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7.1. The Picard group

Let (X , J) be a complex manifold. The Picard group Pic(X ) is
defined to be the set of isomorphism classes [L] of holomorphic line
bundles L→ X , made into a group by defining multiplication
[L] · [L′] = [L⊗ L′] using tensor product of line bundles, inverses
[L]−1 = [L∗] using duals of line bundles, and identity 0 = [OX ] the
isomorphism class of the trivial line bundle OX = C× X → X . It
is an abelian group.
The first Chern class induces a map c1 : Pic(X )→ H2(X ;Z) by
c1 : [L] 7→ c1(L). As c1(L⊗ L′) = c1(L) + c1(L′), this is a group
homomorphism. The inclusion Z ↪→ C induces a morphism
Π : H2(X ;Z)→ H2

dR(X ;C), with kernel the torsion of H2(X ;Z)
(the elements of finite order), a finite group. Usually we don’t
distinguish between H2(X ;Z) and
Π(H2(X ;Z)) ∼= H2(X ;Z)/torsion, but today we will.
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The image of c1 : Pic(X )→ H2(X ;Z)

For each α ∈ H2(X ;Z) there is a complex line bundle Lα → X ,
unique up to isomorphism, with c1(Lα) = α. (N.B. complex line
bundles are not holomorphic line bundles.) Choose any Hermitian
metric h on the fibres of Lα, and connection ∇ on Lα preserving h.
Then the curvature F∇ of ∇ is F∇ = iη for η a closed real 2-form
on X with [η] = 2πΠ(α) in H2

dR(X ;R).
Suppose (X , J, g) is a compact Kähler manifold. In §6.4 we
showed that a necessary condition for L to be a holomorphic line
bundle is that Π(α) ∈ H1,1(X ) ⊂ H2

dR(X ;C). We now prove that
this is sufficient. Suppose Π(α) ∈ H1,1(X ). Then there is a closed
real (1,1)-form ζ with [ζ] = 2πΠ(α) = [η]. So ζ − η is exact, and
ζ − η = dβ for some real 1-form β.
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Define a connection ∇̃ on L by ∇̃s = ∇s + i s ⊗ β for s ∈ C∞(L).
Then ∇̃ preserves h, and F∇̃ = iη + idβ = iζ is of type (1,1). So

as in §6.2, ∇̃ gives L the structure of a holomorphic line bundle.
Therefore

Im
(
c1 : Pic(X ) −→ H2(X ;Z)

)
={

α ∈ H2(X ;Z) : Π(α) ∈ H1,1(X )
}
.

Hence

Im
(
Π ◦ c1 : Pic(X ) −→ H2

dR(X ;C)
)

= Π(H2(X ;Z)) ∩ H1,1(X ).
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The kernel of Π ◦ c1 : Pic(X )→ H2
dR(X ;C)

Let (X , J, g) be a compact Kähler manifold. Suppose L is a
holomorphic line bundle on X , with ∂̄-operator ∂̄L and
Π ◦ c1(L) = 0 in H2

dR(X ;C). Choose a Hermitian metric h on L.
Then there is a unique connection ∇ on L preserving h with
∂̄-operator ∂̄L. It has curvature F∇ = iη for η a closed real
(1,1)-form with [η] = 2πΠ ◦ c1(L) = 0 in H2

dR(X ;C).
Thus η is exact, and η = 1

2dd
c f for some smooth f : X → R by

the Global ddc -Lemma in §4.2. Set ĥ = ef · h, and let ∇̂ be the
unique connection on L preserving ĥ with ∂̄-operator ∂̄L. Then as
in §6.4, ∇̂ has curvature F∇̂ = i η̂ with η̂ = η − 1

2dd
c f = 0. So

F∇̂ ≡ 0, and ∇̂ is a flat connection, with group U(1). Such (L, ∇̂)
are classified up to isomorphism by their holonomy, which is a
group morphism ρ : π1(X )→ U(1) for π1(X ) the fundamental
group of X (supposing X connected).
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Thus we see that

Ker
(
Π ◦ c1 : Pic(X ) −→ H2

dR(X ;C)
)

∼= Hom
(
π1(X ),U(1)

