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3.1. Exterior forms on real and complex manifolds

Let X be a real manifold of dimension n. It has cotangent bundle
T ∗X and vector bundles of k-forms ΛkT ∗X for k = 0, 1, . . . , n,
with vector space of sections C∞(ΛkT ∗X ). A k-form α in
C∞(ΛkT ∗X ) may be written αa1···ak in index notation. The
exterior derivative is d : C∞(ΛkT ∗X )→ C∞(Λk+1T ∗X ), given by

(dα)a1···ak+1
=

k+1∑
j=1

(−1)j+1

k + 1
·
∂αa1···aj−1aj+1···ak+1

∂xaj

in index notation, where d2 = 0.
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The de Rham cohomology of X is

Hk
dR(X ;R) =

Ker
(
d : C∞(ΛkT ∗X )→ C∞(Λk+1T ∗X )

)
Im
(
d : C∞(Λk−1T ∗X )→ C∞(ΛkT ∗X )

) .
It is isomorphic to the usual cohomology Hk(X ;R) of the
underlying topological space X .
It will be helpful to consider complex forms on X , that is, sections
of the complex vector bundles of complexified k-forms
ΛkT ∗X ⊗R C.
A complex k-form α in C∞(ΛkT ∗X ⊗R C) is of the form β + iγ
for β, γ real k-forms. The complex conjugate is ᾱ = β − iγ. The
exterior derivative extends to d : C∞(ΛkT ∗X ⊗R C)→
C∞(Λk+1T ∗X ⊗R C) by d(β + iγ) = dβ + idγ. Complex de Rham
cohomology Hk

dR(X ;C) is defined using complex forms.
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Exterior forms on complex manifolds

Now let (X , J) be a complex manifold in the sense of §2, so that X
is a real 2n-manifold, and J = Jba is a complex structure. We will
use J to decompose k-forms into components.
Define an action of J on complex 1-forms α on X by
(Jα)a = Jbaαb, in index notation. Then J2 = −1, so J has
eigenvalues ±i , and T ∗X ⊗R C splits as a direct sum of complex
subbundles

T ∗X ⊗R C = T ∗X 1,0 ⊕ T ∗X 0,1,

where T ∗X 1,0, T ∗X 0,1 are the eigenspaces of J with eigenvalues
i ,−i . Both have complex rank n. Sections of T ∗X 1,0,T ∗X 0,1 are
called (1,0)-forms and (0,1)-forms. If α = β + iγ for β, γ real
1-forms, then α is a (1,0)-form if γa = −Jba βb, and a (0,1)-form if
γa = Jba βb. If α = β + iγ is a (1,0)-form then ᾱ = β − iγ is a
(0,1)-form, and vice versa.
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For complex k-forms we have (ΛkT ∗X )⊗R C = Λk
C(T ∗X ⊗R C),

that is, we can take exterior powers of the real vector bundle and
then complexify, or complexify and then take complex exterior
powers. Therefore (ΛkT ∗X )⊗R C = Λk

C(T ∗X 1,0 ⊕ T ∗X 0,1).
Now Λk(U ⊕ V ) ∼=

⊕
p+q=kΛpU ⊗ ΛqV . Thus we have a natural

splitting (ΛkT ∗X )⊗R C =
⊕

p+q=kΛp,qX , with

Λp,qX ∼= Λp
C(T ∗X 1,0)⊗ Λq

C(T ∗X 0,1).

Sections of Λp,qX are called (p, q)-forms. We also have

C∞(ΛkT ∗X )⊗R C =
⊕

p+q=k

C∞(Λp,qX ).
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If α is a (p, q)-form then ᾱ is a (q, p)-form. Thus a (p, q)-form α
can only be real (α = ᾱ) if p = q.
We can also express Λp,qX as an eigenspace. Let J act on complex
k-forms α = αa1···αk

by

J(α)a1···ak =
k∑

j=1

Jbajαa1···aj−1baj+1···ak .

