Problem Sheet -1

1(a) Let X be the sphere $\mathcal{S}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: x_{0}^{2}+\cdots+x_{n}^{2}=1\right\}$. Explain why we may identify

$$
T_{\left(x_{0}, \ldots, x_{n}\right)} \mathcal{S}^{n} \cong\left\{\left(y_{0}, \ldots, y_{n}\right) \in \mathbb{R}^{n+1}: x_{0} y_{0}+\cdots+x_{n} y_{n}=0\right\} .
$$

(b) By identifying $\mathbb{R}^{2 k+2} \cong \mathbb{C}^{k+1}$, show that any odd-dimensional sphere $\mathcal{S}^{2 k+1}$ has a nonvanishing vector field $v \in C^{\infty}\left(T \mathcal{S}^{2 k+1}\right)$ (i.e. $v \neq 0$ at every point).
For discussion: can the same thing hold for even-dimensional spheres $\mathcal{S}^{2 k}$?
2(a) Define $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $F(x, y, z)=(x y, y z, z x)$. Calculate $F^{*}(x \mathrm{~d} y \wedge \mathrm{~d} z)$ and $F^{*}(x \mathrm{~d} y+y \mathrm{~d} z)$.
(b) Let X be the circle \mathbb{R} / \mathbb{Z}. Then we may write

$$
\begin{aligned}
& C^{\infty}\left(\Lambda^{0} T^{*} X\right)=\left\{f: f: \mathbb{R} \rightarrow \mathbb{R} C^{\infty}, f(x)=f(x+1), x \in \mathbb{R}\right\} \\
& C^{\infty}\left(\Lambda^{1} T^{*} X\right)=\left\{g \mathrm{~d} x: g: \mathbb{R} \rightarrow \mathbb{R} C^{\infty}, g(x)=g(x+1), x \in \mathbb{R}\right\},
\end{aligned}
$$

and d : $C^{\infty}\left(\Lambda^{0} T^{*} X\right) \rightarrow C^{\infty}\left(\Lambda^{1} T^{*} X\right)$ maps $f \mapsto \frac{\mathrm{~d} f}{\mathrm{~d} x} \mathrm{~d} x$. Use these to compute the kernel and cokernel of d , and so find the de Rham cohomology $H_{\mathrm{dR}}^{k}(X, \mathbb{R})$ for $k=0,1$.
3. Prove that the product $X \times Y$ of two oriented manifolds X, Y is orientable.
4. The Lie group $\mathrm{SU}(2)$ is the group of 2×2 complex matrices A satisfying $A \bar{A}^{t}=\mathrm{id}$ and $\operatorname{det}_{\mathbb{C}} A=1$. Its Lie algebra $\mathfrak{s u}(2)$ is the real vector space of 2×2 complex matrices B with $B+\bar{B}^{t}=0$ and Trace $B=0$.

The Lie group $\mathrm{SO}(3)$ is the group of 3×3 real matrices C satisfying $C C^{t}=\mathrm{id}$ and $\operatorname{det} C=1$. Its Lie algebra $\mathfrak{s o}(3)$ is the real vector space of 3×3 real matrices D with $D+D^{t}=0$.
(a) Show that we may write

$$
\mathrm{SU}(2)=\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right): a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1\right\} .
$$

Deduce that $\mathrm{SU}(2)$ is diffeomorphic to the 3 -sphere \mathcal{S}^{3}.
(b) Define a basis e_{1}, e_{2}, e_{3} of $\mathfrak{s u}(2)$ over \mathbb{R} by

$$
e_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

Write down the Lie bracket [,] on $\mathfrak{s u}(2)$ by computing $\left[e_{i}, e_{j}\right]$.
(c) Define a basis f_{1}, f_{2}, f_{3} of $\mathfrak{s o}(3)$ over \mathbb{R} by

$$
f_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), f_{3}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

Write down the Lie bracket [,] on $\mathfrak{s o}(3)$ by computing $\left[f_{i}, f_{j}\right]$. Deduce that $\mathfrak{s u}(2)$ and $\mathfrak{s o}(3)$ are isomorphic Lie algebras.
(d) By considering the action of $\mathrm{SU}(2)$ on $\mathfrak{s u}(2) \cong \mathbb{R}^{3}$ by conjugation (you may assume this preserves the inner product for which e_{1}, e_{2}, e_{3} are an orthonormal basis), define a Lie group morphism $\phi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$. Is this an isomorphism?

