(\mathcal{C} \). We call \(X \) a \(C^\infty \)-scheme if \(X \) can be covered by open subsets \(U \) with \((U, \mathcal{O}_X|_U) \) an affine \(C^\infty \)-scheme. Write \(C^\infty \text{Sch} \) for the full subcategory of \(C^\infty \)-schemes in \(\mathcal{L}C^\infty RS \).

If \(X \) is a manifold, define a \(C^\infty \)-scheme \(\bar{X} = (X, \mathcal{O}_X) \) by \(\mathcal{O}_X(U) = C^\infty(U) \) for all open \(U \subseteq X \). Then \(\bar{X} \cong \text{Spec} C^\infty(X) \). This defines a full and faithful embedding \(\text{Man} \hookrightarrow C^\infty \text{Sch} \). So we can regard manifolds as examples of \(C^\infty \)-schemes.
Think of a C^∞-ringed space X as a topological space X with a notion of ‘smooth function’ $f : U \to \mathbb{R}$ for open $U \subseteq X$, i.e.
$f \in \mathcal{O}_X(U)$. If X is a local C^∞-ringed space then the notion of ‘value of f in \mathbb{R} at a point $x \in U$’ makes sense, since we can compose the maps $f \in \mathcal{O}_X(U) \xrightarrow{\pi_x} \mathcal{O}_{X,x} \to \mathcal{O}_{X,x}/m \cong \mathbb{R}$. If X is a C^∞-scheme, then for small open $U \subseteq X$ we can locally reconstruct the sheaf $\mathcal{O}_X|_U$ from the C^∞-ring $\mathcal{O}_X(U)$.

All fibre products exist in $C^\infty\text{Sch}$. In manifolds Man, fibre products $X \times_{g,Z,h} Y$ need exist only if $g : X \to Z$ and $h : Y \to Z$ are transverse. When g, h are not transverse, the fibre product $X \times_{g,Z,h} Y$ exists in $C^\infty\text{Sch}$, but may not be a manifold.

We also define vector bundles and quasicoherent sheaves on a C^∞-scheme X, as sheaves of \mathcal{O}_X-modules, and write $\text{qcoh}(X)$ for the abelian category of quasicoherent sheaves. A C^∞-scheme X has a well-behaved cotangent sheaf T^*_X.

Differences with ordinary Algebraic Geometry

- In algebraic geometry, central examples of schemes such as \mathbb{CP}^n are not affine. In C^∞-algebraic geometry, most interesting C^∞-schemes are affine (e.g. all manifolds), except for non-Hausdorff C^∞-schemes. But scheme theory is still useful, to glue things from local data.
- The topology on C^∞-schemes is finer than the Zariski topology on schemes – affine schemes are always Hausdorff. No need to introduce the étale topology.
- Can find smooth functions supported on (almost) any open set.
- (Almost) any open cover has a subordinate partition of unity.
- Our C^∞-rings \mathcal{C} are generally not noetherian as \mathbb{R}-algebras. So ideals I in \mathcal{C} may not be finitely generated, even in $C^\infty(\mathbb{R}^n)$. This means there is not a well-behaved notion of coherent sheaf.
Plan of talk:

4 2-categories, d-spaces, and d-manifolds

4.1 2-categories

4.2 Differential graded C^∞-rings

4.3 D-spaces

4.4 D-manifolds
4. 2-categories, d-spaces, and d-manifolds

Our goal is to define the 2-category of d-manifolds dMan. To do this we will define a 2-category dSpa of ‘d-spaces’, a kind of derived C^∞-scheme, and then define d-manifolds $\text{dMan} \subset \text{dSpa}$ to be a special kind of d-space, just as manifolds $\text{Man} \subset C^\infty\text{Sch}$ are a special kind of C^∞-scheme.

First we introduce 2-categories. There are two kinds, strict 2-categories and weak 2-categories. We will meet both, as d-manifolds and d-orbifolds dMan, dOrb are strict 2-categories, but Kuranishi spaces Kur are a weak 2-category. Every weak 2-category \mathcal{C} is equivalent as a weak 2-category to a strict 2-category \mathcal{C}' (weak 2-categories can be ‘strictified’), so there is no fundamental difference, but weak 2-categories have more notation.