As αa1···ak is antisymmetric in a1, . . . , ak , so is J(α)a1···ak , so J(α)
is a k-form. It turns out that if α is a (p, q)-form then
J(α) = i(p − q)α, so Λp,qX is the eigensubbundle of J in
(Λp+qT ∗X )⊗R C with eigenvalue i(p − q).
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(p, q)-forms in complex coordinates

A good way to write (p, q)-forms is in complex coordinates on X .
This also fits in with the definition of complex manifolds in §1. Let
(z1, . . . , zn) be holomorphic coordinates on some open U ⊆ X .
Then dz1, . . . ,dzn and their complex conjugates dz̄1, . . . ,dz̄n are
complex 1-forms on U. It turns out that dz1, . . . ,dzn are
(1,0)-forms, and dz̄1, . . . ,dz̄n are (0,1)-forms.
More generally, if 1 6 a1 < · · · < ap 6 n and
1 6 b1 < · · · < bq 6 n then dza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq is
a (p, q)-form on U, and these form a basis of sections of Λp,qX |U ,
so every (p, q)-form α on U may be written uniquely as

α =
∑

16a1<···<ap6n
16b1<···<bq6n

αabdza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq

for functions αab : U → C, with a = (a1, . . . , ap), b = (b1, . . . , bq).
The rank of Λp,qX , as a complex vector bundle, is

(n
p

)
·
(n
q

)
.
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3.2. The ∂ and ∂̄ operators

Let (X , J) be a complex manifold and f : X → C be a smooth
function. Then df is a complex 1-form on X . Since
C∞(T ∗X ⊗R C) = C∞(T ∗X 1,0)⊕ C∞(T ∗X 0,1), we may write df
uniquely as df = ∂f + ∂̄f , where ∂f = 1

2 (df − iJ(df )) is a
(1, 0)-form, and ∂̄f = 1

2 (df + iJ(df )) is a (0, 1)-form. Note that
∂̄f = 0 iff J(df ) = idf , that is, iff f is holomorphic.
Now let α be a (p, q)-form. As in §3.1, let (z1, . . . , zn) be
holomorphic coordinates on U ⊆ X , with

α|U =
∑

a,b αabdza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq .

As dzaj , dz̄bj are closed, we see that

dα|U =
∑

a,b dαab ∧ dza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq

=
∑

a,b ∂αab ∧ dza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq

+
∑

a,b ∂̄αab ∧ dza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq .

(3.1)
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The second sum in (3.1) is a (p + 1, q)-form, and the third a
(p, q + 1)-form. Hence, if α is a (p, q)-form then dα is the sum of
a (p + 1, q)-form and a (p, q + 1)-form. Write ∂α for the
(p + 1, q)-form, and ∂̄α for the (p, q + 1)-form. Then
dα = ∂α + ∂̄α, so that d = ∂ + ∂̄. In coordinates we have

∂α|U =
∑

a,b ∂αab ∧ dza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq ,

∂̄α|U =
∑

a,b ∂̄αab ∧ dza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq .

We have d2 = 0, and d = ∂ + ∂̄. Hence
∂2 + (∂ ◦ ∂̄ + ∂̄ ◦ ∂) + ∂̄2 = 0. But ∂2 and ∂ ◦ ∂̄ + ∂̄ ◦ ∂ and ∂̄2

map (p, q)-forms to (p + 2, q)-forms, and to (p + 1, q + 1)-forms,
and to (p, q + 2)-forms, respectively. Thus each of them must
vanish, and we have

∂2 = ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = ∂̄2 = 0.

10 / 44 Dominic Joyce, Oxford University Lecture 3: Exterior forms on complex manifolds



Exterior forms on complex manifolds
Kähler metrics

Exterior forms on real and complex manifolds
The ∂ and ∂̄ operators
Exterior forms on almost complex manifolds
(p, q)-forms in terms of representation theory

We now have a double complex:

C∞(Λp,qX )
∂
//

(−1)p ∂̄
��

C∞(Λp+1,qX )
∂
//

(−1)p+1∂̄
��

C∞(Λp+2,qX )
∂
//

(−1)p+2∂̄
��

· · ·

C∞(Λp,q+1X )
∂
//

(−1)p ∂̄
��

C∞(Λp+1,q+1X )
∂
//

(−1)p+1∂̄
��

C∞(Λp+2,q+1X )
∂
//

(−1)p+2∂̄
��

· · ·

C∞(Λp,q+2X )
∂
//

(−1)p ∂̄��

C∞(Λp+1,q+2X )
∂
//

(−1)p+1∂̄��

C∞(Λp+2,q+1X )
∂
//

(−1)p+2∂̄��

· · ·

...
...

