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Abstract

There are two parts to this thesis. In the first part, three different methods are given to construct

hypercomplex and quaternionic manifolds. The first method, a quotient construction, is similar to the

quotient constructions defined for hyperkähler manifolds by Hitchin et al. and for quaternionic Kähler

manifolds by Galicki and Lawson. The second method involves constructing one hypercomplex or quater-

nionic manifold from another such manifold equipped with a group action and an ‘instanton’ connection,

and the third method uses the structure theory of Lie groups to define hypercomplex and quaternionic

structures on homogeneous manifolds.

As an application of these methods it is shown that there exist compact, simply-connected, irreducible,

inhomogeneous hypercomplex and quaternionic manifolds in all dimensions greater than four, and that

there are many homogeneous hypercomplex and quaternionic manifolds. In dimension four the methods

produce families of self-dual conformal metrics upon nCP2, including LeBrun’s metrics and some new

self-dual metrics. Nontrivial families of many anticommuting complex structures upon open manifolds are

also constructed.

The second part of the thesis presents explicit analytic constructions of metrics of constant scalar

curvature, in the conformal class of a connected sum of constant scalar curvature manifolds. As well as

verifying the solution of the Yamabe problem in some specific cases, the work shows how Yamabe metrics

behave as the underlying conformal structure develops ‘long necks’, and enables the construction of many

metrics of constant, positive scalar curvature that are not Yamabe metrics, as they are not absolute minima

of the Hilbert action.
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Introduction

This thesis is of two independent parts, with no cross-references, so that each part makes sense on

its own as a complete piece of work. The first part, referred to as Part I, is on the subject of quater-

nionic geometry, and its main accomplishment is the construction of many examples of hypercomplex and

quaternionic manifolds. The second part, referred to as Part II, is about finding metrics of constant scalar

curvature in the conformal class of a Riemannian manifold constructed as a connected sum. We shall

shortly introduce the two parts in more depth separately.

The connections between the two parts are the emphasis on conformal geometry, for 4-dimensional

quaternionic geometry is self-dual conformal geometry, and in particular on connected sums and decays

of conformal manifolds, which come into the first part as a main theme running through the work on

connected sums of copies of CP2. Apart from this, the methods used are quite different, the first part

coming under the heading of Geometry and the second under the heading of Analysis, and the conformal

geometry of the second part is much more general, applying to conformal manifolds of dimensions other

than four.

Introduction to Part I

The field of quaternionic geometry is the study of four different geometric structures on manifolds, the

hypercomplex, hyperkähler, quaternionic and quaternionic Kähler structures. A hypercomplex manifold is

a manifold M with three complex structures I1, I2, I3 satisfying the quaternion relations I1I2 = −I2I1 = I3.

Equivalently, it is a manifold with a GL(n,H)- structure preserved by a torsion-free connection. Similarly,

a quaternionic manifold is a manifold with a GL(n,H)GL(1,H)- structure preserved by a torsion-free

connection. In four dimensions, a quaternionic manifold is a self-dual conformal manifold. Hyperkähler

and quaternionic Kähler manifolds are respectively hypercomplex and quaternionic manifolds that also

possess a compatible Riemannian metric, whose Levi-Civita connection preserves the G- structure.

Hyperkähler and quaternionic Kähler manifolds are already well studied, and much work has been

done on both their general theory and the construction of examples. In contrast, very little is known

about examples of hypercomplex and quaternionic manifolds except in dimension four, and the subject

has not received much attention. The purpose of the first part of this thesis is to remedy this by developing
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Introduction 2

a battery of techniques for constructing and modifying hypercomplex and quaternionic manifolds, each

technique being based upon something from self-dual, hyperkähler or quaternionic Kähler geometry.

By applying these we shall show that higher-dimensional, compact examples of the manifolds are

numerous and varied. A difference between the world of hyperkähler and quaternionic Kähler geometry

and the world of hypercomplex and quaternionic geometry will become apparent: in each case the absence

of metrics gives the theory a much more flexible character, in that we are free to choose data for each

construction that is predetermined in the metric case.

To construct hypercomplex and quaternionic manifolds, three main techniques will be used. The first

of these techniques involves quotient constructions. A quotient construction, or reduction, is a process

which, given a manifold with a structure such as a symplectic or a hyperkähler structure that is preserved

by the action of a Lie group, produces a manifold of lower dimension with the same type of structure. The

new manifold is a quotient of a submanifold of the original manifold by the Lie group.

The idea originally arose in classical mechanics: if a mechanical system moving under Hamilton’s

equations has a symmetry, then there is an associated momentum that is conserved. It can be shown

that restricting to states of the system for which this momentum takes some fixed value, and dividing

by the symmetry, gives a new system of a lower dimension that also satisfies Hamilton’s equations. Now

Hamilton’s formulation of classical mechanics is really symplectic geometry in disguise, and this device

is a method for constructing a lower-dimensional symplectic manifold from a symplectic manifold with

symmetry. In this geometrical guise it is called the Marsden-Weinstein reduction [MW].

Similar reductions exist for geometric structures related to symplectic structures, such as Kähler,

hyperkähler and quaternionic Kähler structures. The idea of momentum has been brought from mechanics

into this setting, and so each construction works by defining a moment map, and dividing the zeros of

this by the symmetry group. Reductions for hypercomplex and quaternionic manifolds will be described

that are closely related to the known reductions for hyperkähler and quaternionic Kähler manifolds. The

technical innovation that makes them possible is a new definition of moment map in the metric-free setting.

For the known reductions, the moment map is defined up to a constant by the group action and

the geometric structures. In the new cases, the moment map is defined to be a solution of a differential

equation involving the group action and the geometric structures, but this equation is not strong enough

to determine the solution up to a constant. There may therefore be many solutions to the equation, or

none, and to perform the quotient a moment map must be taken as part of the data, along with the
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manifold and the group action. The new definition of moment map is rather different from the original

concept in mechanics, but we have chosen to retain the name anyway.

The second technique for constructing hypercomplex and quaternionic structures is that of twisting

constructions. Suppose that M is a manifold with a smooth action Ψ of a Lie group G. Let P be a

principal G- bundle over M , with a given lifting of the action Ψ to P . The Lie group G thus acts on the

total space of P in two different ways: there is the lifted action Ψ, and also an action from the principal

bundle structure, which we will call Φ. Dividing the total space of P by the action Φ recovers the manifold

M . But one may also divide P by the action Ψ, or the diagonal action of G combining Φ and Ψ. If the

action is free and G is compact, then a new manifold N will result that may be different from M . We say

that N is M twisted by P , using the action Ψ.

It will be shown that if M is a hypercomplex or quaternionic manifold, and P carries a Ψ- invariant

connection that is quaternionic (a generalization of instantons) then one can define a hypercomplex or

quaternionic structure on N that is nonsingular wherever the connection is transverse to the group action

in a suitable sense. This idea is a generalization to the quaternionic case of a process described by Jones

and Tod [JT] for constructing a self-dual conformal metric from a magnetic monopole on an Einstein-Weyl

space.

Using this construction compact hypercomplex and quaternionic manifolds can be made in all dimen-

sions greater than four, that are simply-connected, not homogeneous, and not (even locally) hyperkähler or

quaternionic Kähler. We believe that these are the first such examples to be described in higher dimensions.

For comparison, the only known examples of compact quaternionic Kähler manifolds with positive scalar

curvature are Riemannian symmetric spaces. The quaternionic Kähler Riemannian symmetric spaces have

been classified ([Bs], §14E), and there is a short list given in Table 14.52 of [Bs]. The classification depends

upon that of compact Lie groups, for it turns out that exactly one quaternionic Kähler symmetric space

can be made from each compact semisimple Lie group.

The third technique for constructing hypercomplex and quaternionic manifolds is the use of Lie

algebra theory to find homogeneous hypercomplex and quaternionic structures on compact Lie groups and

homogeneous spaces. We have just remarked that many Riemannian symmetric spaces are quaternionic

Kähler. These turn out to be the most basic examples of large families of hypercomplex and quaternionic

structures on compact groups and homogeneous spaces.
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Also in this part we prove that nontrivial examples of manifolds with four or more anticommuting

complex structures exist, using the last two techniques discussed above. Moreover, some of them can be

made compact. I hope that these will be of use to physicists working in the field of supersymmetry, where

attempts have already been made to construct examples of this sort, but without success.

Much of the material in the first part of the thesis is contained in the author’s three papers [J1], [J2],

[J3]; broadly speaking, [J1] has become Chapter 2, [J2] Chapters 3 and 5, and [J3] Appendix B.

Introduction to Part II

In the second part of the thesis we consider another topic, that of Riemannian manifolds with constant

scalar curvature. The Yamabe problem, first proposed by Yamabe in 1960, is to find a metric of constant

scalar curvature within the conformal class of any given compact conformal manifold of dimension at least

three. There is a functional Q upon the space of Riemannian metrics on a compact manifold M called

the Hilbert action, whose critical points on any conformal class are exactly the metrics of constant scalar

curvature in that class. Yamabe’s approach was to try to use analysis to construct an absolute minimum

of the Hilbert action, which would then automatically be a critical point and so have constant scalar

curvature. Such a minimal metric is called a Yamabe metric.

Although Yamabe failed to solve the problem, progress was made by many authors, and the solution

was completed in 1984. In our second part we shall use analysis to construct constant scalar curvature

metrics on connected sums of Riemannian manifolds of constant scalar curvature, without invoking the

solution to the Yamabe problem. (Connected sums are defined in §4.1.) The existence proofs we give are

of course somewhat simpler than the solution of the Yamabe problem, as to invoke the solution to prove

existence would be using a powerful tool to do an easy job.

Our results do verify the solution of the Yamabe problem in some particular cases, but they do

more than that. For we are able to describe explicitly what happens to Yamabe metrics as the underlying

conformal manifold decays into a connected sum; we can for instance say that one obvious sort of behaviour,

that of developing long ‘tubes’ resembling Sn−1 ×R as Riemannian manifolds, does not happen, but that

small ‘pinched necks’ may develop instead, or else one part of the manifold may be crushed very small by

the conformal factor.

Also, it will be shown that positive scalar curvature metrics exist that are not covered by the Yamabe

problem, as they are higher stationary points of the Hilbert action, and not minima. And although Yamabe

metrics may be expected to be generically unique, we shall produce general codimension one examples
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where there are two Yamabe metrics. In the final chapter we shall formulate a conjecture about the

number of stationary points of the Hilbert action in any conformal class, counted with appropriate signs.

These ideas are interesting because the non-uniqueness of constant scalar curvature metrics in the positive

case is not well understood, and data like this may help to build up a picture.

Our method of proof has two stages. Firstly, a metric on the connected sum will be written down whose

scalar curvature approximates a constant function; such metrics will often be referred to as approximate

metrics. This can be done because it is assumed that the component manifolds already have constant

scalar curvature, and so it is only the scalar curvature upon the small region of joining that we have to

worry about. Secondly, it will be shown that any Riemannian manifold with scalar curvature sufficiently

close to constant — where ‘sufficiently close’ depends on other geometrical invariants of M — can be

adjusted by a small conformal change to give a metric of constant scalar curvature.

The families of metrics defined in the first stage are of three sorts. The first sort consists of a small

asymptotically flat manifold of zero scalar curvature glued into a small hole in a Riemannian manifold

with a fixed metric of constant scalar curvature, and the second sort consists of two Riemannian manifolds

with fixed metrics of equal constant scalar curvature, with a small hole cut out of each, joined by a small

‘neck’. This will be more easily understood by looking at the series of diagrams in §11.1. Using these

two families we can, in the positive scalar curvature case, define three different families of approximate

metrics in the same conformal classes, and so get three distinct metrics of constant scalar curvature in

each conformal class.

The third sort is an oddity, what you get when you glue a zero scalar curvature manifold into a

negative scalar curvature manifold. The zero scalar curvature manifold is shrunk small by a homothety,

and is glued into the negative scalar curvature manifold by a ‘neck’ that is still smaller.

The second stage applies to any compact Riemannian manifold with scalar curvature sufficiently close

to constant – connected sums are just the application we are interested in. Thus the results could in

principle be used in other situations, for instance to give an alternative proof of known results on the

existence of a nearby metric of constant scalar curvature in every nearby conformal class, and perhaps

also for more general surgeries on Riemannian manifolds than connected sums.

The main result of the second stage is proved by a sequence method. We extract from the geometry

an equation that the small conformal change must satisfy, write the equation in terms of an invertible

linear operator and an ‘error term’, and then inductively define a sequence of functions that converge to a
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suitable conformal change function when the error term is sufficiently small. As this error term depends

on the difference between the scalar curvature and its average value, it is small when the scalar curvature

is close to being constant.

What we do in this part is not dissimilar to the work of Floer in [F] and Donaldson and Friedman in

[DF], except that the problem we consider is a lot easier. In these papers the authors construct self-dual

metrics on the connected sum with small neck of two self-dual 4-manifolds. Our problem substitutes the

simple condition of constant scalar curvature for the complex condition of self-dual curvature.

My motivation for undertaking the work of the second part was firstly to acquire some knowledge and

experience of analytical methods, which I hope to be able to apply to geometrical questions, and secondly

and more specifically, to try using constant scalar curvature metrics as a tool to understand better the

decays possible at the edges of moduli spaces of self-dual metrics on 4-manifolds. It is difficult to get a

handle upon conformal geometry, precisely because there is no easy way of assigning sizes to things, and

by choosing a preferred metric in the conformal class, this problem at once disappears. The solution of the

Yamabe problem makes constant scalar curvature metrics an obvious choice for these preferred metrics.

There may also be a way to relate the constant scalar curvature condition to self-duality; for instance,

a zero scalar curvature metric upon a self-dual conformal manifold has self-dual Levi-Civita connection

upon one of its spin bundles, and so zero scalar curvature metrics on a self-dual 4-manifold translate to

some holomorphic object on the twistor space, by the Penrose transform. We note that King and Kotschick

use constant scalar curvature metrics in the way suggested above, to study the moduli space of self-dual

structures on a 4-manifold ([KK], §3).

Overview of Part I

The introductory chapter, Chapter 1, discusses different ways of defining the four geometric structures,

and reviews the idea of a twistor space, and the quotient constructions that are known already. In Chapter

2, quotient constructions for hypercomplex and quaternionic manifolds are described. They are similar to

the known quotient constructions for hyperkähler and quaternionic Kähler manifolds, and the new idea is

the definition that will be given for moment maps in the metric-free setting.

Chapter 3 is on the subject of twisting constructions. Suppose that M is a hypercomplex or quater-

nionic manifold with a G- bundle P and a smooth action of G for some Lie group G, and that P carries

a quaternionic connection, invariant under the group action. Let N be M twisted by P under this group
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action. Then we shall define a hypercomplex or quaternionic structure on N , that is nonsingular wherever

the connection is transverse to the group action in a suitable sense. Using this construction many compact,

simply-connected hypercomplex and quaternionic manifolds will be made, in all dimensions greater than

four.

Chapter 4 is a chapter of examples. We apply the work of Chapters 2 and 3 to construct explicit

examples of self-dual conformal structures upon complex weighted projective spaces, and the compact

4-manifolds nCP2. Families of such metrics have already been found by Poon and LeBrun, and we show

that the known metrics may all be constructed both by using the methods of Chapter 2 and also using

the methods of Chapter 3, and moreover that these methods construct other families of self-dual metrics

on nCP2, that I believe are new.

In Chapter 5 the theory of compact, homogeneous hypercomplex and quaternionic manifolds will be

developed, using the structure theory of Lie groups. To do this we shall draw upon results about compact

homogeneous complex manifolds, which are already well understood. To close the first part, Chapter

6 considers the most natural generalization of hypercomplex manifolds, that of manifolds with several

anticommuting complex structures. Using material from Chapters 3 and 5 we show that there do indeed

exist collections of arbitrarily many anticommuting complex structures on manifolds, that are not locally

flat, and that a few of these examples can be made compact.

The appendices to Part I are Appendix A and Appendix B. Appendix A offers an alternative proof for

a theorem in Chapter 3. Appendix B outlines a method for using the quotient constructions of Chapter

2 to make self-dual metrics on 4-manifolds and orbifolds, in particular upon connected sums of CP2’s.

We show that all LeBrun’s metrics on nCP2 [L2] arise as quaternionic quotients of HPn+1 by U(1)n, and

explain how to construct some new families of metrics on nCP2, which have also been described by a

twisting method in Chapter 4.

Overview of Part II

The background to the problem is contained in Chapter 7, which introduces the Yamabe problem

and the analytical tools such as Sobolev spaces and embedding theorems to be used later. We look at

asymptotically flat manifolds in some detail, as they are important in the sequel. Chapter 8 then defines

two families of approximate metrics upon connected sums, makes estimates of the scalar curvature of the

metrics, and proves a uniform bound on a Sobolev constant for a particular embedding of Sobolev spaces,

that is needed in the next chapters.
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The main existence results for metrics of constant scalar curvature conformal to the approximate

metrics above are proved in Chapter 9. We begin with a quite general existence proof and then apply it,

first to the case of scalar curvature −1, and then to the case of scalar curvature 1. The former case is

simple, but the latter is more difficult, and the proof of a result on the eigenvalues of the Laplacian ∆ on

approximate metrics in the positive case has been deferred until Appendix D, as it is long and not easy

to follow.