)
∼= Hom

(
H1(X ;Z),U(1)

)
,

since U(1) is abelian and H1(X ;Z) is the abelianization of π1(X ).
We have H1(X ;Z) ∼= Zb1(X ) × G , where b1(X ) is the first Betti
number of X , which is even by Cor. 5.1, and G is the torsion of
H1(X ;Z), a finite abelian group. Hence

Ker
(
Π ◦ c1 : Pic(X ) −→ H2

dR(X ;C)
)

∼= T b1(X ) ×Hom(G ,U(1)),

where Hom(G ,U(1)) is finite.
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7.2. Describing Pic(X )

Putting together the previous material shows that if (X , J, g) is a
compact Kähler manifold we have an exact sequence of abelian
groups

0 −→ Hom
(
H1(X ;Z),U(1)

)
−→ Pic(X )

−→ Π(H2(X ;Z)) ∩ H1,1(X ) −→ 0.

Here Π(H2(X ;Z)) ∩ H1,1(X ) ∼= Zk for some k 6 b2(X ), and the

sequence splits, so

Pic(X ) ∼= T b1(X ) × Hom(G ,U(1))× Zk .
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In fact Hom(G ,U(1)) ∼= Ker
(
Π : H2(X ;Z)→ H2

dR(X ;C)
)
, so we

have

Im
(
c1 : Pic(X ) −→ H2(X ;Z)

) ∼= Hom(G ,U(1))× Zk ,

Ker
(
c1 : Pic(X ) −→ H2(X ;Z)

) ∼= T b1(X ).

Thus Pic(X ) consists of a continuous part T b1(X ), parametrizing
flat connections on the trivial line bundle C× X → X , and a
discrete part Hom(G ,U(1))× Zk , parametrizing the possible first
Chern classes c1(L) of holomorphic line bundles L in H2(X ;Z).
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Since Pic(X ) is the product of a manifold T b1(X ) with a discrete
group Hom(G ,U(1))× Zk , it is a real manifold. In fact it has the
structure of a complex manifold. We can naturally identify the
torus T b1(X ) with H1(X ;R)/Π(H1(X ;Z)). We have natural maps

H1(X ;R) ↪→ H1(X ;C) = H1,0(X )⊕ H0,1(X )

−→ H1(X ;C)/H1,0(X ) ∼= H0,1(X ).

This gives an isomorphism of real vector spaces
H1(X ;R) ∼= H0,1(X ), where H0,1(X ) is a complex vector space. It
is natural to write T b1(X ) ∼= H0,1(X )/Π(H1(X ;Z)), which makes
T b1(X ) and Pic(X ) into complex manifolds; this is the complex
structure you get from regarding Pic(X ) as a moduli space of
holomorphic objects.
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Line bundles on CPn

Let n > 1. Then H2j(CPn;Z) ∼= Z, H2j
dR(CPn;C) = H j ,j(CPn) ∼= C

for j = 0, . . . , n, and Hk(CPn;Z) = Hk
dR(CPn;C) = 0 otherwise.

So §7.1–§7.2 show that c1 : Pic(CPn)→ H2(CPn;Z) ∼= Z is an
isomorphism, and Pic(CPn) ∼= Z.
The tautological line bundle L→ CPn is the holomorphic line
bundle whose dual L∗ has fibre the vector subspace 〈(z0, . . . , zn)〉C
in Cn+1 over [z0, . . . , zn]. So L∗ is a vector subbundle of the trivial
bundle Cn+1 × CPn → CPn.
Then c1(L) generates H2(CPn;Z) ∼= Z, so [L] generates Pic(X ),
and every line bundle on CPn is isomorphic to Lk for some unique
k ∈ Z. Often one uses the notation L = O(1) and Lk = O(k).
One can show that the canonical bundle KCPn of CPn is
isomorphic to L−n−1 = O(−n − 1).
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7.3. Holomorphic and meromorphic sections

