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5.1. Hodge theory for compact Riemannian manifolds

We first recall Hodge theory for ordinary Riemannian manifolds.
Let (X , g) be a compact, oriented Riemannian n-manifold. Then
the Hodge star ∗ acts on k-forms

∗ : C∞(ΛkT ∗X ) −→ C∞(Λn−kT ∗X ).

It satisfies ∗2 = (−1)k(n−k), so ∗−1 = ±∗. We define

d∗ : C∞(ΛkT ∗X ) −→ C∞(Λk−1T ∗X )

by d∗ = (−1)k ∗−1 d∗, and the Laplacian on k-forms
∆d = dd∗ + d∗d.
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Forms α with ∆dα = 0 are called harmonic. Later we will see this
is equivalent to dα = d∗α = 0 (for X compact). It is helpful to
think about all this in terms of the L2-inner product on forms. If
α, β ∈ C∞(ΛkT ∗X ) we define

〈α, β〉L2 =

∫
X

(α, β)dVg ,

where (α, β) is the pointwise inner product of k-forms using g , and
dVg the volume form of g . The Hodge star is defined so that if
α, β are k-forms then α ∧ (∗β) = (α, β)dVg . Thus

〈α, β〉L2 =

∫
X
α ∧ ∗β.
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Now let α be a (k − 1)-form and β a k-form. Then we have

〈α,d∗β〉L2 = 〈α, (−1)k ∗−1 d ∗ β〉L2

= (−1)k
∫
X

(α, ∗−1d ∗ β)dVg

= (−1)k
∫
X
α ∧ ∗(∗−1d ∗ β)

= (−1)k
∫
X
α ∧ d(∗β).

But by Stokes’ Theorem,

0 =

∫
X
d
[
α ∧ (∗β)

]
=

∫
X

(dα) ∧ (∗β) + (−1)k−1

∫
X
α ∧ d(∗β).

Hence

〈α,d∗β〉L2 =

∫
X

(dα) ∧ (∗β) =

∫
X

(dα, β)dVg = 〈dα, β〉L2 .
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Thus 〈α,d∗β〉L2 = 〈dα, β〉L2 for all α, β, so d∗ behaves like the
adjoint of d under the L2-inner product; we call d∗ the formal
adjoint of d. One consequence is that d∗β = 0 if and only if
〈dα, β〉L2 = 0 for all α. That is, Ker d∗ = (Imd)⊥, the kernel of
d∗ in C∞(ΛkT ∗X ) is the subspace of C∞(ΛkT ∗X ) which is
L2-orthogonal to the image of
d : C∞(Λk−1T ∗X )→ C∞(ΛkT ∗X ).
We expect an orthogonal splitting

C∞(ΛkT ∗X ) = Imd⊕Ker d∗.

(This is not a proof, though.)
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Some more notation: write dk , d
∗
k for d, d∗ acting on k-forms, and

Hk for Ker∆d on k-forms. Then:

Theorem 5.1 (Hodge Decomposition Theorem)

Let (X , g) be a compact, oriented Riemannian manifold. Then

C∞(ΛkT ∗M) = Hk ⊕ Im(dk−1)⊕ Im(d∗k+1).

Moreover Ker dk = Hk ⊕ Im(dk−1) and Ker d∗k = Hk ⊕ Im(d∗k+1).
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Hodge’s Theorem

So de Rham cohomology satisfies

Hk
dR(X ;R) = Ker dk/ Imdk−1

=
(
Hk ⊕ Im(dk−1)

)
/ Imdk−1

∼= Hk .

This gives Hodge’s Theorem:

Theorem 5.2 (Hodge’s Theorem)

Every de Rham cohomology class on X contains a unique harmonic
representative.