4.1. 2-categories

A 2-category \mathcal{C} has objects X, Y, \ldots, 1-morphisms $f, g : X \to Y$ (morphisms), and 2-morphisms $\eta : f \Rightarrow g$ (morphisms between morphisms). Here are some examples to bear in mind:

Example 4.1

(a) The strict 2-category Cat has objects categories $\mathcal{C}, \mathcal{D}, \ldots$, 1-morphisms functors $F, G : \mathcal{C} \to \mathcal{D}$, and 2-morphisms natural transformations $\eta : F \Rightarrow G$.

(b) The strict 2-category Top^{ho} of topological spaces up to homotopy has objects topological spaces X, Y, \ldots, 1-morphisms continuous maps $f, g : X \to Y$, and 2-morphisms isotopy classes $[H] : f \Rightarrow g$ of homotopies H from f to g. That is, $H : X \times [0, 1] \to Y$ is continuous with $H(x, 0) = f(x)$, $H(x, 1) = g(x)$, and $H, H' : X \times [0, 1] \to Y$ are isotopic if there exists continuous $l : X \times [0, 1]^2 \to Y$ with $l(x, s, 0) = H(x, s)$, $l(s, x, 1) = H'(x, s)$, $l(x, 0, t) = f(x)$, $l(x, 1, t) = g(x)$.
Definition

A (strict) 2-category \mathcal{C} consists of a proper class of objects $\text{Obj}(\mathcal{C})$, for all $X, Y \in \text{Obj}(\mathcal{C})$ a category $\text{Hom}(X, Y)$, for all X in $\text{Obj}(\mathcal{C})$ an object id_X in $\text{Hom}(X, X)$ called the identity 1-morphism, and for all X, Y, Z in $\text{Obj}(\mathcal{C})$ a functor $\mu_{X,Y,Z} : \text{Hom}(X, Y) \times \text{Hom}(Y, Z) \to \text{Hom}(X, Z)$. These must satisfy the identity property, that

$$\mu_{X,X,Y}(\text{id}_X, -) = \mu_{X,Y,Y}(-, \text{id}_Y) = \text{id}_{\text{Hom}(X,Y)}$$ (4.1)

as functors $\text{Hom}(X, Y) \to \text{Hom}(X, Y)$, and the associativity property, that

$$\mu_{W,Y,Z} \circ (\mu_{W,X,Y} \times \text{id}) = \mu_{W,X,Z} \circ (\text{id} \times \mu_{X,Y,Z})$$ (4.2)

as functors $\text{Hom}(W, X) \times \text{Hom}(X, Y) \times \text{Hom}(Y, Z) \to \text{Hom}(W, X)$.

Objects f of $\text{Hom}(X, Y)$ are called 1-morphisms, written $f : X \to Y$. For 1-morphisms $f, g : X \to Y$, morphisms $\eta \in \text{Hom}_{\text{Hom}(X,Y)}(f, g)$ are called 2-morphisms, written $\eta : f \Rightarrow g$.

There are three kinds of composition in a 2-category, satisfying various associativity relations. If $f : X \to Y$ and $g : Y \to Z$ are 1-morphisms then $\mu_{X,Y,Z}(f, g)$ is the horizontal composition of 1-morphisms, written $g \circ f : X \to Z$. If $f, g, h : X \to Y$ are 1-morphisms and $\eta : f \Rightarrow g$, $\zeta : g \Rightarrow h$ are 2-morphisms then composition of η, ζ in $\text{Hom}(X, Y)$ gives the vertical composition of 2-morphisms of η, ζ, written $\zeta \circ \eta : f \Rightarrow h$, as a diagram

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow \eta & & \downarrow \zeta \\
\downarrow g & \Rightarrow & \downarrow h \\
X & \xrightarrow{\zeta \circ \eta} & Y.
\end{array}
$$ (4.3)
And if \(f, \tilde{f} : X \to Y \) and \(g, \tilde{g} : Y \to Z \) are 1-morphisms and \(\eta : f \Rightarrow \tilde{f}, \zeta : g \Rightarrow \tilde{g} \) are 2-morphisms then \(\mu_{X,Y,Z}(\eta, \zeta) \) is the horizontal composition of 2-morphisms, written \(\zeta \ast \eta : g \circ f \Rightarrow \tilde{g} \circ \tilde{f} \), as a diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow \eta & & \downarrow \zeta \\
\tilde{f} & \Rightarrow & \tilde{g}
\end{array}
\quad \sim \quad
\begin{array}{ccc}
X & \xrightarrow{g \circ f} & Z \\
\downarrow \zeta \ast \eta & & \\
\tilde{g} \circ \tilde{f}
\end{array}
\]

(4.4)

There are also two kinds of identity: identity 1-morphisms \(\text{id}_X : X \to X \) and identity 2-morphisms \(\text{id}_f : f \Rightarrow f \).

