Introduction to Differential Geometry

Lecture 3 of 10: Tensors

Dominic Joyce, Oxford University
September 2019
2019 Nairobi Workshop in Algebraic Geometry
These slides available at
http://people.maths.ox.ac.uk/~joyce/

Plan of talk:
(3) Tensors
(3.1) Some linear algebra
3.2 Operations on vector bundles; tensors
(3.3 Index notation for tensors
(3.4) The Lie bracket of vector fields
3.5 Exponentiating vector fields
Tensors
3. Tensors and exterior forms
Execior foms
3.1. Some linear algebra

We start with a reminder on some basic operations on vector spaces. For simplicity, all vector spaces will be finite-dimensional over \mathbb{R}. If U is a vector space, the dual vector space is $U^{*}=\operatorname{Hom}(U, \mathbb{R})$, with $\operatorname{dim} U^{*}=\operatorname{dim} U$. If u^{1}, \ldots, u^{m} is a basis of U, there is a dual basis u_{1}, \ldots, u_{m} of U^{*}, with $u_{j}\left(u^{i}\right)=\delta_{i j}$ for $i, j=1, \ldots, m$. We can identify $U=\left(U^{*}\right)^{*}$.
If U, V are vector spaces, the direct sum is

$$
U \oplus V=U \times V=\{(u, v): u \in U, v \in V\}
$$

It is a vector space of $\operatorname{dimension} \operatorname{dim} U+\operatorname{dim} V$. If u^{1}, \ldots, u^{m} and v^{1}, \ldots, v^{n} are bases of U, V, then $u^{1}, \ldots, u^{m}, v^{1}, \ldots, v^{n}$ is a basis of $U \oplus V$. So we can add vector spaces. Direct sum is associative and commutative, $U \oplus V=V \oplus U, U \oplus(V \oplus W)=(U \oplus V) \oplus W$.

We can also multiply vector spaces. For U, V vector spaces, the tensor product $U \otimes V$ is a natural vector space with $\operatorname{dim}(U \otimes V)=\operatorname{dim} U \cdot \operatorname{dim} V$. There is a bilinear operation

$$
\otimes: U \times V \longrightarrow U \otimes V, \quad(u, v) \longmapsto u \otimes v
$$

If u^{1}, \ldots, u^{m} and v^{1}, \ldots, v^{n} are bases of U, V, then $\left\{u^{i} \otimes v^{j}: i=1, \ldots, m, j=1, \ldots, n\right\}$ is a basis of $U \otimes V$. Formally, we may define

$$
U \otimes V=\left\{\text { bilinear maps } \alpha: U^{*} \times V^{*} \longrightarrow \mathbb{R}\right\}
$$

and for $u \in U, v \in V$, define $u \otimes v \in U \otimes V$ to be the bilinear map

$$
u \otimes v: U^{*} \times V^{*} \longrightarrow \mathbb{R}, \quad u \otimes v:(\alpha, \beta) \longmapsto \alpha(u) \cdot \beta(v) .
$$

Tensor products are associative and commutative and distributive over direct sum, $U \otimes V=V \otimes U, U \otimes(V \otimes W)=(U \otimes V) \otimes W$, $U \otimes(V \oplus W)=(U \otimes V) \oplus(U \otimes W)$, just as you would expect.

Tensors
 Exterior forms
 Symmetric and exterior (antisymmetric) products

Let V be a vector space. Then we can form the n-fold tensor $\ulcorner n$ copies \urcorner product $\bigotimes^{n} V=V \otimes \cdots \otimes V$. The symmetric group S_{n} acts on $\bigotimes^{n} V$ by permutations on the n factors, so that $\sigma \in S_{n}$ acts by

$$
\sigma: v_{1} \otimes \cdots \otimes v_{n} \longmapsto v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}
$$

for $v_{1}, \ldots, v_{n} \in V$. The $n^{t h}$ symmetric power $S^{n} V$ is the subspace of $\bigotimes^{n} V$ invariant under S_{n}, with $\operatorname{dim} S^{n} V=\binom{\operatorname{dim} V+n-1}{n}$

$$
S^{n} V=\left\{\boldsymbol{v} \in \bigotimes^{n} V: \sigma(\boldsymbol{v})=\boldsymbol{v} \text { for all } \sigma \in S_{n}\right\}
$$

The $n^{\text {th }}$ exterior power $\Lambda^{n} V$ is the subspace of $\otimes{ }^{n} V$ anti-invariant under S_{n}, with $\operatorname{dim} \Lambda^{n} V=\left(\begin{array}{c}\operatorname{dim}_{n} V\end{array}\right)$

$$
\Lambda^{n} V=\left\{\boldsymbol{v} \in \bigotimes^{n} V: \sigma(\boldsymbol{v})=\operatorname{sign}(\sigma) \boldsymbol{v} \text { for all } \sigma \in S_{n}\right\}
$$

For $n=2$ we have $\otimes^{2} V=S^{2} V \oplus \Lambda^{2} V$.
We can identify $\bigotimes^{2} \mathbb{R}^{n}$ with $n \times n$ matrices, $S^{2} \mathbb{R}^{n}$ with symmetric matrices, and $\Lambda^{2} \mathbb{R}^{n}$ with antisymmetric matrices.