So Hk is finite-dimensional (this also follows as it is the kernel of
an elliptic operator on a compact manifold). The Hodge star gives
an isomorphism ∗ : Hk → Hn−k . Thus Hk

dR(X ;R) ∼= Hn−k
dR (X ;R),

a form of Poincaré duality.
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We defined Hk as the kernel of ∆d = dd∗ + d∗d. But if α ∈ Hk

then

0 = 〈α, (dd∗ + d∗d)α〉L2

= 〈d∗α,d∗α〉L2 + 〈dα,dα〉L2

= ‖d∗α‖2
L2 + ‖dα‖2

L2 ,

so ‖d∗α‖L2 = ‖dα‖L2 = 0, and d∗α = dα = 0. Thus

Hk =
{
α ∈ C∞(ΛkT ∗X ) : dα = d∗α = 0

}
.
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5.2. Hodge theory for compact Kähler manifolds

Now let (X , J, g) be a compact Kähler manifold, with Kähler form
ω, of real dimension 2n. Work now with complex forms, so that
dk , d

∗
k act on C∞(ΛkT ∗X ⊗R C), and Hk is the kernel of ∆d on

complex forms. By the Kähler identities (§4.4) we have
∆∂ = ∆∂̄ = 1

2 ∆d. But ∆∂ ,∆∂̄ both take (p, q)-forms to
(p, q)-forms, so ∆d also takes (p, q)-forms to (p, q)-forms.

Suppose α is a k-form with ∆dα = 0, and write α =
∑

p+q=k αp,q

with αp,q of type (p, q). Then the component of ∆dα = 0 in type
(p, q) is ∆dαp,q = 0, as ∆d takes (p, q)-forms to (p, q)-forms. So
each αp,q lies in Hk . Define Hp,q to be the kernel of ∆d on
(p, q)-forms. We have shown that

Hk =
⊕

p+q=k

Hp,q.
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Here is a version of the Hodge decomposition theorem for the ∂̄
operator on (p, q)-forms. Write ∂̄p,q, ∂̄

∗
p,q for ∂̄, ∂̄∗ on (p, q)-forms.

Theorem 5.3

Let (X , J, g) be a compact Kähler manifold. Then

C∞(Λp,qM) = Hp,q ⊕ Im(∂̄p,q−1)⊕ Im(∂̄∗p,q+1).

Also Ker ∂̄p,q = Hp,q ⊕ Im(∂̄p,q−1) and
Ker ∂̄∗p,q = Hp,q ⊕ Im(∂̄∗p,q+1).
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So Dolbeault cohomology satisfies

Hp,q

∂̄
(X ) = Ker ∂̄p,q/ Im ∂̄p,q−1

=
(
Hp,q ⊕ Im(∂̄p,q−1)

)
/ Im ∂̄p,q−1

∼= Hp,q.

Write Hp,q(X ) for the subspace of Hp+q(X ;C) represented by
forms in Hp,q. Then we have

Hk(X ;C) =
⊕

p+q=k

Hp,q(X ), (5.1)

and Hp,q(X ) ∼= Hp,q

∂̄
(X ). Hence

Hk(X ;C) ∼=
⊕

p+q=k

Hp,q

∂̄
(X ). (5.2)

We can describe Hp,q(X ) as the subspace of Hp+q(X ;C)
represented by closed (p, q)-forms. This is independent of the
Kähler metric on X . But (5.1) and (5.2) fail for general compact
complex manifolds.
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Observe that complex conjugation takes Hp,q to Hq,p and
Hp,q(X ) to Hq,p(X ). Since Hp,q ∼= Hp,q

∂̄
(X ), this implies that

Hp,q

∂̄
(X ) ∼= Hq,p

∂̄
(X ).

This need not be true for general compact complex manifolds;
Hp,q

∂̄
(X ) and Hq,p

∂̄
(X ) need not have the same dimension.

Also ∗ gives

∗ : Hp,q ∼=−→Hn−p,n−q.

This gives Poincaré duality style isomorphisms

Hp,q(X ) ∼= Hn−p,n−q(X )∗, Hp,q

∂̄
(X ) ∼= Hn−p,n−q

∂̄
(X )∗.
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The Betti numbers of X are bk(X ) = dimCHk
dR(X ;C), and the

Hodge numbers of X are hp,q(X ) = dimCHp,q

∂̄
(X ). From above

we have

bk(X ) =
∑

p+q=k

hp,q(X ),

hp,q(X ) = hq,p(X ) = hn−p,n−q(X ) = hn−q,n−p(X ).

So in particular

b2k+1(X ) = 2
k∑

j=0

hj ,2k+1−j(X ).