A 2-morphism is a 2-isomorphism if it is invertible under vertical composition. A 2-category is called a (2,1)-category if all 2-morphisms are 2-isomorphisms. For example, stacks in algebraic geometry form a (2,1)-category.

In a 2-category \(\mathcal{C} \), there are three notions of when objects \(X, Y \) in \(\mathcal{C} \) are ‘the same’: equality \(X = Y \), and isomorphism, that is we have 1-morphisms \(f : X \to Y, g : Y \to X \) with \(g \circ f = \text{id}_X \) and \(f \circ g = \text{id}_Y \), and equivalence, that is we have 1-morphisms \(f : X \to Y, g : Y \to X \) and 2-isomorphisms \(\eta : g \circ f \Rightarrow \text{id}_X \) and \(\zeta : f \circ g \Rightarrow \text{id}_Y \). Usually equivalence is the correct notion.

Commutative diagrams in 2-categories should in general only commute up to (specified) 2-isomorphisms, rather than strictly. A simple example of a commutative diagram in a 2-category \(\mathcal{C} \) is

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow \eta & & \downarrow g \\
\downarrow h & & \\
& & Z,
\end{array}
\]

which means that \(X, Y, Z \) are objects of \(\mathcal{C} \), \(f : X \to Y, g : Y \to Z \) and \(h : X \to Z \) are 1-morphisms in \(\mathcal{C} \), and \(\eta : g \circ f \Rightarrow h \) is a 2-isomorphism.
Definition (Fibre products in 2-categories. Compare §2.3.)

Let \mathcal{C} be a strict 2-category and $g : X \to Z$, $h : Y \to Z$ be 1-morphisms in \mathcal{C}. A fibre product $X \times_Z Y$ in \mathcal{C} is an object W, 1-morphisms $\pi_X : W \to X$ and $\pi_Y : W \to Y$ and a 2-isomorphism $\eta : g \circ \pi_X \Rightarrow h \circ \pi_Y$ in \mathcal{C} with the following universal property: suppose $\pi'_X : W' \to X$ and $\pi'_Y : W' \to Y$ are 1-morphisms and $\eta' : g \circ \pi'_X \Rightarrow h \circ \pi'_Y$ is a 2-isomorphism in \mathcal{C}. Then there exists a 1-morphism $b : W' \to W$ and 2-isomorphisms $\zeta_X : \pi_X \circ b \Rightarrow \pi'_X$, $\zeta_Y : \pi_Y \circ b \Rightarrow \pi'_Y$ such that the following diagram commutes:

$$
\begin{array}{ccc}
W & \xrightarrow{g \circ \pi_X \circ b} & h \circ \pi_Y \circ b \\
\downarrow \text{id}_g \ast \zeta_X & & \downarrow \text{id}_h \ast \zeta_Y \\
W' & \xrightarrow{g \circ \pi'_X} & h \circ \pi'_Y.
\end{array}
$$

Furthermore, if $\tilde{b}, \tilde{\zeta}_X, \tilde{\zeta}_Y$ are alternative choices of b, ζ_X, ζ_Y then there should exist a unique 2-isomorphism $\theta : \tilde{b} \Rightarrow b$ with $\tilde{\zeta}_X = \zeta_X \circ (\text{id} \circ \pi_X \ast \theta)$ and $\tilde{\zeta}_Y = \zeta_Y \circ (\text{id} \circ \pi_Y \ast \theta)$.

If a fibre product $X \times_Z Y$ exists, it is unique up to equivalence.

