Orientability of moduli spaces of
Spin(7)-instantons

Yalong Cao and Dominic Joyce

Preliminary version, October 2018

Abstract

Suppose \((X, \Omega, g)\) is a compact Spin(7)-manifold, for instance a Riemannian 8-manifold with holonomy Spin(7), or a Calabi–Yau 4-fold. Let \(G = U(m)\) or \(SU(m)\), and \(P \to X\) be a principal \(G\)-bundle. We prove that the moduli space \(M_P^{\text{Spin}(7)}\) of irreducible Spin(7)-instanton connections on \(P\) modulo gauge, as a manifold or derived manifold, is orientable.

This improves theorems of Cao and Leung [5, Th. 2.1] and Muñoz and Shahbazi [25]. Our results have applications to the programme of defining Donaldson–Thomas type invariants counting (semi)stable coherent sheaves on a Calabi–Yau 4-fold, as in Donaldson and Thomas [11], Cao and Leung [4], and Borisov and Joyce [3].

Contents

1 Introduction 2
 1.1 Connection moduli spaces \(M_P\) and orientations 2
 1.2 Orienting moduli spaces in gauge theory 6
 1.3 Spin(7)-manifolds and Spin(7)-instantons 7
 1.4 The main results . 8
 1.5 Applications to Calabi–Yau 4-folds 9

2 Proof of Theorem 1.8 10
 2.1 Step 1: Reduction to the case \(P = X \times SU(4)\) 13
 2.2 Step 2: Alternative descriptions of \(\pi_1(M_P)\) 15
 2.3 Step 3: The geometry of \(SU(4)\) 17
 2.4 Step 4: Reduction to the case \(\kappa(\Phi) = 0\) 19
 2.5 Step 5: A 5-submanifold \(Z \subset X\) with \(\Phi \approx 1\) on \(X \setminus Z\) 20
 2.6 Step 6: \(M_P\) is orientable if \(X\) is simply-connected 22

References 26
1 Introduction

Suppose X is a compact 8-manifold with a Spin(7)-structure (Ω, g), and G is a Lie group, and $P \to X$ a principal G-bundle. As in Donaldson and Thomas [11], a Spin(7)-instanton on P is a connection ∇_P on P with $\pi^2_7(F^{\nabla_P}) = 0$, where $\pi^2_7(F^{\nabla_P})$ is a certain component of the curvature F^{∇_P} of ∇_P. The deformation theory of Spin(7)-instantons is elliptic, and therefore moduli spaces $M^\text{Spin(7)}_P$ of irreducible Spin(7)-instantons on P modulo gauge are derived manifolds, which for non-flat connections are smooth manifolds if Ω is generic. This is a very similar story to moduli spaces M^asd_P of anti-self-dual instantons on compact, oriented Riemannian 4-manifolds (X, g), as studied in Donaldson theory [9].

In this paper we will prove that when $G = \text{U}(m)$ or $\text{SU}(m)$ all such moduli spaces $M^\text{Spin(7)}_P$ are orientable, extending results by Cao and Leung [5, Th. 2.1] and Muñoz and Shahbazi [25].

The analogous problem of orienting instanton moduli spaces M^asd_P on 4-manifolds X was solved by Donaldson [7–9], and our proof is based on his techniques. However, the 8-dimensional case is considerably more difficult. This is because orientability for M_P depends on phenomena happening on submanifolds $Z \subset X$ of codimension 3 in X. When X is a 4-manifold, such Z are just circles, which are simple. But when X is an 8-manifold, Z is a 5-manifold, and so is much more complicated. Our proof uses the classification of compact, simply-connected 5-manifolds [6].

Calabi–Yau 4-folds (X, J, g, θ) are examples of compact Spin(7)-manifolds. Because of this, our theory also solves the problem of ‘orientability’ for moduli spaces of (semi)stable coherent sheaves on Calabi–Yau 4-folds due to Cao and Leung [4], and Borisov and Joyce [3].

Sections 1.1–1.3 summarize background material on the general theory of orientations in gauge theory from Joyce, Tanaka and Upmeier [19, §1–2], and on Spin(7)-manifolds and Spin(7)-instantons. The main results are stated in §1.4 and applications to Calabi–Yau 4-folds discussed in §1.5. The proof of the main theorem is given in §2.

Acknowledgements. The first author was supported by a Royal Society Newton International Fellowship. This research was partly funded by a Simons Collaboration Grant on ‘Special Holonomy in Geometry, Analysis and Physics’. The authors would like to thank Aleksander Doan, Simon Donaldson, Jacob Gross, Andriy Haydys, Yuuji Tanaka, Markus Upmeier, and Thomas Walpuski for helpful conversations.

1.1 Connection moduli spaces M_P and orientations

The following definitions are taken from Joyce, Tanaka and Upmeier [19, §1–2].

Definition 1.1. Suppose we are given the following data:

(a) A compact, connected manifold X, of dimension $n > 0$.

2
(b) A Lie group G, with $\dim G > 0$, and centre $Z(G) \subseteq G$, and Lie algebra \mathfrak{g}.

c) A principal G-bundle $\pi : P \to X$. We write $\text{Ad}(P) \to X$ for the vector bundle with fibre \mathfrak{g} defined by $\text{Ad}(P) = (P \times \mathfrak{g})/G$, where G acts on P by the principal bundle action, and on \mathfrak{g} by the adjoint action.

Write \mathcal{A}_P for the set of connections ∇_P on the principal bundle $P \to X$. This is a real affine space modelled on the infinite-dimensional vector space $\Gamma^\infty(\text{Ad}(P))$, and we make \mathcal{A}_P into a topological space using the C^∞ topology on $\Gamma^\infty(\text{Ad}(P))$. Here if $E \to X$ is a vector bundle then $\Gamma^\infty(E)$ denotes the vector space of smooth sections of E. Note that \mathcal{A}_P is contractible.

We write $\mathcal{G} = \text{Map}_{C^\infty}(X,G)$ for the infinite-dimensional Lie group of smooth maps $\gamma : X \to G$. Then \mathcal{G} acts on \mathcal{A}_P, and hence on \mathcal{A}_P by gauge transformations, and the action is continuous for the topology on \mathcal{A}_P.

There is a natural inclusion $Z(G) \hookrightarrow \mathcal{G}$ mapping $z \in Z(G)$ to the constant map $\gamma : X \to G$ with value z. As X is connected, this identifies $Z(G)$ with the centre $Z(\mathcal{G})$ of \mathcal{G}, so we may take the quotient group $\mathcal{G}/Z(G)$. The action of $Z(G) \subseteq \mathcal{G}$ on \mathcal{A}_P is trivial, so the \mathcal{G}-action on \mathcal{A}_P descends to a $\mathcal{G}/Z(G)$-action.

Each $\nabla_P \in \mathcal{A}_P$ has a (finite-dimensional) stabilizer group $\text{Stab}_\mathcal{G}(\nabla_P) \subset \mathcal{G}$ under the \mathcal{G}-action on \mathcal{A}_P, with $Z(G) \subseteq \text{Stab}_\mathcal{G}(\nabla_P)$. As X is connected, $\text{Stab}_\mathcal{G}(\nabla_P)$ is isomorphic to a closed Lie subgroup H of G with $Z(G) \subseteq H$. As in [9, p. 133] we call ∇_P irreducible if $\text{Stab}_\mathcal{G}(\nabla_P) = Z(G)$, and reducible otherwise.

Write $\mathcal{A}^{\text{irr}}_P, \mathcal{A}^{\text{red}}_P$ for the subsets of irreducible and reducible connections in \mathcal{A}_P. Then $\mathcal{A}^{\text{irr}}_P$ is open and dense in \mathcal{A}_P, and $\mathcal{A}^{\text{red}}_P$ is closed and of infinite codimension in the infinite-dimensional affine space \mathcal{A}_P. Hence the inclusion $\mathcal{A}^{\text{irr}}_P \hookrightarrow \mathcal{A}_P$ is a weak homotopy equivalence, and $\mathcal{A}^{\text{irr}}_P$ is weakly contractible.

We write $\mathcal{M}_P = \mathcal{A}_P/(\mathcal{G}/Z(G))$ for the moduli space of gauge equivalence classes of connections on P, and $\mathcal{M}^{\text{irr}}_P = \mathcal{A}^{\text{irr}}_P/(\mathcal{G}/Z(G))$ for the subspace $\mathcal{M}^{\text{irr}}_P \subseteq \mathcal{M}_P$ of irreducible connections. We take $\mathcal{M}^{\text{irr}}_P$ to be a topological space, with the quotient topology. However, as explained in [19, Rem. 2.1], we should regard \mathcal{M}_P as a topological stack in the sense of Metzler [22] and Noohi [26, 27], rather than just as a topological space.

The inclusion $\mathcal{A}^{\text{irr}}_P \hookrightarrow \mathcal{A}_P$ is a weak homotopy equivalence, so the inclusion $\mathcal{M}^{\text{irr}}_P \hookrightarrow \mathcal{M}$ is a weak homotopy equivalence of topological stacks in the sense of Noohi [27]. Therefore, for the algebraic topological questions that concern us, working on \mathcal{M}^{irr} and on \mathcal{M} are essentially equivalent, so we could just restrict our attention to the topological space \mathcal{M}^{irr}, and not worry about topological stacks at all, following most other authors in the area.

The main reason we do not do this in [19] is that to relate orientations on different moduli spaces we consider direct sums of connections, which are generally reducible, so restricting to irreducible connections would cause problems.

We define orientation bundles $O^\mathcal{P}_\bullet$ on moduli spaces \mathcal{M}_P:

Definition 1.2. Work in the situation of Definition 1.1 with the same notation. Suppose we are given real vector bundles $E_0, E_1 \to X$, of the same rank r, and a linear elliptic partial differential operator $D : \Gamma^\infty(E_0) \to \Gamma^\infty(E_1)$, of degree
d. As a shorthand we write $E_e = (E_0, E_1, D)$. With respect to connections ∇_{E_0} on $E_0 \otimes \bigotimes T^*X$ for $0 \leq i < d$, when $e \in \Gamma^\infty(E_0)$ we may write

$$D(e) = \sum_{i=0}^d a_i \cdot \nabla_{E_0}^i e,$$

(1.1)

where $a_i \in \Gamma^\infty(E_0 \otimes E_1 \otimes S^i T^*X)$ for $i = 0, \ldots, d$. The condition that D is elliptic is that $a_d|_x \cdot \otimes^d \xi : E_0|_x \to E_1|_x$ is an isomorphism for all $x \in X$ and $0 \neq \xi \in T^*_x X$, and the symbol $\sigma(D)$ of D is defined using a_d.

Let $\nabla_P \in \mathcal{A}_P$. Then ∇_P induces a connection $\nabla_{\text{Ad}(P)}$ on the vector bundle $\text{Ad}(P) \to X$. Thus we may form the twisted elliptic operator

$$D_{\nabla_{\text{Ad}(P)}} : \Gamma^\infty(\text{Ad}(P) \otimes E_0) \longrightarrow \Gamma^\infty(\text{Ad}(P) \otimes E_1),$$

$$D_{\nabla_{\text{Ad}(P)}} : e \longmapsto \sum_{i=0}^d (\text{id}_{\text{Ad}(P)} \otimes a_i) \cdot \nabla_{\text{Ad}(P)}^i e,$$

(1.2)

where $\nabla_{\text{Ad}(P) \otimes E_0}$ are the connections on $\text{Ad}(P) \otimes E_0 \otimes \bigotimes T^*X$ for $0 \leq i < d$ induced by $\nabla_{\text{Ad}(P)}$ and ∇_E.

Since $D_{\nabla_{\text{Ad}(P)}}$ is a linear elliptic operator on a compact manifold X, it has finite-dimensional kernel $\text{Ker}(D_{\nabla_{\text{Ad}(P)}})$ and cokernel $\text{Coker}(D_{\nabla_{\text{Ad}(P)}})$, where the index of $D_{\nabla_{\text{Ad}(P)}}$ is $\text{ind}(D_{\nabla_{\text{Ad}(P)}}) = \dim \text{Ker}(D_{\nabla_{\text{Ad}(P)}}) - \dim \text{Coker}(D_{\nabla_{\text{Ad}(P)}})$. This index is independent of $\nabla_P \in \mathcal{M}_P$, so we write $\text{ind}_{\text{Ad}}^\bullet := \text{ind}(D_{\nabla_{\text{Ad}(P)}})$.

The determinant $\text{det}(D_{\nabla_{\text{Ad}(P)}})$ is the 1-dimensional real vector space

$$\text{det}(D_{\nabla_{\text{Ad}(P)}}) = \text{det}(D_{\nabla_{\text{Ad}(P)}}) \otimes (\text{det}(D_{\nabla_{\text{Ad}(P)}}))^\ast,$$

where if V is a finite-dimensional real vector space then $\text{det} V = \Lambda^{\dim V} V$.

These operators $D_{\nabla_{\text{Ad}(P)}}$ vary continuously with $\nabla_P \in \mathcal{A}_P$, so they form a family of elliptic operators over the base topological space \mathcal{A}_P. Thus as in Atiyah and Singer [1], there is a natural real line bundle $L^\text{Ad}^\bullet_P \to \mathcal{A}_P$ with fibre $L^\text{Ad}^\bullet_P|_{\Delta_P} = \text{det}(D_{\nabla_{\text{Ad}(P)}})$ at each $\Delta_P \in \mathcal{A}_P$. It is naturally equivariant under the action of $\mathcal{G}/Z(\mathcal{G})$ on \mathcal{A}_P, and so pushes down to a real line bundle $L^\text{Ad}^\bullet_P \to \mathcal{M}_P$ on the topological stack $\mathcal{M}_P = \mathcal{A}_P/(\mathcal{G}/Z(\mathcal{G}))$. We call $L^\text{Ad}^\bullet_P$ the determinant line bundle of \mathcal{M}_P. The restriction $L^\text{Ad}^\bullet_P|_{\mathcal{M}_P^\text{irr}}$ is a topological real line bundle in the usual sense on the topological space \mathcal{M}_P^irr.

