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1. Introduction

Vertex algebras are a very complicated, very rich algebraic
structure coming from Conformal Field Theory in Physics, which
also occur in Moonshine and other areas of Representation Theory.
All interesting vertex algebras are infinite-dimensional.
I will explain a new construction of (graded) vertex algebra
structures on the homology H∗(M) of certain moduli stacks M. It
is extraordinarily general, and produces a huge number of
examples. There are versions in Algebraic Geometry, Differential
Geometry (using topological stacks), and Representation Theory.
There is a functor from (graded) vertex algebras V to (graded) Lie
algebras VLie. Roughly, the Lie algebra H∗(M)Lie is the homology
H∗(Mpl) of the associated ‘projective linear’ moduli stack
Mpl = M/[∗/Gm]. Thus, we have a parallel new construction of
infinite-dimensional (graded) Lie algebras H∗(Mpl). These have
important applications in enumerative invariants (next lecture).
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1.1. Vertex algebras (don’t try to understand this slide.)

Let R be a commutative ring. A vertex algebra over R is an
R-module V equipped with morphisms D(n) : V → V for
n = 0, 1, 2, . . . with D(0) = idV and vn : V → V for all v ∈ V and
n ∈ Z, with vn R-linear in v , and a distinguished element 1 ∈ V
called the identity or vacuum vector, satisfying:
(i) For all u, v ∈ V we have un(v) = 0 for n ≫ 0.
(ii) If v ∈ V then 1−1(v) = v and 1n(v) = 0 for −1 ̸= n ∈ Z.
(iii) If v ∈V then vn(1)=D(−n−1)(v) for n<0 and vn(1)=0 for n⩾0.
(iv) un(v) =

∑
k⩾0(−1)k+n+1D(k)(vn+k(u)) for all u, v ∈ V and

n ∈ Z, where the sum makes sense by (i), as it has only finitely
many nonzero terms.
(v) (ul(v))m(w)=

∑
n⩾0

(−1)n
( l
n

)(
ul−n(vm+n(w))−(−1)lvl+m−n(un(w))

)
for all u, v ,w ∈ V and l ,m ∈ Z, where the sum makes sense by (i).
We can also define graded vertex algebras and vertex superalgebras.
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It is usual to encode the maps un : V → V for n ∈ Z in generating
function form as R-linear maps for each u ∈ V

Y (u, z) : V −→ V [[z , z−1]], Y (u, z) : v 7−→
∑

n∈Z un(v)z
−n−1,

where z is a formal variable. The Y (u, z) are called fields, and
have a meaning in Physics. Parts (i)–(v) may be rewritten as
properties of the Y (u, z). One interesting property is this: for all
u, v ,w ∈ V there exist N ≫ 0 depending on u, v such that

(y − z)NY (u, y)Y (v , z)w = (y − z)NY (v , z)Y (u, y)w . (1)

There may be a V -valued rational function R(y , z) with poles
when y = 0, z = 0 and y = z , such that the l.h.s. of (1) is a
formal Laurent series convergent to R(y , z) when 0 < |y | < |z |,
and the r.h.s. converges to R(y , z) when 0 < |z | < |y |.
Think of u ∗z v = Y (u, z)v as a multiplication on V depending on
a complex variable z , with poles at z = 0. Very roughly, V is a
commutative associative algebra under ∗z , with identity 1, except
the formal power series and poles make everything more complicated.
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Any commutative algebra (V ,1, ·) with derivation D is a vertex
algebra, with Y (u, z)v = (ezDu) · v , so no poles, where
un(v) =

(
1

(n+1)!D
n+1u

)
· v for n ⩾ −1, and un(v) = 0 for n < −1.