...

The rows and columns are complexes, as ∂2 = ∂̄2 = 0. Using
∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0 and the sign changes (−1)p above, we see that
the diagram commutes.
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Define the Dolbeault cohomology

Hp,q

∂̄
(X ) =

Ker
(
∂̄ : C∞(Λp,qX )→ C∞(Λp,q+1X )

)
Im
(
∂̄ : C∞(Λp,q−1X )→ C∞(Λp,qX )

) .
This is related to de Rham cohomology: there is a spectral
sequence going from Dolbeault cohomology to de Rham
cohomology. We will see later that if X is a compact Kähler
manifold then

Hk(X ;C) ∼=
⊕

p+q=k

Hp,q

∂̄
(X ),

but this is false for general complex manifolds.
For compact complex manifolds, Hp,q

∂̄
(X ) is finite-dimensional.
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The operators ∂ and ∂̄ are complex conjugate, in the sense that

(∂α) = ∂̄(ᾱ).

An operator that is often useful is dc = i(∂̄ − ∂). We have

(dcα) = (i ∂̄α− i∂α)

= −i(∂̄α) + i(∂α)

= −i∂ᾱ + i ∂̄ᾱ = dc ᾱ.

Thus dc is a real operator, that is, it takes real forms to real forms.
From ∂2 = ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = ∂̄2 = 0 we find that (dc)2 = 0 and
ddc + dcd = 0.
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Holomorphic forms

If f : X → C is a smooth function then f is holomorphic if ∂̄f = 0.
So it seems natural to call a (p, q)-form α holomorphic if ∂̄α = 0.
However, it turns out this is a good idea only if q = 0, as if q > 0
the condition ∂̄α = 0 is too weak to be called holomorphic. For
example, if dimC X = n then any (p, n)-form α satisfies ∂̄α = 0, as
all (p, n + 1)-forms are zero.

14 / 44 Dominic Joyce, Oxford University Lecture 3: Exterior forms on complex manifolds



Exterior forms on complex manifolds
Kähler metrics

Exterior forms on real and complex manifolds
The ∂ and ∂̄ operators
Exterior forms on almost complex manifolds
(p, q)-forms in terms of representation theory

Suppose α is a (p, 0)-form. Then in holomorphic coordinates
(z1, . . . , zn) we may write

α|U =
∑

a1<···<ap

αa1···apdza1 ∧ · · · ∧ dzap ,

so that

∂̄α|U =
∑

a1<···<ap

∂̄αa1···ap ∧ dza1 ∧ · · · ∧ dzap .

Therefore ∂̄α|U = 0 iff ∂̄αa1···ap = 0 for all a1, . . . , ap, so each
αa1···ap is a holomorphic function.
We call a (p, 0)-form α holomorphic if ∂̄α = 0. The Dolbeault
cohomology group Hp,0

∂̄
(X ) is just the vector space of holomorphic

(p, 0)-forms.
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The canonical bundle

Let X be a complex manifold of complex dimension n. Then Λn,0X
is a complex vector bundle with rank

(n
n

)
·
(n

0

)
= 1, that is, a

complex line bundle, and we have a good notion of holomorphic
section of Λn,0X , so Λn,0X is a holomorphic line bundle.
We call Λn,0X the canonical bundle of X , usually written KX . It
will be important in understanding the Ricci curvature of Kähler
manifolds.
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3.3. Exterior forms on almost complex manifolds

Now let X be a 2n-manifold, and J an almost complex structure on
X . How much of §3.1–§3.2 extends to the almost complex case?
The definition of (p, q)-forms and

(ΛkT ∗X )⊗R C =
⊕

p+q=k

Λp,qX

all work as in the complex case. However, we cannot choose
holomorphic coordinates (z1, . . . , zn) on X . These were used in
§3.2 to show that if α is a (p, q)-form then dα is the sum of a
(p + 1, q)-form ∂α and a (p, q + 1)-form ∂̄α.
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In fact in the almost complex case, if α is a (p, q)-form then dα is
the sum of four components of types (p + 2, q − 1), (p + 1, q),
(p, q + 1) and (p − 1, q + 2), where those of type (p + 2, q − 1)
and (p − 1, q + 2) are bilinear in α and N = Na

bc , the Nijenhuis
tensor of J. We can still define ∂α and ∂̄α as the components of
dα of types (p + 1, q) and (p, q + 1). Then formally we have

dα = N̄ · α + ∂α + ∂̄α + N · α,

where N̄ · α, N · α are of types (p + 2, q − 1) and (p − 1, q + 2).
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In particular, if α is a (1,0)-form then