Define the orientation bundle $O^\text{Ad}^\bullet_P$ of \mathcal{M}_P by $O^\text{Ad}^\bullet_P = (L^\text{Ad}^\bullet_P \setminus 0(\mathcal{M}_P))/\{0, \infty\}$. That is, we take the complement $L^\text{Ad}^\bullet_P \setminus 0(\mathcal{M}_P)$ of the zero section $0(\mathcal{M}_P)$ in $L^\text{Ad}^\bullet_P$, and quotient by the action of $\{0, \infty\}$ on the fibres of $L^\text{Ad}^\bullet_P \setminus 0(\mathcal{M}_P)$ by multiplication. The projection $L^\text{Ad}^\bullet_P \to \mathcal{M}_P$ descends to $\pi : O^\text{Ad}^\bullet_P \to \mathcal{M}_P$, which is a fibre bundle with fibre $(\mathbb{R} \setminus \{0\})/(0, \infty) \cong \{1, -1\} = \mathbb{Z}_2$, since $L^\text{Ad}^\bullet_P \to \mathcal{M}_P$ is a fibration with fibre \mathbb{R}. That is, $\pi : O^\text{Ad}^\bullet_P \to \mathcal{M}_P$ is a principal \mathbb{Z}_2-bundle, in the sense of topological stacks. The fibres of $O^\text{Ad}^\bullet_P \to \mathcal{M}_P$ are orientations on the real line fibres of $L^\text{Ad}^\bullet_P \to \mathcal{M}_P$. The restriction $O^\text{Ad}^\bullet_P|_{\mathcal{M}_P^\text{irr}}$ is a principal \mathbb{Z}_2-bundle on the topological space \mathcal{M}_P^irr, in the usual sense.
We say that \(\mathcal{M}_P \) is orientable if \(\hat{O}_P^{E^*} \) is isomorphic to the trivial principal \(\mathbb{Z}_2 \)-bundle \(\mathcal{M}_P \times \mathbb{Z}_2 \rightarrow \mathcal{M}_P \). An orientation \(\omega \) on \(\mathcal{M}_P \) is an isomorphism \(\omega: \hat{O}_P^{E^*} \xrightarrow{\sim} \mathcal{M}_P \times \mathbb{Z}_2 \) of principal \(\mathbb{Z}_2 \)-bundles. If \(\omega \) is an orientation, we write \(-\omega\) for the opposite orientation. As \(\mathcal{M}_P \) is connected, if \(\mathcal{M}_P \) is orientable it has exactly two orientations.

We also define the normalized orientation bundle \(\tilde{\hat{O}}_P^{E^*} \rightarrow \mathcal{M}_P \) by

\[
\tilde{\hat{O}}_P^{E^*} = O_P^{E^*} \otimes_{\mathbb{Z}_2} O_{X \times G}[|\nabla^0|].
\]

That is, we tensor the orientation bundle with the orientation torsor \(O_{X \times G}[|\nabla^0|] \) of the trivial principal \(G \)-bundle \(X \times G \rightarrow X \) at the trivial connection \(\nabla^0 \). Then \(\tilde{\hat{O}}_P^{E^*} \otimes_{\mathbb{Z}_2} \mathbb{Z}_2 \) is canonically trivial. Since we have natural isomorphisms

\[
\text{Ker}(D^0_{\text{Ad}(P)}) \cong \mathfrak{g} \otimes \text{Ker} D, \quad \text{Coker}(D^0_{\text{Ad}(P)}) = \mathfrak{g} \otimes \text{Coker} D,
\]

we see that (using an orientation convention) there is a natural isomorphism

\[
O_{X \times G}[|\nabla^0|] \cong \text{Or}(\det D)^{\otimes \dim \mathfrak{g}} \otimes_{\mathbb{Z}_2} \text{Or}(\mathfrak{g})^{\otimes \dim D},
\]

where \(\text{Or}(\det D) \), \(\text{Or}(\mathfrak{g}) \) are the \(\mathbb{Z}_2 \)-torsors of orientations on \(\det D \) and \(\mathfrak{g} \). Thus, choosing orientations for \(\det D \) and \(\mathfrak{g} \) gives an isomorphism \(\tilde{\hat{O}}_P^{E^*} \cong \hat{O}_P^{E^*} \).

Normalized orientation bundles are convenient because they behave nicely under the Excision Theorem, Theorem 2.1 below. Note that \(\hat{O}_P^{E^*} \) is trivializable if and only if \(\tilde{\hat{O}}_P^{E^*} \) is, so for questions of orientability there is no difference.

Remark 1.3. (i) Up to continuous isotopy, and hence up to isomorphism, \(\hat{L}_P^{E^*}, \tilde{\hat{L}}_P^{E^*} \) in Definition 1.2 depend on the elliptic operator \(D: \Gamma^\infty(E_0) \rightarrow \Gamma^\infty(E_1) \) up to continuous deformation amongst elliptic operators, and hence only on the symbol \(\sigma(D) \) of \(D \) (essentially, the highest order coefficients \(a_d \) in \(\sum_{i} a_i x_i \), up to deformation).

(ii) For orienting moduli spaces of ‘instantons’ in gauge theory, as in [1.2] we usually start not with an elliptic operator on \(X \), but with an elliptic complex

\[
0 \rightarrow \Gamma^\infty(E_0) \xrightarrow{D_0} \Gamma^\infty(E_1) \xrightarrow{D_1} \cdots \xrightarrow{D_{k-1}} \Gamma^\infty(E_k) \rightarrow 0. \quad (1.3)
\]

If \(k > 1 \) and \(\nabla_P \) is an arbitrary connection on a \(G \)-principal bundle \(P \rightarrow X \) then twisting \(1.3 \) by \((\text{Ad}(P), \nabla_{\text{Ad}(P)}) \) as in \(1.2 \) may not yield a complex (that is, we may have \(D_{i+1}^{\nabla_{\text{Ad}(P)}} \circ D_i^{\nabla_{\text{Ad}(P)}} \neq 0 \)), so the definition of \(\det(D^{\nabla_{\text{Ad}(P)}}_{\mathbb{Z}_2}) \) does not work, though it does work if \(\nabla_P \) satisfies the appropriate instanton-type curvature condition. To get round this, we choose metrics on \(X \) and the \(E_i \), so that we can take adjoints \(D_i^* \), and replace \(1.3 \) by the elliptic operator

\[
\Gamma^\infty\left(\bigoplus_{0 \leq i \leq k/2} E_{2i} \right) \xrightarrow{\sum_{i}(D_{2i} + D_{2i-1}^*)} \Gamma^\infty\left(\bigoplus_{0 \leq i < k/2} E_{2i+1} \right), \quad (1.4)
\]

and then Definition 1.2 works with \(1.4 \) in place of \(E_* \).
1.2 Orienting moduli spaces in gauge theory

In gauge theory one studies moduli spaces \(\mathcal{M}_P^{\text{sa}} \) of (irreducible) connections \(\nabla_P \) on a principal bundle \(P \to X \) (perhaps plus some extra data, such as a Higgs field) satisfying a curvature condition. Under suitable genericity conditions, these moduli spaces \(\mathcal{M}_P^{\text{sa}} \) will be smooth manifolds, and the ideas of [19] can often be used to prove \(\mathcal{M}_P^{\text{sa}} \) is orientable, and construct a canonical orientation on \(\mathcal{M}_P^{\text{sa}} \). These orientations are important in defining enumerative invariants such as Casson invariants, Donaldson invariants, and Seiberg–Witten invariants. We illustrate this with the example of instantons on 4-manifolds. [9]:

Example 1.4. Let \((X, g)\) be a compact, oriented Riemannian 4-manifold, and \(G \) a Lie group (e.g. \(G = SU(2) \)), and \(P \to X \) a principal \(G \)-bundle. For each connection \(\nabla_P \) on \(P \), the curvature \(F^P = F^P = \nabla^P \) is a section of \(\text{Ad}(P) \otimes \Lambda^2 T^*X \). We have \(\Lambda^2 T^*X = \Lambda^2_+ T^*X \oplus \Lambda^2_+ T^*X \), where \(\Lambda^2_\pm T^*X \) are the subbundles of 2-forms \(\alpha \) on \(X \) with \(*\alpha = \pm \alpha \). Thus \(F^P = F^P_+ \oplus F^P_\pm \) with \(F^P_\pm \) the component in \(\text{Ad}(P) \otimes \Lambda^2_\pm T^*X \). We call \(\nabla_P \) an (anti-self-dual) instanton if \(F^P_+ = 0 \).

Write \(\mathcal{M}_P^{\text{sad}} \) for the moduli space of gauge isomorphism classes \([\nabla_P]\) of irreducible instanton connections \(\nabla_P \) on \(P \). The deformation theory of \([\nabla_P]\) in \(\mathcal{M}_P^{\text{sad}} \) is governed by the Atiyah–Hitchin–Singer complex [2]:

\[
0 \longrightarrow \Gamma^\infty(\text{Ad}(P) \otimes \Lambda^0 T^*X) \xrightarrow{d^\nabla_P} \Gamma^\infty(\text{Ad}(P) \otimes \Lambda^1 T^*X) \xrightarrow{d^\nabla_P} \Gamma^\infty(\text{Ad}(P) \otimes \Lambda^2 T^*X) \xrightarrow{d^\nabla_P} 0,
\]

(1.5)

where \(d^\nabla_P \circ d^\nabla_P = 0 \) as \(F^\nabla_P = 0 \). Write \(\mathcal{H}^0, \mathcal{H}^1, \mathcal{H}^2_\pm \) for the cohomology groups of (1.5). Then \(\mathcal{H}^0 \) is the Lie algebra of \(\text{Aut}(\nabla_P) \), so \(\mathcal{H}^0 = Z(\mathfrak{g}) \), the Lie algebra of the centre \(Z(G) \) of \(G \), as \(\nabla_P \) is irreducible. Also \(\mathcal{H}^1 \) is the Zariski tangent space of \(\mathcal{M}_P^{\text{sad}} \) at \([\nabla_P]\), and \(\mathcal{H}^2_\pm \) is the obstruction space. If \(g \) is generic then as in [9, §4.3], for non-flat connections \(\mathcal{H}^2_\pm = 0 \) for all \(\nabla_P \), and \(\mathcal{M}_P^{\text{sad}} \) is a smooth manifold, with tangent space \(T_{[\nabla_P]} \mathcal{M}_P^{\text{sad}} = \mathcal{H}^1 \). Note that \(\mathcal{M}_P^{\text{sad}} \subset \mathcal{M}_P \) is a subspace of the topological stack \(\mathcal{M}_P \) from Definition 1.1.

Take \(E_* \) to be the elliptic operator on \(X \)

\[
D = d + d^*_+ : \Gamma^\infty(\Lambda^0 T^*X \otimes \Lambda^2_+ T^*X) \longrightarrow \Gamma^\infty(\Lambda^1 T^*X).
\]

Turning the complex (1.5) into a single elliptic operator as in Remark 1.3 ii) yields the twisted operator \(D^\text{Ad}(P) \) from (1.2). Hence the line bundle \(E^\text{Ad}(P)_{\mathcal{M}_P} \) has fibre at \([\nabla_P]\) the determinant line of (1.5), which (after choosing an isomorphism \(\det Z(\mathfrak{g}) \cong \mathbb{R} \)) is \(\det(\mathcal{H}^1)^* = \det T_{[\nabla_P]} \mathcal{M}_P^{\text{sad}} \). It follows that \(O_{\mathcal{M}_P^{\text{sad}}} \big|_{\mathcal{M}_P^{\text{sad}}} \) is the orientation bundle of the manifold \(\mathcal{M}_P^{\text{sad}} \), and an orientation on \(\mathcal{M}_P \) in Definition 1.2 restricts to an orientation on the manifold \(\mathcal{M}_P^{\text{sad}} \) in the usual sense of differential geometry. This is a very useful way of defining orientations on \(\mathcal{M}_P^{\text{sad}} \), first used by Donaldson [7, 9].

There are several other important classes of gauge-theoretic moduli spaces \(\mathcal{M}_P^{\text{sa}} \) which have elliptic deformation theory, and so are generically smooth mani-
Definition 1.7. Let \((P, \omega) \) be a principal \(P \)-bundle. A Spin(7)-structure \((\Omega, g)\) on \(X \) is a 4-form \(\Omega \) and a Riemannian metric \(g \) on \(X \), such that for all \(x \in X \) there exist isomorphisms \(T_x X \cong \mathbb{R}^8 \) identifying \(\Omega|_x \cong \Omega_0 \) and \(g|_x \cong g_0 \). We call \((\Omega, g)\) torsion-free if \(d\Omega \equiv 0 \). This implies that \(\text{Hol}(g) \subseteq \text{Spin}(7) \). A Spin(7)-structure \((\Omega, g)\) induces a splitting \(\Lambda^2 T^* X = \Lambda^{2,0} T^* X \oplus \Lambda^{2,1} T^* X \) into vector subbundles of ranks 7, 21, the eigenspaces of \(\alpha \mapsto +(*) \wedge \Omega \).

A Spin(7)-manifold \((X, \Omega, g)\) is an 8-manifold \(X \) with a torsion-free Spin(7)-structure \((\Omega, g)\). Examples of compact Spin(7)-manifolds with holonomy \(\text{Spin}(7) \) were constructed by Joyce [13, §13–§15].

A Calabi–Yau 4-fold \((X, J, g, \theta)\) is a compact complex manifold \((X, J)\) with trivial canonical bundle \(K_X \), equipped with a Ricci-flat Kähler metric \(g \) with \(\text{Hol}(g) = \text{SU}(4) \), and a holomorphic \((4,0)\)-form \(\theta \) with \(2\omega^4 = 3\theta \wedge \bar{\theta} \), where \(\omega \) is the Kähler form of \(g \). Many examples of Calabi–Yau 4-folds may be produced using complex algebraic geometry and the Calabi Conjecture. As \(\text{SU}(4) \subset \text{Spin}(7) \), any Calabi–Yau 4-fold has a torsion-free Spin(7)-structure \((\Omega, g)\), with \(\Omega = \frac{1}{2} \omega \wedge \omega + \text{Re} \theta \), so \((X, \Omega, g)\) is a Spin(7)-manifold.

Definition 1.7. Let \((X, \Omega, g)\) be a compact Spin(7)-manifold, \(G \) a Lie group, and \(P \to X \) a principal \(G \)-bundle. A Spin(7)-instanton on \(P \) is a connection \(\nabla_P \)
on P, whose curvature satisfies $\pi_2^P(F^\nabla) = 0$ in $\Gamma^\infty(\text{Ad}(P) \otimes \Lambda^2 T^* X)$. Write $\mathcal{M}^{\text{Spin}(7)}_P$ for the moduli space of irreducible Spin(7)-instantons on P, modulo gauge transformations of P. Then $\mathcal{M}^{\text{Spin}(7)}_P$ is a derived manifold, which is a manifold for non-flat connections if Ω is generic. (We do not need $d\Omega = 0$ here.)

Donaldson and Thomas [11] discussed Spin(7)-instantons, proposing research directions, and examples of Spin(7)-instantons on compact Spin(7)-manifolds with holonomy Spin(7) were given by Lewis [21], Tanaka [29], and Walpuski [30].

To apply §1.2 to Spin(7)-instantons, we replace (1.5) by the complex:

$$0 \rightarrow \Gamma^\infty(\text{Ad}(P) \otimes \Lambda^0 T^* X) \xrightarrow{d_{\nabla_P}} \Gamma^\infty(\text{Ad}(P) \otimes \Lambda^1 T^* X) \xrightarrow{d_{\nabla_P}} \Gamma^\infty(\text{Ad}(P) \otimes \Lambda^2 T^* X) \rightarrow 0.$$

The orientation bundle of $\mathcal{M}^{\text{Spin}(7)}_P$ is the pullback of $O^{E\bullet}_P$ in Definition 1.2 under the inclusion $\mathcal{M}^{\text{Spin}(7)}_P \hookrightarrow \mathcal{M}_P$, where $E\bullet$ is the elliptic operator $D = d + d^*_\partial : \Gamma^\infty(\Lambda^0 T^* X \oplus \Lambda^2 T^* X) \rightarrow \Gamma^\infty(\Lambda^1 T^* X)$.