There are projections $\Pi^{S}: \bigotimes^{n} V \rightarrow S^{n} V$ and $\Pi^{\Lambda}: \otimes^{n} V \rightarrow \Lambda^{n} V$ by symmetrization and antisymmetrization, given by

$$
\Pi^{S}(\boldsymbol{v})=\frac{1}{n!} \sum_{\sigma \in S_{n}} \sigma(\boldsymbol{v}), \quad \Pi^{\wedge}(\boldsymbol{v})=\frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \sigma(\boldsymbol{v})
$$

The symmetric product \odot is tensor product \otimes followed by symmetrization Π^{S}, so for example $v_{1} \odot \cdots \odot v_{n}=\Pi^{S}\left(v_{1} \otimes \cdots \otimes v_{n}\right)$ for $v_{1}, \ldots, v_{n} \in V$.
The exterior product or wedge product \wedge is tensor product \otimes followed by antisymmetrization Π^{\wedge}, so for example we have $\wedge: \Lambda^{m} V \times \Lambda^{n} V \rightarrow \Lambda^{m+n} V, \alpha \wedge \beta=\Pi^{\wedge}(\alpha \otimes \beta)$.
Both \odot, \wedge are associative. We have $\beta \odot \alpha=\alpha \odot \beta$ and $\beta \wedge \alpha=(-1)^{\operatorname{deg} \alpha \operatorname{deg} \beta} \alpha \wedge \beta$.

3.2. Operations on vector bundles; tensors

Now let X be a smooth manifold, and as in $\S 1.5$ consider vector bundles $E \rightarrow X, F \rightarrow X$, so that for all $x \in X$ the fibres E_{X}, F_{X} are vector spaces. The operations on vector spaces in $\S 3.1$ all make sense for vector bundles. So we can form the dual vector bundle E^{*} with $\operatorname{rank} E^{*}=\operatorname{rank} E$ and fibres $\left(E^{*}\right)_{x}=\left(E_{X}\right)^{*}$, the direct sum vector bundle $E \oplus F \rightarrow X$, with $\operatorname{rank}(E \oplus F)=\operatorname{rank} E+\operatorname{rank} F$ and fibres $(E \oplus F)_{x}=E_{x} \oplus F_{x}$, the tensor product bundle $E \otimes F \rightarrow X$, with $\operatorname{rank}(E \otimes F)=\operatorname{rank} E \cdot \operatorname{rank} F$ and fibres $(E \otimes F)_{x}=E_{X} \otimes F_{x}$. Given $E \rightarrow X$, we can form the n-fold tensor product $\bigotimes^{n} E \rightarrow X$, the $n^{\text {th }}$ symmetric power $S^{n} E \rightarrow X$ and the $n^{\text {th }}$ exterior power $\Lambda^{n} E \rightarrow X$, with fibres $\bigotimes^{n}\left(E_{x}\right), S^{n}\left(E_{x}\right), \Lambda^{n}\left(E_{x}\right)$.
We can take direct sums and tensor products of sections: if $e \in C^{\infty}(E), f \in C^{\infty}(F)$ then $e \oplus f \in C^{\infty}(E \oplus F)$, and so on.

$7 / 34$ Dominic Joyce, Oxford University Lecture 3: Tensors

As in $\S 2.1$, any manifold X has two natural vector bundles, the tangent bundle $T X \rightarrow X$ and cotangent bundle $T^{*} X \rightarrow X$. So we can make many more bundles by direct sums, tensor products, symmetric products, and exterior products, of $T X, T^{*} X$. The tensor bundles on X are $\bigotimes^{k} T X \otimes \bigotimes^{\prime} T^{*} X$ for $k, l \geqslant 0$ (where if $k=0$ or $I=0$ we omit that term). They are vector bundles on X, of $\operatorname{rank}(\operatorname{dim} X)^{k+l}$.
A tensor T on X is a smooth section of some tensor bundle, $T \in C^{\infty}\left(\otimes^{k} T X \otimes \bigotimes^{\prime} T^{*} X\right)$.
This is very general, and includes many interesting geometric structures.

Examples of interesting classes of tensors

Example

A vector field v on X is a section of $T X$. This is a tensor with $k=1$ and $I=0$.

Example

An l-form for $I \geqslant 0$, or exterior form, on X, is a section of $\Lambda^{\prime} T^{*} X$. As rank $\Lambda^{\prime} T^{*} X=(\underset{1}{\operatorname{dim} X})$, this is only nonzero for $I=0, \ldots, \operatorname{dim} X$. Since $\Lambda^{\prime} T^{*} X$ is a subbundle of $\otimes^{\prime} T^{*} X=\otimes^{0} T X \otimes \otimes^{\prime} T^{*} X, I$-forms are tensors with $k=0$.

