Questions on Lie Groups. Sheet 3

A1. Let $\mathfrak{s l}(n, \mathbb{C})$ be the Lie algebra of trace-free $n \times n$ complex matrices, with the usual Lie bracket $[A, B]=A B-B A$. When $n \geq 2, \mathfrak{s l}(n, \mathbb{C})$ is a semisimple Lie algebra over \mathbb{C}. Write $e_{i j}$ for the matrix that is 1 in position (i, j) and 0 elsewhere.
(a) Let \mathfrak{h} be the vector space of diagonal matrices in $\mathfrak{s l}(n, \mathbb{C})$. Then $\mathfrak{h} \cong \mathbb{C}^{n-1}$, and a basis of \mathfrak{h} is $e_{11}-e_{n n}, e_{22}-e_{n n}, \ldots, e_{n-1 n-1}-e_{n n}$. Show that \mathfrak{h} is a Cartan subalgebra of $\mathfrak{s l}(n, \mathbb{C})$.
(b) Let $x \in \mathfrak{s l}(n, \mathbb{C})$ be a diagonal matrix, with all of its diagonal entries distinct. Show that $N(x)=\mathfrak{h}$.
(c) Now let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$, and define $\mathfrak{h}=\left\langle\binom{ 01}{00}\right\rangle$. Show by direct calculation that \mathfrak{h} is a maximal abelian subalgebra of \mathfrak{g}, but that \mathfrak{h} is not a Cartan subalgebra of \mathfrak{g}. This example shows that a maximal abelian subalgebra in a semisimple Lie algebra need not be a Cartan subalgebra.

For the rest of the sheet, let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C}, and let \mathfrak{h} be a Cartan subalgebra. Let $\Delta \subset \mathfrak{h}^{*}$ be the set of roots of $(\mathfrak{g}, \mathfrak{h})$ and \mathfrak{g}_{α} the root space for $\alpha \in \Delta$. Then the root space decomposition of \mathfrak{g} is

$$
\mathfrak{g}=\mathfrak{h} \oplus \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}
$$

For each $\alpha \in \Delta$, let H_{α} be the unique element of \mathfrak{h} such that $\left\langle h, H_{\alpha}\right\rangle_{\mathfrak{g}}=\alpha(h)$ for all $h \in \mathfrak{h}$.

A2. Let $h \in \mathfrak{h}$ and suppose $\alpha(h)=0$ for all $\alpha \in \Delta$. Show that h is in the centre of \mathfrak{g}, and deduce that $h=0$. Hence prove that \mathfrak{h}^{*} is generated as a vector space by Δ, and \mathfrak{h} is generated by $\left\{H_{\alpha}: \alpha \in \Delta\right\}$.

A3. Let $\alpha \in \Delta$, and suppose $x \in \mathfrak{g}_{\alpha}$ and $y \in \mathfrak{g}_{-\alpha}$. For each $h \in \mathfrak{h}$, show that $\langle h,[x, y]\rangle_{\mathfrak{g}}=$ $\langle x, y\rangle_{\mathfrak{g}} \alpha(h)$. Deduce that $[x, y]=\langle x, y\rangle_{\mathfrak{g}} H_{\alpha}$.

Hint: Use that fact that $\langle[x, y], z\rangle_{\mathfrak{g}}=\langle[y, z], x\rangle_{\mathfrak{g}}$.

A4. Let $\mathfrak{s l}(3, \mathbb{C})$ be the Lie algebra of trace-free 3×3 complex matrices, with the usual Lie bracket $[A, B]=A B-B A$. Then $\mathfrak{s l}(3, \mathbb{C})$ is a semisimple Lie algebra. Write $e_{i j}$ for the matrix that is 1 in position (i, j) and 0 elsewhere. Let \mathfrak{h} be the Lie subalgebra of diagonal matrices in $\mathfrak{s l}(3, \mathbb{C})$. Then $\mathfrak{h} \cong \mathbb{C}^{2}$, and a basis of \mathfrak{h} is $e_{11}-e_{33}, e_{22}-e_{33}$. Question A1 shows that \mathfrak{h} is a Cartan subalgebra of $\mathfrak{s l}(3, \mathbb{C})$.
(a) Calculate the action of $\operatorname{ad}(\mathfrak{h})$ on $\mathfrak{s l}(3, \mathbb{C})$.
(b) Hence find the roots of $\mathfrak{s l}(3, \mathbb{C})$ (write them in coordinates with respect to the given basis of \mathfrak{h}). Draw a diagram of the roots in \mathbb{R}^{2}.

Questions for practice

This question proves a result used in the lectures. Hand in answers to it if you like.

B1*. Let $\alpha \in \Delta$. By question A3, we can choose $x \in \mathfrak{g}_{\alpha}$ and $y \in \mathfrak{g}_{-\alpha}$ such that $[x, y]=H_{\alpha}$. Let $\beta=\langle\alpha, \alpha\rangle_{\mathfrak{g}}$. Then $\beta \neq 0$. Define a vector subspace V of \mathfrak{g} by

$$
V=\mathbb{C} \cdot y+\mathbb{C} \cdot H_{\alpha}+\sum_{k \geq 1} \mathfrak{g}_{k \alpha}
$$

(i) Write down the action of $\operatorname{ad}\left(H_{\alpha}\right)$ on V.
(ii) Let $d_{k}=\operatorname{dim} \mathfrak{g}_{k \alpha}$. Show that $\operatorname{Tr}\left(\left.\operatorname{ad}\left(H_{\alpha}\right)\right|_{V}\right)=\beta\left(-1+d_{1}+2 d_{2}+\cdots\right)$.
(iii) Show that $\operatorname{ad}(x)$ and $\operatorname{ad}(y)$ take V to V.
(iv) Deduce that $\operatorname{Tr}\left(\left.\operatorname{ad}\left(H_{\alpha}\right)\right|_{V}\right)=0$.
(v) Prove that $d_{1}=1$ and $d_{j}=0$ for $j>1$.

You have shown that if $\alpha \in \Delta$ then $\operatorname{dim} \mathfrak{g}_{\alpha}=1$, and $k \alpha \notin \Delta$ for $k=2,3,4, \ldots$.