Corollary 5.4

Let (X , J, g) be a compact Kähler manifold. Then the odd Betti
numbers b2k+1(X ) for k = 0, 1, . . . are even.
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A complex manifold with no Kähler metrics

Let n > 1, and let λ ∈ C with |λ| > 1. Let Z act on Cn \ {0} by
d : (z1, . . . , zn) 7→ (λdz1, . . . , λ

dzn). Define X = (Cn \ {0})/Z.
Then X is a compact complex manifold diffeomorphic to
S1 × S2n−1. By the Künneth theorem we find that the Betti
numbers of X are bk(X ) = 1 for k = 0, 1, 2n − 1, 2n and
bk(X ) = 0 otherwise.
Thus b1(X ) and b2n−1(X ) are odd. If X had a Kähler metric this
would contradict Corollary 5.4. Hence X has no Kähler metrics.
For Dolbeault cohomology, it turns out that H1,0

∂̄
(X ) = 0, but

H0,1

∂̄
(X ) ∼= C, where ∂̄ log(|z1|2 + · · ·+ |zn|2) represents a

nontrivial class. So
Hp,q

∂̄
(X ) 6∼= Hq,p

∂̄
(X )

in this example.
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5.3. The Kähler cone

Let (X , J) be a compact complex manifold, admitting Kähler
metrics. Then we have
H2
dR(X ;C) = H2,0(X )⊕ H1,1(X )⊕ H0,2(X ). If g is a Kähler

metric on (X , J) with Kähler form ω then ω is a real closed
(1,1)-form, so that

[ω] ∈ H2
dR(X ;R) ∩ H1,1(X ),

with intersection in H2
dR(X ;C).

Definition

Define the Kähler cone K of (X , J) to be the set of all Kähler
classes [ω] of Kähler metrics g on (X , J).
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Two important facts about K:

(a) K is open in H2
dR(X ;R) ∩ H1,1(X ).

(b) K is a convex cone.

For (a), note that if ω is the Kähler form of g and η is a closed
real (1,1)-form with ‖η‖C0 < 1, where ‖ . ‖C0 is computed using g ,
then ω′ = ω + η is the Kähler form of g ′. Hence if [ω] ∈ K and
[η] ∈ H2

dR(X ;R) ∩ H1,1(X ) is sufficiently small then [ω] + [η] ∈ K.
For (b), if g , g ′ are Kähler metrics on (X , J) and s, s ′ > 0 then
sg + s ′g ′ is also Kähler. Thus [ω], [ω′] ∈ K implies that
s[ω] + s ′[ω′] ∈ K.
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Suppose Σ ⊂ X is a compact complex curve (1-dimensional
complex submanifold) in X . Then for any Kähler g , ω we have

[ω] · [Σ] =

∫
Σ
ω = volg (Σ) > 0,

where [Σ] ∈ H2(X ;Z) is the homology class. Hence

K ⊆
{
α ∈ H2

dR(X ;R) ∩ H1,1(X ) :

α · [Σ] > 0, Σ ⊂ X curve
}
.

One can often describe K; in simple examples it is a polyhedral
cone.
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5.4. Lefschetz operators, the Hard Lefschetz Theorem

Let (X , J, g) be compact Kähler, with Kähler form ω. As in §4.4
we have operators on forms

L : C∞(ΛkT ∗X ⊗R C)→ C∞(Λk+2T ∗X ⊗R C),

Λ : C∞(ΛkT ∗X ⊗R C)→ C∞(Λk−2T ∗X ⊗R C),

given by L(α) = α ∧ ω and Λ = (−1)k ∗ L∗. These also work on
cohomology. Since [∆d, L] = [∆d,Λ] = 0 by the Kähler identities,
L,Λ take Ker∆d to Ker∆d. So L maps Hk → Hk+2, Λ maps
Hk → Hk−2.
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Define the Lefschetz operator

L : Hk
dR(X ;C) −→ Hk+2

dR (X ;C)

and the dual Lefschetz operator

Λ : Hk
dR(X ;C) −→ Hk−2

dR (X ;C)

to correspond to L : Hk → Hk+2 and Λ : Hk → Hk−2 under the
isomorphisms Hk ∼= Hk

dR(X ;C). Then L(α) = α ∧ [ω], so L
depends only on the Kähler class [ω] of g . We can reconstruct Λ
from L, so Λ also depends only on [ω]. Then L,Λ map