The symbol of $E\bullet$ is that of the positive Dirac operator $D_+ : \Gamma^\infty(S_+) \rightarrow \Gamma^\infty(S_-)$ on X, which makes sense on general oriented, spin Riemannian 8-manifolds, not just Spin(7)-manifolds.

1.4 The main results

Here is our main result. It will be proved in §2 using a wide range of ideas and techniques, including much of the general theory of orientations in [19,20], some surgery theory, some special geometry of SU(4), and the classification of compact simply-connected 5-manifolds in Crowley [6].

Theorem 1.8. Let X be a compact, oriented, spin Riemannian 8-manifold, and \mathcal{M}_P be the positive Dirac operator $D_+ : \Gamma^\infty(S_+) \rightarrow \Gamma^\infty(S_-)$ on X in Definition 1.2. Suppose $P \rightarrow X$ is a principal G-bundle for $G = \text{U}(m)$ or $\text{SU}(m)$. Then \mathcal{M}_P is orientable, that is, $O^{E\bullet}_P \rightarrow \mathcal{M}_P$ is a trivial principal \mathbb{Z}_2-bundle.

This was previously proved by Cao and Leung [5, Th. 2.1] in the special case that $G = \text{U}(m)$ and $H_\text{odd}(X,\mathbb{Z}) = 0$, and by Munoz and Shahbazi [25] in the special case that $G = \text{SU}(m)$ and $\text{Hom}(H^3(X,\mathbb{Z}),\mathbb{Z}_2) = 0$.

As in [13] if (X,Ω,g) is a Spin(7)-manifold and $P \rightarrow X$ a principal G-bundle then orientations on \mathcal{M}_P restrict to orientations on $\mathcal{M}^{\text{Spin}(7)}_P$, giving:

Corollary 1.9. Let (X,Ω,g) be a compact Spin(7)-manifold. Then for any principal G-bundle $P \rightarrow X$ for $G = \text{U}(m)$ or $\text{SU}(m)$, the moduli space $\mathcal{M}^{\text{Spin}(7)}_P$ of Spin(7)-instantons on P is orientable, as a manifold or derived manifold.

Corollary 1.9 will be an important ingredient in any future programme to define Donaldson-invariant-style enumerative invariants of Spin(7)-manifolds (X,Ω,g) by 'counting' suitably compactified moduli spaces $\mathcal{M}^{\text{Spin}(7)}_P$, as in Donaldson and Thomas [11] and Donaldson and Segal [10].
Remark 1.10. In a companion paper, Joyce and Upmeier \[20\] prove that if \((X, g)\) is a compact, oriented, spin Riemannian 7-manifold, and \(E_\bullet\) is the Dirac operator on \(X\), and we choose an orientation on \(\text{det} \, D\) and a flag structure on \(X\) (an algebro-topological structure on odd-dimensional manifolds defined in Joyce \[15, §3.1\]), then we can construct canonical orientations on \(M_P\) for all principal \(U(m)\) or \(SU(m)\)-bundles \(P \to X\). Thus if \((X, \varphi, g)\) is a compact torsion-free \(G_2\)-manifold, we can construct canonical orientations on moduli spaces \(M_{G_2}^P\) of \(G_2\)-instantons on \(P\).

The authors know how to define an analogue of flag structures for compact, spin 8-manifolds \(X\), such that if we choose one of these structures on \(X\) and an orientation of \(\text{det} \, D^+\), then we can improve Theorem 1.8 and Corollary 1.9 to construct canonical orientations on \(M_P\) and \(M_{\text{Spin}(7)}^P\). However, these analogues of flag structures are more complicated and less attractive than flag structures, and we have decided not to write them up for the present.

1.5 Applications to Calabi–Yau 4-folds

As in Definition 1.6 a Calabi–Yau 4-fold \((X, J, g, \theta)\) may be regarded as a \(\text{Spin}(7)\)-manifold, so we can also consider \(\text{Spin}(7)\)-instantons on Calabi–Yau 4-folds, as in Donaldson and Thomas \[11\] (who called them \(\text{SU}(4)\)-instantons).

In terms of complex geometry, for a connection \(\nabla_E\) on a complex vector bundle \(E \to X\), the \(\text{Spin}(7)\)-instanton equations on a Calabi–Yau 4-fold may be written \(F_{\nabla_E} \wedge \omega^3 = 0\), \((F_{\nabla_E})^2_{+} = 0\), where \((F_{\nabla_E})^2_{+}\) is a ‘real half’ of the \((2, 0)\)-component \((F_{\nabla_E})^2_{+}\) of \(F_{\nabla_E}\).

Suppose that \(E \to X\) is a \(\text{rank } m\) polystable holomorphic vector bundle with \(c_1(E) = 0\). Then by the Hitchin–Kobayashi correspondence, \(E\) admits a natural connection \(\nabla_E\) with \(F_{\nabla_E} \wedge \omega^3 = 0\) and \((F_{\nabla_E})^2_{+} = 0\). These are called the Hermitian–Einstein equations, in the case \(c_1(E) = 0\).

Now the \(\text{Spin}(7)\)-instanton equations are a subset of the Hermitian–Einstein equations, so polystable holomorphic vector bundles yield examples of \(\text{Spin}(7)\)-instantons. As in \[11\] §2 and \[24\] Prop. 11, if the Chern classes of a complex vector bundle \(E \to X\) satisfy an identity which is automatic if \(E\) admits a holomorphic structure, any \(\text{Spin}(7)\)-instanton on \(E\) satisfies the Hermitian–Einstein equations, so the \(\text{Spin}(7)\)-instanton moduli space \(M_{\text{Spin}(7)}^E\) is (at least as a set) the moduli space of polystable holomorphic structures on \(E \to X\).

This is important, because the Hermitian–Einstein equations are overdetermined elliptic, so one would not expect their moduli space \(M_{\text{He-Ei}}^E\) to be a (derived) manifold, or have a virtual cycle which one could use to define enumerative invariants. However, the \(\text{Spin}(7)\)-instanton equations are elliptic modulo gauge-fixing, so their moduli space \(M_{\text{Spin}(7)}^E\) is a (derived) manifold, and if it is compact and oriented it has a virtual cycle. So as \(M_{\text{Spin}(7)}^E = M_{\text{He-Ei}}^E\), it seems reasonable to try and define Donaldson–Thomas type invariants ‘counting’ polystable vector bundles on Calabi–Yau 4-folds.

To define enumerative invariants, one needs compact moduli spaces, but moduli spaces of vector bundles are generally noncompact. To compactify mod-
uli spaces $\mathcal{M}_{E}^{\text{He-Ei}}$, there are two obvious approaches:

(a) Using gauge theory, by understanding the limiting behaviour of sequences $(\nabla_{E_{i}})_{i=1}^{\infty}$ of Hermitian–Einstein equations on $E \to X$ by ‘bubbling’ on 4-submanifolds (or worse) in X, in a similar way to compactified moduli spaces of instantons on 4-manifolds in Donaldson theory [9].

(b) Using algebraic geometry, by considering $\mathcal{M}_{E}^{\text{He-Ei}}$ as an open subset in a compact moduli space $\mathcal{M}_{\alpha}^{\text{coh}}$ of semistable torsion-free coherent sheaves in class $\alpha = [E]$ in $K^0(X)$.

Approach (a) is formidably difficult in any dimension greater than 4. But in approach (b) we get compact moduli spaces $\mathcal{M}_{\alpha}^{\text{coh}}$ for free by standard results in algebraic geometry. We still need to extend the derived manifold structure on $\mathcal{M}_{\text{Spin}(7)} = \mathcal{M}_{E}^{\text{He-Ei}}$ to the compactification $\mathcal{M}_{\alpha}^{\text{coh}}$. This was solved by Borisov and Joyce [3] for moduli spaces of stable coherent sheaves on Calabi–Yau 4-folds, using Derived Algebraic Geometry and Pantev–Toën–Vaquié–Vezzosi’s theory of k-shifted symplectic structures [28]. (See also Cao and Leung [4] for an approach using gauge theory on vector bundles.)

Borisov–Joyce [3] and Cao–Leung [4] propose defining Donaldson–Thomas style ‘DT4 invariants’ of Calabi–Yau 4-folds, using approach (b). An essential ingredient is an ‘orientation’ on the moduli spaces $\mathcal{M}_{\alpha}^{\text{coh}}$, in the sense of [3, §2.4]. In a sequel [12] by Gross and Joyce we will use Theorem 1.8 to prove orientability for all such moduli spaces $\mathcal{M}_{\alpha}^{\text{coh}}$, contributing to the programme of [3,4].

2 Proof of Theorem 1.8

Let X be a compact, oriented, spin Riemannian 8-manifold, E_{\bullet} be the positive Dirac operator on X, and $P \to X$ be a principal G-bundle for $G = \text{U}(m)$ or $\text{SU}(m)$. We must prove the orientation bundle $O_{P}^{\bullet} \to \mathcal{M}_{\alpha}$ in Definition 1.2 is trivial. As in Definition 1.2, this is equivalent to the normalized orientation bundle $\check{O}_{P}^{\bullet} \to \mathcal{M}_{\alpha}$ being trivial. We will do this in the following steps:

Step 1. Use results of Joyce, Tanaka and Upmeier [19] to show that \mathcal{M}_{α} is orientable for any principal $\text{U}(m)$ or $\text{SU}(m)$-bundle $P \to X$ if and only if this holds when $P = X \times \text{SU}(4)$ is the trivial $\text{SU}(4)$-bundle over X.

Step 2. Let $P = X \times \text{SU}(4) \to X$ be the trivial $\text{SU}(4)$-bundle and ∇^{0} the trivial connection on P, so that $[\nabla^{0}]$ is a base-point in \mathcal{M}_{α}. The fundamental group $\pi_{1}(\mathcal{M}_{\alpha})$ is the set of isotopy classes $[\gamma]$ of loops $\gamma : S^{1} \to \mathcal{M}_{\alpha}$ with $\gamma(1) = [\nabla^{0}]$. As in [19] §2 there is a group morphism $\Theta : \pi_{1}(\mathcal{M}_{\alpha}) \to \mathbb{Z}_{2} = \{\pm 1\}$ such that $\Theta([\gamma])$ is the monodromy of the principal \mathbb{Z}_{2}-bundle $\check{O}_{P}^{\bullet} \to \mathcal{M}_{\alpha}$ around γ, and \mathcal{M}_{α} is orientable if and only if $\Theta \equiv 1$.

We establish (already known) natural 1-1 correspondences between:

(a) Elements $[\gamma] \in \pi_{1}(\mathcal{M}_{\alpha})$.

(b) Isomorphism classes $[Q,q]$ of pairs (Q,q), where $Q \to X \times S^{1}$ is a principal $\text{SU}(4)$-bundle and $q : Q|_{X \times \{1\}} \to (X \times \{1\}) \times \text{SU}(4) = P$ is a trivialization of Q over $X \times \{1\}$.

10
(c) Isotopy classes $[\Phi]$ of smooth maps $\Phi : X \to SU(4)$.

Write $[X, SU(4)]$ for the set of isotopy classes $[\Phi]$ of smooth maps $\Phi : X \to SU(4)$. Then the 1-1 correspondence gives a bijection $\pi_1(M_P) \cong [X, SU(4)]$. This is an isomorphism of groups, where $[X, SU(4)]$ has group operation $[\Phi] \cdot [\Phi'] = [\mu(\Phi, \Phi')]$, for $\mu : SU(4) \times SU(4) \to SU(4)$ the multiplication map. In fact $\pi_1(M_P), [X, SU(4)]$ are abelian, as $SU(4)$ is in the stable range for 8-manifolds.

Let $\hat{\Theta} : [X, SU(4)] \to \mathbb{Z}_2$ be identified with Θ under $\pi_1(M_P) \cong [X, SU(4)]$. We must prove that $\hat{\Theta} \equiv 1$.

Step 3. Define subsets $Y_k \subset SU(4)$ for $k = 0, \ldots, 3$ by

$$Y_k = \{ A \in SU(4) : \dim_{\mathbb{C}} \{ x = (x_1, x_2, x_3, 0)^T \in \mathbb{C}^4 : A x = -x \} = k \}, \quad (2.1)$$

so that $SU(4) = Y_0 \amalg \cdots \amalg Y_3$. We prove that:

(i) Y_k is a connected, simply-connected, oriented, embedded submanifold of $SU(4)$ (which is also oriented) of real codimension $k(k + 2)$. Hence Y_0 is open in $SU(4)$, and Y_1, Y_2, Y_3 have codimensions $3, 8, 15$.

(ii) The closure of Y_k in $SU(4)$ is $Y_k = Y_k \amalg Y_{k+1} \amalg \cdots \amalg Y_3$.

(iii) There is a smooth family of smooth maps $\Psi_t : Y_0 \to SU(4)$ for $t \in [0, 1]$ with Ψ_0 the inclusion $Y_0 \hookrightarrow SU(4)$, and $\Psi_1 \equiv \text{Id}$ the constant map with value $\text{Id} \in SU(4)$. That is, Y_0 retracts to $\{\text{Id} \}$ in $SU(4)$.

(iv) We may define a smooth map $\phi : Y_1 \to \mathbb{CP}^2$ by $\phi(A) = [x_1, x_2, x_3]$ if $A x = -x$ for $x = (x_1, x_2, x_3, 0)^T$. The normal bundle ν of Y_1 in $SU(4)$ is isomorphic to $\mathbb{R} \oplus \phi^*(O(1))$, for $O(1) \to \mathbb{CP}^2$ the standard line bundle.

It is known that the cohomology of $SU(4)$ may be written as a graded ring

$$H^*(SU(4), \mathbb{Z}) \cong \Lambda_{\mathbb{Z}}[p_3, p_5, p_7], \quad (2.2)$$

where p_3, p_5, p_7 are odd generators in degrees 3, 5, 7, which satisfy

$$\mu^*(p_k) = p_k \boxtimes 1 + 1 \boxtimes p_k \quad \text{in} \quad H^*(SU(4) \times SU(4), \mathbb{Z}) \cong H^*(SU(4), \mathbb{Z}) \otimes H^*(SU(4), \mathbb{Z}). \quad (2.3)$$

Under Poincaré duality $Pd : H^k(SU(4), \mathbb{Z}) \xrightarrow{\cong} H_{15-k}(SU(4), \mathbb{Z})$ we have

$$Pd(p_3) = [\mathbb{F}], \quad Pd(p_3 \cup p_5) = [\mathbb{F}]. \quad (2.4)$$

Step 4. Using the notation of Steps 2–3, define maps $\lambda_k : [X, SU(4)] \to H^k(X, \mathbb{Z})$ for $k = 3, 5, 7$ by $\lambda_k([\Phi]) = \Phi^*(p_k)$. Equation (2.3) and $[\Phi] \cdot [\Phi'] = [\mu(\Phi, \Phi')]$ imply that $\lambda_3, \lambda_5, \lambda_7$ are group morphisms. We can also define a map $\kappa : [X, SU(4)] \to \mathbb{Z}$ by

$$\kappa : [\Phi] \mapsto (\lambda_3([\Phi]) \cup \lambda_5([\Phi])) : [X]. \quad (2.5)$$

Note that this is not a group morphism, but is quadratic in Φ.

