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1. Introduction

There are many examples of moduli spaces M in geometry in
which either M is a smooth real manifold, or it behaves like one
(it may be a derived manifold, or Kuranishi space), so that M has
a notion of orientation. If M is compact and oriented of dimension
d , it will have a fundamental class [M]fund ∈ Hd(M,Z) (called a
virtual class for derived manifolds). Such fundamental classes are
used to define enumerative invariants, as integrals

∫
[M]fund

α of
natural cohomology classes α. For example:
• Let (X , g) be a compact, oriented, Riemannian 4-manifold, G a
Lie group, and P → X a principal G -bundle. The moduli space
MP of irreducible connections ∇ on P with anti-self-dual curvature
(instantons) is a derived manifold, and a manifold if g is generic.
Integrals over MP are used to define Donaldson invariants of X .
• If (X , φ, g) is a compact coclosed G2-manifold in 7 dimensions,
we can consider moduli spaces of G2-instantons on P → X .
• If (X ,Ω, g) is a compact Spin(7)-manifold in 8 dimensions, we
can consider moduli spaces of Spin(7)-instantons on P → X .
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• Let X be a projective Calabi–Yau 4-fold over C and Mst
α (τ) be a

moduli scheme of Gieseker-stable coherent sheaves on X with
Chern character α. Then Borisov–Joyce 2017 give Mst

α (τ) the
structure of a derived manifold. If there are no strictly semistable
sheaves in class α then Mst

α (τ) is compact. So if we can find an
orientation on Mst

α (τ) we have a virtual class [Mst
α (τ)]virt. These

are used to define Donaldson–Thomas type DT4 invariants of X .

In all these examples, we have a class of moduli spaces M which
behave enough like real manifolds to have a notion of orientation.
So we can ask whether M is orientable, and if so, whether we can
construct a canonical orientation on M. Such orientations are
important for enumerative invariant theories.
This talk will outline a general theory for studying orientability and
canonical orientations of moduli spaces, using a new tool called
bordism categories. Our main applications are in 7 and 8
dimensions, to orientations for moduli spaces of G2- and
Spin(7)-instantons and of coherent sheaves on Calabi–Yau 4-folds.
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Gauge theory moduli spaces and orientations

Let X be a compact manifold, G a Lie group, and P → X a
principal G -bundle. Write AP for the moduli space of all
connections ∇ on P, an infinite-dimensional affine space,
and BP = AP/GP for the moduli space of connections on P modulo
gauge transformations, as a topological stack, where GP = Aut(P).
Let E • =

(
D : Γ∞(E0) → Γ∞(E1)

)
be an elliptic operator on X ,

for example, the Dirac operator on X if X is spin. Then for each
∇ ∈ AP we have a twisted elliptic operator D∇ : Γ∞(E0 ⊗ ad(P))

→ Γ∞(E1 ⊗ ad(P)). There is a determinant line bundle L̂P → AP

with fibre detD∇=detKer(D∇)⊗detCoker(D∇)
∗ at ∇ ∈ AP , and

a principal Z2-bundle ÔP → AP of orientations on the fibres of L̂.
These are GP -equivariant, and descend to LP → BP and OP → BP .
An orientation on BP is an isomorphism OP

∼= BP × Z2.
Moduli spaces MP of ‘instantons’ – connections on P satisfying a
curvature condition – are subspaces MP ⊂ BP . In good cases,
MP is a smooth manifold, and OP |MP

is the principal Z2-bundle
of orientations on MP in the usual sense. So orientability /
orientations for BP give orientability / orientations for MP .
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Here is how this relates to our examples:
• For moduli spaces of instantons MP on a 4-manifold (X , g),
orientations on MP come from orientations on BP with
E • =

(
d+ ⊕ d∗ : Γ∞(T ∗X ) → Γ∞(Λ2

+T
∗X ⊕ Λ0T ∗X )

)
.

• For moduli spaces of G2-instantons MP on a G2-manifold
(X , φ, g), orientations on MP come from orientations on BP with
E • the Dirac operator /DX .
• For moduli spaces of Spin(7)-instantons MP on a
Spin(7)-manifold (X ,Ω, g), orientations on MP come from

orientations on BP with E • the positive Dirac operator /D
+
X .

• For moduli spaces of coherent sheaves Mst
α (τ) on a Calabi–Yau

4-fold X , by Cao–Gross-Joyce 2020, orientations on Mst
α (τ) can be

pulled back from orientations on BP with E • the positive Dirac
operator /D

+
X and P → X a principal U(m) bundle for m ≫ 0.
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The Cao–Gross–Joyce orientability theorem is wrong!