Let (X , J) be a complex manifold, and L→ X a holomorphic line
bundle. Then L has a ∂̄-operator ∂̄ : C∞(L)→ C∞(L⊗ Λ0,1X ). A
holomorphic section of L is s ∈ C∞(L) with ∂̄s = 0. The
holomorphic sections form a complex vector space H0(L), which is
finite-dimensional if X is compact.
For example, for the line bundle Lk → CPn, we have H0(Lk) = 0 if
k < 0, and H0(Lk) is isomorphic to the vector space of
homogeneous polynomials on Cn+1 of degree k if k > 0.
Since a holomorphic line bundle L→ X locally looks like the trivial
bundle C× X → X , a holomorphic section s of L locally looks like
a holomorphic function f : X → C. But globally they are different:
for X compact all holomorphic functions are constant, but L can
have many holomorphic sections, or none. One uses holomorphic
sections of L as a substitute for holomorphic functions.
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Meromorphic sections

If (X , J) is a complex manifold, a meromorphic function
f : X 99K C (or C ∪ {∞}) is a function defined in a dense open
subset of X , such that each x ∈ X has an open neighbourhood U
and holomorphic functions g , h : U → C, both not identically zero
near x , with f (u) = g(u)/h(u) for u ∈ U in the domain of f .
When h(u) = 0 and g(u) 6= 0 we can set f (u) =∞, but f (u) is
undefined when g(u) = h(u) = 0, so f may not be defined on all
of X .
In the same way, if L→ X is a holomorphic line bundle, a
meromorphic section s of X is a section of L over a dense open
subset of X , such that each x ∈ X has an open neighbourhood U,
a holomorphic section g of L on U, and a holomorphic function
h : U → C, both not identically zero near x , with
s(u) = g(u)/h(u) for u ∈ U in the domain of s.
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7.4. Divisors

Let (X , J) be a compact complex manifold. An analytic
hypersurface V in X is a closed subset V ⊂ X such that for each
v ∈ V there exists an open neighbourhood U of v in X and a
holomorphic function f : U → C, not identically zero near v , such
that U ∩ V = {u ∈ U : f (u) = 0}. We call V irreducible if we
cannot write V = V1 ∪ V2 for analytic hypersurfaces
∅ 6= V1 6= V2 6= ∅. Every analytic hypersurface is a finite union of
irreducible analytic hypersurfaces.
If (X , J) is projective then Chow’s Theorem shows that such V are
actually algebraic, i.e. defined by the zeroes of polynomials.
A divisor on X is a finite formal sum D =

∑k
j=1 ajVj , where

a1, . . . , ak ∈ Z and V1, . . . ,Vk are irreducible analytic
hypersurfaces. We call D effective if aj > 0 for all j .
The divisor group Div(X ) is the abelian group of divisors on X ,
with addition as group structure.
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Suppose (X , J) is a compact complex manifold, and f : X 99K C is
a meromorphic function. Then one can associate a unique divisor
div(f ) =

∑k
j=1 ajVj to f , such that f has zeroes of order aj on Vj

when aj > 0, and poles of order −aj on Vj when aj < 0. That is,
each x ∈ X has an open neighbourhood U in X such that
f (u) = g(u)

∏l
j=1 fj(u)aj , where fj : U → C is a holomorphic

function with U ∩ Vj = {u ∈ U : fj(u) = 0}, and fj vanishes to
order 1 on the smooth part of U ∩ Vj , and g : U → C \ {0} is
holomorphic.
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A divisor D is called principal if D = div(f ) for some meromorphic
function f . The subset of principal divisors in Div(X ) is a
subgroup, since div(f ) + div(g) = div(fg), −div(f ) = div(f −1).
Two divisors D1,D2 are called linearly equivalent, written
D1 ∼ D2, if D1 − D2 = div(f ) for some meromorphic f . Write [D]
for the ∼-equivalence class of D, and Div(X )/ ∼ for the set of
[D]. Then Div(X )/ ∼ is an abelian group, the quotient of Div(X )
by the subgroup of principal divisors.
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Now let L be a holomorphic line bundle, and s a meromorphic
section of L. Then s has a divisor div(s), defined in the same way
as div(f ). If s is holomorphic then div(s) is effective (as s has no
poles). If f : X 99K C is a meromorphic function then fs is another
meromorphic section of L, and div(fs) = div(f ) + div(s), so that
div(fs) ∼ div(s). Conversely, if t is another meromorphic section
of L, then f := t/s is a meromorphic function X 99K C, and
t = fs, so div(t) = div(f ) + div(s), and div(t) ∼ div(s).
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This proves:

Lemma 7.1

Let (X , J) be a compact complex manifold and L→ X a
holomorphic line bundle which admits meromorphic sections s.
Then the class [div(s)] in Div(X )/ ∼ is independent of the choice
of meromorphic section s.

