
Lie groups and Lie algebras
More about Lie groups and Lie algebras

Lie groups
Examples of Lie groups
Lie algebras of Lie groups
Fundamental groups

Introduction to Differential Geometry

Lecture 9 of 10: Lie groups and Lie algebras

Dominic Joyce, Oxford University
September 2019

2019 Nairobi Workshop in Algebraic Geometry

These slides available at
http://people.maths.ox.ac.uk/∼joyce/

1 / 38 Dominic Joyce, Oxford University Lecture 9: Lie groups and Lie algebras

Lie groups and Lie algebras
More about Lie groups and Lie algebras

Lie groups
Examples of Lie groups
Lie algebras of Lie groups
Fundamental groups

Plan of talk:

9 Lie groups and Lie algebras

9.1 Lie groups

9.2 Examples of Lie groups

9.3 Lie algebras of Lie groups

9.4 Fundamental groups

2 / 38 Dominic Joyce, Oxford University Lecture 9: Lie groups and Lie algebras



Lie groups and Lie algebras
More about Lie groups and Lie algebras

Lie groups
Examples of Lie groups
Lie algebras of Lie groups
Fundamental groups

9. Lie groups and Lie algebras
9.1. Lie groups

A Lie group is a group which is also a manifold:

Definition

A Lie group is a smooth manifold G equipped with a multiplication
map µ : G × G → G , an inverse map i : G → G , and an identity
element 1 ∈ G , such that µ, i are smooth maps of manifolds, and
µ, i , 1 satisfy the usual group axioms, i.e. for all a, b, c ∈ G we have

µ(a, µ(b, c)) = µ(µ(a, b), c), µ(a, 1) = µ(1, a) = a,

µ(a, i(a)) = µ(i(a), a) = 1.

We usually write µ(a, b) = ab and i(a) = a−1.

Lie groups are very well understood. The theory of Lie groups is a
beautiful area of mathematics.
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Here are some obvious definitions:

Definition

Let G ,H be Lie groups. A morphism Φ : G → H is a smooth map
of manifolds Φ : G → H which is also a morphism of groups, that
is, Φ(ab−1) = Φ(a)Φ(b)−1 for all a, b ∈ G .

Definition

A Lie subgroup G of a Lie group H is a subgroup G ⊆ H which is
also an (embedded) submanifold. Then G is a Lie group.

Definition

Let G be a Lie group and X a manifold. An action of G on X is a
smooth map ρ : G × X → X that is a group action of G on X ,
that is, ρ(a, ρ(b, x)) = ρ(µ(a, b), x) and ρ(1, x) = x for all
a, b ∈ G and x ∈ X .
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In general, to turn some definition in group theory into differential
geometry, you replace groups by Lie groups, sets by manifolds, and
require all maps in the definition to be smooth maps of manifolds.

We can talk about Lie groups using ideas from group theory (e.g.
kernel, abelian), or topology (e.g. compact, connected,
simply-connected, universal cover), or smooth manifolds (e.g.
dimension dimG , submanifold, immersion, submersion). It is a
rich subject. Products of Lie groups are Lie groups.

We can also define complex Lie groups G , with G a complex
manifold, and µ, i holomorphic maps. Lie groups are sometimes
called real Lie groups, in contrast with complex Lie groups.

Symmetry groups of objects in differential geometry are often Lie
groups. For example, the isometry group of the sphere Sn−1 ⊂ Rn

with the round metric gRn |Sn−1 is the orthogonal group O(n).
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9.2. Examples of Lie groups

Example

Rn is a noncompact abelian Lie group, with

µ
(
(x1, . . . , xn), (y1, . . . , yn)

)
= (x1 + y1, . . . , xn + yn),

i
(
(x1, . . . , xn)

)
= (−x1, . . . ,−xn) and 1 = (0, . . . , 0).

Example

T n = Rn/Zn is a compact, abelian Lie group.

Example

Let G be any finite or countable group. Regard G as a
0-dimensional manifold, with the discrete topology (i.e. G is a
disjoint union of points). Then G is a Lie group.
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Example

Write GL(n,R) for the group of invertible n× n matrices
(
Aij

)
n
i ,j=1

over R, under matrix multiplication. Then GL(n,R) is an open

subset of Rn2
(all n × n matrices), defined by the open condition

det
(
Aij

)
6= 0, so GL(n,R) is a manifold. Matrix multiplication and

inverses are smooth maps (consider the explicit formulae), so
GL(n,R) is a noncompact Lie group, of dimension n2.

