Dominic Joyce

Differential Geometry

Nairobi 2019

Questions on Lie Groups. Sheet 2

A1. Let \mathfrak{g} be a Lie algebra, and let \langle , \rangle be the Killing form of \mathfrak{g} . Prove that for $x, y, z \in \mathfrak{g}$,

$$\langle [x,y],z \rangle = \langle [y,z],x \rangle = \langle [z,x],y \rangle.$$

- **A2.** Consider the following Lie algebras \mathfrak{g} . They are written in terms of a basis x_1, \ldots, x_n for \mathfrak{g} . To define the Lie bracket on \mathfrak{g} , it is enough to define $[x_i, x_j]$ for $1 \le i < j \le n$.
 - (a) $\mathfrak{g} = \langle x_1, x_2 \rangle$, with $[x_1, x_2] = x_1$.
 - (b) $\mathfrak{g} = \langle x_1, x_2, x_3 \rangle$, with $[x_1, x_2] = x_3$, $[x_1, x_3] = 0$, $[x_2, x_3] = 0$.
 - (c) $\mathfrak{g} = \langle x_1, x_2, x_3 \rangle$, with $[x_1, x_2] = x_3$, $[x_1, x_3] = -x_2$, $[x_2, x_3] = -x_1$.
 - (i) In each case, write down the adjoint map 'ad' in matrix form. Hence find the Killing form ⟨, ⟩ of g by direct calculation.
 - (ii) Which of the Lie algebras (a)-(c) are solvable?
 - (iii) Which of the Lie algebras (a)-(c) are semisimple?
- **A3.** Let $\{f_{ij} : 1 \le i < j \le n\}$ be the basis of the Lie algebra $\mathfrak{o}(n)$ of O(n) defined on the first question sheet.
 - (i) Show that if $A = (a_{ij})_{i,j=1}^n$ is a matrix in $\mathfrak{o}(n)$, then $[A, f_{ij}] = 0$ if and only if $a_{ik} = a_{ki} = 0$ for all k with $j \neq k$, and $a_{jk} = a_{kj} = 0$ for all k with $i \neq k$.
 - (ii) Deduce that if n > 2 and [A, B] = 0 for all $B \in \mathfrak{o}(n)$ then A = 0, so that the centre $Z(\mathfrak{o}(n))$ is zero.
 - (iii) Prove that if n > 2, then $\mathfrak{o}(n)$ is a semisimple Lie algebra with negative definite Killing form. You may suppose that O(n) is compact.
- A4. Let \mathfrak{g} be a semisimple Lie algebra. Define $\mathfrak{h} = \operatorname{span}([x, y] : x, y \in \mathfrak{g})$, written $\mathfrak{h} = \operatorname{span}([\mathfrak{g}, \mathfrak{g}])$ for short. Clearly, \mathfrak{h} is an ideal of \mathfrak{g} . Define \mathfrak{m} by $\mathfrak{m} = \{x \in \mathfrak{g} : \langle x, y \rangle = 0$ for all $y \in \mathfrak{h}\}$. Prove that \mathfrak{m} is an abelian ideal in \mathfrak{g} . Deduce that $\mathfrak{m} = \{0\}$ and that $\mathfrak{h} = \mathfrak{g}$. This proves that if \mathfrak{g} is semisimple, then $\mathfrak{g} = \operatorname{span}([\mathfrak{g}, \mathfrak{g}])$.

Questions for practice

- **B1**^{*}. Show that any compact, connected, abelian Lie group is isomorphic to T^n .
- **B2**^{*}. Let G be a connected Lie group with Lie algebra \mathfrak{g} and adjoint representation Ad : $G \to GL(\mathfrak{g})$.
 - (a) Show that G is generated by $\exp_{\mathfrak{q}}(\mathfrak{g})$.
 - (b) Prove that Ker(Ad) is equal to the centre Z(G). (It may help to use (a)).
 - (c) Prove that Z(G) is a (closed) Lie subgroup of G.
- **B3**^{*}. Now suppose that G is compact and connected. Write \mathbb{R}^n for the centre of \mathfrak{g} and \mathfrak{h} for $[\mathfrak{g},\mathfrak{g}]$. From lectures, we have $\mathfrak{g} \cong \mathbb{R}^n \oplus \mathfrak{h}$ as a Lie algebra. Also, \mathfrak{h} is semisimple.
 - (a) Show that the connected component of the identity in Z(G) is isomorphic to T^n . (You may assume questions B1 and B2).
 - (b) Let H be the unique connected, simply-connected Lie group with Lie algebra \mathfrak{h} . Show that $\mathbb{R}^n \times H$ is the universal cover of G.
 - (c) It is a fact that H is compact. Using this, show that every compact connected Lie group G has a finite cover isomorphic to $T^n \times H$, where H is a connected, simply-connected, compact semisimple Lie group.
- **B4**^{*}. Let G be a *complex* Lie group of complex dimension n, with Lie algebra \mathfrak{g} . We may also regard G as a *real* Lie group, of real dimension 2n. Let $\langle , \rangle_{\mathbb{C}} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ be the Killing form of \mathfrak{g} viewed as a complex Lie algebra, and let $\langle , \rangle_{\mathbb{R}} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ be the Killing form of \mathfrak{g} viewed as a real Lie algebra.
 - (i) Show that for $x, y \in \mathfrak{g}$, we have $\langle x, y \rangle_{\mathbb{R}} = 2 \operatorname{Re}(\langle x, y \rangle_{\mathbb{C}})$.
 - (ii) Deduce that $\langle x, x \rangle_{\mathbb{R}} = -\langle ix, ix \rangle_{\mathbb{R}}$ for $x \in \mathfrak{g}$.
 - (iii) Now suppose G is *compact*. Prove that $\langle , \rangle_{\mathbb{R}} = 0$, and hence that \mathfrak{g} is abelian.

Combined with question B1, this question shows that every compact, connected complex Lie group is isomorphic to $\mathbb{C}^n/\mathbb{Z}^{2n}$, for some lattice $\mathbb{Z}^{2n} \subset \mathbb{C}^n$.