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I. Manifolds

1. Topological manifolds

Basically an m-dimensional (topological) manifold is a topological space M
which is locally homeomorphic to Rm. A more precise definition is:

Definition 1.1. 1 A topological space M is called an m-dimensional (topological)
manifold, if the following conditions hold:

(i) M is a Hausdorff space,
(ii) for any p 2 M there exists a neighborhood2 U of p which is homeomorphic

to an open subset V ⇢ Rm, and
(iii) M has a countable basis of open sets.

Axiom (ii) is equivalent to saying that p 2 M has a open neighborhood U 3 p
homeomorphic to the open disc Dm in Rm. We say M is locally homeomorphic to
Rm. Axiom (iii) says that M can be covered by countably many of such neighbor-
hoods.

FIGURE 1. Coordinate charts (U,j).

1See Lee, pg. 3.
2Usually an open neighborhood U of a point p 2 M is an open set containing p. A neighborhood

of p is a set containing an open neighborhood containing p. Here we will always assume that a
neighborhood is an open set.
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FIGURE 2. The transition maps ji j.

Recall some notions from topology: A topological space M is called Hausdorff
if for any pair p,q 2 M, there exist (open) neighborhoods U 3 p, and U 0 3 q such
that U \U 0 = ?. For a topological space M with topology t, a collection b ⇢ t is
a basis if and only if each U 2 t can be written as union of sets in b. A basis is
called a countable basis if b is a countable set.

Figure 1 displays coordinate charts (U,j), where U are coordinate neighbor-
hoods, or charts, and j are (coordinate) homeomorphisms. Transitions between
different choices of coordinates are called transitions maps ji j = j j �j

�1
i , which

are again homeomorphisms by definition. We usually write x = j(p), j : U !
V ⇢Rn, as coordinates for U , see Figure 2, and p = j

�1(x), j

�1 : V !U ⇢ M, as
a parametrization of U . A collection A = {(ji,Ui)}i2I of coordinate charts with
M = [iUi, is called an atlas for M.

The following Theorem gives a number of useful characteristics of topological
manifolds.
Theorem 1.4. 3 A manifold is locally connected, locally compact, and the union of
countably many compact subsets. Moreover, a manifold is normal and metrizable.
J 1.5 Example. M =Rm; the axioms (i) and (iii) are obviously satisfied. As for (ii)
we take U = Rm, and j the identity map. I

3Lee, 1.6, 1.8, and Boothby.
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J 1.6 Example. M = S1 = {p = (p1, p2) 2R2 | p2
1+ p2

2 = 1}; as before (i) and (iii)
are satisfied. As for (ii) we can choose many different atlases.

(a): Consider the sets

U1 = {p 2 S1 | p2 > 0}, U2 = {p 2 S1 | p2 < 0},

U3 = {p 2 S1 | p1 < 0}, U4 = {p 2 S1 | p1 > 0}.

The associated coordinate maps are j1(p) = p1, j2(p) = p1, j3(p) = p2, and
j4(p) = p2. For instance

j

�1
1 (x) =

⇣

x,
p

1� x2
⌘

,

and the domain is V1 = (�1,1). It is clear that ji and j

�1
i are continuous, and

therefore the maps ji are homeomorphisms. With these choices we have found an
atlas for S1 consisting of four charts.

(b): (Stereographic projection) Consider the two charts

U1 = S1\{(0,1)}, and U2 = S1\{(0,�1)}.

The coordinate mappings are given by

j1(p) =
2p1

1� p2
, and j2(p) =

2p1

1+ p2
,

which are continuous maps from Ui to R. For example

j

�1
1 (x) =

⇣ 4x
x2 +4

,
x2 �4
x2 +4

⌘

,

which is continuous from R to U1.

FIGURE 3. The stereographic projection describing j1.

(c): (Polar coordinates) Consider the two charts U1 = S1\{(1,0)}, and U2 =

S1\{(�1,0)}. The homeomorphism are j1(p) = q 2 (0,2p) (polar angle counter
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clockwise rotation), and j2(p) = q 2 (�p,p) (complex argument). For example
j

�1
1 (q) = (cos(q),sin(q)). I

J 1.8 Example. M = Sn = {p = (p1, · · · pn+1) 2 Rn+1 | |p|2 = 1}. Obvious exten-
sion of the choices for S1. I

J 1.9 Example. (see Lee) Let U ⇢Rn be an open set and g : U !Rm a continuous
function. Define

M = G(g) = {(x,y) 2 Rn ⇥Rm : x 2U, y = g(x)},

endowed with the subspace topology, see 1.17. This topological space is an n-
dimensional manifold. Indeed, define p : Rn ⇥Rm ! Rn as p(x,y) = x, and
j = p|

G(g), which is continuous onto U . The inverse j

�1(x) = (x,g(x)) is also
continuous. Therefore {(G(g),j)} is an appropriate atlas. The manifold G(g) is
homeomorphic to U . I

J 1.10 Example. M = PRn, the real projective spaces. Consider the following
equivalence relation on points on Rn+1\{0}: For any two x,y 2 Rn+1\{0} define

x ⇠ y if there exists a l 6= 0, such that x = ly.

Define PRn = {[x] : x 2 Rn+1\{0}} as the set of equivalence classes. One can
think of PRn as the set of lines through the origin in Rn+1. Consider the natural
map p : Rn+1\{0}! PRn, via p(x) = [x]. A set U ⇢ PRn is open if p

�1(U) is open
in Rn+1\{0}. This makes p a quotient map and p is continuous. The equivalence
relation ⇠ is open (see [2, Sect. 7.6]) and therefore PRn Hausdorff and second
countable, see 1.17. Compactness of PRn can be proves by showing that there
exists a homeomorphism from PRn to Sn/ ⇠, see [2, Sect. 7.6]. In order to verify
that we are dealing with an n-dimensional manifold we need to describe an atlas
for PRn. For i = 1, · · ·n+1, define Vi ⇢ Rn+1\{0} as the set of points x for which
xi 6= 0, and define Ui = p(Vi). Furthermore, for any [x] 2Ui define

ji([x]) =
⇣x1

xi
, · · · , xi�1

xi
,
xi+1

xi
, · · · , xn+1

xi

⌘

,

which is continuous. This follows from the fact that j � p is continuous. The
continuous inverse is given by

j

�1
i (z1, · · · ,zn) =

⇥

(z1, · · · ,zi�1,1,zi, · · · ,zn)
⇤

.

These charts Ui cover PRn. In dimension n = 1 we have that PR ⇠= S1, and in the
dimension n = 2 we obtain an immersed surface PR2 as shown in Figure 4. I

The examples 1.6 and 1.8 above are special in the sense that they are subsets of
some Rm, which, as topological spaces, are given a manifold structure.
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FIGURE 4. Identification of the curves indicated above yields an
immersion of PR2 into R3.

Define
Hm = {(x1, · · · ,xm) | xm � 0},

as the standard Euclidean half-space.

Definition 1.12. A topological space M is called an m-dimensional (topological)
manifold with boundary ∂M ⇢ M, if the following conditions hold:

(i) M is a Hausdorff space,
(ii) for any point p 2 M there exists a neighborhood U of p, which is homeo-

morphic to an open subset V ⇢Hm, and
(iii) M has a countable basis of open sets.

Axiom (ii) can be rephrased as follows, any point p 2 M is contained in a neigh-
borhood U , which either homeomorphic to Dm, or to Dm\Hm. The set M is locally
homeomorphic to Rm, or Hm. The boundary ∂M ⇢ M is a subset of M which con-
sists of points p for which any neighborhood cannot be homeomorphic to an open
subset of int (Hm). In other words point p 2 ∂M are points that lie in the inverse
image of V \ ∂Hm for some chart (U,j). Points p 2 ∂M are mapped to points on
∂Hm and ∂M is an (m�1)-dimensional topological manifold.
J 1.14 Example. Consider the bounded cone

M =C = {p = (p1, p2, p3) 2 R3 | p2
1 + p2

2 = p2
3, 0  p3  1},

with boundary ∂C = {p 2 C | p3 = 1}. We can describe the cone via an atlas
consisting of three charts;

U1 = {p 2C | p3 < 1},

with x = (x1,x2) = j1(p) = (p1, p2 +1), and

j

�1
1 (x) =

⇣

x1,x2 �1,
q

x2
1 +(x2 �1)2

⌘

,
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FIGURE 5. Coordinate maps for boundary points.

The other charts are given by

U2 = {p 2C | 1
2
< p3  1, (p1, p2) 6= (0, p3)},

U3 = {p 2C | 1
2
< p3  1, (p1, p2) 6= (0,�p3)}.

For instance j2 can be constructed as follows. Define

q = y(p) =
⇣ p1

p3
,

p2

p3
, p3

⌘

, s(q) =
⇣ 2q1

1�q2
,1�q3

⌘

,

and x = j2(p) = (s �y)(p), j2(U2) = R⇥ [0, 1
2) ⇢ H2. The map j3 is defined

similarly. The boundary is given by ∂C =j

�1
2 (R⇥{0})[j

�1
3 (R⇥{0}), see Figure

6. I

J 1.16 Example. The open cone M = C = {p = (p1, p2, p3) | p2
1 + p2

2 = p2
3, 0 

p3 < 1}, can be described by one coordinate chart, see U1 above, and is therefore a
manifold without boundary (non-compact), and C is homeomorphic to D2, or R2,
see definition below. I

So far we have seen manifolds and manifolds with boundary. A manifold can
be either compact or non-compact, which we refer to as closed, or open manifolds
respectively. Manifolds with boundary are also either compact, or non-compact. In
both cases the boundary can be compact. Open subsets of a topological manifold
are called open submanifolds, and can be given a manifold structure again.

Let N and M be manifolds, and let f : N ! M be a continuous mapping. A
mapping f is called a homeomorphism between N and M if f is continuous and
has a continuous inverse f�1 : M ! N. In this case the manifolds N and M are said
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FIGURE 6. Coordinate maps for the cone C.

to be homeomorphic. Using charts (U,j), and (V,y) for N and M respectively,
we can give a coordinate expression for f , i.e. f̃ = y� f �j

�1.
A (topological) embedding is a continuous injective mapping f : X !Y , which

is a homeomorphism onto its image f (X) ⇢ Y with respect to the subspace topol-
ogy. Let f : N !M be an embedding, then its image f (N)⇢M is called a subman-
ifold of M. Notice that an open submanifold is the special case when f = i : U ,!M
is an inclusion mapping.
J 1.17 Facts. Recall the subspace topology. Let X be a topological space and let
S ⇢ X be any subset, then the subspace, or relative topology on S (induced by the
topology on X) is defined as follows. A subset U ⇢ S is open if there exists an open
set V ⇢ X such that U =V \S. In this case S is called a (topological) subspace of
X .

For a subjective map p : X ! Y we topologize Y via: U ⇢ Y is open if and
only if p

�1(U) is open in X . In this case p is continuous and is called a quotient
map. For a given topological space Z the map f : Y ! Z is continuous if and
only if f � p : X ! Z is continuous. For an equivalence relation ⇠, the mapping
p : X ! X/⇠ is a quotient map, see [1].

If ⇠ is a open equivalence relation, i.e. the image of an open set under p : X !
X/⇠ is open, then X/⇠ is Hausdorff if and only if the set {(x,x0)2 X ⇥X | x ⇠ x0}
is closed in X ⇥X . If X is second countable (countable basis of open sets), then
also X/⇠ is second countable, see [2]. I
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2. Differentiable manifolds and differentiable structures

A topological manifold M for which the transition maps ji j = j j �j

�1
i for all

pairs ji,j j in the atlas are diffeomorphisms is called a differentiable, or smooth
manifold. The transition maps are mappings between open subsets of Rm. Dif-
feomorphisms between open subsets of Rm are C•-maps, whose inverses are also
C•-maps. For two charts Ui and Uj the transitions maps are mappings:

ji j = j j �j

�1
i : ji(Ui \Uj)! j j(Ui \Uj),

and as such are homeomorphisms between these open subsets of Rm.

Definition 2.1. A C•-atlas is a set of charts A= {(U,ji)}i2I such that

(i) M = [i2IUi,
(ii) the transition maps ji j are diffeomorphisms between ji(Ui \Uj) and

j j(Ui \Uj), for all i 6= j (see Figure 2 ).

The charts in a C•-atlas are said to be C•-compatible. Two C•-atlases A and A0

are equivalent if A[A0 is again a C•-atlas, which defines a equivalence relation on
C•-atlases. An equivalence class of this equivalence relation is called a differen-
tiable structure D on M. The collection of all atlases associated with D, denoted
AD, is called the maximal atlas for the differentiable structure. Figure 7 shows
why compatibility of atlases defines an equivalence relation.

Definition 2.3. Let M be a topological manifold, and let D be a differentiable
structure on M with maximal atlas AD. Then the pair (M,AD) is called a (C•-
)differentiable manifold.

Basically, a manifold M with a C•-atlas, defines a differentiable structure on
M. The notion of a differentiable manifold is intuitively a difficult concept. In
dimensions 1 through 3 all topological manifolds allow a differentiable structure
(only one up to diffeomorphisms). Dimension 4 is the first occurrence of manifolds
without a differentiable structure. Also in higher dimensions uniqueness of differ-
entiable structures is no longer the case as the famous example by Milnor shows;
S7 has 28 different (non-diffeomorphic) differentiable structures. The first example
of a manifold that allows many non-diffeomorphic differentiable structures occurs
in dimension 4; exotic R4’s. One can also consider Cr-differentiable structures and
manifolds. Smoothness will be used here for the C•-case.
Theorem 2.4. 4 Let M be a topological manifold with a C•-atlas A. Then there
exists a unique differentiable structure D containing A, i.e. A⇢AD.

4Lee, Lemma 1.10.
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FIGURE 7. Differentiability of j

00 �j

�1 is achieved via the map-
pings j

00 � (j̃0)�1, and j̃

0 �j

�1, which are diffeomorphisms since
A⇠A0, and A0 ⇠A00 by assumption. This establishes the equiva-
lence A⇠A00.

Proof: Let A be the collection of charts that are C•-compatible with A. By the
same reasoning as in Figure 7 we prove that all charts in A are C•-compatible with
eachother proving that A is a smooth altas. Now any chart that is C•-compatible
with any chart in A is C•-compatible with any chart in A and is thus in A and A is
a maximal atlas. Clearly any other maximal altas is contained in A and therefore
A=AD.

J 2.5 Remark. In our definition of of n-dimensional differentiable manifold we
use the local model over standard Rn, i.e. on the level of coordinates we express
differentiability with respect to the standard differentiable structure on Rn, or dif-
feomorphic to the standard differentiable structure on Rn. I

J 2.6 Example. The cone M =C ⇢R3 as in the previous section is a differentiable
manifold whose differentiable structure is generated by the one-chart atlas (C,j)

as described in the previous section. As we will see later on the cone is not a
smoothly embedded submanifold. I

J 2.7 Example. M = S1 (or more generally M = Sn). As in Section 1 consider
S1 with two charts via stereographic projection. We have the overlap U1 \U2 =

S1\{(0,±1)}, and the transition map j12 = j2 � j

�1
1 given by y = j12(x) = 4

x ,
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x 6= 0,±•, and y 6= 0,±•. Clearly, j12 and its inverse are differentiable functions
from j1(U1 \U2) = R\{0} to j2(U1 \U2) = R\{0}. I

FIGURE 8. The transition maps for the stereographic projection.

J 2.9 Example. The real projective spaces PRn, see exercises Chapter VI. I

J 2.10 Example. The generalizations of projective spaces PRn, the so-called (k,n)-
Grassmannians GkRn are examples of smooth manifolds. I

Theorem 2.11. 5 Given a set M, a collection {U
a

}
a2A of subsets, and injective

mappings j

a

: U
a

! Rm, such that the following conditions are satisfied:

(i) j

a

(U
a

)⇢ Rm is open for all a;
(ii) j

a

(U
a

\U
b

) and j

b

(U
a

\U
b

) are open in Rm for any pair a,b 2 A;
(iii) for U

a

\U
b

6=?, the mappings j

a

�j

�1
b

: j

b

(U
a

\U
b

)! j

a

(U
a

\U
b

) are
diffeomorphisms for any pair a,b 2 A;

(iv) countably many sets U
a

cover M.
(v) for any pair p 6= q 2 M, either p,q 2 U

a

, or there are disjoint sets U
a

,U
b

such that p 2U
a

and q 2U
b

.

Then M has a unique differentiable manifold structure and (U
a

,j
a

) are smooth
charts.

Proof: Let us give a sketch of the proof. Let sets j

�1
a

(V ), V ⇢ Rn open, form a
basis for a topology on M. Indeed, if p 2 j

�1
a

(V )\j

�1
b

(W ) then the latter is again
of the same form by (ii) and (iii). Combining this with (i) and (iv) we establish
a topological manifold over Rm. Finally from (iii) we derive that {(U

a

,j
a

)} is a
smooth atlas.

Let N and M be smooth manifolds (dimensions n and m respectively). Let f :
N ! M be a mapping from N to M.

5See Lee, Lemma 1.23.
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Definition 2.12. A mapping f : N ! M is said to be C•, or smooth if for every
p 2 N there exist charts (U,j) of p and (V,y) of f (p), with f (U) ⇢ V , such that
f̃ = y� f �j

�1 : j(U)! y(V ) is a C•-mapping (from Rn to Rm).

FIGURE 9. Coordinate representation for f , with f (U)⇢V .

The above definition also holds true for mappings defined on open subsets of
N, i.e. let W ⇢ N is an open subset, and f : W ⇢ N ! M, then smoothness on W
is defined as above by restricting to pionts p 2 W . With this definition coordinate
maps j : U ! Rm are smooth maps.

The definition of smooth mappings allows one to introduce the notion of dif-
ferentiable homeomorphism, of diffeomorphism between manifolds. Let N and M
be smooth manifolds. A C•-mapping f : N ! M, is called a diffeomorphism if
it is a homeomorphism and also f�1 is a smooth mapping, in which case N and
M are said to be diffeomorphic. The associated differentiable structures are also
called diffeomorphic. Diffeomorphic manifolds define an equivalence relation. In
the definition of diffeomorphism is suffices require that f is a differentiable bijec-
tive mapping with smooth inverse (see Theorem 2.15). A mapping f : N ! M is
called a local diffeomorphism if for every p 2 N there exists a neighborhood U ,
with f (U) open in M, such that f : U ! f (U) is a diffeomorphism. A mapping
f : N !M is a diffeomorphism if and only if it is a bijective local diffeomorphism.
J 2.14 Example. Consider N = R with atlas (R,j(p) = p), and M = R with at-
las (R,y(q) = q3). Clearly these define different differentiable structures (non-
compatible charts). Between N and M we consider the mapping f (p) = p1/3,
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which is a homeomorphism between N and M. The claim is that f is also a diffeo-
morphism. Take U =V = R, then y� f �j

�1(p) = (p1/3)3 = p is the identity and
thus C• on R, and the same for j� f�1 �y

�1(q) = (q3)1/3 = q. The associated dif-
ferentiable structures are diffeomorphic. In fact the above described differentiable
structures correspond to defining the differential quotient via limh!0

f 3(p+h)� f 3(p)
h .

I

Theorem 2.15. 6 Let N,M be smooth manifolds with atlases AN and AM respec-
tively. The following properties hold:

(i) Given smooth maps f
a

: U
a

! M, for all U
a

2 AN, with f
a

|U
a

\U
b

=

f
b

|U
a

\U
b

for all a,b. Then there exists a unique smooth map f : N ! M
such that f |U

a

= f
a

.
(ii) A smooth map f : N ! M between smooth manifolds is continuous.

(iii) Let f : N !M be continuous, and suppose that the maps f̃
ab

=y

b

� f �j

�1
a

,
for charts (U

a

,j
a

)2AN, and (V
b

,y
b

)2AM, are smooth on their domains
for all a,b. Then f is smooth.

Proof: Define f by f |U
a

= f
a

, which is well-defined by the overlap conditioins.
Given p 2 M, there exists a chart U

a

3 p and f̃ = f̃
a

which is smooth by definition,
and thus f is smooth.

For any p 2U (chart) and choose f (p) 2V (chart), then f̃ is a smooth map and
f |U = y

�1 � f̃ �j : U !V is continuous. Continuity holds for each neighborhood
of p 2 M.

Let p 2 U
a

and f (p) 2 V
b

and set U = f�1(V
b

)\U
a

⇢ U
a

which is open by
continuity of f . Now f̃ = f̃

ab

on the charts (U,j
a

|U) and (V
b

,y
b

) which proves
the differentiability of f .

With this theorem at hand we can verify differentiability locally. In order to
show that f is a diffeomorphism we need that f is a homeomorphism, or a bijection
that satisfies the above local smoothness conditions, as well as for the inverse.
J 2.17 Example. Let N = M = PR1 and points in PR1 are equivalence classes
[x] = [(x1,x2)]. Define the mapping f : PR1 ! PR1 as [(x1,x2)] 7! [(x2

1,x
2
2)]. Con-

sider the charts U1 = {x1 6= 0}, and U2 = {x2 6= 0}, with for example j1(x) =
tan�1(x2/x1), then j

�1(q1) =
�

[cos(q1),sin(q1)]
�

, with q1 2V1 = (�p/2,p/2). In
local coordinates on V1 we have

ef (q1) = tan�1�sin2(q1)/cos2(q1)
�

,

6See Lee Lemmas 2.1, 2.2 and 2.3.
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FIGURE 10. Coordinate diffeomorphisms and their local repre-
sentation as smooth transition maps.

and a similar expression for V2. Clearly, f is continuous and the local expressions
also prove that f is a differentiable mapping using Theorem 2.15. I

The coordinate maps j in a chart (U,j) are diffeomorphisms. Indeed, j : U ⇢
M !Rn, then if (V,y) is any other chart with U \V 6=?, then by the definition the
transition maps y�j

�1 and j�y

�1 are smooth. For j we then have j̃ = j�y

�1

and j̃

�1 = y�j

�1, which proves that j is a diffeomorphism, see Figure 10. This
justifies the terminology smooth charts.
J 2.18 Remark. For arbitrary subsets U ⇢ Rm and V ⇢ Rn a map f : U ⇢ Rm

! V ⇢ Rn is said to be smooth at p 2 U , if there exists an open set U† ⇢ Rm

containing p, and a smooth map f † : U† ! Rm, such that f and f † coincide on
U \U†. The latter is called an extension of f . A mapping f : U ! V between
arbitrary subsets U ⇢ Rm and V ⇢ Rn is called a diffeomorphism if f maps U
homeomorphically onto V and both f and f�1 are is smooth (as just described
above). In this case U and V are said to be diffeomorphic. I

J 2.19 Example. An important example of a class of differentiable manifolds are
appropriately chosen subsets of Euclidean space that can be given a smooth mani-
fold structure. Let M ⇢ R` be a subset such that every p 2 M has a neighborhood
U 3 p in M (open in the subspace topology, see Section 3) which is diffeomorphic
to an open subset V ⇢Rm (or, equivalently an open disc Dm ⇢Rm). In this case the
set M is a smooth m-dimensional manifold. Its topology is the subsapce topology
and the smooth structure is inherited from the standard smooth structure on R`,
which can be described as follows. By definition a coordinate map j is a diffeo-
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FIGURE 11. The transitions maps y �j

�1 and j �y

�1 smooth
mappings establishing the smooth structure on M.

morphisms which means that j : U !V = j(U) is a smooth mapping (smoothness
via a smooth map j

†), and for which also j

�1 is a smooth map. This then directly
implies that the transition maps y � j

�1 and j �y

�1 are smooth mappings, see
Figure 11. In some books this construction is used as the definition of a smooth
manifold. I

J 2.21 Example. Let us consider the cone M =C described in Example 1 (see also
Example 2 in Section 1). We already established that C is manifold homeomorphic
to R2, and moreover C is a differentiable manifold, whose smooth structure is
defined via a one-chart atlas. However, C is not a smooth manifold with respect to
the induced smooth structure as subset of R3. Indeed, following the definition in the
above remark, we have U =C, and coordinate homeomorphism j(p) = (p1, p2) =

x. By the definition of smooth maps it easily follows that j is smooth. The inverse
is given by j

�1(x) =
�

x1,x2,
q

x2
1 + x2

2
�

, which is clearly not differentiable at the
cone-top (0,0,0). The cone C is not a smoothly embedded submainfold of R3

(topological embedding). I

Let U,V and W be open subsets of Rn, Rk and Rm respectively, and let f : U !V
and g : V !W be smooth maps with y = f (x), and z = g(y). Then the Jacobians
are

J f |x =

0

B

B

@

∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fk
∂x1

· · · ∂ fk
∂xn

1

C

C

A

, Jg|y =

0

B

B

@

∂g1
∂y1

· · · ∂g1
∂yk

...
. . .

...
∂gm
∂y1

· · · ∂gm
∂yk

1

C

C

A

,

and J(g � f )|x = Jg|y= f (x) · J f |x (chain-rule). The commutative diagram for the
maps f , g and g� f yields a commutative diagram for the Jacobians:
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V

U W

A
A
A
A
AAU

g

�
�
�
�
���

f

-
g� f

Rk

Rn Rm

A
A
A
A
AAU

Jg|y

�
�
�
�
���

J f |x

-
J(g� f )|x

For diffeomorphisms between open sets in Rn we have a number of important
properties. Let U ⇢Rn and V ⇢Rm be open sets, and let f : U !V is a diffeomor-
phism, then n = m, and J f |x is invertible for any x 2U . Using the above described
commutative diagrams we have that f�1 � f yields that J( f�1)|y= f (x) · J f |x is the
identity on Rn, and f � f�1 yields that J f |x · J( f�1)|y= f (x) is the identity on Rm.
Thus J fx has an inverse and consequently n = m. Conversely, if f : U ! Rn,
U ⇢ Rn, open, then we have the Inverse Function Theorem;
Theorem 2.22. If J f |x : Rn !Rn is invertible, then f is a diffeomorphism between
sufficiently small neighborhoods U 0 and f (U 0) of x and y respectively.

3. Immersions, submersions and embeddings

Let N and M be smooth manifolds of dimensions n and m respectively, and let
f : N ! M be a smooth mapping. In local coordinates f̃ = y � f �j

�1 : j(U)!
y(V ), with respects to charts (U,j) and (V,y). The rank of f at p 2 N is defined
as the rank of f̃ at j(p), i.e. rk( f )|p = rk(J f̃ )|

j(p), where J f̃ |
j(p) is the Jacobian

of f at p:

J f̃ |x=j(p) =

0

B

B

@

∂ f̃1
∂x1

· · · ∂ f̃1
∂xn

...
. . .

...
∂ f̃m
∂x1

· · · ∂ f̃m
∂xn

1

C

C

A

This definition is independent of the chosen charts, see Figure 12. Via the commu-
tative diagram in Figure 12 we see that ˜̃f = (y0 �y

�1)� f̃ �(j0 �j

�1)�1, and by the
chain rule J ˜̃f |x0 = J(y0 �y

�1)|y ·J f̃ |x ·J(j0 �j

�1)�1|x0 . Since y

0 �y

�1 and j

0 �j

�1

are diffeomorphisms it easily follows that rk(J f̃ )|x = rk(J ˜̃f )|x0 , which shows that
our notion of rank is well-defined. If a map has constant rank for all p 2 N we sim-
ply write rk( f ). These are called constant rank mappings. Let us now consider
the various types of constant rank mappings between manifolds.
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FIGURE 12. Representations of f via different coordinate charts.

Definition 3.2. A mapping f : N ! M is called an immersion if rk( f ) = n, and a
submersion if rk( f ) = m. An immersion that is injective,7 or 1-1, and is a home-
omorphism onto (surjective mapping8) its image f (N) ⇢ M, with respect to the
subspace topology, is called a smooth embedding.

A smooth embedding is an (injective) immersion that is a topological embed-
ding.
Theorem 3.3. 9 Let f : N ! M be smooth with constant rank rk( f ) = k. Then for
each p 2 N, and f (p)2 M, there exist coordinates (U,j) for p and (V,y) for f (p),
with f (U)⇢V , such that

(y� f �j

�1)(x1, · · ·xk,xk+1, · · ·xn) = (x1, · · ·xk,0, · · · ,0).

J 3.4 Example. Let N = (�p

2 ,
3p

2 ), and M = R2, and the mapping f is given by
f (t) = (sin(2t),cos(t)). In Figure 13 we displayed the image of f . The Jacobian is
given by

J f |t =
 

2cos(2t)
�sin(t)

!

Clearly, rk(J f |t) = 1 for all t 2 N, and f is an injective immersion. Since N is
an open manifold and f (N) ⇢ M is a compact set with respect to the subspace

7A mapping f : N ! M is injective if for all p, p0 2 N for which f (p) = f (p0) it holds that p = p0.
8A mapping f : N ! M is surjective if f (N) = M, or equivalently for every q 2 M there exists a

p 2 N such that q = f (p).
9See Lee, Theorem 7.8 and 7.13.
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topology, it follows f is not a homeomorphism onto f (N), and therefore is not an
embedding. I

FIGURE 13. Injective parametrization of the figure eight.