In Chapter 10 we deal with the exceptional cases left over from Chapter 9, which are all the connected

sums involving manifolds of zero scalar curvature. It will be seen in Chapter 9 that positive and negative

scalar curvature manifolds behave rather differently, and the zero scalar curvature cases, being the junction

between them, behave differently again. The first two cases, the connected sum of a Riemannian manifold

of zero scalar curvature and one of positive scalar curvature, and the connected sum of two Riemannian

manifolds of zero scalar curvature, turn out to give metrics with small, constant negative scalar curvature.

The second case has the attractive property of balancing the volumes of the component manifolds in the

connected sum. The third case, the connected sum of a zero scalar curvature manifold and a negative

scalar curvature manifold, is also interesting.

The main text closes in Chapter 11 with diagrams of the different approximate metrics, as a visual

aid, and some discussion of issues raised by the results of the second part. The appendices to Part

II are Appendix C and Appendix D. The first sketches a proof for a Sobolev embedding theorem for

asymptotically flat manifolds, that I have been unable to find a reference for. The second proves results

on the spectrum of the Laplacian on connected sums, that were deferred from Chapters 9 and 10.



Part I: Hypercomplex and Quaternionic Manifolds

Chapter 1: Background Material for Part I

This chapter goes briefly over some topics in quaternionic geometry, setting down definitions and ideas

for use in Chapters 2-6. In §1.1 we define four different geometric structures on manifolds based on the

quaternions, the hypercomplex, hyperkähler, quaternionic and quaternionic Kähler structures, and review

alternative ways of making the definitions. Section 1.2 explains how the concept of twistor space arising in

4-dimensional self-dual geometry, which encodes the conformal structure of a self-dual 4-manifold in the

complex structure of a complex 3-manifold, may be extended to the four types of manifold in a natural

way. Finally, §1.3 summarizes several different quotient constructions, which are a means of taking a

manifold with a particular geometric structure and a symmetry group, and generating another manifold

of smaller dimension with the same structure.

1.1. Definitions

To begin with we shall explain several equivalent ways of defining hypercomplex, hyperkähler, quater-

nionic and quaternionic Kähler manifolds. Here and throughout manifolds will be taken to be smooth and

connected, and objects such as bundles and sections or subbundles of bundles will be taken to be smooth

unless stated otherwise. A good reference for the material in this section is [S2], Chapters 8 and 9.

We will write the quaternions H, invented by Hamilton, as

H = {a + bi1 + ci2 + di3 : a, b, c, d ∈ R},

which are a real vector space in the obvious way, and become a unital, non-commutative algebra under

the quaternion relations

i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2.

The unit quaternions {a + bi1 + ci2 + di3 ∈ H : a2 + b2 + c2 + d2 = 1} are a subgroup of H under

multiplication, isomorphic to SU(2). The imaginary quaternions are those for which a = 0. There is a

natural norm upon H, satisfying ‖q1q2‖ = ‖q1‖ · ‖q2‖, given by ‖a + bi1 + ci2 + di3‖2 = a2 + b2 + c2 + d2.

9
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In what follows, modules over H will always be left modules, so the quaternions will act by multiplication

on the left.

Now real manifolds can be thought of as spaces that are modelled locally upon vector spaces over

R, and Riemannian manifolds as spaces modelled locally upon normed vector spaces over R. Similarly,

complex manifolds are spaces modelled locally upon vector spaces over C, and Kähler manifolds spaces

modelled locally upon normed vector spaces over C. These four structures on manifolds have proved to

be of great interest. As the quaternions are in some sense the next step up from the real and the complex

numbers, it is worthwhile to look for suitable definitions for spaces modelled locally upon H- modules and

normed H- modules (i.e. Hn).

1.1.1. Hypercomplex and hyperkähler manifolds

The most natural quaternionic analogues of complex and Kähler manifolds are called hypercomplex

and hyperkähler manifolds. A hypercomplex manifold M ([S2], p. 137; [S3], §6) is defined to be a 4n-

dimensional manifold M with 3 integrable complex structures I1, I2, I3 that satisfy the quaternion relations

I1I2 = I3, I3I1 = I2, I2I3 = I1. A hyperkähler manifold ([HKLR] p. 538; [S2], p. 114) is defined to be

a 4n- dimensional manifold M with 3 integrable complex structures I1, I2, I3 satisfying the quaternion

relations, and a Riemannian metric g preserved by and Kähler w.r.t. each Ii. Thus a hyperkähler manifold

is a hypercomplex manifold with an extra structure, a metric that satisfies a condition. The simplest

hyperkähler manifolds are the H- modules Hn. Pseudo-hyperkähler manifolds are defined in the obvious

way using a pseudo-Riemannian metric.

An important feature of real and complex manifolds that does not hold for hypercomplex manifolds

is that real and complex manifolds are locally trivial — a sufficiently small neighbourhood of any point in

a real or complex manifold is isomorphic to a standard model — whereas hypercomplex manifolds are not,

and have local structure and curvature. A calculation using the Bianchi identity shows that hyperkähler

manifolds are Ricci-flat. Four-dimensional hyperkähler manifolds can be defined in another way: a self-

dual, Ricci-flat manifold is (locally) hyperkähler. The extra structure comes from the fact that these two

curvature conditions imply that the Levi-Civita connection upon one of the spin bundles is flat, and hence

(locally) has a natural trivialization, and on a conformal 4-manifold a trivialization of one of the spin

bundles defines an almost hypercomplex structure.

At this point our conventions on orientation should be explained. On the one hand, a complex

structure (and hence also a hypercomplex structure) on a manifold naturally defines an orientation. With
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respect to this natural complex orientation a hyperkähler 4-manifold is anti-self-dual. On the other hand, it

is usual to define four-dimensional quaternionic manifolds to be self-dual, and self-dual conformal structures

are usually studied in preference to anti-self-dual ones. To reconcile these two points of view we will define

the orientation of a hypercomplex or a hyperkähler manifold to be the opposite of the natural complex

orientation, and then we may continue to talk of self-duality rather than anti-self-duality.

Each hypercomplex manifold has a unique torsion-free connection ∇M called the Obata connection

([S3], §6) satisfying ∇MIi = 0. Conversely, a manifold M that has three almost complex structures

I1, I2, I3 satisfying I1I2 = I3 and a torsion-free connection ∇M with ∇MIi = 0 is hypercomplex, for

∇MIi = 0 implies that Ii is integrable. This gives a second definition of hypercomplex manifold. For a

hyperkähler manifold this unique connection is the Levi-Civita connection ∇, and a second definition of

hyperkähler manifold is a Riemannian manifold M with metric g and three almost structures I1, I2, I3

satisfying I1I2 = I3 and ∇Ii = 0.

1.1.2. Quaternionic and quaternionic Kähler manifolds

We now come to quaternionic and quaternionic Kähler manifolds, whose definitions are more difficult

to motivate. The main reason for introducing them will be explained more fully in the next section, and

is this: quaternionic and quaternionic Kähler structures possess in higher dimensions the main distinc-

tive features of the geometry of self-dual conformal and self-dual Einstein structures respectively in four

dimensions.

For n ≥ 2, a quaternionic structure ([S2], p. 135; [S3], Definition 1.1) on a 4n- dimensional manifold

M is defined to be a vector subbundle G of End(TM) allowing at each point a basis I1, I2, I3 of almost

complex structures satisfying I1I2 = I3, that admits a torsion-free connection ∇M preserving G. This

connection is not in fact unique, which is why we do not include it in the structure but only require that

it should exist.

The condition involving the connection ∇M is a sort of integrability condition, as it implies that the

bundle of almost complex structures in G should possess a local section through each point that is an

integrable complex structure.

For n ≥ 2, a quaternionic Kähler structure ([S1], p. 143; [S2], p. 124) on a 4n- dimensional manifold

M is defined to be a Riemannian metric g together with a vector subbundle G of End(TM) allowing at

each point a basis I1, I2, I3 of almost complex structures preserving g and satisfying I1I2 = I3, such that

the Levi-Civita connection ∇ preserves G.
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Thus a quaternionic Kähler manifold is a quaternionic manifold M together with a metric g preserved

by the complex structures in G, such that ∇M is the Levi-Civita connection of g. Again, the Bianchi

identity implies that quaternionic Kähler manifolds are Einstein. The model examples of quaternionic

Kähler manifolds are the quaternionic projective spaces HPn, which are defined by

HPn = (Hn+1 \ {0})/H∗, where the non-zero quaternions H∗ act by left multiplication upon Hn+1.

In four dimensions we make the special definitions that a quaternionic manifold is a self-dual conformal

manifold and a quaternionic Kähler manifold is a Riemannian manifold that is self-dual and Einstein.

(Self-duality is treated in the next section.)

1.1.3. Connections and G- structures

The four geometric structures defined above appear fairly dissimilar – the only obvious unifying

factor is the existence at each point of three complex structures I1, I2, I3 satisfying I1I2 = I3. These in

fact make the tangent space into a left H- module: if a + bi1 + ci2 + di3 ∈ H and v ∈ TxM one can define

(a + bi1 + ci2 + di3) · v = av + bI1v + cI2v + dI3v, which is a left action of H.

However, a striking similarity in the definitions may be brought out by reformulating them in the

language of G- structures and special holonomy. If G is a Lie group, a G- structure Q on a manifold M

is a principal bundle Q over M with group G, that is a subbundle of the frame bundle of M . Let ∇M be

a torsion-free connection upon the tangent bundle of M . (The torsion-free condition is there to tell the

geometry that it is dealing with the tangent bundle. If it were not imposed we would be free to choose

locally an isomorphism of the tangent bundle with a 4-dimensional vector bundle with connection of our

choice, and induce the connection from that.) Then ∇M induces a connection upon the frame bundle of

M , and we say ∇M preserves the subbundle Q of the frame bundle if Q is closed under parallel transport

by this induced connection.

The four structures defined above are each equivalent to a G- structure Q preserved by a torsion-free

connection, for four different groups G. To show this, for each of the four types of manifold let G be the

group of automorphisms of the tangent plane at a point that preserve the structures defined on it. Thus

for the hypercomplex manifolds G must preserve three complex structures, so G = GL(n,H), the set of

invertible quaternion matrices acting upon Hn on the right, as this is the group commuting with the left

H- module structure of Hn. For the hyperkähler manifolds G preserves three complex structures and a

metric, so G = Sp(n) acting on the right, where the group Sp(n) is the intersection of GL(n,H) and

SO(4n).
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In the quaternionic and quaternionic Kähler cases elements of G also are allowed to act on the family of

complex structures in G, so G is GL(n,H)GL(1,H) and Sp(n)Sp(1) respectively. Here GL(n,H) acts upon

Hn (thought of as row matrices of quaternions) by matrix multiplication on the right, and GL(1,H) = H∗

acts upon Hn by matrix multiplication (i.e. quaternion scalar multiplication) on the left. The product of

these groups inside GL(4n,R) is the group GL(n,H)GL(1,H). Similarly, Sp(n)Sp(1) is the intersection

of GL(n,H)GL(1,H) and SO(4n).

The structures – triples of almost complex structures and metrics – on the four families of manifolds

are encapsulated by a G- structure Q on M for the four families of groups. Apart from the 4-dimensional

cases of quaternionic and quaternionic Kähler structures, the additional integrability conditions can now be

summed up by saying that there should exist a torsion-free connection ∇M on M that preserves Q. In the

hypercomplex case this connection is the Obata connection — recall the second definition of hypercomplex

manifold. Similarly, in the hyperkähler and the quaternionic Kähler cases the connection is the Levi-Civita

connection. In the quaternionic case the definition explicitly requires some such connection ∇M to exist.

So this gives a unified way of looking at the four definitions.

In four dimensions GL(n,H)GL(1,H) is just the conformal group, and Sp(n)Sp(1) is just SO(4). So

extending the G- structure definition of quaternionic and quaternionic Kähler manifolds to four dimensions

just gives a conformal and a Riemannian 4-manifold respectively. But the actual definitions also require

self-duality and the Einstein condition, so the G- structure definition is not sufficiently strong in four

dimensions. Motivation for the stronger definitions comes in the next section.

1.1.4. Holonomy groups

Closely linked with G- structures preserved by a connection, is the idea of holonomy. Let M be a

manifold with a connection ∇M on its tangent bundle, usually supposed to be torsion-free. Fix a point x

in M . Let γ be some (piecewise smooth) directed loop based at x. Parallel transport around γ using ∇M

gives an automorphism of TxM . Let Holx(M) be the set of all such automorphisms coming from loops γ

based at x.

By the usual arguments of composing loops and reversing their directions, it is easy to see that

Holx(M) is in fact a subgroup of Aut(TxM). Moreover, if y is another point of M and α is any (piecewise

smooth) path between x and y, then the parallel transport of Holx(M) along α under ∇M is Holy(M).

So the group Holx(M) does not depend upon the point x, and this group is called the holonomy group
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Hol(M) of the connection ∇M . (Implicitly we mean not just the group, but also its representation upon

a tangent space of M .)

The connection with G- structures is this. Suppose G is some subgroup of Aut(Tx(M)) and Holx(M) ⊆

G. Choose a frame for TxM and let Qx be the orbit of this frame under G. Then the parallel transport of

Qx over M defines a G- structure Q on M that is preserved by ∇M . Thus given M and ∇M , M admits

a G- structure preserved by ∇M if and only if Hol(M) ⊆ G as an inclusion of groups and representations.

So hypercomplex, hyperkähler and quaternionic Kähler manifolds can be defined as manifolds M

with a torsion-free connection ∇M together with a given inclusion of Hol(M) in GL(n,H), Sp(n) and

Sp(n)Sp(1) respectively, as an inclusion of groups and representations. Quaternionic manifolds can also

be defined this way, but with the technical reservation that the connection is not unique and not part of

the quaternionic structure.

The theory of holonomy groups says that not all representations of connected Lie groups can actually

be realized as the holonomy group of a torsion-free connection on a manifold, but many can be excluded

by algebraic calculations. The most important case is that of holonomy groups of Riemannian manifolds,

for which the list of possible local holonomy groups for Riemannian manifolds that are neither locally a

product nor symmetric is SO(n), U(n/2), SU(n/2), Sp(n/4), Sp(n/4)Sp(1), G2, Spin(7) or Spin(9). This

result was proved by Berger [Br] in 1955; for a modern, more readable and shorter presentation we

recommend [S2], Chapter 10, or the survey of Riemannian holonomy groups in Chapter 10 of [Bs].

The more general case of classification of possible holonomy groups of torsion-free connections is also

handled by Berger [Br], who gives a rather longer list of possible holonomy groups. The methods of proof

involve a careful study of the curvature of the connection. If ∇ preserves a G- structure, then the curvature

Ri
jkl of ∇ lies in g ⊗ Λ2T ∗ at each point, where g is the Lie algebra of G. If ∇ is also torsion-free, then

R satisfies the Bianchi identities. It is the algebraic interplay between these two facts that is exploited in

his proof.

Berger shows that groups and representations fall into three classes: a first class, for which one can

show that any torsion-free connection with holonomy in this class has vanishing curvature (R = 0), a

second class, for which one can show any torsion-free connection with holonomy in this class has constant

curvature (∇R = 0), and a comparatively small third class, the ones that are left. In the first case,

the connection must be flat, and the holonomy group is trivial; therefore the first class do not arise

as holonomy groups. In the second case, the curvature being constant implies that the manifold and
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connection are locally symmetric, and are thus locally homogeneous. So groups of the second class arise

locally as holonomy groups only of (unique) homogeneous symmetric spaces.

We are then left with the reduced list of the third class, that represent possibly interesting geometric

structures. Much work has since gone into the production of examples realizing the holonomy groups of

the third list, to show that these possible holonomy groups do actually exist in nature. The first part of

the thesis is a small step in this programme.

1.2. Twistor spaces and related structures

We begin this section with a brief summary of the some of the geometry of self-duality in four

dimensions. The foundation of this branch of geometry is the splitting of the special orthogonal group

SO(4) = SU(2) ×{±1} SU(2), a splitting which happens in no other dimension. The two SU(2) factors

are interchanged by an orientation-reversing automorphism of R4.

One consequence of this is that representation spaces of SO(4) become representation spaces of the

two SU(2) factors, and thus frequently split up into quite small irreducible chunks. In particular, the space

containing the Weyl conformal curvature now splits into two irreducible subspaces, which are interchanged

by an orientation-reversing automorphism. Thus the Weyl curvature W of a conformal metric in four

dimensions splits into two components, called the self-dual and anti-self-dual components W+ and W−.

They are called this because the easiest way to define the two components is using the Hodge star

operator. On an even-dimensional oriented Riemannian manifold M2l the Hodge star ∗ : Λp → Λ2l−p is

defined by α ∧ (∗β) = (α · β)dVg for all α, β ∈ Λp, where Λp is the bundle of exterior p- forms, the inner

product comes from the Riemannian metric, and the volume form dVg is defined using the metric and the

orientation.