Theorem 1 (Cao–Gross–Joyce 2020)

Let (X , g) be a compact, oriented spin 8-manifold and P → X a
principal G-bundle for G = SU(m) or U(m). Define orientations on

BP using the positive Dirac operator /D
+
X . Then BP is orientable.

Corollary 2 (Cao–Gross–Joyce 2020)

Let X be a projective Calabi–Yau 4-fold. Then the moduli stack
M of coherent sheaves or perfect complexes on X is orientable.

Unfortunately, there is a mistake in the proof of Theorem 1. The
theorem is false, a counterexample is the compact spin manifold
X = SU(3), and P the trivial SU(3)-bundle over X . Corollary 2
may also be false, though we don’t have a counterexample.
I apologize for this.
One of the goals of our new theory is to provide a corrected
version of Theorem 1, under an extra condition on X .
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2. First look at the methods in the theory
A principal G -bundle P → X is topologically equivalent to a map
ϕP : X → BG , where BG is the classifying space of X . Thus

[X , ϕP ] is an element of the spin bordism group ΩSpin
n (BG ).

Orientability of BP depends on the monodromy of OP → BP

around a loop γ : S1 → BP . Then γ is equivalent to a principal
G -bundle Q → X × S1, giving a map ϕQ : X × S1 → BG , and a

spin bordism class [X × S1, ϕQ ] in ΩSpin
n+1 (BG ). Now ϕQ is

equivalent to a map ψQ : X → LBG , where LBG is the loop space

of BG , so Q determines a bordism class [X , ψQ ] in ΩSpin
n (LBG ),

and [X × S1, ϕQ ] is the image of [X , ψQ ] under a natural map

ΩSpin
n (LBG ) → ΩSpin

n+1 (BG ).

It turns out that orientation problems for BP factor via ΩSpin
n (BG ),

ΩSpin
n+1 (BG ), ΩSpin

n (LBG ) in a certain sense. For given X , we can
show that BP is orientable for all principal G -bundles P → X if

and only if certain ‘bad’ classes α in ΩSpin
n (LBG ) cannot be

written α = [X , ψ]. If there are no bad classes we get orientability
for all X ,P (this often happens for n = 7). We need to compute

ΩSpin
n (BG ), ΩSpin

n+1 (BG ), ΩSpin
n (LBG ) using algebraic topology.
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If ι : G → H is a morphism of Lie groups of ‘complex type’, and
P → X is a principal G -bundle, then Q = (P ×H)/G is a principal
H-bundle, and an orientation for BQ induces one for BP . Using
complex type morphisms SU(8) ↪→ E8 and SU(m) ↪→ SU(m′) for
m ⩽ m′, we can show that if X is a spin 8-manifold then
orientability of BQ for all principal E8-bundles Q → X implies
orientability of BP for all principal U(m)-bundles P → X . Thus, to
solve the CY4 orientability problem, it is enough to understand
orientability for E8-bundles.
There is a 16-connected map BE8 → K (Z, 4), where K (Z, 4) is the
Eilenberg–MacLane space classifying H4(−,Z), so
ΩSpin
n (BE8) ∼= ΩSpin

n (K (Z, 4)) for n < 16, and
ΩSpin
n (LBE8) ∼= ΩSpin

n (LK (Z, 4)) for n < 15. Using this, we can
reduce orientability questions for E8-bundles to conditions that can
be computed using cohomology and cohomology operations on X ,
in particular Steenrod squares. The proofs involve lots of
complicated calculations of bordism groups in Algebraic Topology,
spectral sequences, etc.
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3. Statement of main results: orientability

I’ll explain only results in 8 dimensions relevant to Spin(7)
instantons and DT4 invariants. They are part of a bigger theory,
which also includes results on orientability of moduli spaces of
submanifolds, such as Cayley 4-folds in Spin(7)-manifolds.
Let X be a compact oriented spin 8-manifold. Impose the condition:
(*) Let α ∈ H3(X ,Z), and write ᾱ ∈ H3(X ,Z2) for its mod 2

reduction, and Sq2(ᾱ) ∈ H5(X ,Z2) for its Steenrod square.
Then

∫
X ᾱ ∪ Sq2(ᾱ) = 0 in Z2 for all α ∈ H3(X ,Z).

