Dominic Joyce

Differential Geometry

Nairobi 2019

Problem Sheet 2

1(a) Let X be the sphere $S^n = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : x_0^2 + \dots + x_n^2 = 1\}.$ Explain why we may identify

$$T_{(x_0,\ldots,x_n)}\mathcal{S}^n \cong \left\{ (y_0,\ldots,y_n) \in \mathbb{R}^{n+1} : x_0 y_0 + \cdots + x_n y_n = 0 \right\}.$$

(b) By identifying $\mathbb{R}^{2k+2} \cong \mathbb{C}^{k+1}$, show that any odd-dimensional sphere $\hat{\mathcal{S}}^{2k+1}$ has a nonvanishing vector field $v \in C^{\infty}(T\hat{\mathcal{S}}^{2k+1})$ (i.e. $v \neq 0$ at every point).

For discussion: can the same thing hold for even-dimensional spheres \mathcal{S}^{2k} ?

 2^* . Let X^n be a *compact* n-dimensional manifold covered by coordinate neighbourhoods U_{α} , with coordinate maps $\psi_{\alpha} : U_{\alpha} \to \mathbb{R}^n$. Show by using compactness that there exists a finite set of bump functions $\varphi_1, \ldots, \varphi_k$ such that for each $x \in X$ at least one φ_i is identically 1 in a neighbourhood of x, and the support of each φ_i is contained in $U_{\alpha(i)}$ for some $\alpha(i)$.

Now define $F: X \to \mathbb{R}^{k(n+1)}$ by

$$F(x) = (\varphi_1, \dots, \varphi_k, \varphi_1 \psi_{\alpha(1)}, \varphi_2 \psi_{\alpha(2)}, \dots, \varphi_k \psi_{\alpha(k)})(x).$$

Show that:

(i) F is injective.

(ii) the derivative of F is injective at each point $x \in X$.

(iii) the manifold topology is the induced topology.

Deduce that $F: X \to \mathbb{R}^{k(n+1)}$ is an embedding.

(This is a special case of the Whitney Embedding Theorem.)

3. Let X be a manifold and $v, w \in C^{\infty}(TX)$. Suppose (x_1, \ldots, x_n) are local coordinates on an open set $U \subseteq X$, so that we may write $v = v_1 \frac{\partial}{\partial x_1} + \cdots + v_n \frac{\partial}{\partial x_n}$ and $w = w_1 \frac{\partial}{\partial x_1} + \cdots + w_n \frac{\partial}{\partial x_n}$ on U, for $v_i, w_j : U \to \mathbb{R}$ smooth. Define the Lie bracket $[v, w] \in C^{\infty}(TX)$ by

$$[v,w] = \sum_{i,j=1}^{n} \left(v_i \frac{\partial w_j}{\partial x_i} \cdot \frac{\partial}{\partial x_j} - w_j \frac{\partial v_i}{\partial x_j} \cdot \frac{\partial}{\partial x_i} \right) \quad \text{on } U.$$
(1)

Prove that this is independent of choice of local coordinates. That is, if (y_1, \ldots, y_n) is another local coordinate system on $V \subseteq X$, then (1) and its analogue for (y_1, \ldots, y_n) , V define the same vector field on $U \cap V$.

4. Find the vector fields u, v, w on \mathbb{R}^2 given by the following three oneparameter groups of diffeomorphisms:

- $\varphi_t(x_1, x_2) = (x_1 + t, x_2).$
- $\varphi_t(x_1, x_2) = (x_1, x_2 + t).$
- $\varphi_t(x_1, x_2) = ((\cos t)x_1 + (\sin t)x_2, (-\sin t)x_1 + (\cos t)x_2).$

Show that the Lie bracket of any pair of u, v, w is a linear combination of u, v, w (with constant coefficients).

5. Let A be an $n \times n$ matrix and consider the vector field v in \mathbb{R}^n defined by

$$v = \sum_{i,j} A_{ij} x_j \frac{\partial}{\partial x_i}$$

Use the exponential of a matrix:

$$\exp C = I + C + \frac{C^2}{2} + \dots + \frac{C^n}{n!} + \dots$$

to integrate this vector field to a one-parameter group of diffeomorphisms.