Weak 2-categories

A weak 2-category, or bicategory, is like a strict 2-category, except that the equations of functors (4.1), (4.2) are required to hold not up to equality, but up to specified natural isomorphisms. That is, a weak 2-category \mathcal{C} consists of data $\text{Obj}(\mathcal{C}), \text{Hom}(X, Y), \mu_{X,Y,Z}, \text{id}_X$ as above, but in place of (4.1), a natural isomorphism

$$
\alpha : \mu_{W,X,Y} \circ (\mu_{W,X,Y} \times \text{id}) \Rightarrow \mu_{W,X,Z} \circ (\text{id} \times \mu_{X,Y,Z}),
$$

and in place of (4.2), natural isomorphisms

$$
\beta : \mu_{X,Y} (\text{id}_X, -) \Rightarrow \text{id}, \quad \gamma : \mu_{X,Y} (-, \text{id}_Y) \Rightarrow \text{id},
$$

satisfying some identities. That is, composition of 1-morphisms is associative only up to specified 2-isomorphisms, so for 1-morphisms $e : W \to X$, $f : X \to Y$, $g : Y \to Z$ we have a 2-isomorphism

$$
\alpha_{g \circ f, e} : (g \circ f) \circ e \Rightarrow g \circ (f \circ e).
$$

Similarly identities id_X, id_Y work up to 2-isomorphism, so for each $f : X \to Y$ we have 2-isomorphisms

$$
\beta_f : f \circ \text{id}_X \Rightarrow f, \quad \gamma_f : \text{id}_Y \circ f \Rightarrow f.
$$
4.2. Differential graded \(\mathbb{C}^\infty \)-rings

As in \(\S 2 \), to define derived \(\mathbb{K} \)-schemes, we replaced commutative \(\mathbb{K} \)-algebras by commutative differential graded \(\mathbb{K} \)-algebras (or simplicial \(\mathbb{K} \)-algebras). So, to define derived \(\mathbb{C}^\infty \)-schemes, we should replace \(\mathbb{C}^\infty \)-rings by differential graded \(\mathbb{C}^\infty \)-rings (or perhaps simplicial \(\mathbb{C}^\infty \)-rings, as in Spivak and Borisov–Noël).

Definition

A differential graded \(\mathbb{C}^\infty \)-ring (or \(\text{dg} \, \mathbb{C}^\infty \)-ring) \(\mathcal{C}^\bullet = (\mathcal{C}^*, \partial) \) is a commutative differential graded \(\mathbb{R} \)-algebra \((\mathcal{C}^*, \partial) \) in degrees \(\leq 0 \), as in \(\S 2.2 \), together with the structure \((\Phi_f)_{f : \mathbb{R}^n \to \mathbb{R} \mathbb{C}^\infty} \) of a \(\mathbb{C}^\infty \)-ring on \(\mathcal{C}^0 \), such that the \(\mathbb{R} \)-algebra structures on \(\mathcal{C}^0 \) from the \(\mathbb{C}^\infty \)-ring and the cdga over \(\mathbb{R} \) agree.

A morphism \(\phi : \mathcal{C}^\bullet \to \mathcal{D}^\bullet \) of \(\text{dg} \, \mathbb{C}^\infty \)-rings is maps \(\phi^k : \mathcal{C}^k \to \mathcal{D}^k \) for all \(k \leq 0 \), such that \((\phi^k)_{k \leq 0} \) is a morphism of cdgas over \(\mathbb{R} \), and \(\phi^0 : \mathcal{C}^0 \to \mathcal{D}^0 \) is a morphism of \(\mathbb{C}^\infty \)-rings.

Then \(\text{dg} \, \mathbb{C}^\infty \)-rings form an (\(\infty \)-)category \(\text{DGC}^\infty \text{Rings} \).

One could use \(\text{dg} \, \mathbb{C}^\infty \)-rings to define ‘derived \(\mathbb{C}^\infty \)-schemes’ and ‘derived \(\mathbb{C}^\infty \)-stacks’ as functors \(F : \text{DGC}^\infty \text{Rings} \to \text{SSets} \). An alternative is to use simplicial \(\mathbb{C}^\infty \)-rings \(\text{SC}^\infty \text{Rings} \), as in Spivak 2008, Borisov–Noël 2011, and Borisov 2012.

Example 4.2 (Kuranishi neighbourhoods. Compare Example 2.1.)

