Bordism categories and orientations of moduli spaces

Dominic Joyce, Oxford University 'Geometric moduli spaces – rigidity, genericity, stability' workshop, Edinburgh, May 2025.

Based on arXiv:2503.20456,

everything joint work with Markus Upmeier.

These slides available at http://people.maths.ox.ac.uk/~joyce/.

1. Introduction

There are many examples of moduli spaces \mathcal{M} in geometry in which either \mathcal{M} is a smooth real manifold, or it behaves like one (it may be a *derived manifold*, or *Kuranishi space*), so that \mathcal{M} has a notion of *orientation*. If \mathcal{M} is compact and oriented of dimension d, it will have a *fundamental class* $[\mathcal{M}]_{\text{fund}} \in H_d(\mathcal{M}, \mathbb{Z})$ (called a *virtual class* for derived manifolds). Such fundamental classes are used to define *enumerative invariants*, as integrals $\int_{[\mathcal{M}]_{\text{fund}}} \alpha$ of natural cohomology classes α . For example:

Let (X, g) be a compact, oriented, Riemannian 4-manifold, G a Lie group, and P → X a principal G-bundle. The moduli space M_P of irreducible connections ∇ on P with anti-self-dual curvature (*instantons*) is a derived manifold, and a manifold if g is generic. Integrals over M_P are used to define Donaldson invariants of X.
If (X, φ, g) is a compact coclosed G₂-manifold in 7 dimensions, we can consider moduli spaces of G₂-instantons on P → X.

• If (X, Ω, g) is a compact Spin(7)-manifold in 8 dimensions, we can consider moduli spaces of Spin(7)-*instantons* on $P \to X$.

• Let X be a projective Calabi–Yau 4-fold over \mathbb{C} and $\mathcal{M}^{\mathrm{st}}_{\alpha}(\tau)$ be a moduli scheme of Gieseker-stable coherent sheaves on X with Chern character α . Then Borisov–Joyce 2017 give $\mathcal{M}_{\alpha}^{\mathrm{st}}(\tau)$ the structure of a derived manifold. If there are no strictly semistable sheaves in class α then $\mathcal{M}^{\mathrm{st}}_{\alpha}(\tau)$ is compact. So if we can find an orientation on $\mathcal{M}^{\mathrm{st}}_{\alpha}(\tau)$ we have a virtual class $[\mathcal{M}^{\mathrm{st}}_{\alpha}(\tau)]_{\mathrm{virt}}$. These are used to define Donaldson–Thomas type DT4 invariants of X. In all these examples, we have a class of moduli spaces \mathcal{M} which behave enough like real manifolds to have a notion of *orientation*. So we can ask whether \mathcal{M} is *orientable*, and if so, whether we can construct a *canonical orientation* on \mathcal{M} . Such orientations are important for enumerative invariant theories.

This talk will outline a general theory for studying orientability and canonical orientations of moduli spaces, using a new tool called *bordism categories*. Our main applications are in 7 and 8 dimensions, to orientations for moduli spaces of G_{2^-} and $\operatorname{Spin}(7)$ -instantons and of coherent sheaves on Calabi–Yau 4-folds.

Gauge theory moduli spaces and orientations

Let X be a compact manifold, G a Lie group, and $P \rightarrow X$ a principal G-bundle. Write \mathcal{A}_P for the moduli space of all connections ∇ on P, an infinite-dimensional affine space, and $\mathcal{B}_P = \mathcal{A}_P / \mathcal{G}_P$ for the moduli space of connections on P modulo gauge transformations, as a topological stack, where $\mathcal{G}_P = \operatorname{Aut}(P)$. Let $E^{\bullet} = (D : \Gamma^{\infty}(E_0) \to \Gamma^{\infty}(E_1))$ be an elliptic operator on X, for example, the Dirac operator on X if X is spin. Then for each $\nabla \in \mathcal{A}_P$ we have a twisted elliptic operator $D_{\nabla} : \Gamma^{\infty}(E_0 \otimes \mathrm{ad}(P))$ $\to \Gamma^{\infty}(E_1 \otimes \mathrm{ad}(P))$. There is a determinant line bundle $\hat{L}_P \to \mathcal{A}_P$ with fibre det $D_{\nabla} = \det \operatorname{Ker}(D_{\nabla}) \otimes \det \operatorname{Coker}(D_{\nabla})^*$ at $\nabla \in \mathcal{A}_P$, and a principal \mathbb{Z}_2 -bundle $\hat{O}_P \to \mathcal{A}_P$ of orientations on the fibres of \hat{L} . These are \mathcal{G}_P -equivariant, and descend to $L_P \to \mathcal{B}_P$ and $\mathcal{O}_P \to \mathcal{B}_P$. An orientation on \mathcal{B}_P is an isomorphism $\mathcal{O}_P \cong \mathcal{B}_P \times \mathbb{Z}_2$. Moduli spaces \mathcal{M}_P of 'instantons' – connections on P satisfying a curvature condition – are subspaces $\mathcal{M}_P \subset \mathcal{B}_P$. In good cases, \mathcal{M}_P is a smooth manifold, and $\mathcal{O}_P|_{\mathcal{M}_P}$ is the principal \mathbb{Z}_2 -bundle of orientations on \mathcal{M}_P in the usual sense. So orientability / orientations for \mathcal{B}_P give orientability / orientations for \mathcal{M}_P .