πΛ0,2(dα)bc = N · α = Na
bcαa,

and we can identify the Nijenhuis tensor with the component of d
mapping

C∞(Λ1,0X ) −→ C∞(Λ0,2X ).

The extra terms N̄ · α,N · α mean that we no longer have ∂̄2 = 0,
etc., instead

∂̄2α + ∂(N · α) + N · (∂α) = 0.

So the definition of Dolbeault cohomology does not work in the
almost complex case.
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3.4. (p, q)-forms in terms of representation theory

Here is a more abstract way of explaining the decomposition of
k-forms into (p, q)-forms. Let (X , J) be an almost complex
2n-manifold. The frame bundle F of X is a principal
GL(2n,R)-bundle, whose fibre over x ∈ X is the family of bases
(e1, . . . , e2n) for TxX . Let P ⊂ F be the subset of (e1, . . . , e2n)
with Je2i−1 = e2i for i = 1, . . . , n. Then P is a principal subbundle
with structure group GL(n,C) ⊂ GL(2n,R), i.e. a
GL(n,C)-structure.
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Now we may write

ΛkT ∗X ⊗R C ∼= F ×GL(2n,R) (Λk(R2n)∗ ⊗R C),

that is, ΛkT ∗X ⊗R C is the vector bundle coming from the
principal GL(2n,R)-bundle F and the (irreducible) representation
Λk(R2n)∗ ⊗R C of GL(2n,R). Given the principal subbundle P, we
have

ΛkT ∗X ⊗R C ∼= P ×GL(n,C) (Λk(R2n)∗ ⊗R C).

But now Λk(R2n)∗ ⊗R C is a reducible GL(n,C)-representation:
the decomposition into irreducibles is

Λk(R2n)∗ ⊗R C =
⊕

p+q=k

Λp
C(Cn)∗ ⊗C Λq

C(Cn)∗.
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(Almost) complex 2n-manifolds have structure group GL(n,C) ⊂
GL(2n,R), and decomposition of forms into (p, q)-forms
corresponds to decomposition of Λk(R2n)∗ ⊗R C into irreducible
representations of GL(n,C).
The same works for other groups. For instance, Kähler manifolds
have structure group U(n), so forms and tensors decompose into
pieces corresponding to irreducible representations of U(n).
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Plan of talk:

4 Kähler metrics

4.1 Hermitian and Kähler metrics

4.2 The Kähler class and Kähler potentials

4.3 The Fubini–Study metric on CPn

4.4 Exterior forms on Kähler manifolds
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4.1. Hermitian and Kähler metrics

Let (X , J) be a complex manifold, and g be a Riemannian metric
on X . As tensors we have J = Jba , g = gab. We call g Hermitian if
gab = Jca J

d
b gcd . That is, for all vector fields v ,w we have

g(v ,w) = g(Jv , Jw), so J is an isometry with respect to g . To be
Hermitian is a natural pointwise compatibility condition between g
and J. If g is arbitrary then

hab = 1
2 (gab + Jca J

d
b gcd)

is Hermitian. Thus, any (X , J) admits many Hermitian metrics.
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Let g be a Hermitian metric on (X , J). Define a 2-tensor ω = ωab

by ωab = Jca gcb. That is, ω(v ,w) = g(Jv ,w). We have

ωba = Jcbgca = −(Jea J
d
e )Jcbgcd

= −Jea (JcbJ
d
e gcd) = −Jeagbe

= −Jeageb = −ωab,

using Jea J
d
e = −δda , g Hermitian, and g symmetric. Hence

ωba = −ωab, that is, ω is a 2-form. We call ω the Hermitian form
of g . It is a real (1, 1)-form on (X , J). As g is a metric, ωab is a
nondegenerate 2-form, that is, ωn 6= 0 at every point, where
n = dimC X .
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We can reconstruct g from J and ω by gab = ωacJ
c
b . Conversely,