An important fact about the Hodge star is that ∗2 = (−1)l. So in dimension 4, ∗ gives an involution

of Λ2, which in fact only depends on the conformal structure of M . This involution splits Λ2 into a sum

of subbundles Λ2 = Λ2
+ ⊕ Λ2

−, which are the +1- and −1- eigenspaces of ∗. Now the Weyl conformal

curvature W = W i
jkl can be thought of as an endomorphism-valued 2-form, and so in four dimensions the

Hodge star acts upon the 2-form part to give ∗W . We define W+ = (W +∗W )/2 and W− = (W −∗W )/2;

then W = W+ +W− and ∗W+ = W+, ∗W− = −W−. So W+ is self-dual and W− is anti-self-dual under

Hodge duality.
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The splitting of the conformal curvature into two comparable components means that one can impose

a condition upon a 4-dimensional conformal structure that is half-way to conformal flatness, by requiring

one of W+,W− to vanish. A conformal 4-manifold is called self-dual if W = W+ and anti-self-dual if

W = W−. These two change round under change of orientation, as the Hodge star changes sign.

Note: some authors use self-dual in the stronger sense that the Riemannian curvature must be self-

dual, which means the manifold should be both conformally self-dual and Ricci-flat. For us, self-dual will

mean conformally self-dual.

The interest in self-duality comes from the remarkable connection between the self-dual condition

and complex geometry found by Penrose, and written up in the context of four-dimensional Riemannian

geometry by Atiyah et al. in their paper [AHS], from which all this material comes.

Let M be an oriented conformal 4-manifold. Let Z → M be the bundle of almost complex structures

on M that have natural complex orientation opposite to the chosen orientation on M . Equivalently, Z is

the negative projective spin bundle, P (V−). Then Z is a bundle over M with fibre SO(4)/U(2) = CP1.

Now there is a natural almost complex structure on the total space of Z. Broadly, this comes from taking

the usual complex structure on CP1 in the fibre directions, and the tautological almost complex structure

in the manifold directions. This is not quite enough to define a complex structure because there are

no preferred horizontal subspaces in the fibration. The remaining information comes from the Cartan

conformal connection, or local twistor transport in twistor language.

The connection between the self-dual condition and complex geometry is this: the self-duality of the

conformal structure on M is a necessary and sufficient condition for the integrability of the almost complex

structure on Z. Thus if M is self-dual, Z is a complex manifold fibring over M , called the twistor space

of M .

Now Z has a natural involution σ given by the antipodal map on the fibres, which changes the sign

of each almost complex structure. This involution changes the sign of the almost complex structure on

Z. So if M is self-dual then Z is a complex manifold with an antiholomorphic involution σ, called a real

structure. The fibres of the map Z → M are complex lines, and as they are preserved by the real structure

they are called real lines. It can be shown that the real lines have normal bundle O(1) +O(1).

There is a converse to this construction, which is this: let Z be a 3-dimensional complex manifold

with an antiholomorphic involution σ and containing a real line C with normal bundle O(1)+O(1). Then

a neighbourhood of C is a fibration over some real four dimensional manifold with real lines as fibres (this
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is proved using complex deformation theory), and a self-dual conformal structure on the 4-manifold can be

reconstructed from the complex structure of Z. (In fact the set of all complex lines close to C is a complex

4-manifold, and intersection of neighbouring lines defines the cones of a complex conformal structure on

this 4-manifold. This conformal structure may be restricted to the real lines, where it becomes a real

conformal structure.)

So there is a correspondence between real self-dual 4-manifolds M , and complex 3-manifolds Z with an

antiholomorphic involution σ containing complex lines with normal bundle O(1)+O(1). This is called the

(Penrose) twistor correspondence. The idea of the twistor programme is to translate differential geometric

structures on M to complex analytic structures on Z, and then to learn about the differential geometry of

M using the powerful methods of complex analysis. Note that this involves using global complex geometry

to study local differential geometry, as the structure of Z is locally trivial, being just a complex manifold,

and the local structure of M is encoded in the global structure of Z.

Two examples of the twistor correspondence that we will return to are firstly, the translation of self-

dual Yang-Mills instantons on M to holomorphic bundles on Z that are trivial on real lines, and secondly,

the translation of an Einstein metric in the conformal class of M to a real Kähler metric on Z.

A large part of the theory of quaternionic and quaternionic Kähler manifolds extends and generalizes

this twistor correspondence. We will explain below how to define the twistor space of a quaternionic man-

ifold, and that the twistor space of a quaternionic Kähler manifold has a (pseudo-) Kähler structure upon

it. Thus quaternionic manifolds are suitable generalizations of self-dual conformal 4-manifolds because

they have complex twistor spaces, and quaternionic Kähler manifolds are good generalizations of self-dual

Einstein 4-manifolds because they have complex Kähler twistor spaces. This is the promised motivation

for the special definitions of quaternionic and quaternionic Kähler manifolds in the four-dimensional case.

Given a principal bundle P over M for the group G, to each representation V of G one may associate

a bundle V over M defined by V = P ×G V . The bundle V has fibre V . Let us return to the situation

of the previous section with a manifold M with G- structure Q, where G is one of the holonomy groups

GL(n,H)GL(1,H) and Sp(n)Sp(1). These groups both have double covers, SL(n,H) × GL(1,H) and

Sp(n)×Sp(1). Thus for each quaternionic or quaternionic Kähler manifold M with G- structure Q, locally

there is a double cover Q̃ which is a principal bundle with group SL(n,H)×GL(1,H) or Sp(n)× Sp(1).

(Note Q̃ need not exist globally.)
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Let us take V to be the natural representation of GL(1,H) or Sp(1) on the right on the quaternions

H, with SL(n,H) or Sp(n) acting trivially. Actually, in the quaternionic case it is necessary to let

the scalars R∗ ⊂ GL(n,H)GL(1,H) act to some prescribed power on V ; this corresponds to regarding

GL(n,H)GL(1,H) not as GL(n,H)Sp(1) nor as SL(n,H)GL(1,H) but as a mixture of the two.

Forming the bundle associated to the local principal bundle Q̃ gives a local fibre bundle Ṽ over M with

fibre H, called the natural quaternionic line bundle. To make a bundle that exists globally it is necessary

to divide Ṽ by ±1, as a double cover of Q may not exist, and this gives a global bundle U(M) over M

with fibre H/{±1}, called the associated bundle. This is defined just before Theorem 3.5 in [Sw].

By projectivizing the fibre H/{±1} with respect to any of the left actions of C∗, we get a fibre bundle

Z over M with fibre CP1 called the twistor space. In [S3], Corollary 7.4, Salamon proves that the twistor

space of a quaternionic manifold is complex by first proving that the total space of the associated bundle,

which he calls Y , is hypercomplex. This then implies that the twistor space Z is complex. Quaternionic

manifolds can therefore be regarded as the most general sort of manifolds that admit a complex twistor

space in analogy with the four-dimensional case (see, e.g. [S2], p. 135).

As a quaternionic Kähler manifold is quaternionic, its associated bundle will certainly be hypercom-

plex. However, Swann goes on to prove ([Sw], Theorem 3.5) that the Riemannian metric on M induces

a pseudo-Riemannian metric on U(M) which together with the hypercomplex structure makes it pseudo-

hyperkähler. Then the projectivization of U(M) to give Z may be viewed as a pseudo-Kähler quotient by

U(1), which gives a pseudo-Kähler structure upon the twistor space Z, as promised.

The model examples of a quaternionic Kähler manifold, its associated bundle and its twistor space

are quaternionic projective space HPn, the fibration
(
Hn+1 \ {0})/{±1} → HPn, and the projectivization

CP2n+1 of
(
Hn+1 \ {0})/{±1} respectively.

1.3. Existing quotient constructions

There are several different families of manifolds – symplectic, Kähler, hyperkähler and quaternionic

Kähler manifolds – for which it is known that when a connected group of automorphisms acts upon such

a manifold preserving the structure, there is a process called a reduction or a quotient that produces a

new manifold of the same family but of smaller dimension.

These constructions are all based upon the concept of a moment map, which is a map from the original

manifold into the dual of the Lie algebra of the group satisfying a certain differential equation, and work
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by showing that such a moment map exists and that the zero set of the moment map divided by the action

of the group has the structure of the original manifold defined on it in a natural way. We now summarize

briefly the existing quotient constructions.

1.3.1. The Marsden-Weinstein symplectic quotient

Let M be a symplectic manifold with symplectic form ω, and let H be a connected group of sym-

plectomorphisms acting freely on M . Let h be the Lie algebra of H, and suppose h ∈ h. Then the action

of H on M induces a vector field X on M corresponding to h. Because H preserves ω, X must satisfy

LXω = 0, where LX is the Lie derivative. Therefore by the classical formula for Lie derivatives

LXω = d(iXω) + iX(dω) = d(iXω) = 0,

as ω is closed, where iX is contraction with X. So d(iXω) = 0 and locally iXω = d(fh), where fh is a real

function on M , defined up to a constant. If M is simply connected then fh is defined globally on M up

to a constant.

So for each h ∈ h a function fh can be defined such that dfh = iXω. Under mild conditions on

the group H these functions may be put together to form a ‘moment map’ µ : M −→ h∗ such that

for each h ∈ h, h · µ is equal to fh as a function on M , and µ is H- equivariant with respect to the

coadjoint action on h∗. Then µ is uniquely defined up to addition of an element of the centre of h∗. Define

N = {m ∈ M : µ(m) = 0}/H. Then N is a smooth manifold (as H acts freely on M) and ω descends to

give a 2-form π(ω) on N . This is not obvious, and may be proved as follows.

If π(m) is a point in N and Y,Z are two vectors in Tπ(m)N , then Y, Z lift to two vectors Y ′, Z ′ in

TmM which are defined up to the addition of any X(m), where X is the vector field associated to h ∈ h.

But then ω(Y ′, Z ′) does not depend on the choice of Y ′ or Z ′. This is because Y ′, Z ′ both lie in the

plane dµ = 0 in TmM and so (iXω)(Y ′) = ω(X, Y ′) = 0, (iXω)(Z ′) = ω(X,Z ′) = 0 for any such X.

Therefore defining π(ω)(X, Y ) = ω(X ′, Y ′) gives a 2-form π(ω) on N , that is well-defined because of the

H- invariance of ω. This 2-form is closed, as its lift to {m ∈ M : µ(m) = 0} is the restriction of a closed

form ω, and it is easily shown to be nondegenerate. So N is a symplectic manifold. This is called the

Marsden-Weinstein symplectic quotient [MW].
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1.3.2. The Kähler quotient

Let M be a Kähler manifold, with metric g, complex structure I, and Kähler form ω defined by

ω(X, Y ) = g(IX, Y ). Suppose that a connected group H acts freely on M , preserving the complex

structure and the metric. As in the previous section, we can define the symplectic quotient N of M by H.

However, we also have a quotient metric g on N . The two structures are in fact compatible, and there is

a complex structure I on N such that ω(X, Y ) = g(IX, Y ) on N .

So the symplectic quotient defines a new Kähler manifold N of lower dimension. There is a different

way to think about this. Because M is complex and H acts preserving the complex structure, we can

try to complexify the action of H to give an action of Hc on M . This can always be done locally — for

each point of M there is a neighbourhood of 1 in Hc for which a holomorphic action can be defined close

to the point — but the global action exists only if the vector fields induced by ih are complete (can be

exponentiated arbitrarily far from each point).

Suppose then that the action of H on M can be complexified to give an action of Hc. We would

like to be able to form M/Hc as a complex manifold and show that it is canonically isomorphic as a

complex manifold to N . The problem with doing this is that because Hc is noncompact, M/Hc may not

be Hausdorff. This problem is solved by restricting to an open set of points in M . For the purposes of

this section, a point of M is defined to be stable if its orbit under Hc meets the zero set of the moment

map. Let M◦ be the set of stable points of M . Then M◦/Hc is a Hausdorff complex manifold, and under

reasonable conditions is isomorphic to N . In many cases in algebraic geometry, this notion of stability

coincides with a pre-existing algebraic definition called Mumford stability.

1.3.3. The hyperkähler quotient

The metric g of a hyperkähler manifold is Kähler with respect to each of the three complex structures

I1, I2, I3. There therefore exist three linearly independent symplectic forms ω1, ω2, ω3, the Kähler forms of

the complex structures. Suppose that a connected group of diffeomorphisms H acts freely on M preserving

the structures. Then there are three moment maps µ1, µ2, µ3 : M −→ h∗, one for each of the Kähler forms

ωj . We form the manifold N = {m ∈ M : µ1(m) = µ2(m) = µ3(m) = 0}/H, of dimension 4(n− dim H).

As N is a submanifold of the symplectic quotients of M by H with respect to the symplectic forms ωj ,

the closed 2-forms ωj on the symplectic quotients restrict to N . So N has three 2-forms ω1, ω2, ω3, and

also a natural quotient metric induced from M .



1.3. Existing quotient constructions 21

These four structures turn out to be compatible, so that there are three complex structures I1, I2, I3

on N which satisfy I1I2 = I3, with respect to which the quotient metric g is Kähler, and which give

ω1, ω2, ω3 as the Kähler forms. Thus the quotient N has a canonical hyperkähler structure defined upon

it. This is the hyperkähler quotient of Hitchin, Karlhede, Lindström and Roček [HKLR].

We may again think about this from the point of view of the complex structures, regarding the metric

as secondary. Here the important point is that µ2 + iµ3 is a holomorphic function with respect to I1,

µ3 + iµ1 is holomorphic w.r.t. I2 and µ1 + iµ2 holomorphic w.r.t. I3. Therefore N can be identified with

the quotient of {m ∈ M : µ2 + iµ3 = 0} by the complexification of H with respect to I1, and because

µ2 + iµ3 is holomorphic w.r.t. I1 this is complex w.r.t. I1, being the quotient of a complex manifold by a

complex group. Similarly N has complex structures I2, I3.

In this way we are led very simply to the guiding idea of Chapter 2: in our description of the complex

structures on the quotient N we have only used the fact that µ2 + iµ3 is holomorphic with respect to I1,

µ3 + iµ1 w.r.t. I2 and µ1 + iµ2 w.r.t. I3. Thus quotients with hypercomplex structures can be formed in

the absence of a metric provided there exist functions µ1, µ2, µ3 satisfying these conditions.

1.3.4. The quaternionic Kähler quotient

Suppose M is quaternionic Kähler with non-zero scalar curvature, and that a connected group of

diffeomorphisms H acts freely on M preserving the quaternionic Kähler structure. We shall explain what

the natural definition of a moment map is in the quaternionic Kähler case. Let h ∈ h and X be the vector

field on M induced by h. Let I1, I2, I3 be a local basis for G as before, and ω1, ω2, ω3 the corresponding

2-forms. Let iX denote contraction with the vector field X.

Define Θh = Σ3
j=1(iXωj) ⊗ Ij . This definition is independent of the basis I1, I2, I3, and so Θh is

globally defined. Galicki and Lawson prove ([GaL], Theorem 2.4) that under these conditions there is a

unique section fh of G such that ∇fh = Θh. Their proof uses the fact that when the scalar curvature is

non-zero, then the map d∇d∇ : G −→ Λ2T ∗M ⊗ G is linear and injective, and thus fh can be explicitly

defined in terms of ∇Θh. When the scalar curvature is zero we have the hyperkähler case.

This section fh is analogous to the functions fh constructed in the symplectic case. However, in

the quaternionic Kähler case fh is uniquely defined, rather than being defined up to a constant. There is

therefore no obstruction to putting the functions together to make a moment map µ, which is an equivariant

section of the bundle h∗⊗G. As G is not trivial there is only one meaningful level set of the moment map,

the zeros, and Galicki and Lawson prove ([GaL], §3) that defining N = {m ∈ M : µ(m) = 0}/H as the
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quaternionic Kähler quotient of M by H, the quaternionic Kähler structure of M descends to N to make

a new quaternionic Kähler manifold.

A connection between the quaternionic Kähler quotient and the hyperkähler quotient has been found

by Swann. Recall that to each quaternionic Kähler manifold M there is associated a bundle U(M) with

(pseudo-) hyperkähler total space. If a Lie group F acts on M preserving the structure, then F also

acts on U(M), and so one can do a pseudo-hyperkähler quotient of U(M) by F . Swann shows ([Sw],

Theorem 4.6) that by constraining the moment map to vanish on the zero section of the fibration, the

moment map is uniquely defined and the resulting pseudo-hyperkähler quotient is the associated bundle

of the quaternionic Kähler quotient of M by F . Thus, applying the hyperkähler quotient in the associated

bundle gives a reduction for quaternionic Kähler manifolds.



Chapter 2: Quotient Constructions

In §1.3 the idea of a quotient construction was discussed, some known quotient constructions were

briefly described, and a connection was given between the hyperkähler quotient and quaternionic Kähler

quotient, found by Swann. This chapter presents quotients for hypercomplex and quaternionic manifolds

that are analogous to those for hyperkähler and quaternionic Kähler manifolds. A quotient for hypercom-

plex manifolds will be defined in §2.1, and then Swann’s idea will be used to extend this to a reduction

for quaternionic manifolds in §2.3.

The Marsden-Weinstein reduction and the others are two-stage processes. Firstly, a moment map is

defined, which is a map from the manifold M into a vector space or vector bundle, satisfying a certain

differential equation. Under reasonable conditions it is shown that the moment map exists and is unique,

up to at most the addition of a constant vector. Secondly, it is shown that the quotient of the zero set of

the moment map by the group F inherits the structure of the original manifold.