J 3.6 Example. Let N = S1 be defined via the atlas A= {(Ui,ji)}, with j

�1
1 (t) =

((cos(t),sin(t)), and j

�1
2 (t) = ((sin(t),cos(t)), and t 2 (�p

2 ,
3p

2 ). Furthermore, let
M = R2, and the mapping f : N ! M is given in local coordinates; in U1 as in
Example 1. Restricted to S1 ⇢ R2 the map f can also be described by

f (x,y) = (2xy,x).

This then yields for U2 that f̃ (t) = (sin(2t),sin(t)). As before rk( f ) = 1, which
shows that f is an immersion of S1. However, this immersion is not injective at
the origin in R2, indicating the subtle differences between these two examples, see
Figures 13 and 14. I

FIGURE 14. Non-injective immersion of the circle.

J 3.8 Example. Let N =R, M =R2, and f : N ! M defined by f (t) = (t2, t3). We
can see in Figure 15 that the origin is a special point. Indeed, rk(J f )|t = 1 for all
t 6= 0, and rk(J f )|t = 0 for t = 0, and therefore f is not an immersion. I

J 3.10 Example. Consider M = PRn. We established PRn as smooth manifolds.
For n = 1 we can construct an embedding f : PR1 ! R2 as depicted in Figure 16.
For n = 2 we find an immersion f : PR2 ! R3 as depicted in Figure 17. I
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FIGURE 15. The map f fails to be an immersion at the origin.

FIGURE 16. PR is diffeomorphic to S1.

FIGURE 17. Identifications for PR2 giving an immersed non-
orientable surface in R3.

J 3.13 Example. Let N = R2 and M = R, then the projection mapping f (x,y) = x
is a submersion. Indeed, J f |(x,y) = (1 0), and rk(J f |(x,y)) = 1. I
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J 3.14 Example. Let N = M =R2 and consider the mapping f (x,y) = (x2,y)t . The
Jacobian is

J f |(x,y) =
 

2x 0
0 1

!

,

and rk(J f )|(x,y) = 2 for x 6= 0, and rk(J f )|(x,y) = 1 for x = 0. See Figure 18. I

FIGURE 18. The projection (submersion), and the folding of the
plane (not a submersion).

J 3.16 Example. We alter Example 2 slightly, i.e. N = S1 ⇢ R2, and M = R2, and
again use the atlas A. We now consider a different map f , which, for instance on
U1, is given by f̃ (t) = (2cos(t),sin(t)) (or globally by f (x,y) = (2x,y)). It is clear
that f is an injective immersion, and since S1 is compact it follows from Lemma
3.18 below that S1 is homeomorphic to it image f (S1), which show that f is a
smooth embedding (see also Appendix in Lee). I

J 3.17 Example. Let N = R, M = R2, and consider the mapping f (t) =

(2cos(t),sin(t)). As in the previous example f is an immersion, not injective how-
ever. Also f (R) = f (S1) in the previous example. The manifold N is the universal
covering of S1 and the immersion f descends to a smooth embedding of S1. I

Lemma 3.18. 10 Let f : N ! M be an injective immersion. If

(i) N is compact, or if
(ii) f is a proper map,11

then f is a smooth embedding.
Proof: For (i) we argue as follows. Since N is compact any closed subset X ⇢ N

is compact, and therefore f (X) ⇢ M is compact and thus closed; f is a closed

10Lee, Prop. 7.4, and pg. 47.
11A(ny) map f : N ! M is called proper if for any compact K ⇢ M, it holds that also f�1(K)⇢ N

is compact. In particular, when N is compact, continuous maps are proper.
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mapping.12 We are done if we show that f is a topological embedding. By the
assumption of injectivity, f : N ! f (N) is a bijection. Let X ⇢ N be closed, then
( f�1)�1(X) = f (X) ⇢ f (N) is closed with respect to the subspace topology, and
thus f�1 : f (N)! N is continuous, which proves that f is a homeomorphism onto
its image and thus a topological embedding.

A straightforward limiting argument shows that proper continuous mappings
bewteen manifolds are closed mappings (see Exercises).

Let us start with defining the notion of embedded submanifolds.

Definition 3.19. A subset N ⇢ M is called a smooth embedded n-dimensional
submanifold in M if for every p 2 N, there exists a chart (U,j) for M, with p 2U,
such that

j(U \N) = j(U)\
�

Rn ⇥{0}
�

= {x 2 j(U) : xn+1 = · · ·= xm = 0}.

The co-dimension of N is defined as codimN = dimM�dimN.

The set W = U \N in N is called a n-dimensional slice, or n-slice of U , see
Figure 19, and (U,j) a slice chart. The associated coordinates x = (x1, · · · ,xn) are
called slice coordinates. Embedded submanifolds can be characterized in terms of
embeddings.

FIGURE 19. Take a k-slice W . On the left the image j(W ) corre-
sponds to the Eucliden subspace Rk ⇢ Rm.

Theorem 3.21. 13 Let N ⇢ M be a smooth embedded n-submanifold. Endowed
with the subspace topology, N is a n-dimensional manifold with a unique (induced)
smooth structure such that the inclusion map i : N ,! M is an embedding (smooth).

12 A mapping f : N ! M is called closed if f (X) is closed in M for any closed set X ⇢ N.
Similarly, f is called open if f (X) is open in M for every open set X ⇢ N.

13See Lee, Thm’s 8.2



26

To get an idea let us show that N is a topological manifold. Axioms (i) and
(iii) are of course satisfied. Consider the projection p : Rm ! Rn, and an inclusion
j : Rn ! Rm defined by

p(x1, · · · ,xn,xn+1, · · · ,xm) = (x1, · · · ,xn),

j(x1, · · · ,xn) = (x1, · · · ,xn,0, · · · ,0).

Now set Z = (p �j)(W ) ⇢ Rn, and j̄ = (p �j)|W , then j̄

�1 = (j�1 � j)|Z , and
j̄ : W ! Z is a homeomorphism. Therefore, pairs (W, j̄) are charts for N, which
form an atlas for N. The inclusion i : N ,! M is a topological embedding.

Given slice charts (U,j) and (U 0,j0) and associated charts (W, j̄) and (W 0, j̄0)

for N. For the transitions maps it holds that j̄ � j̄

�1 = p �j

0 �j

�1 � j, which are
diffeomorphisms, which defines a smooth atlas for N. The inclusion i : N ,! M can
be expressed in local coordinates;

ĩ = j� i� j̄

�1, (x1, · · · ,xn) 7! (x1, · · · ,xn,0, · · · ,0),

which is an injective immersion. Since i is also a topological embedding it is thus
a smooth embedding. It remains to prove that the smooth structure is unique, see
Lee Theorem 8.2.
Theorem 3.22. 14 The image of an embedding is a smooth embedded submanifold.

Proof: By assumption rk( f ) = n and thus for any p2N it follows from Theorem
3.3 that

ef (x1, · · · ,xn) = (x1, · · · ,xn,0, · · · ,0),

for appropriate coordinates (U,j) for p and (V,y) for f (p), with f (U)⇢V . Con-
sequently, f (U) is a slice in V , since y( f (U) satisfies Definition 3.19. By assump-
tion f (U) is open in f (N) and thus f (U) = A\ f (N) for some open set A ⇢ M. By
replacing V by V 0 = A\V and restricting y to V 0, (V 0,y) is a slice chart with slice
V 0 \ f (N) =V 0 \ f (U).

Summarizing we conclude that embedded submanifolds are the images of
smooth embeddings.

A famous result by Whitney says that considering embeddings into Rm is not
not really a restriction for defining smooth manifolds.
Theorem 3.23. 15 Any smooth n-dimensional manifold M can be (smoothly) em-
bedded into R2n+1.

14See Lee, Thm’s 8.3
15See Lee, Ch. 10.
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A subset N ⇢ M is called an immersed submanifold if N is a smooth n-
dimensional manifold, and the mapping i : N ,! M is a (smooth) immersion. This
means that we can endow N with an appropriate manifold topology and smooth
structure, such that the natural inclusion of N into M is an immersion. If f : N ! M
is an injective immersion we can endow f (N) with a topology and unique smooth
structure; a set U ⇢ f (N) is open if and only if f�1(U) ⇢ N is open, and the
(smooth) coordinate maps are taken to be j� f�1, where j’s are coordinate maps
for N. This way f : N ! f (N) is a diffeomorphism, and i : f (N) ,! M an injective
immersion via the composition f (N)! N ! M. This proves:
Theorem 3.24. 16 Immersed submanifolds are exactly the images of injective im-
mersions.

We should point out that embedded submanifolds are examples of immersed
submanifolds, but not the other way around. For any immersion f : N ! M, the
image f (N) is called an immersed manifold in M.

In this setting Whitney established some improvements of Theorem 3.23.
Namely, for dimension n > 0, any smooth n-dimensional manifold can be em-
bedded into R2n (e.g. the embedding of curves in R2). Also, for n > 1 any smooth
n-dimensional manifold can be immersed into R2n�1 (e.g. the Klein bottle). In
this course we will often think of smooth manifolds as embedded submanifolds of
Rm. An important tool thereby is the general version of Inverse Function Theorem,

FIGURE 20. An embedding of R [left], and an immersion of S2

[right] called the Klein bottle.

which can easily be derived from the ‘Euclidean’ version 2.22.
Theorem 3.26. 17 Let N,M be smooth manifolds, and f : N ! M is a smooth
mapping. If, at some point p 2 N, it holds that J f̃ |

j(p)=x is an invertible matrix,

16See Lee, Theorem 8.16.
17See Lee, Thm’s 7.6 and 7.10.
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then there exist sufficiently small neighborhoods U0 3 p, and V0 2 f (p) such that
f |U0 : U0 !V0 is a diffeomorphism.

As a direct consequence of this result we have that if f : N ! M, with dimN =

dimM, is an immersion, or submersion, then f is a local diffeomorphism. If f is a
bijection, then f is a (global) diffeomorphism.
Theorem 3.27. Let f : N ! M be a constant rank mapping with rk( f ) = k. Then
for each q 2 f (N), the level set S = f�1(q) is an embedded submanifold in N with
co-dimension equal to k.

Proof: Clearly, by continuity S is closed in N. By Theorem 3.3 there are coor-
dinates (U,j) of p 2 S and (V,y) of f (p) = q, such that

ef (x1, · · · ,xk,xk+1, · · · ,xn) = (x1, · · · ,xk,0, · · · ,0) = y(q) = 0.

The points in S\U are characterized by j(S\U) = {x | (x1, · · · ,xk) = 0}. There-
fore, S\U is a (n�k)-slice, and thus S is a smooth submanifold in M of codimen-
sion k.

In particular, when f : N ! M is a submersion, then for each q 2 f (N), the
level set S = f�1(q) is an embedded submanifold of co-dimension codimS = m =

dimM. In the case of maximal rank this statement can be restricted to just one
level. A point p 2 N is called a regular point if rk( f )|p = m = dimM, otherwise
a point is called a critical point. A value q 2 f (N) is called a regular value if all
points p 2 f�1(q) are regular points, otherwise a value is called a critical value. If
q is a regular value, then f�1(q) is called a regular level set.
Theorem 3.28. Let f : N ! M be a smooth map. If q 2 f (N) is a regular value,
then S = f�1(q) is an embedded submanifold of co-dimension equal to dimM.

Proof: Let us illustrate the last result for the important case N =Rn and M =Rm.
For any p 2 S = f�1(q) the Jacobian J f |p is surjective by assumption. Denote the
kernel of J f |p by kerJ f |p ⇢ Rn, which has dimension n�m. Define

g : N = Rn ! Rn�m ⇥Rm ⇠= Rn,

by g(x) = (Lx, f (x)� q)t , where L : N = Rn ! Rn�m is any linear map which
is invertible on the subspace kerJ f |p ⇢ Rn. Clearly, Jg|p = L� J f |p, which, by
construction, is an invertible (linear) map on Rn. Applying Theorem 2.22 (Inverse
Function Theorem) to g we conclude that a sufficiently small neighborhood of U
of p maps diffeomorphically onto a neighborhood V of (L(p),0). Since g is a
diffeomorphism it holds that g�1 maps

�

Rn�m⇥{0}
�

\V onto f�1(q)\U (the 0 2
Rm corresponds to q). This exactly says that every point p 2 S allows an (n�m)-
slice and is therefore an (n�m)-dimensional submanifold in N = Rn (codimS =

m).
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FIGURE 21. The map g yields 1-slices for the set S.

J 3.30 Example. Let us start with an explicit illustration of the above proof. Let
N = R2, M = R, and f (p1, p2) = p2

1 + p2
2. Consider the regular value q = 2, then

J f |p = (2p1 2p2), and f�1(2) = {p : p2
1 + p2

2 = 2}, the circle with radius
p

2.
We have kerJ f |p = span{(p1,�p2)t}, and is always isomorphic to R. For example
fix the point (1,1) 2 S, then kerJ f |p = span{(1,�1)t} and define

g(x) =

 

L(x)
f (x)�2

!

=

 

x1 �x2

x

2
1 +x

2
2 �2

!

, Jg|p =
 

1 �1
2 2

!

where the linear map is L = (1 � 1). The map g is a local diffeomorphism and
on S\U this map is given by

g(x1,
q

2�x

2
1) =

 

x1 �
q

2�x

2
1

0

!

,

with x1 2 (1� e,1+ e). The first component has derivative 1+ x1p
2�x

2
1
, and there-

fore S\U is mapped onto a set of the form
�

R⇥{0}
�

\V . This procedure can be
carried out for any point p 2 S, see Figure 21. I

J 3.31 Example. Let N =R2\{(0,0)}⇥R=R3\{(0,0,l)}, M = (�1,•)⇥(0,•),
and

f (x,y,z) =

 

x2 + y2 �1
1

!

, with J f |(x,y,z) =
 

2x 2y 0
0 0 0

!

We see immediately that rk( f ) = 1 on N. This map is not a submersion, but is of
constant rank, and therefore for any value q 2 f (N) ⇢ M it holds that S = f�1(q)
is a embedded submanifold, see Figure 22. I

J 3.33 Example. Let N,M as before, but now take

f (x,y,z) =

 

x2 + y2 �1
z

!

, with J f |(x,y,z) =
 

2x 2y 0
0 0 1

!
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FIGURE 22. An embedding of a cylinder via a constant rank map-
ping.

Now rk( f ) = 2, and f is a submersion. For every q 2 M, the set S = f�1(q) is a
embedded submanifold, see Figure 23. I

FIGURE 23. An embedding circle of an submersion.

J 3.35 Example. Let N =R2, M =R, and f (x,y) = 1
4(x

2�1)2+ 1
2 y2. The Jacobian

is J f |(x,y) = (x(x2�1) y). This is not a constant rank, nor a submersion. However,
any q > 0, q 6= 1

4 , is a regular value since then the rank is equal to 1. Figure 24
shows the level set f�1(0) (not an embedded manifold), and f�1(1) (an embedded
circle) I

Theorem 3.37. 18 Let S ⇢ M be a subset of a smooth m-dimensional manifold M.
Then S is a k-dimensional smooth embedded submanifold if and if for every p 2 S
there exists a neighborhood U 3 p such that U \S is the level set of a submersion
f : U ! Rm�k.

Proof: Assume that S ⇢ M is a smooth embedded manifold. Then for each
p 2 S there exists a chart (U,j), p 2 U , such that j(S\U) = {x : xk+1 = · · · =

18See Lee, Prop.8.12.
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FIGURE 24. A regular and critical level set.

xm = 0}. Clearly, S\U is the sublevel set of f : U ! Rm�k at 0, given by ef (x) =
(xk+1, · · · ,xm), which is a submersion.

Conversely, if S\U = f�1(0), for some submersion f : U ! Rm�k, then by
Theorem 3.28, S\U is an embedded submanifold of U . This clearly shows that S
is an embedded submanifold in M.
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II. Tangent and cotangent

spaces

4. Tangent spaces

For a(n) (embedded) manifold M ⇢ R` the tangent space TpM at a point p 2
M can be pictured as a hyperplane tangent to M. In Figure 25 we consider the
parametrizations x+tei in Rm. These parametrizations yield curves gi(t)=j

�1(x+
tei) on M whose velocity vectors are given by

g

0(0) =
d
dt

j

�1(x+ tei)
�

�

�

t=0
= Jj

�1|x(ei).

The vectors p+g

0(0) are tangent to M at p and span an m-dimensional affine linear
subspace Mp of R`. Since the vectors Jj

�1|x(ei) span TpM the affine subspace is
given by

Mp := p+TpM ⇢ R`,

which is tangent to M at p.

FIGURE 25. Velocity vectors of curves of M span the ‘tangent
space’.
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The considerations are rather intuitive in the sense that we consider only em-
bedded manifolds, and so the tangent spaces are tangent m-dimensional affine sub-
spaces of R`. One can also define the notion of tangent space for abstract smooth
manifolds. There are many ways to do this. Let us describe one possible way (see
e.g. Lee, or Abraham, Marsden and Ratiu) which is based on the above considera-
tions.

Let a < 0 < b and consider a smooth mapping g : I = (a,b)⇢R! M, such that
g(0) = p. This mapping is called a (smooth) curve on M, and is parametrized by
t 2 I. If the mapping g (between the manifolds N = I, and M) is an immersion,
then g is called an immersed curve. For such curves the ‘velocity vector’ Jg̃|t =
(j� g)0(t) in Rm is nowhere zero. We build the concept of tangent spaces in order
to define the notion velocity vector to a curve g.

Let (U,j) be a chart at p. Then, two curves g and g

† are equivalent, g

† ⇠ g, if

g

†(0) = g(0) = p, and (j� g

†)0(0) = (j� g)0(0).

The equivalence class of a curve g through p 2 M is denoted by [g].

Definition 4.2. 19 At a p 2 M define the tangent space TpM as the space of all
equivalence classes [g] of curves g through p. A tangent vector Xp, as the equiva-
lence class of curves, is given by

Xp := [g] =
�

g

† : g

†(0) = g(0) = p, (j� g

†)0(0) = (j� g)0(0)
 

,

which is an element of TpM.

FIGURE 26. Immersed curves and velocity vectors in Rm.

19 Lee, Ch. 3.
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The above definition does not depend on the choice of charts at p 2 M. Let
(U 0,j0) be another chart at p 2 M. Then, using that (j � g

†)0(0) = (j � g)0(0), for
(j0 � g)0(0) we have

(j0 � g)0(0) =
h

(j0 �j

�1)� (j� g)
i0
(0)

= J(j0 �j

�1)
�

�

x(j� g)0(0)

= J(j0 �j

�1)
�

�

x(j� g

†)0(0)

=
h

(j0 �j

�1)� (j� g

†)
i0
(0) = (j0 � g

†)0(0),

which proves that the equivalence relation does not depend on the particular choice
of charts at p 2 M.

One can prove that TpM ⇠= Rm. Indeed, TpM can be given a linear structure as
follows; given two equivalence classes [g1] and [g2], then

[g1]+ [g2] :=
�

g : (j� g)0(0) = (j� g1)
0(0)+(j� g2)

0(0)
 

,

l[g1] :=
�

g : (j� g)0(0) = l(j� g1)
0(0)

 

.

The above argument shows that these operation are well-defined, i.e. indepen-
dent of the chosen chart at p 2 M, and the operations yield non-empty equivalence
classes. The mapping

t

j

: TpM ! Rm, t

j

�

[g]
�

= (j� g)0(0),

is a linear isomorphism and t

j

0 = J(j0 �j

�1)|x �t

j

. Indeed, by considering curves
gi(x) = j

�1(x+ tei), i = 1, ...,m, it follows that [gi] 6= [g j], i 6= j, since

(j� gi)
0(0) = ei 6= e j = (j� g j)

0(0).

This proves the surjectivity of t

j

. As for injectivity one argues as follows. Suppose,
(j� g)0(0) = (j� g

†)0(0), then by definition [g] = [g†], proving injectivity.
Given a smooth mapping f : N ! M we can define how tangent vectors in TpN

are mapped to tangent vectors in TqM, with q = f (p). Choose charts (U,j) for
p 2 N, and (V,y) for q 2 M. We define the tangent map or pushforward of f as
follows, see Figure 27. For a given tangent vector Xp = [g] 2 TpN,

d fp = f⇤ : TpN ! TqM, f⇤([g]) = [ f � g].
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FIGURE 27. Tangent vectors in Xp 2 TpN yield tangent vectors
f⇤Xp 2 TqM under the pushforward of f .

The following commutative diagram shows that f⇤ is a linear map and its definition
does not depend on the charts chosen at p 2 N, or q 2 M.

TpN
f⇤����! TqM

t

j

?

?

y

?

?

y

t

y

Rn J(y� f�j

�1)|x�������! Rm

Indeed, a velocity vector (j� g)0(0) is mapped to (y� f (g))0(0), and

(y� f (g))0(0) = (y� f �j

�1 �j� g)0(0) = J f̃
�

�

x·(j� g)0(0).

Clearly, this mapping is linear and independent of the charts chosen.
If we apply the definition of pushforward to the coordinate mapping j : N !Rn,

then t

j

can be identified with j⇤, and J(y� f �j

�1)|x with (y� f �j

�1)⇤. Indeed,
t

j

([g]) = (j � g)0(0) and j⇤([g]) = [j � g], and in Rn the equivalence class can be
labeled by (j� g)0(0). The labeling map is given as follows

tid([j� g]) = (j� g)0(0),

and is an isomorphism, and satisfies the relations

tid �j⇤ = t

j

, j⇤ = t

�1
id � t

j

.
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From now one we identify TxRn with Rn by identifying j⇤ and t

j

. This justifies
the notation

j⇤([g]) = [j� g] := (j� g)0(0).

Properties of the pushforward can be summarized as follows:
Lemma 4.5. 20 Let f : N ! M, and g : M ! P be smooth mappings, and let p 2 M,
then

(i) f⇤ : TpN ! Tf (p)M, and g⇤ : Tf (p)M ! T(g� f )(p)P are linear maps (homo-
morphisms),

(ii) (g� f )⇤ = g⇤ · f⇤ : TpN ! T(g� f )(p)P,
(iii) (id)⇤ = id : TpN ! TpN,
(iv) if f is a diffeomorphism, then the pushforward f⇤ is a isomorphism from

TpN to Tf (p)M.

Proof: We have that f⇤([g]) = [ f � g], and g⇤([ f � g]) = [g� f � g], which defines
the mapping (g� f )⇤([g]) = [g� f � g]. Now

[g� f � g] = [g� ( f � g)] = g⇤([ f � g]) = g⇤( f⇤([g])),

which shows that (g� f )⇤ = g⇤ · f⇤.

A parametrization j

�1 : Rm ! M coming from a chart (U,j) is a local dif-
feomorphism, and can be used to find a canonical basis for TpM. Choosing local
coordinates x = (x1, · · · ,xn) = j(p), and the standard basis vectors ei for Rm, we
define

∂

∂xi

�

�

�

p
:= j

�1
⇤ (ei).

By definition ∂

∂xi

�

�

p2 TpM, and since the vectors ei form a basis for Rm, the vectors
∂

∂xi

�

�

p form a basis for TpM. An arbitrary tangent vector Xp 2 TpM can now be
written with respect to the basis { ∂

∂xi

�

�

p}:

Xp = j

�1
⇤ (Xiei) = Xi

∂

∂xi

�

�

�

p
.

where the notation Xi
∂

∂xi

�

�

p= Âi Xi
∂

∂xi

�

�

p denotes the Einstein summation convention,
and (Xi) is a vector in Rm!

We now define the directional derivative of a smooth function h : M ! R in the
direction of Xp 2 TpM by

Xph := h⇤Xp = [h� g].

20Lee, Lemma 3.5.
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In fact we have that Xph = (h� g)0(0), with Xp = [g]. For the basis vectors of TpM
this yields the following. Let gi(t) = j

�1(x+ tei), and Xp =
∂

∂xi

�

�

�

p
, then

(2) Xph =
∂

∂xi

�

�

�

p
h =

�

(h�j

�1)� (j� gi)
�0
(0) =

∂h̃
∂xi

,

in local coordinates, which explains the notation for tangent vectors. In particular,
for general tangent vectors Xp, Xph = Xi

∂h̃
∂xi

.
Let go back to the curve g : N = (a,b)! M and express velocity vectors. Con-

sider the chart (N, id) for N, with coordinates t, then

d
dt

�

�

�

t=0
:= id�1

⇤ (1).

We have the following commuting diagrams:

N
g����! M

id
?

?

y

?

?

y

j

R g̃=j�g����! Rm

TtN
g⇤����! TpM

id⇤

?

?

y

?

?

y

j⇤

R g̃⇤����! Rm

We now define

g

0(0) = g⇤

⇣ d
dt

�

�

�

t=0

⌘

= j

�1
⇤
�

(j� g)0(0)
�

2 TpM,

by using the second commuting diagram.
If we take a closer look at Figure 27 we can see that using different charts at

p 2 M, or equivalently, considering a change of coordinates leads to the following
relation. For the charts (U,j) and (U 0,j0) we have local coordinates x = j(p)
and x0 = j

0(p), and p 2 U \U 0. This yields two different basis for TpM, namely
�

∂

∂xi

�

�

p

 

, and
�

∂

∂x0i

�

�

p

 

. Consider the identity mapping f = id : M !M, and the push-
forward yields the identity on TpM. If we use the different choices of coordinates
as described above we obtain

⇣

id⇤
∂

∂xi

�

�

�

p

⌘

h = (j0 �j

�1)⇤
∂h̃
∂x0j

=
∂x0j
∂xi

∂h̃
∂x0j

.

In terms of the different basis for TpM this gives

∂

∂xi

�

�

�

p
=

∂x0j
∂xi

∂

∂x0j

�

�

�

p
.

Let us prove this formula by looking a slightly more general situation. Let N,M
be smooth manifolds and f : N ! M a smooth mapping. Let q = f (p) and (V,y)
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is a chart for M containing q. The vectors ∂

∂y j

�

�

q form a basis for TqM. If we write

Xp = Xi
∂

∂xi

�

�

p, then for the basis vectors ∂

∂xi

�

�

p we have

⇣

f⇤
∂

∂xi

�

�

�

p

⌘

h =
∂

∂xi

�

�

�

p
(h� f ) =

∂

∂xi

�

gh� f
�

=
∂

∂xi

�

h� f �j

�1�

=
∂

∂xi

�

h̃�y� f �j

�1�=
∂

∂xi

�

h̃� f̃
�

=
∂h̃
∂y j

∂ f̃ j

∂xi
=
⇣

∂ f̃ j

∂xi

∂

∂y j

�

�

�

q

⌘

h

which implies that TpN is mapped to TqM under the map f⇤. In general a tangent
vector Xi

∂

∂xi

�

�

p is pushed forward to a tangent vector

(3) Yj
∂

∂y j

�

�

�

q
=

"

∂ f̃ j

∂xi
Xi

#

∂

∂y j

�

�

�

q
2 TqM,

expressed in local coordinates. By taking N = M and f = id we obtain the above
change of variables formula.

5. Cotangent spaces

In linear algebra it is often useful to study the space of linear functions on a
given vector space V . This space is denoted by V ⇤ and called the dual vector space
to V — again a linear vector space. So the elements of V ⇤ are linear functions
q : V ! R. As opposed to vectors v 2 V , the elements, or vectors in V ⇤ are called
covectors.
Lemma 5.1. Let V be a n-dimensional vector space with basis {v1, · · · ,vn}, then
the there exist covectors {q

1, · · · ,qn} such that

q

i · v j := q

i(v j) = d

i
j, Kronecker delta,

and the covectors {q

1, · · · ,qn} form a basis for V ⇤.
This procedure can also be applied to the tangent spaces TpM described in the

previous chapter.

Definition 5.2. Let M be a smooth m-dimensional manifold, and let TpM be the
tangent space at some p 2 M. The the cotangent space T ⇤

p M is defined as the dual
vector space of TpM, i.e.

T ⇤
p M := (TpM)⇤.
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By definition the cotangent space T ⇤
p M is also m-dimensional and it has a canon-

ical basis as described in Lemma 5.1. As before have the canonical basis vectors
∂

∂xi
|p for TpM, the associated basis vectors for T ⇤

p M are denoted dxi|p. Let us now
describe this dual basis for T ⇤

p M and explain the notation.
The covectors dxi|p are called differentials and we show now that these are

indeed related dhp. Let h : M ! R be a smooth function, then h⇤ : TpM ! R
and h⇤ 2 T ⇤

p M. Since the differentials dxi|p form a basis of T ⇤
p M we have that

h⇤ = l

idxi|p, and therefore

h⇤
∂

∂xi

�

�

�

p
= l

jdx j|p ·
∂

∂xi

�

�

�

p
= l

j
d

j
i = l

i =
∂h̃
∂xi

,

and thus

(4) dhp = h⇤ =
∂h̃
∂xi

dxi�
�

p.