given a 2-form ωab, the tensor gab = ωacJ
c
b is symmetric iff ω is of

type (1,1). Then g is a metric if it is positive definite, which is an
open condition on ω.
It is sometimes useful to consider the complex tensor
hab = gab + iωab. One can show that hab lies in T ∗1,0X ⊗ T ∗0,1X ,
that is, hab is of type (1,0) in the index a, and of type (0, 1) in the
index b.
In holomorphic coordinates (z1, . . . , zn) with za = xa + iya we have

h =
n∑

a,b=1

Aabdza ⊗ dz̄b,

where (Aab)na,b=1 is an n × n matrix of complex functions which is

Hermitian, that is, Aba = Āab, and positive definite, and g = Re h,
ω = Im h.
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For example, the Euclidean metric on Cn is

h =
n∑

a=1

dza ⊗ dz̄a,

g = 1
2

n∑
a=1

(dza ⊗ dz̄a + dz̄a ⊗ dza)

=
n∑

a=1

(dx2
a + dy2

a )

ω = i
2

n∑
a=1

dza ∧ dz̄a =
n∑

a=1

dxa ∧ dya.
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Kähler metrics

Definition

Let g be a Hermitian metric on a complex manifold (X , J), with
Hermitian form ω. We call g Kähler if ω is closed, dω = 0. We
call (X , J, g) a Kähler manifold, and ω the Kähler form.
Then X is a 2n-manifold and ω is a closed nondegenerate 2-form
on X , that is, ωn 6= 0 at every point. So ω is a symplectic form,
and (X , ω) a symplectic manifold.

We will not cover much symplectic geometry in this course.
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Here is an important differential-geometric property:

Proposition 4.1

Let (X , J, g) be a Kähler manifold, with Kähler form ω, and let ∇
be the Levi-Civita connection of g . Then

∇g = ∇J = ∇ω = 0.

So g , J, ω are constant tensors on (X , g). This implies that the
holonomy group Hol(g) of g (which measures the constant tensors
on X ) is contained in U(n) ⊂ O(2n).
Kähler metrics are defined by the condition dω = 0, which is weak
and easy to satisfy: there are lots of closed forms. Because of this,
there are lots of Kähler manifolds, and examples are easy to find.
But dω = 0 implies the apparently much stronger conditions
∇J = ∇ω = 0. These mean that Kähler metrics have very good
properties, for instance in their de Rham cohomology.
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Sketch proof of Proposition 4.1.

We have ∇g = 0 by definition of the Levi-Civita connection. Since
ωab = Jca gcb and ∇g = 0, we have

∇dωab = (∇dJ
c
a )gcb.

Hence ∇ω and ∇J are essentially the same, and ∇ω = 0 iff
∇J = 0.
Suppose for the moment that J is only an almost complex
structure. Then we can show that

∇aωbc = (dω)abc ⊕ gadN
d
bc ,

where Nd
bc is the Nijenhuis tensor of J. So ∇ω = ∇J = 0 iff

dω = N = 0. When J is a complex structure N = 0, and
Proposition 4.1 follows.

31 / 44 Dominic Joyce, Oxford University Lecture 4: Kähler metrics

Exterior forms on complex manifolds
Kähler metrics

Hermitian and Kähler metrics
The Kähler class and Kähler potentials
The Fubini–Study metric on CPn
Exterior forms on Kähler manifolds

4.2. The Kähler class and Kähler potentials

Let (X , J, g) be a Kähler manifold with Kähler form ω. Then ω is
a closed real 2-form, so it has a cohomology class [ω] in the de
Rham cohomology H2(X ;R). We call [ω] the Kähler class of g .
Two Kähler metrics g , g ′ on (X , J) lie in the same Kähler class if
[ω] = [ω′].
If dimC X = n > 0 then ωn = n! dVg , where dVg is the volume
form of g . If X is compact then

[ω]n · [X ] =

∫
X
ωn = n! volg (X ) > 0.