Let \(V \) be a smooth manifold, and \(E \to V \) a smooth real vector bundle of rank \(n \), and \(s : V \to E \) a smooth section. Define a dg \(\mathbb{C}^\infty \)-ring \(\mathcal{C}^\bullet \) as follows: take \(\mathcal{C}^0 = \mathbb{C}^\infty(V) \), with its natural \(\mathbb{R} \)-algebra and \(\mathbb{C}^\infty \)-ring structures. Set \(\mathcal{C}^k = \mathbb{C}^\infty(\Lambda^{-k} E^*) \) for \(k = -1, -2, \ldots, -n \), and \(\mathcal{C}^k = 0 \) for \(k < -n \). The multiplication \(\mathcal{C}^k \times \mathcal{C}^l \to \mathcal{C}^{k+l} \) are multiplication by functions in \(\mathbb{C}^\infty(V) \) if \(k = 0 \) or \(l = 0 \), and wedge product \(\wedge : \Lambda^{-k} E^* \times \Lambda^{-l} E^* \to \Lambda^{-k-l} E^* \) if \(k, l < 0 \). The differential \(\partial : \mathcal{C}^k \to \mathcal{C}^{k+1} \) is contraction with \(s \), \(s : \Lambda^{-k} E^* \to \Lambda^{-k-1} E^* \).
We will use only a special class of dg \mathcal{C}^∞-rings called square zero dg \mathcal{C}^∞-rings, which form a 2-category $\mathbf{SZC}^\infty \mathbf{Rings}$.

Definition

A dg \mathcal{C}^∞-ring \mathcal{C}^\bullet is square zero if $\mathcal{C}^i = 0$ for $i < -1$ and $\mathcal{C}^{-1} \cdot d[\mathcal{C}^{-1}] = 0$. Then \mathcal{C} is $\mathcal{C}^{-1} \xrightarrow{d} \mathcal{C}^0$, and $d[\mathcal{C}^{-1}]$ is a square zero ideal in the (ordinary) \mathcal{C}^∞-ring \mathcal{C}^0, and \mathcal{C}^{-1} is a module over the ‘classical’ \mathcal{C}^∞-ring $H^0(\mathcal{C}^{-1}) = \mathcal{C}^0/d[\mathcal{C}^{-1}]$.

A 1-morphism $\alpha^\bullet : \mathcal{C}^\bullet \to \mathcal{D}^\bullet$ in $\mathbf{SZC}^\infty \mathbf{Rings}$ is maps $\alpha^0 : \mathcal{C}^0 \to \mathcal{D}^0$, $\alpha^{-1} : \mathcal{C}^{-1} \to \mathcal{D}^{-1}$ preserving all the structure. Then $H^0(\alpha^\bullet) : H^0(\mathcal{C}) \to H^0(\mathcal{D})$ is a morphism of \mathcal{C}^∞-rings.

For 1-morphisms $\alpha^\bullet, \beta^\bullet : \mathcal{C}^\bullet \to \mathcal{D}^\bullet$ a 2-morphism $\eta : \alpha^\bullet \Rightarrow \beta^\bullet$ is a linear $\eta : \mathcal{C}^0 \to \mathcal{D}^{-1}$ with $\beta^0 = \alpha^0 + d \circ \eta$ and $\beta^{-1} = \alpha^{-1} + \eta \circ d$. There is an embedding of (2-)categories $\mathbf{C}^\infty \mathbf{Rings} \subset \mathbf{SZC}^\infty \mathbf{Rings}$ as the (2-)subcategory of \mathcal{C}^\bullet with $\mathcal{C}^{-1} = 0$.

There is a truncation functor $T : \mathbf{DGC}^\infty \mathbf{Rings} \to \mathbf{SZC}^\infty \mathbf{Rings}$, where if \mathcal{C}^\bullet is a dg \mathcal{C}^∞-ring, then $\mathcal{D}^\bullet = T(\mathcal{C}^\bullet)$ is the square zero \mathcal{C}^∞-ring with

\[
\mathcal{D}^0 = \mathcal{C}^0/[d\mathcal{C}^{-1}]^2, \quad \mathcal{D}^{-1} = \mathcal{C}^{-1}/[d\mathcal{C}^{-2} + (d\mathcal{C}^{-1}) \cdot \mathcal{C}^{-1}]].
\]

Applied to Example 4.2 this gives:

Example 4.3 (Kuranishi neighbourhoods. Compare Example 4.2.)

Let V be a manifold, $E \to V$ a vector bundle, and $s : V \to E$ a smooth section. Associate a square zero dg \mathcal{C}^∞-ring $\mathcal{C}^{-1} \xrightarrow{d} \mathcal{C}^0$ to the ‘Kuranishi neighbourhood’ (V, E, s) by

\[
\mathcal{C}^0 = C^\infty(V)/I_s^2, \quad \mathcal{C}^{-1} = C^\infty(E^*)/I_s \cdot C^\infty(E^*), \quad d(\epsilon + I_s \cdot C^\infty(E^*)) = \epsilon(s) + I_s^2,
\]

where $I_s = C^\infty(E^*) \cdot s \subset C^\infty(V)$ is the ideal generated by s.

