Dominic Joyce

Differential Geometry

Questions on Lie Groups. Sheet 3

- **A1.** Let $\mathfrak{sl}(n, \mathbb{C})$ be the Lie algebra of trace-free $n \times n$ complex matrices, with the usual Lie bracket [A, B] = AB BA. When $n \geq 2$, $\mathfrak{sl}(n, \mathbb{C})$ is a semisimple Lie algebra over \mathbb{C} . Write e_{ij} for the matrix that is 1 in position (i, j) and 0 elsewhere.
 - (a) Let \mathfrak{h} be the vector space of diagonal matrices in $\mathfrak{sl}(n, \mathbb{C})$. Then $\mathfrak{h} \cong \mathbb{C}^{n-1}$, and a basis of \mathfrak{h} is $e_{11} - e_{nn}$, $e_{22} - e_{nn}, \ldots, e_{n-1n-1} - e_{nn}$. Show that \mathfrak{h} is a Cartan subalgebra of $\mathfrak{sl}(n, \mathbb{C})$.
 - (b) Let $x \in \mathfrak{sl}(n, \mathbb{C})$ be a diagonal matrix, with all of its diagonal entries distinct. Show that $N(x) = \mathfrak{h}$.
 - (c) Now let $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$, and define $\mathfrak{h} = \langle \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \rangle$. Show by direct calculation that \mathfrak{h} is a maximal abelian subalgebra of \mathfrak{g} , but that \mathfrak{h} is not a Cartan subalgebra of \mathfrak{g} . This example shows that a maximal abelian subalgebra in a semisimple Lie algebra need not be a Cartan subalgebra.

For the rest of the sheet, let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} , and let \mathfrak{h} be a Cartan subalgebra. Let $\Delta \subset \mathfrak{h}^*$ be the set of roots of $(\mathfrak{g}, \mathfrak{h})$ and \mathfrak{g}_{α} the root space for $\alpha \in \Delta$. Then the root space decomposition of \mathfrak{g} is

$$\mathfrak{g} = \mathfrak{h} \oplus \sum_{lpha \in \Delta} \mathfrak{g}_{lpha}.$$

For each $\alpha \in \Delta$, let H_{α} be the unique element of \mathfrak{h} such that $\langle h, H_{\alpha} \rangle_{\mathfrak{g}} = \alpha(h)$ for all $h \in \mathfrak{h}$.

- **A2.** Let $h \in \mathfrak{h}$ and suppose $\alpha(h) = 0$ for all $\alpha \in \Delta$. Show that h is in the centre of \mathfrak{g} , and deduce that h = 0. Hence prove that \mathfrak{h}^* is generated as a vector space by Δ , and \mathfrak{h} is generated by $\{H_{\alpha} : \alpha \in \Delta\}$.
- **A3.** Let $\alpha \in \Delta$, and suppose $x \in \mathfrak{g}_{\alpha}$ and $y \in \mathfrak{g}_{-\alpha}$. For each $h \in \mathfrak{h}$, show that $\langle h, [x, y] \rangle_{\mathfrak{g}} = \langle x, y \rangle_{\mathfrak{g}} \alpha(h)$. Deduce that $[x, y] = \langle x, y \rangle_{\mathfrak{g}} H_{\alpha}$.

Hint: Use that fact that $\langle [x, y], z \rangle_{\mathfrak{g}} = \langle [y, z], x \rangle_{\mathfrak{g}}$.

- A4. Let $\mathfrak{sl}(3,\mathbb{C})$ be the Lie algebra of trace-free 3×3 complex matrices, with the usual Lie bracket [A, B] = AB BA. Then $\mathfrak{sl}(3,\mathbb{C})$ is a semisimple Lie algebra. Write e_{ij} for the matrix that is 1 in position (i, j) and 0 elsewhere. Let \mathfrak{h} be the Lie subalgebra of diagonal matrices in $\mathfrak{sl}(3,\mathbb{C})$. Then $\mathfrak{h} \cong \mathbb{C}^2$, and a basis of \mathfrak{h} is $e_{11} e_{33}$, $e_{22} e_{33}$. Question A1 shows that \mathfrak{h} is a Cartan subalgebra of $\mathfrak{sl}(3,\mathbb{C})$.
 - (a) Calculate the action of $ad(\mathfrak{h})$ on $\mathfrak{sl}(3,\mathbb{C})$.
 - (b) Hence find the roots of sl(3, C) (write them in coordinates with respect to the given basis of 𝔥). Draw a diagram of the roots in ℝ².

Questions for practice

This question proves a result used in the lectures. Hand in answers to it if you like.

B1^{*}. Let $\alpha \in \Delta$. By question A3, we can choose $x \in \mathfrak{g}_{\alpha}$ and $y \in \mathfrak{g}_{-\alpha}$ such that $[x, y] = H_{\alpha}$. Let $\beta = \langle \alpha, \alpha \rangle_{\mathfrak{g}}$. Then $\beta \neq 0$. Define a vector subspace V of \mathfrak{g} by

$$V = \mathbb{C} \cdot y + \mathbb{C} \cdot H_{\alpha} + \sum_{k \ge 1} \mathfrak{g}_{k\alpha}.$$

- (i) Write down the action of $ad(H_{\alpha})$ on V.
- (ii) Let $d_k = \dim \mathfrak{g}_{k\alpha}$. Show that $\operatorname{Tr}(\operatorname{ad}(H_\alpha)|_V) = \beta(-1 + d_1 + 2d_2 + \cdots)$.
- (iii) Show that ad(x) and ad(y) take V to V.
- (iv) Deduce that $\operatorname{Tr}(\operatorname{ad}(H_{\alpha})|_{V}) = 0.$
- (v) Prove that $d_1 = 1$ and $d_j = 0$ for j > 1.

You have shown that if $\alpha \in \Delta$ then dim $\mathfrak{g}_{\alpha} = 1$, and $k\alpha \notin \Delta$ for $k = 2, 3, 4, \ldots$