Example

Let V be a finite-dimensional real vector space, and write GL(V )
for the group of linear isomorphisms α : V → V . Then GL(V ) is a
Lie group isomorphic to GL(n,R) for n = dimV .

Definition

Let G be a Lie group. A representation of G is a finite-dimensional
real vector space V and a Lie group morphism Φ : G → GL(V ).
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Example

Define O(n) to be the subgroup of orthogonal matrices in
GL(n,R), that is, the subgroup of A =

(
Aij

)
n
i ,j=1 satisfying

AtA = In, where At is the transpose of A, and In the n× n identity
matrix. Equivalently, O(n) is the automorphisms of Rn preserving
the Euclidean metric (dx1)2 + · · ·+ (dxn)2.
Consider the map Φ : GL(n,R)→ S2(Rn),
where S2(Rn) = Rn(n+1)/2 is the space of symmetric n×n matrices,
mapping Φ : A 7→ AtA. Then O(n) = Φ−1(In). The derivative of Φ
at A ∈ GL(n,R) is dΦ|A : B 7→ AtB + BtA. This is surjective, as
any C ∈ S2(Rn) has C = dΦ|A(B) for B = 1

2 (At)−1C . So Φ is a
submersion, and thus O(n)=Φ−1(In) is a submanifold of GL(n,R),
of dimension n(n − 1)/2, by Proposition 2.5, §2.4. Thus O(n) is a
Lie group. Taking trace of AtA = In gives

∑
i ,j A

2
ij = n for

A ∈ O(n), so O(n) is closed and bounded in Rn2
, and so compact.
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Example

Write SL(n,R) for the subgroup of A =
(
Aij

)
n
i ,j=1 in GL(n,R) with

detA = 1. The map det : GL(n,R)→ R \ {0} is a submersion, so
SL(n,R) is a Lie subgroup of GL(n,R), of dimension n2 − 1.

Example

If A ∈ O(n) then AtA = In, so det(At) detA = (detA)2

= det In = 1, and detA ∈ {±1}. Thus det : O(n)→ {±1} is a
morphism of Lie groups. Write SO(n) =

{
A ∈ O(n) : detA = 1

}
.

Then SO(n) is a compact Lie subgroup of O(n), the special
orthogonal group, of dimension n(n − 1)/2. It is connected.

Example

Write GL(n,C) for the group of invertible n× n matrices
(
Aij

)
n
i ,j=1

over C. It is a real Lie group of dimension 2n2, and also a complex
Lie group. We can view GL(n,C) as a Lie subgroup of GL(2n,R).
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Example

Define the unitary group U(n) to be the Lie subgroup of
A ∈ GL(n,C) with ĀtA = In, where Āt is the complex conjugate
transpose matrix. Equivalently, A is the C-linear automorphisms of
Cn preserving the Hermitian metric |dz1|2 + · · ·+ |dzn|2 on Cn.
Then U(n) is a compact, connected real Lie group (but not a
complex Lie group) of dimension n2. We can write U(n) as the
intersection of GL(n,C) and O(2n) in GL(2n,R).

Example

Write SL(n,C) for the subgroup of A ∈ GL(n,C) with detC A = 1.
It is a Lie subgroup of SL(n,C), of real dimension 2n2 − 2.

Example

The special unitary group SU(n) is the subgroup of A ∈ SL(n,C)
with ĀtA = In. It is a Lie group of dimension n2 − 1.
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9.3. Lie algebras of Lie groups

