Dominic Joyce

Differential Geometry

Nairobi 2019

Problem Sheet -1

1(a) Let X be the sphere $S^n = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} : x_0^2 + \cdots + x_n^2 = 1\}$. Explain why we may identify

$$T_{(x_0,\dots,x_n)}\mathcal{S}^n \cong \{(y_0,\dots,y_n) \in \mathbb{R}^{n+1} : x_0y_0 + \dots + x_ny_n = 0\}.$$

(b) By identifying $\mathbb{R}^{2k+2} \cong \mathbb{C}^{k+1}$, show that any odd-dimensional sphere \mathcal{S}^{2k+1} has a nonvanishing vector field $v \in C^{\infty}(T\mathcal{S}^{2k+1})$ (i.e. $v \neq 0$ at every point).

For discussion: can the same thing hold for even-dimensional spheres \mathcal{S}^{2k} ?

2(a) Define $F : \mathbb{R}^3 \to \mathbb{R}^3$ by F(x, y, z) = (xy, yz, zx). Calculate $F^*(x \, dy \wedge dz)$ and $F^*(x \, dy + y \, dz)$.

(b) Let X be the circle \mathbb{R}/\mathbb{Z} . Then we may write

$$C^{\infty}(\Lambda^0 T^*X) = \left\{ f: f: \mathbb{R} \to \mathbb{R} \ C^{\infty}, \ f(x) = f(x+1), \ x \in \mathbb{R} \right\},\$$

$$C^{\infty}(\Lambda^1 T^*X) = \left\{ g \, \mathrm{d}x: \ g: \mathbb{R} \to \mathbb{R} \ C^{\infty}, \ g(x) = g(x+1), \ x \in \mathbb{R} \right\},\$$

and d : $C^{\infty}(\Lambda^0 T^*X) \to C^{\infty}(\Lambda^1 T^*X)$ maps $f \mapsto \frac{\mathrm{d}f}{\mathrm{d}x} \mathrm{d}x$. Use these to compute the kernel and cokernel of d, and so find the de Rham cohomology $H^k_{\mathrm{dR}}(X,\mathbb{R})$ for k = 0, 1.

3. Prove that the product $X \times Y$ of two oriented manifolds X, Y is orientable.

PTO

4. The Lie group SU(2) is the group of 2×2 complex matrices A satisfying $A\bar{A}^t = \text{id}$ and $\det_{\mathbb{C}} A = 1$. Its Lie algebra $\mathfrak{su}(2)$ is the real vector space of 2×2 complex matrices B with $B + \bar{B}^t = 0$ and Trace B = 0.

The Lie group SO(3) is the group of 3×3 real matrices C satisfying $CC^t = \text{id}$ and det C = 1. Its Lie algebra $\mathfrak{so}(3)$ is the real vector space of 3×3 real matrices D with $D + D^t = 0$.

(a) Show that we may write

$$\operatorname{SU}(2) = \left\{ \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} : a, b \in \mathbb{C}, \ |a|^2 + |b|^2 = 1 \right\}.$$

Deduce that SU(2) is diffeomorphic to the 3-sphere S^3 . (b) Define a basis e_1, e_2, e_3 of $\mathfrak{su}(2)$ over \mathbb{R} by

$$e_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Write down the Lie bracket [,] on $\mathfrak{su}(2)$ by computing $[e_i, e_j]$. (c) Define a basis f_1, f_2, f_3 of $\mathfrak{so}(3)$ over \mathbb{R} by

$$f_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad f_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

Write down the Lie bracket [,] on $\mathfrak{so}(3)$ by computing $[f_i, f_j]$. Deduce that $\mathfrak{su}(2)$ and $\mathfrak{so}(3)$ are isomorphic Lie algebras.

(d) By considering the action of SU(2) on $\mathfrak{su}(2) \cong \mathbb{R}^3$ by conjugation (you may assume this preserves the inner product for which e_1, e_2, e_3 are an orthonormal basis), define a Lie group morphism $\phi : SU(2) \to SO(3)$. Is this an isomorphism?