Choose h such that h⇤ satisfies the identity in Lemma 5.1, i.e. let h̃ = xi ( h = xi �j

= hj,eii). These linear functions h of course span T ⇤
p M, and

h⇤ = (xi �j)⇤ = d(xi �j)p = dxi|p.

Cotangent vectors are of the form

qp = q

idxi�
�

p.

The pairing between a tangent vector Xp and a cotangent vector qp is expressed
component wise as follows:

qp ·Xp = q

iXjd
i
j = q

iXi.

In the case of tangent spaces a mapping f : N ! M pushes forward to a linear
f⇤;TpN ! TqM for each p 2 N. For cotangent spaces one expects a similar con-
struction. Let q = f (p), then for a given cotangent vector qq 2 T ⇤

q M define

( f ⇤qq) ·Xp = qq · ( f⇤Xp) 2 T ⇤
p N,

for any tangent vector Xp 2 TpN. The homomorphism f ⇤ : T ⇤
q M ! T ⇤

p N, defined by
qq 7! f ⇤qq is called the pullback of f at p. It is a straightforward consequence from
linear algebra that f ⇤ defined above is indeed the dual homomorphism of f⇤, also
called the adjoint, or transpose (see Lee, Ch. 6, for more details, and compare the
the definition of the transpose of a matrix). If we expand the definition of pullback



40

in local coordinates, using (3), we obtain
⇣

f ⇤dy j�
�

q

⌘

·Xi
∂

∂xi

�

�

�

p
= dy j�

�

q· f⇤
⇣

Xi
∂

∂xi

�

�

�

p

⌘

= dy j�
�

q

"

∂ f̃ j

∂xi
Xi

#

∂

∂y j

�

�

�

q
=

∂ f̃ j

∂xi
Xi

Using this relation we obtain that

⇣

f ⇤s

jdy j�
�

q

⌘

·Xi
∂

∂xi

�

�

�

p
= s

j ∂ f̃ j

∂xi
Xi = s

j ∂ f̃ j

∂xi
dxi�

�

pXi
∂

∂xi

�

�

�

p
,

which produces the local formula

(5) f ⇤s

jdy j�
�

q=

"

s

j ∂ f̃ j

∂xi

#

dxi�
�

p=

"

s

j � f̃
∂ f̃ j

∂xi

#

x

dxi�
�

p.

Lemma 5.3. Let f : N ! M, and g : M ! P be smooth mappings, and let p 2 M,
then

(i) f ⇤ : T ⇤
f (p)M ! T ⇤

p N, and g⇤ : T ⇤
(g� f )(p)P ! T ⇤

f (p)M are linear maps (homo-
morphisms),

(ii) (g� f )⇤ = f ⇤ ·g⇤ : T ⇤
(g� f )(p)P ! T ⇤

p N,
(iii) (id)⇤ = id : T ⇤

p N ! T ⇤
p N,

(iv) if f is a diffeomorphism, then the pullback f ⇤ is a isomorphism from T ⇤
f (p)M

to T ⇤
p N.

Proof: By definition of the pullbacks of f and g we have

f ⇤qq ·Xp = qq · f⇤(Xp), g⇤wg(q)Yq = wg(q) ·g⇤(Yq).

For the composition g� f it holds that (g� f )⇤w(g� f )(p) ·Xp =w(g� f )(p) ·(g� f )⇤(Xp).
Using Lemma 4.5 we obtain

(g� f )⇤w(g� f )(p) ·Xp = w(g� f )(p) ·g⇤
�

f⇤(Xp)
�

= g⇤w(g� f )(p) · f⇤(Xp) = f ⇤
�

g⇤w(g� f )(p)
�

·Xp,

which proves that (g� f )⇤ = f ⇤ ·g⇤.

Now consider the coordinate mapping j : U ⇢ M ! Rm, which is local diffeo-
morphism. Using Lemma 5.3 we then obtain an isomorphism j

⇤ : Rm ! T ⇤
p M,

which justifies the notation

dxi|p = j

⇤(ei).
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6. Vector bundles

The abstract notion of vector bundle consists of topological spaces E (total
space) and M (the base) and a projection p : E ! M (surjective). To be more
precise:

Definition 6.1. A triple (E,M,p) is called a real vector bundle of rank k over M if

(i) for each p 2 M, the set Ep = p

�1(p) is a real k-dimensional linear vector
space, called the fiber over p, such that

(ii) for every p 2 M there exists a open neighborhood U 3 p, and a homeomor-
phism F : p

�1(U)!U ⇥Rk;
(a)

�

p�F

�1�(p,x) = p, for all x 2 Rk;
(b) x 7! F

�1(p,x) is a vector space isomorphism between Rk and Ep.

The homeomorphism F is called a local trivialization of the bundle.

If there is no ambiguity about the base space M we often denote a vector bundle
by E for short. Another way to denote a vector bundle that is common in the
literature is p : E !M. It is clear from the above definition that if M is a topological
manifold then so is E. Indeed, via the homeomorphisms F it follows that E

FIGURE 28. Charts in a vector bundle E over M.

is Hausdorff and has a countable basis of open set. Define e

j =
�

j⇥ IdRk
�

�F,
and e

j : p

�1(U)! V ⇥Rk is a homeomorphism. Figure 28 explains the choice of
bundle charts for E related to charts for M.

For two trivializations F : p

�1(U)!U ⇥Rk and Y : p

�1(V )!V ⇥Rk, we have
that the transition map Y�F

�1 : (U \V )⇥Rk ! (U \V )⇥Rk has the following
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form
Y�F

�1(p,x) = (p,t(p)x)),

where t : U \V ! Gl(k,R) is continuous. It is clear from the assumptions that

FIGURE 29. Transition mappings for local trivializations.

Y �F

�1(p,x) = (p,s(p,x)). By assumption we also have that x 7! F

�1(p,x) =
A(p)x, and x 7! Y

�1(p,x) = B(p)x. Now,

Y�F

�1(p,x) = Y(A(p)x) = (p,s(p,x)),

and Y

�1(p,s) =A(p)x=B(p)s. Therefore s(p,x) =B�1Ax=: t(p)x. Continuity
is clear from the assumptions in Definition 6.1.

If both E and M are smooth manifolds and p is a smooth projection, such that the
local trivializations can be chosen to be diffeomorphisms, then (E,M,p) is called
a smooth vector bundle. In this case the maps t are smooth. The following result
allows us to construct smooth vector bundles and is important for the special vector
bundles used in this course.
Theorem 6.4. 21 Let M be a smooth manifold, and let {Ep}p2M be a family of k-
dimensional real vector spaces parametrized by p 2 M. Define E =

F
p2M Ep, and

p : E ! M as the mapping that maps Ep to p 2 M. Assume there exists

(i) an open covering {U
a

}
a2A for M;

21See Lee, Lemma 5.5.
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(ii) for each a 2 A, a bijection F

a

: p

�1(U
a

) ! U
a

⇥Rk, such that x 7!
F

�1
a

(p,x) is a vector space isomorphism between Rk and Ep;
(iii) for each a,b 2 I, with U

a

\U
b

6= ?, smooth mappings t

ab

: U
a

\U
b

!
Gl(k,R) such that

F

b

�F

�1
a

(p,x) = (p,t
ab

(p)x).

Then E has a unique differentiable (manifold) structure making (E,M,p) a smooth
vector bundle of rank k over M.

Proof: The proof of this theorem goes by verifying the hypotheses in Theorem
2.11. Let us propose charts for E. Let (Vp,jp), Vp ⇢ U

a

, be a smooth chart for
M containing p. As before define ejp : p

�1(Vp) ! eVp ⇥Rk. We can show, using
Theorem 2.11, that (p�1(Vp),ejp), p 2 M are smooth charts, which gives a unique
differentiable manifold structure. For details of the proof see Lee, Lemma 5.5.

J 6.5 Example. Consider the set E defined as

E =
�

(p1, p2,x1,x2) | p1 = cos(q), p2 = sin(q), cos(q/2)x1 + sin(q/2)x2 = 0
 

.

Clearly, E is a smooth vector bundle over S1 of rank 1, embedded in R4. For
example if U = S1\{(1,0)} (q 2 (0,2p)), then F(p�1(U)) = (p1, p2,x1) is a local
trivialization. This bundle is called the Möbius strip.

To show that E is a smooth vector bundle we need to verify the conditions in
Theorem 6.4. Consider a second chart U 0 = S1\{(�1,0)} (q 2 (�p,p)), and the
trivialization Y(p�1(U 0)) = (p1, p2,x2). For the F we have that

F

�1(p1, p2,x1) =
⇣

p1, p2,x1,�
cos(q/2)
sin(q/2)

x1

⌘

,

and thus

Y�F

�1(p1, p2,x1) =
⇣

p1, p2,�
cos(q/2)
sin(q/2)

x1

⌘

,

which gives that t(p) is represented by t =� cos(q/2)
sin(q/2) , for q 2 (0,p), which invert-

ible and smooth in p. I

Mappings between smooth vector bundles are called bundle maps, and are de-
fined as follows. Given vector bundles p : E ! M and p

0 : E 0 ! M0 and smooth
mappings F : E ! E 0 and f : M ! M0, such that the following diagram commutes

E F����! E 0

p

?

?

y

?

?

y

p

0

M
f����! M0
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and F |Ep : Ep ! E 0
f (p) is linear, then the pair (F, f ) is a called a smooth bundle

map.
A section, or cross section of a bundle E is a continuous mapping s : M ! E,

such that p�s = IdM. A section is smooth if s is a smooth mapping. The space of

FIGURE 30. A cross section s in a bundle E.

smooth section in E is denoted by E(M). The zero section is a mapping s : M ! E
such that s(p) = 0 2 Ep for all p 2 M.
J 6.7 Remark. By identifying M with the trivial bundle E0 = M⇥{0}, a section is
a bundle map from E0 = M ⇥ {0} to E. Indeed, define s

0 : E0 ! E by s

0(p,0) =
s(p), and let f = IdM. Then p�s

0 = p�s = IdM. I

6.1. The tangent bundle and vector fields
The disjoint union of tangent spaces

T M :=
G

p2M
TpM

is called the tangent bundle of M. We show now that T M is a fact a smooth vector
bundle over M.
Theorem 6.8. The tangent bundle T M is smooth vector bundle over M of rank m,
and as such T M is a smooth 2m-dimensional manifold.

Proof: Let (U,j) be a smooth chart for p 2 M. Define

F

⇣

Xi
∂

∂xi

�

�

�

p

⌘

=
�

p,(Xi)
�

,

which clearly is a bijective map between p

�1(U) and U ⇥Rm. Moreover, Xp =

(Xi) 7! F

�1(p,Xp) = Xi
∂

∂xi

�

�

�

p
is vector space isomorphism. Let (U

a

,j
a

) be a cov-

ering of smooth charts of M. Let x = j

a

(p), and x0 = j

b

(p). From our previous
considerations we easily see that

F

b

�F

�1
a

(p,Xp) = (p,t
ab

(p)Xp),
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where t

ab

: U
a

\U
b

! Gl(m,R). It remains to show that t

ab

is smooth. We have
e

j

b

� ej�1
a

= (j
b

⇥ Id) �F

b

�F

�1
a

� (j�1
a

⇥ Id). Using the change of coordinates
formula derived in Section 4 we have that

e

j

b

�ej�1
a

�

x,(Xi)
�

=

 

x01(x), · · · ,x0m(x),
⇣

∂x0j
∂xi

Xj

⌘

!

,

which proves the smoothness of t

ab

. Theorem 6.4 can be applied now showing that
T M is asmooth vector bundle over M. From the charts (p�1(U),ej) we conclude
that T M is a smooth 2m-dimensional manifold.

Definition 6.9. A smooth (tangent) vector field is a smooth mapping

X : M ! T M,

with the property that p�X = idM. In other words X is a smooth (cross) section in
the vector bundle T M, see Figure 31. The space of smooth vector fields on M is
denoted by F(M).

FIGURE 31. A smooth vector field X on a manifold M [right],
and as a ‘curve’, or section in the vector bundle T M [left].

For a chart (U,j) a vector field X can be expressed as follows

X = Xi
∂

∂xi

�

�

�

p
,

where Xi : U ! R. Smoothness of vector fields can be described in terms of the
component functions Xi.
Lemma 6.11. A mapping X : M ! T M is a smooth vector field at p 2 U if and
only if the coordinate functions Xi : U ! R are smooth.

Proof: In standard coordinates X is given by

eX(x) = (x1, · · · ,xm, eX1(x), · · · , eXm(x)),

which immediately shows that smoothness of X is equivalent to the smoothness of
the coordinate functions Xi.
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In Section 4 we introduced the notion of push forward of a mapping f : N ! M.
Under submersions and immersion a vector field X : N ! T N does not necessarily
push forward to a vector field on M. If f is a diffeomorphism, then f⇤X = Y is a
vector field on M. We remark that the definition of f⇤ also allows use to restate
definitions about the rank of a map in terms of the differential, or pushforward f⇤
at a point p 2 N.

6.2. The cotangent bundle and differential 1-forms
The disjoint union

T ⇤M :=
G

p2M
T ⇤

p M

is called cotangent bundle of M.
Theorem 6.12. 22 The cotangent bundle T ⇤M is a smooth vector bundle over M of
rank m, and as such T ⇤M is a smooth 2m-dimensional manifold.

Proof: The proof is more identical to the proof for T M, and is left to the reader
as an exercise.

The differential dh : M ! T ⇤M is an example of a smooth function. The above
consideration give the coordinate wise expression for dh.

Definition 6.13. A smooth covector field is a smooth mapping

q : M ! T ⇤M,

with the property that p � q = idM. In order words q is a smooth section in T ⇤M.
The space of smooth covector fields on M is denoted by F⇤(M). Usually the space
F⇤(M) is denoted by G

1(M), and covector fields are referred to a (smooth) differ-
ential 1-form on M.

For a chart (U,j) a covector field q can be expressed as follows

q = q

idxi�
�

p,

where q

i : U ! R. Smoothness of a covector fields can be described in terms of
the component functions q

i.
Lemma 6.14. A covector field q is smooth at p 2 U if and only if the coordinate
functions q

i : U ! R are smooth.
Proof: See proof of Lemma 6.11.

We saw in the previous section that for arbitrary mappings f : N ! M, a vector
field X 2 F(N) does not necessarily push forward to a vector on M under f⇤. The
reason is that surjectivity and injectivity are both needed to guarantee this, which

22See Lee, Proposition 6.5.
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requires f to be a diffeomorphism. In the case of covector fields or differential 1-
forms the situation is completely opposite, because the pullback acts in the opposite
direction and is therefore onto the target space and uniquely defined. To be more
precise; given a 1-form q 2 L

1(M) we define a 1-form f ⇤q 2 L

1(N) as follows

( f ⇤q)p = f ⇤q f (p).

Theorem 6.15. 23 The above defined pullback f ⇤q of q under a smooth mapping
f : N ! M is a smooth covector field, or differential 1-form on N.

Proof: Write q 2 L

1(M) is local coordinates; q = q

idyi
�

�

q. By Formula (5) we
then obtain

f ⇤q

idyi�
�

f (p)=

"

q

i�
�

y
∂ f̃i

∂x j

#

dx j�
�

p=

"

q

i � f̃
∂ f̃i

∂x j

#

x

dx j�
�

p,

which proves that f ⇤q 2 L

1(N).

Given a mapping g : M ! R, the differential, or push forward g⇤ = dg defines
an element in T ⇤

p M. In local coordinates we have dg
�

�

p=
∂eg
∂xi dxi

�

�

p, and thus defines
a smooth covector field on M; dg 2 L

1(M). Given a smooth mapping f : N ! M,
it follows from (5) that

f ⇤dg = f ⇤
∂eg
∂xi

dxi�
�

f (p)=
∂eg
∂xi � ef

∂

efi

∂x j
dy j�

�

p.

By applying the same to the 1-form d(g� f ) we obtain the following identities

(6) f ⇤dg = d(g� f ), f ⇤(gq) = (g� f ) f ⇤q.

Using the formulas in (6) we can also obtain (5) in a rather straightforward way.
Let g = y j = hy,e ji= y j, and w = dg = dy j|q in local coordinates, then

f ⇤
�

(s j �y)w
�

=
�

s

j �y� f
�

f ⇤dg =
�

s

j �y� f
�

d(g� f ) =
h

s

j � f̃
∂ f̃ j

∂xi

i

x
dxi�

�

p,

where the last step follows from (4).

Definition 6.16. A differential 1-form q 2 L

1(N) is called an exact 1-form if there
exists a smooth function g : N ! R, such that q = dg.

23Lee, Proposition 6.13.
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The notation for tangent vectors was motivated by the fact that functions on a
manifold can be differentiated in tangent directions. The notation for the cotangent
vectors was partly motivated as the ‘reciprocal’ of the partial derivative. The in-
troduction of line integral will give an even better motivation for the notation for
cotangent vectors. Let N = R, and q a 1-form on N given in local coordinates by
qt = h(t)dt, which can be identified with a function h. The notation makes sense
because q can be integrated over any interval [a,b]⇢ R:

Z

[a,b]
q :=

Z b

a
h(t)dt.

Let M =R, and consider a mapping f : M =R! N =R, which satisfies f 0(t)> 0.
Then t = f (s) is an appropriate change of variables. Let [c,d] = f ([a,b]), then

Z

[c,d]
f ⇤q =

Z d

c
h( f (s)) f 0(s)ds =

Z b

a
h(t)dt =

Z

[a,b]
q,

which is the change of variables formula for integrals. We can use this now to
define the line integral over a curve g on a manifold N.

Definition 6.17. Let g : [a,b] ⇢ R ! N, and let q be a 1-form on N and g

⇤
q the

pullback of q, which is a 1-form on R. Denote the image of g in N also by g, then
Z

g

q :=
Z

[a,b]
g

⇤
q =

Z

[a,b]
q

i(g(t))g0i(t)dt, 24

the expression in local coordinates.

The latter can be seen by combining some of the notion introduced above:

g

⇤
q · d

dt
= (g⇤q)t = q

g(t) · g⇤
d
dt

= q

g

(t) · g0(t).

Therefore, g

⇤
q = (g⇤q)tdt = q

g(t) · g0(t)dt = q

i(g(t))g0i(t)dt, and
Z

g

q =
Z

[a,b]
g

⇤
q =

Z

[a,b]
q

g(t) · g0(t)dt =
Z

[a,b]
q

i(g(t))g0i(t)dt.

If g

0 is nowhere zero then the map g : [a,b]! N is either an immersion or em-
bedding. For example in the embedded case this gives an embedded submanifold
g ⇢ N with boundary ∂g = {g(a),g(b)}. Let q = dg be an exact 1-form, then

Z

g

dg = g
�

�

∂g

= g(g(b))�g(g(a)).

Indeed,
Z

g

dg =
Z

[a,b]
g

⇤dg =
Z

[a,b]
d(g� g) =

Z b

a
(g� g)0(t)dt = g(g(b))�g(g(a)).

24The expressions gi(t) 2 R are the components of g

0(t) 2 T
g(t)M.
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This identity is called the Fundamental Theorem for Line Integrals and is a spe-
cial case of the Stokes Theorem (see Section 16).
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III. Tensors and differential

forms

7. Tensors and tensor products

In the previous chapter we encountered linear functions on vector spaces, linear
functions on tangent spaces to be precise. In this chapter we extend to notion of
linear functions on vector spaces to multilinear functions.

Definition 7.1. Let V1, · · · ,Vr, and W be real vector spaces. A mapping T : V1 ⇥
· · ·⇥Vr !W is called a multilinear mapping if

T (v1, · · · ,lvi +µv0i, · · · ,vr) = lT (v1, · · · ,vi, · · ·vr)+µT (v1, · · · ,v0i, · · ·vr), 8i,

and for all l,µ 2 R i.e. f is linear in each variable vi separately.

Now consider the special case that W = R, then T becomes a multilinear func-
tion, or form, and a generalization of linear functions. If in addition V1 = · · · =
Vr =V , then

T : V ⇥ · · ·⇥V ! R,

is a multilinear function on V , and is called a covariant r-tensor on V . The number
of copies r is called the rank of T . The space of covariant r-tensors on V is denoted
by T r(V ), which clearly is a real vector space using the multilinearity property in
Definition 7.1. In particular we have that T 0(V ) ⇠= R, T 1(V ) = V ⇤, and T 2(V ) is
the space of bilinear forms on V . If we consider the case V1 = · · ·=Vr =V ⇤, then

T : V ⇤ ⇥ · · ·⇥V ⇤ ! R,

is a multilinear function on V ⇤, and is called a contravariant r-tensor on V . The
space of contravariant r-tensors on V is denoted by Tr(V ). Here we have that
T0(V )⇠= R, and T1(V ) = (V ⇤)⇤ ⇠=V .
J 7.2 Example. The cross product on R3 is an example of a multilinear (bilinear)
function mapping not to R to R3. Let x,y 2 R3, then

T (x,y) = x⇥ y 2 R3,

which clearly is a bilinear function on R3. I
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Since multilinear functions on V can be multiplied, i.e. given vector spaces V,W
and tensors T 2 T r(V ), and S 2 T s(W ), the multilinear function

R(v1, · · ·vr,w1, · · · ,ws) = T (v1, · · ·vr)S(w1, · · · ,ws)

is well defined and is a multilnear function on V r ⇥W s. This brings us to the
following definition. Let T 2 T r(V ), and S 2 T s(W ), then

T ⌦S : V r ⇥W s ! R,

is given by

T ⌦S(v1, · · · ,vr,w1, · · ·ws) = T (v1, · · · ,vr)S(w1, · · ·ws).

This product is called the tensor product. By taking V = W , T ⌦ S is a covariant
(r + s)-tensor on V , which is a element of the space T r+s(V ) and ⌦ : T r(V )⇥
T s(V )! T r+s(V ).
Lemma 7.3. Let T 2 T r(V ), S,S0 2 T s(V ), and R 2 T t(V ), then

(i) (T ⌦S)⌦R = T ⌦ (S⌦R) (associative),
(ii) T ⌦ (S+S0) = T ⌦S+T ⌦S0 (distributive),

(iii) T ⌦S 6= S⌦T (non-commutative).

The tensor product is also defined for contravariant tensors and mixed tensors.
As a special case of the latter we also have the product between covariant and
contravariant tensors.
J 7.4 Example. The last property can easily be seen by the following example. Let
V = R2, and T,S 2 T 1(R2), given by T (v) = v1 + v2, and S(w) = w1 �w2, then

T ⌦S(1,1,1,0) = 2 6= 0 = S⌦T (1,1,1,0),

which shows that ⌦ is not commutative in general. I

The following theorem shows that the tensor product can be used to build the
tensor space T r(V ) from elementary building blocks.
Theorem 7.5. 25 Let {v1, · · · ,vn} be a basis for V , and let {q

1, · · · ,qn} be the dual
basis for V ⇤. Then the set

B=
�

q

i1 ⌦ · · ·⌦q

ir : 1  i1, · · · , ir  n
 

,

is a basis for the nr-dimensional vector space T r(V ).

25See Lee, Prop. 11.2.
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Proof: Compute

Ti1···ir q
i1 ⌦ · · ·⌦q

ir(v j1 , · · · ,v jr) = Ti1···ir q
i1(v j1) · · ·qir(v jr)

= Ti1···ir d
j1
j1 · · ·d

jr
jr = Tj1··· jr

= T (v j1 , · · · ,v jr),

which shows by using the multilinearity of tensors that T can be expanded in the
basis B as follows;

T = Ti1···ir q
i1 ⌦ · · ·⌦q

ir ,

where Ti1···ir = T (vi1 , · · · ,vir), the components of the tensor T . Linear independence
follows form the same calculation.

J 7.6 Example. Consider the the 2-tensors T (x,y) = x1y1 +x2y2, T 0(x,y) = x1y2 +

x2y2 and T 00 = x1y1+x2y2+x1y2 on R2. With respect to the standard bases q

1(x) =
x1, q

2(x) = x1, and

q

1 ⌦q

1(x,y) = x1y1, q

1 ⌦q

2(x,y) = x1y2,

q

1 ⌦q

2(x,y) = x2y1, and q

2 ⌦q

2(x,y) = x2y2.

Using this the components of T are given by T11 = 1, T12 = 0, T21 = 0, and T22 = 1.
Also notice that T 0 = S⌦ S0, where S(x) = x1 + x2, and S0(y) = y2. Observe that
not every tensor T 2 T 2(R2) is of the form T = S⌦ S0. For example T 00 6= S⌦ S0,
for any S,S0 2 T 1(R2). I

In Lee, Ch. 11, the notion of tensor product between arbitrary vector spaces is
explained. Here we will discuss a simplified version of the abstract theory. Let
V and W be two (finite dimensional) real vector spaces, with bases {v1, · · ·vn}
and {w1, · · ·wm} respectively, and for their dual spaces V ⇤ and W ⇤ we have the
dual bases {q

1, · · · ,qn} and {s

1, · · · ,sm} respectively. If we use the identification
{V ⇤}⇤ ⇠=V , and {W ⇤}⇤ ⇠=W we can define V ⌦W as follows:

Definition 7.7. The tensor product of V and W is the real vector space of (finite)
linear combinations

V ⌦W :=
n

l

i jvi ⌦w j : l

i j 2 R
o

=
h

�

vi ⌦w j
 

i, j

i

,

where vi⌦w j(v⇤,w⇤) := v⇤(vi)w⇤(w j), using the identification vi(v⇤) := v⇤(vi), and
w j(w⇤) := w⇤(w j), with (v⇤,w⇤) 2V ⇤ ⇥W ⇤.
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To get a feeling of what the tensor product of two vector spaces represents con-
sider the tensor product of the dual spaces V ⇤ and W ⇤. We obtain the real vector
space of (finite) linear combinations

V ⇤ ⌦W ⇤ :=
n

li jq
i ⌦s

j : li j 2 R
o

=
h

�

q

i ⌦s

j 

i, j

i

,

where q

i ⌦s

j(v,w) = q

i(v)s j(w) for any (v,w) 2V ⇥W . One can show that V ⇤ ⌦
W ⇤ is isomorphic to space of bilinear maps from V ⇥W to R. In particular elements
v⇤ ⌦w⇤ all lie in V ⇤ ⌦W ⇤, but not all elements in V ⇤ ⌦W ⇤ are of this form. The
isomorphism is easily seen as follows. Let v = xivi, and w = h jw j, then for a given
bilinear form b it holds that b(v,w) = xih jb(vi,w j). By definition of dual basis
we have that xih j = q

i(v)s j(w) = q

i ⌦s

j(v,w), which shows the isomorphism by
setting li j = b(vi,w j).

In the case V ⇤ ⌦W the tensors represent linear maps from V to W . Indeed,
from the previous we know that elements in V ⇤ ⌦W represent bilinear maps from
V ⇥W ⇤ to R. For an element b 2V ⇤⌦W this means that b(v, ·) : W ⇤ !R, and thus
b(v, ·) 2 (W ⇤)⇤ ⇠=W .
J 7.8 Example. Consider vectors a 2 V and b⇤ 2 W , then a⇤ ⌦ (b⇤)⇤ can be iden-
tified with a matrix, i.e a⇤ ⌦ (b⇤)⇤(v, ·) = a⇤(v)(b⇤)⇤(·) ⇠= a⇤(v)b. For example let
a⇤(v) = a1v1 +a2v2 +a3v3, and

Av= a⇤(v)b=

 

a1b1v1 +a2b1v2 +a3b1v3

a1b2v1 +a2b2v2 +a3b2v3

!

=

 

a1b1 a2b1 a3b1

a1b2 a2b2 a3b2

!

0

B

@

v1

v2

v3

1

C

A

.

Symbolically we can write

A = a⇤ ⌦b =

 

a1b1 a2b1 a3b1

a1b2 a2b2 a3b2

!

=
⇣

a1 a2 a3

⌘

⌦
 

b1

b2

!

,

which shows how a vector and covector can be ‘tensored’ to become a matrix. Note
that it also holds that A = (a ·b⇤)⇤ = b ·a⇤. I

Lemma 7.9. We have that

(i) V ⌦W and W ⌦V are isomorphic;
(ii) (U ⌦V )⌦W and U ⌦ (V ⌦W ) are isomorphic.

With the notion of tensor product of vector spaces at hand we now conclude that
the above describe tensor spaces T r(V ) and Vr(V ) are given as follows;

T r(V ) =V ⇤ ⌦ · · ·⌦V ⇤
| {z }

r times

, Tr(V ) =V ⌦ · · ·⌦V
| {z }

r times

.
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By considering tensor products of V ’s and V ⇤’s we obtain the tensor space of
mixed tensors;

T r
s (V ) :=V ⇤ ⌦ · · ·⌦V ⇤

| {z }

r times

⌦V ⌦ · · ·⌦V
| {z }

s times

.

Elements in this space are called (r,s)-mixed tensors on V — r copies of V ⇤, and s
copies of V . Of course the tensor product described above is defined in general for
tensors T 2 T r

s (V ), and S 2 T r0
s0 (V ):

⌦ : T r
s (V )⇥T r0

s0 (V )! T r+r0
s+s0 (V ).