Let G be a Lie group. Then for each γ ∈ G we have the left
translation map Lγ : G → G mapping Lγ : δ 7→ γδ, which is a
diffeomorphism of G , and satisfies Lγ ◦ Lγ′ = Lγγ′ .
Let v ∈ C∞(TG ) be a vector field on G , and γ ∈ G . As Lγ is a
diffeomorphism, we have the pullback L∗γ(v) ∈ C∞(TG ). We say
that v is left-invariant if L∗γ(v) = v for all γ ∈ G .
Write g for the vector space of left-invariant vector fields. Then we
have a map g→ T1G mapping v 7→ v |1. This is an isomorphism,
as every w ∈ T1G determines a unique left-invariant vector field v
with v |1 = w , by v |γ = (dLγ |1)∗(w), where dLγ |1 : T1G → TγG .
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Recall that in §3.4 we define the Lie bracket [v ,w ] of vector fields
v ,w on G , with [v ,w ] = −[w , v ], which satisfies the Jacobi
identity for all u, v ,w ∈ C∞(TG ):

[u, [v ,w ]] + [v , [w , u]] + [w , [u, v ]] = 0. (9.1)

As the Lie bracket depends only on the manifold structure of G , it
is preserved by diffeomorphisms. Thus if v ,w ∈ g then

L∗γ
(
[v ,w ]

)
=
[
L∗γ(v), L∗γ(w)

]
= [v ,w ]

for all γ ∈ G so [v ,w ] is also left-invariant, and
[ , ] : C∞(TG )× C∞(TG )→ C∞(TG ) maps g× g→ g.
We have defined an interesting structure in linear algebra: a
finite-dimensional vector space g with an antisymmetric, bilinear
bracket [ , ] : g× g→ g satisfying (9.1).
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Definition

A Lie algebra is a finite-dimensional vector space g (over R or C in
these lectures) with a bilinear Lie bracket [ , ] : g× g→ g
satisfying [v ,w ] = −[w , v ] and the Jacobi identity

[u, [v ,w ]] + [v , [w , u]] + [w , [u, v ]] = 0 for all u, v ,w ∈ g.

The discussion above shows that every Lie group G has a natural
Lie algebra g over R, where we can take g to be the vector space
of left-invariant vector fields, or g = T1G . So dim g = dimG .
If G is a complex Lie group, it has a natural Lie algebra over C.
One can study Lie algebras by themselves, using algebraic
methods, without considering Lie groups. Lie algebras make sense
over general fields K, for which there is no concept of manifold.
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Example

Let A be any finite-dimensional R-algebra. Define a Lie bracket
[ , ] on A by [a, b]=ab−ba for a, b ∈ A. Then [a, b]=−[b, a], and

[a, [b, c]] + [b, [c , a]] + [c , [a, b]] = a(bc − cb)− (bc − cb)a

+b(ca− ac)− (ca− ac)b + c(ab − ba)− (ab − ba)c = 0,
as multiplication in A is associative. So A, [ , ] is a Lie algebra.

Example

Real n × n matrices
(
Aij

)
n
i ,j=1 are an R-algebra, and hence a Lie

algebra. Write gl(n,R) for the Lie algebra of n × n matrices with
Lie bracket [A,B] = AB − BA. It is the Lie algebra of GL(n,R).

Example

Write so(n) for the Lie algebra of n × n antisymmetric matrices(
Aij

)n
i ,j=1

with Aij = −Aji , and Lie bracket [A,B] = AB −BA. It is

a Lie subalgebra of gl(n,R), the Lie algebra of SO(n) and O(n).
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The adjoint representation

Let G be a Lie group, with Lie algebra g. We defined g using left
translation maps Lγ : G → G , Lγ : δ 7→ γδ. We also have right
translation maps Rγ : G → G , Rγ : δ 7→ δγ, which commute with
left translation. If v ∈ g and γ, δ ∈ G then

L∗γ
(
R∗δ (v)

)
= R∗δ

(
L∗γ(v)

)
= R∗δ (v),

as Lγ ,Rδ commute. So R∗δ (v) ∈ g. This defines a linear
isomorphism R∗δ : g→ g, that is, R∗δ ∈ GL(g).
Define the adjoint representation Ad : G → GL(g) by
Ad : δ 7→ R∗δ . This is a morphism of Lie groups, and so a
representation of G on g. It preserves the Lie bracket, that is,

Ad(δ)
(
[v ,w ]