L : Hp,q(X ) −→ Hp+1,q+1(X ) and

Λ : Hp,q(X ) −→ Hp−1,q−1(X ).
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As for the decomposition of forms on Kähler manifolds in §4.4, we
have:

Theorem 5.5 (The Hard Lefschetz Theorem)

Let (X , J, g) be a compact Kähler manifold with dimC X = n.
Then Lk : Hn−k

dR (X ;C)→ Hn+k
dR (X ;C) is an isomorphism for

k = 0, . . . , n.
Define the primitive cohomology Hk

0 (X ;C) for k 6 n by

Hk
0 (X ;C) = Ker Ln−k+1 :

(
Hk
dR(X ;C)→ H2n−k+2

dR (X ;C)
)

= Ker
(
Λ : Hk

dR(X ;C)→ Hk−2
dR (X ;C)

)
.

Then for k = 0, . . . , 2n we have

Hk
dR(X ;C) =

⊕
j :062j6k,
k6n+j

LjHk−2j
0 (X ;C).
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The proof is not hard. For the first part, we have
∆d(ω ∧ α) = ω ∧ (∆dα), so ∆d(ωk ∧ α) = ωk ∧ (∆dα). Thus
ωk ∧ − maps Ker∆d to Ker∆d, that is, α 7→ ωk ∧ α maps Hn−k

to Hn+k . But α 7→ ωk ∧ α is a (pointwise) isomorphism from
(n − k)-forms to (n + k)-forms, so α 7→ ωk ∧ α is an isomorphism
Hn−k → Hn+k . Using isomorphisms H∗ ∼= H∗dR(X ;C) shows that
Lk : Hn−k

dR (X ;C)→ Hn+k
dR (X ;C) is an isomorphism.
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The Hodge Conjecture

Let (X , J, g) be a compact Kähler 2n-manifold, and Y ⊂ X a
closed 2k-submanifold. It has a homology class [Y ] ∈ H2k(X ;Q).
Poincaré duality gives an isomorphism
Pd : H∗(X ;Q)→ H2n−∗(X ;Q), so

Pd([Y ]) ∈ H2n−2k(X ;Q) ⊂ H2n−2k(X ;C).

As Y is a complex submanifold, Pd([Y ]) ∈ Hn−k,n−k(X ). Thus

Pd([Y ]) ∈ H2n−2k(X ;Q) ∩ Hn−k,n−k(X ),

where the intersection is taken in H2n−2k(X ;C).
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The Hodge Conjecture

We can also allow Y to be a complex k-submanifold with
singularities — a ‘k-cycle’.

Conjecture (The Hodge Conjecture.)

Let (X , J, g) be a projective Kähler 2n-manifold. Then for each
k = 0, . . . , n, H2n−2k(X ;Q) ∩ Hn−k,n−k(X ) is spanned over Q by
Pd([Y ]) for k-cycles Y in X .

This is known for k = 0, 1, n − 1, n, and so for n 6 3. There is a
$1,000,000 prize for proving it.
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Plan of talk:

6 Holomorphic vector bundles

6.1 Vector bundles

6.2 ∂̄-operators and connections

6.3 Chern classes

6.4 Holomorphic line bundles
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6.1. Vector bundles

Let X be a real manifold. A (real) vector bundle E → X on X of
rank k is a family of real k-dimensional vector spaces Ex for
x ∈ X , depending smoothly on x . Formally, a vector bundle is a
manifold E with a projection π : E → X which is a submersion,
such that for each x ∈ X the fibre Ex = π−1(x) is given the
structure of a real k-dimensional vector space.
This must satisfy the condition (local triviality) that X may be
covered by open sets U for which there is a diffeomorphism
π−1(U) ∼= Rk × U which identifies π : π−1(U)→ U with
πU : Rk × U → U and the vector space structure on Eu with that
on Rk × {u} for u ∈ U.
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Some examples: trivial vector bundles Rk × X → X , (co)tangent
bundles TX ,T ∗X , exterior forms ΛkT ∗X , and tensor bundles⊗k TX ⊗

⊗l T ∗X .
A complex vector bundle on X is the same, but with fibres Ex

complex vector spaces. Note that we will distinguish between
complex vector bundles (on any manifold) and holomorphic vector
bundles (on a complex manifold).
A (smooth) section of E → X is a smooth map e : X → E with
π ◦ e ≡ idX . The set C∞(E ) of smooth sections of E has the
structure of an (infinite-dimensional) vector space.