We call such V a commutative vertex algebra. All
non-commutative vertex algebras are infinite-dimensional, so even
the simplest nontrivial examples are large, complicated objects,
which are difficult to write down.
Let R be a field of characteristic zero. A vertex operator algebra
(VOA) over R is a vertex algebra V over R, with a distinguished
conformal element ω ∈ V and a central charge cV ∈ R, such that
writing Ln = ωn+1 : V∗ → V∗, the Ln define an action of the
Virasoro algebra on V∗, with central charge cV , and L−1 = D(1).
VOAs are important in Physics. We will give a geometric
construction of vertex algebras, but often they will not be VOAs.
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Lie algebras from vertex algebras

If V is a (graded/super) vertex algebra then V /⟨D(k)(V ), k ⩾ 1⟩
is a (graded/super) Lie algebra, with Lie bracket[
u+⟨D(k)(V ), k⩾1⟩, v+⟨D(k)(V ), k⩾1⟩

]
=u0(v)+⟨D(k)(V ), k⩾1⟩.

Vertex algebras were introduced in mathematics by Borcherds, who
noticed that certain infinite-dimensional Lie algebras important in
Representation Theory were constructed as V /⟨D(k)(V ), k ⩾ 1⟩.
For example, Kac–Moody Lie algebras are (Lie subalgebras of) the
Lie algebras associated to lattice vertex algebras.
Vertex algebras are used in Representation Theory, both of
infinite-dimensional Lie algebras, and in Moonshine – the Monster
may be characterized as the symmetry group of a certain
infinite-dimensional vertex algebra.
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2. Vertex algebras on homology of moduli stacks

Let A be a C-linear abelian or triangulated category from Algebraic
Geometry or Representation Theory, e.g. A = coh(X ) or Db coh(X )
for X a smooth projective C-scheme, or A = mod-CQ or Db mod-CQ.
Write M for the moduli stack of objects in A, which is an Artin
C-stack in the abelian case, and a higher C-stack in the
triangulated case.
Given some extra data on M, we will define a graded vertex
algebra structure on the Q-homology H∗(M). We also define a
graded Lie bracket [ , ] on either a quotient H∗(M)/D(H∗(M) of
H∗(M), or the Q-homology H∗(Mpl) of a modification
Mpl = M/[∗/Gm] of M, making H∗(Mpl) into a graded Lie
(super)algebra (with a nonstandard grading).
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The extra data we need

We need some extra data, a perfect complex Θ• on M×M
satisfying some assumptions; the formulae for for the vertex and
Lie algebra structures involve rankΘ• and Chern classes ci (Θ

•).
We also need signs ϵα,β related to ‘orientation data’ for A.
For graded antisymmetry of [ , ] we need σ∗(Θ•) ∼= (Θ•)∨[2n] for
some n ∈ Z, where σ : M×M → M×M exchanges the factors,
as then ci (σ

∗(Θ•)) = (−1)ici (Θ
•).

In our examples there is a natural perfect complex Ext• on M×M
with H i (Ext• |([E ],[F ])) ∼= ExtiA(E ,F ) for E ,F ∈ A and i ∈ Z. If A
is a 2n-Calabi–Yau category then σ∗((Ext•)∨) ∼= Ext•[2n], and we
put Θ• = (Ext•)∨. Otherwise we put Θ• = (Ext•)∨⊕σ∗(Ext•)[2n].
Thus examples split into ‘even Calabi–Yau’ and ‘general’ vertex
algebras.
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More detail on the basic set-up

Let K (A) be a quotient group of the Grothendieck group K0(A) of
A such that M =

∐
α∈K(A)Mα, with Mα the moduli stack of

objects E ∈ A in class α in K (A), an open and closed substack in M.
We suppose we are given a biadditive map χ : K (A)× K (A) → Z
called the Euler form, with χ(α, β) = χ(β, α). The restriction
Θ•

α,β = Θ•|Mα×Mβ
should have rankΘ•

α,β = χ(α, β).
There should be an Artin stack morphism Φ : M×M → M
mapping Φ(C) : ([E ], [F ]) 7→ [E ⊕ F ] on C-points, from direct sum
in A. It is associative and commutative. In perfect complexes on
Mα ×Mβ ×Mγ for α, β, γ ∈ K (A) we should have