11
We prove that for any \(\alpha \in H^5(X, \mathbb{Z})\) we can construct \([\Phi'] \in [X, SU(4)]\) with
\[\lambda_3([\Phi']) = 0\] and \(\lambda_5([\Phi']) = \alpha\).

Therefore any \([\Phi] \in [X, SU(4)]\) may be written \([\Phi] = [\Phi'] + [\Phi'']\) with
\[\lambda_3([\Phi']) = 0\] and \(\lambda_5([\Phi'']) = 0\), since we can take \([\Phi']\) as above with \(\lambda_3([\Phi']) = 0\) and \(\lambda_5([\Phi'']) = \alpha = \lambda_5([\Phi])\), and \([\Phi''] = [\Phi] - [\Phi']\), and use the fact that \(\lambda_3, \lambda_5\) are group morphisms. Note that \(\kappa([\Phi']) = \kappa([\Phi'']) = 0\). Since \(\hat{\Theta}([\Phi]) = \hat{\Theta}([\Phi']) \cdot \hat{\Theta}([\Phi''])\), we see from Step 2 that it is sufficient to prove that \(\hat{\Theta}([\Phi]) = 1\) for all \([\Phi] \in [X, SU(4)]\) with \(\kappa([\Phi]) = 0\).

Step 5. Suppose \(X\) is connected, and \([\Phi] \in [X, SU(4)]\) with \(\kappa([\Phi]) = 0\). Choose a generic representative \(\Phi : X \to SU(4)\) for \([\Phi]\). Then \(\Phi\) is an embedding, and \(\Phi(X)\) intersects \(Y_k\) transversely in \(SU(4)\) for \(k = 1, 2, 3\) by genericness. Thus \(\Phi(X) \cap Y_1\) is an oriented 5-manifold, and \(\Phi(X) \cap Y_2\) an oriented 0-manifold, and \(\Phi(X) \cap Y_3 = \emptyset\), so \(\Phi(X) \cap Y_2\) is compact as \(Y_2 = Y_2 \sqcup Y_3\).

From (2.4)–(2.5) we see that the number of points in \(\Phi(X) \cap Y_2\), counted with signs, is \(\kappa([\Phi]) = 0\). Using this we show that we can perturb \(\Phi\) in its isotopy class to make \(\Phi(X) \cap Y_2 = \emptyset\). Then \(\Phi(X) \cap Y_1\) is compact, as \(Y_1 = Y_1 \sqcup Y_2 \sqcup Y_3\).

Define \(Z = \{x \in X : \Phi(x) \in Y_1\}\). Then \(Z\) is a compact, oriented, embedded 5-manifold in \(X\) diffeomorphic to \(\Phi(X) \cap Y_1\). Define \(\psi : Z \to \mathbb{CP}^2\) by \(\psi = \phi \circ \Phi|_Z\), for \(\phi\) as in Step 3(iv). The normal bundle \(\nu_Z\) of \(Z\) in \(X\) satisfies

\[
\nu_Z \cong \Phi|_Z^* (\nu) \cong \mathbb{R} \oplus \psi^*(\mathcal{O}(1)). \quad (2.6)
\]

As \(TX|_Z = TZ \oplus \nu_Z\), and \(X\) is spin so that \(w_2(TX) = 0\), we see that the second Stiefel–Whitney class \(w_2(Z) \in H^2(Z, \mathbb{Z}_2)\) satisfies

\[
w_2(Z) = w_2(TZ) = w_2(T) = w_2(\mathbb{R} \oplus \psi^*(\mathcal{O}(1))) = \psi^*(c_1(\mathcal{O}(1))) \mod 2.
\]

That is, \(w_2(Z)\) is the image in \(H^2(Z, \mathbb{Z}_2)\) of the integral class \(\psi^*(c_1(\mathcal{O}(1)))\) in \(H^2(Z, \mathbb{Z})\). This implies that \(Z\) admits a \(\text{Spin}^c\)-structure, and simplifies the classification of possible 5-manifolds \(Z\) up to diffeomorphism.

If \(X\) is connected, or simply-connected, we show that we can perturb \(\Phi\) in its isotopy class to make \(Z\) connected, or simply-connected, respectively.

The importance of \(Z\) is that \(\Phi\) maps \(X \setminus Z \to Y_0 \subset SU(4)\), where \(Y_0\) retracts to \(\{1\} \subset SU(4)\) by Step 3(iii). Hence \(\Phi|_{X \setminus Z}\) is isotopic to the constant map \(1\), and if \([Q, q]\) corresponds to \(\Phi\) as in Step 2, then \((Q, q)\) is trivial over \((X \setminus Z) \times S^1\). This allows us to use excision techniques in Steps 6 and 7.

Step 6. Suppose \(X\) is connected and simply-connected, and \([\gamma] \in \pi_1(\mathcal{M}_P)\) corresponds to \([\Phi] \in [X, SU(4)]\) as in Step 2 with \(\kappa([\Phi]) = 0\) as in Step 4, and define \(\Phi, Z, \psi, \nu_Z\) with \(Z\) connected and simply-connected as in Step 5.

Using the classification of compact, simply-connected 5-manifolds in Crowley [6], we show we can choose a tubular neighbourhood \(U\) of \(Z\) in \(X\), an explicit compact, oriented, spin Riemannian 8-manifold \(X'\) with \(H^\text{odd}(X', \mathbb{Z}) = 0\), and an embedding \(\iota : U \to X'\) of \(U\) as an open submanifold of \(X'\), where \(\iota\) preserves orientations and spin structures.

Using the Excision Theorem, Theorem 2.1 we show that the monodromy \(\Theta([\gamma])\) of \(\tilde{O}_P^\text{c} \to \mathcal{M}_P\) around \(\gamma\) equals the monodromy of \(\tilde{O}_P^{c'} \to \mathcal{M}_P\) around
some loop γ' in $M_{P'}$, where $P' = X' \times SU(4)$. Since $H^{\text{odd}}(X', \mathbb{Z}) = 0$, $M_{P'}$ is orientable by [19, §2], so $\Theta([\gamma]) = \Theta([\Phi]) = 1$. As in Step 4 it is sufficient to prove this for $[\Phi]$ with $\kappa([\Phi]) = 0$, so M_P is orientable. This proves Theorem \[1.8\] in the case X is simply-connected.

Step 7. For X not simply-connected, by doing surgeries on finitely many disjoint embedded circles L_1, \ldots, L_k in X we can modify X to a simply-connected, compact, oriented, spin Riemannian 8-manifold X', with open covers $X = U \cup V$, $X' = U' \cup V'$ for V a small tubular neighbourhood of $L_1 \cup \cdots \cup L_k$ in X, and a diffeomorphism $\iota: U \to U'$ preserving orientations and spin structures.

Let $[\gamma] \in \pi_1(M_P)$ correspond to (Q, q) as in Step 2. Then $Q \to X \times S^1$ is trivial over $(L_1 \cup \cdots \cup L_k) \times S^1$, as any SU(4)-bundle over a 2-manifold is trivial, so Q is trivial over $V \times S^1$ as V retracts onto $L_1 \cup \cdots \cup L_k$, and we can choose this trivialization compatible with q on $V \times \{1\}$.

Using the Excision Theorem as in Step 6, we find that $\Theta([\gamma]) = \Theta([\gamma'])$ for some loop γ' in $M_{P'}$, where $P' = X' \times SU(4)$. But $\Theta([\gamma']) = 1$ by Step 6, as X' is simply-connected, so $\Theta([\gamma]) = 1$. Thus M_P is orientable, completing the proof of Theorem \[1.8\].

We will give more details on Steps 1–6 in §2.1. Step 7 is very similar to Step 6, and we leave it as an exercise for the reader.

2.1 Step 1: Reduction to the case $P = X \times SU(4)$

We first recall the material in [19, 20] we will need in the rest of the proof. Let X be a compact n-manifold and E_\bullet an elliptic complex on X, and use the notation of Definitions 1.1–1.2. Joyce, Tanaka and Upmeier [19, §2] explain:

(i) If $P \to X$ is a principal $U(m)$-bundle, define a principal $SU(m+1)$-bundle $Q \to X$ by $Q = (P \times SU(m+1))/U(m)$, using the inclusion $U(m) \to SU(m+1)$ mapping $A \mapsto \begin{pmatrix} A & 0 \\ 0 & \det A^{-1} \end{pmatrix}$. There is a natural morphism $\Xi^Q_P: M_P \to M_Q$, and an isomorphism of principal \mathbb{Z}_2-bundles $\xi^Q_P: \tilde{O}^P_{E^\bullet} \to (\Xi^Q_P)^*(\tilde{O}^Q_{E^\bullet})$. Hence, if M_Q is orientable, then M_P is orientable.

(ii) If $Q \to X$ is a principal $SU(m)$-bundle, define $R = (Q \times U(m))/SU(m)$, so that $R \to X$ is a principal $U(m)$-bundle. There is a natural morphism $K^R_Q: M_Q \to M_R$, and an isomorphism of principal \mathbb{Z}_2-bundles $\kappa^R_Q: \tilde{O}^Q_{E^\bullet} \to (K^R_Q)^*(\tilde{O}^R_{E^\bullet})$. Hence, if M_R is orientable, then M_Q is orientable.

(iii) If $P \to X$ is a principal $U(m)$-bundle and $k \geq 1$ we can define a principal $(P \times U(m+k))/U(m)$ over X, which we write as $P \oplus \mathbb{C}^k \to X$. There is a natural morphism $\Psi^P_{P \oplus \mathbb{C}^k}: M_P \to M_{P \oplus \mathbb{C}^k}$, and an isomorphism of principal \mathbb{Z}_2-bundles $\psi^P_{P \oplus \mathbb{C}^k}: \tilde{O}^P_{E^\bullet} \to (\Psi^P_{P \oplus \mathbb{C}^k})^*(\tilde{O}^P_{E^\bullet})$. Hence, if $M_{P \oplus \mathbb{C}^k}$ is orientable, then M_P is orientable.

(iv) If $2m \geq n$ then the morphisms $\Xi^Q_P, K^R_Q, \Psi^P_{P \oplus \mathbb{C}^k}$ in (i)–(iii) are homotopy equivalences, and so identify normalized orientations on both sides.
Because of this, for any principal U(m)-bundle $P \to X$ we can take the direct limit $\lim_{k \to \infty} \mathcal{M}_{P \oplus \mathbb{C}^k}$, as a topological space or stack up to homotopy, using the morphisms $\mathcal{M}_{P \oplus \mathbb{C}^k} \to \mathcal{M}_{P \oplus \mathbb{C}^{k+1}}$ in (iii). We do not need to take $k \to \infty$, only to take k large enough that $2m + 2k \geq n$. The limiting orientation bundle $\mathcal{O}_{P \oplus \mathbb{C}^\infty}^E \to \mathcal{M}_{P \oplus \mathbb{C}^\infty}$ also makes sense. This is called ‘stabilization’.

(v) Every principal U(m)-bundle $P \to X$ has a K-theory class $[P] \in K^0(X)$, the class of the complex vector bundle $(P \times \mathbb{C}^m)/U(m)$. If $\alpha \in K^0(X)$ with $2 \text{rank} \alpha \geq n$ (the ‘stable range’) then there exists a principal U(m)-bundle $P \to X$ with $[P] = \alpha$, and P is unique up to isomorphism.

(vi) For each $\alpha \in K^0(X)$, choose N_α in \mathbb{Z} with $2(\text{rank} \alpha + N_\alpha) \geq n + 1$. Set $m_\alpha = \text{rank} \alpha + N_\alpha$, and choose a principal U(m_α)-bundle $P_\alpha \to X$ with $[P_\alpha] = \alpha + N_\alpha 1_X$ in $K^0(X)$, where $1_X \in K^0(X)$ is the class $[X \times \mathbb{C}]$ of the trivial line bundle $X \times \mathbb{C} \to X$. As in (v), this determines P_α uniquely up to isomorphism.

Using stabilization as in (iv), define a topological stack $\mathcal{M}_u^U_\alpha$ by $\mathcal{M}_u^U = \lim_{k \to \infty} \mathcal{M}_{P_\alpha \oplus \mathbb{C}^k}$, taking the direct limit using $\Psi_{P_\alpha \oplus \mathbb{C}^k}^{P_\alpha \oplus \mathbb{C}^{k+1}}: \mathcal{M}_{P_\alpha \oplus \mathbb{C}^k} \to \mathcal{M}_{P_\alpha \oplus \mathbb{C}^{k+1}}$. Then \mathcal{M}_u^U is independent of the choices of N_α, P_α up to isomorphism, and the isomorphisms are unique up to isotopy. We also define a principal \mathbb{Z}_2-bundle $\mathcal{O}_{\alpha}^{E\bullet} \to \mathcal{M}_u^U$ by $\mathcal{O}_{\alpha}^{E\bullet} = \lim_{k \to \infty} \mathcal{O}_{P_\alpha \oplus \mathbb{C}^k}^{E\bullet}$.

(vii) For any principal U(m)-bundle $P \to X$ with $[P] = \alpha \in K^0(X)$, we have a morphism $\Sigma_P^U: \mathcal{M}_P \to \mathcal{M}_u^U$, natural up to isotopy, and an isomorphism of principal \mathbb{Z}_2-bundles $\sigma_P^U: \mathcal{O}_{\alpha}^{E_{\bullet}} \cong (\Sigma_P^U)^*(\mathcal{O}_{\alpha}^{E\bullet})$. Hence, if \mathcal{M}_u^U is orientable, then \mathcal{M}_P is orientable. If $2m \geq n$ then Σ_P^U is a homotopy equivalence, so \mathcal{M}_P is orientable if and only if \mathcal{M}_u^U is orientable.

(viii) By considering direct sums of bundles we can show that for any α in $K^0(X)$, there is a homotopy equivalence $\mathcal{M}_u^U \simeq \mathcal{M}_1^U$, and \mathcal{M}_u^U is orientable if and only if \mathcal{M}_1^U is orientable.

(ix) Let $Q = X \times U(k)$ be the trivial U(k)-bundle, for any k with $2k \geq n$, and suppose \mathcal{M}_Q is orientable. Then (vii) implies \mathcal{M}_1^U is orientable, so (viii) implies \mathcal{M}_u^U is orientable for any $\alpha \in K^0(X)$, and (vii) implies that \mathcal{M}_P is orientable for any principal U(m)-bundle $P \to X$.