)
=
[
Ad(δ)(v),Ad(δ)w

]
.
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9.4. Fundamental groups

We will be interested in the question: to what extent is a Lie group
G determined by its Lie algebra g? To answer this, we need to
recall some ideas from algebraic topology. In particular, we need to
understand the ideas of fundamental group π1(X ), simply
connected space, and universal cover. Let X be a topological space
(usually assumed path-connected), and fix a basepoint x0 in X .
A loop γ in X based at x0 is a continuous map γ : [0, 1]→ X with
γ(0) = γ(1) = x0. If γ, γ′ are loops in X based at x0, a homotopy
from γ to γ′ is a continuous map H : [0, 1]2 → X with
H(0, t) = γ(t), H(1, t) = γ′(t) and H(s, 0) = H(s, 1) = x0 for all
s, t ∈ [0, 1]. Write γ ∼ γ′ if there exists a homotopy from γ to γ′.
Then ∼ is an equivalence relation on loops.
Write [γ] for the ∼-equivalence class of γ.
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Define the fundamental group π1(X ) of X to be the set of
∼-equivalence classes [γ] of loops γ in X based at x0.
We make π1(X ) into a group with operation [γ] · [δ] = [ε], where

ε : [0, 1] −→ X , ε(t) =

{
γ(2t), t ∈ [0, 1

2 ],

δ(2t − 1), t ∈ [1/2, 1],

and identity 1 = [ι] where ι : [0, 1]→ X , ι : t 7→ x0, and inverses
[γ]−1 = [γ−1], where γ−1(t) = γ(1− t).
If X is path-connected then π1(X ) is independent of the choice of
basepoint x0 up to isomorphism.
We say that X is simply-connected if π1(X ) = {1}.
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Example

• π1(Rn) = {1} • π1(S1) ∼= Z
• π1(T n) ∼= Zn • π1(Sn) = {1} for n > 2

• π1(RP2) ∼= Z2 • π1(SO(n)) ∼= Z2 for n > 3.

Let X be path-connected, with basepoint x0. Then we can define a
path-connected, simply-connected topological space X̃ called the
universal cover of X , and a free, continuous action of π1(X ) on X̃ ,
such that X̃/π1(X ) ∼= X . That is, we have a continuous projection
π : X̃ → X , called the covering map, which is a local
homeomorphism, whose fibres π−1(x) for x ∈ X are the orbits of
π1(X ) in X̃ .

19 / 38 Dominic Joyce, Oxford University Lecture 9: Lie groups and Lie algebras

Lie groups and Lie algebras
More about Lie groups and Lie algebras

Lie groups
Examples of Lie groups
Lie algebras of Lie groups
Fundamental groups

Here is how to define the universal cover X̃ . Consider continuous
paths δ : [0, 1]→ X with δ(0) = x0, but do not require δ(1) = x0.
Let δ, δ′ be such paths, with δ(1) = δ′(1) = x say. A homotopy
from δ to δ′ is a continuous map H : [0, 1]2 → X with
H(0, t) = δ(t), H(1, t) = δ′(t) and H(s, 0) = x0, H(s, 1) = x for
all s, t ∈ [0, 1]. Write δ ∼ δ′ if there exists a homotopy from δ to
δ′. Write [δ] for the ∼-equivalence class of δ.
Define X̃ to be the set of such equivalence classes [δ], and
π : X̃ → X by π : [δ] 7→ δ(1). Note that π−1(x0) = π1(X ).
Then X̃ is naturally a topological space, and π a continuous
covering map. As for multiplication in π1(X ), define an action of
π1(X ) on X̃ by [γ] · [δ] = [ε] for [γ] ∈ π1(X ) and [δ] ∈ X̃ , where

ε : [0, 1] −→ X , ε(t) =

{
γ(2t), t ∈ [0, 1

2 ],

δ(2t − 1), t ∈ [1/2, 1].
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10. More about Lie groups and Lie algebras
10.1. Relating Lie algebras and Lie groups

Let G ,H be Lie groups, with Lie algebras g, h. If G ∼= H as Lie
groups, then g ∼= h as Lie algebras. When can it happen that
g ∼= h, but G 6∼= H? Consider two examples:

Example

The Lie groups O(n) and SO(n) both have Lie algebra{
A ∈ gl(n,R) : At + A = 0

}
. But O(n) 6∼= SO(n). Note that

SO(n) is connected, but O(n) has two connected components,
{detA = 1} and {detA = −1}.