(Φα,β × idMγ )
∗(Θ•

α+β,γ)
∼= Π∗

Mα×Mγ
(Θ•

α,γ)⊕ Π∗
Mβ×Mγ

(Θ•
β,γ),

needed for the graded Jacobi identity for [ , ], and corresponding to

ExtiA(E ⊕ F ,G )∗ ∼= ExtiA(E ,G )∗ ⊕ ExtiA(F ,G )∗.
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The stack [∗/Gm] and morphism Ψ

Write Gm = C \ {0} as an algebraic C-group under multiplication,
and [∗/Gm] for the quotient stack, where ∗ = SpecC is the point.
If S is an Artin C-stack and s ∈ S(C) a C-point there is an
isotropy group IsoS(s), an algebraic C-group. We have
IsoM([E ]) ∼= Aut(E ) for E ∈ A. There is a natural morphism
Gm → Aut(E ) mapping λ 7→ λ · idE ∈ Aut(E ) ⊂ HomA(E ,E ).
There should be an Artin stack morphism Ψ : [∗/Gm]×M → M
mapping (∗, [E ]) 7→ [E ] on C-points, and acting on isotropy groups by

Ψ∗ : Iso[∗/Gm]×M(∗, [E ]) ∼= Gm ×Aut(E ) −→ IsoM([E ]) ∼= Aut(E ),

Ψ∗ : (λ, µ) 7−→ (λ · idE ) ◦ µ.
Here [∗/Gm] is a group stack, and Ψ is an action of [∗/Gm] on
M, which is free except over [0] ∈ M. This Ψ encodes the natural
morphisms Gm → IsoM([E ]) for all [E ] ∈ M(C).
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We require a compatibility between Ψ and Θ•, roughly that

(Ψ× idM)∗(Θ•) ∼= Π∗
[∗/Gm]

(L)⊗ Π∗
M×M(Θ•)

where L is the line bundle on [∗/Gm] associated to the obvious
representation of Gm on C. This corresponds to λ idE ∈ Aut(E )
acting by multiplication by λ ∈ Gm on Exti (E ,F )∗.

We should be given ϵα,β = ±1 for α, β ∈ K (A) satisfying

ϵα,β · ϵβ,α = (−1)χ(α,β)+χ(α,α)χ(β,β),

ϵα,β · ϵα+β,γ = ϵα,β+γ · ϵβ,γ .
They are needed to correct signs in defining [ , ]. Such ϵα,β always
exist. If we have chosen ‘orientations’ for Mα,Mβ,Mα+β (in
particular, in the Calabi–Yau 4-fold case), then ϵα,β should be the
natural sign comparing the orientations at [E ] ∈ Mα(C),
[F ] ∈ Mβ(C) and [E ⊕ F ] = Φ([E ], [F ]) ∈ Mα+β(C).
Define a shifted grading Ĥ∗(M) on H∗(M) by
Ĥn(Mα) = Hn−χ(α,α)(Mα) for α ∈ K (coh(X )).
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Definition of the vertex algebra structure on Ĥ∗(M)

Writing H∗([∗/Gm]) = Q[t] with deg t = 2, the state-field
correspondence Y (z) is given by, for u ∈ Ha(Mα), v ∈ Hb(Mβ)

Y (u, z)v = ϵα,β(−1)aχ(β,β)zχ(α,β) · H∗
(
Φ ◦ (Ψ× id)

)
(2){(∑

i⩾0
z i t i

)
⊠
[
(u⊠v)∩exp

(∑
j⩾1

(−1)j−1(j−1)!z−j chj([Θ
•])

)]}
.

The identity 1 is 1 ∈ H0(M0). Define ezD : Ĥ∗(M) → Ĥ∗(M)[[z ]] by
Y (v , z)1 = ezDv . Then (Ĥ∗(M),1, ezD ,Y ) is a graded vertex algebra.