Thus [ω] is nonzero in H2(X ;R).
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Let (X , J) be a complex manifold. Suppose f : X → R is smooth.
Consider the 2-form α = ddc f , with the real operator
dc = i(∂̄ − ∂) as in §3.2. Then α is an exact (so closed) real
2-form, since d,dc are real operators. But also we have

ddc = (∂ + ∂̄)i(∂̄ − ∂)

= i
[
∂̄2 + ∂∂̄ − ∂̄∂ − ∂2

]
= 2i∂∂̄,

since ∂2 = ∂̄2 = 0 and ∂∂̄ + ∂̄∂ = 0. So α = 2i∂∂̄f , and α is a
(1,1)-form. Thus, α = ddc f is an exact real (1, 1)-form.
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Here is a converse to this:

Lemma 4.2 (The Global ddc -Lemma.)

Let (X , J, g) be a compact Kähler manifold, and α an exact real
(1, 1)-form on X . Then α = ddc f for some smooth f : X → R.

It is necessary that X be Kähler; there exist compact complex
manifolds (X , J) for which this fails.

Sketch proof.

If α = ddc f then α ∧ ωn−1 = 2n∆f · ωn, where ∆ is the
‘Laplacian’, a second order partial differential operator. So we
solve ∆f = (α ∧ ωn−1)/(2nωn) for f by p.d.e. theory, which is
possible as

∫
α ∧ ωn−1 = 0, and then show α = ddc f .
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Now let (X , J) be a compact complex manifold and g , g ′ be
Kähler metrics in the same Kähler class. Then [ω] = [ω′] in
H2(X ;R), so ω′ − ω is an exact real (1,1)-form on X . Hence
ω′ − ω = ddc f for some f , i.e. ω′ = ω + ddc f .
Conversely, given ω and f we may define a closed real (1,1)-form
ω′ = ω + ddc f , and then ω′ is the Kähler form of a Kähler metric
g ′ if and only if ω′(v , Jv) > 0 for all nonzero vectors v . We call f
a Kähler potential. Note that we can never write ω′ = ddc f when
X is compact, as then [ω′] = 0.
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In particular, if |ddc f | < 1, where | . | is computed using g , then
ω′(v , Jv) > 0 for all v 6= 0 is automatic. So all smooth functions
f : X → R with ‖f ‖C2 < 1 yield a new Kähler metric g ′ on (X , J)
in the Kähler class of g ; two functions f , f̃ yield the same g ′ iff
f̃ − f is constant (for X compact). This shows that Kähler metrics
occur in infinite-dimensional families on a fixed complex manifold.
There are roughly as many Kähler metrics on X as there are
smooth real functions on X .
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Complex submanifolds

Suppose (X , J, g) is a Kähler metric, with Kähler form ω, and Y is
a complex submanifold of X . Let J̃ = J|Y be the complex
structure on Y , and g̃ = g |Y the restriction of g to Y as a
Riemannian metric. Then g̃(ṽ , w̃) = g̃(J̃ ṽ , J̃w̃) for all vector fields
ṽ , w̃ on Y follows from g(v ,w) = g(Jv , Jw) for all vector fields
v ,w on X . Hence g̃ is Hermitian w.r.t. J̃. The Hermitian form of
g̃ is ω̃ = ω|Y . So dω̃ = (dω)|Y = 0, and g̃ is Kähler.
Thus, any complex submanifold of a Kähler manifold is Kähler.

37 / 44 Dominic Joyce, Oxford University Lecture 4: Kähler metrics

Exterior forms on complex manifolds
Kähler metrics

Hermitian and Kähler metrics
The Kähler class and Kähler potentials
The Fubini–Study metric on CPn
Exterior forms on Kähler manifolds

4.3. The Fubini–Study metric on CPn

Complex projective space CPn is (Cn+1 \ {0})/C∗. Define
Π : Cn+1 \ {0} → CPn by π : (z0, . . . , zn) 7→ [z0, . . . , zn]. The
Fubini–Study metric on CPn is the Kähler metric g with Kähler
form ω, which is characterized uniquely by the equation

Π∗(ω) = 1
4πdd

c log
(∑n

a=0 |za|2
)
.

Equivalently, on the chart (Ub, φb) on CPn mapping

φb :(w1, . . . ,wn) 7−→
[w1, . . . ,wb−1, 1,wb, . . . ,wn]

for b = 0, . . . , n we have

ω = 1
4πdd

c log
(
1 +

∑n
c=1 |wc |2

)
.
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To show these are equivalent, note that wc = zc−1/zb for c 6 b
and wc = zc/zb for c > b, and

ddc log
(
|zb|2

)
= 0.