The analogue of Theorem 7.5 can also be established for mixed tensors. In the next
sections we will see various special classes of covariant, contravariant and mixed
tensors.
J 7.10 Example. The inner product on a vector space V is an example of a covariant
2-tensor. This is also an example of a symmetric tensor. I

J 7.11 Example. The determinant of n vectors in Rn is an example of covariant n-
tensor on Rn. The determinant is skew-symmetric, and an example of an alternating
tensor. I

If f : V ! W is a linear mapping between vector spaces and T is an covariant
tensor on W we can define concept of pullback of T . Let T 2 T r(W ), then f ⇤T 2
T r(V ) is defined as follows:

f ⇤T (v1, · · ·vr) = T ( f (v1), · · · , f (vr)),

and f ⇤ : T r(W )! T r(V ) is a linear mapping. Indeed, f ⇤(T +S) = T � f +S� f =
f ⇤T + f ⇤S, and f ⇤lT = lT � f = l f ⇤T . If we represent f by a matrix A with
respect to bases {vi} and {w j} for V and W respectively, then the matrix for the
linear f ⇤ is given by

A⇤ ⌦ · · ·⌦A⇤
| {z }

r times

,

with respect to the bases {q

i1 ⌦ · · ·⌦q

ir} and {s

j1 ⌦ · · ·⌦s

jr} for T r(W ) and T r(V )

respectively.
J 7.12 Remark. The direct sum

T ⇤(V ) =
•M

r=0
T r(V ),

consisting of finite sums of covariant tensors is called the covariant tensor algebra
of V with multiplication given by the tensor product ⌦. Similarly, one defines the
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contravariant tensor algebra

T⇤(V ) =
•M

r=0
Tr(V ).

For mixed tensors we have

T (V ) =
•M

r,s=0
T r

s (V ),

which is called the tensor algebra of mixed tensor of V . Clearly, T ⇤(V ) and T⇤(V )

subalgebras of T (V ). I

8. Symmetric and alternating tensors

There are two special classes of tensors which play an important role in the
analysis of differentiable manifolds. The first class we describe are symmetric
tensors. We restrict here to covariant tensors.

Definition 8.1. A covariant r-tensor T on a vector space V is called symmetric if

T (v1, · · · ,vi, · · · ,v j, · · · ,vr) = T (v1, · · · ,v j, · · · ,vi, · · · ,vr),

for any pair of indices i  j. The set of symmetric covariant r-tensors on V is
denoted by S

r(V )⇢ T r(V ), which is a (vector) subspace of T r(V ).

If a 2 Sr is a permutation, then define

aT (v1, · · · ,vr) = T (va(1), · · · ,va(r)),

where a({1, · · · ,r}) = {a(1), · · · ,a(r)}. From this notation we have that for two
permutations a,b 2 Sr, b(aT ) = baT . Define

Sym T =
1
r! Â

a2Sr

aT.

It is straightforward to see that for any tensor T 2 T r(V ), Sym T is a symmetric.
Moreover, a tensor T is symmetric if and only if Sym T = T . For that reason
Sym T is called the (tensor) symmetrization.
J 8.2 Example. Let T,T 0 2 T 2(R2) be defined as follows: T (x,y) = x1y2, and
T 0(x,y) = x1y1. Clearly, T is not symmetric and T 0 is. We have that

Sym T (x,y) =
1
2

T (x,y)+
1
2

T (y,x)

=
1
2

x1y2 +
1
2

y1x2,



56

which clearly is symmetric. If we do the same thing for T 0 we obtain:

Sym T 0(x,y) =
1
2

T 0(x,y)+
1
2

T 0(y,x)

=
1
2

x1y1 +
1
2

y1x1 = T 0(x,y),

showing that operation Sym applied to symmetric tensors produces the same ten-
sor again. I

Using symmetrization we can define the symmetric product. Let S 2 S

r(V ) and
T 2 S

s(V ) be symmetric tensors, then

S ·T = Sym (S⌦T ).

The symmetric product of symmetric tensors is commutative which follows di-
rectly from the definition:

S ·T (v1, · · · ,vr+s) =
1

(r+ s)! Â

a2Sr+s

S(va(1), · · · ,va(r))T (va(r+1), · · · ,va(r+s)).

J 8.3 Example. Consider the 2-tensors S(x) = x1 + x2, and T (y) = y2. Now S⌦
T (x,y) = x1y2 + x2y2, and T ⌦ S(x,y) = x2y1 + x2y2, which clearly gives that S⌦
T 6= T ⌦S. Now compute

Sym (S⌦T )(x,y) =
1
2

x1y2 +
1
2

x2y2 +
1
2

y1x2 +
1
2

x2y2

=
1
2

x1y2 +
1
2

x2y1 + x2y2 = S ·T (x,y).

Similarly,

Sym (T ⌦S)(x,y) =
1
2

x2y1 +
1
2

x2y2 +
1
2

y2x1 +
1
2

x2y2

=
1
2

x1y2 +
1
2

x2y1 + x2y2 = T ·S(x,y),

which gives that S ·T = T ·S. I

Lemma 8.4. Let {v1, · · · ,vn} be a basis for V , and let {q

1, · · · ,qn} be the dual
basis for V ⇤. Then the set

B
S

=
�

q

i1 · · ·qir : 1  i1  · · · ir  n
 

,

is a basis for the (sub)space S

r(V ) of symmetric r-tensors. Moreover, dimS

r(V ) =
 

n+ r�1
r

!

= (n+r�1)!
r!(n�1)! .
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Proof: Proving that B
S

is a basis follows from Theorem 7.5, see also Lemma
8.10. It remains to establish the dimension of S

r(V ). Note that the elements in the
basis are given by multi-indices (i1, · · · , ir), satisfying the property that 1  i1 
· · ·  ir  n. This means choosing r integers satisfying this restriction. To do this
redefine jk := ik+k�1. The integers j range from 1 through n+r�1. Now choose

r integers out of n+ r�1, i.e.

 

n+ r�1
r

!

combinations ( j1, · · · , jr), which are

in one-to-one correspondence with (i1, · · · , ir).

Another important class of tensors are alternating tensors and are defined as
follows.

Definition 8.5. A covariant r-tensor T on a vector space V is called alternating if

T (v1, · · · ,vi, · · · ,v j, · · · ,vr) =�T (v1, · · · ,v j, · · · ,vi, · · · ,vr),

for any pair of indices i  j. The set of alternating covariant r-tensors on V is
denoted by L

r(V )⇢ T r(V ), which is a (vector) subspace of T r(V ).

As before we define

Alt T =
1
r! Â

a2Sr

(�1)a aT,

where (�1)a is +1 for even permutations, and �1 for odd permutations. We say
that Alt T is the alternating projection of a tensor T , and Alt T is of course a
alternating tensor.
J 8.6 Example. Let T,T 0 2 T 2(R2) be defined as follows: T (x,y) = x1y2, and
T 0(x,y) = x1y2 � x2y1. Clearly, T is not alternating and T 0(x,y) = �T 0(y,x) is
alternating. We have that

Alt T (x,y) =
1
2

T (x,y)� 1
2

T (y,x)

=
1
2

x1y2 �
1
2

y1x2 =
1
2

T 0(x,y),

which clearly is alternating. If we do the same thing for T 0 we obtain:

Alt T 0(x,y) =
1
2

T 0(x,y)� 1
2

T 0(y,x)

=
1
2

x1y2 �
1
2

x2y1 �
1
2

y1x2 +
1
2

y2x1 = T 0(x,y),

showing that operation Alt applied to alternating tensors produces the same tensor
again. Notice that T 0(x,y) = det(x,y). I
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This brings us to the fundamental product of alternating tensors called the wedge
product. Let S 2 L

r(V ) and T 2 L

s(V ) be symmetric tensors, then

S^T =
(r+ s)!

r!s!
Alt (S⌦T ).

The wedge product of alternating tensors is anti-commutative which follows di-
rectly from the definition:

S^T (v1, · · · ,vr+s) =
1

r!s! Â

a2Sr+s

(�1)aS(va(1), · · · ,va(r))T (va(r+1), · · · ,va(r+s)).

In the special case of the wedge of two covectors q,w 2V ⇤ gives

q^w = q⌦w�w⌦q.

In particular we have that

(i) (T ^S)^R = T ^ (S^R);
(ii) (T +T 0)^S = T ^S+T 0 ^S;

(iii) T ^S = (�1)rsS^T , for T 2 L

r(V ) and S 2 L

s(V );
(iv) T ^T = 0.

The latter is a direct consequence of the definition of Alt . In order to prove these
properties we have the following lemma.
Lemma 8.7. Let T 2 T r(V ) and S 2 T s(V ), then

Alt (T ⌦S) = Alt ((Alt T )⌦S) = Alt (T ⌦Alt S).

Proof: Let G ⇠= Sr be the subgroup of Sr+s consisting of permutations that only
permute the element {1, · · · ,r}. For a 2 G, we have a0 2 Sr. Now a(T ⌦ S) =
a0T ⌦S, and thus

1
r! Â

a2G
(�1)a a(T ⌦S) = (Alt T )⌦S.

For the right cosets {ba : a 2 G} we have

Â

a2G
(�1)ba ba(T ⌦S) = (�1)b b

⇣

Â

a2G
(�1)a a(T ⌦S)

⌘

= r!(�1)b b
⇣

(Alt T )⌦S
⌘

.

Taking the sum over all right cosets with the factor 1
(r+s)! gives

Alt (T ⌦S) =
1

(r+ s)! Â

b
Â

a2G
(�1)ba ba(T ⌦S)

=
r!

(r+ s)! Â

b
(�1)b b

⇣

(Alt T )⌦S
⌘

= Alt ((Alt T )⌦S),
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where the latter equality is due to the fact that r! terms are identical under the
definition of Alt ((Alt T )⌦S).

Property (i) can now be proved as follows. Clearly Alt (Alt (T ⌦S)�T ⌦S)= 0,
and thus from Lemma 8.7 we have that

0 = Alt ((Alt (T ⌦S)�T ⌦S)⌦R) = Alt (Alt (T ⌦S)⌦R)�Alt (T ⌦S⌦R).

By definition

(T ^S)^R =
(r+ s+ t)!
(r+ s)!t!

Alt ((T ^S)⌦R)

=
(r+ s+ t)!
(r+ s)!t!

Alt
⇣⇣(r+ s)!

r!s!
Alt (T ⌦S)

⌘

⌦R
⌘

=
(r+ s+ t)!

r!s!t!
Alt (T ⌦S⌦R).

The same formula holds for T ^ (S^R), which prove associativity. More generally
it holds that for Ti 2 L

ri(V )

T1 ^ · · ·^Tk =
(r1 + · · ·+ rk)!

r1! · · ·rk!
Alt (T1 ⌦ · · ·⌦Tk).

Property (iii) can be seen as follows. Each term in T ^S can be found in S^T .
This can be done by linking the permutations a and a0. To be more precise, how
many permutation of two elements are needed to change

a $ (i1, · · · , ir, jr+1, · · · , jr+s) into a0 $ ( jr+1, · · · , jr+s, i1, · · · , ir).

This clearly requires rs permutations of two elements, which shows Property (iii).
J 8.8 Example. Consider the 2-tensors S(x) = x1 + x2, and T (y) = y2. As before
S⌦T (x,y) = x1y2 + x2y2, and T ⌦S(x,y) = x2y1 + x2y2. Now compute

Alt (S⌦T )(x,y) =
1
2

x1y2 +
1
2

x2y2 �
1
2

y1x2 �
1
2

x2y2

=
1
2

x1y2 �
1
2

x2y1 = 2
⇣

S^T (x,y)
⌘

.

Similarly,

Alt (T ⌦S)(x,y) =
1
2

x2y1 +
1
2

x2y2 �
1
2

y2x1 �
1
2

x2y2

= �1
2

x1y2 +
1
2

x2y1 =�2
⇣

T ^S(x,y)
⌘

,

which gives that S^T = �T ^ S. Note that if T = e⇤1, i.e. T (x) = x1, and S = e⇤2,
i.e. S(x) = x2, then

T ^S(x,y) = x1y2 � x2y1 = det(x,y).

I
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J 8.9 Remark. Some authors use the more logical definition

S ¯̂ T = Alt (S⌦T ),

which is in accordance with the definition of the symmetric product. This definition
is usually called the alt convention for the wedge product, and our definition is
usually referred to as the determinant convention. For computational purposes the
determinant convention is more appropriate. I

If {e⇤1, · · · ,e⇤n} is the standard dual basis for (Rn)⇤, then for vectors a1, · · · ,an 2
Rn,

det(a1, · · · ,an) = e⇤1 ^ · · ·^ e⇤n(a1, · · · ,an).

Using the multilinearity the more general statement reads

(7) b

1 ^ · · ·^b

n(a1, · · · ,an) = det
�

b

i(a j)
�

,

where b

i are co-vectors.
The alternating tensor det= e⇤1^ · · ·^e⇤n is called the determinant function on Rn.

If f : V !W is a linear map between vector spaces then the pullback f ⇤T 2 L

r(V )

of any alternating tensor T 2 L

r(W ) is given via the relation:

f ⇤T (v1, · · · ,vr) = T
�

f (v1), · · · , f (vr)
�

, f ⇤ : L

r(W )! L

r(V ).

In particular, f ⇤(T ^S) = ( f ⇤T )^ f ⇤(S). As a special case we have that if f : V !
V , linear, and dimV = n, then

(8) f ⇤T = det( f )T,

for any alternating tensor T 2L

n(V ). This can be seen as follows. By multilinearity
we verify the above relation for the vectors {ei}. We have that

f ⇤T (e1, · · · ,en) = T ( f (e1), · · · , f (en))

= T ( f1, · · · , fn) = cdet( f1, · · · , fn) = cdet( f ),

where we use the fact that L

n(V )⇠= R (see below). On the other hand

det( f )T (e1, · · ·en) = det( f )c ·det(e1, · · · ,en)

= cdet( f ),

which proves (8).
Lemma 8.10. Let {q

1, · · · ,qn} be a basis for V ⇤, then the set

B
L

=
�

q

i1 ^ · · ·^q

ir : 1  i1 < · · ·< ir  n
 

,

is a basis for L

r(V ), and dimL

r(V ) = n!
(n�r)!r! . In particular, dimL

r(V ) = 0 for
r > n.
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Proof: From Theorem 7.5 we know that any alternating tensor T 2 L

r(V ) can
be written as

T = Tj1··· jr q
j1 ⌦ · · ·⌦q

jr .

We have that Alt T = T , and so

T = Tj1··· jr Alt (q j1 ⌦ · · ·⌦q

jr) =
1
r!

Tj1··· jr q
j1 ^ · · ·^q

jr

In the expansion the terms with jk = j` are zero since q

jk ^q

j` = 0. If we order the
indices in increasing order we obtain

T =± 1
r!

Ti1···ir q
i1 ^ · · ·^q

ir ,

which show that B
L

spans L

r(V ).
Linear independence can be proved as follows. Let 0 = li1···ir q

i1 ^ · · ·^q

ir , and
thus li1···ir = q

i1 ^ · · ·^q

ir(vi1 , · · · ,vir) = 0, which proves linear independence.

It is immediately clear that B
L

consists of

 

n
r

!

elements.

As we mentioned before the operation Alt is called the alternating projection.
As a matter of fact Sym is also a projection.
Lemma 8.11. Some of the basic properties can be listed as follows;

(i) Sym and Alt are projections on T r(V ), i.e. Sym2 = Sym, and Alt2 = Alt;
(ii) T is symmetric if and only if Sym T = T , and T is alternating if and only

if Alt T = T ;
(iii) Sym(T r(V )) = S

r(V ), and Alt(T r(V )) = L

r(V );
(iv) Sym �Alt = Alt � Sym = 0, i.e. if T 2 L

r(V ), then Sym T = 0, and if
T 2 S

r(V ), then Alt T = 0;
(v) let f : V !W, then Sym and Alt commute with f ⇤ : T r(W )! T r(V ), i.e.

Sym� f ⇤ = f ⇤ �Sym, and Alt� f ⇤ = f ⇤ �Alt.

9. Tensor bundles and tensor fields

Generalizations of tangent spaces and cotangent spaces are given by the tensor
spaces

T r(TpM), Ts(TpM), and T r
s (TpM),
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where T r(TpM) = Tr(T ⇤
p M). As before we can introduce the tensor bundles:

T rM =
G

p2M
T r(TpM),

TsM =
G

p2M
Ts(TpM),

T r
s M =

G

p2M
T r

s (TpM),

which are called the covariant r-tensor bundle, contravariant s-tensor bundle,
and the mixed (r,s)-tensor bundle on M. As for the tangent and cotangent bundle
the tensor bundles are also smooth manifolds. In particular, T 1M = T ⇤M, and
T1M = T M. Recalling the symmetric and alternating tensors as introduced in the
previous section we also define the tensor bundles S

rM and L

rM.
Theorem 9.1. The tensor bundles T rM,TrM and T r

s M are smooth vector bundles.
Proof: Using Section 6 the theorem is proved by choosing appropriate local

trivializations F. For coordinates x = j

a

(p) and x0 = j

b

(p) we recall that

∂

∂xi

�

�

p =
∂x0j
∂xi

∂

∂x0j

�

�

p, dx0 j|p =
∂x0j
∂xi

dxi|p.

For a covariant tensor T 2 T rM this implies the following. The components are
defined in local coordinates by

T = Ti1···ir dxi1 ⌦ · · ·⌦dxir , Ti1···ir = T
⇣

∂

∂xi1
, · · · , ∂

∂xir

⌘

.

The change of coordinates x ! x0 then gives

Ti1···ir = T
⇣

∂x0j1
∂xi1

∂

∂x0j1
, · · · ,

∂x0jr
∂xir

∂

∂x0jr

⌘

= T 0
j1··· jr

∂x0j1
∂xi1

· · ·
∂x0jr
∂xir

.

Define
F(Ti1···ir dxi1 ⌦ · · ·⌦dxir) =

�

p,(Ti1···ir)
�

,

then

F�F

0�1�p,(T 0
j1··· jr)

�

=

 

p,
⇣

T 0
j1··· jr

∂x0j1
∂xi1

· · ·
∂x0jr
∂xir

⌘

!

.

The products of the partial derivatives are smooth functions. We can now apply
Theorem 6.4 as we did in Theorems 6.8 and 6.12.

On tensor bundles we also have the natural projection

p : T r
s M ! M,

defined by p(p,T ) = p. A smooth section in T r
s M is a smooth mapping

s : M ! T r
s M,
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such that p�s = idM. The space of smooth sections in T r
s M is denoted by Fr

s(M).
For the co- and contravariant tensors these spaces are denoted by Fr(M) and Fs(M)

respectively. Smooth sections in these tensor bundles are also called smooth tensor
fields. Clearly, vector fields and 1-forms are examples of tensor fields. Sections in
tensor bundles can be expressed in coordinates as follows:

s =

8

>

>

>

<

>

>

>

:

si1···ir dxi1 ⌦ · · ·⌦dxir , s 2 Fr(M),

s

j1··· js ∂

∂x j1
⌦ · · ·⌦ ∂

∂x js
, s 2 Fs(M),

s

j1··· js
i1···ir dxi1 ⌦ · · ·⌦dxir ⌦ ∂

∂x j1
⌦ · · ·⌦ ∂

∂x js
, s 2 Fr

s(M).

Tensor fields are often denoted by the component functions. The tensor and tensor
fields in this course are, except for vector fields, all covariant tensors and covariant
tensor fields. Smoothness of covariant tensor fields can be described in terms of
the component functions si1···ir .
Lemma 9.2. 26 A covariant tensor field s is smooth at p 2U if and only if

(i) the coordinate functions si1···ir : U ! R are smooth, or equivalently if and
only if

(ii) for smooth vector fields X1, · · · ,Xr defined on any open set U ⇢ M, then the
function s(X1, · · · ,Xr) : U ! R, given by

s(X1, · · · ,Xr)(p) = sp(X1(p), · · · ,Xr(p)),

is smooth.

The same equivalences hold for contravariant and mixed tensor fields.
Proof: Use the identities in the proof of Theorem 9.1 and then the proof goes as

Lemma 6.11.

J 9.3 Example. Let M =R2 and let s= dx1⌦dx1+x2
1dx2⌦dx2. If X = x

1(x) ∂

∂x1
+

x

2(x) ∂

∂x2
and Y = h

1(x) ∂

∂x1
+h

2(x) ∂

∂x2
are arbitrary smooth vector fields on TxR2 ⇠=

R2, then
s(X ,Y ) = x1(x)h1(x)+ x2

1x2(x)h2(x),

which clearly is a smooth function in x 2 R2. I

For covariant tensors we can also define the notion of pullback of a mapping
f between smooth manifolds. Let f : N ! M be a smooth mappings, then the
pullback f ⇤ : T r(Tf (p)M)! T r(TpN) is defined as

( f ⇤T )(X1, · · ·Xr) := T ( f⇤X1, · · · , f⇤Xr),

where T 2 T r(Tf (p)M), and X1, · · · ,Xr 2 TpN. We have the following properties.

26See Lee, Lemma 11.6.
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Lemma 9.4. 27 Let f : N ! M, g : M ! P be smooth mappings, and let p 2 N,
S 2 T r(Tf (p)M), and T 2 T r0(Tf (p)M), then:

(i) f ⇤ : T r(Tf (p)M)! T r(TpN) is linear;
(ii) f ⇤(S⌦T ) = f ⇤S⌦ f ⇤T ;

(iii) (g� f )⇤ = f ⇤ �g⇤ : T r(T(g� f )(p)P)! T r(TpM);
(iv) id⇤MS = S;
(v) f ⇤ : T rM ! T rN is a smooth bundle map.

Proof: Combine the proof of Lemma 5.3 with the identities in the proof of
Theorem 9.1.

J 9.5 Example. Let us continue with the previous example and let N = M = R2.
Consider the mapping f : N ! M defined by

f (x) = (2x1,x3
2 � x1).

For given tangent vectors X ,Y 2 TxN, given by X = x1
∂

∂x1
+x2

∂

∂x2
and Y = h1

∂

∂x1
+

h2
∂

∂x2
, we can compute the pushforward

f⇤ =

 

2 0
�1 3x2

2

!

, and

f⇤X = 2x1
∂

∂y1
+(�x1 +3x2

2x2)
∂

∂y2
,

f⇤Y = 2h1
∂

∂y1
+(�h1 +3x2

2h2)
∂

∂y2
.

Let s be given by s = dy1 ⌦dy1 + y2
1dy2 ⌦dy2. This then yields

s( f⇤X , f⇤Y ) = 4x1h1 +4x2
1(x1 �3x2

1x2)(h1 �3x2
1h2)

= 4(1+ x2
1)x1h1 �12x2

1x2
2x1h2

�12x2
1x2

2x2h1 +36x2
1x4

2x2
1x2h2.

We have to point out here that f⇤X and f⇤Y are tangent vectors in TxN and not
necessarily vector fields, although we can use this calculation to compute f ⇤s,
which clearly is a smooth 2-tensor field on T 2N. I

27See Lee, Proposition 11.8.
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J 9.6 Example. A different way of computing f ⇤s is via a local representation of
s directly. We have s = dy1 ⌦dy1 + y2

1dy2 ⌦dy2, and

f ⇤s = d(2x1)⌦d(2x1)+4x2
1d(x3

2 � x1)⌦d(x3
2 � x1)

= 4dx1 ⌦dx1 +4x2
1
�

3x2
2dx2 �dx1�⌦

�

3x2
2dx2 �dx1�

= 4(1+ x2
1)dx1 ⌦dx1 �12x2

1x2
2dx1 ⌦dx2

�12x2
1x2

2dx2 ⌦dx1 +36x2
1x4

2x2
1dx2 ⌦dx2.

Here we used the fact that computing the differential of a mapping to R produces
the pushforward to a 1-form on N. I

J 9.7 Example. If we perform the previous calculation for an arbitrary 2-tensor

s = a11dy1 ⌦dy1 +a12dy1 ⌦dy2 +a21dy2 ⌦dy1 +a22dy2 ⌦dy2.

Then,

f ⇤s = (4a11 �2a12 �2a21 +a22)dx1 ⌦dx1 +(6a12 �3a22)x2
2dx1 ⌦dx2

+(6a21 �3a22)x2
2dx2 ⌦dx1 +9x4

2a22dx2 ⌦dx2,

which produces the following matrix if we identify T 2(TxN) and T 2(TyM) with R4:

f ⇤ =

0

B

B

B

@

4 �2 �2 1
0 6x2

2 0 �3x2
2

0 0 6x2
2 �3x2

2
0 0 0 9x4

2

1

C

C

C

A

,

which clearly equal to the tensor product of the matrices (J f )⇤, i.e.

f ⇤ = (J f )⇤ ⌦ (J f )⇤ =

 

2 �1
0 3x2

2

!

⌦
 

2 �1
0 3x2

2

!

.

This example show how to interpret f ⇤ : T 2(TyM)! T 2(TxN) as a linear mapping.
I

As for smooth 1-forms this operation extends to smooth covariant tensor fields:
( f ⇤s)p = f ⇤(s f (p)), s 2 Fr(N), which in coordinates reads

( f ⇤s)p(X1, · · ·Xr) := s f (p)( f⇤X1, · · · , f⇤Xr),

for tangent vectors X1, · · · ,Xr 2 TpN.
Lemma 9.8. 28 Let f : N !M, g : M ! P be smooth mappings, and let h2C•(M),
s 2 Fr(M), and t 2 Fr(N), then:

(i) f ⇤ : Fr(M)! Fr(N) is linear;

28See Lee, Proposition 11.9.
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(ii) f ⇤(hs) = (h� f ) f ⇤s;
(iii) f ⇤(s⌦ t) = f ⇤s⌦ f ⇤t;
(iv) f ⇤s is a smooth covariant tensor field;
(v) (g� f )⇤ = f ⇤ �g⇤;

(vi) id⇤Ms = s;

Proof: Combine the Lemmas 9.4 and 9.2.

10. Differential forms

A special class of covariant tensor bundles and associated bundle sections are
the so-called alternating tensor bundles. Let L

r(TpM) ⇢ T r(TpM) be the space
alternating tensors on TpM. We know from Section 8 that a basis for L

r(TpM) is
given by

n

dxi1 ^ · · ·^dxir : 1  i1, · · · , ir  m
o

,

and dimL

r(TpM) = m!
r!(m�r)! . The associated tensor bundles of atlernating covariant

tensors is denoted by L

rM. Smooth sections in L

rM are called differential r-forms,
and the space of smooth sections is denoted by G

r(M) ⇢ Fr(M). In particular
G

0(M) = C•(M), and G

1(M) = F⇤(M). In terms of components a differential r-
form, or r-form for short, is given by

si1···ir dxi1 ^ · · ·^dxir ,

and the components si1···ir are smooth functions. An r-form s acts on vector fields
X1, · · · ,Xr as follows:

s(X1, · · · ,Xr) =
Â

a2Sr

(�1)a
si1···ir dxi1(Xa(1)) · · ·dxir(Xa(r))

=
Â

a2Sr

(�1)a
si1···ir X

i1
a(1) · · ·X

ir
a(r).

J 10.1 Example. Let M = R3, and s = dx^dz. Then for vector fields

X1 = X1
1

∂

∂x
+X2

1
∂

∂y
+X3

1
∂

∂z
,

and

X2 = X1
2

∂

∂x
+X2

2
∂

∂y
+X3

2
∂

∂z
,

we have that

s(X1,X2) = X1
1 X3

2 �X3
1 X1

2 .

I
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An important notion that comes up in studying differential forms is the notion
of contracting an r-form. Given an r-form s 2 G

r(M) and a vector field X 2 F(M),
then

iX s := s(X , ·, · · · , ·),

is called the contraction with X , and is a differential (r�1)-form on M. Another
notation for this is iX s = Xys. Contraction is a linear mapping

iX : G

r(M)! G

r�1(M).

Contraction is also linear in X , i.e. for vector fields X ,Y it holds that

iX+Y s = iX s+ iY s, i
lX s = l · iX s.

Lemma 10.2. 29 Let s 2 G

r(M) and X 2 F(M) a smooth vector field, then

(i) iX s 2 G

r�1(M) (smooth (r�1)-form);
(ii) iX � iX = 0;

(iii) iX is an anti-derivation, i.e. for s 2 G

r(M) and w 2 G

s(M),

iX(s^w) = (iX s)^w+(�1)r
s^ (iX w).