Theorem 3

Suppose X satisfies condition (∗), and let G be a compact Lie
group on the list, for all m ⩾ 1

E8, E7, E6, G2, Spin(3), SU(m), U(m), Spin(2m). (1)

Then BP is orientable for every principal G-bundle P → X.
For G = E8, this holds if and only if (∗) holds.

We do this by applying our general orientability theory for G = E8

by studying ΩSpin
n (K (Z, 4)) and ΩSpin

n (LK (Z, 4)). The other cases
are deduced from G = E8 using complex type morphisms.
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The case G = U(m) and part of Cao–Gross–Joyce 2020 implies:

Corollary 4

Suppose a Calabi–Yau 4-fold X satisfies condition (∗). Then the
moduli stack M of perfect complexes on X is orientable in the
sense of Borisov–Joyce 2017.

Example 5

Let X ⊂ CP5 be a smooth sextic. Then H3(X ,Z) = 0 by the
Lefschetz Hyperplane Theorem. So (∗) and Corollary 4 hold.

Corollary 6

Suppose a compact Spin(7)-manifold (X ,Ω) satisfies condition
(∗), and G lies on the list (1), and P → X is a principal G-bundle.
Then the moduli space Mirr

P of irreducible Spin(7)-instanton
connections on P is orientable. (Here Mirr

P is a smooth manifold if
Ω is generic, and a derived manifold otherwise.)
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4. Statement of main results: canonical orientations

Suppose now that (∗) holds, so we have orientability of moduli
spaces BP or M on X . What extra choices do we need to make
on X to define canonical orientations on BP or M?

Definition

Let X be a spin 8-manifold, and P → X a principal G -bundle, and
OP → BP be the orientation bundle. Define the normalized
orientation bundle ǑP → BP by ǑP = OP ⊗Z2 Or(OX×G |[∇0]),
where Or(OX×G |[∇0]) is the Z2-torsor of orientations of BX×G for
the trivial G -bundle X × G → X at the trivial connection ∇0.
A trivialization of Or(OX×G |[∇0]) is an orientation for ind( /D

+
X )⊗ g,

where /D
+
X is the positive Dirac operator of X , ind( /D

+
X ) its

orientation torsor as a Fredholm operator, g the Lie algebra of G .

We show normalized orientations on BP are determined by a choice
of flag structure (next slide). Orientations on BP also need

an orientation on ind( /D
+
X )⊗g. If X is a Calabi–Yau 4-fold, there is a

natural orientation for ind( /D
+
X ), so we don’t need this second choice.
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Flag structures – first idea

Joyce 2018 and Joyce–Upmeier 2023 introduced flag structures on
7-manifolds, and used them to define orientations on moduli spaces
of associative 3-folds and G2-instantons on compact G2-manifolds.
We define a related (but more complicated) notion of flag
structure F for compact spin 8-manifolds X satisfying condition
(∗), as a choice of natural trivialization of an orientation functor
associated to X (more details later). We can write a flag structure
F as (Fα : α ∈ H4(X ,Z)), where each Fα lies in a Z2-torsor. Thus,
the set of flag structures on X is a torsor for Map(H4(X ,Z),Z2).
By imposing extra conditions we can cut this down to a finite
choice of flag structures.
If X is a Calabi–Yau 4-fold, the orientation on M at a perfect
complex [E•] ∈ M depends on Fα for α = c2(E•)− c1(E•)2.
There is a canonical choice for F0. Hence, if c2(E•)− c1(E•)2 = 0,
there is a canonical choice of orientation on the connected
component of M containing E•. Thus we deduce:
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Theorem 7

Suppose a Calabi–Yau 4-fold X satisfies condition (∗). Choose a
flag structure F on X . Then we can construct a canonical
orientation on the moduli stack M of perfect complexes on X .
On the open and closed substack Mc2−c21=0 ⊂ M of perfect

complexes E• with c2(E•)− c1(E•)2 = 0, we can define the
canonical orientation without choosing a flag structure.

The second part resolves a paradox. There are several conjectures in
the literature by Bojko, Cao, Kool, Maulik, Toda, . . . , of the form

Conventional invariants of X ≃ DT4 invariants of X , (2)

where the left hand side, involving Gromov–Witten invariants etc.,
needs no choice of orientation, but the right hand side needs a
Borisov–Joyce orientation to determine the sign. All these
conjectures are really about sheaves on points and curves —
Hilbert schemes of points, MNOP, DT-PT, etc. — and so involve
only complexes E• with c2(E•)− c1(E•)2 = 0 in H4(X ,Z).
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5. Computing bordism groups