The action of U(n + 1) on Cn+1 descends to an isometry group of
CPn, with

CPn ∼= U(n + 1)/U (1) U (n).

As in §1, complex projective spaces CPn have many compact
complex submanifolds X , which are called projective complex
manifolds. Any projective complex manifold is the zeroes of finitely
many homogeneous polynomials on Cn+1, and so may be studied
using algebraic geometry.
The Fubini–Study metric g on CPn restricts to a Kähler metric on
X . Thus, every projective complex manifold is Kähler. This gives
huge numbers of examples of compact Kähler manifolds.
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4.4. Exterior forms on Kähler manifolds

Let (X , J, g) be Kähler, with Kähler form ω. Consider complex
k-forms C∞(ΛkT ∗X ⊗R C) on X . Using J we can decompose into
(p, q)-forms for p + q = k , and split d = ∂ + ∂̄. In the Kähler
situation we have two more toys to play with: the Kähler form ω,
and the Hodge star operator ∗ of g . On complex forms we define ∗
to be complex antilinear, that is, ∗(β + iγ) = ∗Rβ − i ∗R γ where
∗R is the Hodge star on real forms. Then ∗ takes (p, q)-forms to
(n − p, n − q)-forms.
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We can use ω to decompose (p, q)-forms further. Let dimC X = n
and j , k = 0, . . . , n with k + 2j 6 n, and consider the linear map

ΛkT ∗X ⊗R C −→ Λk+2jT ∗X ⊗R C

taking α 7→ α ∧ ωj .

if 0 6 j < n − k it is injective.

if j = n − k it is an isomorphism.

if j > n − k it is surjective.

In particular, when j = n − k + 1 it is surjective, but not injective.
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For k = 0, . . . , n, call a k-form α primitive if α ∧ ωn−k+1 = 0.
Write Λk

0T
∗X for the subspace of primitive k-forms, and Λp,q

0 X for
the subspace of primitive (p, q)-forms. Then we have

ΛkT ∗X =
⊕

j :062j6k,
k6n+j

(Λk−2j
0 T ∗X ) ∧ ωj ,

Λp,qX =
⊕

j :06j6p,q,
p+q6n+j

(Λp−j ,q−j
0 X ) ∧ ωj .

In the set up of §3.4, (Λp−j ,q−j
0 X ) ∧ ωj corresponds to an

irreducible representation of U(n).
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Operators on forms

Let (X , J, g) be a Kähler manifold, with Kähler form ω and Hodge
star ∗. Define operators

d∗, ∂∗, ∂̄∗ : C∞(ΛkT ∗X ⊗R C)→ C∞(Λk−1T ∗X ⊗R C)

by d∗ = − ∗ d∗, ∂̄∗ = − ∗ ∂̄∗, ∂∗ = − ∗ ∂ ∗ .

Define the Lefschetz operator

L : C∞(ΛkT ∗X ⊗R C)→ C∞(Λk+2T ∗X ⊗R C)

by L(α) = α ∧ ω,

and the dual Lefschetz operator

Λ : C∞(ΛkT ∗X ⊗R C)→ C∞(Λk−2T ∗X ⊗R C)

by Λ = (−1)k ∗ L ∗ .
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The Kähler identities

Define the d, ∂ and ∂̄-Laplacians by ∆d = dd∗ + d∗d,
∆∂ = ∂∂∗ + ∂∗∂ and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄.
Here are the Kähler identities:

Theorem 4.3 (The Kähler identities)

(i) [∂, L] = [∂̄, L] = [∂∗,Λ] = [∂̄∗,Λ] = 0.

(ii) [∂∗, L] = −i ∂̄, [∂̄∗, L] = i∂, [Λ, ∂] = i ∂̄∗, [Λ, ∂̄] = −i∂∗.
(iii) ∆∂ = ∆∂̄ = 1

2 ∆d.

(iv) ∆d commutes with ∗, ∂, ∂̄, ∂∗, ∂̄∗, L and Λ.

These are important in Hodge theory. We need dω = 0 in the
proof, they aren’t true for general Hermitian metrics.
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