(x) We have $\pi_1(\mathcal{M}_u^U) \cong K^1(X)$, the odd complex K-theory group of X. Hence if $K^1(X) = 0$ then any principal \mathbb{Z}_2-bundle over \mathcal{M}_u^U is trivial, and \mathcal{M}_u^U is orientable, so \mathcal{M}_P is orientable for any principal U(m)- or SU(m)-bundle $P \to X$ by (ix) and (ii).

There is an Atiyah–Hirzebruch spectral sequence $H^{\text{odd}}(X, \mathbb{Z}) \Rightarrow K^1(X)$. Thus if $H^{\text{odd}}(X, \mathbb{Z}) = 0$ then $K^1(X) = 0$.

We can now prove Step 1. Suppose that \mathcal{M}_P is orientable for $P = X \times SU(4)$ the trivial SU(4)-bundle. By (ii), (iv) this implies \mathcal{M}_Q is orientable for $Q = X \times U(4)$ the trivial U(4)-bundle, so by (ix) \mathcal{M}_R is orientable for any principal U(m) or SU(m)-bundle $R \to X$, as we have to prove.
Then we have a canonical identification of γ and will be used in Steps 6 and 7.

Theorem 2.1 (Excision Theorem). Suppose we are given the following data:

(a) Compact n-manifolds $X^+, X^-.$

(b) Elliptic complexes E^*_{\bullet} on $X^\pm.$

(c) A Lie group $G,$ and principal G-bundles $P^\pm \to X^\pm$ with connections $\nabla_{P^\pm}.$

(d) Open covers $X^+ = U^+ \cup V^+, X^- = U^- \cup V^-.$

(e) A diffeomorphism $\iota : U^+ \to U^-$, such that $E^*_{\bullet}|_{U^+}$ and $\iota^*(E^*_{\bullet}|_{U^-})$ are isomorphic elliptic complexes on $U^+.$

(f) An isomorphism $\sigma : P^+|_{U^+} \to \iota^*(P^-|_{U^-})$ of principal G-bundles over $U^+,$ which identifies $\nabla_{P^+}|_{U^+}$ with $\iota^*(\nabla_{P^-}|_{U^-}).$

(g) Trivializations of principal G-bundles $\tau^\pm : P^\pm|_{V^\pm} \to V^\pm \times G$ over $V^\pm,$ which identify $\nabla_{P^\pm}|_{V^\pm}$ with the trivial connections, and satisfy
$$\iota|_{U^+ \cap V^+}^* (\tau^-) \circ \sigma|_{U^+ \cap V^+} = \tau^+|_{U^+ \cap V^+}.$$

Then we have a canonical identification of \mathbb{Z}_2-torsors
$$\Omega^{+-} : \bar{\Omega}^*_{\pi^+} \overset{\sim}{\to} \bar{\Omega}^*_{\pi^-}.$$

The isomorphisms (2.7) are functorial in a very strong sense. For example:

(i) If we vary any of the data in (a)–(g) continuously in a family over $t \in [0, 1],$ then the isomorphisms Ω^{+-} also vary continuously in $t \in [0, 1].$

(ii) The isomorphisms Ω^{+-} are unchanged by shrinking the open sets U^\pm, V^\pm such that $X^\pm = U^\pm \cup V^\pm$ still hold, and restricting $\iota, \sigma, \tau^\pm.$

(iii) If we are also given a compact n-manifold $X^\times,$ elliptic complex $E^\times_{\bullet},$ bundle $P^\times \to X^\times,$ connection $\nabla_{P^\times},$ open cover $X^\times = U^\times \cup V^\times,$ diffeomorphism $\iota^\times : U^\times \to U^+,$ and isomorphisms $\sigma^\times : P^\times|_{U^-} \to \iota^\times|U^\times (P^\times|_{U^+})$, $\tau^\times : P^\times|_{V^\times} \to V^\times \times G$ satisfying the analogues of (a)–(g), then $\Omega^{\times\times}$ is defined using $\iota^\times \circ \iota : U^+ \to U^\times$ and $\iota^\times (\sigma^\times) \circ \sigma : P^\times|_{U^+} \to (\iota \circ \iota)^\times(P^\times|_{U^\times}).$

2.2 Step 2: Alternative descriptions of $\pi_1(M_P)$

We will justify the 1-1 correspondences between (a),(b),(c) in Step 2. Let $P = X \times SU(4) \to X$ be the trivial SU(4)-bundle and ∇^0 the trivial connection on $P,$ so that $[\nabla^0] \in \mathcal{M}_P.$ As in (a), let $\gamma : S^1 \to \mathcal{M}_P$ be a smooth path with $\gamma(1) = [\nabla^0].$ Then γ is a smooth path of connections on P modulo gauge. We can think of γ as a smooth family of pairs $(P_z, \nabla_{P_z})_{z \in S^1},$ where $P_z \to X$ is a principal SU(4)-bundle which is isomorphic to $P,$ but not canonically isomorphic to P (since we quotient by the gauge group $\mathcal{G} = Map_C(\infty(X, SU(4))/\mathbb{Z}_4),$ and ∇_{P_z} is a connection on $P_z,$ with $P_z = P$ and $\nabla_{P_z} = \nabla^0$.

15
We can assemble the \((P_z)_{z \in S^1}\) into a principal SU(4)-bundle \(Q \to X \times S^1\) with \(Q|_{X \times \{z\}} = P_z\), and then \(Q|_{X \times \{1\}} = P_1 = P\) gives a trivialization \(q : Q|_{X \times \{1\}} \congto (X \times \{1\}) \times SU(4)\) as required. The connections \((\nabla P_z)_{z \in S^1}\) assemble into a partial connection \(\nabla_Q^X\) on \(Q\) in the \(X\) directions in \(X \times S^1\). Note that although each \(P_z\) is (noncanonically) trivial, \(Q\) need not be a trivial bundle on \(X \times S^1\), as it can have nontrivial topological twisting in the \(S^1\) directions.

Changing the loop \(\gamma\) by smooth isotopies deforms \(Q,q,\nabla_Q^X\) smoothly, and so preserves the pair \((Q,q)\) up to isomorphism. This gives a well-defined map \([\gamma] \mapsto [Q,q]\) from objects (a) to objects (b).

Conversely, given \([Q,q]\) choose a representative \((Q,q)\) and a partial connection \(\nabla_Q^X\) on \(Q\) in the \(X\) directions in \(X \times S^1\) with \(\nabla_Q^X|_{X \times \{1\}} = \nabla^0\), and define \(\gamma : S^1 \to M_P\) by \(\gamma(z) = [\nabla_Q^X|_{X \times \{z\}}]\). This is well defined as \(Q|_{X \times \{z\}}\) is noncanonically isomorphic to \(P\), since \(Q|_{X \times \{1\}} \cong P\). Then \(\gamma\) is a smooth loop in \(M_P\) with \(\gamma(1) = [\nabla^0]\), so \([\gamma] \in \pi_1(M_P)\). The space of partial connections \(\nabla_Q^X\) on \(Q\) is an infinite-dimensional affine space, so any two choices \(\nabla_Q^X,\nabla_Q^X\) are joined by a smooth path, and the corresponding loops \(\gamma,\tilde{\gamma}\) are smoothly isotopic, giving \([\gamma] = [\tilde{\gamma}]\). Hence the inverse map \([Q,q] \mapsto [\gamma]\) is defined, and (a),(b) are in 1-1 correspondence.

Now let \((Q,q)\) be as in (b). Choose a connection \(\nabla_Q\) on \(Q \to X \times S^1\). For each \(x \in X\), consider the path \(\delta_x : [0,2\pi] \to X \times S^1\) mapping \(\delta_x : \theta \mapsto (x,e^{i\theta})\). The holonomy of \(\nabla_Q\) around \(\delta_x\) is a smooth map \(\text{Hol}_{\delta_x}(\nabla_Q) : Q|_{\delta_x(0)} \to Q|_{\delta_x(2\pi)}\) which is equivariant under the \(SU(4)\)-actions on \(Q|_{\delta_x(0)},\ nabla|_{\delta_x(2\pi)}\) from the principal SU(4)-bundle. In this case \(\delta_x(0) = \delta_x(2\pi) = (x,1)\), and \(q\) identifies \(Q|_{\delta_x(0)} = Q|_{\delta_x(2\pi)} \cong SU(4)\), where \(SU(4)\) acts by left multiplication on itself.

Hence \(q\) identifies \(\text{Hol}_{\delta_x}(\nabla_Q)\) with a smooth map \(SU(4) \to SU(4)\) equivariant under left multiplication by \(SU(4)\), which must be right multiplication by some \(\Phi(x) \in SU(4)\). This defines the map \(\Phi : X \to SU(4)\) in (c), which is smooth as \(\nabla_Q\) is smooth. Any two connections \(\nabla_Q,\nabla_Q'\) on \(Q\) are smoothly isotopic, so \(\Phi\) is unique up to isotopy, and \([\Phi]\) is unique. This defines the map \([Q,q] \mapsto [\Phi]\) from objects (b) to objects (c).

Conversely, let \(\Phi : X \to SU(4)\) be a smooth map. Let \(\sim\) be the equivalence relation \(0 \sim 2\pi\) on \([0,2\pi]\), and identify \([0,2\pi]/\sim\) with \(S^1\) by \(\theta \mapsto e^{i\theta}\). Hence we also identify \(X \times [0,2\pi]/\sim\) with \(X \times S^1\). Define \(Q' \to X \times S^1\) to be the principal SU(4)-bundle \((X \times [0,2\pi] \times SU(4))/\sim\), where \(\approx\) is the equivalence relation \((x,0,e) \approx (x,2\pi,e\Phi(x))\) for \(x \in X\) and \(e \in SU(4)\), where the projection \(Q' \to X \times S^1\) maps \([x,\theta,e] \mapsto [x,\theta] \in X \times [0,2\pi]/\sim \cong X \times S^1\), and the \(SU(4)\)-action on \(Q'\) is by left multiplication on the \(SU(4)\) factor. Define \(q' : Q'|_{X \times \{1\}} \congto (X \times \{1\}) \times SU(4)\) to map \([x,0,e] \mapsto [x,e]\). Changing \(\Phi\) by smooth isotopy changes \((Q',q')\) by smooth isotopy, and hence by isomorphism, so we have a map \([\Phi] \mapsto [Q,q]\) from objects (b) to objects (c). It is easy to see this is inverse to the map \([Q,q] \mapsto [\Phi]\) above, so (b),(c) are in 1-1 correspondence.

The rest of Step 2 is clear.
2.3 Step 3: The geometry of SU(4)

Let $Y_k \subset \text{SU}(4)$ for $k = 0, \ldots, 3$ be as in (2.1). Write $\text{Gr}(\mathbb{C}^k, \mathbb{C}^3)$ for the Grassmannian of vector subspaces $V \subset \mathbb{C}^3$ with $V \cong \mathbb{C}^k$, a compact complex manifold of dimension $k(3 - k)$. Define a map $\phi_k : Y_k \to \text{Gr}(\mathbb{C}^k, \mathbb{C}^3)$ by

$$
\phi_k(A) = \{(x_1, x_2, x_3) \in \mathbb{C}^3 : Ax = -x \quad \text{for} \quad x = (x_1, x_2, x_3, 0)^T\},
$$

where the right hand side is a k-dimensional subspace of \mathbb{C}^3 by (2.1), and thus a point of $\text{Gr}(\mathbb{C}^k, \mathbb{C}^3)$. Note that $\text{Gr}(\mathbb{C}^4, \mathbb{C}^3) = \mathbb{CP}^2$ and ϕ_1 is ϕ in Step 3(iv).

The fibre of ϕ_k over $\{ (x_1, \ldots, x_k, 0, \ldots, 0) : x_j \in \mathbb{C} \}$ is

$$
\left\{ \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & (-1)^k B \\
\end{pmatrix} : B \in \text{SU}(4 - k), \; B \text{ has no} \\
eigenvalues \text{ in } \mathbb{C}^{3-k} \subset \mathbb{C}^{4-k} \right\}. \quad (2.8)
$$

This is diffeomorphic to an open subset of $\text{SU}(4 - k)$, the complement of a codimension 3 subset, and so is connected. By considering the action of $\text{SU}(3) \subset \text{SU}(4)$ on $\text{SU}(4)$ by conjugation, which preserves Y_k and acts on $\text{Gr}(\mathbb{C}^3, \mathbb{C}^3)$, we see that Y_k is an embedded submanifold of $\text{SU}(4)$ and ϕ_k is a fibre bundle with fibre (2.8). Hence

$$
\dim Y_k = \dim \text{Gr}(\mathbb{C}^k, \mathbb{C}^3) + \dim \text{SU}(4 - k) = 2k(3 - k) + (4 - k)^2 - 1
= 15 - k(k + 2) = \dim \text{SU}(4) - k(k + 2),
$$

so the codimension of Y_k is $k(k + 2)$. As $\text{Gr}(\mathbb{C}^k, \mathbb{C}^3)$ and (2.8) are connected, simply-connected and oriented, Y_k is embedded, connected, simply-connected and oriented. This proves Step 3(i).

Part (ii) is obvious. For (iii), for each $A \in Y_0 \subset \text{SU}(4)$ define vectors $e_j^1(A) \in \mathbb{C}^4$ for $j = 1, 2, 3$ and $t \in [0, 1]$ by

$$
e_j^1(A) = te_j + (1 - t)Ae_j,
$$

where $e_1 = (1000)^T$, $e_2 = (1000)^T$, and $e_3 = (1000)^T$. We claim that for each $A \in Y_0$ and $t \in [0, 1]$, the vectors $e_1^1(A), e_2^1(A), e_3^1(A)$ are \mathbb{C}-linearly independent in \mathbb{C}^4. For if not, there would exist $0 \neq (x_1, x_2, x_3) \in \mathbb{C}^3$ such that

$$
(1-t)A(x_1e_1 + x_2e_2 + x_3e_3) = -t(x_1e_1 + x_2e_2 + x_3e_3),
$$

so that $-t/(1-t)$ is an eigenvalue of A. As eigenvalues of A have norm 1, this forces $t = \frac{1}{2}$, so $A x = \pm x$ for $0 \neq x = (x_1, x_2, x_3, 0)^T$, contradicting (2.1).

