Dominic Joyce

Differential Geometry

Questions on Lie Groups. Sheet 4

- A1. Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} , with Cartan subalgebra \mathfrak{h} , set of roots Δ , and root subspaces \mathfrak{g}_{α} for $\alpha \in \Delta$.
 - (a) Using the root space decomposition of \mathfrak{g} , prove that for $x \in \mathfrak{h}$,

$$\langle x, x \rangle_{\mathfrak{g}} = \sum_{\alpha \in \Delta} \dim(g_{\alpha}) \alpha(x)^2.$$

- (b) Deduce that the restriction of $\langle , \rangle_{\mathfrak{g}}$ to \mathfrak{h} is determined by the subset $\Delta \subset \mathfrak{h}^*$ alone,
- (c) Show that $\langle , \rangle_{\mathfrak{g}}$ is positive definite on $\mathfrak{h}_{\mathbb{R}}$.
- A2. Consider the Lie algebra $\mathfrak{g} = \mathfrak{sl}(4, \mathbb{C})$. A Cartan subalgebra \mathfrak{h} for \mathfrak{g} has dimension 3, and there are 12 roots. Identify \mathfrak{h} with \mathbb{C}^3 , written as column vectors, and \mathfrak{h}^* with \mathbb{C}^3 , written as row vectors. In one coordinate system, the 12 roots of $\mathfrak{g}, \mathfrak{h}$ are

 $\pm (100), \quad \pm (010), \quad \pm (001), \quad \pm (1-10), \quad \pm (10-1), \quad \pm (01-1).$

Let **x** be the column vector $(x_1 x_2 x_3)^t$, and **y** be the row vector $(y_1 y_2 y_3)$.

(i) Using question A1, show that the Killing form is given by

$$\langle \mathbf{x}, \mathbf{x} \rangle_{\mathfrak{g}} = 6(x_1^2 + x_2^2 + x_3^2) - 4(x_1x_2 + x_2x_3 + x_3x_1).$$

(ii) Deduce that the dual inner product on \mathfrak{h}^* is

 $\langle \mathbf{y}, \mathbf{y} \rangle_{\mathfrak{g}} = \frac{1}{4} (y_1^2 + y_2^2 + y_3^2 + y_1 y_2 + y_2 y_3 + y_3 y_1).$

- (iii) Find the lengths of all the roots. Find the angle between the roots (100) and (010).
- (iv) The roots (100), (0-10) and (01-1) form a *simple system*. Calculate the Cartan matrix for this simple system. Draw the Dynkin diagram.
- $(\mathbf{v})^*$ Can you find the order of the Weyl group?

Hint: consider the mid-points of the 12 edges of a cube.

A3^{*}. Let \mathfrak{g} be a complex semisimple Lie algebra. Prove that \mathfrak{g} is *simple* if and only if the Dynkin diagram of \mathfrak{g} is *connected*.

Hint: First prove that if $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_k$, then the Dynkin diagram of \mathfrak{g} is the disjoint union of the Dynkin diagrams of $\mathfrak{g}_1, \ldots, \mathfrak{g}_k$. Then (harder) prove that if the Dynkin diagram of \mathfrak{g} splits into 2 disjoint pieces, then there is a corresponding splitting $g = \mathfrak{g}_1 \oplus \mathfrak{g}_2$.

- **A**4^{*}. Suppose that Γ is a Dynkin diagram with *n* nodes, *m*₁ single edges, *m*₂ double edges and *m*₃ triple edges. Let *α*₁,..., *α*_n be the roots corresponding to the nodes. Define $|\alpha_j|$ by $|\alpha_j|^2 = \langle \alpha_j, \alpha_j \rangle$. Define $\beta \in \mathfrak{h}^*$ by $\beta = \sum_{j=1}^m |\alpha_j|^{-1} \alpha_j$.
 - (a) Find a formula for $\langle \beta, \beta \rangle$ in terms of n, m_1, m_2 and m_3 .
 - (b) Hence show that Γ cannot be the Dynkin diagram of a semisimple Lie algebra unless $m_1 + m_2 + m_3 < n$.
 - (c) Deduce that the Dynkin diagram of a semisimple Lie algebra must be *simply-connected*.

Questions for practice

B1. (1997 M.Sc. exam, q. 9) Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} , and \mathfrak{h} a Cartan subalgebra. Let Δ be the set of roots of $(\mathfrak{g}, \mathfrak{h})$. For each $\alpha \in \Delta$, let H_{α} be the unique element of \mathfrak{h} with $\langle H_{\alpha}, x \rangle = \alpha(x)$ for all $x \in \mathfrak{h}$, and let $\mathfrak{h}_{\mathbb{R}}$ be the real subspace of \mathfrak{h} spanned by $\{H_{\alpha} : \alpha \in \Delta\}$. Define the Weyl group W of $(\mathfrak{g}, \mathfrak{h})$.

Suppose that \mathfrak{g} has rank 2 and that W has order 6. Prove that the points H_{α} , $\alpha \in \Delta$, are the vertices of a regular hexagon in $\mathfrak{h}_{\mathbb{R}}$. We may choose a basis (w_1, w_2) of \mathfrak{h}^* such that the roots in Δ are $\pm \alpha_1, \pm \alpha_2, \pm \alpha_3$, where

$$\alpha_1 = 2w_1, \qquad \alpha_2 = -w_1 + \sqrt{3}w_2, \qquad \text{and} \qquad \alpha_3 = -w_1 - \sqrt{3}w_2$$

Let v_1, v_2 be the dual basis for \mathfrak{h} , such that $w_j(v_k) = \delta_{jk}$. Evaluate $\langle v_1, v_1 \rangle$ explicitly. Show that $H_{\alpha_1} = \frac{1}{6}v_1$, and that $\langle \alpha, \alpha \rangle = \frac{1}{3}$ for all $\alpha \in \Delta$.

[You may suppose that dim $\mathfrak{g}_{\alpha} = 1$ for all $\alpha \in \Delta$, and that $\langle ., . \rangle$ is positive definite on $\mathfrak{h}_{\mathbb{R}}$. Other standard results about root systems and the Weyl group may be used without proof but should be stated clearly.]