Here is how this relates to our examples:

• For moduli spaces of instantons \mathcal{M}_P on a 4-manifold (X, g), orientations on \mathcal{M}_P come from orientations on \mathcal{B}_P with $E^{\bullet} = (d^+ \oplus d^* : \Gamma^{\infty}(T^*X) \to \Gamma^{\infty}(\Lambda^2_+ T^*X \oplus \Lambda^0 T^*X)).$

• For moduli spaces of G_2 -instantons \mathcal{M}_P on a G_2 -manifold (X, φ, g) , orientations on \mathcal{M}_P come from orientations on \mathcal{B}_P with E^{\bullet} the Dirac operator \mathcal{D}_X .

For moduli spaces of Spin(7)-instantons M_P on a Spin(7)-manifold (X, Ω, g), orientations on M_P come from orientations on B_P with E[•] the positive Dirac operator Ø⁺_X.
For moduli spaces of coherent sheaves Mst_α(τ) on a Calabi-Yau 4-fold X, by Cao-Gross-Joyce 2020, orientations on Mst_α(τ) can be pulled back from orientations on B_P with E[•] the positive Dirac operator Ø⁺_X and P → X a principal U(m) bundle for m ≫ 0.

Theorem 1 (Cao–Gross–Joyce 2020)

Let (X, g) be a compact, oriented spin 8-manifold and $P \to X$ a principal G-bundle for G = SU(m) or U(m). Define orientations on \mathcal{B}_P using the positive Dirac operator \mathcal{D}_X^+ . Then \mathcal{B}_P is orientable.

Corollary 2 (Cao–Gross–Joyce 2020)

Let X be a projective Calabi–Yau 4-fold. Then the moduli stack \mathcal{M} of coherent sheaves or perfect complexes on X is orientable.

Unfortunately, there is a mistake in the proof of Theorem 1. The theorem is false, a counterexample is the compact spin manifold X = SU(3), and P the trivial SU(3)-bundle over X. Corollary 2 may also be false, though we don't have a counterexample. I apologize for this. One of the goals of our new theory is to provide a corrected

version of Theorem 1, under an extra condition on X.

2. First look at the methods in the theory

A principal G-bundle $P \rightarrow X$ is topologically equivalent to a map $\phi_P: X \to BG$, where BG is the classifying space of X. Thus $[X, \phi_P]$ is an element of the spin bordism group $\Omega_n^{\text{Spin}}(BG)$. Orientability of \mathcal{B}_P depends on the monodromy of $\mathcal{O}_P \to \mathcal{B}_P$ around a loop $\gamma: \mathcal{S}^1 \to \mathcal{B}_P$. Then γ is equivalent to a principal *G*-bundle $Q \to X \times S^1$, giving a map $\phi_Q : X \times S^1 \to BG$, and a spin bordism class $[X \times S^1, \phi_Q]$ in $\Omega_{n+1}^{\text{Spin}}(BG)$. Now ϕ_Q is equivalent to a map $\psi_Q: X \to \mathcal{L}BG$, where $\mathcal{L}BG$ is the loop space of BG, so Q determines a bordism class $[X, \psi_Q]$ in $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$, and $[X \times S^1, \phi_Q]$ is the image of $[X, \psi_Q]$ under a natural map $\Omega_n^{\mathrm{Spin}}(\mathcal{L}BG) \to \Omega_{n+1}^{\mathrm{Spin}}(BG).$

It turns out that orientation problems for \mathcal{B}_P factor via $\Omega_n^{\mathrm{Spin}}(BG)$, $\Omega_{n+1}^{\mathrm{Spin}}(BG)$, $\Omega_n^{\mathrm{Spin}}(\mathcal{L}BG)$ in a certain sense. For given X, we can show that \mathcal{B}_P is orientable for all principal G-bundles $P \to X$ if and only if certain 'bad' classes α in $\Omega_n^{\mathrm{Spin}}(\mathcal{L}BG)$ cannot be written $\alpha = [X, \psi]$. If there are no bad classes we get orientability for all X, P (this often happens for n = 7). We need to compute $\Omega_n^{\mathrm{Spin}}(BG)$, $\Omega_{n+1}^{\mathrm{Spin}}(BG)$, $\Omega_n^{\mathrm{Spin}}(\mathcal{L}BG)$ using algebraic topology.

