Initial problem sheet

1. The n-sphere is $\mathcal{S}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: x_{0}^{2}+\cdots+x_{n}^{2}=1\right\}$. It has an atlas $\left\{\left(U_{1}, \phi_{1}\right),\left(U_{2}, \phi_{2}\right)\right\}$ with two charts, where $U_{1}=U_{2}=\mathbb{R}^{n}$, $\phi_{1}\left(U_{1}\right)=\mathcal{S}^{n} \backslash\{(-1,0, \ldots, 0)\}, \phi_{2}\left(U_{2}\right)=\mathcal{S}^{n} \backslash\{(1,0, \ldots, 0)\}$, and ϕ_{1}, ϕ_{2} are the inverses of

$$
\begin{aligned}
& \phi_{1}^{-1}:\left(x_{0}, \ldots, x_{n}\right) \longmapsto \frac{1}{1+x_{0}}\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \\
& \phi_{2}^{-1}:\left(x_{0}, \ldots, x_{n}\right) \longmapsto \frac{1}{1-x_{0}}\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right) .
\end{aligned}
$$

Show that \mathcal{S}^{n} is a Hausdorff, second countable topological space. Compute the transition function $\phi_{2}^{-1} \circ \phi_{1}$ between $\left(U_{1}, \phi_{1}\right)$ and $\left(U_{2}, \phi_{2}\right)$, and show that it is smooth with smooth inverse.
Thus $\left\{\left(U_{1}, \phi_{1}\right),\left(U_{2}, \phi_{2}\right)\right\}$ is an atlas on \mathcal{S}^{n}, which extends to a unique maximal atlas, making \mathcal{S}^{n} into a smooth n-dimensional manifold.
2. The n-dimensional projective space \mathbb{R}^{n} is the set of 1 -dimensional vector subspaces of \mathbb{R}^{n+1}. Points in $\mathbb{R}^{P^{n}}$ are written $\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ for $\left(x_{0}, \ldots, x_{n}\right)$ in $\mathbb{R}^{n+1} \backslash\{0\}$, where $\left[x_{0}, \ldots, x_{n}\right]=\mathbb{R} \cdot\left(x_{0}, \ldots, x_{n}\right) \subseteq \mathbb{R}^{n+1}$, and $\left[\lambda x_{0}, \ldots, \lambda x_{n}\right]=\left[x_{0}, \ldots, x_{n}\right]$ for $\lambda \in \mathbb{R} \backslash\{0\}$. It has the quotient topology induced from the surjective projection $\pi: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R} \mathbb{P}^{n}$, $\pi:\left(x_{0}, \ldots, x_{n}\right) \mapsto\left[x_{0}, \ldots, x_{n}\right]$.
Define a chart $\left(V_{i}, \psi_{i}\right)$ on $\mathbb{R} \mathbb{P}^{n}$ for $i=0, \ldots, n+1$ by $V_{i}=\mathbb{R}^{n}$ and

$$
\psi_{i}\left(y_{1}, \ldots, y_{n}\right)=\left[y_{1}, \ldots, y_{i-1}, 1, y_{i}, \ldots, y_{n}\right]
$$

Compute the transition functions $\psi_{j}^{-1} \circ \psi_{i}$ between $\left(V_{i}, \psi_{i}\right)$ and $\left(V_{j}, \psi_{j}\right)$, for $0 \leq i<j \leq n+1$, and that they are smooth with smooth inverses.
Thus $\left\{\left(V_{i}, \psi_{i}\right): i=0, \ldots, n\right\}$ is an atlas on $\mathbb{R}^{P^{n}}$, which extends to a unique maximal atlas, making \mathbb{R}^{n} into a smooth n-dimensional manifold.
3. Define $f: \mathcal{S}^{n} \rightarrow \mathbb{R P}^{n}$ by $f\left(x_{0}, \ldots, x_{n}\right)=\left[x_{0}, \ldots, x_{n}\right]$. Show that f is a smooth surjective map of differentiable manifolds, and that for each $y \in \mathbb{R P}^{n}$, the inverse image $f^{-1}(y)$ consists of two points.