Example

The Lie groups Rn and T n = Rn/Zn both have Lie algebra Rn

with Lie bracket [ , ] = 0 (as they are abelian), but Rn 6∼= T n. Here
Rn is simply-connected, but π1(T n) = Zn.
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These examples show that we can have g ∼= h but G 6∼= H if the
conected components of G ,H are different, or the fundamental
groups π1(G ), π1(H) are different. If we restrict to connected,
simply-connected Lie groups, one can prove:

Theorem 10.1 (From Lie’s second theorem. Also true over C.)

Suppose G ,H are connected, simply-connected Lie groups with Lie
algebras g, h. If g ∼= h as Lie algebras, then G ∼= H as Lie groups.

Broadly, if g ∼= h then G ,H are locally isomorphic near 1 ∈ G and
1 ∈ H, and being connected and simply-connected forces G ∼= H.
If G is any Lie group, write G1 for the connected component of G
containing 1, a Lie subgroup of G , and G̃1 for the universal cover
of G1, with basepoint x0 = 1. Then G̃1 is a connected,
simply-connected Lie group with Lie algebra g. So Theorem 10.1
implies that if G ,H are Lie groups with g ∼= h then G̃1

∼= H̃1.

24 / 38 Dominic Joyce, Oxford University Lecture 10: More about Lie groups



Lie groups and Lie algebras
More about Lie groups and Lie algebras

Relating Lie algebras and Lie groups
The classification of complex Lie algebras
Real forms of Lie algebras
Principal bundles

One can go from Lie algebras back to Lie groups:

Theorem 10.2 (Lie’s third theorem. Also true over C.)

Let g be a real Lie algebra. Then there exists a connected,
simply-connected Lie group G with Lie algebra g.

This G is unique up to canonical isomorphism by Lie’s second
theorem. Thus, we have a 1-1 correspondence between
(isomorphism classes of) Lie algebras and (isomorphism classes of)
connected, simply-connected Lie groups.
Now Lie groups G are complicated objects, but Lie algebras g are
much simpler. Choosing a basis v1, . . . , vn for g, write
[va, vb] =

∑n
c=1 C

c
abvc for C c

ab ∈ R. Then g is completely described
by the structure constants

(
C c
ab

)
n
a,b,c=1, which satisfy C c

ab = −C c
ba

and
∑n

e=1

(
C e
abC

d
ec + C e

bcC
d
ea + C e

caC
d
eb

)
= 0.

We can study and classify Lie algebras using linear algebra, and
then deduce results about Lie groups.
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10.2. The classification of complex Lie algebras

There is a classification theory for Lie algebras, similar in some
ways to the classification of finite groups. By Lie’s theorems, this
is equivalent to classifying Lie groups. The theory is easiest for
complex Lie algebras, as C is algebraically closed.

Definition

An ideal h in a Lie algebra g is a vector subspace h ⊆ g such that
[g , h] ∈ h for all g ∈ g and h ∈ h. Then h and g/h are Lie algebras.
This is the analogue of normal subgroups of groups.

Definition

A Lie algebra g 6= 0 is simple if it has no ideals h ⊆ g with h 6= 0, g.

(Compare definition of simple finite group.)
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Decomposing Lie algebras into simple Lie algebras

It is easy to show:

Lemma 10.3

Let g be a Lie algebra. Then there exists a maximal chain of ideals
0 = g0 ( g1 ( g2 ( · · · ( gn = g in g such that gi/gi−1 is a
simple Lie algebra for i = 1, . . . , n.

Thus, every Lie algebra is ‘built’ from finitely many simple Lie
algebras. We will give a complete classification of simple Lie
algebras. So we know the building blocks for all Lie algebras. In
general how g is built from its simple factors gi/gi−1 is complicated,
but for Lie algebras of compact Lie groups things are nice:

Theorem 10.4

Let G be a compact real Lie group with Lie algebra g. Then g is
semisimple, that is, a direct sum of simple Lie algebras.
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Outline of the classification of simple Lie algebras over C
There is a long, complicated story which gives a complete
classification of simple Lie algebras g over C up to isomorphism.
Some of the important ideas are:

Every Lie algebra g has a Cartan subalgebra h, a maximal
abelian subalgebra, the Lie algebra of a maximal torus in the
associated Lie group G . The rank of g is dim h.