If $\iota: G \to H$ is a morphism of Lie groups of 'complex type', and $P \to X$ is a principal *G*-bundle, then $Q = (P \times H)/G$ is a principal *H*-bundle, and an orientation for \mathcal{B}_Q induces one for \mathcal{B}_P . Using complex type morphisms $SU(8) \hookrightarrow E_8$ and $SU(m) \hookrightarrow SU(m')$ for $m \leq m'$, we can show that if X is a spin 8-manifold then orientability of \mathcal{B}_Q for all principal E_8 -bundles $Q \to X$ implies orientability of \mathcal{B}_P for all principal U(m)-bundles $P \to X$. Thus, to solve the CY4 orientability problem, it is enough to understand orientability for E_8 -bundles.

There is a 16-connected map $BE_8 \to K(\mathbb{Z}, 4)$, where $K(\mathbb{Z}, 4)$ is the Eilenberg–MacLane space classifying $H^4(-,\mathbb{Z})$, so $\Omega_n^{\mathrm{Spin}}(BE_8) \cong \Omega_n^{\mathrm{Spin}}(K(\mathbb{Z}, 4))$ for n < 16, and $\Omega_n^{\mathrm{Spin}}(\mathcal{L}BE_8) \cong \Omega_n^{\mathrm{Spin}}(\mathcal{L}K(\mathbb{Z}, 4))$ for n < 15. Using this, we can reduce orientability questions for E_8 -bundles to conditions that can be computed using *cohomology* and *cohomology operations* on X, in particular Steenrod squares. The proofs involve lots of complicated calculations of bordism groups in Algebraic Topology, spectral sequences, etc.

3. Statement of main results: orientability

I'll explain only results in 8 dimensions relevant to Spin(7) instantons and DT4 invariants. They are part of a bigger theory, which also includes results on orientability of moduli spaces of submanifolds, such as Cayley 4-folds in Spin(7)-manifolds. Let X be a compact oriented spin 8-manifold. Impose the condition: (*) Let $\alpha \in H^3(X, \mathbb{Z})$, and write $\bar{\alpha} \in H^3(X, \mathbb{Z}_2)$ for its mod 2 reduction, and Sq²($\bar{\alpha}$) $\in H^5(X, \mathbb{Z}_2)$ for its Steenrod square. Then $\int_X \bar{\alpha} \cup$ Sq²($\bar{\alpha}$) = 0 in \mathbb{Z}_2 for all $\alpha \in H^3(X, \mathbb{Z})$.

Theorem 3

Suppose X satisfies condition (*), and let G be a compact Lie group on the list, for all $m \ge 1$

 E_8 , E_7 , E_6 , G_2 , Spin(3), SU(*m*), U(*m*), Spin(2*m*). (1) Then \mathcal{B}_P is orientable for every principal *G*-bundle $P \to X$. For $G = E_8$, this holds if and only if (*) holds.

We do this by applying our general orientability theory for $G = E_8$ by studying $\Omega_n^{\text{Spin}}(\mathcal{K}(\mathbb{Z},4))$ and $\Omega_n^{\text{Spin}}(\mathcal{LK}(\mathbb{Z},4))$. The other cases are deduced from $G = E_8$ using complex type morphisms.

The case G = U(m) and part of Cao–Gross–Joyce 2020 implies:

Corollary 4

Suppose a Calabi–Yau 4-fold X satisfies condition (*). Then the moduli stack \mathcal{M} of perfect complexes on X is orientable in the sense of Borisov–Joyce 2017.

Example 5

Let $X \subset \mathbb{CP}^5$ be a smooth sextic. Then $H^3(X,\mathbb{Z}) = 0$ by the Lefschetz Hyperplane Theorem. So (*) and Corollary 4 hold.

Corollary 6

Suppose a compact Spin(7)-manifold (X, Ω) satisfies condition (*), and G lies on the list (1), and $P \to X$ is a principal G-bundle. Then the moduli space $\mathcal{M}_P^{\text{irr}}$ of irreducible Spin(7)-instanton connections on P is orientable. (Here $\mathcal{M}_P^{\text{irr}}$ is a smooth manifold if Ω is generic, and a derived manifold otherwise.)