A direct consequence of (iii) is that if s = s1 ^ · · ·^sr, where si 2 G

1(M) =

F⇤(M), then

(10) iX s = (�1)i�1
si(X)s1 ^ · · ·bsi ^ · · ·^sr,

where the hat indicates that si is to be omitted, and we use the summation conven-
tion.
J 10.3 Example. Let s = x2dx1 ^dx3 be a 2-form on R3, and X = x2

1
∂

∂x1
+ x3

∂

∂x2
+

(x1+x2)
∂

∂x3
a given vector field on R3. If Y =Y 1 ∂

∂y1
+Y 2 ∂

∂y2
+Y 3 ∂

∂y3
is an arbitrary

vector fields then

(iX s)(Y ) = s(X ,Y ) = dx1(X)dx3(Y )�dx1(Y )dx3(X)

= x2
1Y 3 � (x1 + x2)Y 1,

which gives that

iX s = x2
1dx3 � (x1 + x2)dx1.

I

29See Lee, Lemma 13.11.
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Since s is a 2-form the calculation using X ,Y is still doable. For higher forms
this becomes to involved. If we use the multilinearity of forms we can give a simple
procedure for computing iX s using Formula (10).
J 10.4 Example. Let s = dx1^dx2^dx3 be a 3-form on R3, and X the vector field
as given in the previous example. By linearity

iX s = iX1s+ iX2s+ iX3s,

where X1 = x2
1

∂

∂x1
, X2 = x3

∂

∂x2
, and X3 = (x1 + x2)

∂

∂x3
. This composition is chosen

so that X is decomposed in vector fields in the basis directions. Now

iX1s = dx1(X1)dx2 ^dx3 = x2
1dx2 ^dx3,

iX2s = �dx2(X2)dx1 ^dx3 =�x3dx1 ^dx3,

iX3s = dx2(X3)dx1 ^dx2 = (x1 + x2)dx1 ^dx2,

which gives

iX s = x2
1dx2 ^dx3 � x3dx1 ^dx3 +(x1 + x2)dx1 ^dx2,

a 2-form on R3. One should now verify that the same answer is obtained by com-
puting s(X ,Y,Z). I

For completeness we recall that for a smooth mapping f : N ! M, the pullback
of a r-form s is given by

( f ⇤s)p(X1, · · · ,Xr) = f ⇤s f (p)(X1, · · · ,Xr) = s f (p)( f⇤X1, · · · , f⇤Xr).

We recall that for a mapping h : M ! R, then pushforward, or differential of h
dhp = h⇤ 2 T ⇤

p M. In coordinates dhp =
∂h̃
∂xi

dxi|p, and thus the mapping p 7! dhp

is a smooth section in L

1(M), and therefore a differential 1-form, with component
si =

∂h̃
∂xi

(in local coordinates).
If f : N !M is a mapping between m-dimensional manifolds with charts (U,j),

and (V,y) respectively, and f (U)⇢V . Set x = j(p), and y = y(q), then

(11) f ⇤
�

sdy1 ^ · · ·^dym�= (s� f )det
�

J f̃ |x
�

dx1 ^ · · ·^dxm.

This can be proved as follows. From the definition of the wedge product and
Lemma 9.8 it follows that f ⇤(dy1 ^ · · ·^dym) = f ⇤dy1 ^ · · ·^ f ⇤dym, and f ⇤dy j =
∂

ef j
∂xi

dxi = dF j, where F = y� f and ef = y� f �j

�1. Now

f ⇤(dy1 ^ · · ·^dym) = f ⇤dy1 ^ · · ·^ f ⇤dym

= dF1 ^ · · ·^dFm,
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and furthermore, using (7),

dF1 ^ · · ·^dFm
⇣

∂

∂x1
, · · · , ∂

∂xm

⌘

= det

 

dFi
⇣

∂

∂x j

⌘

!

= det
⇣

∂

ef j

∂x j

⌘

,

which proves the above claim.
As a consequence of this a change of coordinates ef = y�j

�1 yields

(12) f ⇤(dy1 ^ · · ·^dym) = det
�

J f̃ |x
�

dx1 ^ · · ·^dxm.

J 10.5 Example. Consider s= dx^dy on R2, and mapping f given by x = r cos(q)
and y = r sin(q). The map f the identity mapping that maps R2 in Cartesian coor-
dinates to R2 in polar coordinates (consider the chart U = {(r,q) : r > 0, 0 < q <

2p}). As before we can compute the pullback of s to R2 with polar coordinates:

s = dx^dy = d(r cos(q))^d(r sin(q))

= (cos(q)dr� r sin(q)dq)^ (sin(q)dr+ r cos(q)dq)

= r cos2(q)dr^dq� r sin2(q)dq^dr

= rdr^dq.

Of course the same can be obtained using (12). I

J 10.6 Remark. If we define

G(M) =
•M

r=0
G

r(M),

which is an associative, anti-commutative graded algebra, then f ⇤ : G(N)! G(M)

is a algebra homomorphism. I

11. Orientations

In order to explain orientations on manifolds we first start with orientations of
finite-dimensional vector spaces. Let V be a real m-dimensional vector space. Two
ordered basis {v1, · · · ,vm} and {v01, · · · ,v0m} are said to be consistently oriented if
the transition matrix A = (ai j), defined by the relation

vi = ai jv0j,

has positive determinant. This notion defines an equivalence relation on ordered
bases, and there are exactly two equivalence classes. An orientation for V is a
choice of an equivalence class of order bases. Given an ordered basis {v1, · · · ,vm}
the orientation is determined by the class O= [v1, · · · ,vm]. The pair (V,O) is called
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an oriented vector space. For a given orientation any ordered basis that has the
same orientation is called positively oriented, and otherwise negatively oriented.
Lemma 11.1. Let 0 6= q 2 L

m(V ), then the set of all ordered bases {v1, · · · ,vm}
for which q(v1, · · · ,vm)> 0 is an orientation for V .

Proof: Let {v0i} be any ordered basis and vi = ai jv0j. Then q(v1, · · · ,vm) =

det(A)q(v01, · · · ,v0m)> 0, which proves that the set of bases {vi} for which it holds
that q(v1, · · · ,vm)> 0, characterizes an orientation for V .

Let us now describe orientations for smooth manifolds M. We will assume that
dimM = m � 1 here. For each point p 2 M we can choose an orientation Op for
the tangent space TpM, making (TpM,Op) oriented vector spaces. The collection
{Op}p2M} is called a pointwise orientation. Without any relation between these
choices this concept is not very useful. The following definition relates the choices
of orientations of TpM, which leads to the concept of orientation of a smooth man-
ifold.

Definition 11.2. A smooth m-dimensional manifold M with a pointwise orientation
{Op}p2M, Op =

⇥

X1, · · · ,Xm
⇤

, is (positively) oriented if for each point in M there
exists a neighborhood U and a diffeomorphism j, mapping from U to an open
subset of Rm, such that

(13)
⇥

j⇤(X1), · · · ,j⇤(Xm)
⇤

�

�

�

p
= [e1, · · · ,em], 8p 2U,

where [e1, · · · ,em] is the standard orientation of Rm. In this case the pointwise
orientation {Op}p2M is said to be consistently oriented. The choice of {Op}p2M is
called an orientation on M, denoted by O= {Op}p2M.

If a consistent choice of orientations Op does not exist we say that a manifold is
non-orientable.
J 11.3 Remark. If we look at a single chart (U,j) we can choose orientations Op

that are consistently oriented for p 2 Op. The choices Xi = j

�1
⇤ (ei) =

∂

∂xi
|p are

ordered basis for TpM. By definition j⇤(Xi) = ei, and thus by this choice we obtain
a consistent orientation for all p2U . This procedure can be repeated for each chart
in an atlas for M. In order to get a globally consistent ordering we need to worry
about the overlaps between charts. I

J 11.4 Example. Let M = S1 be the circle in R2, i.e. M = {p= (p1, p2) : p2
1+ p2

2 =

1}. The circle is an orientable manifold and we can find a orientation as follows.
Consider the stereographic charts U1 = S1\N p and U2 = S1\Sp, and the associated
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mappings

j1(p) =
2p1

1� p2
, j2(p) =

2p1

1+ p2

j

�1
1 (x) =

⇣ 4x
x2 +4

,
x2 �4
x2 +4

⌘

, j

�1
2 (x) =

⇣ 4x
x2 +4

,
4� x2

x2 +4

⌘

.

Let us start with a choice of orientation and verify its validity. Choose X(p) =
(�p2, p1), then

(j1)⇤(X) = Jj1|p(X) =
⇣ 2

1� p2

2p1

(1� p2)2

⌘

 

�p2

p1

!

=
2

1� p2
> 0,

on U1 (standard orientation). If we carry out the same calculation for U2 we obtain
(j2)⇤(X) = Jj2|p(X) = �2

1+p2
< 0 on U2, with corresponds to the opposite orienta-

tion. Instead by choosing j̃2(p) = j2(�p1, p2) we obtain

(j̃2)⇤(X) = Jj̃2|p(X) =
2

1+ p2
> 0,

which chows that X(p) is defines an orientation O on S1. The choice of vectors
X(p) does not have to depend continuously on p in order to satisfy the definition
of orientation, as we will explain now.

For p 2U1 choose the canonical vectors X(p) = ∂

∂x |p, i.e.

∂

∂x

�

�

�

p
= Jj

�1
1 (1) =

 

16�4x2

(x2+4)2

16x
(x2+4)2

!

.

In terms of p this gives X(p) = 1
2(1� p2)

 

�p2

p1

!

. By definition (j1)⇤(X) = 1

for p 2U1. For p = N p we choose X(p) = (�1 0)t , so X(p) is defined for p 2 S1

and is not a continuous function of p! It remains to verify that (j̃2)⇤(X) > 0 for
some neighborhood of N p. First, at p = N p,

Jj̃2|p

 

�1
0

!

=
2

1+ p2
= 1 > 0.

The choice of X(p) at p = N p comes from the canonical choice ∂

∂x

�

�

�

p
with respect

to j̃2. Secondly,

Jj̃2|p(X(p)) =
1
2
(1� p2)

⇣ �2
1+ p2

2p1

(1+ p2)2

⌘

 

�p2

p1

!

=
1� p2

1+ p2
,

for all p 2U2\N p. Note that j̃2 �j

�1
1 (x) = �4

x , and

Jj̃2|p(X(p)) = Jj̃2|p(Jj

�1
1 |p(1)) = J(j̃2 �j

�1
1 )|p(1) =

4
x2 ,
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which shows that consistency at overlapping charts can be achieved if the transition
mappings have positive determinant. Basically, the above formula describes the
change of basis as was carried out in the case of vector spaces. I

What the above example shows us is that if we choose X(p) = ∂

∂xi
|p for all

charts, it remains to be verified if we have the proper collection of charts, i.e. does
⇥

{Jj

b

�Jj

�1
a

(ei)}
⇤

= [{ei}] hold? This is equivalent to having det(Jj

b

�Jj

�1
a

)> 0.
These observations lead to the following theorem.
Theorem 11.5. A smooth manifold M is orientable if and only if there exists an
atlas A= {(U

a

,j
a

} such that for any p 2 M

det(Jj

ab

|x)> 0, j

ab

= j

b

�j

�1
a

,

for any pair a,b for which x = j

a

(p), and p 2U
a

\U
b

.
Proof: Obvious from the previous example and Lemma 11.1.

As we have seen for vector spaces m-forms can be used to define an orientation
on a vector space. This concept can also be used for orientations on manifolds.
Theorem 11.6. 30 Let M be a smooth m-dimensional manifold. A nowhere van-
ishing differential m-form q 2 G

m(M) determines a unique orientation O on M for
which qp is positively orientated at each TpM. Conversely, given an orientation O

on M, then there exists a nowhere vanishing m-form q 2 G

m(M) that is positively
oriented at each TpM.

Proof: Let q 2 G

m(M) be a nowhere vanishing m-form, then in local coordinates
(U,j), q = f dx1 ^ · · ·^dxm. For the canonical bases for TpM we have

q

⇣

∂

∂x1
, · · · , ∂

∂xm

⌘

= f 6= 0.

Without loss of generality can be assumed to be positive, otherwise change j by
means of x1 ! �x1. Now let { ∂

∂yi
} be canonical bases for TpM with respect to a

chart (V,y). As before q = gdy1 ^ · · ·^dym, g > 0 on V . Assume that U \V 6=?,
then at the overlap we have

0 < g = q

⇣

∂

∂y1
, · · · , ∂

∂ym

⌘

= det
⇣

J(j�y

�1)
⌘

q

⇣

∂

∂x1
, · · · , ∂

∂xm

⌘

= f det
⇣

J(j�y

�1)
⌘

,

which shows that det
⇣

J(j�y

�1)
⌘

> 0, and thus M is orientable.
For the converse we construct non-vanishing m-forms on each chart (U,j). Via

a partition of unity we can construct a smooth m-form on M, see Lee.

30See Lee, Prop. 13.4.
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This theorem implies in particular that non-orientable m-dimensional manifolds
do not admit a nowhere vanishing m-form, or volume form.
J 11.7 Example. Consider the Möbius strip M. The Möbius strip is an example
of a non-orientable manifold. Let us parametrize the Möbius strip as an embedded
manifold in R3:

g : R⇥ (�1,1)! R3, g(q,r) =

0

B

@

r sin(q/2)cos(q)+ cos(q)
r sin(q/2)sin(q)+ sin(q)

r cos(q/2)

1

C

A

,

where g is a smooth embedding when regarded as a mapping from R/2pZ⇥
(�1,1) ! R3. Let us assume that the Möbius strip M is oriented, then by the
above theorem there exists a nonwhere vanishing 2-form s which can be given as
follows

s = a(x,y,z)dy^dz+b(x,y,z)dz^dx+ c(x,y,z)dx^dy,

where (x,y,z) = g(q,r). Since g is a smooth embedding (parametrization) the
pullback form g⇤s = r(q,r)dq^ dr is a nowhere vanishing 2-form on R/2pZ⇥
(�1,1). In particular, this means that r is 2p-periodic in q. Notice that s =

iX dx^dy^dz, where

X = a(x,y,z)
∂

∂x
+b(x,y,z)

∂

∂y
+ c(x,y,z)

∂

∂z
.

For vector fields x = x1
∂

∂x +x2
∂

∂y +x3
∂

∂z and h = h1
∂

∂x +h2
∂

∂y +h3
∂

∂z we then have
that

s(x,h) = iX dx^dy^dz(x,h) = X · (x⇥h),

where x ⇥ h is the cross product of x and h. The condition that q is nowhere
vanishing can be translated to R2 as follows:

g⇤s(e1,e2) = s(g⇤(e1),g⇤(e2)).

Since g⇤(e1)⇥g⇤(e2)|q=0 =�g⇤(e1)⇥g⇤(e2)|q=2p

, the pullback g⇤s form cannot
be nowhere vanishing on R/2pZ⇥R, which is a contradiction. This proves that
the Möbius band is a non-orientable manifold. I

Let N,M be oriented manifolds of the same dimension, and let f : N ! M be
a smooth mapping. A mapping is called orientation preserving at a point p 2 N
if f⇤ maps positively oriented bases of TpN to positively oriented bases in Tf (p)M.
A mapping is called orientation reversing at p 2 N if f⇤ maps positively oriented
bases of TpN to negatively oriented bases in Tf (p)M.

Let us now look at manifolds with boundary; (M,∂M). For a point p 2 ∂M we
distinguish three types of tangent vectors:
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FIGURE 32. Out(in)ward vectors and the induced orientation to
∂M.

(i) tangent boundary vectors X 2 Tp(∂M) ⇢ TpM, which form an (m � 1)-
dimensional subspace of TpM;

(ii) outward vectors; let j

�1 : W ⇢ Hm ! M, then X 2 TpM is called an out-
ward vector if j

�1
⇤ (Y ) = X , for some Y = (y1, · · · ,ym) with y1 < 0;

(iii) inward vectors; let j

�1 : W ⇢Hm ! M, then X 2 TpM is called an inward
vector if j

�1
⇤ (Y ) = X , for some Y = (y1, · · · ,ym) with y1 > 0.

Using this concept we can now introduce the notion of induced orientation on ∂M.
Let p 2 ∂M and choose a basis {X1, · · · ,Xm} for TpM such that [X1, · · · ,Xm] = Op,
{X2, · · · ,Xm} are tangent boundary vectors, and X1 is an outward vector. In this case
[X2, · · · ,Xm] = (∂O)p determines an orientation for Tp(∂M), which is consistent,
and therefore ∂O = {(∂O)p}p2∂M is an orientation on ∂M induced by O. Thus for
an oriented manifold M, with orientation O, ∂M has an orientation ∂O, called the
induced orientation on ∂M.
J 11.8 Example. Any open set M ⇢ Rm (or Hm) is an orientable manifold. I

J 11.9 Example. Consider a smooth embedded co-dimension 1 manifold

M = {p 2 Rm+1 : f (p) = 0}, f : Rm+1 ! R, rk( f )|p, p 2 M.

Then M is an orientable manifold. Indeed, M = ∂N, where N = {p2Rm+1 : f (p)>
0}, which is an open set in Rm+1 and thus an oriented manifold. Since M = ∂N the
manifold M inherits an orientation from M and hence it is orientable. I
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IV. Integration on manifolds

12. Integrating m-forms on Rm

We start off integration of m-forms by considering m-forms on Rm.

Definition 12.1. A subset D ⇢ Rm is called a domain of integration if

(i) D is bounded, and
(ii) ∂D has m-dimensional Lebesgue measure dµ = dx1 · · ·dxm equal to zero.

In particular any finite union or intersection of open or closed rectangles is a
domain of integration. Any bounded31 continuous function f on D is integrable,
i.e.

�• <
Z

D
f dx1 · · ·dxm < •.

Since L

m(Rm)⇠= R, a smooth m-form on Rm is given by

w = f (x1, · · · ,xm)dx1 ^ · · ·^dxm,

where f : Rm ! R is a smooth function. For a given (bounded) domain of integra-
tion D we define

Z

D
w :=

Z

D
f (x1, · · · ,xm)dx1 · · ·dxm =

Z

D
f dµ

=
Z

D
wx(e1, · · · ,em)dµ.

An m-form w is compactly supported if supp(w) = cl{x 2 Rm : w(x) 6= 0}
is a compact set. The set of compactly supported m-forms on Rm is denoted by
G

m
c (Rm), and is a linear subspace of G

m(Rm). Similarly, for any open set U ⇢ Rm

we can define w 2 G

m
c (U). Clearly, G

m
c (U) ⇢ G

m
c (Rm), and can be viewed as a

linear subspace via zero extension to Rm. For any open set U ⇢ Rm there exists a
domain of integration D such that U � D � supp(w) (see Exercises).

31Boundedness is needed because the rectangles are allowed to be open.
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Definition 12.2. Let U ⇢ Rm be open and w 2 G

m
c (U), and let D be a domain of

integration D such that U � D � supp(w). We define the integral
Z

U
w :=

Z

D
w.

If U ⇢Hm open, then
Z

U
w :=

Z

D\Hm
w.

The next theorem is the first step towards defining integrals on m-dimensional
manifolds M.
Theorem 12.3. Let U,V ⇢ Rm be open sets, f : U !V an orientation preserving
diffeomorphism, and let w 2 G

m
c (V ). Then,

Z

V
w =

Z

U
f ⇤w.

If f is orientation reversing, then
R

U w =�
R

V f ⇤w.
Proof: Assume that f is an orientation preserving diffeomorphism from U to

V . Let E be a domain a domain of integration for w, then D = f�1(E) is a do-
main of integration for f ⇤w. We now prove the theorem for the domains D and
E. We use coordinates {xi} and {yi} on D and E respectively. We start with
w = g(y1, · · · ,ym)dy1 ^ · · ·^ dym. Using the change of variables formula for inte-
grals and the pullback formula in (11) we obtain

Z

E
w =

Z

E
g(y)dy1 · · ·dym (Definition)

=
Z

D
(g� f )(x)det(J f̃ |x)dx1 · · ·dxm

=
Z

D
(g� f )(x)det(J f̃ |x)dx1 ^ · · ·^dxm

=
Z

D
f ⇤w (Definition).

One has to introduce a � sign in the orientation reversing case.

13. Partitions of unity

We start with introduce the notion partition of unity for smooth manifolds. We
should point out that this definition can be used for arbitrary topological spaces.
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Definition 13.1. Let M be smooth m-manifold with atlas A = {(ji,Ui)}i2I . A
partition of unity subordinate to A is a collection for smooth functions {li : M !
R}i2I satisfying the following properties:

(i) 0  li(p) 1 for all p 2 M and for all i 2 I;
(ii) supp(li)⇢Ui;

(iii) the set of supports {supp(li)}i2I is locally finite;
(iv)

Âi2I li(p) = 1 for all p 2 M.

Condition (iii) says that every p 2 M has a neighborhood U 3 p such that only
finitely many li’s are nonzero in U . As a consequence of this the sum in Condition
(iv) is always finite.
Theorem 13.2. For any smooth m-dimensional manifold M with atlas A there
exists a partition of unity {li} subordinate to A.

In order to prove this theorem we start with a series of auxiliary results and
notions.
Lemma 13.3. There exists a smooth function h : Rm ! R such that 0  h  1 on
Rm, and h|B1(0) ⌘ 1 and supp(h)⇢ B2(0).

Proof: Define the function f1 : R! R as follows

f1(t) =

8

<

:

e�1/t , t > 0,

0, t  0.

One can easily prove that f1 is a C•-function on R. If we set

f2(t) =
f1(2� t)

f1(2� t)+ f1(t �1)
.

This function has the property that f2(t) ⌘ 1 for t  1, 0 < f2(t) < 1 for 1 < t <
2, and f2(t) ⌘ 0 for t � 2. Moreover, f2 is smooth. To construct f we simply
write f (x) = f2(|x|) for x 2 Rm\{0}. Clearly, f is smooth on Rm\{0}, and since
f |B1(0) ⌘ 1 it follows that f is smooth on Rm.

An atlas A gives an open covering for M. The set Ui in the atlas need not be
compact, nor locally finite. We say that a covering U= {Ui} of M is locally finite
if every point p 2 M has a neighborhood that intersects only finitely Ui 2 U. If
there exists another covering V= {Vj} such that every Vj 2 V is contained in some
Vj ⇢Ui 2 U, then V is called a refinement of U. A topological space X for which
each open covering admits a locally finite refinement is called paracompact.
Lemma 13.6. Any topological manifold M allows a countable, locally finite cov-
ering by precompact open sets.
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FIGURE 33. The functions f1 and f2.

FIGURE 34. A locally finite covering [left], and a refinement
[right].

Proof: We start with a countable covering of open balls B = {Bi}. We now
construct a covering U that satisfies

(i) all sets Ui 2 U are precompact open sets in M;
(ii) Ui�1 ⇢Ui, i > 1;

(iii) Bi ⇢Ui.

We build the covering U from B using an inductive process. Let U1 = B1, and
assume U1, · · · ,Uk have been constructed satisfying (i)-(iii). Then

Uk ⇢ Bi1 [ · · ·[Bik ,

where Bi1 = B1. Now set
Uk+1 = Bi1 [ · · ·[Bik .

Choose ik large enough so that ik � k+1 and thus Bk+1 ⇢Uk+1.
From the covering U we can now construct a locally finite covering V by setting

Vi =Ui\Ui�2, i > 1.
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FIGURE 35. Constructing a nested covering U from a covering
with balls B [left], and a locally finite covering obtained from the
previous covering [right].

Next we seek a special locally finite refinement {Wj}=W of V which has spe-
cial properties with respect to coordinate charts of M;

(i) W is a countable and locally finite;
(ii) each Wj ⇢W is in the domain of some smooth coordinate map j j : j!Rm

for M;
(iii) the collection Z= {Z j}, Z j = j

�1
j (B1(0)) covers M.

The covering W is called regular.
Lemma 13.8. For any open covering U for a smooth manifold M there exists a
regular refinement. In particular M is paracompact.

Proof: Let V be a countable, locally finite covering as described in the previous
lemma. Since V is locally finite we can find a neighborhood Wp for each p 2 M
that intersects only finitely many set Vj 2 V. We want to choose Wp in a smart
way. First we replace Wp by Wp \{Vj : p 2Vj}. Since p 2Ui for some i we then
replace Wp by Wp \Vi. Finally, we replace Wp by a small coordinate ball Br(p)
so that Wp is in the domain of some coordinate map jp. This provides coordinate
charts (Wp,jp). Now define Zp = j

�1
p (B1(0)).

For every k, {Zp : p 2Vk} is an open covering of Vk, which has a finite subcov-
ering, say Z1

k , · · · ,Z
mk
k . The sets Zi

k are sets of the form Zpi for some pi 2 Vk. The
associated coordinate charts are (W 1

k ,j
1
k), · · · ,(W

mk
k ,jmk

k ). Each W i
k is obtained via

the construction above for pi 2 Vk. Clearly, {W i
k} is a countable open covering of

M that refines U and which, by construction, satisfies (ii) and (iii) in the definition
of regular refinement. It is clear from compactness that {W i

k} is locally finite. Let
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FIGURE 36. The different stages of constructing the sets Wp col-
ored with different shades of grey.

us relabel the sets {W i
k} and denote this covering by W= {Wi}. As a consequence

M is paracompact.

Proof of Theorem 13.2: From Lemma 13.8 there exists a regular refinement W
for A. By construction we have Zi = j

�1
i (B1(0)), and we define

bZi := j

�1
i (B2(0)).

Using Lemma 13.3 we now define the functions µ:M ! R;

µi =

8

<

:

f2 �ji on Wi

0 on M\Vi.

These functions are smooth and supp(µi)⇢Wi. The quotients

b

l =
µ j(p)

Âi µi(p)
,

are, due to the local finiteness of Wi and the fact that the denominator is positive
for each p 2 M, smooth functions on M. Moreover, 0 b

l j  1, and
Â j
b

l j ⌘ 1.
Since W is a refinement of A we can choose an index k j such that Wj ⇢ Uk j .

Therefore we can group together some of the function bl j:

li =
Â

j : k j=i

b

l j,

which give us the desired partition functions with 0  li  1,
Âi li ⌘ 1, and

supp(li)⇢Ui.

Some interesting byproducts of the above theorem using partitions of unity are.
In all these case M is assumed to be an smooth m-dimensional manifold.
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Theorem 13.10. 32 For any close subset A ⇢ M and any open set U � A, there
exists a smooth function f : M ! R such that

(i) 0  f  1 on M;
(ii) f�1(1) = A;

(iii) supp( f )⇢U.

Such a function f is called a bump function for A supported in U.
By considering functions g= c(1� f )� 0 we obtain smooth functions for which

g�1(0) can be an arbitrary closed subset of M.
Theorem 13.11. 33 Let A ⇢ M be a closed subset, and f : A ! Rk be a smooth
mapping.34 Then for any open subset U ⇢ M containing A there exists a smooth
mapping f † : M ! Rk such that f †|A = f , and supp( f †)⇢U.

14. Integration on of m-forms on m-dimensional manifolds.

In order to introduce the integral of an m-form on M we start with the case of
forms supported in a single chart. In what follows we assume that M is an oriented
manifold with an oriented atlas A, i.e. a consistent choice of smooth charts such
that the transitions mappings are orientation preserving.

FIGURE 37. An m-form supported in a single chart.

32See Lee, Prop. 2.26.
33See Lee, Prop. 2.26.
34 A mapping from a closed subset A⇢M is said to be smooth if for every point p2 A there exists

an open neighborhood W ⇢ M of p, and a smooth mapping f † : W ! Rk such that f †|W\A = f .
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Let w 2 G

m
c (M), with supp(w) ⇢ U for some chart U in A. Now define the

integral of w over M as follows:
Z

M
w :=

Z

j(U)
(j�1)⇤w,

where the pullback form (j�1)⇤w is compactly supported in V = j(U) (j is a
diffeomorphism). The integral over V of the pullback form (j�1)⇤w is defined in
Definition 12.2. It remains to show that the integral

R
M w does not depend on the

particular chart. Consider a different chart U 0, possibly in a different oriented atlas

FIGURE 38. Different charts U and U 0 containing supp(w), i.e.
supp(w)⇢U \U 0.

A0 for M (same orientation), then
Z

V 0
(j0�1)⇤w =

Z

j

0(U\U 0)
(j0�1)⇤w =

Z

j(U\U 0)
(j0 �j

�1)⇤(j0�1)⇤w

=
Z

j(U\U 0)
(j�1)⇤(j0)⇤(j0�1)⇤w =

Z

j(U\U 0)
(j�1)⇤w

=
Z

V
(j�1)⇤w,

which show that the definition is independent of the chosen chart. We crucially do
use the fact that A[A0 is an oriented atlas for M. To be more precise the mappings
j

0 �j

�1 are orientation preserving.
By choosing a partition of unity as described in the previous section we can now

define the integral over M of arbitrary m-forms w 2 G

m
c (M).
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Definition 14.3. Let w 2 G

m
c (M) and let AI = {(Ui,ji}i2I ⇢A be a finite subcov-

ering of supp(w) coming from an oriented atlas A for M. Let {li} be a partition
of unity subordinate to AI . Then the integral of w over M is defined as

Z

M
w :=

Â

i

Z

M
liw,

where the integrals
R

M liw are integrals of form that have support in single charts
as defined above.