There is an essential difference between the new constructions and the known ones. In the processes

we shall describe, there is a concept of moment map, but in a given situation moment maps need not

exist, or if they do they may not be unique. However, once a moment map for a particular group action is

chosen, the second stage of defining structure on the quotient of the zero set presents no problems. Thus in

some cases the reduction of a hypercomplex or quaternionic manifold by a respectable group action cannot

be defined because no moment map exists, but in others there may be families of distinct reductions of a

manifold by a fixed group action, that much exceed the freedom to add a constant vector to the moment

map in the hyperkähler quotient.

One special class of quaternionic manifolds are Kähler surfaces with zero scalar curvature; they are

quaternionic because they are conformally anti-self-dual. (See for instance [Pt].) In §2.4 it will be shown

that the zero-scalar-curvature Kähler condition fits in well with the quotient picture for quaternionic

manifolds, and the Kähler metrics in the conformal class of a quotient can be easily described. We shall

define a family of higher-dimensional analogues of zero-scalar-curvature Kähler manifolds, to be called

quaternionic complex manifolds, which are manifolds with holonomy SL(n,H)U(1). The quaternionic

quotient then extends to give a quotient for these manifolds.

23
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2.1. The hypercomplex quotient

Let M be a hypercomplex manifold with complex structures I1, I2 and I3 and F be a compact Lie

group acting smoothly and freely on M preserving Ii. Let the Lie algebra of F be F. Then F acts on F∗

by the coadjoint action.

We define a hypercomplex moment map to be a triple µ = (µ1, µ2, µ3) of F - equivariant maps

µi : M −→ F∗ satisfying the following two conditions:

(i) µ satisfies the ‘Cauchy-Riemann equations’

I1dµ1 = I2dµ2 = I3dµ3, (1)

where Ii acts on the cotangent bundle of F∗-valued 1-forms, T ∗M ⊗ F∗.

(ii) Let X : F −→ Γ(TM) be the map assigning to each f ∈ F the vector field it induces on M . Then for

every non-zero f in F, µ must satisfy the ‘transversality condition’

(
I1dµ1(f)

)(
X(f)

)
does not vanish on M . (2)

We make three remarks about these conditions. Firstly, an equivalent formulation of condition (i) is

I1(dµ2 + idµ3) = −i(dµ2 + idµ3)

I2(dµ3 + idµ1) = −i(dµ3 + idµ1) (3)

I3(dµ1 + idµ2) = −i(dµ1 + idµ2),

and these three are the Cauchy-Riemann conditions for µ2 + iµ3 to be a holomorphic function with respect

to the complex structure I1, µ3 + iµ1 to be holomorphic w.r.t. I2 and µ1 + iµ2 to be holomorphic w.r.t. I3.

This is why they were called Cauchy-Riemann conditions.

Secondly, it will be sufficient in (ii) for (I1dµ1(f))(X(f)) not to vanish upon the level set of µ that

will be used for the quotient, rather than on the whole of M . Thirdly, (ii) can actually be replaced with

the weaker but more complicated condition that for every non-zero f ∈ F and m ∈ M there should exist

some f ′ in F such that
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(
I1dµ1(f ′)

)
m

(
X(f)

)
m
6= 0.

We shall prove the following proposition.

Proposition 2.1.1. Let M , F and µ be as above, and let ζ1, ζ2, ζ3 be elements of the centre of F∗. Define

P =
{
m ∈ M : µ1(m) = ζ1, µ2(m) = ζ2, µ3(m) = ζ3

}
and N = P/F . Then N has a natural hypercomplex

structure.

Two proofs will be given, the first one being the informal proof that led us to the result, and the

second being more technically satisfactory as it does not rely on complexifying group actions. The second

method of proof extends to the quaternionic quotient, where it has the advantage of being direct, and not

an application of the hypercomplex quotient in the associated bundle.

First Proof. To show that the quotient has three integrable complex structures, observe that restricting to

the solutions of µj = ζj (j = 1, 2, 3) and dividing by F is locally equivalent to restricting to the solutions

of µ2 + iµ3 = ζ2 + iζ3 and dividing by the complexification of F by I1. This is because condition (ii)

ensures that locally each orbit of the complexification of F meets the solutions of µ1 = ζ1 in only one orbit

of F .

But by (i), µ2 +iµ3 = ζ2 +iζ3 is a holomorphic condition w.r.t. I1, and so the quotient N is equivalent

to the quotient of a complex manifold by a complex group, and is complex with complex structure I1.

Thus N has three complex structures upon it.

To show that these satisfy the relation I1I2 = I3, for each p in P let Vp be defined by

Vp = {v ∈ TpM : dµ1(v) = dµ2(v) = dµ3(v) = (I1dµ1)(v) = 0}

= {v ∈ TpP : (I1dµ1)(v) = 0}.
(4)

This defines a vector bundle V over P that is a subbundle of TP ⊂ TM |P . Now by (ii) the condition

(I1dµ1)(v) = 0 is transverse to the infinitesimal action of F , and thus there is a natural isomorphism

between Vp and Tπ(p)N .

So there is an isomorphism between π∗(TN) and the subbundle V of TP . But condition (i) implies

that V , considered as a subbundle of TM |P , is closed under I1, I2, I3. As I1, I2, I3 are F - invariant, this

defines actions of I1, I2, I3 on TN which are clearly the same as the ones above defining integrable complex

structures on N . Because I1, I2, I3 satisfy I1I2 = I3 on V , this relation also holds on N .
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Second Proof. Using ∇M , I1, I2 and I3, a connection ∇N and three almost complex structures I1, I2, I3

will be defined on N . It will then be shown that ∇N is torsion-free and satisfies ∇NIi = 0. From §1.1,

this will imply that N is hypercomplex.

As F acts freely the map Xm : F −→ TmM is an injection for each m in M . By abuse of notation F

will be identified with its image Xm(F) in each TmM . Now by (ii) and the definition of µ,

TM |P = TP ⊕ I1F⊕ I2F⊕ I3F,

where both sides are vector bundles over P .

Because of the transversality condition on the moment map, F is transverse to the annihilator of I1dµ1

in TP . So there is a direct sum decomposition TP = V ⊕ F, where V is the bundle defined above.

Thus P satisfies TM |P = TP ⊕ ImH · F and TP = V ⊕ F, where V is some H- invariant vector

subbundle of TM |P . It will be shown that under these conditions, N = P/F is a hypercomplex manifold.

Lemma 2.1.2. Let M be hypercomplex and acted on smoothly and freely by a compact Lie group F

preserving the structure. Suppose P is an F - invariant submanifold of M satisfying TM |P = TP⊕ImH·F

and TP = V ⊕ F, where V is an H- invariant vector subbundle of TM |P . Then there is a natural

hypercomplex structure on N = P/F.

Proof. A torsion-free connection ∇N on N and three almost complex structures I1, I2, I3 will be defined

on N and it will be shown that ∇NIi = 0. Let π be the projection from P to N . Observe that Vp is

identified with Tπ(p)N by π. Now the complex structures I1, I2, I3 on M act on Vp, and therefore also on

Tπ(p)N . The actions are F - invariant, and so descend to give three almost complex structures I1, I2, I3 on

N .

To define the connection on N, let u, v be vector fields on N . They lift uniquely to give F - invariant

sections ũ, ṽ of V over P . We shall think of ũ as a section of TP and ṽ as a section of TM |P .

Now if a, b are vector fields on M , the vector field ∇M
a b may be formed. This action of ∇M can be

restricted to P : if a is a section of TP and b is a section of TM |P , then ∇M |P
a b is a section of TM |P .

Thus ∇M |P
ũ ṽ is defined as a section of TM |P . As ∇M is unique, it is F - invariant, and so is this

section. To get a vector field on N , project to V and then push down. So ∇N is defined by the equation

∇N
u v = π ◦ ρ

(
∇M |P

ũ ṽ
)

, (5)
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where ρ is projection to the first factor in the vector bundle decomposition TM |P = V ⊕ H · F. By F -

invariance, ∇F is well-defined.

This definition gives a connection ∇N on N . Note that in the hyperkähler case where there are

metrics, this definition is the same as the usual one involving orthogonal projection. It will now be shown

that the connection is torsion-free.

It is sufficient to show that whenever u, v are vector fields on N , then ∇N
u v −∇N

v u = [u, v]. The left

hand side is

∇N
u v −∇N

v u = π ◦ ρ
(
∇M |P

ũ ṽ −∇M |P
ṽ ũ

)
= π ◦ ρ([ũ, ṽ]).

Now [ũ, ṽ] is a vector field on P , and therefore is a section of TP ⊂ TM |P . On this subbundle TP we have

(π◦ρ)|TP = π, as restricted to TP the kernel of ρ is equal to the kernel of π. Thus ∇N
u v−∇N

v u = π([ũ, ṽ]).

But in general, if π : P → N is a submersion and ũ, ṽ are vector fields on P that are lifts of vector fields u, v

on N , then π([ũ, ṽ]) = [π(ũ), π(ṽ)] = [u, v]. So ∇N
u v−∇N

v u = [u, v], and the connection ∇N is torsion-free.

Finally, it will be shown that if ∇MIi = 0, then ∇NIi = 0. This is equivalent to the statement that

whenever u, v are vector fields on N , then ∇N
u (Iiv) = Ii∇N

u v. Lifting to TM |P , this equation is

ρ(∇M |P
ũ (Iiṽ)) = Iiρ(∇M |P

ũ ṽ).

But since ρ commutes with Ii, this is equivalent to showing that

ρ(∇M |P
ũ (Iiṽ)) = ρ(Ii∇M |P

ũ ṽ),

which is an immediate consequence of the fact that ∇MIi = 0. Therefore ∇NIi = 0.

The lemma completes the second proof of Proposition 2.1.1.

It is necessary to assume that F is compact to ensure that the quotient N is Hausdorff. One can

remove this assumption by instead assuming that N or M/G is a manifold. The quotient may only

be defined for a given group action on a hypercomplex manifold, if a moment map exists satisfying the

conditions. It is therefore important to know whether such moment maps exist all the time, or only

sometimes, or never. In fact moment maps sometimes exist, and sometimes do not. Moreover, when they

do exist, there may be many possibilities.
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An example of a situation in which no moment map exists is the dilation action of U(1) on the Hopf

surface, and an example of a situation in which many moment maps can exist is the quotient of Hn by a

compact group. I believe that amongst all hypercomplex manifolds, moment maps are rather rare, so that

they would not exist in a generic situation.

2.2. The quaternionic moment map

To define moment maps upon quaternionic manifolds, the most obvious approach is to use the torsion-

free connection on the quaternionic manifold M to define a connection on the bundle G defined in §1.1,

and that as in the quaternionic Kähler case of [GaL], a moment map on a quaternionic manifold should

be defined as a section of G ⊗ F∗, where F is the quotient group.

For technical reasons this does not quite work. As explained in [S3], §5, to define invariant differential

operators on vector bundles over quaternionic manifolds it is usually necessary to tensor through by some

power of the real line bundle of volume forms on the manifold, because otherwise the operators defined

will not be independent of the choice of connection.

Thus to define ‘moment maps’ which can be differentiated in a meaningful fashion we work not with

the bundle G, but with the bundle G̃ = G ⊗ e, which is G tensored with a non-zero power e of the real

line bundle of volume forms. (In fact, in the notation of [S3], the bundle G is S2H, and the condition

imposed on the moment maps is that their image under the operator D : S2H → E⊗S3H should be zero.

By Corollary 5.4 of [S3], this operator can only be defined from S2H ′ to E′ ⊗ S3H ′, where E′ = dmE,

H ′ = d−mH with m non-zero, and d is a real line bundle whose 4nth power is the bundle of volume forms.)

On G̃ there is a connection ∇M induced from a torsion-free connection on M . The condition we write

down in terms of ∇M will be independent of the choice of connection on M .

Suppose F is a connected Lie group acting smoothly and freely on M , and let F be its Lie algebra.

Define a quaternionic moment map to be an F - equivariant section µ of G̃ ⊗F∗ which satisfies the following

two conditions:

(i) For v some section of T ∗M ⊗ e⊗ F∗,

∇Mµ = I1 ⊗ (I1v) + I2 ⊗ (I2v) + I3 ⊗ (I3v). (6)

(ii) Define X : F −→ Γ(TM) to be the map assigning to each f ∈ F the vector field induced by f . Then

for each non-zero f ∈ F the section v must satisfy
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v(f)X(f) does not vanish on the zero set of µ, (7)

where v(f)X(f) is a section of e.

These conditions are direct translations of conditions (i) and (ii) of §2.1 into the quaternionic context.

Condition (i) is independent of the local basis I1, I2, I3 of G because it says that ∇Mµ should be the

contraction of Ω and v, where Ω is I1⊗I1 +I2⊗I2 +I3⊗I3, which is independent of the choice of I1, I2, I3.

Another way of writing (i) is this: certainly ∇Mµ = I1 ⊗ v1 + I2 ⊗ v2 + I3 ⊗ v3, where v1, v2, v3 are

sections of T ∗M ⊗ e⊗ F∗. Then v1, v2, v3 must satisfy the condition I1v1 = I2v2 = I3v3. As v1, v2, v3 are

the analogues of dµ1, dµ2, dµ3 in the hypercomplex case, this is a translation of I1dµ1 = I2dµ2 = I3dµ3.

As in the hypercomplex case, (ii) may be replaced by a weaker condition.

Because the class of hypercomplex manifolds is included in the class of quaternionic manifolds, this

new definition also defines quaternionic moment maps on hypercomplex manifolds. However, in the original

definition µ is a section of a trivial vector bundle, and in the new it is a section of a trivial vector bundle

tensored with e. Therefore the two definitions are only consistent if the connection on e is flat, that is, if

the holonomy of the hypercomplex manifold reduces to SL(n,H).

The explanation is this. There is a more general definition of moment map for hypercomplex and

quaternionic manifolds that includes the definitions given as a special case; but the hypercomplex moment

map and the quaternionic moment map for a hypercomplex manifold are different special cases of the

general definition in the hypercomplex case. The general definition uses quaternionic connections, which

will be considered in Chapter 3 and defined at the beginning of §3.1. Briefly, quaternionic connections on

bundles over quaternionic manifolds are the appropriate generalization of self-dual connections on bundles

over self-dual 4-manifolds.

Let L be a real line bundle over a hypercomplex or quaternionic manifold M , and ∇L a quaternionic

connection on L. (With structure group the positive reals under multiplication.) The generalized defini-

tion of hypercomplex moment map is a triple (µ1, µ2, µ3) of F - equivariant sections of L ⊗ F∗ satisfying

I1∇Lµ1 = I2∇Lµ2 = I3∇Lµ3 (the generalized condition (i)) and an obvious generalization of condition

(ii). The generalized definition of quaternionic moment map is an F - equivariant section of G̃ ⊗ L ⊗ F∗

satisfying the obvious generalizations of conditions (i), (ii).

From [GaL], the condition on the quaternionic Kähler moment map is that for each f ∈ F, ∇Mµ(f) =

iX(f)Ω, where iX(f) is contraction with X(f) using the metric. This can be put in a neater form by
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observing that X defines a section v′ of T ∗M ⊗F∗ assigning to each f the covector field associated by the

metric to the vector field X(f). Then the condition on µ is that ∇Mµ should be the contraction of v′ and

Ω, as in the quaternionic case above.

Thus the difference between the quaternionic and the quaternionic Kähler case is that in the quater-

nionic case ∇Mµ may be the contraction of Ω with any section v of T ∗M ⊗ e ⊗ F∗, whereas in the

quaternionic Kähler case it must be the contraction with a particular section v′ given by the group action

and the metric. This also holds for the hypercomplex and hyperkähler quotients, where for the former

I1dµ1 can be any suitable section of a bundle and for the latter it must be a particular section given by

the group action and the metric.

The definition of quaternionic moment map given above may be related to our previous definition of

hypercomplex moment map on the associated bundle U(M), described in §1.2. A moment map µ on the

associated bundle consists of three F∗- valued functions on U(M) which are quadratic on each fibre. By

restricting (1) to the fibre, one finds that on each fibre the solutions µ form F∗ tensored with a three-

dimensional vector space, and this vector space is simply S2H ′, the fibre of G̃. So a quadratic moment map

on the associated bundle U(M) gives a section of G̃⊗F∗, which is a quaternionic moment map. Conversely,

a quaternionic moment map lifts to give a hypercomplex moment map on the associated bundle.

2.3. The quaternionic quotient

In the previous section the quaternionic moment map has been defined. It will now be shown that

if such a moment map exists, then the quotient of the zero set by the group has a natural quaternionic

structure. The first proof we give is by applying the hypercomplex quotient to the associated bundle U(M)

(described in §1.2) of a quaternionic manifold, following the example of Swann in the quaternionic Kähler

case, and was what led us to the result.

However, to understand the process on the level of quaternionic manifolds, a second proof will be given

that does not use associated bundles. Again, the first proof is informal and the second more technical.

Proposition 2.3.1. Let M be a quaternionic manifold acted on freely and smoothly by a compact Lie

group F preserving the structure. Suppose that there exists a moment map µ for the action of the group.

Let P be the zero set of µ in M and let N = P/F . Then N has a natural quaternionic structure.
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First Proof. From [S2], p. 135, we know that the torsion-free connection ∇M is not unique, but can be

made unique by choosing a volume form for it to preserve. Choose an F - invariant volume form on M .