Remark

This should be seen as an example of a Borcherds bicharacter
construction. H∗(M) is naturally a bialgebra, with product from
Φ : M×M → M and coproduct from ∆M : M → M×M. The
morphism Ψ : [∗/Gm]×M → M induces a derivation of this
bialgebra, making H∗(M) into a commutative vertex algebra. We
twist this by a bicharacter from Θ• to make it noncommutative.
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Explicit description of the vertex algebras

Theorem 1 (Jacob Gross arXiv:1907.03269)

Let X be a complex projective curve, surface, or smooth toric
variety. Write M for the moduli stack of objects in Db coh(X ) and
K 0
sst(X ) for the semi-topological K-theory of X (equal to

Image(K 0(coh(X )) → K 0
top(X )) for X a surface). Then

M =
∐

κ∈K0
sst(X )Mκ with Mκ connected, and

H∗(Mκ,Q) ∼=Sym∗(Heven(X ,Q)⊗Q t2Q[t2]
)
⊗Q∧

∗(Hodd(X ,Q)⊗Q tQ[t2]
)
. (3)

A similar equation holds for cohomology H∗(Mκ,Q).

This says we can describe H∗(M) completely explicitly in the
derived category case, which (surprisingly) is easier than the
abelian category case. We can also describe H∗(M) explicitly
when A = mod-CQ or Db mod-CQ.
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Definition (Formal variables for (co)homology of M.)

Let X ,M,Mκ be as in Theorem 1, and write U•
κ → X ×Mκ for

the universal complex. Write bk = bk(X ) for 0 ⩽ k ⩽ 2m,

m = dimC X , and choose bases (ejk)
bk
j=1 for Hk(X ,Q). Write

(ϵjk)
bk
j=1 for the dual basis for Hk(X ,Q). For l > k/2 define

Sjkl ∈ H2l−k(Mκ) by Sjkl = chl(U•
κ)\ejk . Regard Sjkl as of degree

2l − k, and as an even (odd) variable if k is even (odd). Then
Theorem 1 shows H∗(Mκ) is the graded polynomial superalgebra

H∗(Mκ) ∼= Q[Sjkl : 0 ⩽ k ⩽ 2m, 1 ⩽ j ⩽ bk , l > k/2]. (4)

We also give a dual description of homology H∗(Mκ) by

H∗(Mκ) ∼= eκ ⊗Q[sjkl : 0⩽k⩽2m, 1⩽ j⩽bk , l>k/2], (5)

where eκ is a symbol to remember κ, with deg eκ = −χ(κ, κ), and(∏
j ,k,l

S
mjkl

jkl

)
·
(
eκ

∏
j ,k,l

s
m′

jkl

jkl

)
=

±
∏
j ,k,l

mjkl !, mjkl =m′
jkl all j , k , l ,

0, otherwise.
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The vertex algebra in formal coordinates sjkl
Thus we identify

H∗(M) ∼=
⊕

κ∈K0
sst(X )

eκ⊗Q[sjkl : 0⩽k⩽2m, 1⩽ j⩽bk , l>k/2]. (6)

In these coordinates the vertex algebra structure is given by
Y
(
eαu(sjkl), z

)(
eβv(s ′j′k′ l′)

)
=

ϵα,β zχ(α,β) ·
{
exp

(
z
(∑
j,k,l

sjk(l+1)
∂

∂sjkl

))
◦

exp
(
−

∑
j,k,j′,k′,
l⩾k/2, l′⩾k′/2

(−1)l(l + l ′ − (k + k ′)/2− 1)! z (k+k′)/2−l−l′ ·

Nj′k′

jk

∂2

∂sjkl∂s ′j′k′ l′

)(
eαu(sjkl) · eβ

′
v(s ′j′k′ l′)

)}∣∣∣s′jkl=sjkl
,

(7)

where Nj ′k ′

jk = Mj ′k ′

jk + (−1)kk
′+(k+k ′)/2Mjk

j ′k ′ with

Mj ′k ′

jk =
∫
X ϵjk ∪ ϵj ′k ′ ∪ td(X ), and we introduce extra variables

sjk(k/2) with α =
∑

j ,k αjksjk(k/2), so
∂

∂sjk(k/2)
eα = αjke

α. This

H∗(M) is a variant of a super-lattice vertex algebra. Equation (7)
is really complicated to do explicit calculations with.
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Conformal elements and vertex operator algebras

This slide is based on Bojko–Lim–Moreira 2022.
Suppose X is a projective surface with b1 = 0 and h2,0(X ) = 0.