Conversely, given any divisor D on X , one can construct a
holomorphic line bundle L and a meromorphic section s with
div(s) = D, and (L, s) are unique up to isomorphism. Thus
[L] ∈ Pic(X ) depends only on D. Also if D ′ = D + div(f ) for f
meromorphic then div(fs) = D ′. Thus the class [L] depends only
on the ∼-equivalence class [D] of D.
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Conclusions

If (X , J) is a compact complex manifold, there is a natural injective
morphism µ : (Div(X )/ ∼) ↪→ Pic(X ) mapping µ : [D] 7→ [L],
where L is a holomorphic line bundle with a meromorphic section s
with div(s) = D; if D is effective then s is holomorphic. The image
of µ is the set of [L] for which L admits a meromorphic section.
We will show in §9 that if X is projective then every L admits
meromorphic sections, so µ is an isomorphism.
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8.1. Dolbeault-type cohomology for vector bundles

Let (X , J) be a complex manifold, and E → X a holomorphic
vector bundle, with ∂̄-operator

∂̄E : C∞(E ) −→ C∞(E ⊗C Λ0,1X ).

As in §6.2, ∂̄E extends to

∂̄p,qE : C∞(E ⊗C Λp,qX ) −→ C∞(E ⊗C Λp,q+1X )

with ∂̄p,q+1
E ◦ ∂̄p,qE = 0 for all p, q.
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As for Dolbeault cohomology in §3.2, define the cohomology of E
by

Hq(E ) =
Ker

(
∂̄0,q
E : C∞(E ⊗C Λ0,qX ) −→ C∞(E ⊗C Λ0,q+1X )

)
Im
(
∂̄0,q−1
E : C∞(E ⊗C Λ0,q−1X ) −→ C∞(E ⊗C Λ0,qX )

) .
This uses only C∞(E ⊗C Λp,qX ) for p = 0. But we can interpret
the p 6= 0 case in the same way:

E ⊗C Λp,qX ∼= (E ⊗C Λp,0X )⊗C Λ0,qX

where Λp,0X is the holomorphic vector bundle ΛpT ∗X , so
E ⊗C Λp,0X is a holomorphic vector bundle. So

Hq(E ⊗ ΛpT ∗X ) =

Ker
(
∂̄p,qE : C∞(E ⊗C Λp,qX ) −→ C∞(E ⊗C Λp,q+1X )

)
Im
(
∂̄p,q−1
E : C∞(E ⊗C Λp,q−1X ) −→ C∞(E ⊗C Λp,qX )

) .
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Let X be compact. Choose Hermitian metrics g , h on X ,E . Then
we can define adjoint operators

(∂̄p,q−1
E )∗ : C∞(E ⊗C Λp,qX ) −→ C∞(E ⊗C Λp,q−1X ).

Define ∆p,q
E : C∞(E ⊗C Λp,qX )→ C∞(E ⊗C Λp,qX ) by

∆p,q
E = (∂̄p,qE )∗∂̄p,qE + ∂̄p,q−1

E ◦ (∂̄p,q−1
E )∗.

Then by Hodge theory we have

Hp,q(E ) := Ker∆p,q
E
∼= Hq(E ⊗ ΛpT ∗X ),

so in particular H0,q(E ) ∼= Hq(E ).
As ∆p,q

E is elliptic and X is compact, Ker∆p,q
E is

finite-dimensional. Hence Hq(E ) and Hq(E ⊗ ΛpT ∗X ) are
finite-dimensional complex vector spaces when X is compact.
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Remarks

(a) H0(E ) is the complex vector space of holomorphic sections of E .
(b) ΛpT ∗X is a holomorphic vector bundle for p = 0, . . . , n, and