Next define vectors $f_j^1(A) \in \mathbb{C}^4$ for $j = 1, 2, 3$ and $t \in [0, 1]$ by

$$
f_j^1(A) = \frac{e_j^1(A)}{\|e_j^1(A)\|}, \quad f_k^2(A) = \frac{e_k^2(A) = \langle e_k^2(A), f_1^1(A) \rangle e_1^1(A) - \langle e_k^2(A), f_1^1(A) \rangle f_1^1(A)}{\|e_k^2(A)\|},
$$

$$
f_j^3(A) = \frac{e_j^3(A) - \langle e_j^3(A), f_1^1(A) \rangle e_1^1(A) - \langle e_j^3(A), f_2^1(A) \rangle e_2^1(A) - \langle e_j^3(A), f_3^1(A) \rangle e_3^1(A)}{\|e_j^3(A)\|}.
$$
That is, we use the Gram–Schmidt process to make \(f_i^1(A), f_i^2(A), f_i^3(A) \) Hermitian orthonormal in \(\mathbb{C}^4 \). There is then a unique \(f_i^t(A) \) such that the matrix \(\Psi_i(A) = (f_i^1(A) \cdots f_i^t(A)) \) with columns \(f_i^1(A), \ldots, f_i^t(A) \) lies in \(\text{SU}(4) \). Then \(\Psi_i(A) \in \text{SU}(4) \) depends smoothly on \(A \in Y_0 \) and \(t \in [0,1] \), with \(\Psi^0(A) = A \) and \(\Psi^1(A) = \text{Id} \), so \(\Psi_t : Y_0 \to \text{SU}(4) \) for \(t \in [0,1] \) satisfies Step 3(iii).

For (iv), for simplicity let \(A \in Y_1 \) with \(\phi(A) = [1,0,0] \in \mathbb{CP}^2 \). Then

\[
A \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.
\]

Let \(\delta A \in T_A \text{SU}(4) \), so that we think of \(\delta A \) as a small \(4 \times 4 \) complex matrix, with \(A + \delta A \) an infinitesimal perturbation of \(A \) in \(\text{SU}(4) \). Then

\[
(A + \delta A) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 + \delta A_{11} \\ \delta A_{21} \\ \delta A_{31} \\ \delta A_{41} \end{pmatrix},
\]

for \(\delta A_{11} \in \mathbb{C} \) small, with \(\delta A_{11} \in i\mathbb{R} \) as \((A+\delta A) \) preserves lengths. Then the fibre \(\nu|_A \subset T_A \text{SU}(4) \) at \(A \) of the normal bundle \(\nu \) of \(Y_1 \) in \(\text{SU}(4) \) may be identified with \(\mathbb{R} \oplus \mathbb{C} \) with coordinates \((\text{Im}(\delta A_{11}), \delta A_{41})\).

Here \(\text{Im}(\delta A_{11}) \) measures the tangent direction in \(\text{SU}(4) \) which varies the eigenvalue \(-1\) of \(A \) to \(e^{i\theta} \) in \(S^1 \) close to \(-1\), so we should think of \(\delta A_{11} \) as lying in \(T_{-1}S^1 = i\mathbb{R} \). And \(\delta A_{41} \) measures the tangent directions in \(\text{SU}(4) \) which vary the eigenspace \([x_1, x_2, x_3, 0] \in \mathbb{CP}^3\) of \(A \) normal to \(\mathbb{CP}^2 = \{[y_1, y_2, y_3, 0] \in \mathbb{CP}^3\} \) in \(\mathbb{CP}^3 \), where \(A \in Y_1 \) must have a \(-1\)-eigenvector in \(\mathbb{CP}^2 \), so we should think of \(\delta A_{41} \) as lying in \(\tilde{\nu}|_{[1,0,0,0]} \), where \(\tilde{\nu} \) is the normal bundle of \(\mathbb{CP}^2 \) in \(\mathbb{CP}^3 \). Note that \(\tilde{\nu} \cong \mathcal{O}(1) \), so \(\tilde{\nu}|_{[1,0,0,0]} \cong \phi^*(\mathcal{O}(1)|A) \).

More generally, if \(A \in Y_1 \) with \(\phi(A) = [x_1, x_2, x_3] \in \mathbb{CP}^2 \) for \(x_1, x_2, x_3 \in \mathbb{C} \) with \(|x_1| + |x_2|^2 + |x_3|^2 = 1 \) and \(\delta A \in T_A \text{SU}(4) \), then we can identify \(\nu|_A \) with \(\mathbb{R} \oplus \mathbb{C} \) with coordinates \((y, z)\), where in matrix notation

\[
y = -i \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \bar{x}_3 \end{pmatrix} \delta A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad z = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \delta A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.
\]

Multiplying the representative \((x_1, x_2, x_3)\) for \([x_1, x_2, x_3] \in \mathbb{CP}^2\) by \(e^{i\theta} \) fixes \(y \), but multiplies \(z \) by \(e^{i\theta} \). So the invariant thing is to regard \(z \) as lying in \(\tilde{\nu}|_{[x_1, x_2, x_3, 0]} = \phi^*(\mathcal{O}(1)|A) \). This defines an isomorphism \(\nu \cong \mathbb{R} \oplus \phi^*(\mathcal{O}(1)) \), proving (iv).

To prove (2.2), by a well known calculation for all \(m \geq 2 \) we show that

\[
H^*(\text{SU}(m), \mathbb{Z}) \cong \Lambda_2[p_3, p_5, \ldots, p_{2m-1}]
\]

by induction on \(m \), where the first step \(m = 2 \) follows from \(\text{SU}(2) \cong S^3 \), and the inductive step from the Leray–Serre spectral sequence for the fibration.
SU(m − 1) ⊂ SU(m) → S^{2m−1}. For [2.3], the K"unneth Theorem gives
\[\mu^*(p_k) \in H^k(SU(4) \times SU(4), \mathbb{Z}) = \langle p_k \boxtimes 1, 1 \boxtimes p_k \rangle, \]
so \(\mu^*(p_k) = a_k \cdot (p_k \boxtimes 1) + b_k \cdot (1 \boxtimes p_k) \) for \(a_k, b_k \in \mathbb{Z}, \) and \(a_k = b_k = 1 \) follows by restricting \(\mu \) to \(SU(4) \times \{Id\} \) and \(\{Id\} \times SU(4) \) in \(SU(4) \times SU(4). \)

For [2.4], note that as \(H^3(SU(4), \mathbb{Z}) = \langle p_3 \rangle_\mathbb{Z} \) and \(H^8(SU(4), \mathbb{Z}) = \langle p_3 \cup p_5 \rangle_\mathbb{Z}, \)
we have \[\{Y_1\} = c \cdot Pd(p_3) \text{ and } \{Y_2\} = d \cdot Pd(p_3 \cup p_5) \] for some \(c, d \in \mathbb{Z}. \) From [2.9] for \(m = 2, 3, 4 \) we see that under the embeddings \(\iota : SU(2) \hookrightarrow SU(4) \) and \(j : SU(3) \hookrightarrow SU(4) \) given by
\[\iota : B \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & B \end{pmatrix}, \quad j : C \mapsto \begin{pmatrix} 1 & 0 \\ 0 & C \end{pmatrix}, \]
we have \(p_3 \cdot \iota_*([SU(2)]) = 1 \) and \((p_3 \cup p_5) \cdot j_*([SU(3)]) = 1. \) So using the intersection product \(\bullet \) on \(H_* (SU(4), \mathbb{Z}) \)
we have
\[c = [Y_1] \bullet \iota_*([SU(2)]) \quad \text{and} \quad d = [Y_2] \bullet j_*([SU(3)]). \]
But \(Y_1 \) intersects \(\iota(SU(2)) \) transversely in one point \(\text{diag}(1, 1, -1, -1) \) in \(Y_1, \)
and \(Y_2 \) intersects \(j(SU(3)) \) transversely in one point \(\text{diag}(1, -1, -1, 1) \) in \(Y_2, \)
so these intersection numbers are \(\pm 1, \) and choosing orientations on \(Y_1, Y_2 \) appropriately
we can ensure that \(c = d = 1, \) proving [2.4].

2.4 Step 4: Reduction to the case \(\kappa([\Phi]) = 0 \)

Define maps \(\lambda_3, \lambda_5, \lambda_7 \) and \(\kappa \) on \([X, SU(4)] \) as in Step 4. Let \(\alpha \in H^5(X, \mathbb{Z}), \)
so that \(Pd(\alpha) \in H_5(X, \mathbb{Z}). \) We can choose a compact, oriented, embedded 3-submanifold \(W \subset X \) with \([W] = Pd(\alpha). \) Write \(\nu \to W \) for the normal bundle of \(W \) in \(X. \)
Now \(W \) admits a spin structure, as any oriented 3-manifold does, and \(X \) is spin, so \(\nu \) admits a spin structure on its fibres. Hence \(\nu \) is trivial, as any Spin(5)-bundle on a 3-manifold is trivial. Thus we may choose a tubular neighbourhood \(T \) of \(W \) in \(X \) and a diffeomorphism \(T \cong W \times B^5, \) where \(B^5 \subset \mathbb{R}^5 \)
is the open unit ball.

By Mimura and Toda [23] we have \(\pi_5(SU(4)) \cong \mathbb{Z}, \)
and the natural map \(\pi_5(SU(4)) \to H_5(SU(4), \mathbb{Z}) \) is an isomorphism. Thus there exists a smooth map \(\Psi : S^5 - \{\infty\} \to SU(4) \) with \(\Psi_*[p_5] \cdot [S^5] = 1. \) We may choose \(\Psi \) with \(\Psi \equiv \text{Id} \) outside the ball \(B^5_{1/2} \) of radius \(\frac{1}{2} \) in \(\mathbb{R}^5 \subset S^5. \)
Define \(\Phi' : X \to SU(4) \)
by \(\Phi'|_{X \setminus T} \equiv \text{Id}, \)
and \(\Phi'|_T \) is identified under \(T \cong W \times B^5 \) with the map \(W \times B^5 \to SU(4), (w, b) \mapsto \Psi(b). \)
As \(\Psi \equiv 1 \) on \(B^5 \setminus B^5_{1/2}, \) this \(\Phi' \) is smooth.

Since \(\Psi_*[p_5] \cdot [S^5] = 1, \) it follows that \(Pd \circ \lambda_5([\Phi']) = Pd \circ \Phi'^*(p_5) = [Y] = Pd(\alpha), \)
so \(\lambda_5([\Phi']) = \alpha. \) As \(\Phi'|_{X \setminus T} \equiv \text{Id}, \)
and the morphism \(H_3(X \setminus T, \mathbb{Z}) \to H_3(X, \mathbb{Z}) \)
induced by the inclusion \(X \setminus T \to X \) is an isomorphism for dimensional reasons, we see that \(\lambda_3([\Phi']) = 0, \) as we want. The rest of Step 4 is clear.
2.5 Step 5: A 5-submanifold $Z \subset X$ with $\Phi \approx 1$ on $X \setminus Z$

Suppose X is connected, and $[\Phi] \in [X, SU(4)]$ with $\kappa([\Phi]) = 0$. Choose a generic representative $\Phi : X \to SU(4)$ for $[\Phi]$. Then as in Step 5, Φ is an embedding, and $\Phi(X) \cap Y_2$ is a compact, oriented 0-manifold, that is, a finite set of points with signs ± 1, and the number of points in $\Phi(X) \cap Y_2$ counted with signs is $\kappa([\Phi]) = 0$. Thus we may write $\Phi(X) \cap Y_2 = \{r_1, \ldots, r_k, s_1, \ldots, s_k\}$, where the r_i have positive orientation and the s_i negative orientation. There are unique disjoint $p_1, \ldots, p_k, q_1, \ldots, q_k \in X$ with $\Phi(p_i) = r_i$ and $\Phi(q_i) = s_i$.

As X is connected we may choose smooth embedded paths $\gamma_i : [0, 1] \to X$ with $\gamma_i(0) = p_i$ and $\gamma_i(1) = q_i$ for $i = 1, \ldots, k$, and as $\dim X > 2$ we may choose $\gamma_1([0, 1]), \ldots, \gamma_k([0, 1])$ to be disjoint. Then $\Phi \circ \gamma_i : [0, 1] \to SU(4)$ are smooth embedded paths in $SU(4)$ with $\Phi \circ \gamma_i(0) = r_i$ and $\Phi \circ \gamma_i(1) = s_i$, with r_i, s_i the only intersection points of $\Phi \circ \gamma_i([0, 1])$ with Y_2.

As Y_2 is connected we may choose smooth embedded paths $\delta_i : [0, 1] \to Y_2$ with $\delta_i(0) = r_i$ and $\delta_i(1) = s_i$. Then $\Phi \circ \gamma_i$ and δ_i are both smooth paths $[0, 1] \to SU(4)$ with end points r_i, s_i. Since $SU(4)$ is simply-connected we may choose smooth isotopies $\epsilon_i : [0, 1]^2 \to SU(4)$ with $\epsilon_i(0, t) = \Phi \circ \gamma_i(t)$, $\epsilon_i(1, t) = \delta_i(t)$, $\epsilon_i(s, 0) = r_i$, $\epsilon_i(s, 1) = s_i$ for all $s, t \in [0, 1]$, where we may take ϵ_i to be an embedding on $[0, 1] \times (0, 1)$, and to map to Y_2 only at $(s, 0), (s, 1)$ and $(1, t)$.

We now use the ‘Whitney trick’ (as used in the proof of the Whitney Embedding Theorem): we modify Φ in small open neighbourhoods of the paths $\gamma_1([0, 1]), \ldots, \gamma_k([0, 1])$ in X, deforming Φ along the disks $\epsilon_i([0, 1]^2)$ in $SU(4)$, so as to eliminate the intersection points r_i, s_i of $\Phi(X) \cap Y_2$ in pairs. Thus we may perturb Φ in its isotopy class so that $\Phi(X) \cap Y_2 = \emptyset$. We can also suppose Φ is an embedding, and $\Phi(X)$ intersects Y_1 transversely.

As in Step 5, it now follows that $Z = \{x \in X : \Phi(x) \in Y_1\}$ is a compact, oriented, embedded 5-submanifold in X diffeomorphic to $\Phi(X) \cap Y_1$, and defining $\psi : Z \to \mathbb{CP}^2$ by $\psi = \phi \circ \Phi|_Z$, the normal bundle ν_Z of Z in X satisfies $\nu_Z \cong \mathbb{R} \oplus \psi^*(O(1))$ as in [2.6], and $w_2(Z)$ is the image in $H^2(Z, \mathbb{Z})$ of the integral class $\psi^*(c_1(O(1)))$ in $H^2(Z, \mathbb{Z})$.

Next suppose X is connected. We will show that we can perturb Φ in its isotopy class to make Z connected. Suppose first that Z has two connected components Z_0 and Z_1. As X is connected we can choose points $z_0 \in Z_0$, $z_1 \in Z_1$ and a smooth path $\gamma : [0, 1] \to X$ with $\gamma(0) = z_0$ and $\gamma(1) = z_1$, where we suppose that $\gamma([0, 1])$ is embedded and meets Z transversely only at z_0, z_1. Then $\Phi \circ \gamma : [0, 1] \to SU(4)$ is a smooth path in $SU(4)$ with endpoints $\Phi(z_0), \Phi(z_1)$ in Y_1. As Y_1 is connected we can choose a smooth path $\delta : [0, 1] \to Y_1$ with $\delta(0) = \Phi(z_0)$, $\delta(1) = \Phi(z_1)$, where we suppose that $\delta([0, 1])$ is embedded and meets $\Phi(X) \cap Y_1 = \Phi(Z)$ transversely only at $\Phi(z_0), \Phi(z_1)$.