4. Statement of main results: canonical orientations

Suppose now that (*) holds, so we have orientability of moduli spaces \mathcal{B}_P or \mathcal{M} on X. What extra choices do we need to make on X to define *canonical orientations* on \mathcal{B}_P or \mathcal{M} ?

Definition

Let X be a spin 8-manifold, and $P \to X$ a principal G-bundle, and $O_P \to \mathcal{B}_P$ be the orientation bundle. Define the *normalized orientation bundle* $\check{O}_P \to \mathcal{B}_P$ by $\check{O}_P = O_P \otimes_{\mathbb{Z}_2} \operatorname{Or}(O_{X \times G}|_{[\nabla_0]})$, where $\operatorname{Or}(O_{X \times G}|_{[\nabla_0]})$ is the \mathbb{Z}_2 -torsor of orientations of $\mathcal{B}_{X \times G}$ for the trivial G-bundle $X \times G \to X$ at the trivial connection ∇_0 . A trivialization of $\operatorname{Or}(O_{X \times G}|_{[\nabla_0]})$ is an orientation for $\operatorname{ind}(\mathcal{D}_X^+) \otimes \mathfrak{g}$, where \mathcal{D}_X^+ is the positive Dirac operator of X, $\operatorname{ind}(\mathcal{D}_X^+)$ its orientation torsor as a Fredholm operator, \mathfrak{g} the Lie algebra of G.

We show normalized orientations on \mathcal{B}_P are determined by a choice of *flag structure* (next slide). Orientations on \mathcal{B}_P also need an orientation on $\operatorname{ind}(\mathcal{D}_X^+) \otimes \mathfrak{g}$. If X is a Calabi–Yau 4-fold, there is a natural orientation for $\operatorname{ind}(\mathcal{D}_X^+)$, so we don't need this second choice.

Flag structures – first idea

Joyce 2018 and Joyce–Upmeier 2023 introduced flag structures on 7-manifolds, and used them to define orientations on moduli spaces of associative 3-folds and G_2 -instantons on compact G_2 -manifolds. We define a related (but more complicated) notion of flag structure F for compact spin 8-manifolds X satisfying condition (*), as a choice of natural trivialization of an orientation functor associated to X (more details later). We can write a flag structure F as $(F_{\alpha} : \alpha \in H^4(X, \mathbb{Z}))$, where each F_{α} lies in a \mathbb{Z}_2 -torsor. Thus, the set of flag structures on X is a torsor for $Map(H^4(X, \mathbb{Z}), \mathbb{Z}_2)$. By imposing extra conditions we can cut this down to a finite choice of flag structures.

If X is a Calabi–Yau 4-fold, the orientation on \mathcal{M} at a perfect complex $[\mathcal{E}^{\bullet}] \in \mathcal{M}$ depends on F_{α} for $\alpha = c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2$. There is a canonical choice for F_0 . Hence, if $c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2 = 0$, there is a canonical choice of orientation on the connected component of \mathcal{M} containing \mathcal{E}^{\bullet} . Thus we deduce:

Theorem 7

Suppose a Calabi–Yau 4-fold X satisfies condition (*). Choose a flag structure F on X. Then we can construct a canonical orientation on the moduli stack \mathcal{M} of perfect complexes on X. On the open and closed substack $\mathcal{M}_{c_2-c_1^2=0} \subset \mathcal{M}$ of perfect complexes \mathcal{E}^{\bullet} with $c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2 = 0$, we can define the canonical orientation without choosing a flag structure.

The second part resolves a paradox. There are several conjectures in the literature by Bojko, Cao, Kool, Maulik, Toda, ..., of the form

Conventional invariants of $X \simeq \text{DT4}$ invariants of X, (2)

where the left hand side, involving Gromov–Witten invariants etc., needs no choice of orientation, but the right hand side needs a Borisov–Joyce orientation to determine the sign. All these conjectures are really about sheaves on points and curves — Hilbert schemes of points, MNOP, DT-PT, etc. — and so involve only complexes \mathcal{E}^{\bullet} with $c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2 = 0$ in $H^4(X, \mathbb{Z})$.