Hq(ΛpT ∗X ) = Hp,q

∂̄
(X ),

the Dolbeault cohomology of X .
(c) We only need g Hermitian, not Kähler. In §5 we wanted g
Kähler so that ∆∂̄ = 1

2 ∆d, to relate de Rham and Dolbeault
cohomology. Here we have no analogue of de Rham cohomology
for E .
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Remarks

(d) This is not the usual approach to defining cohomology of
vector bundles. There is another way, which yields isomorphic
groups, using sheaf cohomology. In this we define the sheaf of
holomorphic sections of E (can do this analytically, or algebraically,
if X ,E are algebraic), and then define cohomology of the sheaf
using Čech cohomology. The sheaf approach works over other
fields, and for (quasi)coherent sheaves as well as for vector bundles.
(e) In algebraic geometry one defines Ext groups Extq(E ,F ) for
E ,F coherent sheaves, where Ext0(E ,F ) = Hom(E ,F ). When
E ,F are vector bundles we have Extq(E ,F ) ∼= Hq(E ∗ ⊗ F ). But
for general coherent sheaves E ,F both duals E ∗ and tensor
products E ∗ ⊗ F are problematic, so Extq(E ,F ) ∼= Hq(E ∗ ⊗ F )
doesn’t hold.
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Euler characteristics

Definition

Let (X , J) be a compact complex manifold of complex dimension
n, and E → X a holomorphic vector bundle. The Euler–Poincaré
characteristic of E is

χ(X ,E ) =
n∑

q=0

(−1)q dimCHq(E ).

For comparison, the Euler characteristic of X is

χ(X ) =
2n∑
k=0

(−1)k dimCHk
dR(X ;C).
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8.2. The Hirzebruch–Riemann–Roch Theorem

Here is a very important result:

Theorem 8.1 (Hirzebruch–Riemann–Roch)

Let E be a holomorphic vector bundle on a compact complex
manifold X . Then

χ(X ,E ) =

∫
X
ch(E ) td(X ). (8.1)

Here ch(E ) ∈ Heven(X ;Q) is the Chern character of E , a
polynomial in the Chern classes ci (E ) and rank(E ), and
td(X ) ∈ Heven(X ;Q) is the Todd class of X , a polynomial in the
Chern classes of TX .
The r.h.s. of (8.1) means: multiply ch(E ) and td(X ) in
Heven(X ;Q), take the component in H2n(X ;Q), and contract with
the fundamental class [X ] ∈ H2n(X ;Q) to get a number.
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Thus, the Hirzebruch–Riemann–Roch theorem says that χ(X ,E ) is
a topological invariant, which we calculate using algebraic topology.
The proof of the Hirzebruch–Riemann–Roch theorem is difficult. In
our case it is a consequence of the Atiyah–Singer Index Theorem.
Consider

∂̄0,∗
E + (∂̄0,∗

E )∗ :
⊕
q even

C∞(E ⊗C Λ0,qX ) −→
⊕
q odd

C∞(E ⊗C Λ0,qX ).

It is a first-order complex elliptic operator on X with

Ker
(
∂̄0,∗
E + (∂̄0,∗

E )∗
)

=
⊕

q even
H0,q(E ),

Coker
(
∂̄0,∗
E + (∂̄0,∗

E )∗
)

=
⊕

q odd
H0,q(E ).

Hence

index
(
∂̄0,∗
E + (∂̄0,∗

E )∗
)

=∑
q even

dimCH0,q(E )−
∑

q odd
dimCH0,q(E ) = χ(X ,E ).
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We use the Index Theorem to compute index
(
∂̄0,∗
E + (∂̄0,∗

E )∗
)
, and

show it is
∫
X ch(E )td(X ). The Hirzebruch–Riemann–Roch theorem

also applies for coherent sheaves E , and over other fields, with the
sheaf definition of Hq(E ), but this requires a different proof.
A good reference on characteristic classes and the
Hirzebruch–Riemann–Roch Theorem is Hartshorne, Algebraic
Geometry, Appendix A.
We have

ch(E ) =
[
rank(E )

]
+
[
c1(E )

]
+
[

1
2c1(E )2 − c2(E )