Then there is a torsion-free connection ∇M preserving the quaternionic structure and the volume form,

and as it is unique it is F - invariant.

The choice of connection gives a hypercomplex structure on U(M), as described in §1.2, and since

∇M is F - invariant, the induced action of F on U(M) must preserve the hypercomplex structure. As we

remarked at the end of the previous section, µ is simply a hypercomplex moment map for the induced

action of F on the associated bundle. By the results of §2.1, one can perform a hypercomplex quotient.

The new hypercomplex manifold has an H∗- action induced from that on U(M) and is easily seen to

fibre over N with fibre H/{±1}. Projectivizing w.r.t. some C∗ ⊂ H∗ gives a complex manifold, Z say. Any

J ∈ H∗ that anticommutes with I ∈ C∗ induces a real structure σ on Z, and the orbits of the H∗- action

projectivize to give a fibration of Z over N by complex lines, upon which σ acts as the antipodal map.

To show that Z is a twistor space for a quaternionic structure on N it only remains to prove that the

normal bundle of the real lines is 2aO(1). Now the normal bundle of a real line is the projectivization of

the normal bundle of the corresponding H∗- orbit in the hypercomplex manifold. But this normal bundle

can be trivialized as a hypercomplex manifold. In fact the H∗- action identifies all the fibres of the bundle,

but this is not a triholomorphic identification as it permutes the complex structures.

However, the fibres are of the form Ha, and composing the H∗- action by premultiplication with the

inverse element of H∗, the complex structures are preserved and we have a triholomorphic trivialization of

the normal bundle. The normal bundle of the real line in Z is therefore isomorphic to that coming from

a standard example, the normal bundle of CP1 in CP2a+1, which is 2aO(1). So Z is a twistor space and

defines a quaternionic structure on N .

The above proof would be much shorter if we could conclude that because the quotient hypercomplex

manifold has a suitable H∗- action it is the associated bundle of some quaternionic structure. However, this

is not in general true: as in the previous section, where the definition of moment map could be changed by

tensoring by a real line bundle equipped with a quaternionic connection (see §3.1), here it is the case that

a hypercomplex manifold with a suitable H∗- action need not be an associated bundle but may instead be

an associated bundle twisted by a real line bundle with quaternionic connection, as will be explained in

Chapter 3. So we must projectivize to get rid of the real line bundle.
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Second Proof. As above, choose ∇M to be F - invariant. Let I1, I2, I3 be a local F - invariant basis for the

bundle of almost complex structures that satisfies I1I2 = I3, and s be a local, smooth, non-vanishing F -

invariant section of e. Then µ = µ1s⊗ I1 + µ2s⊗ I2 + µ3s⊗ I3 where µ1, µ2, µ3 are scalar functions. At

the points where µ = 0, i.e. on P , we have

∇Mµ = (dµ1)⊗ s⊗ I1 + (dµ2)⊗ s⊗ I2 + (dµ3)⊗ s⊗ I3, (8)

which is not generally true away from P because ∇M (s⊗ Ii) need not vanish. Then condition (i) becomes

I1dµ1 = I2dµ2 = I3dµ3, as in the hypercomplex case. As P is defined by the vanishing of the scalar

functions µ1, µ2, µ3, the vector bundle V may be defined as in the hypercomplex case. Therefore TM |P =

TP ⊕ ImH · F and TP = V ⊕ F, where V is a subbundle of TP that is invariant under I1, I2, I3 as a

subbundle of TM |P .

The proof of Proposition 2.3.1 will therefore be completed by the

Lemma 2.3.2. Suppose M , F and ∇M are as above, and that P is an F - invariant submanifold of M

satisfying TM |P = TP ⊕ ImH ·F and TP = V ⊕F, where V is a subbundle of TP that is invariant under

I1, I2, I3 as a subbundle of TM |P . Then N = P/F has a natural quaternionic structure.

Proof. A connection ∇N and three almost complex structures I1, I2 and I3 can be defined on N exactly

as in the proof of Lemma 2.1.2, with the proviso that Ii are only local, and the proof there that ∇N is

torsion-free also transfers unchanged to this situation. It will now be shown that ∇N preserves the family

of almost complex structures on N . This then implies that N is quaternionic, except in four dimensions,

as the definition of quaternionic manifold is stronger in this case.

On M the Ii satisfy ∇MIi = αij ⊗ Ij , using the summation convention, where (αij) is an anti-

symmetric 3× 3 matrix of 1-forms on M .

Choosing the local almost complex structures I1, I2, I3 to be F - invariant makes the 1-forms αij F -

invariant. The horizontal parts of the αij project down to give an anti-symmetric matrix of 1-forms (αij)

on N . It will be shown that ∇NIi = αij ⊗ Ij .

It is sufficient to show that ∇N
u (Iiv) = Ii∇N

u v + αij(u)Ijv, where u, v are any vector fields on N and

α(v) is the contraction of the 1-form α with the vector field v. We lift this equation to TM |P . The fields

u, v lift uniquely to give F - invariant sections ũ, ṽ of V over P . We shall again think of ũ as a section of

TP and ṽ as a section of TM |P .
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By definition of ∇N , the first two terms lift to ρ(∇M |P
ũ (Iiṽ)) and Iiρ(∇M |P

ũ ṽ). The scalar field αij(u)

lifts to αij(ũ), because although the vertical part of αij is lost on projection to N , ũ is horizontal and so

this does not matter. Also Ijv lifts to Ij ṽ.

Thus we must demonstrate that

ρ(∇M |P
ũ (Iiṽ)) = Iiρ(∇M |P

ũ ṽ) + αij(ũ)Ij ṽ.

But this is just the application of ρ to the equation

∇M |P
ũ (Iiṽ) = Ii∇M |P

ũ ṽ + αij(ũ)Ij ṽ,

which follows from ∇MIi = αij ⊗ Ij .

2.4. Quaternionic complex manifolds

Let M be a quaternionic 4-manifold. The complex structures at a point x in M compatible with the

quaternionic structure are parameterized by the points of the fibre of the twistor space Z of M over the

point x. Thus an almost complex structure I on M compatible with the quaternionic structure is a section

of the fibration Z → M ; I is integrable whenever the section is a complex hypersurface in Z.

Recall the orientation convention of §1.1, that the orientations chosen upon hypercomplex and hy-

perkähler manifolds are opposite to the natural complex ones. In this section we will reverse this convention

and work with the natural complex orientation, in order to fit in with other published papers. Thus we

shall deal with Hermitian metrics that are anti-self-dual instead of self-dual, and this really does mean

anti-self-dual with respect to the complex orientation.

We begin by quoting a result of Pontecorvo ([Pt], Theorem 2.1), that if M is Hermitian with metric

g and complex structure I and anti-self-dual, then g is conformal to a Kähler metric if and only if the

line bundle defined by the divisor [X] is isomorphic to K
− 1

2
Z . Here KZ is the canonical line bundle over Z

and [X] is the sum of the hypersurface Σ in Z defined by the complex structure I and the hypersurface Σ

defined by −I.

Thus the Kähler metrics in the conformal class of M are exactly given by real holomorphic sections

of K
− 1

2
Z . Using a calculation in [S1], Theorem 4.3, we find that a real holomorphic section of K

− 1
2

Z is



2.4. Quaternionic complex manifolds 34

a complex function ψ on the associated bundle that is quadratic, holomorphic with respect to I1, and

satisfies the reality condition ψ(h) = ψ(I2h) for h in the associated bundle.

As ψ is quadratic it has two zeros in each fibre of the twistor space Z, which are interchanged by

the real structure σ on Z because ψ is real. Therefore ψ defines a complex structure I and its conjugate

−I on M . Also, the ‘norm’ of ψ on each fibre lies in a non-zero power of the volume forms, which gives

a volume form on M . So M has a complex structure, a conformal structure and a volume form, which

together make M Hermitian. Pontecorvo’s result is that M is in fact Kähler with zero scalar curvature.

We shall make an observation that will enable us to put this information in a form that does not single

out the complex structure I1 on the associated bundle. The quaternionic moment maps defined in §2.2 were

interpreted on the associated bundle as triples of F∗- valued quadratic functions µ1, µ2, µ3 with µ2 + iµ3

holomorphic w.r.t. I1. The remaining conditions imply the reality condition (µ2+iµ3)(h) = (µ2−iµ3)(I2h),

and these two conditions on µ2, µ3 are sufficient in the sense that there then exists a unique µ1 forming a

quaternionic moment map. So a real holomorphic section ψ of K
− 1

2
Z is equivalent to a triple µ of quadratic

scalar functions µ1, µ2, µ3 on the associated bundle satisfying (1). On M this is a section µ of G̃ satisfying

(6).

Define a twistor function µ on a quaternionic manifold M to be a section µ of G̃ satisfying (6). They

are called twistor functions because they are in the kernel of a differential operator called the quadratic

twistor operator. (See [S3], §5 for the theory of invariant differential operators on quaternionic manifolds

and [S1], Lemma 6.4, for the definition of the quadratic twistor operator D in the quaternionic Kähler

case.) It is easily shown that the only twistor functions on a connected open set in Hn, and hence HPn,

are polynomials of degree at most two.

Let us digress for a moment to consider the relation between twistor functions and twistors. In Pen-

rose’s original formulation of twistor theory on flat space, twistors were the kernel of a related differential

operator called the (linear) twistor operator, and thus were global objects defined on the whole manifold.

However, on curved space it is very rare for the operator to have any nonzero kernel. Our twistor functions

look like elements of the second symmetric product of the vector space of twistors, and can be thought of

as quadratic twistors rather than linear twistors. Again, generically we expect a curved space to admit no

nonzero twistor functions.

Pontecorvo’s result can now be rewritten, to state that the Kähler metrics in the conformal class of a

quaternionic 4-manifold M are given by the non-vanishing twistor functions µ on M . Looked at this way,
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zero scalar curvature Kähler surfaces have an obvious generalization to higher dimensions. The manifolds

are quaternionic with a preferred complex structure, so we shall adopt the name quaternionic complex for

them. We define a quaternionic complex manifold to be a quaternionic manifold M together with a twistor

function µ that vanishes nowhere on M . It is sometimes convenient to allow µ to vanish at points on M ,

and these will be called singular points of the quaternionic complex manifold, so in general a quaternionic

complex manifold will be an open set of a singular quaternionic complex manifold.

The quaternionic quotient generalizes very simply to the quaternionic complex case: if one does a

quaternionic quotient of a quaternionic complex manifold by a group preserving the twistor function µ then

it is easy to see that µ descends to a twistor function on the quotient, which will again be non-vanishing.

(However, when dealing with singular quaternionic complex manifolds it is important to ensure that µ

does not lie in the span of the moment maps chosen.)

The main result that we will prove about quaternionic complex manifolds is that they can alternatively

be described as manifolds with an SL(n,H)U(1)- structure preserved by a torsion-free connection, and

that as in the hypercomplex case this connection is unique. (The structure group is SL(n,H)U(1) because,

as in four dimensions, the twistor function gives a complex structure and a volume form, and the group

preserving a quaternionic structure, a complex structure and a volume form is SL(n,H)U(1).)

We note that in the classification by Berger [Br] of holonomy groups of manifolds with torsion-free

connections, SL(n,H)U(1) is given as a possible holonomy group in Theorem 4, p. 320; in Berger’s notation,

SL(n,H)U(1) is T1 × SU∗(2n).

Theorem 2.4.1. Let M be a quaternionic complex manifold. Then M has a natural SL(n,H)U(1)-

structure Q, and there is a unique torsion-free connection ∇M preserving Q.

Proof. As M is quaternionic, it has a GL(n,H)GL(1,H)- structure Q′. A point q′ in the fibre of Q′ over

m ∈ M is an isomorphism of vector spaces q′ : Hn → TmM inducing isomorphisms on the families of

complex structures on Hn and TmM .

But the twistor function on M gives a non-zero volume form θ on TmM and selects one of the complex

structures, denoted I. Define the subset Q of Q′ as those q′ ∈ Q′ taking I1 to I and the standard volume

form on Hn to θ. Clearly Q fibres over M with fibre SL(n,H)U(1), so Q is an SL(n,H)U(1)- structure

on M .

To show that there exists a unique connection ∇M on M preserving Q, it is sufficient to find a unique

∇M preserving Q′, I and θ. Recall that from [S2], p. 135, the torsion-free connection on a quaternionic
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manifold may be uniquely defined by giving a volume form for it to preserve. Let ∇M be the torsion-free

connection on M preserving Q′ and the volume form θ. We will show that ∇MI = 0.

Set I1 = I and choose I2, I3 locally in G such that I1I2 = I3. Then µ = s ⊗ I1, where s is a

non-vanishing section of e. As ∇Mθ = 0 and θ is some non-zero power of s, we have ∇Ms = 0. Also

as ∇M preserves Q′ we have ∇MIi = αijIj , where (αij) is an antisymmetric matrix of 1-forms. Thus

∇Mµ = s⊗ α1j ⊗ Ij .

However, ∇Mµ satisfies the quadratic twistor equation, and writing ∇Mµ = s⊗ vj ⊗ Ij gives I1v1 =

I2v2 = I3v3. But v1 = α11 = 0, as (αij) is anti-symmetric. So v2 = v3 = 0 and ∇Mµ = 0.

Therefore ∇MI = 0 and there is a unique torsion-free connection ∇M preserving the quaternionic

structure Q′ of M , the complex structure I and the volume form θ.

As a corollary we reprove Pontecorvo’s result quoted above.

Corollary 2.4.2 ([Pt], Theorem 2.1). A four-dimensional quaternionic complex manifold is exactly a

Kähler surface of zero scalar curvature.

Proof. Let M be a four-dimensional quaternionic complex manifold. Then M has the structure of a

Hermitian manifold, with Riemannian metric g and compatible complex structure I. Since ∇M is torsion-

free and preserves g it must be the Levi-Civita connection, and as I satisfies ∇MI = 0, M is by definition

Kähler. But M is conformally anti-self-dual, so it must have zero scalar curvature.

Conversely, if M is a zero-scalar-curvature Kähler surface, it is quaternionic, and the volume form

and complex structure together make up a section µ of G̃ satisfying ∇Mµ = 0, and a fortiori the quadratic

twistor equation. Thus M is quaternionic complex.

We also have an alternative definition for quaternionic complex manifolds:

Corollary 2.4.3. In 4n dimensions with n > 1, a quaternionic complex manifold is a manifold with

an SL(n,H)U(1)- structure preserved by a torsion-free connection. In four dimensions a quaternionic

complex manifold is a Kähler surface with zero scalar curvature.

A curious aspect of this work is that although we have a quotient for a type of Kähler manifold, it

is not a Kähler quotient. This is because the higher dimensional manifolds do not have metrics. I have

also found a pseudo-Kähler quotient for the zero-scalar-curvature Kähler surfaces given as examples of the

quaternionic complex quotient in §4.2.1. But the two quotients seem almost unrelated and I do not know

if there is a systematic way of producing zero-scalar-curvature Kähler surfaces as Kähler quotients.



Chapter 3: Twisting Constructions

The idea that U(1)- invariant self-dual metrics can be constructed from solutions to a monopole

equation on a 3-manifold with a special structure called an Einstein-Weyl structure has been known for

some time. It first appeared, I believe, in 1977 in two papers [GH], [Ha] by Gibbons and Hawking. They

used monopoles on the Einstein-Weyl space R3 to write down two families of complete, Ricci-flat, self-dual

metrics called ALE spaces and ALF spaces.

Then in 1985, the construction was generalized to any Einstein-Weyl space by Jones and Tod ([JT],

§6). Later, the construction was used by LeBrun [L2] on hyperbolic 3-space to make self-dual metrics on

the connected sum of n copies of CP2. In this chapter the construction will be generalized even further,

replacing U(1) by an arbitrary Lie group and moving from self-dual 4-manifolds to quaternionic manifolds

in any dimension.

Suppose that we have chosen a hypercomplex or quaternionic manifold M , a Lie group G, an action

Ψ of G on M that preserves the structure, and a principal G- bundle P over M carrying a Ψ- invariant G-

connection satisfying a certain curvature condition, that generalizes the instanton equations in the four-

dimensional case. We shall show that one can, subject to a certain condition, define a new hypercomplex

or quaternionic manifold N that is M ‘twisted by’ the G- bundle P . This is called a twisting construction

because we imagine P as having a twist in its topology, like a loop of paper with several half-turns in, that

is applied to the manifold M to give a new manifold N .

As an application of these ideas, in §3.2 many compact, nonsingular, simply-connected hypercomplex

and quaternionic manifolds are constructed in dimensions greater than four, that are not products or joins

of other manifolds, and even locally are not hyperkähler or quaternionic Kähler. (That is, the structure

group cannot be reduced to Sp(n) or Sp(n)Sp(1).) These are interesting because they are (I believe)

the first such examples, and show that there are many compact higher-dimensional hypercomplex and

quaternionic manifolds, which is a contrast with the apparent scarcity of compact quaternionic Kähler

manifolds.

As another application, in the next chapter twisting methods will be used to construct some new

self-dual metrics on nCP2, in a similar way to LeBrun’s description of his metrics. These new metrics are

also briefly described in Appendix B at the end of §B.7. For its theoretical interest a generalization of

37
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the twisting construction is given in §3.3 that allows, in a certain sense, twisting by a homogeneous space

instead of a group. I have not yet found any interesting examples of its use.