5. Computing bordism groups

Let \boldsymbol{B} be a 'stable tangential structure' on manifolds, for example, **O** is 'unoriented', **SO** is 'oriented', **Spin** is 'spin' (which includes oriented). For each (nice) topological space T and $n \ge 0$, we define the *bordism group* $\Omega_n^{\mathcal{B}}(T)$ to be the set of \sim -equivalence classes [X, f] of pairs (X, f), where X is a compact *n*-manifold with **B**-structure with $\partial X = \emptyset$ and $f : X \to T$ is continuous. We write $(X_0, f_0) \sim (X_1, f_1)$ if there exists a compact n + 1-manifold Y with **B**-structure and a continuous map $g: Y \to T$, such that Y has boundary $\partial Y = -X_0 \amalg X_1$ with **B**-structures, and $g|_{\partial Y} = f_0 \coprod f_1$. Here $-X_0$ is X_0 with the 'opposite **B**-structure' (e.g. opposite orientation). Then $\Omega_n^{\boldsymbol{B}}(T)$ is an abelian group with addition $[X, f] + [X', f'] = [X \amalg X', f \amalg f']$ and identity $0 = [\emptyset, \emptyset]$. Bordism $\Omega^{\boldsymbol{B}}_{*}(-)$ is a generalized homology theory – it satisfies all the Eilenberg-Steenrod axioms except the dimension axiom. There is an Atiyah–Hirzebruch spectral sequence $H_p(T, \Omega_a^{\mathbf{B}}(*)) \Rightarrow \Omega_{p+q}^{\mathbf{B}}(T)$. For T path-connected, reduced bordism is $\tilde{\Omega}_{n}^{B}(T) = \Omega_{n}^{B}(T, \{t_{0}\})$. Then $\Omega_{n}^{B}(T) = \tilde{\Omega}_{n}^{B}(T) \oplus \Omega_{n}^{B}(*)$.

Spin bordism groups of classifying spaces

We will care about spin bordism groups $\Omega_n^{\text{Spin}}(\mathcal{T})$ of classifying spaces such as *BG* for *G* a Lie group, or loops spaces $\mathcal{L}BG$. These can often be computed using Algebraic Topology (and a lot of work by Markus). The bordism groups of the point are

$$\frac{n}{\Omega_n^{\text{Spin}}(*)} \quad \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \mathbb{Z} & \mathbb{Z}_2 & \mathbb{Z}_2 & 0 & \mathbb{Z} & 0 & 0 & 0 & \mathbb{Z}^2 & \mathbb{Z}_2^2 \end{bmatrix}$$

The homology $H_*(BG, \mathbb{Z})$ and $H_*(BG, \mathbb{Z}_2)$ is known for classical G. Using the A–H spectral sequence $\tilde{H}_p(BG, \Omega_q^B(*)) \Rightarrow \tilde{\Omega}_{p+q}^B(BG)$, we can prove for example that $B \operatorname{SU}(m)$, $m \ge 5$ has reduced spin bordism

п	$0,\!1,\!2,\!3,\!5,\!7$	4	6	8	9
$\tilde{\Omega}^{\mathrm{Spin}}_n(B\operatorname{SU}(m))$	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^3	\mathbb{Z}_2

We can give explicit basis elements for the groups, and describe the isomorphisms explicitly, e.g. $\tilde{\Omega}_8^{\text{Spin}}(B\operatorname{SU}(m)) \xrightarrow{\cong} \mathbb{Z}^3$ is

$$[X,P] \longmapsto \left(\int_X \left[\frac{c_4(P)}{6} - \frac{c_2(P)^2}{12} - \frac{p_1(TX)c_2(P)}{24} \right], \int_X c_2(P)^2, \int_X c_4(P) \right).$$

6. Picard groupoids and bordism categories

Definition

A *Picard groupoid* $(\mathcal{G}, \otimes, \mathbb{1})$ is a groupoid \mathcal{G} with a monoidal structure $\otimes : \mathcal{G} \otimes \mathcal{G} \to \mathcal{G}$ which is symmetric and associative up to coherent natural isomorphisms (not included in the notation), and an identity object $\mathbb{1}$ such that $\mathbb{1} \otimes X \cong X \otimes \mathbb{1} \cong X$ for all $X \in \mathcal{G}$, such that for every $X \in \mathcal{G}$ there exists $Y \in \mathcal{G}$ with $X \otimes Y \cong \mathbb{1}$.

Picard groupoids are classified up to equivalence by triples (π_0, π_1, q) , where π_0, π_1 are abelian groups and $q: \pi_0 \to \pi_1$ is a map which is both linear and quadratic. To $(\mathcal{G}, \otimes, 1)$ we associate the abelian groups π_0 of isomorphism classes [X] of objects $X \in \mathcal{G}$ with multiplication $[X] \cdot [Y] = [X \otimes Y]$, and $\pi_1 = \operatorname{Aut}_{\mathcal{G}}(\mathbb{1})$. Symmetric monoidal functors $F : (\mathcal{G}, \otimes, \mathbb{1}) \to (\mathcal{G}', \otimes, \mathbb{1}')$ are functors $F : \mathcal{G} \to \mathcal{G}'$ preserving all the structure. They are classified up to monoidal natural isomorphism by group morphisms $f_0: \pi_0 \to \pi'_0$ and $f_1: \pi_1 \to \pi'_1$ with $q' \circ f_0 = f_1 \circ q$. We could call Picard groupoids abelian 2-groups, as they are a 2-categorical notion of abelian group.