We need to show now that the integral is indeed well-defined, i.e. the sum is
finite and independent of the atlas and partition of unity. Since supp(w) is compact
AI exists by default, and thus the sum is finite.
Lemma 14.4. The above definition is independent of the chosen partition of unity
and covering AI .

Proof: Let A0
J ⇢ A0 be another finite covering of supp(w), where A0 is a com-

FIGURE 39. Using a partition of unity we can construct m-forms
which are all supported in one, but possibly different charts Ui.

patible oriented atlas for M, i.e. A[A0 is a oriented atlas. Let {l

0
j} be a partition

of unity subordinate to A0
J . We have

Z

M
liw =

Z

M

⇣

Â

j
l

0
j

⌘

liw =
Â

j

Z

M
l

0
jliw.

By summing over i we obtain
Âi

R
M liw =

Âi, j
R

M l

0
jliw. Each term l

0
jliw is sup-

ported in some Ui and by previous independent of the coordinate mappings. Sim-
ilarly, if we interchange the i’s and j’s, we obtain that

Â j
R

M l

0
jw =

Âi, j
R

M l

0
jliw,

which proves the lemma.
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J 14.6 Remark. If M is a compact manifold that for any w 2 G

m(M) it holds that
supp(w)⇢ M is a compact set, and therefore G

m
c (M) = G

m(M) in the case of com-
pact manifolds. I

So far we considered integral of m-forms over M. One can of course integrate
n-forms on M over n-dimensional immersed or embedded submanifolds N ⇢ M.
Given w 2 G

n(M) for which the restriction to N, w|N has compact support in N,
then Z

N
w :=

Z

N
w|N .

As a matter of fact we have i : N ! M, and w|N = i⇤w, so that
R

N w :=
R

N w|N =
R

N i⇤w. If M is compact with boundary ∂M, then
R

∂M w is well-defined for any
(m�1)-form w 2 G

m�1(M).
Theorem 14.7. Let w 2 G

m
c (M), and f : N ! M is a diffeomorphism. Then

Z

M
w =

Z

N
f ⇤w.

Proof: By the definition of integral above we need to prove the above statement
for the terms Z

M
liw =

Z

N
f ⇤liw.

Therefore it suffices to prove the theorem for forms w whose support is in a single
chart U .

FIGURE 40. The pullback of an m-form.

Z

U
f ⇤w =

Z

j(U)
(j�1)⇤ f ⇤w =

Z

j(U)
(j�1)⇤ f ⇤y

⇤(y�1)⇤w

=
Z

y(U 0)
(y�1)⇤w =

Z

U 0
w.
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By applying this to liw and summing we obtain the desired result.

For sake of completeness we summarize the most important properties of the
integral.
Theorem 14.9. 35 Let N,M be oriented manifolds (with or without boundary) of
dimension m , and w,h 2 G

m
c (M), are m-forms. Then

(i)
R

M aw+bh = a
R

M w+b
R

M h;

(ii) if �O is the opposite orientation to O, then
Z

M,�O
w =�

Z

M,O
w;

(iii) if w is an orientation form, then
R

M w > 0;
(iv) if f : N ! M is a diffeomorphism, then

Z

M
w =

Z

N
f ⇤w.

For practical situations the definition of the integral above is not convenient since
constructing partitions of unity is hard in practice. If the support of a differential
form w can be parametrized be appropriate parametrizations, then the integral can
be easily computed from this. Let Di ⇢ Rm — finite set of indices i — be compact
domains of integration, and gi : Di ! M are smooth mappings satisfying

(i) Ei = gi(Di), and gi : int (Di) ! int (Ei) are orientation preserving diffeo-
morphisms;

(ii) Ei \E j intersect only along their boundaries, for all i 6= j.

Theorem 14.10. 36 Let {(gi,Di)} be a finite set of parametrizations as defined
above. Then for any w ⇢ G

m
c (M) such that supp(w)⇢ [iEi it holds that

Z

M
w =

Â

i

Z

Di

g⇤i w.

Proof: As before it suffices the prove the above theorem for a single chart U ,
i.e. supp(w) ⇢ U . One can choose U to have a boundary ∂U so that j(∂U) has
measure zero, and j maps cl(U) to a compact domain of integration K ⇢Hm. Now
set

Ai = cl(U)\Ei, Bi = g�1
i (Ai), Ci = ji(Ai).

We have Z

Ci

(j�1)⇤w =
Z

Bi

(j�gi)
⇤(j�1)⇤w =

Z

Bi

g⇤i w.

35See Lee Prop. 14.6.
36See Lee Prop. 14.7.
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FIGURE 41. Carving up supp(w) via domains of integration for
parametrizations gi for M.

Since the interiors of the sets Ci (and thus Ai) are disjoint it holds that
Z

M
w =

Z

K
(j�1)⇤w =

Â

i

Z

Ci

(j�1)⇤w

=
Â

i

Z

Bi

g⇤i w =
Â

i

Z

Di

g⇤i w,

which proves the theorem.

J 14.12 Remark. From the previous considerations computing
R

M w boils down
to computing (j�1)⇤w, or g⇤w for appropriate parametrizations, and summing the
various contrubutions. Recall from Section 12 that in order to integrate one needs
to evaluate (j�1)⇤wx(e1, · · · ,em), which is given by the formula

�

(j�1)⇤w

�

x(e1, · · · ,em) = w

j

�1(x)(j
�1
⇤ (e1), · · · ,j�1

⇤ (em)).

For a single chart contribution this then yields the formula
Z

U
w =

Z

j(U)
w

j

�1(x)(j
�1
⇤ (e1), · · · ,j�1

⇤ (em))dµ

=
Z

j(U)
w

j

�1(x)

⇣

∂

∂x1
, · · · , ∂

∂x1

⌘

dµ

or in the case of a parametrization g : D ! M:
Z

g(D)
w =

Z

D
wg(x)(g⇤(e1), · · · ,g⇤(em))dµ.

These expression are useful for computing integrals. I



87

J 14.13 Example. Consider the 2-sphere parametrized by the mapping g : R2 !
S2 ⇢ R3 given as

g(j,q) =

0

B

@

x
y
z

1

C

A

=

0

B

@

sin(j)cos(q)
sin(j)sin(q)

cos(j)

1

C

A

.

This mapping can be viewed as a covering map. From this expression we derive
various charts for S2. Given the 2-form w = zdx^ dz let us compute the pullback
form g⇤w on R2. We have that

g⇤(e1) = cos(j)cos(q)
∂

∂x
+ cos(j)sin(q)

∂

∂y
� sin(j)

∂

∂z
,

g⇤(e2) = �sin(j)sin(q)
∂

∂x
+ sin(j)cos(q)

∂

∂y
,

and therefore

g⇤w(e1,e2) = wg(x)(g⇤(e1),g⇤(e2)) =�cos(j)sin2(j)sin(q),

and thus
g⇤w =�cos(j)sin2(j)sin(q)dj^dq.

The latter gives that
R

S2 w =�
R 2p

0
R

p

0 cos(j)sin2(j)sin(q)djdq = 0, which shows
that w is not a volume form on S2.

If we perform the same calculations for w = xdy^dz+ydz^dx+zdx^dy, then
Z

S2
w =

Z 2p

0

Z
p

0
sin(j)djdq = 4p.

The pullback form g⇤w = sin(j)dj^dq, which shows that w is a volume form on
S2. I

15. The exterior derivative

The exterior derivative d of a differential form is an operation that maps an
k-form to a (k+1)-form. Write a k-form on Rm in the following notation

w = wi1···ik dxi1 ^ · · ·^dxik = wIdxI, I = (i1 · · · ik),

then we define

(14) dw = dwI ^dxI.

Written out in all its differentials this reads

dw = d
⇣

wi1···ik dxi1 ^ · · ·^dxik
⌘

=
∂wI

∂xi
dxi ^dxi1 ^ · · ·^dxik .
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Of course the Einstein summation convention is again applied here. This is the
definition that holds for all practical purposes, but it is a local definition. We need
to prove that d extends to differential forms on manifolds.
J 15.1 Example. Consider w0 = f (x,y), a 0-form on R2, then

dw0 =
∂ f
∂x

dx+
∂ f
∂y

dy.

For a 1-form w1 = f1(x,y)dx+ f2(x,y)dy we obtain

dw1 =
∂ f1

∂x
dx^dx+

∂ f1

∂y
dy^dx+

∂ f2

∂x
dx^dy+

∂ f2

∂y
dy^dy

=
∂ f1

∂y
dy^dx+

∂ f2

∂x
dx^dy =

⇣

∂ f2

∂x
� ∂ f1

∂y

⌘

dx^dy.

Finally, for a 2-form w2 = g(x,y)dx^dy the d-operation gives

dw2 =
∂g
∂x

dx^dx^dy+
∂g
∂y

dy^dx^dy = 0.

The latter shows that d applied to a top-form always gives 0. I

J 15.2 Example. In the previous example dw0 is a 1-form, and dw1 is a 2-form.
Let us now apply the d operation to these forms:

d(dw0) =
⇣

∂

2 f
∂x∂y

� ∂

2 f
∂y∂x

⌘

dx^dy = 0,

and

d(dw1) = 0,

since d acting on a 2-form always gives 0. These calculations seem to suggest that
in general d �d = 0. I

As our examples indicate d2
w= 0. One can also have forms w for which dw= 0,

but w 6= ds. We say that w is a closed form, and when w = ds, then w is called
an exact form. Clearly, closed forms form a possibly larger class than exact forms.
In the next chapter on De Rham cohomology we are going to come back to this
phenomenon in detail. On Rm one will not be able to find closed forms that are
not exact, i.e. on Rm all closed forms are exact. However, if we consider different
manifolds we can have examples where this is not the case.
J 15.3 Example. Let M = R2\{(0,0)}, and consider the 1-form

w =
�y

x2 + y2 dx+
x

x2 + y2 dy,
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which clearly is a smooth 1-form on M. Notice that w does not extend to a 1-form
on R2! It holds that dw = 0, and thus w is a closed form on M. Let g : [0,2p)! M,
t 7! (cos(t),sin(t)) be an embedding of S1 into M, then

Z

g

w =
Z 2p

0
g

⇤
w =

Z 2p

0
dt = 2p.

Assume that w is an exact 1-form on M, then w = d f , for some smooth function
f : M ! R. In Section 5 we have showed that

Z

g

w =
Z

g

d f =
Z 2p

0
g

⇤d f = ( f � g)0(t)dt = f (1,0)� f (1,0) = 0,

which contradicts the fact that
R

g

w =
R

g

d f = 2p. This proves that w is not exact.
I

For the exterior derivative in general we have the following theorem.
Theorem 15.4. 37 Let M be a smooth m-dimensional manifold. Then for all k � 0
there exist unique linear operations d : G

k(M)! G

k+1(M) such that;

(i) for any 0-form w = f , f 2C•(M) it holds that

dw(X) = d f (X) = X f , X 2 F(M);

(ii) if w 2 G

k(M) and h 2 G

`(M), then

d(w^h) = dw^h+(�1)k
w^dh;

(iii) d �d = 0;
(iv) if w 2 G

m(M), then dw = 0.

This operation d is called the exterior derivative on differential forms, and is a
unique anti-derivation (of degree 1) on G(M) with d2 = 0.

Proof: Let us start by showing the existence of d on a chart U ⇢ M. We have
local coordinates x = j(p), p 2U , and we define

dU : G

k(U)! G

k+1(U),

via (14). Let us write d instead of dU for notational convenience. We have that
d( f dxI) = d f ^dxI . Due to the linearity of d it holds that

d( f dxI ^gdxJ) = d( f gdxI ^dxJ) = d( f g)dxK

= gd f dxK + f dgdxK

= (d f ^dxI)^ (gdxJ)+ f dg^dxI ^dxJ

= (d f ^dxI)^ (gdxJ)+(�1)k f dxI ^dg^dxJ

= d( f dxI)^ (gdxJ)+(�1)k( f dxI)^d(gdxJ),

37See Lee Thm. 12.14
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which proves (ii). As for (iii) we argue as follows. In the case of a 0-form we have
that

d(d f ) = d
⇣

∂ f
∂xi

dxi =
∂

2 f
∂x j∂xi

⌘

dx j ^dxi

=
Â

i< j

⇣

∂

2 f
∂xi∂x j

� ∂

2 f
∂x j∂xi

⌘

dxi ^dx j = 0.

Given a k-form w = wIdxI , then, using (ii), we have

d(dw) = d
⇣

dwI ^dxI
⌘

= d(dwI)^dxI +(�1)k+1dw

I ^d(dxI) = 0,

since wI is a 0-form, and d(dxI) = (�1) jdxi1 ^ · · ·^ d(dxi j)^ · · ·^ dxik = 0. The
latter follows from d(dxi j) = 0. The latter also implies (iv), finishing the existence
proof in the one chart case. The operation d = dU is well-defined, satisfying (i)-
(iv), for any chart (U,j).

The operation dU is unique, for if there exists yet another exterior derivative edU ,
which satisfies (i)-(iv), then for w = wIdxI ,

edw = edwI ^dxI +w

I
ed(dxI),

where we used (ii). From (ii) it also follows that ed(dxI)= (�1) jdxi1 ^ · · ·^ ed(dxi j)^
· · ·^dxik = 0. By (i) d(j(p)i j) = dxi j , and thus by (iv) ed(dxi j) = ed � ed(j(p)i j) = 0,
which proves the latter. From (i) it also follows that edwI = dwI , and therefore

edw = edwI ^dxI +w

I
ed(dxI) = dwI ^dxI = dw,

which proves the uniqueness of dU .
Before giving the defining d for w 2 G

k(M) we should point out that dU trivially
satisfies (i)-(iii) of Theorem 15.5 (use (14). Since we have a unique operation dU

for every chart U , we define for p 2U

(dw)p = (dU w|U)p,

as the exterior derivative for forms on M. If there is a second chart U 0 3 p, then by
uniqueness it holds that on

dU(w|U\U 0) = dU\U 0(w|U\U 0) = dU 0(w|U\U 0),

which shows that the above definition is independent of the chosen chart.
The last step is to show that d is also uniquely defined on G

k(M). Let p 2U , a
coordinate chart, and consider the restriction

w|U = wIdxI,
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where wI 2 C•(U). Let W ⇢ U be an open set containing p, with the additional
property that cl(W ) ⇢ U is compact. By Theorem 13.10 we can find a bump-
function g 2C•(M) such that g|W = 1, and supp(g)⇢U . Now define

e

w = gwId(gxi1)^ · · ·^d(gxik).

Using (i) we have that d(gxi)|W = dxi, and therefore w̃|W = w|W . Set h = e

w�w,
then h|W = 0. Let p 2 W and h 2 C•(M) satisfying h(p) = 1, and supp(h) ⇢ W .
Thus, hw ⌘ 0 on M, and

0 = d(hw) = dh^w+hdw.

This implies that (dw)p =�(d f ^w)p = 0, which proves that (dew)|W = (dw)|W .
If we use (ii)-(iii) then

dew = d
�

gwId(gxi1)^ · · ·^d(gxik)
�

= d(gwI)^d(gxi1)^ · · ·^d(gxik)+gwId
�

d(gxi1)^ · · ·^d(gxik)
�

= d(gwI)^d(gxi1)^ · · ·^d(gxik).

It now follows that since g|W = 1, and since (dew)|W = (dw)|W , that

(dw)|W =
∂wI

∂xi
dxi ^dxI,

which is exactly (14). We have only used properties (i)-(iii) the derive this ex-
pression, and since p is arbitrary it follows that d : G

k(M)! G

k+1(M) is uniquely
defined.

The exterior derivative has other important properties with respect to restrictions
and pullbacks that we now list here.
Theorem 15.5. Let M be a smooth m-dimensional manifold, and let w 2 G

k(M),
k � 0. Then

(i) in each chart (U,j) for M, dw in local coordinates is given by (14);
(ii) if w = w

0 on some open set U ⇢ M, then also dw = dw

0 on U;
(iii) if U ⇢ M is open, then d(w|U) = (dw)|U ;
(iv) if f : N ! M is a smooth mapping, then

f ⇤(dw) = d( f ⇤w),

i.e. f ⇤ : G

k(M)! G

k(N), and d commute as operations.

Proof: Let us restrict ourselves here to proof of (iv). It suffices to prove (iv) in a
chart U , and w = wIdxI . Let us first compute f ⇤(dw):

f ⇤(dw) = f ⇤
�

dwI ^dxi1 ^ · · ·^dxik
�

= d(wI � f )^d(j� f )i1 ^ · · ·^d(j� f )ik .
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Similarly,

d( f ⇤w) = d
�

(wI � f )^d(j� f )i1 ^ · · ·^d(j� f )ik
�

= d(wI � f )^d(j� f )i1 ^ · · ·^d(j� f )ik ,

which proves the theorem.

16. Stokes’ Theorem

The last section of this chapter deals with a generalization of the Fundamental
Theorem of Integration: Stokes’ Theorem. The Stokes’ Theorem allows us to
compute

R
M dw in terms of a boundary integral for w. In a way the (m� 1)-form

act as the ‘primitive’, ‘anti-derivative’ of the dw. Therefore if we are interested in
R

M s using Stokes’ Theorem we need to first ‘integrate’ s, i.e. write s = dw. This
is not always possible as we saw in the previous section.

Stokes’ Theorem can be now be phrased as follows.
Theorem 16.1. Let M be a smooth m-dimensional manifold with or without bound-
ary ∂M, and w 2 G

m�1
c (M). Then,

(15)
Z

M
dw =

Z

∂M
j⇤w,

where j : ∂M ,! M is the natural embedding of the boundary ∂M into M.
In order to prove this theorem we start with the following lemma.

Lemma 16.2. Let w 2 G

m�1
c (Hm) be given by

w = widx1 ^ · · ·^cdxi ^ · · ·^dxm.

Then,

(i)
R
HM dw = 0, if supp(w)⇢ int (Hm);

(ii)
R
Hm dw =

R
∂Hm j⇤w, if supp(w)\∂Hm 6=?,

where j : ∂Hm ,!Hm is the canonical inclusion.
Proof: We may assume without loss of generality that supp(w) ⇢ [0,R]⇥ · · ·⇥

[0,R] = Im
R . Now,
Z

Hm
dw = (�1)i+1

Z

Im
R

∂wi

∂xi
dx1 · · ·dxm

= (�1)i+1
Z

Im�1
R

⇣

wi|xi=R �wi|xi=0

⌘

dx1 · · ·cdxi · · ·dxm.

If supp(w)⇢ int Im
R , then wi|xi=R �wi|xi=0 = 0 for all i, and

Z

Hm
dw = 0.
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If supp(w)\∂Hm 6=?, then wi|xi=R�wi|xi=0 = 0 for all im�1, and wm|xm=R = 0.
Therefore,

Z

Hm
dw = (�1)i+1

Z

Im
R

∂wi

∂xi
dx1 · · ·dxm

= (�1)i+1
Z

Im�1
R

⇣

wi|xi=R �wi|xi=0

⌘

dx1 · · ·cdxi · · ·dxm

= (�1)m+1
Z

Im�1
R

⇣

�wi|xm=0

⌘

dx1 · · ·dxm�1

= (�1)m
Z

Im�1
R

⇣

wi|xm=0

⌘

dx1 · · ·dxm�1.

The mapping j : ∂Hm !Hm, which, in coordinates, is given by j̃ = j�j : (x1, · · · ,xm�1) 7!
(x1, · · · ,xm�1,0), where j(x1, · · · ,xm�1,0) = (x1, · · · ,xm�1). The latter mapping is
orientation preserving if m is even and orientation reversing if m is odd. Under the
mapping j we have that

j⇤(ei) = ei, i = 1, · · · ,m�1,

where the ei’s on the left hand side are the unit vectors in Rm�1, and the bold face
ek are the unit vectors in Rm. We have that the induced orientation for ∂Hm is
obtained by the rotation e1 !�em, em ! e1, and therefore

∂O= [e2, · · · ,em�1,e1].

Under j this corresponds with the orientation [e2, · · · ,em�1,e1] of Rm�1, which is
indeed the standard orientation for m even, and the opposite orientation for m odd.
The pullback form on ∂Hm, using the induced orientation on ∂Hm, is given by

( j⇤w)(x1,··· ,xm�1)(e2, · · · ,em�1,e1)

= w(x1,··· ,xm�1,0)
�

j⇤(e2), · · · , j⇤(em�2), j⇤(e1)
�

= (�1)m
wm(x1, · · · ,xm�1,0),

where we used the fact that

dx1 ^ · · ·^dxm�1
�

j⇤(e2), · · · , j⇤(em�1), j⇤(e1))
�

= dx1 ^ · · ·^dxm�1(e2, · · · ,em�1,e1)

= (�1)mdx2 ^ · · ·^dxm�1 ^dx1(e2, · · · ,em�1,e1) = (�1)m.

Combining this with the integral over Hm we finally obtain
Z

Hm
dw =

Z

∂Hm
j⇤w,

which completes the proof.
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Proof of Theorem 16.1: Let us start with the case that supp(w) ⇢ U , where
(U,j) is an oriented chart for M. Then by the definition of the integral we have
that

Z

M
dw =

Z

j(U)
(j�1)⇤(dw) =

Z

Hm
(j�1)⇤(dw) =

Z

Hm
d
⇣

(j�1)⇤w

⌘

,

where the latter equality follows from Theorem 15.5. It follows from Lemma 16.2
that if supp(w)⇢ int (Hm), then the latter integral is zero and thus

R
M w. = 0. Also,

using Lemma 16.2, it follows that if supp(w)\∂Hm 6=?, then

Z

M
dw =

Z

Hm
d
⇣

(j�1)⇤w

⌘

=
Z

∂Hm
j0⇤(j�1)⇤w

=
Z

∂Hm
(j�1 � j0)⇤w =

Z

∂M
j⇤w,

where j0 : ∂Hm ! Hm is the canonical inclusion as used Lemma 16.2, and j =
j

�1 � j0 : ∂M ! M is the inclusion of the boundary of M into M.
Now consider the general case. As before we choose a finite covering AI ⇢ A

of supp(w) and an associated partition of unity {li} subordinate to AI . Consider
the forms liw, and using the first part we obtain

Z

∂M
j⇤w =

Â

i

Z

∂M
j⇤liw =

Â

i

Z

M
d(liw)

=
Â

i

Z

M

⇣

dli ^w+lidw

⌘

=
Z

M
d
⇣

Â

i
li

⌘

^w+
Z

M

⇣

Â

i
li

⌘

dw

=
Z

M
dw,

which proves the theorem.

J 16.3 Remark. If M is a closed (compact, no boundary), oriented manifold mani-
fold, then by Stokes’ Theorem for any w 2 G

m�1(M),

Z

M
dw = 0,

since ∂M =?. As a consequence volume form s cannot be exact. Indeed,
R

M s> 0,
and thus if s were exact, then s = dw, which implies that

R
M s =

R
M dw = 0, a

contradiction. I
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Let us start with the obvious examples of Stokes’ Theorem in R, R2, and R3.
J 16.4 Example. Let M = [a,b] ⇢ R, and consider the 0-form w = f , then, since
M is compact, w is compactly supported 0-form. We have that dw = f 0(x)dx, and

Z b

a
f 0(x)dx =

Z

{a,b}
f = f (b)� f (a),

which is the fundamental theorem of integration. Since on M any 1-form is exact
the theorem holds for 1-forms. I

J 16.5 Example. Let M = g ⇢R2 be a curve parametrized given by g : [a,b]!R2.
Consider a 0-form w = f , then

Z

g

fx(x,y)dx+ fy(x,y)dy =
Z

{g(a),g(b)}
f = f (g(b))� f (g(a)).

Now let M = W ⇢ R2, a closed subset of R2 with a smooth boundary ∂W, and
consider a 1-form w = f (x,y)dx+ g(x,y)dy. Then, dw =

�

gx � fy)dx^ dy, and
Stokes’ Theorem yields

Z

W

⇣

∂g
∂x

� ∂ f
∂y

⌘

dxdy =
Z

∂W

f dx+gdy,

also known as Green’s Theorem in R2. I

J 16.6 Example. In the case of a curve M = g ⇢ R3 we obtain the line-integral for
0-forms as before:

Z

g

fx(x,y,z)dx+ fy(x,y,z)dy+ fz(x,y,z) = f (g(b))� f (g(a)).

If we write the vector field

F = f
∂

∂x
+g

∂

∂y
+h

∂

∂z
,

then

grad f = — f =
∂ f
∂x

∂

∂x
+

∂ f
∂y

∂

∂y
+

∂ f
∂z

∂

∂z
,

and the above expression can be rewritten as
Z

g

— f ·ds = f |
∂g

.

Next, let M = S ⇢ R3 be an embedded or immersed hypersurface, and let w =

f dx+gdy+hdz be a 1-form. Then,

dw =
⇣

∂h
∂y

� ∂g
∂z

⌘

dy^dz+
⇣

∂ f
∂z

� ∂h
∂x

⌘

dz^dx+
⇣

∂g
∂x

� ∂ f
∂y

⌘

dx^dy.

Write the vector fields
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curl F = —⇥F =
⇣

∂h
∂y

� ∂g
∂z

⌘

∂

∂x
+
⇣

∂ f
∂z

� ∂h
∂x

⌘

∂

∂y
+
⇣

∂g
∂x

� ∂ f
∂y

⌘

∂

∂z
.

Furthermore set

ds =

0

B

@

dx
dy
dz

1

C

A

, dS =

0

B

@

dydz
dzdx
dxdy

1

C

A

,

then from Stokes’ Theorem we can write the following surface and line integrals:
Z

S
—⇥F ·dS =

Z

∂S
F ·ds,

which is usually referred to as the classical Stokes’ Theorem in R3. The version in
Theorem 16.1 is the general Stokes’ Theorem. Finally let M = W a closed subset
of R3 with a smooth boundary ∂W, and consider a a 2-form w = f dy^dz+gdz^
dx+hdx^dy. Then

dw =
⇣

∂ f
∂x

+
∂g
∂y

+
∂h
∂z

⌘

dx^dy^dz.

Write
div F = — ·F =

∂ f
∂x

+
∂g
∂y

+
∂h
∂z

, dV = dxdydz,

then from Stokes’ Theorem we obtain
Z

W

— ·FdV =
Z

∂W

F ·dS,

which is referred to as the Gauss Divergence Theorem. I
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V. De Rham cohomology

17. Definition of De Rham cohomology

In the previous chapters we introduced and integrated m-forms over manifolds
M. We recall that k-form w 2 G

k(M) is closed if dw = 0, and a k-form w 2 G

k(M)

is exact if there exists a (k�1)-form s 2 G

k�1(M) such that w = ds. Since d2 = 0,
exact forms are closed. We define

Zk(M) =
�

w 2 G

k(M) : dw = 0
 

= Ker(d),

Bk(M) =
�

w 2 G

k(M) : 9 s 2 G

k�1(M) 3 w = ds

 

= Im(d),

and in particular

Bk(M)⇢ Zk(M).

The sets Zk and Bk are real vector spaces, with Bk a vector subspace of Zk. This
leads to the following definition.

Definition 17.1. Let M be a smooth m-dimensional manifold then the de Rham
cohomology groups are defined as

(16) Hk
dR(M) := Zk(M)/Bk(M), k = 0, · · ·m,

where B0(M) := 0.

It is immediate from this definition that Z0(M) are smooth functions on M that
are constant on each connected component of M. Therefore, when M is con-
nected, then H0

dR(M) ⇠= R. Since G

k(M) = {0}, for k > m = dim M, we have
that Hk

dR(M) = 0 for all k > m. For k < 0, we set Hk
dR(M) = 0.

J 17.2 Remark. The de Rham groups defined above are in fact real vector spaces,
and thus groups under addition in particular. The reason we refer to de Rham
cohomology groups instead of de Rham vector spaces is because (co)homology
theories produce abelian groups. I

An equivalence class [w] 2 Hk
dR(M) is called a cohomology class, and two form

w,w0 2 Zk(M) are cohomologous if [w] = [w0]. This means in particular that w and
w

0 differ by an exact form, i.e.

w

0 = w+ds.
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Now let us consider a smooth mapping f : N ! M, then we have that the pull-
back f ⇤ acts as follows: f ⇤ : G

k(M)! G

k(N). From Theorem 15.5 it follows that
d � f ⇤ = f ⇤ �d and therefore f ⇤ descends to homomorphism in cohomology. This
can be seen as follows:

d f ⇤w = f ⇤dw = 0, and f ⇤ds = d( f ⇤s),

and therefore the closed forms Zk(M) get mapped to Zk(N), and the exact form
Bk(M) get mapped to Bk(N). Now define

f ⇤[w] = [ f ⇤w],

which is well-defined by

f ⇤w

0 = f ⇤w+ f ⇤ds = f ⇤w+d( f ⇤s)

which proves that [ f ⇤w

0] = [ f ⇤w], whenever [w0] = [w]. Summarizing, f ⇤ maps
cohomology classes in Hk

dR(M) to classes in Hk
dR(N):

f ⇤ : Hk
dR(M)! Hk

dR(N),

Theorem 17.3. Let f : N ! M, and g : M ! K, then

g⇤ � f ⇤ = ( f �g)⇤ : Hk
dR(K)! Hk

dR(N),

Moreover, id⇤ is the identity map on cohomology.
Proof: Since g⇤ � f ⇤ = ( f �g)⇤ the proof follows immediately.