Let B be a ‘stable tangential structure’ on manifolds, for example,
O is ‘unoriented’, SO is ‘oriented’, Spin is ‘spin’ (which includes
oriented). For each (nice) topological space T and n ⩾ 0, we
define the bordism group ΩB

n (T ) to be the set of ∼-equivalence
classes [X , f ] of pairs (X , f ), where X is a compact n-manifold
with B-structure with ∂X = ∅ and f : X → T is continuous. We
write (X0, f0) ∼ (X1, f1) if there exists a compact n+ 1-manifold Y
with B-structure and a continuous map g : Y → T , such that Y
has boundary ∂Y = −X0 ⨿ X1 with B-structures, and
g |∂Y = f0 ⨿ f1. Here −X0 is X0 with the ‘opposite B-structure’
(e.g. opposite orientation). Then ΩB

n (T ) is an abelian group with
addition [X , f ] + [X ′, f ′] = [X ⨿ X ′, f ⨿ f ′] and identity 0 = [∅, ∅].
Bordism ΩB

∗ (−) is a generalized homology theory – it satisfies all
the Eilenberg–Steenrod axioms except the dimension axiom.
There is an Atiyah–Hirzebruch spectral sequence
Hp(T ,Ω

B
q (∗)) ⇒ ΩB

p+q(T ). For T path-connected, reduced bordism

is Ω̃B
n (T ) = ΩB

n (T , {t0}). Then ΩB
n (T ) = Ω̃B

n (T )⊕ ΩB
n (∗).
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Spin bordism groups of classifying spaces

We will care about spin bordism groups ΩSpin
n (T ) of classifying

spaces such as BG for G a Lie group, or loops spaces LBG . These
can often be computed using Algebraic Topology (and a lot of work
by Markus). The bordism groups of the point are

n 0 1 2 3 4 5 6 7 8 9

ΩSpin
n (∗) Z Z2 Z2 0 Z 0 0 0 Z2 Z2

2

The homology H∗(BG ,Z) and H∗(BG ,Z2) is known for classical G .
Using the A–H spectral sequence H̃p(BG ,Ω

B
q (∗)) ⇒ Ω̃B

p+q(BG ), we
can prove for example that B SU(m), m ⩾ 5 has reduced spin bordism

n 0,1,2,3,5,7 4 6 8 9

Ω̃Spin
n (B SU(m)) 0 Z Z Z3 Z2

We can give explicit basis elements for the groups, and describe

the isomorphisms explicitly, e.g. Ω̃Spin
8 (B SU(m))

∼=−→Z3 is

[X ,P] 7−→
(∫

X [
c4(P)
6 − c2(P)2

12 − p1(TX )c2(P)
24 ],

∫
X c2(P)

2,
∫
X c4(P)

)
.
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6. Picard groupoids and bordism categories

Definition

A Picard groupoid (G,⊗,1) is a groupoid G with a monoidal
structure ⊗ : G ⊗ G → G which is symmetric and associative up to
coherent natural isomorphisms (not included in the notation), and
an identity object 1 such that 1⊗ X ∼= X ⊗ 1 ∼= X for all X ∈ G,
such that for every X ∈ G there exists Y ∈ G with X ⊗ Y ∼= 1.

Picard groupoids are classified up to equivalence by triples
(π0, π1, q), where π0, π1 are abelian groups and q : π0 → π1 is a
map which is both linear and quadratic. To (G,⊗,1) we associate
the abelian groups π0 of isomorphism classes [X ] of objects X ∈ G
with multiplication [X ] · [Y ] = [X ⊗ Y ], and π1 = AutG(1).
Symmetric monoidal functors F : (G,⊗,1) → (G′,⊗,1′) are
functors F : G → G′ preserving all the structure. They are
classified up to monoidal natural isomorphism by group morphisms
f0 : π0 → π′0 and f1 : π1 → π′1 with q′ ◦ f0 = f1 ◦ q.
We could call Picard groupoids abelian 2-groups, as they are a
2-categorical notion of abelian group.
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Our theory uses special examples of Picard groupoids we call
bordism categories. Here is an example.

Example

Let G be a Lie group, and n ⩾ 0. Define a Picard groupoid
BordSpinn (BG ) to have objects pairs (X ,P) of a compact spin
n-manifold X and a principal G -bundle P → X , and morphisms
[Y ,Q] : (X0,P0) → (X1,P1) to be equivalence classes [Y ,Q] of a
compact spin (n + 1)-manifold Y with boundary ∂Y = −X0 ⨿ X1

and a principal G -bundle Q → Y with Q|∂Y = P0 ⨿ P1, where the
equivalence involves (n + 2)-dimensional bordisms. The
composition of [Y ,Q] : (X0,P0) → (X1,P1) and
[Y ′,Q ′] : (X1,P1) → (X2,P2) is [Y ⨿X1 Y

′,Q ⨿P1 Q
′]. The

monoidal structure is disjoint union,
(X ,P)⊗ (X ′,P ′) = (X ⨿ X ′,P ⨿ P ′).