Example

A Riemannian metric g is a smooth section of $S^{2} T^{*} X$ such that $\left.g\right|_{x} \in S^{2} T_{x}^{*} X$ is a positive definite quadratic form on $T_{x} X$ for all $x \in X$. As $S^{2} T^{*} X \subset \bigotimes^{2} T^{*} X$, this is a tensor with $k=0, I=2$.

3.3. Index notation for tensors

Here is some useful notation for tensors, introduced by physicists. Let X be an n-manifold, and $T \in C^{\infty}\left(\otimes^{k} T X \otimes \otimes^{\prime} T^{*} X\right)$ a tensor of type (k, l) on X. Let $\left(x^{1}, \ldots, x^{n}\right)$ be local coordinates on an open set $U \subseteq X$. (For consistent notation, we use superscripts x^{i} rather than subscripts $x_{i} ; x^{i}$ means the $i^{\text {th }}$ variable, not a power of x.) Then $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}$ are a basis of sections of $T X$ on U, and $\mathrm{d} x^{1}, \ldots, \mathrm{~d} x^{n}$ a basis of sections of $T^{*} X$ on U. Hence we may write

$$
\begin{equation*}
\left.T\right|_{U}=\sum_{\substack{a_{1}, \ldots, a_{k}=1, \ldots, n \\ b_{1}, \ldots, b_{l}=1, \ldots, n}} T_{b_{1} b_{2} \cdots b_{l}}^{a_{1} a_{2} \cdots a_{k}} \frac{\partial}{\partial x^{a_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{a_{k}}} \otimes \mathrm{~d} x^{b_{1}} \otimes \cdots \otimes \mathrm{~d} x^{b_{l}} . \tag{3.1}
\end{equation*}
$$

Here $T_{b_{1} b_{2} \cdots b_{l}}^{a_{1} a_{2} \cdots a_{k}}: U \rightarrow \mathbb{R}$ is a smooth function for all values of $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l} \in\{1, \ldots, n\}$.

Thus, on U the tensor T is uniquely determined by the real functions $T_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}$ for all a_{i}, b_{j}, and vice versa. So we can identify T with such n^{k+I}-tuples of functions $\left(T_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}}\right)_{b_{1}, \ldots, b_{b}=1, \ldots, n}^{a_{1}, \ldots, a_{k}=1, \ldots, n}$, which we can think of as a kind of generalized matrix.
If $\left(\tilde{x}^{1}, \ldots, \tilde{x}^{n}\right)$ is another coordinate system on $\tilde{U} \subseteq X$, and $\tilde{T}_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}}$ the corresponding functions from $\left.T\right|_{\tilde{u}}$, then using $\frac{\partial}{\partial \tilde{x}^{i}}=\sum_{j=1}^{n} \frac{\partial x^{j}}{\partial \tilde{x}^{i}} \cdot \frac{\partial}{\partial x^{j}}, \mathrm{~d} \tilde{x}^{i}=\sum_{j=1}^{n} \frac{\partial \tilde{x}^{i}}{\partial x^{j}} \cdot \mathrm{~d} x^{j}$, on $U \cap \tilde{U}$ we have

$$
\begin{equation*}
\tilde{T}_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}}=\sum_{\substack{c_{1}, \ldots, c_{k}=1, \ldots, n \\ d_{1}, \ldots, d_{l}=1, \ldots, n}} \frac{\partial \tilde{x}^{a_{1}}}{\partial x^{c_{1}}} \cdots \frac{\partial \tilde{x}^{a_{k}}}{\partial x^{c_{k}}} \cdot \frac{\partial x^{d_{1}}}{\partial \tilde{x}^{b_{1}}} \cdots \frac{\partial x^{d_{l}}}{\partial \tilde{x}^{b_{l}}} \cdot T_{d_{1} \cdots d_{l}}^{c_{1} \cdots c_{k}} \tag{3.2}
\end{equation*}
$$

This tells you how the tuples $\left(T_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}}\right)_{b_{1}, \ldots, b_{l}=1, \ldots, n}^{a_{1}, \ldots, a_{k}=1, \ldots, n}$ transform under change of coordinates.
Upper indices T^{a} are called contravariant (vector) indices. Lower indices T_{b} are called covariant (1-form) indices.

11 / 34	Dominic Joyce, Oxford University	Lecture 3: Tensors
	Tensors Exterior forms	Some linear algebra Operations on vector bundles; tensors Index notation for tensors The Lie bracket of vector fields Exponentiating vector fields

In the index notation, we write the tensor T (on all of X, not just on one coordinate chart $U \subseteq X$) as $T_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}}$. We could interpret this in several ways. We could view it just as a formal symbol, telling us that T is a section of $\bigotimes^{k} T X \otimes \bigotimes^{\prime} T^{*} X$. Or, we could understand it to mean 'every time we have coordinates (x^{1}, \ldots, x^{n}) on $U \subseteq X$, then we get an n^{k+1}-tuple $\left(T_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}}\right)_{b_{1}, \ldots, b_{l}=1, \ldots, n}^{a_{1}, \ldots, a_{k}=1, \ldots, n}$ of smooth functions $T_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}}: U \rightarrow \mathbb{R}$ as in (3.1), and under change of coordinates, these n^{k+I}-tuples transform as in (3.2)'.