As a direct consequence of this theorem we obtain the invariance of de Rham
cohomology under diffeomorphisms.
Theorem 17.4. If f : N ! M is a diffeomorphism, then Hk

dR(M)⇠= Hk
dR(N).

Proof: We have that id = f � f�1 = f�1 � f , and by the previous theorem

id⇤ = f ⇤ � ( f�1)⇤ = ( f�1)⇤ � f ⇤,

and thus f ⇤ is an isomorphism.

18. Homotopy invariance of cohomology

We will prove now that the de Rham cohomology of a smooth manifold M is
even invariant under homeomorphisms. As a matter of fact we prove that the de
Rham cohomology is invariant under homotopies of manifolds.
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Definition 18.1. Two smooth mappings f ,g : N ! M are said to be homotopic if
there exists a continuous map H : N ⇥ [0,1]! M such that

H(p,0) = f (p)

H(p,1) = g(p),

for all p 2 N. Such a mapping is called a homotopy from/between f to/and g. If
in addition H is smooth then f and g are said to be smoothly homotopic, and H is
called a smooth homotopy.

Using the notion of smooth homotopies we will prove the following crucial
property of cohomology:
Theorem 18.2. Let f ,g : N ! M be two smoothly homotopic maps. Then for k � 0
it holds for f ⇤,g⇤ : Hk

dR(M)! Hk
dR(N), that

f ⇤ = g⇤.

J 18.3 Remark. It can be proved in fact that the above results holds for two homo-
topic (smooth) maps f and g. This is achieved by constructing a smooth homotopy
from a homotopy between maps. I

Proof of Theorem 18.2: A map h : G

k(M)! G

k�1(N) is called a homotopy map
between f ⇤ and g⇤ if

(17) dh(w)+h(dw) = g⇤w� f ⇤w, w 2 G

k(M).

Now consider the embedding it : N ! N ⇥ I, and the trivial homotopy between
i0 and i1 (just the identity map). Let w 2 G

k(N ⇥ I), and define the mapping

h(w) =
Z 1

0
i

∂

∂t
wdt,

which is a map from G

k(N ⇥ I)! G

k�1(N). Choose coordinates so that either

w = wI(x, t)dxI, or w = wI0(x, t)dt ^dxI0.

In the first case we have that i
∂

∂t
w = 0 and therefore dh(w) = 0. On the other hand

h(dw) = h
⇣

∂wI

∂t
dt ^dxI +

∂wI

∂xi
dxi ^dxI

⌘

=
⇣

Z 1

0

∂wI

∂t
dt
⌘

dxI

=
�

wI(x,1)�wI(x,0)
�

dxI = i⇤1w� i⇤0w,

which prove (17) for i⇤0 and i⇤1, i.e.

dh(w)+h(dw) = i⇤1w� i⇤0w.
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In the second case we have

h(dw) = h
⇣

∂wI

∂xi
dxi ^dt ^dxI0

⌘

=
Z 1

0

∂wI

∂dxi
i

∂

∂xi

�

dxi ^dt ^dxI0�dt

= �
⇣

Z 1

0

∂wI

∂xi
dt
⌘

dxi ^dxI0 .

On the other hand

dh(w) = d
⇣⇣

Z 1

0
wI0(x, t)dt

⌘

dxI0
⌘

=
∂

∂xi

⇣

Z 1

0
wI0(x, t)dt

⌘

dxi ^dxI0

=
⇣

Z 1

0

∂wI

∂xi
dt
⌘

dxi ^dxI0

= �h(dw).

This gives the relation that

dh(w)+h(dw) = 0,

and since i⇤1w = i⇤0w = 0 in this case, this then completes the argument in both
cases, and h as defined above is a homotopy map between i⇤0 and i⇤1.

By assumption we have a smooth homotopy H : N ⇥ [0,1]! M bewteen f and
g, with f = H � i0, and g = H � i1. Consider the composition eh = h�H⇤. Using the
relations above we obtain

eh(dw)+deh(w) = h(H⇤dw)+dh(H⇤
w)

= h(d(H⇤
w))+dh(H⇤

w)

= i⇤1H⇤
w� i⇤0H⇤

w

= (H � i1)⇤w� (H � i0)⇤w

= g⇤w� f ⇤w.

If we assume that w is closed then

g⇤w� f ⇤w = dh(H⇤
w),

and thus

0 = [dh(H⇤
w)] = [g⇤w� f ⇤w] = g⇤[w]� f ⇤[w],

which proves the theorem.
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J 18.4 Remark. Using the same ideas as for the Whitney embedding theorem one
can prove, using approximation by smooth maps, that Theorem 18.2 holds true for
continuous homotopies between smooth maps. I

Definition 18.5. Two manifolds N and M are said to be homotopy equivalent, if
there exist smooth maps f : N ! M, and g : M ! N such that

g� f ⇠= idN , f �g ⇠= idM (homotopic maps).

We write N ⇠ M., The maps f and g are homotopy equivalences are each other
homotopy inverses . If the homotopies involved are smooth we say that N and M
smoothly homotopy equivalent.

J 18.6 Example. Let N = S1, the standard circle in R2, and M = R2\{(0,0)}. We
have that N ⇠ M by considering the maps

f = i : S1 ,! R2\{(0,0)}, g = id/| · |.

Clearly, (g � f )(p) = p, and ( f � g)(p) = p/|p|, and the latter is homotopic to the
identity via H(p, t) = t p+(1� t)p/|p|. I

Theorem 18.7. Let N and M be smoothly homotopically equivalent manifold, N ⇠
M, then

Hk
dR(N)⇠= Hk

dR(M),

and the homotopy equivalences f g between N and M, and M and N respectively
are isomorphisms.

As before this theorem remains valid for continuous homotopy equivalences of
manifolds.
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VI. Exercises

A number of the exercises given here are taken from the Lecture notes by J. Bochnak.

Manifolds

Topological Manifolds

+ 1 Given the function g : R! R2, g(t) = (cos(t),sin(t)). Show that f (R) is a mani-
fold.

+ 2 Given the set T2 = {p = (p1, p2, p3) | 16(p2
1 + p2

2) = (p2
1 + p2

2 + p2
3 + 3)2} ⇢ R3,

called the 2-torus.

(i ) Consider the product manifold S1⇥S1 = {q= (q1,q2,q3,q4) | q2
1+q2

2 = 1, q2
3+

q2
4 = 1}, and the mapping f : S1 ⇥S1 ! T2, given by

f (q) =
�

q1(2+q3),q2(2+q3),q4
�

.

Show that f is onto and f�1(p) =
� p1

r ,
p2
r ,r�2, p3

�

, where r = |p|2+3
4 .

(ii ) Show that f is a homeomorphism between S1 ⇥S1 and T2.

+ 3 (i ) Find an atlas for T2 using the mapping f in 2.

(ii ) Give a parametrization for T2.

4 Show that
A4,4 = {(p1, p2) 2 R2 | p4

1 + p4
2 = 1},

is a manifold and A4,4 ⇠= S1 (homeomorphic).

+ 5 (i ) Show that an open subset U ⇢ M of a manifold M is again a manifold.

(ii ) Let N and M be manifolds. Show that their cartesian production N ⇥M is also
a manifold.
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+ 6 Show that

(i ) {A 2 M2,2(R) | det(A) = 1} is a manifold.

(ii ) Gl(n,R) = {A 2 Mn,n(R) | det(A) 6= 0} is a manifold.

(iii ) Determine the dimensions of the manifolds in (a) and (b).

7 Construct a simple counterexample of a set that is not a manifold.

8 Show that in Definition 1.1 an open set U 0 ⇢ Rn can be replaced by an open disc
Dn ⇢ Rn.

9 Show that PRn is a Hausdorff space and is compact.

10 Define the Grassmann manifold GkRn as the set of all k-dimensional linear sub-
spaces in Rn. Show that GkRn is a manifold.

11 Consider X to be the parallel lines
�

R⇥{0}
�

[
�

R⇥{1}
�

. Define the equivalence
relation (x,0) ⇠ (x,1) for all x 6= 0. Show that M = X/ ⇠ is a topological space
that satisfies (ii) and (iii) of Definition 1.1.

+ 12 Let M be an uncountable union of copies of R. Show that M is a topological space
that satisfies (i) and (ii) of Definition 1.1.

13 Let M = {(x,y) 2 R2 : xy = 0}. Show that M is a topological space that satisfies
(i) and (iii) of Definition 1.1.

Differentiable manifolds

+ 14 Show that cartesian products of differentiable manifolds are again differentaible
manifolds.

+ 15 Show that PRn is a smooth manifold.

16 Prove that PR is diffeomorphic to the standard unit circle in R2 by constructing a
diffeomorphism.

+ 17 Which of the atlases for S1 given in Example 2, Sect. 1, are compatible. If not
compatible, are they diffeomorphic?

+ 18 Show that the standard torus T2 ⇢ R3 is diffeomorphic to S1 ⇥S1, where S1 ⇢ R2

is the standard circle in R2.

19 Prove that the taking the union of C•-atlases defines an equivalence relation (Hint:
use Figure 7 in Section 2).
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+ 20 Show that diffeomorphic defines an equivalence relation.

+ 21 Prove Theorem 2.15.

Immersion, submersion and embeddings

+ 22 Show that the torus the map f defined in Exer. 2 of 1.1 yields a smooth embedding
of the torus T2 in R3.

23 Let k,m,n be positive integers. Show that the set

Ak,m,n := {(x,y,z) 2 R3 : xk + ym + zn = 1},

is a smooth embedded submanifold in R3, and is diffeomorphic to S2 when these
numbers are even.

24 Prove Lemma 3.18.

+ 25 Let f : Rn+1\{0} ! Rk+1\{0} be a smooth mapping such that f (lx) = l

d f (x),
d 2 N, for all l 2 R\{0}. This is called a homogeneous mapping of degree d.
Show that ef : PRn ! PRk, defined by ef ([x]) = [ f (x)], is a smooth mapping.

+ 26 Show that the open ball Bn ⇢ Rn is diffeomorphic to Rn.

+ 27 (Lee) Consider the mapping f (x,y,s) = (x2 + y,x2 + y2 + s2 + y) from R3 to R2.
Show that q = (0,1) is a regular value, and f�1(q) is diffeomorphic to S1 (stan-
dard).

28 Prove Theorem 3.24 (Hint: prove the steps indicated above Theorem 3.24).

29 Prove Theorem 3.26.

30 Let N, M be two smooth manifolds of the same dimension, and f : N ! M is a
smooth mapping. Show (using the Inverse Function Theorem) that if f is a bijec-
tion then it is a diffeomorphism.

31 Prove Theorem 3.28.

+ 32 Show that the map f : Sn ! PRn defined by f (x1, · · · ,xn+1) = [(x1, · · · ,xn+1)] is
smooth and everywhere of rank n (see Boothby).
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+ 33 (Lee) Let a 2 R, and Ma = {(x,y) 2 R2 : y2 = x(x�1)(x�a)}.

(i ) For which values of a is Ma an embedded submanifold of R2?

(ii ) For which values of a can Ma be given a topology and smooth structure so that
Ma is an immersed submanifold?

+ 34 Consider the map f : R2 !R given by f (x1,x2) = x3
1 +x1x2+x3

2. Which level sets
of f are smooth embedded submanifolds of R2.

35 Let M be a smooth m-dimensional manifold with boundary ∂M (see Lee, pg. 25).
Show that ∂M is an (m� 1)-dimensional manifold (no boundary), and that there
exists a unique differentiable structure on ∂M such that i : ∂M ,! M is a (smooth)
embedding.

+ 36 Let f : N ! M be a smooth mapping. Let S = f�1(q)⇢ N is a smooth embedded
submanifold of codimension m. Is q necessarily a regular value of f ?

+ 37 Use Theorem 3.27 to show that the 2-torus T2 is a smooth embedded manifold in
R4.

38 Prove Theorem 3.37.

39 Show that an m-dimensional linear subspace in R` is an m-dimensional manifold.

40 Prove that the annulus A= {(p1, p2)2R2 : 1 p2
1+ p2

2  4} is a smooth manifold
two dimensional manifold in R2 with boundary.
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Tangent and cotangent spaces

Tangent spaces

+ 41 Let U ⇢ Rk, y 2 Rm, and f : U ! Rm a smooth function. By Theorem 3.28 M =

f�1(y) = {p 2Rk : f (p) = y} is a smooth embedded manifold in Rk if rk(J f )|p =
m for all p 2 M. Show that

TpM ⇠= {Xp 2 Rk : Xp ·∂pi f = 0, i = 1, · · · ,m}= kerJ f |p,

i.e. the tangent space is the kernel of the Jacobian. Using this identification from
now on, prove that

Mp = p+TpM ⇢ Rk

is tangent to M at p.

+ 42 Given the set M = {(p1, p2, p3) 2 R3 : p3
1 + p3

2 + p3
3 �3p1 p2 p3 = 1}.

(i ) Show that M is smooth embedded manifold in R3 of dimension 2.

(ii ) Compute TpM, at p = (0,0,1).

+ 43 Given the set M = {(p1, p2, p3) 2 R3 : p2
1 � p2

2 + p1 p3 � 2p2 p3 = 0, 2p1 � p2 +

p3 = 3}.

(i ) Show that M is smooth embedded manifold in R3 of dimension 1.

(ii ) Compute TpM, at p = (1,�1,0).

44 Prove Lemma 4.5.

+ 45 Express the following planar vector fields in polar coordinates:

(i ) X = x ∂

∂x + y ∂

∂y ;

(ii ) X =�y ∂

∂x + x ∂

∂y ;

(iii ) X = (x2 + y2) ∂

∂x .

46 Find a vector field on S2 that vanishes at exactly one point.

47 Let S2 ⇢ R2 be the standard unit sphere and f : S2 ! S2 a smooth map defined as
a q-degree rotation around the polar axis. Compute f⇤ : TpS2 ! Tf (p)S2 and give a
matrix representation of f⇤ in terms of a canonical basis.
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Cotangent spaces

+ 48 (Lee) Let f : R3 ! R be given by f (p1, p2, p3) = |p|2, and g : R2 ! R3 by

g(x1,x2) =
⇣ 2x1

|x|2 +1
,

2x2

|x|2 +1
,
|x|2 �1
|x|2 +1

⌘

.

Compute both g⇤d f , and d( f �g) and compare the two answers.

+ 49 (Lee) Compute d f in coordinates, and determine the set points where d f vanishes.

(i ) M = {(p1, p2) 2 R2 : p2 > 0}, and f (p) = p1
|p|2 — standard coordinates in R2.

(ii ) As the previous, but in polar coordinates.

(iii ) M = S2 = {p 2 R3 : |p|= 1}, and f (p) = p3 — stereographic coordinates.

(iv) M = Rn, and f (p) = |p|2 — standard coordinates in Rn.

+ 50 Express in polar coordinates

(i ) q = x2dx+(x+ y)dy;

(ii ) q = xdx+ ydy+ zdz.

51 Prove Lemma 5.3.

+ 52 (Lee) Let f : N ! M (smooth), w 2 L

1(N), and g : [a,b] ! N is a smooth curve.
Show that Z

g

f ⇤w =
Z

f�g

w.

+ 53 Given the following 1-forms on R3:

a =� 4z
(x2 +1)2 dx+

2y
y2 +1

dy+
2x

x2 +1
dz,

w =� 4xz
(x2 +1)2 dx+

2y
y2 +1

dy+
2

x2 +1
dz.

(i ) Let g(t) = (t, t, t), t 2 [0,1], and compute
R

g

a and
R

g

w.

(ii ) Let g be a piecewise smooth curve going from (0,0,0) to (1,0,0) to (1,1,0) to
(1,1,1), and compute the above integrals.

(iii ) Which of the 1-forms a and w is exact.

(iv) Compare the answers.
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Vector bundles

+ 54 Let M ⇢R` be a manifold in R`. Show that T M as defined in Section 6 is a smooth
embedded submanifold of R2`.

55 Let S1 ⇢ R2 be the standard unit circle. Show that T S1 is diffeomorphic to S1 ⇥R.

56 Let M ⇢R` be a manifold in R`. Show that T ⇤M as defined in Section 6 is a smooth
embedded submanifold of R2`.

57 Show that the open Möbius band is a smooth rank-1 vector bundle over S1.
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Tensors

Tensors and tensor products

+ 58 Describe the standard inner product on Rn as a covariant 2-tensor.

+ 59 Construct the determinant on R2 and R3 as covariant tensors.

60 Given the vectors a =

0

B

@

1
3
0

1

C

A

, and b =

 

2
4

!

. Compute a⇤ ⌦b and b⇤ ⌦a.

+ 61 Given finite dimensional vector spaces V and W , prove that V ⌦W and W ⌦V are
isomorphic.

62 Given finite dimensional vector spaces U , V and W , prove that (U ⌦V )⌦W and
U ⌦ (V ⌦W ) are isomorphic.

+ 63 Show that V ⌦R'V ' R⌦V .

Symmetric and alternating tensors

+ 64 Show that for T 2 T s(V ) the tensor Sym T is symmetric.

65 Prove that a tensor T 2 T s(V ) is symmetric if and only if T = Sym T .

66 Show that the algebra

S

⇤(V ) =
•M

k=0
S

k(V ),

is a commutative algebra.

+ 67 Prove that for any T 2 T s(V ) the tensor Alt T is alternating.

68 Show that a tensor T 2 T s(V ) is alternating if and only if T = Alt T .

69 Given the vectors a =

0

B

@

1
2
4

1

C

A

, b =

0

B

@

0
1
3

1

C

A

, and c =

0

B

@

1
1
2

1

C

A

. Compute a^b^ c,

and compare this with det(a,b,c).
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70 Given vectors a1, · · · ,an show that a1 ^ · · ·^an = det(a1, · · · ,an).

71 Prove Lemma 8.11.

Tensor bundles and tensor fields

72 Let M ⇢R` be an embedded m-dimensional manifold. Show that T rM is a smooth
manifold in R`+`r .

73 Similarly, show that TsM is a smooth manifold in R`+`s , and T r
s M is a smooth

manifold in R`+`r+`s .

74 Prove that the tensor bundles introduced in Section 7 are smooth manifolds.

+ 75 One can consider symmetric tensors in TpM as defined in Section 8. Define and
describe S

r(TpM)⇢ T r(TpM) and S

rM ⇢ T rM.

+ 76 Describe a smooth covariant 2-tensor field in S

2M ⇢ T 2M. How does this relate to
an (indefinite) inner product on TpM?

77 Prove Lemma 9.2.

+ 78 Given the manifolds N = M = R2, and the smooth mapping

q = f (p) = (p2
1 � p2, p1 +2p3

2),

acting from N to M. Consider the tensor spaces T 2(TpN) ⇠= T 2(TqM) ⇠= T 2(R2)

and compute the matrix for the pullback f ⇤.

+ 79 In the above problem consider the 2-tensor field s on M, given by

s = dy1 ⌦dy2 +q1dy2 ⌦dy2.

(i ) Show that s 2 F2(M).

(ii ) Compute the pulback f ⇤s and show that f ⇤s 2 F2(N).

(iii ) Compute f ⇤s(X ,Y ), where X ,Y 2 F(N).
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Differential forms

+ 80 Given the differential form s = dx1 ^ dx2 � dx2 ^ dx3 on R3. For each of the fol-
lowing vector fields X compute iX s:

(i ) X = ∂

∂x1
+ ∂

∂x2
� ∂

∂x3
;

(ii ) X = x1
∂

∂x1
� x2

2
∂

∂x3
;

(iii ) X = x1x2
∂

∂x1
� sin(x3)

∂

∂x2
;

+ 81 Given the mapping
f (p) = (sin(p1 + p2), p2

1 � p2),

acting from R2 to R2 and the 2-form s = p2
1dx1 ^dx2. Compute the pullback form

f ⇤s.

+ 82 Prove Lemma 10.2.

+ 83 Derive Formula (10).

Orientations

+ 84 Show that Sn is orientable and give an orientation.

85 Show that the standard n-torus Tn is orientable and find an orientation.

+ 86 Prove that the Klein bottle and the projective space PR2 are non-orientable.

+ 87 Give an orientation for the projective space PR3.

88 Prove that the projective spaces PRn are orientable for n = 2k+1, k � 0.

89 Show that the projective spaces PRn are non-orientable for n = 2k, k � 1.
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Integration on manifolds

Integrating m-forms on Rm

+ 90 Let U ⇢ Rm be open and let K ⇢ U be compact. Show that there exists a domain
of integration D such that K ⇢ D ⇢ Rm.

91 Show that Definition 12.2 is well-posed.

Partitions of unity

92 Show that the function f1 defined in Lemma 13.3 is smooth.

+ 93 If U is open covering of M for which each set Ui intersects only finitely many other
sets in U, prove that U is locally finite.

94 Give an example of uncountable open covering U of the interval [0,1] ⇢ R, and a
countable refinement V of U.

Integration of m-forms on m-dimensional manifolds

+ 95 Let S2 = ∂B3 ⇢ R3 oriented via the standard orientation of R3, and consider the
2-form

w = xdy^dz+ ydz^dx+ zdx^dy.

Given the parametrization

F(j,q) =

0

B

@

x
y
z

1

C

A

=

0

B

@

sin(j)cos(q)
sin(j)sin(q)

cos(j)

1

C

A

,

for S2, compute
R

S2 w.

+ 96 Given the 2-form w = xdy^dz+ zdy^dx, show that
Z

S2
w = 0.
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+ 97 Consider the circle S1 ⇢ R2 parametrized by

F(q) =

 

x
y

!

=

 

r cos(q)
r sin(q)

!

.

Compute the integral over S1 of the 1-form w = xdy� ydx.

98 If in the previous problem we consider the 1-form

w =
x

p

x2 + y2
dy� y

p

x2 + y2
dx.

Show that
R

S1 w represents the induced Euclidian length of S1.

+ 99 Consider the embedded torus

T2 = {(x1,x2,x3,x4) 2 R4 : x2
1 + x2

2 = 1, x2
3 + x2

4 = 1}.

Compute the integral over T2 of the 2-form

w = x2
1dx1 ^dx4 + x2dx3 ^dx1.

+ 100 Consider the following 3-manifold M parametrized by g : [0,1]3 ! R4,

0

B

@

r
s
t

1

C

A

7!

0

B

B

B

@

r
s
t

(2r� t)2

1

C

C

C

A

.

Compute Z

M
x2dx2 ^dx3 ^dx4 +2x1x3dx1 ^dx2 ^dx3.

The exterior derivative

+ 101 Let (x,y,z) 2 R3. Compute the exterior derivative dw, where w is given as:

(i ) w = exyz;

(ii ) w = x2 + zsin(y);

(iii ) w = xdx+ ydy;

(iv) w = dx+ xdy+(z2 � x)dz;

(v) w = xydx^dz+ zdx^dy;

(vi ) w = dx^dz.
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+ 102 Which of the following forms on R3 are closed?

(i ) w = xdx^dy^dz;

(ii ) w = zdy^dx+ xdy^dz;

(iii ) w = xdx+ ydy;

(iv) w = zdx^dz.

+ 103 Verify which of the following forms w on R2 are exact, and if so write w = ds:

(i ) w = xdy� ydx;

(ii ) w = xdy+ ydx;

(iii ) w = dx^dy;

(iv) w = (x2 + y3)dx^dy;

+ 104 Verify which of the following forms w on R3 are exact, and if so write w = ds:

(i ) w = xdx+ ydy+ zdz;

(ii ) w = x2dx^dy+ z3dx^dz;

(iii ) w = x2ydx^dy^dz.

105 Verify that on R2 and R3 all closed k-forms, k � 1, are exact.

106 Find a 2-form on R3\{(0,0,0)} which is closed but not exact.

Stokes’ Theorem

107 Let W ⇢ R3 be a parametrized 3-manifold,i.e. a solid, or 3-dimensional domain.
Show that the standard volume of W is given by

Vol(M) =
1
3

Z

∂W

xdy^dz� ydx^dz+ zdx^dy.

108 Let W ⇢Rn be an n-dimensional domain. Prove the analogue of the previous prob-
lem.

+ 109 Prove the ‘integration by parts’ formula
Z

M
f dw =

Z

∂M
f w�

Z

M
d f ^w,

where f is a smooth function and w a k-form.
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110 Compute the integral
Z

S2
x2ydx^dz+ x3dy^dz+(z�2x2)dx^dy,

where S2 ⇢ R3 is the standard 2-sphere.

111 Use the standard polar coordinates for the S2 ⇢ R3 with radius r to compute
Z

S2

xdy^dz� ydx^dz+ zdx^dy
(x2 + y2 + z2)3/2 ,

and use the answer to compute the volume of the r-ball Br.

Extra’s

112 Use the examples in Section 16 to show that

curl grad f = 0, and div curl F = 0,

where f : R3 ! R, and F : R3 ! R3.

+ 113 Given the mapping f : R2 ! R3, w = dx^dz, and

f (s, t) =

0

B

@

cos(s)sin(t)p
s2 + t2

st

1

C

A

.

Compute f ⇤w.

+ 114 Given the mapping f : R3 ! R3, w = xydx^dy^dz, and

f (s, t,u) =

0

B

@

scos(t)
ssin(t)

u

1

C

A

.

Compute f ⇤w.

+ 115 Let M = R3\{(0,0,0)}, and define the following 2-form on M:

w =
1

(x2 + y2 + z2)3/2

�

xdy^dz+ ydz^dx+ zdx^dy
�

.

(i ) Show that w is closed (dw = 0) (Hint: compute
R 2

S w).

(ii ) Prove that w is not exact on M!

On N = R3\{x = y = 0}� M consider the 1-form:

h =
�z

(x2 + y2 + z2)1/2
xdy� ydx

x2 + y2 .
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(iii ) Show that w is exact as 2-form on N, and verify that dh = w.

+ 116 Let M ⇢ R4 be given by the parametrization

(s, t,u) 7!

0

B

B

B

@

s
t +u

t
s�u

1

C

C

C

A

, (s, t,u) 2 [0,1]3.

(i ) Compute
R

M dx1 ^dx2 ^dx4.

(ii ) Compute
R

M x1x3dx1 ^dx2 ^dx3 + x2
3dx2 ^dx3 ^dx4.

+ 117 Let C = ∂D be the boundary of the triangle OAB in R2, where O = (0,0), A =

(p/2,0), and B = (p/2,1). Orient the traingle by traversing the boundary counter
clock wise. Given the integral

Z

C
(y� sin(x))dx+ cos(y)dy.

(i ) Compute the integral directly.

(ii ) Compute the integral via Green’s Theorem.

118 Compute the integral
R

S

F ·dS, where S = ∂[0,1]3, and

F(x,y,z) =

0

B

@

4xz
�y2

yz

1

C

A

(Hint: use the Gauss Divergence Theorem).
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De Rham cohomology

Definition of De Rham cohomology

119 Prove Theorem 17.3.

120 Let M =
S

j M j be a (countable) disjoint union of smooth manifolds. Prove the
isomorphism

Hk
dR(M)⇠=

’

j
Hk

dR(M j).

121 Show that the mapping [ : Hk
dR(M)⇥H`

dR(M)!Hk+`
dR (M), called the cup-product,

and defined by

[w][ [h] := [w^h],

is well-defined.

122 Let M = S1, show that

H0
dR(S

1)⇠= R, H1
dR(S

1)⇠= R, Hk
dR(S

1) = 0,

for k � 2.

123 Show that

H0
dR(R

2\{(0,0)})⇠= R, H1
dR(R2\{(0,0)})⇠= R, Hk

dR(R2\{(0,0)}) = 0,

for k � 2.

124 Find a generator for H1
dR(R2\{(0,0)}).

125 Compute the de Rham cohomology of the n-torus M = Tn.

126 Compute the de Rham cohomology of M = S2.
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VII. Solutions

1 Note that (x,y) 2 g(R) if and only if x2 + y2 = 1. So g(R) is just the circle S1 in
the plane. The fact that this is a manifold is in the lecture notes.

2 We will show that f has an inverse by showing that the funcrion suggested in the
exercise is indeed the inverse of f . It follows that f is a bijection and therefore it
is onto. By continuity of f and its inverse, it follows that it is a homeomorphism.
We first show that f maps S1 ⇥ S1 into T2: We use the parametrisation of S1 ⇥ S1

given by

(s, t) 7! (coss,sins,cos t,sin t),

where s, t 2 [0,2p). Suppose that q = (coss,sins,cos t,sin t) 2 S1 ⇥S1. Then

f (q) = (coss(2+ cos t),sins(2+ cos t),sin t),

so f (q) 2 T2 if and only if LHS = RHS where

(LHS) = 16(cos2 s(2+ cos t)2 + sin2 s(2+ cos t)2),

(RHS) = (cos2 s(2+ cos t)2 + sin2 s(2+ cos t)2 + sin2 t +3)2.