]
+ · · · ,

td(X ) =
[
1
]

+
[

1
2c1(TX )

]
+
[

1
12c1(TX )2 + 1

12c2(TX )
]

+ · · · .
So, for example, if L is a line bundle over a curve Σg of genus g
then χ(Σg , L) = deg L + 1− g .
If L is a line bundle on a surface X then

χ(X , L) = 1
2

∫
X
c1(L)

(
c1(L) + c1(TX )

)
+ χ(X ,OX ).
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8.3. Serre duality

If X is a compact, oriented n-manifold then Poincaré duality says
that Hk

dR(X ;R) ∼= Hn−k
dR (X ;R)∗. A partial proof is to choose a

metric g and use Hodge theory: if Hk is the harmonic k-forms
then Hk

dR(X ;R) ∼= Hk . But the Hodge star gives an isomorphism
∗ : Hk → Hn−k , and the L2-product an isomorphism
Hn−k ∼= (Hn−k)∗. So we have isomorphisms

Hk
dR(X ;R) ∼= Hk ∗−→Hn−k L2

−→ (Hn−k)∗ ∼= Hn−k
dR (X ;R)∗.

The composition is independent of g .
In a similar way, if (X , J) is a compact complex manifold of
complex dimension n, with canonical bundle KX , and E → X is a
holomorphic vector bundle, then Serre duality is a natural
isomorphism

Hq(E ) ∼= Hn−q(E ∗ ⊗ KX )∗

for q = 0, . . . , n. We will give a partial proof.
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Choose Hermitian metrics g , h on X ,E . Then by §8.1

Hq(E ) ∼= H0,q(E ) ⊂ C∞(E ⊗ Λ0,qX ).

The Hodge star maps

∗ : Λ0,qX −→ Λn,n−qX ∼= Λn,0X ⊗C Λ0,n−qX .

It is complex antilinear. The Hermitian metric h on E gives a
complex antilinear isomorphism h : E → E ∗. Also Λn,0X = KX .
This gives

h ⊗ ∗ : E ⊗ Λ0,qX → E ∗ ⊗ KX ⊗ Λ0,n−qX .

This h ⊗ ∗ commutes with ∆E and so induces a complex antilinear
isomorphism

h ⊗ ∗ : H0,q(E ) −→ H0,n−q(E ∗ ⊗ KX ).
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It is natural to identify the complex conjugate of H0,q(E ∗ ⊗ KX )
with H0,q(E ∗ ⊗ KX )∗ using the Hermitian L2-inner product. So we
have a complex isomorphism

H0,q(E ) −→ H0,n−q(E ∗ ⊗ KX )∗.

Hence

Hq(E ) ∼= H0,q(E ) ∼= H0,n−q(E ∗ ⊗ KX )∗ ∼= Hn−q(E ∗ ⊗ KX )∗,

which is Serre duality.
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Hirzebruch–Riemann–Roch for curves

Often what we are really interested in is the space H0(E ), as this is
the holomorphic sections of E . Also Hn(E ) ∼= H0(E ∗ ⊗ KX )∗ by
Serre duality, so Hn(E ) also has an interpretation in terms of
holomorphic sections. When n = 1, this is all the cohomology
groups Hq(E ). So the Hirzebruch–Riemann–Roch theorem for a
holomorphic vector bundle E on a curve Σg of genus g becomes

dimH0(E )− dimH0(E ∗ ⊗KX ) = deg E + (1− g) rank(E ). (8.2)
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8.4. Line bundles and vector bundles on CP1

From §7.2, all line bundles on CP1 are isomorphic to Ln = O(n)
for n ∈ Z, where L→ CP1 is the tautological line bundle with
c1(L) = 1, and the canonical bundle KCP1 is L−2 = O(−2). We will
compute Hq(O(n)) for q = 0, 1 and all n in Z. From §8.3 we have

dimH0(O(n))− dimH0(O(−2− n))

= degO(n) + (1− g) rank(O(n)) = n + 1, (8.3)

as degO(n) = n, rankO(n) = 1 and g = 0.
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Now observe that

H0(O(−2)) ∼= H0(KCP1) = H0(Λ1,0CP1) = H1,0(CP1) = 0.