Then $\Phi \circ \gamma([0, 1]) \cup \delta([0, 1])$ are two paths from $\Phi(z_0)$ to $\Phi(z_1)$ in $SU(4)$, so $\Phi \circ \gamma([0, 1]) \cup \delta([0, 1])$ is a piecewise-smooth embedded circle in $SU(4)$. As $SU(4)$ is simply-connected we may choose a smooth embedded 2-discs D in $SU(4)$, with boundary $\Phi \circ \gamma([0, 1]) \cup \delta([0, 1])$, and corners at $\Phi(z_0), \Phi(z_1)$.

In a similar way to the use of the ‘Whitney trick’ above, we may modify $\Phi : X \to SU(4)$ in a small open neighbourhood of $\gamma([0, 1])$ in X to a new
\(\Phi' : X \to \text{SU}(4)\), where we deform \(\Phi\) near \(\gamma([0,1])\) along the disc \(D\) in \(\text{SU}(4)\), so that \(\Phi'\) near \(\gamma([0,1])\) is close to the path \(\delta([0,1])\) in \(\text{SU}(4)\). We can arrange that \(Z' = \Phi'^{-1}(Y_1)\) near \(\gamma([0,1])\) is a tube \([0,1] \times S^4\), where \(S^4\) is a small 4-sphere. That is, we replace \(Z = Z_1 \amalg Z_2\) by the connected sum \(Z' = Z_1 \# Z_2\), joining \(Z_1, Z_2\) by a narrow neck \([0,1] \times S^4\) close to \(\gamma([0,1])\) in \(X\), and making \(Z'\) connected. If \(Z\) has \(k > 2\) connected components, we use the trick above \(k - 1\) times to make \(Z'\) connected.

Finally, suppose \(X\) is simply-connected. We will show that we can perturb \(\Phi\) in its isotopy class to make \(Z\) simply-connected. By surgery theory, as \(Z\) is a compact, oriented, simply-connected 5-manifold \(\hat{Z}\) is a sphere. That is, we replace \(\Phi\) near \(\gamma([0,1])\) is close to the path \(\delta([0,1])\) in \(\text{SU}(4)\). We can arrange that \(Z' = \Phi'^{-1}(Y_1)\) near \(\gamma([0,1])\) is a tube \([0,1] \times S^4\), where \(S^4\) is a small 4-sphere. That is, we replace \(Z = Z_1 \amalg Z_2\) by the connected sum \(Z' = Z_1 \# Z_2\), joining \(Z_1, Z_2\) by a narrow neck \([0,1] \times S^4\) close to \(\gamma([0,1])\) in \(X\), and making \(Z'\) connected. If \(Z\) has \(k > 2\) connected components, we use the trick above \(k - 1\) times to make \(Z'\) connected.

As \(X\) is simply-connected, each circle \(L_i\) in \(Z \subset X\) may be written as \(L_i = \partial D_i\), for \(D_i \subset X\) a 2-disc in \(X\). By perturbing \(D_i\) generically we can suppose that \(D_i\) is embedded, that it intersects \(Z\) transversely only at \(\partial D_i = L_i\), and that \(D_1, \ldots, D_k\) are disjoint.

Also \(\Phi(L_i)\) is an embedded circle in \(Y_1\). As \(Y_1\) is simply-connected, we may write \(\Phi(L_i) = \partial E_i\) for \(E_i \subset Y_1\) a 2-disc in \(Y_1\). By perturbing \(E_i\) generically we can suppose that \(E_i\) is embedded, that it intersects \(\Phi(Z) = \Phi(X) \cap Y_1\) transversely only at \(\partial E_i = \Phi(L_i)\), and that \(E_1, \ldots, E_k\) are disjoint.

We now have embedded 2-discs \(\Phi(D_i), E_i\) in \(\text{SU}(4)\) with common boundary \(\Phi(L_i)\), so \(\Phi(D_i) \cup E_i\) is a piecewise-smooth \(S^2\) in \(\text{SU}(4)\). Since \(\pi_2(\text{SU}(4)) = 0\) by \([23]\), we may choose smooth embedded 3-discs \(F_1, \ldots, F_k\) in \(\text{SU}(4)\), with boundary \(\partial F_i = \Phi(D_i) \cup E_i\), and a codimension 2 corner along \(\Phi(L_i)\).

Again, in a similar way to the use of the ‘Whitney trick’ above, we may modify \(\Phi : X \to \text{SU}(4)\) in small open neighbourhoods of \(D_1, \ldots, D_k\) in \(X\) to a new \(\Phi' : X \to \text{SU}(4)\), where we deform \(\Phi\) near \(D_i\) along the 3-disc \(F_i\) in \(\text{SU}(4)\), so that \(\Phi'\) near \(D_i\) is close to the disc \(E_i\) in \(Y_1 \subset \text{SU}(4)\). We also need to consider the (trivial) normal bundles of \(L_i\) and \(D_i\) in \(X\), and their images as subbundles of the (trivial) normal bundles of \(\Phi(L_i)\) and \(\Phi(D_i)\) in \(\text{SU}(4)\), and how these subbundles deform along \(F_i\) to \(E_i\).

If we only deform \(\Phi\) along \(F_i\) to \(\Phi'\) such that \(\Phi'(D_i) = E_i\), then \(\Phi'(X)\) may intersect \(Y_1\) non-transversely along \(E_i\), and \(Z' = \Phi'^{-1}(Y_1)\) will not be a submanifold of \(X\). However, if we deform \(\Phi'\) a little way further, pushing \(\Phi'(D_i)\) a little way beyond the boundary of \(F_i\) at \(E_i\), then \(Z' = \Phi'^{-1}(Y_1)\) becomes a 5-submanifold of \(X\) locally modelled near \(D_i\) on \(D_i \times S^3\), where the \(S^3\) factors are small spheres in a (trivial) rank 4 subbundle of the normal bundle of \(E_i\) in \(Y_1\). That is, \(Z'\) is diffeomorphic to the 5-manifold \(\tilde{Z}\) constructed above by surgery on \(L_1, \ldots, L_k\), so \(Z'\) is simply-connected.

Therefore if \(X\) is simply-connected, we can perturb \(\Phi\) in its isotopy class to make \(\tilde{Z}\) simply-connected, completing Step 5.
2.6 Step 6: \(\mathcal{M}_p \) is orientable if \(X \) is simply-connected

Suppose \(X \) is connected and simply-connected, let \([\gamma] \in \pi_1(\mathcal{M}_p) \) correspond to \([\Phi] \) in \([X, \text{SU}(4)]\) as in Step 2 with \(\kappa([\Phi]) = 0 \) as in Step 4, and choose \(\Phi, Z, \psi, \nu_Z \) with \(Z \) connected and simply-connected as in Step 5. Then \(Z \) is a compact, oriented 5-manifold, \(\phi : Z \to \mathbb{CP}^3 \) is smooth, the normal bundle \(\nu_Z \) of \(Z \) in \(X \) is \(\nu_Z \cong \mathbb{R} \oplus \psi^*(\mathcal{O}(1)) \), and \(w_2(Z) \) is the image in \(H^2(Z, \mathbb{Z}_2) \) of the integral class \(\psi^*(c_1(\mathcal{O}(1))) \) in \(H^2(Z, \mathbb{Z}) \).

In the next proposition, using results of Crowley [6] on the diffeomorphism classification of compact, simply-connected 5-manifolds, we will construct a compact, oriented, spin 8-manifold \(X \) such that the boundaries \(\nu_Z \) of \(Z \) is identified with \(\mathbb{CP}^3 \). Composing this with the obvious embedding \(\iota : \mathbb{CP}^1 \to \mathbb{R}^4 \) gives an embedding \(j : Z \hookrightarrow X' \) with \(\nu_Z \) as the trivial normal bundle.

Proposition 2.2. Suppose \(Z \) is a compact, connected, simply-connected, oriented 5-manifold, and \(L \to Z \) is a complex line bundle, such that the second Stiefel–Whitney class \(w_2(Z) \) is the image of \(c_1(L) \) under the projection \(H^2(Z, \mathbb{Z}) \to H^2(Z, \mathbb{Z}_2) \). Then there exist group isomorphisms

\[
H^2(Z, \mathbb{Z}) \cong \mathbb{Z}^r, \quad H^3(Z, \mathbb{Z}) \cong \mathbb{Z}^r \oplus G \oplus G,
\]

for some \(r \geq 0 \) and finite abelian group \(G \), such that the pairing \(H^2(Z, \mathbb{Z}) \times H^3(Z, \mathbb{Z}) \to \mathbb{Z} \) maps \((a_1, \ldots, a_r) \cdot (b_1, \ldots, b_r, g_1, g_2) \mapsto a_1 b_1 + \cdots + a_r b_r \), and \(c_1(L) \) is identified with \((k, 0, \ldots, 0)\) for some \(k \in \mathbb{Z} \). Furthermore:

(a) If \(k = 0 \), so that \(c_1(L) = 0 \) and \(L \) is trivial, and \(w_2(Z) = 0 \) so \(Z \) is spin, there exists an embedding \(\iota : Z \hookrightarrow \mathbb{S}^6 \) with trivial normal bundle \(\mathbb{R} \). Composing this with the obvious embedding \(\mathbb{S}^6 \hookrightarrow \mathbb{S}^8 \) mapping \((x_1, \ldots, x_7) \mapsto (x_1, \ldots, x_7, 0, 0)\) gives an embedding \(j : Z \hookrightarrow X' = \mathbb{S}^8 \) with trivial normal bundle \(\nu_Z' \cong \mathbb{R}^3 \cong \mathbb{R} \oplus L \).

(b) If \(k \neq 0 \) is even, so that \(r \geq 1 \), and \(L \) is nontrivial, and \(w_2(Z) = 0 \) so \(Z \) is spin, there exists an embedding \(\iota : Z \hookrightarrow \mathbb{CP}^1 \times \mathbb{S}^4 \) with trivial normal bundle \(\mathbb{R} \), such that \(L \cong (\pi_{\mathbb{CP}^1} \circ \iota)^*(\mathcal{O}(k)) \), for \(\mathcal{O}(1) \to \mathbb{CP}^1 \) the standard line bundle, \(\mathcal{O}(k) = \mathcal{O}(1)^{\otimes k} \), and \(\pi_{\mathbb{CP}^1} : \mathbb{CP}^1 \times \mathbb{S}^4 \to \mathbb{CP}^1 \) the projection. Define \(X' = \mathbb{CP}^1 \times \mathbb{S}^4 \) to be the \(\mathbb{CP}^1 \)-bundle \(\mathbb{P}(\pi_{\mathbb{CP}^1}^*(\mathcal{O}(0) \oplus \mathcal{O}(k))) \). This bundle has a natural section \([1, 0] : \mathbb{CP}^1 \times \mathbb{S}^4 \to X' \) embedding \(\mathbb{CP}^1 \times \mathbb{S}^4 \) as a submanifold of \(X' \) with normal bundle \(\pi_{\mathbb{CP}^1}^*(\mathcal{O}(k)) \). Hence \(j = [1, 0] \circ \iota \) is an embedding \(j : Z \hookrightarrow X' \) with normal bundle \(\nu'_Z \cong \mathbb{R} \oplus L \).

(c) Let \(k \) be odd, so that \(r \geq 1 \), and \(L \) is nontrivial, and \(w_2(Z) \neq 0 \), so \(Z \) is not spin. Write \(\pi_{\mathbb{CP}^1} : Y \to \mathbb{CP}^1 \) for the nontrivial \(S^4 \) bundle, constructed by writing \(\mathbb{CP}^1 = D^+ \cup_{S^1} D^- \) for the union of closed 2-discs \(D^\pm \) along their boundary \(S^1 \), and defining \(Y = (D^+ \times S^4) \cup_{S^1 \times S^4} (D^- \times S^4) \), where the boundaries \(S^1 \times S^4 \) of \(D^\pm \times S^4 \) are glued using a map \(S^1 \to SO(5) \) representing the nontrivial element of \(\pi_1(SO(5)) \cong \mathbb{Z}_2 \).

Then there exists an embedding \(\iota : Z \hookrightarrow Y \) with trivial normal bundle \(\mathbb{R} \), such that \(L \cong (\pi_{\mathbb{CP}^1} \circ \iota)^*(\mathcal{O}(k)) \).
Define $X' \to Y$ to be the \mathbb{CP}^1-bundle $\mathbb{P} \left(\pi^*_{\mathbb{CP}^1} (\mathcal{O}(0) \oplus \mathcal{O}(k)) \right)$. This bundle has a natural section $[1,0] : Y \to X'$ embedding $\mathbb{CP}^1 \times S^4$ as a submanifold of X' with normal bundle $\pi^*_{\mathbb{CP}^1} (\mathcal{O}(k))$. Hence $j = [1,0] \circ \iota$ is an embedding $j : Z \hookrightarrow X'$ with normal bundle $\nu'_Z \cong \mathbb{R} \oplus L$.

In each of (a)–(c), X' is compact, oriented and spin, with $H^{\text{odd}}(X',Z) = 0$.

Proof. The Universal Coefficient Theorem implies that the torsions of $H_1(Z,\mathbb{Z})$ and $H^2(Z,\mathbb{Z})$ are isomorphic. But $H_1(Z,\mathbb{Z}) = 0$ as Z is simply-connected, so $H^2(Z,\mathbb{Z})$ is torsion-free, and thus $H^2(Z,\mathbb{Z}) \cong \mathbb{Z}^r$ for $r = b_2(Z)$. We may choose the isomorphism $H^2(Z,\mathbb{Z}) \cong \mathbb{Z}^r$ to identify $c_1(L)$ with $(k,0,\ldots,0)$ for some $k \in \mathbb{Z}$, as any element of \mathbb{Z}^r is conjugate to some $(k,0,\ldots,0)$ under $\text{SL}(k,\mathbb{Z})$. Then $H_2(Z,\mathbb{Z}) \cong \mathbb{Z}^r \oplus K$ for some finite group K, such that the pairing $H^2(Z,\mathbb{Z}) \times H_2(Z,\mathbb{Z}) \to \mathbb{Z}$ maps $(a_1,\ldots,a_r) \cdot (b_1,\ldots,b_r,k) \to a_1b_1 + \cdots + a_rb_r$. The results of Crowley [6] discussed next imply that K is of the form $G \oplus G$. This proves the first part of the proposition.

Crowley [6] describes the classification of compact, connected, simply-connected 5-manifolds Z up to diffeomorphism. To each such Z we associate a pair (Γ,w) of a finitely generated abelian group Γ and a morphism $w : \Gamma \to \mathbb{Z}_2$, by $\Gamma = H_2(Z,\mathbb{Z})$ and $w(\gamma) = w_2(Z) \cdot \gamma$. Using results of Smale and Barden, Crowley notes that the map from diffeomorphism classes of 5-manifolds Z to isomorphism classes of pairs (Γ,w) is injective. He then characterizes which pairs (Γ,w) lie in the image of this map, and in some cases gives an embedding $\iota : Z \to Y$ into an explicit 6-manifold Y, and thus writes $Z = \partial Y$ for a 6-manifold with boundary Y.