Examples of tensor notation

Example

A vector field v on X is written v^{a}. In coordinates $\left(x^{1}, \ldots, x^{n}\right)$ this means functions $\left(v^{1}, \ldots, v^{n}\right)$ with $v=v^{1} \frac{\partial}{\partial x^{1}}+\cdots+v^{n} \frac{\partial}{\partial x^{n}}$.

Example

An l-form on X is a tensor $\alpha_{b_{1} \cdots b_{l}}$ with $\alpha_{b_{1} \cdots b_{i-1} b_{j} b_{i+1} \cdots b_{j-1} b_{i} b_{j+1} \cdots b_{l}}=-\alpha_{b_{1} \cdots b_{l}}$ for all $1 \leqslant i<j \leqslant l$. So a 2-form is $\alpha_{a b}$ with $\alpha_{b a}=-\alpha_{a b}$.

Example

A Riemannian metric is a tensor $g_{a b}$ with $g_{a b}=g_{b a}$, with $\left(g_{a b}\right)_{a, b=1, \ldots, n}$ a positive definite $n \times n$ matrix of functions.
Index notation makes it easy to describe (anti)symmetries of tensors, by permuting indices.

As $T X, T^{*} X$ are dual, there is a dual pairing $T X \times T^{*} X \rightarrow \mathbb{R}$.
This induces vector bundle morphisms
$\bigotimes^{k+1} T X \otimes \otimes^{\prime+1} T^{*} X \rightarrow \bigotimes^{k} T X \otimes \otimes^{\prime} T^{*} X$ by contracting together a $T X$ and a $T^{*} X$ factor (need to specify which factors).
In index notation, this is done by the Einstein summation convention: if an index c occurs twice in a tensor in a formula, once as an upper and once as a lower index, then (thinking in terms of tuples of functions) we are to sum the index c from $1, \ldots, n=\operatorname{dim} X$, even though the sum $\sum_{c=1}^{n}$ is not written.

Example

Let $v \in C^{\infty}(T X)$ be a vector field, and $\alpha \in C^{\infty}\left(T^{*} X\right)$ a 1-form.
In index notation we write $v=v^{a}, \alpha=\alpha_{b}$.
Then $v^{a} \alpha_{b}$ in index notation means $v \otimes \alpha \in C^{\infty}\left(T X \otimes T^{*} X\right)$. But $v^{a} \alpha_{a}$ means the smooth function $\alpha(v): X \rightarrow \mathbb{R}$. In coordinates, $v^{a} \alpha_{a}$ means $v^{1} \alpha_{1}+\cdots+v^{n} \alpha_{n}$.

Example

Let $v, w \in C^{\infty}(T X)$ be vector fields, and $g \in C^{\infty}\left(S^{2} T^{*} X\right)$ a Riemannian metric. Then $v=v^{a}, w=w^{b}, g=g_{a b}$ in index notation, and $g_{a b} v^{a} w^{b}$ means the function $g(v, w)$, the inner product of v, w using g, and $g_{a b} v^{a} v^{b}$ means the function $|v|^{2}$.

In the next sections we will discuss various ways in which we can differentiate tensors, or more general sections of vector bundles.
One of the simplest of these is the Lie bracket of vector fields.

Definition

Let X be a manifold, and $v, w \in C^{\infty}(T X)$ be vector fields on X. We will define a vector field $[v, w] \in C^{\infty}(T X)$ called the Lie bracket of v and w. In local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ on $U \subseteq X$, this is given in index notation by the formula

$$
\begin{equation*}
[v, w]^{a}=v^{b} \frac{\partial w^{a}}{\partial x^{b}}-w^{b} \frac{\partial v^{a}}{\partial x^{b}} . \tag{3.3}
\end{equation*}
$$

That is, if $v=v^{1} \frac{\partial}{\partial x^{1}}+\cdots+v^{n} \frac{\partial}{\partial x^{n}}$ and $w=w^{1} \frac{\partial}{\partial x^{1}}+\cdots+w^{n} \frac{\partial}{\partial x^{n}}$, then $[v, w]=u^{1} \frac{\partial}{\partial x^{1}}+\cdots+u^{n} \frac{\partial}{\partial x^{n}}$, where

$$
\begin{equation*}
u^{a}=\sum_{b=1}^{n} v^{b} \frac{\partial w^{a}}{\partial x^{b}}-w^{b} \frac{\partial v^{a}}{\partial x^{b}} . \tag{3.4}
\end{equation*}
$$

Exercise 3.1

Show that the Lie bracket $[v, w]$ in (3.3) is well-defined. That is, as a vector field it is independent of the choice of local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ used to define it.

Proposition 3.2

The Lie bracket of vector fields satisfies $[u, v]=-[v, u]$ and

$$
\begin{equation*}
[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0 \tag{3.5}
\end{equation*}
$$

for all vector fields $u, v, w \in C^{\infty}(T X)$.
Equation (3.5) is called the Jacobi identity. It means that vector fields $C^{\infty}(T X)$ are an (infinite-dimensional) Lie algebra.