These will be the local models for d-manifolds.
Cotangent complexes in the 2-category setting

Let \mathcal{C}^\bullet be a square zero dg C^∞-ring. Define the cotangent complex $L_{-1}^\mathcal{C} \xrightarrow{d_{\mathcal{C}}} L_0^\mathcal{C}$ to be the 2-term complex of $H^0(\mathcal{C}^\bullet)$-modules $\mathcal{C}^{-1} \xrightarrow{d_{\mathcal{C}} \circ d^{\mathcal{C}}} \Omega_{\mathcal{C}^0} \otimes_{\mathcal{C}^0} H^0(\mathcal{C}^\bullet)$, regarded as an element of the 2-category of 2-term complexes of $H^0(\mathcal{C}^\bullet)$-modules, with $\Omega_{\mathcal{C}^0}$ the cotangent module of the C^∞-ring \mathcal{C}^0, as in §3.1. Let $\alpha^\bullet, \beta^\bullet : \mathcal{C}^\bullet \to \mathcal{D}^\bullet$ be 1-morphisms and $\eta : \alpha^\bullet \Rightarrow \beta^\bullet$ a 2-morphism in SZC^∞Rings. Then $H^0(\alpha^\bullet) = H^0(\beta^\bullet)$, so we may regard \mathcal{D}^{-1} as an $H^0(\mathcal{C}^\bullet)$-module. And $\eta : \mathcal{C}^0 \to \mathcal{D}^{-1}$ is a derivation, so it factors through an $H^0(\mathcal{C}^\bullet)$-linear map $\hat{\eta} : \Omega_{\mathcal{C}^0} \otimes_{\mathcal{C}^0} H^0(\mathcal{C}^\bullet) \to \mathcal{D}^{-1}$. We have a diagram

So 1-morphisms induce morphisms, and 2-morphisms homotopies, of cotangent complexes.

4.3. D-spaces

D-spaces are our notion of derived C^∞-scheme:

Definition

A d-space X is a topological space X with a sheaf of square zero dg-C^∞-rings $\mathcal{O}^\bullet_X = \mathcal{O}^{-1}_X \xrightarrow{d} \mathcal{O}^0_X$, such that $X = (X, H^0(\mathcal{O}^\bullet_X))$ and (X, \mathcal{O}^0_X) are C^∞-schemes, and \mathcal{O}^{-1}_X is quasicoherent over X. We call X the underlying classical C^∞-scheme.

We require that the topological space X should be Hausdorff and second countable, and the underlying classical C^∞-scheme X should be locally fair, i.e. covered by open $\text{Spec} \mathcal{C} \cong U \subseteq X$ for \mathcal{C} a fair C^∞-ring. Basically this means X is locally finite-dimensional.

Note that \mathcal{O}^\bullet_X is an ordinary (strict) sheaf of square zero dg C^∞-rings, using only the objects and 1-morphisms in SZC^∞Rings, and not (as usual in DAG) a homotopy sheaf using 2-isomorphisms $\rho_{VW} \circ \rho_{UV} \Rightarrow \rho_{UV}$ for open $W \subseteq V \subseteq U \subseteq X$.
A 1-morphism \(f : X \to Y \) of d-spaces \(X, Y \) is \(f = (f, f^\#) \), where \(f : X \to Y \) is a continuous map of topological spaces, and \(f^\# : f^{-1}(\mathcal{O}_Y^\bullet) \to \mathcal{O}_X^\bullet \) is a morphism of sheaves of square zero dg \(\mathcal{C}^\infty \)-rings on \(X \). Then \(f = (f, H^0(f^\#)) : X \to Y \) is a morphism of the underlying classical \(\mathcal{C}^\infty \)-schemes.

Let \(f, g : X \to Y \) be 1-morphisms of d-spaces, and suppose the continuous maps \(f, g : X \to Y \) are equal. We have morphisms \(f^\#, g^\# : f^{-1}(\mathcal{O}_Y^\bullet) \to \mathcal{O}_X^\bullet \) of sheaves of square zero dg \(\mathcal{C}^\infty \)-rings. That is, \(f^\#, g^\# \) are sheaves on \(X \) of 1-morphisms in \(\text{SZC}^\infty \text{Rings} \).