29 / 44 Dominic Joyce, Oxford University Lecture 6: Holomorphic vector bundles

Hodge theory for Kähler manifolds
Holomorphic vector bundles

Vector bundles
∂̄-operators and connections
Chern classes
Holomorphic line bundles

We can add other structures to vector bundles. For example, a
metric h on the fibres of E is a family of Euclidean metrics hx on
Ex which vary smoothly with x . That is, h is a smooth, positive
definite section of S2E ∗. A connection ∇ on E is a linear map

∇ : C∞(E ) −→ C∞(E ⊗ T ∗X )

satisfying the Leibnitz rule

∇(fe) = f · ∇e + e ⊗ df

for all e ∈ C∞(E ) and smooth f : X → R. A connection ∇ has
curvature F∇ ∈ C∞(End(E )⊗ Λ2T ∗X ).
We can require ∇ to preserve a metric h on E by
h(∇e1, e2) + h(e1,∇e2) = dh(e1, e2) for all e1, e2 ∈ C∞(E ).
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Holomorphic vector bundles

We define holomorphic vector bundles by replacing real manifolds
by complex manifolds and smooth maps by holomorphic maps in
the definition of real vector bundles. So, if (X , J) is a complex
manifold, then a holomorphic vector bundle of rank k is a family of
complex k-dimensional vector spaces Ex for x ∈ X varying
holomorphically with x .
Formally, a holomorphic vector bundle is a complex manifold
(E ,K ) with a projection π : E → X which is a holomorphic
submersion, such that for each x ∈ X the fibre Ex = π−1(x) is
given the structure of a complex k-dimensional vector space, and
X may be covered by open sets U for which there is a
biholomorphism π−1(U) ∼= Ck × U which identifies
π : π−1(U)→ U with πU : Ck × U → U and the vector space
structure on Eu with that on Ck × {u} for each u ∈ U.
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If E → X is a holomorphic vector bundle, then a map e : X → E
with π ◦ e ≡ idX is called a smooth section if e is smooth, and a
holomorphic section if e is holomorphic. We write C∞(E ) for the
complex vector space of smooth sections of E , and H0(E ) for the
complex vector space of holomorphic sections of E .
Algebraic operations on vector spaces have counterparts on
holomorphic vector bundles: if E ,F are holomorphic vector bundles
then the dual E ∗, the exterior powers ΛkE , the tensor product
E ⊗ F , etc., are all holomorphic vector bundles.
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6.2. ∂̄-operators and connections

In terms of real differential geometry, a holomorphic vector bundle
E over a complex manifold (X , J) has the structure of a complex
vector bundle over the underlying real manifold X . However, it
also has more structure: we have a notion of holomorphic section
of holomorphic vector bundle, but there is no intrinsic notion of
when a section of a complex vector bundle is holomorphic.
If f : X → C is smooth, then f is holomorphic iff ∂̄f = 0 in
C∞(Λ0,1X ). In the same way, if E is a holomorphic vector bundle,
there is a natural ∂̄-operator

∂̄E : C∞(E ) −→ C∞(E ⊗C Λ0,1X )

such that e ∈ C∞(E ) is holomorphic iff ∂̄Ee = 0. It satisfies the
Leibnitz rule

∂̄E (fe) = f · ∂̄Ee + e ⊗C ∂̄f

for all e ∈ C∞(E ) and smooth f : X → C.
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Given ∂̄E satisfying the Leibnitz rule, there are unique extensions

∂̄p,qE : C∞(E ⊗C Λp,qX ) −→ C∞(E ⊗C Λp,q+1X )

with ∂̄E = ∂̄0,0
E , such that

∂̄p,qE (e ⊗ α) = ∂̄Ee ∧ α + e ⊗C ∂̄α

for e ∈ C∞(E ) and α ∈ C∞(Λp,qX ).
On a complex manifold we have ∂̄2 = 0. Similarly, if ∂̄E comes
from a holomorphic vector bundle then ∂̄p,q+1