17 / 34	Dominic Joyce, Oxford University	Lecture 3: Tensors
	Tensors Exterior forms	Some linear algebra Operations on vector bundles; tensors Index notation for tensors The Lie bracket of vector fields Exponentiating vector fields
Lie derivatives of tensors		

Definition

Let X be a manifold, $v \in C^{\infty}(T X)$ be a vector field, and $T \in C^{\infty}\left(\bigotimes^{k} T X \otimes \otimes^{\prime} T^{*} X\right)$ a tensor. We will define a tensor $\mathcal{L}_{v} T \in C^{\infty}\left(\otimes^{k} T X \otimes \otimes^{\prime} T^{*} X\right)$ called the Lie derivative of T along v. In local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ on $U \subseteq X$, this is given in index notation by the formula

$$
\begin{align*}
\left(\mathcal{L}_{v} T\right)_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}}=v^{c} \frac{\partial}{\partial x^{c}} T_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}} & -\sum_{i=1}^{k} T_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{i-1} c a_{i+1} \cdots a_{k}} \frac{\partial v^{a_{j}}}{\partial x^{c}} \tag{3.6}\\
& +\sum_{j=1}^{l} T_{b_{1} \cdots b_{j-1} c b_{j+1} \cdots b_{l}}^{a_{1} \cdots a_{k}} \frac{\partial v^{c}}{\partial x^{b_{j}}} .
\end{align*}
$$

This is well-defined, i.e. independent of the choice of coordinates $\left(x^{1}, \ldots, x^{n}\right)$. If $T=w$ is a vector field then $\mathcal{L}_{v} w=[v, w]$.

We can think of $\mathcal{L}_{V} T$ as 'the derivative of T in the direction v '. But note that (3.6) involves derivatives of v as well as T, so $\mathcal{L}_{v} T$ is not pointwise linear in v. That is, in general $\mathcal{L}_{f v+g w} T \neq f \mathcal{L}_{v} T+g \mathcal{L}_{w} T$ for vector fields v, w and functions $f, g: X \rightarrow \mathbb{R}$.

Example

In coordinates $\left(x^{1}, \ldots, x^{n}\right)$, take $v=\frac{\partial}{\partial x^{i}}$, so that v^{1}, \ldots, v^{n} are $v^{a}=1$ for $a=i$ and $v^{a}=0$ otherwise. Then (3.6) becomes

$$
\left(\mathcal{L}_{v} T\right)_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}}=\frac{\partial}{\partial x^{i}} T_{b_{1} \cdots b_{l}}^{a_{1} \cdots a_{k}},
$$

as you would expect.
19/34 Dominic Joyce Oxford University Lecture 3: Tensors

Let X be a compact manifold (for simplicity), and $v \in C^{\infty}(T X)$ a vector field. A flow-line of v is a smooth map $\gamma: \mathbb{R} \rightarrow X$ satisfying the differential equation $\frac{\mathrm{d} \gamma}{\mathrm{d} t}(t)=\left.v\right|_{\gamma(t)} \in T_{\gamma(t)} V$ for all $t \in \mathbb{R}$. Results on o.d.e.s imply that for each $x \in X$, there is a unique flow-line γ_{x} with $\gamma_{x}(0)=x$. Here we need X compact so that flow-lines cannot 'fall off the edge of X ', so that γ could only be defined on an open interval, not all of \mathbb{R}. (Consider $X=(0,1)$, noncompact and $v=\frac{\partial}{\partial x}$. Then γ is only defined on $(-x, 1-x)$.) Define $\exp (t v): X \rightarrow X$ for $t \in \mathbb{R}$ by $\exp (t v): x \mapsto \gamma_{x}(t)$, for γ_{x} the flow-line of v with $\gamma_{x}(0)=x$ as above. Then $\exp (t v)$ is a diffeomorphism of X depending smoothly on t, with $\exp (0)=\mathrm{id}_{X}$ and $\exp (s v) \circ \exp (t v)=\exp ((s+t) v)$ for $s, t \in \mathbb{R}$.

If $T \in C^{\infty}\left(\otimes^{k} T X \otimes \otimes^{\prime} T^{*} X\right)$ is a tensor on X, then $\exp (t v)^{*}(T)$ is a tensor depending smoothly on $t \in \mathbb{R}$. One can show that

$$
\mathcal{L}_{V} T=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left[\exp (t v)^{*}(T)\right]\right|_{t=0}
$$

That is, $\mathcal{L}_{V} T$ measures the infinitesimal change of T under the flow of v.