If s ∈ H0(O(n)) and t ∈ H0(O(−2− n)) are both nonzero, then
s ⊗ t ∈ H0(O(−2)) is also nonzero, a contradiction. Hence at
least one of H0(O(n)) and H0(O(−2− n)) are zero. Therefore
(8.3) implies that

dimCH0(O(n)) =

{
n + 1, n > 0,

0, n < 0.
Serre duality gives

H1(O(n)) ∼= H0(O(n)∗ ⊗ KCP1)∗

∼= H0(O(−2− n))∗.

Therefore

dimCH1(O(n)) =

{
−1− n, n 6 −2,

0, n > −1.
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The classification of vector bundles on CP1

Theorem 8.2 (Grothendieck Lemma)

Let E be a holomorphic vector bundle over CP1, of rank k . Then
E is isomorphic to O(a1)⊕O(a2)⊕ · · · ⊕ O(ak), for some unique
integers a1 > a2 > · · · > ak .

For curves of higher genus, and for complex manifolds of dimension
> 1 including projective spaces, the classification of vector bundles
is more complicated.
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Proof of Theorem 8.2

We will prove the Grothendieck Lemma, by induction on k . When
k = 1 it follows from §7.2. Suppose it is true for all vector bundles
of rank < k, for k > 1, and let E have rank k and degree d .
We claim that H0(E ⊗O(n)) is of large dimension for n� 0, and
is zero for n� 0. To see this, note that E ⊗O(n) has rank k and
degree d + nk, so by (8.2) we have

dimH0(E ⊗O(n))− dimH0(E ∗ ⊗O(−2− n)) = d + (n + 1)k .

So dimH0(E ⊗O(n))� 0 for n� 0.
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Proof of Theorem 8.2

As dimH0(O(1)) = 2, considering the map

H0(E ⊗O(n))⊗ H0(O(1)) −→ H0(E ⊗O(n + 1))

shows that if H0(E ⊗O(n)) 6= 0 then

dimH0(E ⊗O(n + 1)) > dimH0(E ⊗O(n)).

Thus dimH0(E ⊗O(n)) is strictly increasing when it is nonzero,
which forces H0(E ⊗O(n)) = 0 for n� 0.
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Proof of Theorem 8.2

Let a1 be greatest with H0(E ⊗O(−a1)) 6= 0, and choose
0 6= s ∈ H0(E ⊗O(−a1)). If s = 0 at any x ∈ CP1 then s = t ⊗ u,
where 0 6= t ∈ H0(E ⊗O(−a1 − 1)), and 0 6= u ∈ H0(O(1)) is
zero at x . But then H0(E ⊗O(−a1 − 1)) 6= 0, contradicting
definition of a1. So s 6= 0 everywhere.
Regard s as a morphism O(a1)→ E . As s 6= 0 everywhere this
embeds O(a1) as a vector subbundle of E , and the quotient bundle
E ′ = E/s(O(a1)) is a vector bundle of rank k − 1. So by induction
E ′ = O(a2)⊕ · · · ⊕ O(ak) for unique a2 > · · · > ak .
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Proof of Theorem 8.2

Taking morphisms from the exact sequence

0 −→ O(a1)
s−→E −→ E ′ −→ 0.

to O(a1), and using H1(O(0)) = 0, gives an exact sequence

0 −→ H0((E ′)∗ ⊗O(a1)) −→ H0(E ∗ ⊗O(a1))
◦s−→H0(O(0)) −→ 0.

As H0(O(0)) = C, there exists t ∈ H0(E ∗ ⊗O(a1)) with
t ◦ s = idO(a1), regarding s, t as morphisms

O(a1)
s−→E

t−→O(a1).

So the sequence 0→ O(a1)→ E → E ′ → 0 splits, and
E ∼= O(a1)⊕ E ′, where as a subbundle of E we have E ′ = Ker t.
Therefore E ∼= O(a1)⊕O(a2)⊕ · · · ⊕ O(ak). Also
a1 > a2 > · · · > ak , as a1 < a2 would contradict the definition of
a1. This completes the inductive step, and the proof.
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