E ◦ ∂̄p,qE = 0 for all
p, q.
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Thus we can give a differential-geometric definition of holomorphic
vector bundle: a holomorphic vector bundle on (X , J) is a complex
vector bundle E → X together with a ∂̄-operator

∂̄E : C∞(E ) −→ C∞(E ⊗C Λ0,1X )
satisfying the Leibnitz rule, such that the extensions ∂̄p,qE satisfy

∂̄p,q+1
E ◦ ∂̄p,qE = 0. In fact it is enough that ∂̄0,1

E ◦ ∂̄E = 0. We
define e ∈ C∞(E ) to be a holomorphic section if ∂̄Ee = 0.

It turns out that this is equivalent to the first definition of
holomorphic vector bundle. That is, using ∂̄E we can define a
unique almost complex structure K on E such that π : E → X is
holomorphic, and K |Ex comes from the complex vector space
structure of Ex , and the graphs of holomorphic sections are
complex submanifolds of (E ,K ). The condition that the Nijenhuis
tensor of K vanishes, so that (E ,K ) is a complex manifold, is
equivalent to ∂̄0,1

E ◦ ∂̄E = 0.
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∂̄-operators and connections

∂̄-operators are closely related to connections. Let (X , J) be a
complex manifold, E → X a complex vector bundle, and ∇ a
connection on E . Then ∇ is a map

∇ : C∞(E ) −→C∞
(
E ⊗R T ∗X

)
∼=C∞

(
E ⊗C (T ∗X ⊗R C)

)
=C∞

(
E ⊗C (Λ1,0X ⊕ Λ0,1X )

)
=C∞

(
E ⊗C Λ1,0X

)
⊕ C∞

(
E ⊗C Λ0,1X

)
.

So we may write ∇ = ∂E ⊕ ∂̄E , where

∂E : C∞(E ) −→ C∞(E ⊗C Λ1,0X ),

∂̄E : C∞(E ) −→ C∞(E ⊗C Λ0,1X ).
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As ∇ satisfies a Leibnitz rule, both ∂E , ∂̄E satisfy Leibnitz rules,
and ∂̄E is a ∂̄-operator. Thus, a ∂̄-operator is half of a connection.
The condition ∂̄0,1

E ◦ ∂̄E = 0 for a ∂̄-operator to give a holomorphic
vector bundle is a curvature condition. For any ∂̄E , the operator

∂̄0,1
E ◦ ∂̄E : C∞(E ) −→ C∞(E ⊗C Λ0,2X )

is of the form e 7→ F 0,2
E · e for unique

F 0,2
E ∈ C∞(End(E )⊗C Λ0,2X ) which we call the (0, 2)-curvature.

If ∂̄E is half of a connection ∇, then F 0,2
E is the (0, 2)-component

of the curvature F∇.
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Let E be a complex vector bundle over (X , J), and h a Hermitian
metric on the fibres of E . Then there is a 1-1 correspondence
between ∂̄-operators ∂̄E on E , and connections ∇ = ∂E ⊕ ∂̄E on E
preserving h. That is, for each ∂̄-operator ∂̄E , there is a unique ∂E
so that ∇ = ∂E ⊕ ∂̄E preserves h.
Let E be a holomorphic vector bundle on (X , J), with ∂̄-operator
∂̄E . Choose a Hermitian metric h on E . Then ∂̄E extends uniquely
to ∇ = ∂E ⊕ ∂̄E on E preserving h. Consider the curvature of ∇,

F∇ ∈ C∞(End(E )⊗R Λ2T ∗X ).

The (0, 2)-component of F∇ is F 0,2
E = 0 as E is holomorphic. As

∇ preserves h,
F∇ ∈ C∞(Herm−(E )⊗R Λ2T ∗X ),

where Herm−(E ) ⊂ End(E ) are the anti-Hermitian
transformations w.r.t. h.
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This implies that the (2, 0)-component of F∇ is is conjugate to the
(0, 2)-component, so is also zero. Hence F∇ is of type (1,1).
Thus, every holomorphic vector bundle E on X admits a Hermitian
metric h and compatible connection ∇ with F∇ of type (1, 1).
Conversely, if E is a complex vector bundle on X with Hermitian
metric h and compatible connection ∇ with F∇ of type (1, 1), then
the ∂̄-operator of ∇ makes E into a holomorphic vector bundle.
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6.3. Chern classes