Introduction to Differential Geometry

Lecture 4 of 10: Exterior forms
Dominic Joyce, Oxford University
September 2019
2019 Nairobi Workshop in Algebraic Geometry
These slides available at
http://people.maths.ox.ac.uk/~joyce/

Plan of talk:

4 Exterior forms
4.1 Exterior forms and the de Rham differential
4.2 Homology and cohomology
4.3 Examples

23 / 34

Tensors
Exterior forms

Exterior forms and the de Rham differential Homology and cohomology Examples

4. Exterior forms

4.1. Exterior forms and the de Rham differential

Let X be a manifold, of dimension n. Then we have vector bundles $\Lambda^{k} T^{*} X$ for $k=0,1, \ldots, n$ (note that $\Lambda^{k} T^{*} X=0$ for $k>n$). Sections α of $\Lambda^{k} T^{*} X$ are called k-forms, and form a (generally infinite-dimensional) vector space $C^{\infty}\left(\Lambda^{k} T^{*} X\right)$. In index notation $\alpha=\alpha_{a_{1} \cdots a_{k}}$, and is antisymmetric in the indices a_{1}, \ldots, a_{k} (i.e. if you exchange any two a_{i}, a_{j}, you change the sign).
As in $\S 3.1-\S 3.2$ we have the exterior product (wedge product)

$$
\wedge: C^{\infty}\left(\Lambda^{k} T^{*} X\right) \times C^{\infty}\left(\Lambda^{\prime} T^{*} X\right) \longrightarrow C^{\infty}\left(\Lambda^{k+l} T^{*} X\right)
$$

acting in index notation by

$$
\begin{equation*}
(\alpha \wedge \beta)_{a_{1} \cdots a_{k+1}}=\frac{1}{(k+l)!} \sum_{\sigma \in S_{k+1}} \operatorname{sign}(\sigma) \alpha_{a_{\sigma(1)} \cdots a_{\sigma(k)}} \beta_{a_{\sigma(k+1)} \cdots a_{\sigma(k+l)}} \tag{4.1}
\end{equation*}
$$

Pullback of forms by smooth maps

Let $f: X \rightarrow Y$ be a smooth map of manifolds. As in $\S 2.2$ we have $T f: T X \rightarrow T Y$, which can be interpreted as a vector bundle morphism $\mathrm{d} f: T X \rightarrow f^{*}(T Y)$ on X, with a dual morphism $(\mathrm{d} f)^{*}: f^{*}\left(T^{*} Y\right) \rightarrow T^{*} X$. Taking exterior powers gives vector bundle morphisms on X

$$
\Lambda^{k}(\mathrm{~d} f)^{*}: f^{*}\left(\Lambda^{k} T^{*} Y\right) \longrightarrow \Lambda^{k} T^{*} X
$$

Let $\alpha \in C^{\infty}\left(\Lambda^{k} T^{*} Y\right)$ be a k-form on Y. Then we have a pullback $f^{-1}(\alpha) \in C^{\infty}\left(f^{*}\left(\Lambda^{k} T^{*} Y\right)\right)$ on X. Define the pullback k-form to be

$$
f^{*}(\alpha)=\Lambda^{k}(\mathrm{~d} f)^{*}\left[f^{-1}(\alpha)\right] \in C^{\infty}\left(\Lambda^{k} T^{*} X\right)
$$

Pullback is (contravariantly) functorial, $(g \circ f)^{*}(\beta)=f^{*} \circ g^{*}(\beta)$ for smooth $g: Y \rightarrow Z$ and $\beta \in C^{\infty}\left(\Lambda^{k} T^{*} Z\right)$.
If $X \subseteq Y$ is a submanifold, we write $\left.\alpha\right|_{X}$ for $i^{*}(\alpha)$, with $i: X \hookrightarrow Y$ the inclusion.

Definition

The de Rham differential d: $C^{\infty}\left(\Lambda^{k} T^{*} X\right) \longrightarrow C^{\infty}\left(\Lambda^{k+1} T^{*} X\right)$ for $k \geqslant 0$ is defined in local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ on $U \subseteq X$, using index notation, by the formula

$$
\begin{equation*}
(\mathrm{d} \alpha)_{a_{1} \cdots a_{k+1}}=\sum_{i=1}^{k+1}(-1)^{i-1} \frac{\partial}{\partial x^{a_{i}}} \alpha_{a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{k+1}} . \tag{4.2}
\end{equation*}
$$

Exercise 4.1

Show that the de Rham differential is well-defined. That is, as a $k+1$-form, $\mathrm{d} \alpha$ is independent of the choice of local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ used to define it.

Properties of the de Rham differential

From equations (4.1) and (4.2) we can prove:

Proposition 4.2

For all forms α, β, γ on X, the de Rham differential satisfies

$$
\begin{equation*}
\mathrm{d} \circ \mathrm{~d} \alpha=0, \quad \mathrm{~d}(\beta \wedge \gamma)=(\mathrm{d} \beta) \wedge \gamma+(-1)^{\operatorname{deg} \beta} \beta \wedge(\mathrm{d} \gamma) \tag{4.3}
\end{equation*}
$$

Proposition 4.3

Let $f: X \rightarrow Y$ be smooth map of manifolds and $\alpha \in C^{\infty}\left(\wedge^{k} T^{*} Y\right)$. Then

$$
\begin{equation*}
\mathrm{d}\left(f^{*}(\alpha)\right)=f^{*}(\mathrm{~d} \alpha) \tag{4.4}
\end{equation*}
$$