Dominic Joyce, Oxford University Orientations on moduli spaces

Our theory uses special examples of Picard groupoids we call *bordism categories*. Here is an example.

Example

Let G be a Lie group, and $n \ge 0$. Define a Picard groupoid $\mathfrak{Botd}_n^{\mathrm{Spin}}(BG)$ to have objects pairs (X, P) of a compact spin *n*-manifold X and a principal G-bundle $P \rightarrow X$, and morphisms $[Y, Q] : (X_0, P_0) \rightarrow (X_1, P_1)$ to be equivalence classes [Y, Q] of a compact spin (n + 1)-manifold Y with boundary $\partial Y = -X_0 \amalg X_1$ and a principal G-bundle $Q \to Y$ with $Q|_{\partial Y} = P_0 \amalg P_1$, where the equivalence involves (n + 2)-dimensional bordisms. The composition of $[Y, Q] : (X_0, P_0) \rightarrow (X_1, P_1)$ and $[Y', Q'] : (X_1, P_1) \to (X_2, P_2)$ is $[Y \amalg_{X_1} Y', Q \amalg_{P_1} Q']$. The monoidal structure is disjoint union, $(X, P) \otimes (X', P') = (X \amalg X', P \amalg P').$

The classifying data is $\pi_0 = \Omega_n^{\text{Spin}}(BG)$, $\pi_1 = \Omega_{n+1}^{\text{Spin}}(BG)$, and $q: [X, P] \mapsto [X \times S_{nb}^1, P \times S_{nb}^1]$, where S_{nb}^1 is S^1 with the non-bounding spin structure. Here $\Omega_*^{\text{Spin}}(-)$ is *spin bordism*, a generalized homology theory, and *BG* is the classifying space.

Example

The groupoid \mathbb{Z}_2 -tor of \mathbb{Z}_2 -torsors is a Picard groupoid with $\pi_0 = 0$ and $\pi_1 = \mathbb{Z}_2$. The groupoid s- \mathbb{Z}_2 -tor of super \mathbb{Z}_2 -torsors (\mathbb{Z}_2 -graded \mathbb{Z}_2 -torsors) is a Picard groupoid with $\pi_0 = \pi_1 = \mathbb{Z}_2$ and $q = \mathrm{id} : \mathbb{Z}_2 \to \mathbb{Z}_2$.

Example

(a) Suppose $n \equiv 1,7 \mod 8$. We can define a symmetric monoidal functor $F : \mathfrak{Botd}_n^{\mathrm{Spin}}(BG) \to \mathbb{Z}_2$ -tor which maps (X, P) to the \mathbb{Z}_2 -torsor of orientations on \mathcal{A}_P defined using the Dirac operator \mathcal{D}_X . (b) Suppose $n \equiv 0 \mod 8$. We can define a symmetric monoidal functor $F : \mathfrak{Botd}_n^{\mathrm{Spin}}(BG) \to \mathrm{s-}\mathbb{Z}_2$ -tor which maps (X, P) to the \mathbb{Z}_2 -torsor of orientations on \mathcal{A}_P defined using the positive Dirac operator \mathcal{D}_X^+ , \mathbb{Z}_2 -graded in degree $\mathrm{ind}(\mathcal{D}_X^+ \otimes \mathrm{ad}(P)) \mod 2$.

Thus we can encode orientations of moduli spaces in *orientation functors* between Picard groupoids. This is not obvious. It depends on a bordism-invariance property of indices and determinants of Dirac operators proved in Upmeier arXiv:2312.06818.

Example

Let (X, g) be a compact spin *n*-manifold, and *G* be a Lie group. Define a subcategory $\mathfrak{Bord}_X(BG)$ of $\mathfrak{Bord}_n^{\operatorname{Spin}}(BG)$ to have objects (X, P) for *X* the fixed spin *n*-manifold and varying *P*, and to have morphisms $[X \times [0, 1], Q]$ for $Y = X \times [0, 1]$ the fixed spin (n+1)-manifold with boundary, and varying *Q*. Write inc : $\mathfrak{Bord}_X(BG) \hookrightarrow \mathfrak{Bord}_n^{\operatorname{Spin}}(BG)$ for the inclusion functor. Suppose $n \equiv 1, 7, 8 \mod 8$, and write $F_X = F \circ \operatorname{inc} : \mathfrak{Bord}_X(BG) \to \mathbb{Z}_2$ -tor, where for $n \equiv 8$ we compose with s- \mathbb{Z}_2 -tor $\to \mathbb{Z}_2$ -tor forgetting \mathbb{Z}_2 -gradings.