Let (ν j
′k ′

jk ) be the inverse matrix of (Nj ′k ′

jk ). Define ω ∈ H4(M0) by

ω = 1
2e

0
∑

k=0,2,4

bk (X )∑
j=1

ν j
′k ′

jk sjk(k/2+1)sj ′k ′(k ′/2+1). (8)

Then ω is a conformal element for the graded vertex algebra
H∗(M), making it into a vertex operator algebra.
I can also make H∗(M) into a VOA without assuming b1 = 0 and
h2,0(X ) = 0, but you have to use the Hodge decomposition
Hk(X ,C) =

⊕
p+q=k H

p,q(X ), and modify H∗(M) by adding
finitely many extra variables sjpql , as (8) should be replaced by a
sum of sjpq(p+1)sj ′p′q′(p′+1).

If we take M to be the moduli of objects in coh(X ), not Db coh(X ),
then H∗(M) is not a VOA, as M0 = ∗ and H4(M0) = 0.
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Graded Lie algebras on homology of moduli spaces

By a construction of Borcherds, as Ĥ∗(M) is a graded vertex algebra,
Ĥ∗+2(M)/D(Ĥ∗(M)) is a graded Lie algebra, where D : Ĥ∗(M) →
Ĥ∗+2(M) is the translation operator, with (super) Lie bracket[

u + D(Ĥ∗(M)), v + D(Ĥ∗(M))
]
= u0(v) + D(Ĥ∗(M)).

This has a geometrical interpretation. Recall that [∗/Gm] is a
group stack, and Ψ : [∗/Gm]×M → M is an action of [∗/Gm] on
M, which is free except over 0. We can form a quotient
Mpl = M/[∗/Gm] called the ‘projective linear moduli stack’, with
a morphism Πpl : M → Mpl which is a principal [∗/Gm]-bundle
except over 0. Then C-points of Mpl are isomorphism classes [E ]
of E ∈ A, and isotropy groups are

IsoMpl([E ]) ∼= Aut(E )/(Gm · idE ).

That is, we make Mpl from M by quotienting out Gm from each
isotropy group, a process called ‘rigidification’.
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Then Πpl
∗ : H∗(M) → H∗(Mpl) has D(H∗(M)) in its kernel, and

descends to Πpl
∗ : H∗(M)/D(H∗(M)) → H∗(Mpl), which is an

isomorphism H∗(Mα)/D(H∗(Mα)) → H∗(Mpl
α ) for all α ∈ K (A)

except α = 0. Write Ȟ∗(Mpl) for H∗(Mpl) with shifted grading
Ȟn(Mpl

α ) = Hn+2−χ(α,α)(Mpl
α ). There is a graded Lie bracket on

Ȟ∗(Mpl), defined using the ‘projective Euler class’ (see Upmeier

2021), such that Πpl
∗ is a Lie algebra morphism, and an

isomorphism except on Ȟ∗(Mpl
0 ). This Lie bracket on Ȟ∗(Mpl)

will be very important for enumerative invariants (next lecture).
We can give an explicit formulae for Ȟ∗(Mpl), [ , ] if we restrict to

sheaves of positive rank. Write Mrk>0 ⊂ M, Mpl
rk>0 ⊂ Mpl for

the open substacks of sheaves and complexes of positive rank.
Then Πpl

rk>0 : Mrk>0 → Mpl
rk>0 induces a surjective morphism

H∗(Mrk>0) → H∗(Mpl
rk>0). Supposing X connected, it turns out

this induces an isomorphism from Ker(− ∩ S101) to H∗(Mpl
rk>0),

where Ker(− ∩ S101) is functions independent of s101.
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Explicit form for positive rank Lie algebra