There is a lot of interesting algebraic topology associated to
complex vector bundles – K-theory, Chern classes. (See e.g. Milnor
and Stasheff, ‘Characteristic classes’.)
If X is a topological space and E → X is a complex vector bundle
of rank k , then the Chern classes cj(E ) ∈ H2j(X ;Z) for
j = 1, . . . , k are topological invariants of E .
Let X be a manifold. Choose a Hermitian metric h on E and a
connection ∇ on E preserving h. Then
F∇ ∈ C∞(Herm−(E )⊗R Λ2T ∗X ). There are ‘polynomials’
p1, . . . , pk in F∇ such that pj(F∇) is a closed 2j-form and

[pj(F∇)] = cj(E ) ∈ H2j
dR(X ;R). To define pj(F∇), take

F∇ ∧ · · · ∧ F∇ ∈ C∞
(
Herm−(E )⊗

j ⊗ Λ2jT ∗X
)
,

and then apply a natural linear map Herm−(E )⊗
j → R, which can

be thought of as a U(k)-invariant degree j homogeneous
polynomial on the Lie algebra u(k).
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Observe that the cohomology class [pj(F∇)] is cj(E ), and so is
independent of the choice of metric h and connection ∇.
Now suppose E is a holomorphic vector bundle on a complex
manifold (X , J). Then as in §6.2 we can choose h and ∇ on E
with F∇ of type (1, 1). Therefore pj(F∇) is a closed form of type
(j , j). If (X , J, g) is compact Kähler, this gives [pj(F∇)] ∈ H j ,j(X ).
Hence

cj(E ) ∈ H2j(X ;Z) ∩ H j ,j(X ),

with intersection in H2j
dR(X ;C).

Note the similarity to the Hodge Conjecture in §5.4. This gives
obstructions to the existence of holomorphic vector bundles on X :
a rank k complex vector bundle E can admit a holomorphic
structure only if cj(E ) lies in H j ,j(X ) for j = 1, . . . , k .
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6.4. Holomorphic line bundles

A holomorphic line bundle on (X , J) is a rank 1 holomorphic
vector bundle, with fibre C. An example: if dimC X = n then as
T ∗X is a holomorphic vector bundle of rank n, the top exterior
power Λn

CT
∗X is a holomorphic vector bundle of rank

(n
n

)
= 1,

that is, a line bundle. We call Λn
CT
∗X the canonical bundle of X ,

written KX .
Here T ∗X as a holomorphic vector bundle is really T ∗(1,0)X , so
KX is Λn

CT
∗(1,0)X = Λn,0X . That is, KX is the holomorphic line

bundle of (n, 0)-forms on X .
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Let L→ X be a holomorphic line bundle. Choose a Hermitian
metric h on L. As in §6.2 we get a connection ∇ on L preserving
h, with curvature F∇ ∈ C∞(Herm−(L)⊗R Λ2T ∗X ) of type (1,1).
But as L is a line bundle, there are natural identifications
End(L) ∼= C and Herm−(L) ∼= iR ⊂ C. Thus we have F∇ = iη for
η a real 2-form. In fact η is a closed real (1,1)-form, and
p1(F∇) = 1

2πη, so that [η] = 2π c1(L) in H2
dR(X ;R).

If h̃ is an alternative choice of Hermitian metric on L then
h̃ = ef · h for some smooth f : X → R. If ∇̃ and η̃ are ∇, η for
this h̃ then we find that η̃ = η − 1

2dd
c f .
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Let h,∇, η be as above. If (X , J, g) is compact Kähler, and η̂ is a
closed real (1,1)-form on X with [η̂] = 2π c1(L), then η̂ − η is an
exact real (1,1)-form on X , so η̂ − η = −1

2dd
c f for some smooth

f : X → R by the Global ddc -Lemma in §4.2, with f unique up to
addition of constants. Then ĥ = ef · h is a Hermitian metric on L
yielding η̂ as its curvature form. Thus, all closed real (1,1)-forms in
the cohomology class 2π c1(L) can be realized as curvature 2-forms
of a metric h on L, uniquely up to rescaling.
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