A 2-morphism \(\eta : f \Rightarrow g \) is a sheaf on \(X \) of 2-morphisms \(\eta : f^\# \Rightarrow g^\# \) in \(\text{SZC}^\infty \text{Rings} \). That is, for each open \(U \subseteq X \), we have a 2-morphism \(\eta(U) : f^\#(U) \Rightarrow g^\#(U) \) in \(\text{SZC}^\infty \text{Rings} \), with \(\text{id}_{\rho_{UV}} \ast \eta(U) = \eta(V) \ast \text{id}_{\rho_{UV}} \) for all open \(V \subseteq U \subseteq X \).

With the obvious notions of composition of 1- and 2-morphisms, and identities, d-spaces form a strict 2-category \(\text{dSpa} \), in which all 2-morphisms are 2-isomorphisms.

\(\mathcal{C}^\infty \)-schemes include into d-spaces as those \(X \) with \(\mathcal{O}_X^{-1} = 0 \).

Thus we have inclusions of (2-)categories \(\text{Man} \subset \mathcal{C}^\infty \text{Sch} \subset \text{dSpa} \), so manifolds are examples of d-spaces.

The \textit{cotangent complex} \(\mathbb{L}^\bullet_X \) of \(X \) is the sheaf of cotangent complexes of \(\mathcal{O}_X^\bullet \), a 2-term complex \(\mathbb{L}_X^{-1} \xrightarrow{d_X} \mathbb{L}_X^0 \) of quasicoherent sheaves on \(X \). Such complexes form a 2-category \(\text{qcoh}[-1,0](X) \).

\textbf{Theorem 4.4}

All fibre products exist in the 2-category \(\text{dSpa} \).

The proof is by construction: given 1-morphisms \(g : X \to Z \) and \(h : Y \to Z \), we write down an explicit d-space \(W \), 1-morphisms \(e : W \to X, f : W \to Y \) and 2-isomorphism \(\eta : g \circ e \Rightarrow h \circ f \), and verify by hand that it satisfies the universal property in \(\S 4.1 \).
Gluing d-spaces by equivalences

Theorem 4.5

Let X, Y be d-spaces, $\emptyset \neq U \subseteq X, \emptyset \neq V \subseteq Y$ open d-subspaces, and $f : U \to V$ an equivalence in the 2-category $d\text{Spa}$. Suppose the topological space $Z = X \cup_{U=V} Y$ made by gluing X, Y using f is Hausdorff. Then there exist a d-space Z, unique up to equivalence in $d\text{Spa}$, open $\mathring{X}, \mathring{Y} \subseteq Z$ with $Z = \mathring{X} \cup \mathring{Y}$, equivalences $g : X \to \mathring{X}$ and $h : Y \to \mathring{Y}$, and a 2-morphism $\eta : g|_{U} \Rightarrow h \circ f$.

The proof is again by explicit construction. First we glue the classical C^∞-schemes X, Y on $U \subseteq X, V \subseteq Y$ by the isomorphism $f : U \to V$ to get a C^∞-scheme Z. The definition of Z involves choosing a smooth partition of unity on Z subordinate to the open cover $\{U, V\}$. This is possible in the world of C^∞-schemes, but would not work in conventional (derived) algebraic geometry.

Theorem 4.6

Suppose I is an indexing set, and $<$ is a total order on I, and X_i for $i \in I$ are d-spaces, and for all $i < j$ in I we are given open d-subspaces $U_{ij} \subseteq X_i, U_{ji} \subseteq X_j$ and an equivalence $e_{ij} : U_{ij} \to U_{ji}$, such that for all $i < j < k$ in I we have a 2-commutative diagram

\[e_{ij}|_{U_{ij} \cap U_{ik}} \Rightarrow U_{ij} \cap U_{jk} \xrightarrow{\eta_{ijk}} U_{ki} \cap U_{kj}. \]

(4.5)