3.1. A twisting construction for hypercomplex and quaternionic manifolds

Suppose that M is a quaternionic manifold, and let Z be the twistor space of M . Then Z is a

complex manifold that is a fibre bundle over M with fibres CP1 of normal bundle nO(1), and has an

antiholomorphic involution σ that fixes the fibres. Let G be a compact Lie group, P a principal G- bundle

over M , and A a connection on P . The curvature Ω of A is a 2-form on M with values in adP , where

adP is the bundle associated to the adjoint representation of G on the Lie algebra g of G.

At each point of M there is a family of complex structures from the quaternionic structure, and for

each such complex structure I, the 2-forms on M can be decomposed into the +1- and −1- eigenspaces of

I; the +1 eigenspace corresponds to the real (1, 1)- forms and the −1 eigenspace to real combinations of

(2, 0)- and (0, 2)- forms.

We define a quaternionic connection A on P to be a connection whose curvature Ω is in the +1-

eigenspace for each I in the family at every point. This definition coincides with the definition of a

quaternionic connection given in [S3], Definition 7.1. Moreover, when N is 4-dimensional, a quaternionic

connection is just a (self-dual) instanton. So quaternionic connections are the natural generalization to

quaternionic manifolds in all dimensions of the notion of an instanton in four dimensions.

Quaternionic connections are interesting because the following generalization of the Ward correspon-

dence applies to them:

The Ward correspondence: Let M be a quaternionic manifold, Z the twistor space of M , G a

Lie group, and P a principal G- bundle over M . Let P̃ be the lift of P to Z and P̃ c be the

complexification of P̃ , with fibre Gc, the complexification of G. Then quaternionic connections

A on P are in one-to-one correspondence with real holomorphic structures on the Gc- bundle P̃ c

that are trivial on the fibres of Z.

By a real holomorphic structure we mean a holomorphic structure that changes sign under the com-

position of the real structure on Z and complex conjugation on the fibres of P̃ c.

Because P is a principal bundle there is an action of G on P , which shall be called Φ, that acts

transitively on the fibres. Let Ψ : G → Aut(M) be an action of G upon M , that lifts to an action of G

on P (some group actions may not lift to the bundle). We choose a particular lifting of Ψ to P , that will
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also be called Ψ, preserving the principal bundle structure (i.e., commuting with Φ). This lifting is not

necessarily unique up to homotopy.

We shall now prove two theorems, which have very similar statements and proofs.

Theorem 3.1.1. Let M , P , Φ and Ψ be as above, and let A be a Ψ- invariant quaternionic connection

on P . Suppose Ψ(G) acts freely on P . Then the manifold N = P/Ψ(G) has a natural (possibly singu-

lar) quaternionic structure, which is nonsingular wherever the Lie algebra of Ψ(G) is transverse to the

horizontal subspaces of A in P .

Theorem 3.1.2. Let M , P , Φ and Ψ be as above, and let A be a Ψ- invariant quaternionic connection on

P . Let ∆ : G → Aut(P ) be the diagonal action of G on P , given by ∆(g) = Φ(g)Ψ(g). (This is a group

homomorphism because Φ and Ψ commute.) Suppose that ∆(G) acts freely on P . Then the manifold

N = P/∆(G) has a natural (possibly singular) quaternionic structure, which is nonsingular wherever the

Lie algebra of ∆(G) is transverse to the horizontal subspaces of A in P .

If M is hypercomplex rather than just quaternionic, and Ψ preserves the hypercomplex structure as

well as the quaternionic structure, then the manifolds N constructed in Theorems 3.1.1 and 3.1.2 will also

be hypercomplex. This is because if M is hypercomplex then its twistor space Z fibres over CP1, and this

induces a fibration over CP1 of the twistor space W of N constructed in the proof below. The proofs of

Theorems 3.1.1 and 3.1.2 are almost identical, so only the first will be given; to get the second, replace Ψ

by ∆ throughout.

Proof of Theorem 3.1.1. By the Ward correspondence, the quaternionic connection A on P defines a

holomorphic structure on the bundle P̃ c over Z. The action Ψ on P lifts to P̃ and then to Ψ̃ on P̃ c,

and as A is Ψ- invariant, this action preserves the holomorphic structure. We define the antiholomorphic

involution σ̃ of P̃ c to be the composition of the antiholomorphic involution σ on Z and complex conjugation

on the fibres Gc. Then Ψ̃ commutes with σ̃.

The action Ψ̃ of G can be complexified to an action Ψ̃c of Gc on P̃ c. Ideally we would like to say

that P̃ c/Ψ̃c(Gc) ∼= P̃ /Ψ̃(G), because each Ψ̃c(Gc)- orbit in P̃ c contains exactly one Ψ̃(G)- orbit in P̃ ;

thus P̃ /Ψ̃(G) would also be the quotient of a complex manifold by a complex group, and so would have a

complex structure. However, this involves us in two sorts of problems: firstly, some Ψ̃c(Gc)- orbits might

contain no G- orbits in P̃ , or more than one, and secondly, as Gc is a non-compact group, topological

restrictions on its action are necessary for the quotient even to be Hausdorff.
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We shall overcome these problems as follows. Let U be a small open neighbourhood of G in Gc. We

require that U should be invariant under complex conjugation and the action of G on the right, and that

the closure of U in Gc should be compact. We also require that U should be sufficiently small that if

x1, x2 ∈ P̃ and u1, u2 ∈ U and Ψ̃c(u1)x1 = Ψ̃c(u2)x2 then x1, x2 are in the same Ψ̃(G)- orbit in P̃ . (This

is possible at least for compact subsets of P̃ . Here the transversality condition is needed to ensure that

the action Ψ̃c(ig) is transverse to P̃ in P̃ c, without which the result might fail.)

Let S ⊂ P̃ c be the set Ψ̃c(U)[P̃ ]. Then S is an open neighbourhood of P̃ in P̃ c, and fibres over

P̃ /Ψ̃(G) with fibre U . (Here we use the property of U given in the previous paragraph, and also the

right G- invariance of U .) As the fibres are locally Ψ̃c(Gc)- orbits, they are complex submanifolds and

the fibration is holomorphic. Since U is compact, the fibration is topologically well behaved. So P̃ /Ψ̃(G)

is the base space of a holomorphic fibre bundle, and is thus a complex manifold. Also, σ̃ restricts to S,

where it preserves the fibres, so it descends to an antiholomorphic involution σ′ of P̃ /Ψ̃(G).

Define W = P̃ /Ψ̃(G). Then from above, wherever Ψ is transverse to the horizontal subspaces of A, W

is the base space of a holomorphic fibre bundle S, and so has a complex structure and an antiholomorphic

involution. Moreover, W fibres over N = P/Ψ(G) with fibre CP1, since dividing by Ψ(G) commutes with

passage from M to the twistor space Z. To prove that W is a twistor space, it remains only to show that

the normal bundle of the fibres is nO(1).

To do this requires a little algebraic geometry. The bundle P̃ c is trivial over real lines as a holomorphic

bundle, and so the normal bundle of a real line in P̃ c is nO(1) + gc ⊗O. But to get the normal bundle of

the corresponding fibre of W we have to divide by the part tangent to the orbit of Gc, which is isomorphic

to gc ⊗O. However, one cannot simply cancel off the copies of O; for example O may be embedded as a

subbundle of 2O(1) +O so as to give the quotient bundle O +O(2) rather than 2O(1).

Now nO(1) + gc ⊗O has a canonical projection to gc ⊗O, and the condition that the normal bundle

of the fibre should be nO(1) is that the map from gc ⊗O to itself got by applying this projection to the

subbundle tangent to the orbit of Gc, should be nondegenerate. We shall show that this is implied by the

transversality condition.

Above, we used the fact that the natural twistor interpretation of the transversality condition is that

Ψ̃c(ig) is transverse to P̃ in P̃ c; that is, that at each point a certain natural linear map from g to itself is

nondegenerate. But on each real line in P̃ , it can be seen that the map we want from gc ⊗ O to itself is

the complexification of this natural map from g to itself, and so the nondegeneracy of the complex map
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does follow from the transversality condition. Therefore the normal bundle of the fibres of W is nO(1)

wherever the transversality condition holds, and W is the twistor space for a quaternionic structure on N ,

which is nonsingular wherever Ψ(G) is transverse to the horizontal subspaces of A.

In Appendix A a rigorous proof of this Theorem will be given without invoking the Ward corre-

spondence, by showing that the Nijenhuis tensor of each of the three almost complex structures on the

associated bundle of N vanishes, and thus that they are integrable. It is a long but elementary calculation

that starts from the fact that the curvature is of type (1,1) with respect to each complex structure.

3.2. Compact hypercomplex and quaternionic manifolds

In this section we will apply Theorem 3.1.2 to construct compact, nonsingular, simply-connected

examples of hypercomplex and quaternionic manifolds. Theorem 3.1.2 is actually more useful than The-

orem 3.1.1, because there are many situations in which the image of the Lie algebra action ψ is actually

contained in the horizontal subspaces of the connection A, and therefore the transversality condition of

Theorem 3.1.1 does not hold anywhere, but that of Theorem 3.1.2 holds everywhere and so the resulting

manifold has a nonsingular quaternionic structure.

3.2.1. First example

Let M be a compact simply-connected quaternionic manifold, and suppose that P is a non-trivial,

primitive U(1)- bundle (and so, has simply-connected total space) carrying a quaternionic connection A.

For instance, M could be CP2 and the instanton could be the one with curvature form the Kähler form of

the Fubini-Study metric; this generalizes to the higher-dimensional symmetric spaces SU(n+2)/S(U(n)×

U(2)). Or M could be a self-dual metric on nCP2 and the instanton that one arising from the harmonic

form representing any integral, primitive, non-zero two-dimensional cohomology class.

Then the associated bundle U(M) introduced in §1.2 is hypercomplex, but not yet compact. Let r be

a positive real constant. Then the integers Z act on U(M) by multiplication by ern, n ∈ Z, and dividing

by this action gives a compact hypercomplex manifold U(M)/Z that is not simply-connected, and fibres

over M with fibre the Hopf surface (divided by {±1}).

Let Ψ be the action of U(1) on U(M)/Z of dilation on the fibres, that is, let eiθ act by multiplication

by e
rθ
2π . This action preserves the fibration over M and thus the lift of the instanton A to U(M). Now

applying Theorem 3.1.2 we get a new hypercomplex manifold that is U(M)/Z twisted by the non-trivial
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U(1)- bundle P . The new manifold N is compact and simply-connected (though we may need to take a

double cover if M is spin, as then U(M) has a double cover), because twisting by P kills the fundamental

group as P is primitive. It also fibres over M with fibre the Hopf surface (divided by {±1}), but the U(1)-

component of the fibration is now non-trivial.

Hopf surfaces appear in most of the examples we shall give. An interesting point about the case when

M is CP2 is that the resulting manifold N is homogeneous, that is, has transitive symmetry group. In

fact N is SU(3), and has symmetry group SU(3) × U(1). Homogeneous hypercomplex and quaternionic

manifolds will be the topic of Chapter 5.

A variation on the above is, instead of working with the standard R∗+ ⊂ H∗, to choose a more arbitrary

one-parameter subgroup of H∗. Let this act on U(M) by multiplication, and divide U(M) by a sublattice

of this subgroup. One ends up with a U(1)- action upon the quotient of U(M) by a different action of Z.

The difference in this case is that the actions of R and Z do not have to preserve the individual complex

structures but only the family, so we are effectively regarding U(M) as a quaternionic manifold instead of

as a hypercomplex manifold. The manifold that is then constructed is compact, simply-connected (up to

a double cover) and quaternionic but not (for general one-parameter subgroups) hypercomplex, and will

fibre over M with fibre a Hopf surface over {±1}, but this time a Hopf surface that is not the quotient

of H \ {0} by a group of dilations, but by a group generated by left multiplication by a general non-unit

quaternion.

3.2.2. Second example

Let M1 and M2 be compact, simply-connected quaternionic manifolds. Now the product of two

quaternionic manifolds is not quaternionic, but there is a notion analogous to a product for quaternionic

manifolds, called the join ([Sw], §5, p. 23). The join M1 ∗M2 of M1,M2 is defined to be the quaternionic

manifold with associated bundle U(M1)×U(M2). This is an associated bundle because the product of the

two hypercomplex manifolds U(Mj) is hypercomplex, and has an H∗- action given by combining the H∗-

actions on the factors.

Then M1 ∗ M2 is not compact, but fibres over M1 × M2 with fibre (H \ {0})/{±1}. Note that

dim M1 ∗M2 = dim M1 + dim M2 + 4. Let r > 0 be a real number. We may make M1 ∗M2 compact by

dividing it by the integers, acting by dilation by ern in the fibres (H \ {0})/{±1} to get a bundle over

M1 × M2 with fibre the Hopf surface over {±1}. This action of the integers is given on the associated

bundle U(M1)× U(M2) by multiplication of the first factor by e
rn
2 and of the second factor by e−

rn
2 .



3.3. A more general twisting construction 43

Thus there are simple examples of compact nonsingular quaternionic manifolds involving Hopf sur-

faces; we exclude these because they are not simply-connected, and also because they are locally the joins

of two lower-dimensional manifolds. However, both of these disadvantages may be removed by taking a

non-trivial, primitive U(1)- instanton on M1 or M2 or both, lifting to get a U(1)- instanton on M1 ∗M2,

and applying Theorem 3.1.2 as in §3.2.1. The action Ψ of U(1) on the associated bundle is that Ψ(eiθ)

acts by multiplication of the first factor by e
rθ
4π , and of the second by e−

rθ
4π .

As in §3.2.1, the transversality condition holds everywhere, and the result is a nonsingular, compact

quaternionic manifold, which is simply-connected (because the instanton was chosen to be primitive, and

again up to a double cover) and fibres over M1 × M2 with fibre the Hopf surface over {±1}. It is not

locally the join of two manifolds, because if it were then by simple-connectedness it would be globally so

as well, and so non-compact.

As examples of suitable pairs M1, M2, one could take M1 and the instanton to be any of the possibilities

given in §3.2.1, and M2 to be a quaternionic Kähler Riemannian symmetric space, say, or any compact

self-dual 4-manifold.

3.3. A more general twisting construction

The method of Theorem 3.1.1 actually admits some generalization. This is so far only of theoretical

value as I have not found any particularly interesting applications, but it will be given for completeness.

Let M be a quaternionic manifold, G a Lie group, and Ψ a free G- action upon M preserving the

quaternionic structure. Let F be a manifold of the same dimension as G, and K be a Lie subgroup of

Diff(F ). For simplicity we suppose K to be finite-dimensional. It can easily be shown that nonsingularity

of the quaternionic structures we produce below requires K to act transitively on F , so F should be a

homogeneous space of a finite-dimensional group — a reasonably restrictive condition. Let P be a principal

K- bundle over M , and let a lifting of Ψ to P , also to be denoted Ψ, be given, that preserves the principal

bundle structure.

As K acts on F , there is an F - bundle over M naturally associated to P — call this bundle Q, say.

The action Ψ on P descends to Q. Moreover, if A is a connection on P , then naturally associated to A

there is a field of horizontal subspaces in Q, which will be called B. After all these definitions, we can

state the result:
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Theorem 3.3.1. Let M , G, P , F , K and Ψ be as above, and let A be a quaternionic connection on

P . Then the manifold N = Q/Ψ(G) has a natural (possibly singular) quaternionic structure, which is

nonsingular wherever the Lie algebra of Ψ(G) is transverse to the horizontal subspaces of B in Q.

Proof. The proof of this theorem is identical in spirit to that of Theorem 3.1.1. In order to use the method

of proof of §3.1 we need to know that F is a real analytic manifold with a complexification F c upon which

Kc acts, but if F is really a homogeneous space for a finite-dimensional group this is not a problem. In

brief, the argument runs as follows; to fill in the details and notation, refer to the proof of Theorem 3.1.1.

By the Ward correspondence, P̃ c is a real holomorphic principal Kc bundle over the twistor space

Z, and so we may associate a real holomorphic F c bundle to it, Q̃c. Defining W = Q̃c/Ψ̃c(Gc) gives a

complex manifold, which can be identified with Q̃/Ψ̃(G) giving a real structure and a fibration over N

with fibre CP1. The normal bundle of the fibres turns out to be nO(1), and so W is a twistor space and

gives a quaternionic structure on N , as required.

It would be very interesting if this theorem led to some good examples of self-dual 4-manifolds.

The most obvious starting point is to put G = U(1), and F = S1. Then as a finite-dimensional group

of diffeomorphisms of F we can choose K = PSL(2,R) acting upon F viewed as RP1, or any finite

cover of PSL(2,R) acting upon a finite cover of RP1, for instance the double cover SU(1, 1) (SL(2,R)).

So Theorem 3.3.1 tells us that we may twist a U(1)- invariant self-dual manifold by a U(1)- invariant

SU(1, 1)- instanton to get a new self-dual manifold. This new self-dual manifold will probably not have a

U(1)- action, but it will have a conformal retraction onto the 3-manifold over which it is a bundle.