Thus we identify

Ȟ∗(Mpl
rk>0)

∼=
⊕

κ∈K0
sst(X ):rkκ>0

eκ⊗Q[sjkl : 0⩽k⩽2m, 1⩽ j⩽bk ,

l>k/2, (j , k , l) ̸= (1, 0, 1)],

(9)

where deg eκ = 2− χ(κ, κ), deg sjkl = 2l − k, and κ =
∑

j ,k κjksjk(k/2).

In this representation, we write the Lie bracket on Ȟ∗(Mpl
rk>0) as[

eαu(sjkl), e
βv(s ′j′k′ l′)

]
rk>0

= Resz
[
ϵα,β zχ(α,β)·{

exp
(
z

rkβ

rk(α+ β)

(∑
j,k,l

sjk(l+1)
∂

∂sjkl

))
◦

exp
(
−z

rkα

rk(α+β)

( ∑
j′,k′,l′

s ′j′k′(l′+1)
∂

∂s ′j′k′ l′

))
◦

exp
(
−

∑
j,k,j′,k′,
l⩾k/2, l′⩾k′/2

(−1)l(l + l ′ − (k + k ′)/2− 1)! z (k+k′)/2−l−l′ ·

Nj′k′

jk

∂2

∂sjkl∂s ′j′k′ l′

)(
eαu(sjkl) · eβ

′
v(s ′j′k′ l′)

)}∣∣∣s′jkl=sjkl

]
.

(10)

19 / 25 Dominic Joyce, Oxford University Vertex and Lie algebras on the homology of moduli spaces



Introduction
Vertex algebras on homology of moduli stacks

Generalizations of the construction

Vertex algebras on homology of moduli stacks
Explicit description of the vertex algebras
Lie algebras on homology of moduli spaces

Remarks

• Theorem 1, giving an explicit description of H∗(M) for M the
moduli stack of objects in Db coh(X ), applies only for special X
(curves, surfaces, toric varieties, Grassmannians, . . . ). However,
for all smooth projective X , and for M the moduli of objects in
either coh(X ) or Db coh(X ), there is a natural vertex algebra
morphism from Ĥ∗(M) to the explicit vertex algebra in eκ, sjkl
above, and similarly for Ȟ∗(Mpl

rk>0) and the explicit Lie algebras.
• We can also give similar explicit forms for the vertex algebras
and Lie algebras from the moduli stacks of objects in both
mod-CQ and in Db mod-CQ for a quiver Q. Here Db mod-CQ
yields a lattice vertex algebra.
The graded degree 0 part of the Lie algebra Ȟ0(Mpl

Db mod-CQ) is
the Kac–Moody algebra associated to the underlying undirected
graph of Q, considered as a Dynkin diagram. So for Q an ADE
quiver, we get a finite-dimensional ADE Lie algebra.
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3. Generalizations of the construction
Nonlocal vertex algebras

The vertex algebra construction admits many variations:

• To get an ordinary vertex algebra we assumed that the complex
Θ• → M×M had the symmetry property σ∗(Θ•) ∼= (Θ•)∨[2n],
where σ : M×M → M×M exchanges the factors. To get this
when M is moduli of objects in coh(X ) or Db coh(X ), we either
assume that X is a Calabi–Yau 2n-fold and take Θ• = (Ext•)∨, or
else we put Θ• = (Ext•)∨ ⊕ σ∗(Ext•)[2n].
If we take Θ• = (Ext•)∨ for X not 2n-Calabi–Yau we get a nonlocal
vertex algebra, or quantum vertex algebra, which are to vertex
algebras as noncommutative algebras are to commutative algebras.