Exterior forms and the de Rham differential
Homology and cohomology
Examples

4.2. Homology and cohomology

A reminder of some algebraic topology: let X be a topological space, and \mathbb{F} a field (for simplicity). Then we can define the homology groups $H_{k}(X, \mathbb{F})$ and cohomology groups $H^{k}(X, \mathbb{F})$ for $k \in \mathbb{N}$, which are vector spaces over \mathbb{F}, with $H^{k}(X, \mathbb{F}) \cong H_{k}(X, \mathbb{F})^{*}$ If $f: X \rightarrow Y$ is continuous there are functorial pushforward maps
$f_{*}: H_{k}(X, \mathbb{F}) \rightarrow H_{k}(Y, \mathbb{F})$ on homology, and pullback maps $f^{*}: H^{k}(Y, \mathbb{F}) \rightarrow H^{k}(X, \mathbb{F})$ on cohomology. There are cup products $\cup: H^{k}(X, \mathbb{F}) \times H^{\prime}(X, \mathbb{F}) \rightarrow H^{k+l}(X, \mathbb{F})$ making $H^{*}(X, \mathbb{F})$ into a supercommutative graded algebra.
If X is a compact, oriented manifold of dimension n, then Poincaré duality says that $H^{k}(X, \mathbb{F}) \cong H_{n-k}(X, \mathbb{F})$.
The Betti numbers of X are $b^{k}(X)=\operatorname{dim} H^{k}(X, \mathbb{R})$.
Homology and cohomology are important topological invariants of a space, one of the most basic things you can compute.

De Rham cohomology

Definition

Let X be a smooth manifold. The de Rham cohomology group
$H_{d \mathrm{~d}}^{k}(X, \mathbb{R})$ of X, for $k=0, \ldots, \operatorname{dim} X$, is

$$
H_{\mathrm{dR}}^{k}(X, \mathbb{R})=\frac{\operatorname{Ker}\left(\mathrm{d}: C^{\infty}\left(\Lambda^{k} T^{*} X\right) \longrightarrow C^{\infty}\left(\Lambda^{k+1} T^{*} X\right)\right)}{\operatorname{Im}\left(\mathrm{d}: C^{\infty}\left(\Lambda^{k-1} T^{*} X\right) \longrightarrow C^{\infty}\left(\Lambda^{k} T^{*} X\right)\right)}
$$

This makes sense as $\mathrm{d} \circ \mathrm{d}=0$, by Proposition 4.2. The second equation of (4.3) implies that we can define a cup product

$$
\begin{aligned}
\cup: H_{d \mathrm{~d}}^{k}(X, \mathbb{R}) \times H_{\mathrm{dR}}^{\prime}(X, \mathbb{R}) & \longrightarrow H_{\mathrm{dR}}^{k+\prime}(X, \mathbb{R}) \\
(\beta+\operatorname{Im} \mathrm{d}) \cup(\gamma+\operatorname{Im} \mathrm{d}) & \longmapsto \beta \wedge \gamma+\operatorname{Imd}
\end{aligned}
$$

which is associative and supercommutative as \wedge is.
If X is compact then $H_{d R}^{k}(X, \mathbb{R})$ is finite-dimensional,

If $f: X \rightarrow Y$ is a smooth map of manifolds then Proposition 4.3 implies that we can define pullback maps

$$
f^{*}: H_{\mathrm{dR}}^{k}(Y, \mathbb{R}) \longrightarrow H_{\mathrm{dR}}^{k}(X, \mathbb{R}), \quad f^{*}(\alpha+\operatorname{Imd})=f^{*}(\alpha)+\operatorname{Imd}
$$

These pullback maps are independent of $f: X \rightarrow Y$ up to smooth (or continuous) deformation. That is, if $g: X \times[0,1] \rightarrow Y$ is smooth and $f_{0}, f_{1}: X \rightarrow Y$ are $f_{0}(x)=g(x, 0), f_{1}(x)=g(x, 1)$ then $f_{0}^{*}=f_{1}^{*}: H_{\mathrm{dR}}^{k}(Y, \mathbb{R}) \rightarrow H_{\mathrm{dR}}^{k}(X, \mathbb{R})$.

Theorem (The de Rham Theorem)

There are natural isomorphisms $H_{\mathrm{dR}}^{k}(X, \mathbb{R}) \cong H^{k}(X, \mathbb{R})$, where $H^{k}(X, \mathbb{R})$ is the $k^{\text {th }}$ real cohomology group of the underlying topological space X. These isomorphisms are compatible with cup products and pullbacks on $H_{\mathrm{dR}}^{*}(-, \mathbb{R})$ and $H^{*}(-, \mathbb{R})$.

Cohomology of products, the Künneth Theorem

Let X, Y be topological spaces, and \mathbb{F} a field. We have a product topological space $X \times Y$ with projections $\pi_{X}: X \times Y \rightarrow X$, $\pi_{Y}: X \times Y \rightarrow Y$.