The classifying data is π0 = ΩSpin
n (BG ), π1 = ΩSpin

n+1(BG ), and

q : [X ,P] 7→ [X × S1nb,P × S1nb], where S1nb is S1 with the

non-bounding spin structure. Here ΩSpin
∗ (−) is spin bordism, a

generalized homology theory, and BG is the classifying space.
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Example

The groupoid Z2-tor of Z2-torsors is a Picard groupoid with
π0 = 0 and π1 = Z2.
The groupoid s-Z2-tor of super Z2-torsors (Z2-graded Z2-torsors)
is a Picard groupoid with π0 = π1 = Z2 and q = id : Z2 → Z2.

Example

(a) Suppose n ≡ 1, 7 mod 8. We can define a symmetric monoidal

functor F : BordSpinn (BG ) → Z2-tor which maps (X ,P) to the
Z2-torsor of orientations onAP defined using theDirac operator /DX .
(b) Suppose n ≡ 0 mod 8. We can define a symmetric monoidal

functor F : BordSpinn (BG ) → s-Z2-tor which maps (X ,P) to the
Z2-torsor of orientations on AP defined using the positive Dirac
operator /D

+
X , Z2-graded in degree ind( /D

+
X ⊗ ad(P)) mod 2.

Thus we can encode orientations of moduli spaces in orientation
functors between Picard groupoids. This is not obvious. It depends
on a bordism-invariance property of indices and determinants of
Dirac operators proved in Upmeier arXiv:2312.06818.
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Example

Let (X , g) be a compact spin n-manifold, and G be a Lie group.

Define a subcategory BordX (BG ) of BordSpinn (BG ) to have
objects (X ,P) for X the fixed spin n-manifold and varying P, and
to have morphisms [X × [0, 1],Q] for Y = X × [0, 1] the fixed spin
(n + 1)-manifold with boundary, and varying Q. Write

inc : BordX (BG ) ↪→ BordSpinn (BG ) for the inclusion functor.
Suppose n ≡ 1, 7, 8 mod 8, and write
FX = F ◦ inc : BordX (BG ) → Z2-tor, where for n ≡ 8 we
compose with s-Z2-tor → Z2-tor forgetting Z2-gradings.

Then a choice of orientation for BP for each principal G -bundle
P → X , invariant under isomorphisms P ∼= P ′, is equivalent to a
natural isomorphism η : FX ⇒ 1X , where 1X is the constant
functor with value Z2. Hence, BP is orientable for every principal
G -bundle P → X if and only if the functor
FX : BordX (BG ) → Z2-tor is trivializable.
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To see why this is true, note that BP = AP/GP , where AP is the
infinite-dimensional affine space of connections on P → X , and
GP = Aut(P) is the gauge group. Here AP is always orientable,
with exactly two orientations, as it is contractible. So BP is
orientable if and only if the group GP acts trivially on the Z2-torsor
of orientations on AP .
Given an element γ ∈ Aut(P), we can define a morphism

[X × [0, 1],Q] : (X ,P) → (X ,P) in BordX (BG ) ⊂ BordSpinn (BG )
by taking Q to be P × [0, 1] with identifications
idP : P × {0} → P and γ : P × {1} → P. All morphisms
[X × [0, 1],Q] : (X ,P) → (X ,P) are of this form. So GP acts
trivially on the Z2-torsor of orientations on AP if and only if FX is
trivializable over the object (X ,P).
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From this we easily deduce:

Theorem 8 (Joyce–Upmeier)

(a) Let n ≡ 1, 7, 8 mod 8, and X be a compact spin n-manifold
and G a Lie group. Then BP is orientable for all principal
G-bundles P → X if and only if for all classes [X , ϕ] ∈ ΩSpin

n (LBG )
with domain X we have f1 ◦ ξ([X , ϕ]) = 0 in Z2, where

ΩSpin
n (LBG )

ξ // ΩSpin
n+1(BG )

f1 // Z2.

with ξ : [X , ϕ] 7→ [X×S1b, ϕ′] and f1 the classifying morphism for FG .