Define the quotient topological space $Z = (\bigsqcup_{i \in I} X_i)/\sim$, where \sim is generated by $x_i \sim x_j$ if $i < j$, $x_i \in U_{ij} \subseteq X_i$ and $x_j \in U_{ji} \subseteq X_j$ with $e_{ij}(x_i) = x_j$. Suppose Z is Hausdorff and second countable. Then there exist a d-space Z and a 1-morphism $f_i : X_i \to Z$ which is an equivalence with an open d-subspace $\mathring{X}_i \subseteq Z$ for all $i \in I$, where $Z = \bigcup_{i \in I} \mathring{X}_i$, such that $f_i(U_{ij}) = \mathring{X}_i \cap \mathring{X}_j$ for $i < j$ in I, and there exists a 2-morphism $\zeta_{ij} : f_j \circ e_{ij} \Rightarrow f_i|_{U_{ij}}$. The d-space Z is unique up to equivalence, and is independent of choice of η_{ijk}.
Theorem 4.6 generalizes Theorem 4.5 to gluing many d-spaces by equivalences. It is important that the 2-isomorphisms \(\eta_{ijk} \) in (4.5) are only required to exist, they need not satisfy any conditions on quadruple overlaps, etc., and \(Z \) is independent of the choice of \(\eta_{ijk} \). Because of this, Theorem 4.6 actually makes sense as a statement in the homotopy category \(\text{Ho}(d\text{Spa}) \). The analogue is false for gluing by equivalences for orbifolds \(\text{Orb} \), d-orbifolds \(d\text{Orb} \), and d-stacks \(d\text{Sta} \).

4.4. D-manifolds

Definition

A **d-manifold** \(X \) of **virtual dimension** \(n \in \mathbb{Z} \) is a d-space \(X \) such that \(X \) is covered by open d-subspaces \(Y \subset X \) with equivalences

\[
Y \simeq U \times_{g,W,h} V,
\]

where \(U, V, W \) are manifolds with \(\dim U + \dim V - \dim W = n \), regarded as d-spaces by \(\text{Man} \subset C^\infty \text{Sch} \subset d\text{Spa} \), and \(g : U \to W, h : V \to W \) are smooth maps, and \(U \times_{g,W,h} V \) is the fibre product in the 2-category \(d\text{Spa} \). Write \(d\text{Man} \) for the full 2-subcategory of d-manifolds in \(d\text{Spa} \).

Note that the fibre product \(U \times_W V \) exists by Theorem 4.4, and must be taken in \(d\text{Spa} \) as a 2-category, not as an ordinary category. Alternatively, we can write the local models as \(Y \simeq V \times_{0,E,s} V \), where \(V \) is a manifold, \(E \to V \) a vector bundle, \(s : V \to E \) a smooth section, and \(n = \dim V - \text{rank } E \). Then \((V, E, s) \) is a **Kuranishi neighbourhood** on \(X \), as in Fukaya–Oh–Ohta–Ono.
Thus, a d-manifold \(X \) is a ‘derived’ geometric space covered by simple, differential-geometric local models: they are fibre products \(U \times_g W, h V \) for smooth maps of manifolds \(g : U \to W, h : V \to W \), or they are the zeroes \(s^{-1}(0) \) of a smooth section \(s : V \to E \) of a vector bundle \(E \to V \) over a manifold \(V \).

However, as usual in derived geometry, the way in which these local models are glued together (by equivalences in the 2-category \(\text{dSpa} \)) is more mysterious, is weaker than isomorphisms, and takes some work to understand. We discuss this later in the course.

If \(g : X \to Z, h : Y \to Z \) are 1-morphisms in \(\text{dMan} \), then Theorem 4.4 says that a fibre product \(W = X \times_g Z, h Y \) exists in \(\text{dSpa} \). If \(W \) is a d-manifold (which is a local question on \(W \)) then \(W \) is also a fibre product in \(\text{dMan} \). So we will give be able to give useful criteria for existence of fibre products in \(\text{dMan} \).

Theorems 4.5 and 4.6 immediately lift to results on gluing by equivalences in \(\text{dMan} \), taking \(U, V, X_i \) to be d-manifolds of a fixed virtual dimension \(n \in \mathbb{Z} \). Thus, we can define d-manifolds by gluing together local models by equivalences. This is very useful, as natural examples (e.g. moduli spaces) are often presented in terms of local models somehow glued on overlaps.

I chose to use square zero dg \(C^\infty \)-rings to define \(\text{dSpa}, \text{dMan} \) (rather than, say, general dg \(C^\infty \)-rings) as they are very ‘small’ — they are essentially the minimal extension of classical \(C^\infty \)-rings which remembers the ‘derived’ information I care about (in particular, sufficient to form virtual cycles for derived manifolds). This has the advantage of making the theory simpler than it could have been, e.g. by using 2-categories rather than \(\infty \)-categories, whilst still having good properties, e.g. ‘correct’ fibre products and gluing by equivalences. A possible disadvantage is that they forget ‘higher obstructions’, which occur in some moduli problems.