Then a choice of orientation for \mathcal{B}_P for each principal *G*-bundle $P \to X$, invariant under isomorphisms $P \cong P'$, is equivalent to a natural isomorphism $\eta : F_X \Rightarrow \mathbb{1}_X$, where $\mathbb{1}_X$ is the constant functor with value \mathbb{Z}_2 . Hence, \mathcal{B}_P is orientable for every principal *G*-bundle $P \to X$ if and only if the functor $F_X : \mathfrak{Bord}_X(BG) \to \mathbb{Z}_2$ -tor is trivializable.

To see why this is true, note that $\mathcal{B}_P = \mathcal{A}_P / \mathcal{G}_P$, where \mathcal{A}_P is the infinite-dimensional affine space of connections on $P \rightarrow X$, and $\mathcal{G}_P = \operatorname{Aut}(P)$ is the gauge group. Here \mathcal{A}_P is always orientable, with exactly two orientations, as it is contractible. So \mathcal{B}_P is orientable if and only if the group \mathcal{G}_P acts trivially on the \mathbb{Z}_2 -torsor of orientations on \mathcal{A}_{P} . Given an element $\gamma \in Aut(P)$, we can define a morphism $[X \times [0,1], Q] : (X, P) \to (X, P) \text{ in } \mathfrak{Bord}_X(BG) \subset \mathfrak{Bord}_n^{\mathrm{Spin}}(BG)$ by taking Q to be $P \times [0, 1]$ with identifications $id_P: P \times \{0\} \to P \text{ and } \gamma: P \times \{1\} \to P$. All morphisms $[X \times [0,1], Q] : (X, P) \rightarrow (X, P)$ are of this form. So \mathcal{G}_P acts trivially on the \mathbb{Z}_2 -torsor of orientations on \mathcal{A}_P if and only if F_X is trivializable over the object (X, P).

Theorem 8 (Joyce–Upmeier)

(a) Let $n \equiv 1,7,8 \mod 8$, and X be a compact spin n-manifold and G a Lie group. Then \mathcal{B}_P is orientable for all principal G-bundles $P \to X$ if and only if for all classes $[X, \phi] \in \Omega_n^{\text{Spin}}(\mathcal{L}BG)$ with domain X we have $f_1 \circ \xi([X, \phi]) = 0$ in \mathbb{Z}_2 , where

$$\Omega_n^{\operatorname{Spin}}(\mathcal{L}BG) \xrightarrow{\xi} \Omega_{n+1}^{\operatorname{Spin}}(BG) \xrightarrow{f_1} \mathbb{Z}_2$$

with $\xi: [X, \phi] \mapsto [X \times S_{\mathrm{b}}^{1}, \phi']$ and f_{1} the classifying morphism for F_{G} . **(b)** \mathcal{B}_{P} is orientable for all compact spin n-manifolds X and all principal G-bundles $P \to X$ iff $f_{1} \circ \xi \equiv 0: \Omega_{n}^{\mathrm{Spin}}(\mathcal{L}BG) \to \mathbb{Z}_{2}$.

We can use Algebraic Topology and spectral sequences to compute bordism groups such as $\Omega_n^{\text{Spin}}(BG)$, $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$, and morphisms such as $\xi : \Omega_n^{\text{Spin}}(\mathcal{L}BG) \to \Omega_{n+1}^{\text{Spin}}(BG)$, and $f_0 : \Omega_n^{\text{Spin}}(BG) \to \mathbb{Z}_2$ and $f_1 : \Omega_{n+1}^{\text{Spin}}(BG) \to \mathbb{Z}_2$ which classify orientation functors. Then we can use these to prove theorems on orientability and canonical orientations.