(b) BP is orientable for all compact spin n-manifolds X and all

principal G-bundles P → X iff f1 ◦ ξ ≡ 0 : ΩSpin
n (LBG ) → Z2.

We can use Algebraic Topology and spectral sequences to compute
bordism groups such as ΩSpin

n (BG ),ΩSpin
n (LBG ), and morphisms

such as ξ : ΩSpin
n (LBG ) → ΩSpin

n+1(BG ), and f0 : Ω
Spin
n (BG ) → Z2

and f1 : Ω
Spin
n+1(BG ) → Z2 which classify orientation functors. Then

we can use these to prove theorems on orientability and canonical
orientations.
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Cohomology bordism categories

For R a commutative ring and 0 ⩽ k ⩽ n, define the cohomology
bordism category BordB

n (K (R, k)) to have objects (X , γ) where X
is a compact n-manifold with B-structure with ∂X = ∅ and
γ ∈ C k(X ,R) with dγ = 0 is a the k-cocycle in cohomology of X
over R, and to have morphisms [Y , δ] : (X0, γ0) → (X1, γ1) to be
bordism/cohomology classes of pairs (Y , δ) of a compact
(n + 1)-manifold Y with B-structure with boundary
∂Y = −X0 ⨿ X1 and a k-cochain δ ∈ C k(Y ,R) with δ|∂Y = −γ0 + γ1.
Then BordB

n (K (R, k)) has invariants πi = ΩB
n+i (K (R, k)) for

i = 0, 1, where K (R, k) is the Eilenberg–MacLane space classifying
Hk(−,R). We can often compute ΩB

∗ (K (R, k)).
There is a 16-connected map BE8 → K (Z, 4), so
ΩB
n (BE8) ∼= ΩB

n (K (Z, 4)) for n < 16. Thus we can define a
symmetric monoidal functor BordB

n (BE8) → BordB
n (K (Z, 4)),

which is an equivalence of categories for n ⩽ 14.
In this way we translate orientability questions for E8 gauge theory
into problems in cohomology and cohomology operations, such as
Steenrod squares.
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The case of G = E8 and K (Z, 4)
As we have an equivalence BordB

n (BE8) → BordB
n (K (Z, 4)) for

n ⩽ 14, for G = E8 we may replace BE8 with K (Z, 4). Our
calculations show that when n = 7, f1 ◦ ξ ≡ 0 : ΩSpin

7 (LK (Z, 4))
→ Z2. Thus BP is orientable for all principal E8-bundles P → X .
However, when n = 8, f1 ◦ ξ ̸≡ 0 : ΩSpin

8 (LK (Z, 4)) → Z2.

Elements of ΩSpin
8 (LK (Z, 4)) may be written [X , α] for X a

compact spin n-manifold and α ∈ H4(X × S1,Z). Then
α = β ⊠ Pd[S1] + γ ⊠ 1S1 for β ∈ H3(X ,Z) and γ ∈ H4(X ,Z),
and f1 ◦ ξ([X , α]) =

∫
X β̄ ∪ Sq2(β̄), where β̄ ∈ H2(X ,Z2) is the

mod 2 reduction of β and Sq2(β̄) is its Steenrod square.
Thus by Theorem 8(a), if X is a compact spin 8-manifold, then BP

is orientable for all principal E8-bundles P → X if and only if the
following condition holds:

(*) Let α ∈ H3(X ,Z), and write ᾱ ∈ H3(X ,Z2) for its mod 2
reduction, and Sq2(ᾱ) ∈ H5(X ,Z2) for its Steenrod square.
Then

∫
X ᾱ ∪ Sq2(ᾱ) = 0 in Z2 for all α ∈ H3(X ,Z).
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Using ‘complex type’ morphisms, we deduce that if (∗) holds then
BP is orientable for all G -bundles P → X for any G on the list

E8, E7, E6, G2, Spin(3), SU(m), U(m), Spin(2m). (3)

Definition

Let X be a compact spin n-manifold for n = 7 or 8. A flag
structure on X is a natural isomorphism ζ in the diagram

BordSpinX (K (Z, 4))
	� ζinc��

1X

// Z2-tor

BordSpinn (K (Z, 4))
FK(Z,4) // Z2-tor or Z2-tor.

forget Z2-grading
OO

If n = 7, flag structures on X always exist.
If n = 8, flag structures on X exist iff X satisfies condition (∗).
If X has a flag structure, then we can construct canonical
(normalized) orientations on BP for all G -bundles P → X for any
G on the list (3).
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