Now U(1)- invariant SU(1, 1)- instantons may be easily produced upon open sets in S4 using monads,

so we may certainly locally produce new self-dual metrics by this idea. However, I have so far failed

to produce compact examples. For instance one might look for an SU(1, 1) monopole with singularities

modelled upon those of U(1)- monopoles for copies of U(1) embedded in SU(1, 1), and make a self-dual

metric upon nCP2 similar to LeBrun’s examples, but more general in that there were a conformal retraction

onto hyperbolic space but no U(1)- symmetry.

I suspect that there are probably gauge-theoretic reasons why any such global monopole must be

a U(1)- monopole in disguise, because SU(1, 1) retracts onto U(1) and hence SU(1, 1)- bundles cannot

have global topological invariants other than those of the associated U(1)- bundle. This could perhaps

be proved by twistor means through showing that a CP1- bundle over a compact complex manifold must

under certain conditions admit a global holomorphic section.
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3.3.1. Another construction

Here is a completely different way of using instantons to make hypercomplex and quaternionic mani-

folds. It is well known that the moduli spaces of instantons on a hyperkähler 4-manifold are hyperkähler,

and that one way of looking at this is to regard the moduli spaces as infinite-dimensional hyperkähler

quotients of the space of all smooth connections by the gauge group, with the self-duality equations as the

moment maps. In fact the moduli spaces of instantons on a hypercomplex 4-manifold may be regarded

as hypercomplex quotients in the same way, and so the moduli spaces will be (singular, noncompact)

hypercomplex manifolds.

Let X be a hypercomplex Hopf surface. Then U(2) acts transitively on X permuting the complex

structures, in the same way that H∗ acts upon its own complex structures by left multiplication. Let M

be a moduli space of instantons over X; then M is hypercomplex. The action of U(2) on X induces an

action of U(2) upon M that permutes the complex structures of M in the same way. It is not difficult

to see that the quotient of M by this action of U(2) will in fact be a quaternionic manifold, where it

is nonsingular. I do not know if any of the quaternionic manifolds arising in this fashion can be made

compact.



Chapter 4: Examples. Self-Dual Four-Manifolds

Now we shall apply the results of Chapters 2 and 3 to construct quaternionic 4-manifolds, which are

just self-dual conformal 4-manifolds. We begin in §4.1 with an introduction to what is currently known

about the existence of compact, self-dual 4-manifolds. The results in this field are divided into two types:

abstract existence results, which use analysis or complex geometry to show that self-dual metrics exist

on a particular 4-manifold, and explicit constructions, that write down formulae for special families of

self-dual metrics.

Important examples of the second type are the metrics defined by Poon [P] on 2CP2 and, more

generally, by LeBrun [L2] on nCP2. (This notation means the n- fold connected sum of CP2, which will

be explained in §4.1.) Explicit examples are valuable as a guide to the behaviour of self-dual metrics and

moduli spaces, and as a pattern for the development of further theory, even if it is already known from

abstract existence results that the manifolds admit self-dual metrics.

This chapter gives explicit constructions for some self-dual metrics. We offer a new quotient perspec-

tive upon Poon’s and LeBrun’s metrics, and we find incidentally some new (I believe) families of explicit

self-dual metrics on nCP2 for n ≥ 4. The advantages of the quotient picture are that it becomes obvious

that the twistor spaces have algebraic dimension 3, it gives a way of understanding the edges of the family,

and also it enables the construction of monads for instantons on the self-dual metrics. (I have done this

for weighted projective spaces and for LeBrun’s metrics, but I shall not even put it into an appendix, as

if I did, the laser printer would never talk to me again.)

Since Chapter 2 did not include any examples of the hypercomplex quotient or the quaternionic

quotient, in §4.2 a very basic, carefully explained example will be given to work through the theoretical

material. The example we give is that of quaternionic structures on complex 2-dimensional weighted

projective spaces, some of which have been looked at before from the quaternionic Kähler point of view by

Galicki and Lawson. The quaternionic quotient, however, reaches projective spaces other quotients cannot

reach, giving quaternionic structures on all of the weighted projective spaces.

In Appendix B we shall describe a method for building up quotients from the building blocks of

these weighted projective space quotients, to make quotients for nonsingular quaternionic structures on

4-manifolds that have been built up out of the corresponding weighted projective spaces. The results of

46
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this appendix are summarized in §4.3. I have put the material in an appendix because I feel it is rather

too complicated and involved for the general reader to be interested in it; for this reason I do not intend

to submit it for publication. It is going in the thesis because I want it to appear somewhere, as it took a

lot of work and I like it.

As a more complicated example of the quaternionic quotient, §4.4 gives a quotient version of Poon’s

metrics on 2CP2 [P], and gives an explicit correspondence between the quotient representation and Poon’s

description of the twistor spaces. The quotient version is in some ways a simplification, but I have great

admiration for the way that Poon’s metrics appear from almost nowhere in a puff of algebraic geometry.

The chapter ends in §4.5 with a construction of some new explicit families of self-dual metrics on nCP2

for n ≥ 4. They were found using the quotient methods of Appendix B, but the presentation largely copies

LeBrun’s construction in [L2], because it is neater, and to provide an example of the twisting methods of

Chapter 3.

4.1. Some facts about self-dual 4-manifolds

We shall first explain what the connected sum of two manifolds of the same dimension is, and indicate

a generalization to orbifolds. Then we will discuss some of the general results upon existence and properties

of families of self-dual metrics upon compact 4-manifolds, and finally we will look at the families of self-dual

metrics that have been explicitly written down.

Suppose that M1 and M2 are connected, oriented, smooth manifolds of the same dimension n. The

connected sum gives a way of combining M1 and M2 to give another connected, oriented, smooth manifold

of dimension n, which is called the connected sum of M1 and M2, and written M1#M2. To define M1#M2,

let m1,m2 be points in M1,M2 respectively; as Mi are smooth manifolds for i = 1, 2, the points mi have

open neighbourhoods Bi and diffeomorphisms Φi from the open ball B1(0) of radius 1 about the origin

in Rn to Bi, such that Φi(0) = mi. To make the orientations come out right, we ask in addition that Φ1

should be orientation-preserving, and Φ2 should be orientation-reversing.

Define the connected sum of M1 and M2 to be

M1#M2 =
(
M1 \ Φ1

[
B 1

2
(0)

])
q

(
M2 \ Φ2

[
B 1

2
(0)

])/
˜ ,

where ˜ is the equivalence relation defined by
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Φ1[v] ˜ Φ2

[
v

2|v|2
]

whenever v ∈ Rn and 1
2 < |v| < 1.

The orientation of M1#M2 may be induced from that of M1 or M2. Note that the connected sum is

independent, as a smooth manifold, of the choice of points m1,m2.

We comment briefly on an extension of this idea to orbifolds. An orbifold is a smooth manifold that is

allowed, in addition, to contain certain mild sorts of singular points. To be more precise, whereas a smooth

manifold is a Hausdorff topological space in which every point has an open neighbourhood homeomorphic

to the unit ball in Rn, and the transition functions between the neighbourhoods are smooth, for an orbifold

the open neighbourhoods may be homeomorphic to the unit ball divided by a finite subgroup Γ of SO(n),

that acts freely away from the origin. Thus orbifolds can contain isolated singular points modelled upon

the singular point in Rn/Γ for such a group Γ, which is called the orbifold group of the point.

The natural extension of the connected sum to orbifolds will be called the generalized connected sum,

and the extension is that as well as allowing m1,m2 to be nonsingular points of the orbifolds, we may

allow them to be orbifold points with the same orbifold group Γ, which acts with opposite orientation

around the two points. In this case the generalized connected sum M1#M2 of M1 and M2 at m1 and m2

is M1 and M2 joined by a ‘tube’ that has cross-section Sn−1/Γ rather than Sn−1.

Let us now return to the subject of self-dual manifolds. A self-dual conformal structure on a compact

4-manifold must lie in a possibly singular, finite-dimensional family of self-dual conformal structures on the

manifold, called a moduli space; the properties of these moduli spaces are explored by King and Kotschick

in [KK], who develop a theory analogous to that of Atiyah et al. [AHS] for the case of instantons.

The existence of many self-dual metrics, that have not been written down explicitly, has been shown

using analysis and complex geometry. Firstly, it was proved that K3 surfaces carry families of hyperkähler

metrics, by Yau’s proof of the Calabi conjecture. Then Floer [F] gave an analytical proof of the existence

of self-dual metrics upon nCP2, the connected sum of n copies of CP2, and more generally Donaldson and

Friedman [DF] gave an existence theory for self-dual metrics on connected sums of self-dual manifolds,

this time using twistor ideas.

I believe that it should be possible without great difficulty to generalize Donaldson and Friedman’s

theory to an existence theory for self-dual metrics on generalized connected sums of self-dual orbifolds, in

the sense discussed above. This would form the theoretical underpinning for the construction of metrics

by generalized connected sums of orbifolds that we discuss in §4.3. The last abstract existence result we
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shall mention is a very recent analysis proof announced by Taubes, showing that the connected sum of

every compact 4-manifold with sufficiently many copies of CP2 admits a self-dual metric. This implies

that compact self-dual 4-manifolds are actually very numerous; it also gives hope that results on self-dual

4-manifolds might lead to a better understanding of smooth 4-manifolds in general.

The self-dual conformal structures on compact 4-manifolds that can at present be written down

explicitly, are the conformally flat examples on S4, tori and Hopf surfaces and so on, the Fubini-Study

metric on CP2, some families of self-dual metrics on connected sums of CP2’s, and one or two other

examples in a similar vein. The first of the families of metrics on connected sums of CP2’s to be discovered

is for 2CP2, and was written down by Poon [P]. Poon’s family is locally complete, and it is known that

these are the only self-dual metrics of positive scalar curvature on 2CP2.

These were followed by LeBrun’s families of metrics on nCP2 [L2], which were also found independently

by the author using the quotient methods of Chapter 2. For n > 2, LeBrun’s families are not locally

complete, so that they are a subfamily of the whole moduli space of self-dual metrics on nCP2 characterized

by some special property. One special property that they have is that their twistor spaces are Moishezon,

which is a concept from algebraic geometry, meaning having full algebraic dimension.

Moishezon twistor spaces have been much studied from the point of view of algebraic geometry by

authors such as Poon, LeBrun, and Campana, and it is known that a Moishezon twistor space must

represent a metric of positive scalar curvature on a manifold homeomorphic, at least, to nCP2. The

classification of all Moishezon twistor spaces may be an achievable goal, and is related to the classification

of Kähler twistor spaces by Hitchin.

4.2. Quaternionic structures on weighted projective spaces

This section and §4.4 provide examples of the quaternionic quotient. Here we will construct using

the quaternionic quotient a quaternionic metric on each of the two-dimensional weighted projective spaces

CP2
p,q,r. These provide the building blocks for the generalized connected sums considered in Appendix B.

They are essentially the examples considered by Galicki and Lawson in [GaL], but using the quaternionic

quotient instead of the quaternionic Kähler quotient simplifies and generalizes the exposition.

Let p, q, r be positive integers. Then the weighted projective space CP2
p,q,r is the possibly singular

complex manifold defined as the quotient of C3\{(0, 0, 0)} by an action of C∗, given by
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(f, g, h) u7−→(upf, uqg, urh), u ∈ C∗. (9)

Thus CP2 is CP2
1,1,1. Now p, q, r may always be divided through by their highest common factor, but

they do not have to be pairwise coprime. Suppose that they are. Then if none of p, q or r is equal to 1,

CP2
p,q,r has three orbifold points, at [1, 0, 0], [0, 1, 0] and [0, 0, 1]. If one, say r, is equal to 1, then CP2

p,q,1

has two orbifold points, at [1, 0, 0] and [0, 1, 0]. If two, say q and r, then CP2
1,1,r has one orbifold point

at [1, 0, 0]. If on the other hand two of p, q, r have a common factor, say q and r, then the whole line

{[0, g, h] ∈ CP2
p,q,r} will be singular.

Choose such a triple p, q, r. Then there exist integers a, b, c such that p = b+c, q = c+a and r = a+b

if p + q + r is even, and 2p = b + c, 2q = c + a, 2r = a + b if p + q + r is odd. Because p, q, r > 0 it is clear

that at most one of a, b, c can be non-positive, and if one is, say a, then b, c > −a.

Now a quaternionic structure on CP2
p,q,r will be given as a quaternionic quotient of HP2 by the group

U(1). For convenience we single out the complex structure I1 and write everything in coordinates that

are complex with respect to I1. The other complex structures are then given by the action of I2. The

associated bundle of HP2 is H3 \ {0}, which will be represented by complex coordinates (x, y, z, l, m, n),

with the action of the second complex structure being

I2

(
(x, y, z, l, m, n)

)
= (l, m, n,−x,−y,−z), (10)

and the action of the group is

(x, y, z, l,m, n) u7−→ (uax, uby, ucz, u−al, u−bm,u−cn) u ∈ U(1). (11)

The moment maps we choose are

µ1 = |x|2 + |y|2 + |z|2 − |l|2 − |m|2 − |n|2 (12)

and µ2 + iµ3 = 2i(xl + ym + zn). (13)

It will be shown that the transversality condition for the quaternionic quotient (§2.2, condition (ii))

is satisfied. The generator of the Lie algebra of U(1) is ∂
∂u , and this induces the vector field
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iax
∂

∂x
+iby

∂

∂y
+ icz

∂

∂z
− ial

∂

∂l
− ibm

∂

∂m
− icn

∂

∂n

−iax
∂

∂x
− iby

∂

∂y
− icz

∂

∂z
+ ial

∂

∂l
+ ibm

∂

∂m
+ icn

∂

∂n

(14)

on the associated bundle of HP2. But the 1-form I1dµ1 is given by

ixdx− ixdx + iydy − iydy + izdz − izdz − ildl + ildl − imdm + imdm− indn + indn. (15)

The contraction of (14) and (15) is

2a(|x|2 + |l|2) + 2b(|y|2 + |m|2) + 2c(|z|2 + |n|2). (16)

Now the transversality condition requires that this scalar field should not vanish anywhere on the

solution set of the moment maps. Recall that at most one of a, b, c may be less than or equal to zero.

When a, b, c > 0 the condition holds trivially because (16) is positive definite on H3\{0}. Suppose therefore

that a ≤ 0. From (12), (13) we calculate that on the zero set of the moment maps,

(|x|2 + |l|2)2 = (|x|2 − |l|2)2 + |2ixl|2

= (|y|2 + |z|2 − |m|2 − |n|2)2 + |2i(ym + zn)|2

≤ (|y|2 + |z|2 + |m|2 + |n|2)2,
and therefore, since b, c > −a we have −2a(|x|2 + |l|2) < 2b(|y|2 + |m|2) + 2c(|z|2 + |n|2). Thus (16) is

positive definite on the zero set of the moment maps (12), (13), which is what we set out to prove.

To show that the quotient is indeed CP2
p,q,r, a map to it from the twistor space will be given that is

constant on real lines.

Consider the vector product of the three-dimensional complex vectors (x, y, z), (l, m, n). This induces

a map from H3 to C3. The map is fixed by complex multiplication by I1 and I2. So up to multiplication by

positive real constants, the map from H3 to C3 is constant on quaternionic lines in H3, and thus induces

a map φ : U ⊂ HP2 −→ S5, where U is the set of points in HP2 for which (x, y, z) ∧ (l, m, n) 6= 0.

Clearly the zero set of the moment maps in HP2 lies inside U , for if (x, y, z, l, m, n) in HP2 is not in

U then (x, y, z) is proportional to (l, m, n), and the moment maps then force x = . . . = n = 0, which is a

contradiction.

Now consider the effect of the U(1) action on the image under φ of a point of HP2. It is

(f, g, h) u7−→(ub+cf, uc+ag, ua+bh), u ∈ U(1). (17)
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Pushing φ down to the quotients of both spaces gives a map π(φ). Thus the image under π(φ) of a

point in the quotient of HP2 by U(1) lies in the quotient of S5 ⊂ C3 by the action (17) of U(1) on C3, i.e.

in the weighted projective space CP2
p,q,r.

Only the weighted projective spaces CP2
b+c,c+a,a+b with a, b, c > 0 are quaternionic Kähler quotients

of HP2, and these are the examples considered by Galicki and Lawson. Open sets of the other weighted

projective spaces can be constructed by a hyperkähler quotient of H2 or a quaternionic Kähler quotient of

the non-compact dual of HP2.

4.2.1. LeBrun’s metrics on line bundles over CP1

As an example of the quaternionic complex quotient, let us consider the two dimensional weighted

projective spaces with at most one singular point. There is just one family that has at most one singular

point, those of the form CP2
n,1,1, and they have symmetry group U(2). Using the results of §2.4, the Kähler

metrics of zero scalar curvature conformal to these manifolds can be simply described.

There is an obvious twistor function on these weighted projective spaces, given on the associated

bundle by µ1 = |x|2 − |l|2, µ2 + iµ3 = 2ixl. As this is a moment map for a U(1)- action it clearly satisfies

the twistor equation, and it vanishes only at the orbifold point x = l = 0, so it represents a Kähler metric

which is ALE at the orbifold point and has no other poles. It is up to a constant the unique twistor

function preserved by the symmetry group U(2) of the weighted projective space, so the Kähler metric it

represents has symmetry group U(2).