Any finitely generated abelian group Γ is of the form $\mathbb{Z}^r \oplus K$ for K a finite abelian group, and $w : \Gamma \to \mathbb{Z}_2$ is the sum of morphisms $\mathbb{Z}^r \to \mathbb{Z}_2$ and $K \to \mathbb{Z}_2$. If $w_2(Z)$ lies in the image of $\mathbb{Z}^r \cong H^2(Z,\mathbb{Z}) \to H^2(Z,\mathbb{Z}_2)$, as in our situation, the morphism $K \to \mathbb{Z}_2$ is zero. This excludes many cases in Crowley’s classification. In particular, Crowley allows either $K \cong G \oplus G$ or $K \cong G \oplus G \oplus \mathbb{Z}_2$ for G a finite abelian group, but $K \cong G \oplus G \oplus \mathbb{Z}_2$ occurs only if $w|_K \neq 0$, and so does not happen in our case. This justifies $K \cong G \oplus G$.

Note too that Crowley’s classification is compatible with connected sums: if Z corresponds to (Γ,w) with $(\Gamma,w) \cong (\Gamma_1,w_1) \oplus (\Gamma_2,w_2)$ for (Γ_i,w_i) corresponding to Z_i, $i = 1,2$, then $Z \cong Z_1 \# Z_2$.

For (a), given any $r \geq 0$ and finite abelian group G, Crowley [6, §2.1] constructs a compact, connected, simply-connected, spin 5-manifold Z' with $H_2(Z') \cong \mathbb{Z}^r \oplus G \oplus G$ as follows: starting from $\mathbb{Z}^r \oplus G \oplus G$ he constructs a finite CW-complex C with only 2- and 3-cells, chooses an embedding $C \hookrightarrow \mathbb{R}^6$, takes D to be a regular open neighbourhood of C in \mathbb{R}^6, so that ∂D is a compact 6-manifold with boundary, and defines $Z' = \partial D$. The result of Smale referred to above implies that for Z as in the proposition with $k = 0$, there is a diffeomorphism $\iota : Z \to Z'$. Then $\iota : Z \to \mathbb{RP}^5 \subset S^6$ is an embedding with trivial normal bundle \mathbb{R}. The rest of (a) is immediate.

For (b)–(c), for Z as in the proposition with $k \neq 0$ so $r \geq 1$, we may split

$$(H_2(Z,\mathbb{Z}),w_2(Z) \cdot) \cong (\mathbb{Z},k \mod 2) \oplus (\mathbb{Z}^{r-1} \oplus G \oplus G,0).$$
Then as above we have $Z \cong Z_1 \# Z_2$ for Z_1, Z_2 with $H_2(Z_1, \mathbb{Z}) \cong \mathbb{Z}$, $w_2(Z_1) = k \mod 2$, $H_2(Z_2, \mathbb{Z}) \cong \mathbb{Z}^{r-1} \oplus G \oplus G$, $w_2(Z_2) = 0$. This is only valid if Z_1, Z_2 exist with these invariants, but we justify this shortly.

In case (b), when $w_1(Z_1) = 0$ as k is even, we may take $Z_1 = \mathbb{C}P^1 \times S^3$, with an embedding $\iota_1 : Z_1 \to \mathbb{C}P^1 \times S^4$ from the identity on $\mathbb{C}P^1$ and the equator embedding $S^3 \hookrightarrow S^4$. Part (a) gives a 5-manifold Z_2 with $H_2(Z_2, \mathbb{Z}) \cong \mathbb{Z}^{r-1} \oplus G \oplus G$ and $w_2(Z_2) = 0$, and an embedding $\iota_2 : Z_2 \hookrightarrow S^6$. Taking connected sums of both 5- and 6-manifolds gives an embedding

$$Z_1 \# Z_2 \hookrightarrow (\mathbb{C}P^1 \times S^4) \# S^6 \cong \mathbb{C}P^1 \times S^4.$$

For Z as in part (b), the diffeomorphism $Z \cong Z_1 \# Z_2$ gives an embedding $\iota : Z \hookrightarrow \mathbb{C}P^1 \times S^4$, with trivial normal bundle \mathbb{R}. The pullback ι^* in

$$\iota^* : H^2(\mathbb{C}P^1 \times S^4) \cong \mathbb{Z} \longrightarrow H^2(Z, \mathbb{Z}) \cong H^2(Z_1, \mathbb{Z}) \oplus H^2(Z_2, \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}^{r-1}$$

acts by $a \mapsto (a, 0, \ldots, 0)$. Hence $\iota^*(\pi_{\mathbb{C}P^1}^*(O(k))) = (k, 0, \ldots, 0) = c_1(L)$, which implies that $(\pi_{\mathbb{C}P^1} \circ \iota)^*(O(k)) \cong L$. The rest of (b) is immediate.

In case (c), when $w_1(Z_1) = 1 \mod 2$ as k is odd so Z_1 is not spin, as in Crowley \cite{Crowley}*{§2} we take $\pi_{\mathbb{C}P^1} : Z_1 \to \mathbb{C}P^1$ to be the nontrivial S^3-bundle over $\mathbb{C}P^1$ (this is X_{∞} in Crowley’s notation), defined as in the proposition with $S^3, \text{SO}(4)$ in place of $S^4, \text{SO}(5)$. For $\pi_{\mathbb{C}P^1} : Y \to \mathbb{C}P^1$ as in the proposition, there is a natural embedding $\iota_1 : Z_1 \to Y$ with $\pi_{\mathbb{C}P^1} \circ \iota_1 = \pi_{\mathbb{C}P^1}$, which embeds the S^3 fibres of $\pi_{\mathbb{C}P^1} : Z_1 \to \mathbb{C}P^1$ as equators in the S^4 fibres of $\pi_{\mathbb{C}P^1} : Y \to \mathbb{C}P^1$. The rest of (c) follows (b), replacing $\pi_{\mathbb{C}P^1} : \mathbb{C}P^1 \times S^4 \to \mathbb{C}P^1$ by $\pi_{\mathbb{C}P^1} : Y \to \mathbb{C}P^1$.

For the last part, in (a) we have $X' = S^8$, which is compact, oriented and spin, with $H^{\text{odd}}(X', \mathbb{Z}) = 0$. In (b) we have a fibration $\mathbb{C}P^1 \hookrightarrow X' \to \mathbb{C}P^1 \times S^4$, so X' is compact and oriented as $\mathbb{C}P^1, \mathbb{C}P^1 \times S^4$ are, and $H^{\text{odd}}(X', \mathbb{Z}) = 0$ by the Leray–Serre spectral sequence as $H^{\text{odd}}(\mathbb{C}P^1, \mathbb{Z}) = H^{\text{odd}}(\mathbb{C}P^1 \times S^4, \mathbb{Z}) = 0$. We can also show $w_2(X') = 0$ as k is even, so X' is spin.

In case (c) we have fibrations $\mathbb{C}P^1 \hookrightarrow X' \to Y$ and $S^4 \to Y \to \mathbb{C}P^1$, so X' is compact and oriented with $H^{\text{odd}}(X', \mathbb{Z}) = 0$ as in (b). It is less obvious that X' is spin, since Y is not. The composition $X' \to Y \to \mathbb{C}P^1$ induces a pullback map $(0, 1) = H^2(\mathbb{C}P^1, \mathbb{Z}_2) \to H^2(X', \mathbb{Z}_2)$. We can compute $w_2(X')$, and we find that Y being non-spin, and k being odd, both contribute the image of $1 \in H^2(\mathbb{C}P^1, \mathbb{Z}_2)$ to $w_2(X') \in H^2(X', \mathbb{Z}_2)$, but the sum of these contributions is 0, so $w_2(X') = 0$ and X' is spin. This completes the proof.

Now let us return to the situation of Step 6, with $Z \subset X$ a compact, connected, simply-connected, oriented, embedded 5-submanifold, and $\psi : Z \to \mathbb{C}P^2$ a smooth map, such that the normal bundle ν_Z of Z in X is $\nu_Z \cong \mathbb{R} \oplus \psi^*(\mathcal{O}(1))$, and $w_2(Z)$ is the image of $c_1(\psi^*(\mathcal{O}(1)))$ in $H^2(Z, \mathbb{Z}_2)$. Proposition \ref{2.2} with $L = \psi^*(\mathcal{O}(1))$ constructs a compact, oriented, spin 8-manifold X' with $H^{\text{odd}}(X', \mathbb{Z}) = 0$ and an embedding $j : Z \to X'$ with normal bundle $\nu'_{X'} \cong \mathbb{R} \oplus \psi^*(\mathcal{O}(1))$, so the normal bundles of Z in X and X' agree. Hence we can choose tubular neighbourhoods U, U' of Z in X, X' and an orientation-preserving diffeomorphism $\iota : U \to U'$.
Choose Riemannian metrics g, g' on X, X' such that i identifies $g|U$ with $g'|U'$, and let E_0, E_0' be the positive Dirac operators of g, g'. Since Z and hence U, U' are simply-connected, the spin structures on U, U' are unique, and so i is also spin-preserving, and thus identifies $E_0|U$ and $E_0'|U'$.

As in Step 5 we have $\Phi : X \to \text{SU}(4)$ with $\Phi^{-1}(Y_1) = Z$ and $\Phi^{-1}(Y_2) = \Phi^{-1}(Y_3) = \emptyset$, so that $X \setminus Z = \Phi^{-1}(Y_0)$. But Y_0 retracts to $\{\text{Id}\}$ in $\text{SU}(4)$ by Step 3(iii). Thus we may deform Φ in its isotopy class to make $\Phi \equiv \text{Id}$ except close to Z, so we can choose an open set V in X such that $X = U \cup V$, and $Z \cap V = \emptyset$, and deform Φ so that $\Phi|_V \equiv \text{Id}$.

Define $V' = i(U \cap V) \cup (X' \setminus U')$. Then $V' \subset X'$ is open with $X' = U' \cup V'$, and i identifies $U \cap V$ with $U' \cap V'$. Define $\Phi' : X' \to \text{SU}(4)$ by $\Phi'|_{U'} = \Phi \circ i^{-1}$ and $\Phi'|_{V'} \equiv \text{Id}$. Then Φ' is smooth, and i identifies $\Phi|_U$ and $\Phi'|_{U'}$.

Let $Q \to X \times S^1, q : Q|_{X \times \{1\}} \cong (X \times \{1\}) \times SU(4) = P$ and $Q' \to X' \times S^1, q' : Q'|_{X' \times \{1\}} \cong (X' \times \{1\}) \times SU(4) = P'$ correspond to $\Phi : X \to SU(4)$ and $\Phi' : X' \to SU(4)$ by the 1-1 correspondence between (b),(c) in Step 2. Then the diffeomorphism $i : U \to U'$ identifying $\Phi|_U$ and $\Phi'|_{U'}$ induces an isomorphism $i \times \text{id}_{S^1} : U \times S^1 \to U' \times S^1$, and an isomorphism $\sigma : Q|_{U \times S^1} \to (i \times \text{id}_{S^1})^*Q'|_{U \times S^1}$ of principal SU(4)-bundles over $U \times S^1$ compatible with $q|_{U \times \{1\}}, q'|_{U' \times \{1\}}$. Also $\Phi|_V \equiv \text{Id}$ and $\Phi'|_{V'} \equiv \text{Id}$ induce trivializations $\tau : Q|_{V \times S^1} \to V \times S^1 \times SU(4), \tau' : Q'|_{V' \times S^1} \to V' \times S^1 \times SU(4)$, compatible with $q|_{V \times \{1\}}, q'|_{V' \times \{1\}}$ and $\sigma|_{(U \times V) \times S^1}$.

Choose a partial connection ∇_Q^X on $Q \to X \times S^1$ in the X directions, such that $\nabla_Q^X|_{X \times \{1\}}$ is identified with ∇^0 under q, and $\nabla_Q^X|_{V \times S^1}$ is identified with $\nabla^0|_{V \times S^1}$ under τ. Then there is a unique partial connection ∇_Q^X on $Q' \to X' \times S^1$ in the X' directions, such that $\nabla_Q^X|_{X' \times \{1\}}$ is identified with ∇^0 under q', and $\nabla_Q^X|_{V' \times S^1}$ is identified with $\nabla^0|_{V' \times S^1}$ under τ', and $\nabla_Q^X|_{U \times S^1}$ is identified with $\nabla^0|_{U \times S^1}$ under σ.

The 1-1 correspondence between (a),(b) in Step 2 identifies Q, q, ∇_Q^X and $Q', q', \nabla_Q^{X'}$ with loops $\gamma : S^1 \to M_P$ and $\gamma' : S^1 \to M_{P'}$ based at $[\nabla^0]$, where $P = X \times SU(4)$ and $P' = X' \times SU(4)$ are the trivial SU(4)-bundles over X, X'.

For each $z \in S^1$ we have principal SU(4)-bundles $Q|_{X \times \{z\}} \to X, Q'|_{X' \times \{z\}} \to X'$ with connections $\nabla_Q^X|_{X \times \{z\}}, \nabla_Q^{X'}|_{X' \times \{z\}}$ representing points $\gamma(z) \in M_P$ and $\gamma'(z) \in M_{P'}$. Apply the Excision Theorem, Theorem 2.1, to these, with $X, X', E_0, E_0', SU(4), Q|_{X \times \{z\}}, Q'|_{X' \times \{z\}}, U, V, U', V', \sigma|_{U \times \{z\}}, \tau|_{V \times \{z\}}, \tau'|_{V' \times \{z\}}$ in place of $X^+, X^-, E_0^+, E_0^-, G, P^+, P^-, U^+, U^-, V^+, V^-, \sigma^+, \sigma^-, \tau^+, \tau^-$. This gives an isomorphism of Z_2-torsors $\Omega_\gamma : \hat{\Omega}_P^E|_{\gamma(z)} \cong \hat{\Omega}_{P'}^{E'}|_{\gamma'(z)}$.

Theorem 2.1(i) implies that Ω_γ varies continuously with $z \in S^1$. Hence the monodromy of $\hat{\Omega}_{P'}^{E'}$ around γ in M_P, which is $\Theta([\gamma])$ in the notation of Step 2, equals the monodromy $\Theta([\gamma'])$ of $\hat{\Omega}_P^E$ around γ' in $M_{P'}$. But $M_{P'}$ is orientable by $\text{2.1}(x)$ as $H^{\text{odd}}(X', Z) = 0$, so $\Theta([\gamma']) = 1$, and thus $\Theta([\gamma]) = \Theta([\Phi]) = 1$. Since this holds for all $[\Phi] \in [X, SU(4)]$ with $\kappa([\Phi]) = 0$, Step 4 implies that M_P is orientable when X is simply-connected, completing Step 6.
References