Every g with CSA h has a Cartan decomposition

g = h⊕
⊕

α∈Φ C · eα,

where Φ ⊂ h∗ is a finite set of roots.

The Killing form 〈 , 〉 of g gives an inner product on h∗.

To each such triple (h∗,Φ, 〈 , 〉) we associate a finite graph, a
Dynkin diagram. The possible Dynkin diagrams are then
classified using graph theory methods.
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In the end, the complete list of simple Lie algebras over C is:

An: sl(n + 1,C) = Lie SL(n + 1,C), dimension n(n + 2).

Bn: so(2n + 1,C) = Lie SO(2n + 1,C), dimension n(2n + 1).

Cn: sp(2n,C), dimension n(2n + 1). The Lie algebra of the
symplectic group Sp(2n,C), the group of automorphisms of
C2n preserving the symplectic 2-form

∑n
j=1 dzj ∧ dzj+n.

Dn: so(2n,C) = Lie SO(2n,C), dimension n(2n − 1).

E6: the exceptional Lie algebra e6, dimension 78.

E7: the exceptional Lie algebra e7, dimension 133.

E8: the exceptional Lie algebra e8, dimension 248.

F4: the exceptional Lie algebra f4, dimension 52.

G2: the exceptional Lie algebra g2, dimension 14.

The number n in An,Bn, . . . is the rank of g.
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10.3. Real forms of Lie algebras

Having classified simple Lie algebras gC over C, we can ask what
are the real simple Lie algebras gR with gC ∼= gR ⊗R C, and so
classify simple Lie algebras over R.

Example

GL(n,R) and U(n) are both real Lie subgroups of GL(n,C). Their
Lie algebras are gl(n,R) =

{
A ∈ gl(n,C) : A = Ā

}
and

u(n) =
{
A ∈ gl(n,C) : A + Āt = 0

}
. So

gl(n,R)⊗R C ∼= gl(n,C) ∼= u(n)⊗R C.
Thus gl(n,R) and u(n) are nonisomorphic real forms of gl(n,C).
Of the corresponding Lie groups, U(n) is compact, but GL(n,R) is
not. Also the Killing form 〈 , 〉 of gl(n,C) is positive definite on
gl(n,R), but negative definite on u(n).
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Real forms gR of simple Lie algebras gC over C are generally
distinguished by the signature (number of positive and negative
eigenvalues) of the Killing form 〈 , 〉 on the CSA hR of gR.
It turns out that if G is a compact real Lie group, then the Killing
form 〈 , 〉 on its (real) Lie algebra g is negative semidefinite. Using
this one can prove:

Theorem

Every nontrivial simple Lie algebra gC over C has exactly one real
form gR (up to isomorphism) which is the Lie algebra of a compact
Lie group G . We may take G connected and simply-connected.

Thus, the classification of simple Lie algebras over C gives us the
classification of compact simple Lie groups.

Example

SU(n) is the unique compact real form of SL(n,C).
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10.5. Principal bundles

We have talked about vector bundles on manifolds. Using Lie
groups we can define another kind of bundle on a manifold:

Definition

Let X be a manifold, and G a Lie group. A principal G -bundle
P → X over X is a manifold P, a smooth map π : P → X , and an
action ρ : G × P → P of G on P, such that each x ∈ X has an
open neighbourhood Ux in X with a commutative diagram

π−1(Ux) ∼=
//

π|π−1(Ux )��

Ux × G
πUx ��

Ux Ux ,

compatible with the G -action γ : (u, δ) 7→ (u, γδ) on Ux × G .

This is like the definition of vector bundles in §1.5, but with G in
place of Rk .
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The frame bundle

Example

Let X be a manifold of dimension n. The frame bundle F → X of
X is a principal GL(n,R)-bundle on X defined by

F =
{

(x , f1, . . . , fn) : x ∈ X , (f1, . . . , fn) is a basis for TxX
}
,

with projection π : (x , f1, . . . , fn) 7→ x , and GL(n,R)-action

(Aij)
n
i ,j=1 : (x , f1, . . . , fn) 7→ (x ,A11f1 + · · ·+ A1nfn, . . .,

An1f1 + · · ·+ Annfn).
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G -structures on manifolds

Definition

Let G be a Lie subgroup of GL(n,R). A G -structure on an
n-manifold X is a submanifold P ⊆ F of the frame bundle F → X ,
such that P is invariant under the G -action on F induced by the
GL(n,R)-action, and π|P : P → X is a principal G -bundle. That
is, P is a principal G -subbundle of F → X .