Cohomology bordism categories

For *R* a commutative ring and $0 \le k \le n$, define the *cohomology* bordism category $\mathfrak{Bord}_n^{\mathbf{B}}(K(R,k))$ to have objects (X,γ) where X is a compact *n*-manifold with **B**-structure with $\partial X = \emptyset$ and $\gamma \in C^k(X, R)$ with $d\gamma = 0$ is a the k-cocycle in cohomology of X over R, and to have morphisms $[Y, \delta] : (X_0, \gamma_0) \to (X_1, \gamma_1)$ to be bordism/cohomology classes of pairs (Y, δ) of a compact (n+1)-manifold Y with **B**-structure with boundary $\partial Y = -X_0 \amalg X_1$ and a k-cochain $\delta \in C^k(Y, R)$ with $\delta|_{\partial Y} = -\gamma_0 + \gamma_1$. Then $\mathfrak{Bord}^{B}_{\mathfrak{n}}(K(R,k))$ has invariants $\pi_{i} = \Omega^{B}_{\mathfrak{n}+i}(K(R,k))$ for i = 0, 1, where K(R, k) is the Eilenberg–MacLane space classifying $H^{k}(-,R)$. We can often compute $\Omega^{\boldsymbol{B}}_{*}(K(R,k))$. There is a 16-connected map $BE_8 \to K(\mathbb{Z}, 4)$, so $\Omega_n^{\boldsymbol{B}}(BE_8) \cong \Omega_n^{\boldsymbol{B}}(K(\mathbb{Z},4))$ for n < 16. Thus we can define a symmetric monoidal functor $\mathfrak{Bord}^{B}_{p}(BE_{8}) \to \mathfrak{Bord}^{B}_{p}(K(\mathbb{Z},4)),$ which is an equivalence of categories for $n \leq 14$. In this way we translate orientability questions for E_8 gauge theory into problems in cohomology and cohomology operations, such as Steenrod squares.

The case of $G = E_8$ and $K(\mathbb{Z}, 4)$

As we have an equivalence $\mathfrak{Bord}^{B}_{n}(BE_{8}) \to \mathfrak{Bord}^{B}_{n}(K(\mathbb{Z},4))$ for $n \leq 14$, for $G = E_8$ we may replace BE_8 with $K(\mathbb{Z}, 4)$. Our calculations show that when n = 7, $f_1 \circ \xi \equiv 0$: $\Omega_7^{\text{Spin}}(\mathcal{LK}(\mathbb{Z}, 4))$ $\rightarrow \mathbb{Z}_2$. Thus \mathcal{B}_P is orientable for all principal E_8 -bundles $P \rightarrow X$. However, when n = 8, $f_1 \circ \xi \neq 0$: $\Omega_8^{\text{Spin}}(\mathcal{LK}(\mathbb{Z}, 4)) \to \mathbb{Z}_2$. Elements of $\Omega^{\text{Spin}}_{\mathfrak{s}}(\mathcal{LK}(\mathbb{Z},4))$ may be written $[X,\alpha]$ for X a compact spin *n*-manifold and $\alpha \in H^4(X \times S^1, \mathbb{Z})$. Then $\alpha = \beta \boxtimes \operatorname{Pd}[\mathcal{S}^1] + \gamma \boxtimes 1_{\mathcal{S}^1}$ for $\beta \in H^3(X, \mathbb{Z})$ and $\gamma \in H^4(X, \mathbb{Z})$, and $f_1 \circ \xi([X, \alpha]) = \int_{\mathbf{X}} \overline{\beta} \cup \operatorname{Sq}^2(\overline{\beta})$, where $\overline{\beta} \in H^2(X, \mathbb{Z}_2)$ is the mod 2 reduction of β and $\operatorname{Sq}^2(\overline{\beta})$ is its Steenrod square. Thus by Theorem 8(a), if X is a compact spin 8-manifold, then \mathcal{B}_P is orientable for all principal E_8 -bundles $P \to X$ if and only if the following condition holds:

(*) Let $\alpha \in H^3(X, \mathbb{Z})$, and write $\bar{\alpha} \in H^3(X, \mathbb{Z}_2)$ for its mod 2 reduction, and $\operatorname{Sq}^2(\bar{\alpha}) \in H^5(X, \mathbb{Z}_2)$ for its Steenrod square. Then $\int_X \bar{\alpha} \cup \operatorname{Sq}^2(\bar{\alpha}) = 0$ in \mathbb{Z}_2 for all $\alpha \in H^3(X, \mathbb{Z})$. Using 'complex type' morphisms, we deduce that if (*) holds then \mathcal{B}_P is orientable for all *G*-bundles $P \to X$ for any *G* on the list

$$E_8, E_7, E_6, G_2, \text{Spin}(3), \text{SU}(m), \text{U}(m), \text{Spin}(2m).$$
 (3)

Definition

Let X be a compact spin *n*-manifold for n = 7 or 8. A *flag* structure on X is a natural isomorphism ζ in the diagram

If n = 7, flag structures on X always exist. If n = 8, flag structures on X exist iff X satisfies condition (*). If X has a flag structure, then we can construct canonical (normalized) orientations on \mathcal{B}_P for all G-bundles $P \to X$ for any G on the list (3).