Dominic Joyce

Differential Geometry

Nairobi 2019

Initial problem sheet

1. The *n*-sphere is $S^n = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} : x_0^2 + \cdots + x_n^2 = 1\}$. It has an atlas $\{(U_1, \phi_1), (U_2, \phi_2)\}$ with two charts, where $U_1 = U_2 = \mathbb{R}^n$, $\phi_1(U_1) = S^n \setminus \{(-1, 0, \ldots, 0)\}, \phi_2(U_2) = S^n \setminus \{(1, 0, \ldots, 0)\}$, and ϕ_1, ϕ_2 are the inverses of

$$\phi_1^{-1}: (x_0, \dots, x_n) \longmapsto \frac{1}{1+x_0} (x_1, \dots, x_n) = (y_1, \dots, y_n)$$

$$\phi_2^{-1}: (x_0, \dots, x_n) \longmapsto \frac{1}{1-x_0} (x_1, \dots, x_n) = (z_1, \dots, z_n).$$

Show that S^n is a Hausdorff, second countable topological space. Compute the transition function $\phi_2^{-1} \circ \phi_1$ between (U_1, ϕ_1) and (U_2, ϕ_2) , and show that it is smooth with smooth inverse.

Thus $\{(U_1, \phi_1), (U_2, \phi_2)\}$ is an atlas on \mathcal{S}^n , which extends to a unique maximal atlas, making \mathcal{S}^n into a smooth *n*-dimensional manifold.

2. The *n*-dimensional projective space \mathbb{RP}^n is the set of 1-dimensional vector subspaces of \mathbb{R}^{n+1} . Points in \mathbb{RP}^n are written $[x_0, x_1, \ldots, x_n]$ for (x_0, \ldots, x_n) in $\mathbb{R}^{n+1} \setminus \{0\}$, where $[x_0, \ldots, x_n] = \mathbb{R} \cdot (x_0, \ldots, x_n) \subseteq \mathbb{R}^{n+1}$, and $[\lambda x_0, \ldots, \lambda x_n] = [x_0, \ldots, x_n]$ for $\lambda \in \mathbb{R} \setminus \{0\}$. It has the quotient topology induced from the surjective projection $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$, $\pi : (x_0, \ldots, x_n) \mapsto [x_0, \ldots, x_n]$.

Define a chart (V_i, ψ_i) on \mathbb{RP}^n for i = 0, ..., n + 1 by $V_i = \mathbb{R}^n$ and

$$\psi_i(y_1,\ldots,y_n) = [y_1,\ldots,y_{i-1},1,y_i,\ldots,y_n].$$

Compute the transition functions $\psi_j^{-1} \circ \psi_i$ between (V_i, ψ_i) and (V_j, ψ_j) , for $0 \le i < j \le n+1$, and that they are smooth with smooth inverses.

Thus $\{(V_i, \psi_i) : i = 0, ..., n\}$ is an atlas on \mathbb{RP}^n , which extends to a unique maximal atlas, making \mathbb{RP}^n into a smooth *n*-dimensional manifold.

3. Define $f : \mathcal{S}^n \to \mathbb{RP}^n$ by $f(x_0, \ldots, x_n) = [x_0, \ldots, x_n]$. Show that f is a smooth surjective map of differentiable manifolds, and that for each $y \in \mathbb{RP}^n$, the inverse image $f^{-1}(y)$ consists of two points.