21 / 25 Dominic Joyce, Oxford University Vertex and Lie algebras on the homology of moduli spaces



Introduction
Vertex algebras on homology of moduli stacks

Generalizations of the construction

Nonlocal vertex algebras
Vertex Lie algebras from odd-Calabi–Yau categories
Complex oriented generalized (co)homology theories

Extension to equivariant homology

• Let an algebra C-group act on A, so that G acts on M,Mpl.
Then for a nonstandard notion of equivariant homology we can
extend the vertex algebra/Lie algebra theory to HG

∗ (M),HG
∗ (Mpl).

This is the right context to extend my enumerative invariant
programme to invariants in equivariant homology.
Here HG

k (X ) is not just Hk([X/G ]). It is defined for k ∈ Z, and if
G acts trivially on X then

HG
k (X ) =

⊕
i ,j⩾0:k=i−j

Hi (X )⊗ H j([∗/G ]).
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Vertex Lie algebras from odd-Calabi–Yau categories

• A (graded) vertex Lie algebra (V∗, e
zD ,Y<0) is a weakening of

(graded) vertex algebras (V∗,1, e
zD ,Y ), which remembers only

the poles in z<0 in the state-field correspondence Y .
If in the situation of §1 we instead suppose that
σ∗(Θ•) ∼= (Θ•)∨[2n+ 1], we can define a graded vertex Lie algebra
structure on H∗(M) by, for u ∈ H∗(Mα), v ∈ H∗(Mβ)

Y<0(u, z)v = Y<0(z)(u ⊗ v) = (−1)χ(α,β)
∑

i ,j⩾0
(−1)i i !z−1−i+j ·(

Φ ◦ (Ψ× idM)
)
∗
(
t j ⊠ ((u ⊠ v) ∩ chi ([Θ

•])
)
mod O(z⩾0). (11)

This is natural when A is a (2n + 1)-Calabi–Yau category, and
Θ• = (Ext•)∨. We also get a graded Lie algebra structure on
H∗(Mpl). I expect interesting applications to equivariant
Donaldson–Thomas invariants counting compactly-supported
coherent sheaves on a local Calabi–Yau 3-fold.
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Complex oriented generalized (co)homology theories

• A complex oriented generalized (co)homology theory is a
generalized (co)homology theory with a notion of Chern class.
Examples include ordinary (co)homology, K-theory, elliptic
(co)homology, and unitary (co)bordism.
A complex oriented generalized (co)homology theory over a
commutative ring R has an associated formal group law F over R,
with (co)homology associated to F (s, t) = s + t (the additive
formal group law), and K-theory to F (s, t) = s + t + st.
There is a notion of vertex algebra over a formal group law F ,
where ordinary vertex algebras are vertex algebras over F (s, t) = s + t.
Suppose E∗(−),E ∗(−) are complex oriented generalized
(co)homology theories of Artin or higher C-stacks, with formal
group law F . Then my construction generalizes to give a vertex
algebra over the formal group law F on E∗(M). See
Gross–Upmeier 2021.
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Self-dual categories

• Suppose A is a C-linear additive category, such as Vect(X ) or
Db coh(X ), and δ : A → Aop is an equivalence of categories with
δ2 ≃ idA, such as E 7→ E ∗ or E• 7→ (E•)∗. Fixed points of δ are
self-dual objects E of A with an isomorphism φ : E → δ(E ) with
φ2 ≃ idE . Examples include vector bundles on X with an
orthogonal or symplectic structure. Write M for the moduli stack of
objects in A, and Msd for the moduli stack of self-dual objects in A.
Work by my student Chenjing Bu, 2023, shows that we can give
H∗(Msd) the structure of a ‘twisted module’ over the graded
vertex algebra Ĥ∗(M), and also of a representation of the graded
Lie algebra Ȟ∗(Mpl)δ=−1, which is the −1-eigenspace of δ in the
usual graded Lie algebra Ȟ∗(Mpl).
This is important in the study of enumerative invariants counting
self-dual objects, e.g. for counting principal O(n,C)-bundles or
principal Sp(2n,C)-bundles on projective surfaces.
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