We have

LHS = 16(2+ cos t)2

RHS = ((2+ cos t)2 + sin2 t +3)2

= (4+4cos t + cos2 t + sin2 t +3)2

= (4(2+ cos t)2 = 16(2+ cos t).

This shows that f maps S1 ⇥ S1 into T2. Now we let g : T2 ! S1 ⇥ S1 be the
suggested inverse; i.e.

g(p) =
⇣ p1

r
,

p2

r
,r�2, p3

⌘

,

where r = |p|2+3
4 . We will first show that g maps T2 into S1 ⇥S1. So we let p 2 T2

and we will show that g(p)2 S1⇥S1. But this is the case if and only if p2
1+ p2

2 = r2

and (r� 2)2 + p2
3 = 1. The first equality follows from the definition of r and the
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fact that p 2 T2. For the second equality we note that

(r�2)2 + p2
3 = r2 �4r+4+ p2

3

= p2
1 + p2

2 �4r+4+ p2
3

= (p2
1 + p2

2 + p2
3 +3)� (|p|2 +3)+1

= 1.

This shows that g maps T2 into S1 ⇥S1. We will now show that g is the inverse of
f ; let p 2 T2 and q 2 S1 ⇥S1. Then

f �g(p) = f
⇣ p1

r
,

p2

r
,r�2, p3

⌘

=
⇣ p1

r
· r, p2

r
· r, p3

⌘

= p

g� f (q) = g(q1(2+q3),q2(2+q3),q4)

=
⇣q1(2+q3)

r0
,
q2(2+q3)

r0
,r0 �2,q4

⌘

where r0 =
q2

1(2+q3)2 +q2
2(2+q3)2 +q2

4 +3
4

= 1/4 ·
�

(2+q3)
2 +q2

4 +3
 

= 1/4 ·
�

4+4q3 +q2
3 +q2

4
 

= 1/4 ·
�

4(2+q3)
 

= 2+q3

and therefore g� f (q) = (q1,q2,q3,q4) = q.

This show that f is a bijection, so in particular it is onto. Since f and g are both
continuos, it follows that f is a homeomorphism.

3 (i ) Given co-ordinate charts (U,j) and (V,y) for S1, we define a new co-ordinate
chart for T2 as follows; W = f (U)⇥ f (V ), x : W ! j(U)⇥y(V ) is defined by
x(p) = (j(x),y(y)) where (x,y) = f�1(p) and p 2 W . This shows how to make
an atlas for T2 using an atlas for S1.
(ii ) A parametrisation for S1 ⇥S1 was already given in the solution of 2. Using the
map f , we obtain the following parametrisation for T2;

(s, t) 7!
�

coss · (2+ cos t),sins · (2+ cos t),sin t
�

,

where s, t 2 [0,2p).

5 (i ) If (V,y) is a co-ordinate chart for M, then let W =U \V . Let x : W ! y(W )

be defined by x(x) = y(x), i.e. x is just the restriction of y to W . Then clearly x

is a homeomorphism from W to an open subset of y(V ). In particular, if y(V ) is
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m-dimensional, then so is x(W ). This shows how to make an atlas for U , given an
atlas for M.

(ii ) Let (U,j) and (V,y) be charts for N and M respectively. The map x : U ⇥V !
j(U)⇥y(V ) is defined by x(x,y) = (j(x),y(y)). This is clearly a homeomor-
phism. This shows how to make an atlas for N ⇥M, given atlases for N and M.
Note that if N is n-dimensional and M is m-dimensional, then N ⇥M is n+m-
dimensional.

6 (i ) We always let A be a matrix of the form
 

a b
c d

!

We let M = {A 2 M2,2(R)|detA = 1} and U = {A 2 M : a 6= 0}. Note that U is an
open subset of M. We now define j : U ! (R\{0})⇥R⇥R by

j(A) = (a,b,c).

The inverse of j is given by

j

�1(x,y,z) =

 

x y
z 1+yz

x

!

.

Cleary, j and its inverse are continuous, and therefore j is a homeomorphism. So
(j,U) is a co-ordinate chart for M. In a similar way we can define charts on sets
in M where b 6= 0, c 6= 0 and d 6= 0. These four sets cover all of M and so we
obtain an atlas for M which shows that M is a manifold. Since the range of j is
3-dimensional, it follows that M has dimension 3.

(ii ) Note that det : Mn,n(R) ! R is a continuous function and that Gl(n,R) =
det�1(R \ {0}). It follows that Gl(n,R) is an open subset of the space Mn,n(R).
But Mn,n(R) is homeomorphic to Rn2 , which is a manifold, and therefore Gl(n,R)
is an open subset of a manifold. It follows from 5 that this space is a manifold. The
dimension of Gl(n,R) is n2.

12 The space M is not second countable; observe that every second countable space
is separable. To see that M is not separable, note that it contains an uncountable
collection of non-empty pairwise disjoint open subsets.

14 Let M and N be differentiable manifolds with maximal atlases A = {(Ui,ji)}i2I

and B= {(Vk,yk)}k2K respectively. A typical co-ordinate chart for M⇥N is given
by ji ⇥yk : Ui ⇥Vk ! Rm+n.
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Now, for i, j 2 I and k, l 2 K, consider the transition map (ji ⇥yk)� (j j ⇥yl)�1.
This os just the product of the maps ji �j

�1
j and y j �y

�1
k . Since these maps are

diffeomorphisms, their product is also a diffeomorphisms.

This shows that the atlas for M ⇥N given by {(Ui ⇥Vk,ji ⇥yk)i2I,k2K is a C•-
atlas. Taking a maximal extension of this atlas endows M⇥N with a differentiable
structure.

15 As usual, p : Rn+1 \{0}! PRn is the quotient mapping, given by p(x) = [x]. For
i = 1, . . . ,n+1, we have Vi = {x 2Rn+1 \{0} : xi 6= 0} and Ui = p(Vi). For [x] 2Ui

we define
ji([x]) =

⇣x1

xi
, . . . ,

xi�1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

⌘

,

and its inverse is given by

j

�1
i (z1, . . . ,zn) = [(z1, . . . ,zi�1,1,zi, . . . ,zn)].

We will show that for i < j, the transition map ji �j

�1
j : j j(Ui \Uj)! ji(Ui \Ui)

is a diffeomorphism. We compute ji �j

�1
j ;

ji �j

�1
j (z1, . . . ,zn) = ji([z1, . . . ,z j�1,1,z j, . . . ,zn])

=
⇣z1

zi
, . . . ,

zi�1

zi
,
zi+1

zi
, . . . ,

z j�1

zi
,

1
zi
,
z j

zi
, . . .

zn

zi

⌘

.

This function is clearly a diffeomorphisms. Note that

ji(Ui \Uj) = {z 2 Rn : z j�1 6= 0},

j j(Ui \Uj) = {z 2 Rn : zi 6= 0}.

17 All the atlases are compatible. We will compute some of the transition maps. We
list three co-ordinate charts, one from each atlas;

(1) j : U !U 0, where U = {p 2 S1 : p2 > 0} and U 0 = (�1,1).

j(p) = p1 and j

�1(x) = (x,
p

1� x2).

(2) y : V !V 0, where V 0 = {p 2 S1 : p 6= (0,1)} and V 0 = R.

y(p) =
2p1

1� p2
and y

�1(x) =
⇣ 4x

x2 +4
,
x2 �4
x2 +4

⌘

.

(3) x : W !W 0, where W = {p 2 S1 : p 6= (1,0)} and W 0 = (0,2p).

x(p) = arccos p1 and x

�1(q) = (cosq,sinq).

Now we compute some of the transition maps;
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(1) The map y�j

�1 : (�1,1)\{0}! (�•,�2)[ (2,•) is given by

x 7! 2x
1�

p
1� x2

.

(2) The map j�y

�1 : (�•,�2)[ (2,•)! (�1,1)\{0} is given by

x 7! 4x
x2 +4

.

(3) The map j�x

�1 : (0,p)! (�1,1) is given by

q 7! cosq.

All the functions mentioned above are C•-functions. If we check this for all tran-
sition maps, then we have shown that the atlases are compatible.

18 We have proved in 15 that the product of differentiable manifolds is again a dif-
ferentiable manifolds. The C•-atlas constructed there gives a C•-atlas for S1 ⇥S1.
We have seen in 2 that S1 ⇥ S1 is homeomorphic to the torus T2 and the map
f : S1⇥S1 ! T2 is a homeomorphism. In this exercise we are asked to show that f
is even a diffeomorphism. The differentiable structure of T2 is the structure which
it inherits from R3.

Note that using the map f we can endow T2 with a differentiable structure inherited
from S1⇥S1. So we have two differentiable structures on T2; the structure inherited
from R3 and the structure inherited from S1 ⇥S1. This exercise amounts to saying
that T2 endowed with the structure inherited from S1 ⇥ S1 is a smooth embedded
submanifold of R3.

Fixing appropriate charts for S1 ⇥ S1 and T2 one can show that f is a diffeomor-
phism. For example, consider U ⇢ S1 ⇥S1 given by

{q 2 S1 ⇥S1| q1 > 0 & q3 > 0 }

with j : U ! (�1,1)⇥ (�1,1) given by j(q) = (q2,q4). For T2 we fix a co-
ordinate chart (V,y) such that V ⇢ f (U) and y is a projection onto the 2nd and 3rd

co-ordinate. Computing y� f �j

�1 gives;

y� f �j

�1(x,y) = (x(2+
p

1� y2),y).

This map is a diffeomorphism. For other co-ordinate charts this is similar.

20 Let M, N and O be differentiable manifolds. To show that ‘diffeomorphic’ is an
equivalence relation, we prove reflexivity, symmetry and transitivity.

For reflexivity: M is diffeomorphic to M since the transition maps are diffeomor-
phism. So the identity is a diffeomorphism from M onto M.
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For symmetry: The inverse of a diffeomorphism is a diffeomorphism.

For transitivity: Suppose f : M ! N and g : N ! O are diffeomorphisms and let
p 2 M. Fix charts (U,j), (V,y), (V 0,y0) and (W,x) such that p 2 U , f (p) 2
V \V 0 and g � f (p) 2 W . Since f and g are diffeomorphisms, we may asssume
that y� f �j

�1 and x�g� (y0)�1 are diffeomorphims. Also note that since N is a
differentiable manifold, the map y

0 �y

�1 is a diffeomorphism. Now note that

x�g� f �j

�1 = (x�g� (y0)�1)� (y0 �y

�1)� (y� f �j

�1).

The map on the right hand side is a composition of diffeomorphisms, so it is again a
diffeomorphism. It follows that the map on the left hand side is a diffeomorphism.
Since p 2 M was arbitrary, this show that the composition of diffeomorphisms
between manifolds is again a diffeomorphism; i.e. M and O are diffeomorphic. In
this proof we have implicitly used part (iii) of Theorem 2.14.

21 See Lee, pg 33&34.

22 Recall that f : S1 ⇥S1 ! R3. We fix a co-ordinate chart (U,j) on S1 ⇥S1 where

U = {q = (q1,q2,q3,q4)|q2 > 0 & q4 > 0},

and j :U !V is defined by j(q1,q2,q3,q4)= (q1,q3) where V =(�1,1)⇥(�1,1).
The chart (y,R3) is just the identity. We express f in local co-ordinates, i.e.
f̃ = y� f �j

�1 where

f̃ (x,y) =
�

x(1+ y),
p

1� x2(2+ y),
p

1� y2
�

.

We have that

J f̃x=j(p) =

0

B

@

1+ y x
�x(2+ y)(1� x2)1/2 (1� x2)1/2

0 �y(1� y2)1/2

1

C

A

It is not hard to verify that the matrix J f̃x=j(p) has rank 2 for all p2U . For example,
if p = j

�1(0,0), then

J f̃(0,0) =

0

B

@

1 0
0 1
0 0

1

C

A

This shows that f is of rank 2 at all p 2 U . Of course, we can also prove this for
other similar charts. So it follows that rk( f ) = 2, so it is an immersion. Since f is
a homeomorphism onto its image, it follows that f is a smooth embedding.
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25 We compute g in local co-ordinates. So fix the usual charts (Ui,j) and (Uj,y j)

for PRn and PRk respectively. For z 2 Rn, we let zi be the point in Rn+1 given by
(z1, . . . ,zi�1,1,zi, . . .zn). If f j(zi) 6= 0, then

g̃(z) = y j �g�j

�1
i (z) = y([ f (zi)])

=
⇣ f1(zi)

f j(zi)
, . . . ,

f j�1(zi)

f j(zi)
,

f j+1(zi)

f j(zi)
, . . . ,

fn(zi)

f j(zi)

⌘

.

By assumption, f (zi) 6= 0, so there is some j such that f j(zi) 6= 0. The fact that g̃ is
smooth follows from the smoothness of all co-ordinate functions fk of f .

26 The mapping f : Bn ! Sn defined by

f (x) =
1

1� |x| · x,

is a diffeomorphism. Note that one can chose charts for Bn and Rn such that the co-
ordinate maps are just the identity. So the expression f̃ of f in local co-ordinates
is equal to f .

27 We first note that

J f(x,y,s) =

 

2x 1 0
2x 2y+1 2s

!

Now consider a point p = (x,y,s) 2 f�1(q). Then x2 + y = 0 and y2 + s2 = 1. If
s 6= 0, then the last two columns of J fp are independent. If s = 0, then y 2 {�1,1}
and since x2 + y = 0, we have in fact that y = �1 and x2 = 1. In this case the first
two colums on J fp are independent. Sow e have shown that if p 2 f�1(q), then
rk(J fp) = 2 and it follows that q is a regular value.

To show that f�1(q) is diffeomorphic to S1, consider the set

A = {(x,y,s) 2 R3| x4 + s2 = 1 & y = 0}.

Then A is diffeomorphic to S1, see 23. Now consider the map g : A ! R3 defined
by

f (x,y,s) = (x,�x2,s).

Then g is a constant rank map with rk(g) = 1 and g is injective. So g is a smooth
embedding of A (and thus of S1) into R3. It follows that g[A] = f�1(q) is diffeo-
morphic to S1.

32 Let Ui = {x 2 Sn : xi > 0} and j be the projection on all co-ordinates but the ith.
We have that

j

�1(z) = (z1, . . . ,zi�1,
q

1� |z|2,zi, . . . ,zn).
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where |z|< 1. Next we let Vi = p[Ui] and

yi([x]) =
⇣x1

xi
, . . . ,

xi�1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

⌘

.

We calculate f in local co-ordinates, so f̃ = y� f �j

�1,

f̃ (z) =
1

p

1� |z|2
· (z1, . . . ,zi�1,zi+1, . . . ,zn).

We note that

∂

∂zi

z j
p

1� |z|2
=

8

>

<

>

:

1+2zi
(1�|z|2)3/2 i = j

2zi
(1�|z|2)3/2 i 6= j

so

J f̃z =
�

1� |z|2
�3/2

0

B

B

B

B

@

1+2z1 2z1 · · · 2z1

2z2 1+2z2 · · · 2z2
...

...
. . .

...
2zn · · · 2zn 1+2zn

1

C

C

C

C

A

For all z with |z|< 1, this matrix has rank n.

33 We let fa : R2 ! R be given by fa(x,y) = y2 � x(x�1)(x�a) and note that:

fa(x,y) = y2 � x3 +(a+1)x2 �ax.

Of course, Ma = f�1(0). We also have that:

J f̃a|(x,y) = (�3x2 +2(a+1)x�a,2y).

We compute the rank of this matrix for various values of a and (x,y) 2 Ma;

If x 62 {0,1,a} : then y 6= 0 ! the rank is 1

x = 0 : �3x2 +2(a+1)x�a =�a ! the rank is 1 iff a 6= 0
x = 1 : �3x2 +2(a+1)x�a = a�1 ! the rank is 1 iff a 6= 1
x = a : �3x2 +2(a+1)x�a = a(a�1) ! the rank is 1 iff a(a�1) = 0

So we conclude that if a 62 {0,1}, then Ma is an embedded submanifold of R2.

For (ii ) : this is possible for all a 2 R.

34 So the question really is; which values q 2 R are regular values of f ? For this, we
compute the Jacobian;

J f̃ |(x,y) = (3x2 + y,3y2 + x).

Let q 2 R and (x,y) 2 f�1(q). The rank of J f |(x,y) is 0 if and only if:

3x2 + y = 3y2 + x = 0.
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In this case we have

y = �3x2

y2 = �x/3

It follows from these equations that y3 = x3 and therefore x = y. Furthermore:

0 = 3x2 + y = 3(�3y2)2 + y =

= 27y4 + y = y(27y3 +1).

We conclude that (x,y) is either (0,0) or (�1/3,�1/3). So q 2 {0,1/27}.

We conclude that if q 62 {0,1/27}, then q is a regular value of f and therefore
f�1(q) is a smooth embedded submanifold of R2. The level sets corresponding to
q = 0 and q = 1/27 are not embedded submanifolds.

36 NO; consider the mapping f : R3 ! R2 given by f (x,y,z) = (x2 + y2,z2). We let
q = (1,0) and S = f�1(q). Note that

S = {(x,y,z) 2 R3|x2 + y2 = 1 & z = 0}.

So S is just a circle embedded in R3. The co-dimension of S is 2. The Jacobian of
f in p = (x,y,z) is given by

J f |p =
 

2x 2y 0
0 0 2z

!

So for example, at the point p = (1,0,0) 2 S, this matrix is of rank 1 and not of
rank 2. So q is not a regular value of f .

37 Let N = R4 \ {p|p2
1 + p2

2 = p2
3 + p2

4 = 0} and consider the mapping f : N ! R2

given by f (p) = (p2
1 + p2

2, p2
3 + p2

4). The Jacobian of f at the point p is given by

J f |p =
 

2p1 2p2 0 0
0 0 2p3 2p4

!

On N, this matrix is always of rank 2, so f is a constant rank mapping with rk( f ) =
2. The 2-torus in R4 is the level set f�1(1,1), so it follows from Theorem 3.27 that
this space is a smooth embedded submanifold of N. Since N is an open subset of
R4, it follows that N, and hence the 2-torus, is a smooth embedded submanifold of
R4.

41 Fix p 2 f�1(y) and as in the proof of Theorem 3.28, construct a map g : Rn !
Rn�m ⇥Rm where

g(x) = (Lx, f (x)� y),
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where L : Rn ! Rn�m is invertible on kerJ f |p ⇢ Rn. We have that

Jg|p = L� J f |p,

and this map is onto. As in the proof of Theorem 3.28, g is invertible on a neigh-
bourhood V of (L(p),0) such that

g�1 :
�

Rn�m ⇥{0}
�

\V ! f�1(y).

This gives a local co-ordinate map j with

j

�1 : Rn�m \V |n�m ! f�1(y)\U,

where j(x) = Lx for all x 2 f�1(y)\U . It follows that j

�1 = L�1 and

Jj

�1|p = JL�1|p = L�1.

So we have that JL�1|p(Rn�m) = kerJ f |p by construction, so it follows that

TpM = kerJ f |p,

and this is what we wanted to show.

42 Let f : R3 ! R be defined by f (p1, p2, p3) = p3
1 + p3

2 + p3
3 � 3p1 p2 p3, so that

M = f�1(1). The Jacobian of f at the point p is given by

J f |p =
⇣

3p2
1 �3p2 p3, 3p2

2 �3p1 p3, 3p2
3 �3p1 p2

⌘

So we have that rk(J f )|p = 0 if and only if:

p2
1 = p2 p3 & p2

2 = p1 p3 & p2
3 = p1 p2.

So it follows that if rk(J f )|p = 0, then f (p) = 0. We conclude that q= 1 is a regular
value of f and therefore M is 2-dimensional smooth embedded submanifold of R3.

We now compute TpM at the point p = (0,0,1). We use 41, so TpM = kerJ f |p. We
have:

J f |p =
⇣

0 0 3
⌘

,

so it follows that
TpM = {(x,y,z) 2 R3 : z = 0}.

So this is just the (x,y)-plane.

43 Let f : R3 !R2 be defined by f (p1, p2, p3) = (p2
1� p2

2+ p1 p3�2p2 p3,2p1� p2+

p3) so that M = f�1(0,3). The Jacobian of f in p is given by:

J f |p =
 

2p1 + p3 �2p2 �2p3 p1 �2p2

2 �1 1

!
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Note that if p 2 f�1(0,3), then p2
1 + p1 p3 = p2

2 +2p2 p3 and therefore

p1(p1 + p3) = p2(p2 +2p3)

2p1 + p3 = p2 +3.

It is left to the reader to verify that in this case, the rank of the Jacobian of f at p is
2.

We now compute TpM at the point p = (1,�1,0) 2 M. In this case we have

J f |p =
 

2 2 3
2 �1 1

!

So, using the fact that TpM = kerJ f |p, we have

TpM = {(x,y,z) 2 R3 : 2x+2y+3z = 0 & 2x� y+ z = 0}

This is the line spanned by the vector (5,4,�6).

45 We recall that

∂

∂x = (1,0) ∂

∂r = (cosq,sinq)

∂

∂y = (0,1) ∂

∂q

= (�r sinq,r cosq).

So if r 6= 0, then

∂

∂x = cosq · ∂

∂r � 1
r sinq · ∂

∂q

∂

∂y = sinq · ∂

∂r + 1
r cosq · ∂

∂q

.

Also recall that x = r cosq and y = r sinq. we obtain the following: (i )

x
∂

∂x
+ y

∂

∂y
= r cosq(cosq · ∂

∂r
� 1

r
sinq · ∂

∂q

)

+r sinq(sinq · ∂

∂q

+
1
r

cosq · ∂

∂q

)

= r cos2
q · ∂

∂r
+ r sin2

q · ∂

∂r

= r
∂

∂r
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(ii )

�y
∂

∂x
+ x

∂

∂y
= �r sinq(cosq · ∂

∂r
� 1

r
sinq · ∂

∂q

)

+r cosq(sinq · ∂

∂r
+

1
r

cosq · ∂

∂q

)

= sin2
q · ∂

∂q

+ cos2
q

∂

∂q

=
∂

∂q

(iii )

(x2 + y2)
∂

∂x
= (r2 cos2

q+ r2 sin2
q)(cosq · ∂

∂r
� 1

r
sinq · ∂

∂q

)

= r2 cosq · ∂

∂r
� r sinq · ∂

∂q

48 We let a = u2 + v2 and b = (a+ 1)2. We first compute d( f � g). Note that f � g :
R2 ! R is given by

f �g(u,v) =
4u2 +4v2 +(u2 + v2 �1)2

b

=
4a+a

2 �2a+1
b

=
a

2 +2a+1
b

=
(a+1)2

b

= 1.

So we have that d( f � g) = 0. Next we compute g⇤d f . Note that d f = 2xdx+
2ydy+2zdz. We have the following;

g⇤d f = 2
2u

a+1
d
⇣ 2u

a+1

⌘

+2
2v

a+1
d
⇣ 2v

a+1

⌘

+2
a�1
a+1

d
⇣

a�1
a+1

⌘
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We first make the following computations:

d
⇣ 2u

a+1

⌘

=
2(a+1)�4u2

b

du+
�4uv

b

dv

=
2(v2 �u2 +1)

b

du+
�4uv

b

dv

d
⇣ 2v

a+1

⌘

=
�4uv

b

du+
2(a2 +1)�4v

b

dv

=
�4uv

b

du+
2(u2 � v2 +1)

b

dv

d
⇣

a

2 �1
a+1

⌘

=
2u(a2 +1)�2u(a2 �1)

b

du+
2v(a2 +1)�2v(a2 �1)

b

dv

=
4u
b

du+
4v
b

dv

Combining these results with the above expression for g⇤d f , one can verify that
g⇤d f = 0; i.e. we have that d( f �g) = g⇤d f .

49 (i )

f (p) =
p1

p2
1 + p2

2
f̃ (x,y) =

x
x2 + y2 .

d f =
∂ f
∂x

dx+
∂ f
∂y

dy

=
y2 � x2

(x2 + y2)2 dx+
�2xy

(x2 + y2)2 dy

(ii )

f (p) =
p1

p2
1 + p2

2
f̃ (r,q) =

r cosq

r2 =
cosq

r

d f =
∂ f̃
∂r

dr+
∂ f̃
∂q

dq

=
�cosq

r2 dr+
�sinq

r
dq.

(iv)

f (p) = |p|2 f̃ (x1, . . . ,xn) = x2
1 + . . .+ x2

n

d f = 2xidxi
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50 Recall that x = r cosq and y = r sinq and note that

dx = cosqdr� r sinqdq

dy = sinqdr+ r cosqdq

(i ) We obtain:

w = r2 cos2
q(cosqdr� r sinqdq)+(r cosq+ r sinq)(sinqdr+ r cosqdq)

= (r2 cos3
q+ r cosqsinq+ r sin2

q)dr+(r2 cos2
q+ r2 sinqcosq� r3 cos2

qsinq)dq

(ii ) We obtain:

w = r cosq(cosqdr� r sinqdq)+ r sinq(sinqdr+ r cosqdq)

= rdr.

52 We use the fact that ( f � g)⇤ = g

⇤ f ⇤, see Lemma 6.3. We have the following se-
quence of equalities:

Z

g

f ⇤w =
Z

[a,b]
g

⇤ f ⇤w =
Z

[a,b]
( f � g)⇤w =

Z

f�g

w.

53 (i )
Z

g

a =
Z

[0,1]
g

⇤
a =

Z

[0,1]

�4t
(t2 +1)2 dt +

2t
t2 +1

dt +
2t

t2 +1
dt

=
Z

[0,1]

�4t
(t2 +1)2 dt +

Z

[0,1]

4t
t2 +1

dt

=
2

t2 +1

�

�

�

1

0
+2ln(t2 +1)

�

�

�

1

0
= 2ln2�1.

and:
Z

g

w =
Z

[0,1]
g

⇤
w =

Z

[0,1]

�4t2

(t2 +1)2 dt +
2t

t2 +1
dt +

2
t2 +1

dt

=
Z

[0,1]

2(t2 +1)�4t2

(t2 +1)2 dt +
Z

[0,1]

2t
t2 +1

dt

=
2t

t2 +1

�

�

�

1

0
+ ln(t2 +1)

�

�

�

1

0
= 1+ ln2.

(ii ) We can split g into three pieces; g1, g2 and g3 all ranging from [0,1] to R3 where
g1(t) = (t,0,0), g2(t) = (1, t,0) and g3(t) = (1,1, t). We now compute the integrals
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as follows:
Z

g

a =
Z

g1

a+
Z

g2

a+
Z

g3

a

=
Z

[0,1]

4 ·0
(t2 +1)2 dt +

Z

[0,1]

2t
t2 +1

dt +
Z

[0,1]

2
1+1

dt

=
Z

[0,1]

2t
t2 +1

+
Z

[0,1]
1dt = ln(t2 +1)

�

�

�

1

0
+ t

�

�

�

1

0
= ln2+1.

and:
Z

g

w =
Z

g1

w+
Z

g2

w+
Z

g3

w =
Z

[0,1]

2t
t2 +1

dt +
Z

[0,1]
1dt = ln2+1.

(iii ) and (iv) : Recall that a 1-form is exact if it is of the form dg for some smooth
function g. The Fundamental Theorem for Line Integrals states that the integral of
an exact 1-form over a path g only depends on the end-points of g. So if either a

or w is exact, then the answers in (i) and (ii) do not differ. So we can conclude
immediately that a is not exact. So what about w? Well, we guess that it is exact,
but we have to find a function g : R3 ! R such that w = dg. This function g is
given by

g(x,y,z) =
2z

x2 +1
+ ln(y2 +1).

54 Fix p 2 M and a homeomorphism j : U !V where U,V ⇢ Rl and

j(U \M) =V \ (Rm ⇥{0}).

Suppose (x1, . . . ,xl) is a co-ordinate representation for j. Note that Jj

�1|p(Rl) is
just Rl . Now define a map j̃ : U ⇥Rl !V ⇥Rl as follows;

j̃

⇣

q,vi ∂

∂xi

�

�

�

q

⌘

=
�

x1(q), . . . ,xl(q),v1, . . . ,vl�,

where ∂

∂xi |q = Jj

�1|p(ei). Now note that

j̃

�1(x,v1, . . . ,vl) =
⇣

j

�1(x),vi ∂

∂xi

�

�

�

j

�1(x)

⌘

.

So j̃ is a homeomorphism from U ⇥Rl onto V ⇥Rl . Since j is a slice chart for M,
we also have that

j̃(p�1[U ]) =
h

V \
⇣

Rm ⇥{0}
⌘i

⇥
h

Rm ⇥{0}
i

⇢ Rl ⇥Rl

where p : T M ! M is the natural projection map. So j̃ maps a neighbourhood of
(p,v) 2 T M onto a 2m-slice in R2l . This shows how to make co-ordinate charts
for T M. It remains to verify that if ỹ is another such chart, then the transition map
ỹ� j̃

�1 is smooth. For this, see Lee pg81.