Theorem (The Künneth Theorem)

For each $k \geqslant 0$ there is an isomorphism

$$
\bigoplus_{i, j \geqslant 0: i+j=k} H^{i}(X, \mathbb{F}) \otimes_{\mathbb{F}} H^{j}(Y, \mathbb{F}) \longrightarrow H^{k}(X \times Y, \mathbb{F})
$$

acting by $\bigoplus_{i+j=k} \alpha^{i} \otimes \beta^{j} \longmapsto \sum_{i+j=k} \pi_{X}^{*}\left(\alpha^{i}\right) \cup \pi_{Y}^{*}\left(\beta^{j}\right)$, for $\alpha^{i} \in H^{i}(X, \mathbb{F})$ and $\beta^{j} \in H^{j}(Y, \mathbb{F})$.

In particular, this applies to de Rham cohomology of products of manifolds.

Tensors Exterior forms and the de Rham differential
Exterior forms

Homology and cohomology
Examples

Betti numbers and the Euler characteristic

Let X be a manifold (usually compact). The Betti numbers of X are $b^{k}(X)=\operatorname{dim} H_{\mathrm{dR}}^{k}(X, \mathbb{R})$. The Euler characteristic is $\chi(X)=\sum_{k=0}^{\operatorname{dim}^{X}}(-1)^{k} b^{k}(X)$. They are topological invariants of X. If X is compact then $H_{\mathrm{dR}}^{k}(X, \mathbb{R})$ is finite-dimensional, so these are well defined. If X is compact and odd-dimensional then $\chi(X)=0$. The Künneth Theorem implies that $\chi(X \times Y)=\chi(X) \chi(Y)$. The Euler characteristic is very important, and crops up in many different places. For example, if X is a compact manifold then the number of zeroes of a generic vector field v on X, counted with multiplicity, is $\chi(X)$.
The Gauss-Bonnet Theorem says that if (X, g) is a compact
Riemannian 2-manifold with Gaussian curvature κ then $\int_{X} \kappa \mathrm{~d} V_{g}=2 \pi \chi(X)$.

4.3. Examples

Example

The de Rham cohomology of \mathbb{R}^{n} for $n \geqslant 0$ is

$$
H_{\mathrm{dR}}^{k}\left(\mathbb{R}^{n}, \mathbb{R}\right)= \begin{cases}\mathbb{R}, & k=0 \\ 0, & k>0\end{cases}
$$

When $n=0$, so that $\mathbb{R}^{0}=*$ is a point, this is immediate from the definitions. To prove it when $n>0$, consider the smooth maps $i: * \rightarrow \mathbb{R}^{n}, i: * \mapsto(0, \ldots, 0)$, and $\pi: \mathbb{R}^{n} \rightarrow *$, $\pi:\left(x_{1}, \ldots, x_{n}\right) \mapsto *$. These induce maps $i^{*}: H_{\mathrm{dR}}^{k}\left(\mathbb{R}^{n}, \mathbb{R}\right) \rightarrow H_{\mathrm{dR}}^{k}(*, \mathbb{R})$ and $\pi^{*}: H_{\mathrm{dR}}^{k}(*, \mathbb{R}) \rightarrow H_{\mathrm{dR}}^{k}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. Since $\pi \circ i=\mathrm{id}: * \rightarrow *$ we see that $i^{*} \circ \pi^{*}$ is the identity on $H_{\mathrm{dR}}^{k}(*, \mathbb{R})$. Conversely, although $i \circ \pi \neq \mathrm{id}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we can smoothly deform $i \circ \pi$ to id, so $\pi^{*} \circ i^{*}$ is the identity on $H_{\mathrm{dR}}^{k}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. Hence i^{*}, π^{*} are inverse, and $H_{\mathrm{dR}}^{k}\left(\mathbb{R}^{n}, \mathbb{R}\right) \cong H_{\mathrm{dR}}^{k}(*, \mathbb{R})$.

Tensors
Exterior forms

Exterior forms and the de Rham differential Homology and cohomology Examples

Example

The de Rham cohomology of \mathcal{S}^{n} for $n>0$ is

$$
H_{\mathrm{dR}}^{k}\left(\mathcal{S}^{n}, \mathbb{R}\right) \cong \begin{cases}\mathbb{R}, & k=0 \text { or } k=n \tag{4.5}\\ 0, & \text { otherwise }\end{cases}
$$

Example

The de Rham cohomology of T^{n} for $n \geqslant 0$ is

$$
H_{\mathrm{dR}}^{k}\left(T^{n}, \mathbb{R}\right) \cong \mathbb{R}^{\binom{n}{k} .}
$$

This follows from (4.5) for $H_{d R}^{*}\left(\mathcal{S}^{1}, \mathbb{R}\right)$ and the Künneth Theorem.
Considering $H_{\mathrm{dR}}^{1}(-, \mathbb{R})$ we see that:

Corollary

There is no diffeomorphism $\mathcal{S}^{n} \cong T^{n}$ for $n \geqslant 2$.
De Rham cohomology is useful for distinguishing manifolds.