Example

Let g be a Riemannian metric on an n-manifold X . Define

P =
{

(x , f1, . . . , fn) ∈ F : (f1, . . . , fn) is orthonormal w.r.t. g |x
}
.

Then P is an O(n)-structure on X , for G = O(n) ⊂ GL(n,R) the
orthogonal group. This gives a 1-1 correspondence between
Riemannian metrics and O(n)-structures.
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Example

Write GL+(n,R) for the Lie subgroup of A ∈ GL(n,R) with
detA > 0. Let X be an oriented n-manifold. Define

P =
{

(x , f1, . . . , fn) ∈ F : (f1, . . . , fn) is an oriented basis
}
.

Then P is a GL+(n,R)-structure on X , and this gives a 1-1
correspondence between orientations and GL+(n,R)-structures.

Example

SO(n)-structures on X correspond to choices of a Riemannian
metric g and an orientation on X .

Example

For G = GL(n,C) ⊂ GL(2n,R), a GL(n,C)-structure on a
2n-manifold X is an ‘almost complex structure’ on X .

In this way we can define many interesting geometric structures.
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Vector bundles associated to principal bundles
Definition

Let G be a Lie group, X a manifold, π : P → X a principal
G -bundle, and V a representation of G . Write E = (P × V )/G ,
and define a map πX : E → X by πX (G · (p, v)) = π(p).
Since each x ∈ X has an open neighbourhood Ux with
π−1(Ux) ∼= Ux × G , we see that

π−1
X (Ux) ∼=

(
Ux × G × V )/G ∼= Ux × V ,

identifying G · (u, γ, v) ∼= (u, γ−1 · v). Thus we can make E into a
manifold, and πX : E → X into a vector bundle, with fibre V .

Example

Take G = GL(n,R) and P the frame bundle F → X . The vector
bundles associated to the representations of GL(n,R) on
V = Rn, (Rn)∗,

⊗k Rn ⊗
⊗l(Rn)∗,Λl(Rn)∗ are

TX ,T ∗X ,
⊗k TX ⊗

⊗l T ∗X ,ΛlT ∗X .
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Example

Suppose G ⊆ GL(n,R) is a Lie subgroup, and P → X is a
G -structure on X . By the previous example

ΛlT ∗X ∼= (F × Λl(Rn)∗)/GL(n,R) ∼= (P × Λl(Rn)∗)/G .

So the l-forms ΛlT ∗X are the vector bundle associated to P and
the representation Λl(Rn)∗ of G . Suppose we have a
decomposition of G -representations Λl(Rn)∗ =

⊕k
i=1 Vi . Then we

have a decomposition of vector bundles ΛlT ∗X =
⊕

i∈I Ei .

Example

The representation of SO(4) on Λ2(R4)∗ splits as
Λ2(R4)∗ = Λ2

+ ⊕ Λ2
−. So on an oriented Riemannian 4-manifold

(X , g) we have a splitting Λ2T ∗X = Λ2
+T
∗X ⊕ Λ2

−T
∗X .

Lie groups and principal bundles are a powerful and flexible
language for talking about geometric structures.
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Connections on principal bundles

In §6 we discussed connections on vector bundles. The third
definition of connection in §6.2 involved a splitting TE = V ⊕ H.

Definition

Let π : P → X be a principal G -bundle on a manifold X . Then we
have a surjective vector bundle morphism dπ : TP → π∗(TX ) on
P. Write V = Ker(dπ). It is a G -invariant vector subbundle of
TP. Using the G -action, we see that V ∼= P × g→ P.
A connection on P is a vector subbundle H of TP such that
TP = V ⊕ H, and H is invariant under the G -action on P.
Then dπ induces an isomorphism H ∼= π∗(TX ).

A connection on P induces (vector bundle) connections on the
vector bundles associated to P by G -representations. One can
define curvature of principal bundle connections – the whole story
for connections on vector bundles extends to principal bundles.
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