Thus the quaternionic metric on CP2
n,1,1 is conformal to a U(2)- symmetric, nonsingular, complete

Kähler metric of zero scalar curvature that is ALE near the orbifold point. But all such metrics have been

classified by LeBrun in his paper [L1]. He finds that for each n > 0, the total space of the line bundle L−n

over CP1 admits a Kähler metric with zero scalar curvature that is ALE, U(2)- symmetric and unique up

to homothety, and that these comprise all the cases. Here L is the line bundle over CP1 that has Chern

class +1.

It is clear on topological grounds how the two descriptions correspond, for CP2
n,1,1 is the compact-

ification of the total space of the line bundle L−n over CP1. The first two cases are n = 1, where the

quaternionic manifold is CP2 and the zero-scalar-curvature Kähler metric is the Burns metric, and n = 2,

which is the familiar Eguchi-Hanson space with its hyperkähler metric.
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4.3. More general self-dual manifolds produced by the quaternionic quotient

This section summarizes the results of Appendix B, so that people don’t need to read it. It also

acts as an advertisement for the quaternionic quotient, as it partly answers the questions ‘What does

the quaternionic quotient do?’, and ‘What is it for?’. I have not yet found any way to make compact

quaternionic manifolds in higher dimensions using a quaternionic quotient of HPn. This is not through

want of trying; but always the tricks and subterfuges I tried still ended up being singular somewhere. It

seemed to happen in such a regular way that I suspect there may be some reason behind, making it so.

But in four dimensions, the orbifold singularities that spring up in the simplest quotients of the previous

sections, can be removed neatly by gluing on other quotients with singularities that are complementary,

leaving something with no singularities at all.

The main theme of the appendix is that, given two quotients of HPn+1 by U(1)n of a certain form,

that have orbifold points that are complementary in the sense that they may be identified under a change

of orientation, one can write down a new quotient made out of the two old ones. This new quotient is the

two old quotients joined by a narrow neck of cross-section S3/Γ, replacing the orbifold points, where Γ is

the orbifold group. Thus, starting with a collection of quotients for weighted projective spaces as in the

previous section, one may stick them together at their orbifold points, getting larger and larger quotients,

until at last one ends up with a quotient for a nonsingular 4-manifold.

The manifolds one ends up with are always connected sums of CP2’s, one CP2 for each weighted

projective space appearing in the original collection. This is clear, at least up to homeomorphism, from

the homology and intersection form of the resulting manifold, using classification results of Freedman and

of Donaldson. LeBrun’s metrics [L2] can be made up in this way from weighted projective spaces, as can

many other families of smaller dimension, that are described in §4.5.

We may also describe lots of orbifold objects, of no use to anyone, and some possibly interesting

noncompact objects: zero scalar curvature Kähler manifolds, that may be made Asymptotically Euclidean

on a multiple blow-up of C2 (these are conformal to metrics on nCP2), Asymptotically Locally Euclidean

(by being conformal to a manifold with a single orbifold point), Asymptotically Flat, or Asymptotically

Locally Flat. These last two are generalizations of Hawking’s Ricci-flat, ALF metrics of [Ha].

For me personally, the interesting questions that these ideas raise are to do with the relation between

decomposition of nCP2 into generalized connected sums of orbifolds, and the algebraic decomposition of
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the homology and intersection form. There are lots of questions one can ask. Is every decomposition of

nCP2 into orbifolds a decomposition into self-dual orbifolds? If so, are all the orbifold decompositions of

nCP2 realized at the edge of the moduli space of self-dual structures on nCP2? Do these decompositions

represent the only type of boundary of this moduli space? How can we tell when a given decomposition

of the homology of nCP2 corresponds to a division into self-dual orbifolds, can one calculate the orbifold

group from the algebraic data, and does this help us to describe the boundary of the moduli space of

self-dual structures on nCP2?

It is possible that each quotient for a family of self-dual metrics on nCP2 is specified by some simple

algebraic structure on the homology that I can’t quite grasp yet, and that by understanding those structures

it might be possible to learn how to model heuristically the moduli spaces of self-dual metrics on nCP2.

Even on 3CP2, though, the orbifold decompositions are rather more varied and complicated than one

would suppose, and in this case one can say that there are some decompositions into self-dual orbifolds at

the boundary of the moduli space that do not occur in our quotient picture; thus the scheme of Appendix

B does not capture all of the orbifold decompositions.

However, these are the musings of one too involved with his subject. A question that might interest

other people too is the classification problem for Moishezon twistor spaces. The bearing that this work

has upon the problem is that it could be possible under fairly general conditions on a Moishezon twistor

space for a self-dual metric on nCP2, to show that it comes from a quaternionic quotient by reconstructing

the quaternionic quotient from which it came, using algebraic geometry, sections of line bundles and so

on, on the twistor space itself. It might be true, for instance, that all Moishezon twistor spaces for metrics

on nCP2 for n ≥ 4 arise from a quaternionic quotient, which would mean that they are exactly LeBrun’s

twistor spaces, together with those of the metrics of §4.5.

4.4. Poon’s metrics on CP2#CP2

In [P], Poon describes a family of self-dual metrics on CP2#CP2 parameterized by an open interval

of the real line. This is done by showing that the intersection of two quadrics in CP5 can be given a real

structure and desingularized so that it is the twistor space of a nonsingular manifold. Poon’s description

of the twistor space is (from p. 114 of [P]) a small resolution of the intersection of the two quadrics

2(z2
0 + z2

1) + λz2
2 +

3

2
z2
3 + (z2

4 + z2
5) = 0 (Q0)
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z2
0 + z2

1 + z2
2 + z2

3 + z2
4 + z2

5 = 0 (Q∞)

in CP5, with the real structure

(z0, z1, z2, z3, z4, z5) 7−→ (z0, z1, z2,−z3,−z4,−z5). (R)

In the previous section we claimed that there is a method to write down a quaternionic quotient for

a self-dual metric on any 4-manifold or orbifold that is built up out of weighted projective spaces in a

certain way. The simplest example of this method, self-dual metrics on CP2#CP2 , is brought in now as

an example of the quaternionic quotient. The method is described at length in Appendix B, and will be

applied in §B.5 to construct the quotient used in this section, and thus justify its appearance here.

Consider the quaternionic quotient of HP3 by the group U(1)×U(1). For convenience in what follows

the complex structure I1 will be singled out, and everything will be written in complex coordinates with

respect to I1. We choose complex coordinates (x1, l1, x2, l2, x3, l3, x4, l4) on H4, the associated bundle of

HP3, with the other complex structures given by the antilinear action of I2:

I2

(
(x1, l1, x2, l2, x3, l3, x4, l4)

)
= (l1,−x1, l2,−x2, l3,−x3, l4,−x4). (18)

The action of U(1)× U(1) is

(x1, l1, x2, l2, x3, l3, x4, l4)
(u,v)7−→(ux1, u

−1l1, ux2, u
−1l2,vx3, v

−1l3, vx4, v
−1l4),

(u, v) ∈ U(1)× U(1),
(19)

which preserves I1, I2 and I3 = I1I2, and the quaternionic moment maps we choose are

µ1 =
( |x1|2 − |l1|2 + |x2|2 − |l2|2 + α(|x3|2 − |l3|2 − |x4|2 + |l4|2)
|x3|2 − |l3|2 + |x4|2 − |l4|2 + α(|x1|2 − |l1|2 − |x2|2 + |l2|2)

)
(20)

µ2 + iµ3 = 2i

(
x1l1 + x2l2 + α(x3l3 − x4l4)
x3l3 + x4l4 + α(x1l1 − x2l2)

)
, (21)

in coordinates on the associated bundle, where α is a real parameter which lies in the interval (0, 1).

We will prove that the twistor spaces described by Poon and the twistor spaces of the quaternionic

quotients above are isomorphic.
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Proposition 4.4.1. The twistor space of the quaternionic quotient above with parameter α is biholomor-

phic to Poon’s description of the twistor space with parameter λ = 2+α4

1+α4 in a way that identifies the real

structures and real lines.

Proof. A holomorphic map will be defined from the twistor space of the quaternionic quotient, which is

the projectivization of the associated bundle with respect to I1, to CP5 with homogeneous coordinates

(z0, . . . , z5). The image will be seen to satisfy (Q0) and (Q∞) and the real structure on the quotient

twistor space will induce the real structure (R) on CP5. This map is the required biholomorphism.

We make the following string of definitions:

let w0 = x1l2, w1 = −x2l1, w2 = αx3l4, w3 = −αx4l3, z0 = w0+w1
2 , z1 = w0−w1

2i , z4 = w2−w3
2 and

z5 = w2+w3
2i .

This gives w0w1 = −(x1l2)(x2l1) = z2
0 + z2

1 , −w2w3 = α2(x3l4)(x4l3) = z2
4 + z2

5 , and the action of

I2 : (z0, z1, z4, z5) 7−→ (z0, z1,−z4,−z5).

Define z2 = i
2 (1 + α4)

1
2 · (x1l1 − x2l2), z3 = 1√

2
(x1l1 + x2l2).

Then I2 : (z2, z3) 7−→ (z2,−z3). Let λ = 2+α4

1+α4 . Note that all the new variables above are not

acted upon by the quotient variables of the quaternionic quotient, and thus descend to functions on the

associated bundle of the quotient that are holomorphic w.r.t. I1.

Then

(z2
0 + z2

1) + (λ− 1)z2
2 +

1
2
z2
3 = −(x1l1)(x2l2) +

1
1 + α4

(
i

2
(1 + α4)

1
2 · (x1l1 − x2l2)

)2

+
1
2

(
1√
2
(x1l1 + x2l2)

)2

= 0

(22)

and

(2− λ)z2
2 +

1
2
z2
3 + (z2

4+z2
5) =

α4

1 + α4

(
i

2
(1 + α4)

1
2 · (x1l1 − x2l2)

)2

+
1
2

(
1√
2
(x1l1 + x2l2)

)2

+ α2(x3l3)(x4l4)

= −α4

4
(x1l1 − x2l2)2 +

1
4
(x1l1 + x2l2)2 + α2(x3l3)(x4l4).

(23)

Now, from the quaternionic moment map equations,

x3l3 = − (1 + α2)x1l1 + (1− α2)x2l2
2α
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x4l4 =
(1− α2)x1l1 + (1 + α2)x2l2

2α
,

so α2(x3l3)(x4l4) = − 1
4

(
(x1l1 + x2l2)2 − α4(x1l1 − x2l2)2

)
. Therefore by (23),

(2− λ)z2
2 +

1
2
z2
3 + (z2

4 + z2
5) = −1

4
α4(x1l1 − x2l2)2 +

1
4
(x1l1 + x2l2)2

− 1
4
(
(x1l1 + x2l2)2 − α4(x1l1 − x2l2)2

)

= 0.

(24)

Collecting all the above information together, we find that there is a map from the twistor space of

the quaternionic quotient to CP5 with homogeneous coordinates (z0, . . . , z5), such that the action of I2

induces the involution

(z0, z1, z2, z3, z4, z5) 7−→ (z0, z1, z2,−z3,−z4,−z5),

that is, equation (R), and such that the image of the twistor space in CP5 satisfies (22) and (24); equiva-

lently, the image satisfies 2(22) + (24) and (22) + (24), which are

2(z2
0 + z2

1) + λz2
2 +

3

2
z2
3 + (z2

4 + z2
5) = 0

and

z2
0 + z2

1 + z2
2 + z2

3 + z2
4 + z2

5 = 0,

that is, (Q0) and (Q∞).

So far we have shown that our quotient twistor space can be mapped onto Poon’s singular model

so as to identify the real structures. There is more to be proved, however: there may be many ways of

resolving the singularities of a complex space, so we must show that we have the same resolution of the

singular model as does Poon. Also, a twistor space might admit several distinct families of real lines,

giving different self-dual metrics. Both of these problems will be handled together by showing that away

from the singularities of the singular model, the fibrations by real lines given above and by Poon are the

same. This shows that the corresponding self-dual metrics agree on an open set, and as they are real

analytic and simply-connected, they must therefore agree on all of CP2#CP2 .

In §4 of [P], Poon shows that the real conics in CP5 lying in the nonsingular part of his singular

model are divided into two families, the α- conics and the β- conics. These two families are interchanged
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by a coordinate change of CP5, and either family gives a fibration by real lines generating his self-dual

conformal class. Now by parametrizing a real line in the quotient and mapping it into the singular model,

it is easy to see that it becomes a conic. So it is a real line in one of Poon’s two possible fibrations; and

by twistor geometry, all nearby real lines in the two twistor spaces must be identified as well.

Thus it has been shown that the quotient model of the twistor space of CP2#CP2 is isomorphic as

a twistor space to Poon’s model of the twistor space with the value λ = 2+α4

1+α4 . Also, the interval of the

parameter α, which is (0, 1), is mapped bijectively to the interval of Poon’s parameter λ, which is ( 3
2 , 2).

This completes the proof.

4.5. New self-dual metrics on nCP2

In §4.3 we claimed that the quotient methods of Chapter 2 produce not only LeBrun’s metrics on

nCP2 but also other families of self-dual metrics on nCP2 that are not yet explicitly known. We now use

the twisting methods of Chapter 3 to describe these other families in a very similar manner to LeBrun’s

description of his metrics, the difference being that whereas LeBrun’s metrics are constructed by twisting

S4 by a singular U(1)- invariant U(1) instanton, the new ones are constructed by twisting S4 by a singular

U(1)2- invariant U(1)2 instanton.

We proceed by first defining the action of U(1)2 on S4 and writing down the conformal metric in a

suitable coordinate system, then writing down two singular U(1)2- invariant U(1) instantons, the product

of which is the required U(1)2 instanton, and finally by giving the twisted action and so writing down the

twisted conformal class explicitly in coordinates.

LeBrun’s metrics on nCP2 are made by twisting S4 by n U(1)- invariant U(1) instantons, each of

which is undefined upon a single U(1)- orbit. Thus there is only one family for each n. Our new metrics are

made by having two U(1) actions, and twisting one action by k U(1)2- invariant U(1) instantons undefined

upon a single U(1)- orbit, and the other action by l U(1)2- invariant U(1) instantons undefined upon one

orbit, to get a self-dual metric upon (k + l)CP2.

Thus upon nCP2 we construct [n/2]+1 families of self-dual metrics by this method. The first of these

(k = 0 or l = 0) is a subfamily of LeBrun’s family in an obvious way. However, by studying the quotient

picture in detail I can show that the second family, with k = 1 or l = 1, is isomorphic to the first family

in a non-obvious way, but that none of the further families are isomorphic to these two.
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This is because for k = 0 and k = 1 the group action of the quotient that is constructed agrees upon

two variable pairs, and an isomorphism of the quotients can be constructed, but when neither k nor l is

0 or 1, the group action is different on every variable pair. So there are in fact [n/2] families of self-dual

metrics, as the first two can be identified. I believe that there are no further identifications between the

families. There are thus no new families on 2CP2 or 3CP2, one new family (in addition to LeBrun’s

metrics) on 4CP2 and 5CP2, and so on.

4.5.1. An action of U(1)2 on S4

Let us regard S4 as the conformal compactification of C2 with coordinates (z1, z2) and metric ds2 =

|dz1|2 + |dz2|2. The extra point will be denoted ∞, and (0, 0) will be denoted 0. Define an action Ψ of

U(1)2 on S4 by

Ψ(u1, u2) : (z1, z2) 7−→ (u1z1, u2z2), (u1, u2) ∈ U(1)2. (25)

Then Ψ is an isometry, and a fortiori a conformal isometry.

Interchangeably the coordinates ri, θi will be used in place of zi, where as usual ri = |zi| and θi = arg zi.

So the metric may be written ds2 = dr2
1 + r2

1dθ2
1 + |dz2|2, and conformally rescaling by 1/r2

1 gives

ds2 = dθ2
1 +

dr2
1 + |dz2|2

r2
1

. (26)

This is a conformal isometry between S4 \ S2 and S1 × H3, as the two terms are the trivial S1 metric

and the upper half-space model for H3. Now LeBrun proceeds by constructing magnetic monopoles on

H3, which are really singular U(1)- invariant U(1) instantons on S4. In our situation there are two U(1)

actions and hence two different conformal isometries with S1 ×H3, the other one being

ds2 = dθ2
2 +

|dz1|2 + dr2
2

r2
2

. (27)

4.5.2. Explicit expressions for U(1) instantons

We now quote the explicit expressions for U(1) instantons in this situation worked out by LeBrun

in [L2], §§3,4 and 5. Equation (26) gives the relation between S4 which is central in our point of view,

and H3 which is central in his. To construct a U(1) instanton that is invariant under the U(1) action

Ψ(u1, 1) : u1 ∈ U(1) and undefined upon the U(1)- orbit r1 = a, z2 = c, for some a ∈ R>0, c ∈ C, he

defines in §4 a function V1 = 1 + G, where G is the nonnegative function
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G(r1, θ1, z2) =
1
2

(
r2
1 + a2 + |z2 − c|2

((r2
1 + a2 + |z2 − c|2)2 − 4r2

1a
2)1/2

− 1

)
. (28)

Then he defines a 2-form α1 upon H3 by α1 = ∗dV1. In four dimensions rather than three it is

necessary to define

α1 = ∗(dV1 ∧ dθ1); (29)

then this α1 is the lift to S1 ×H3 of LeBrun’s 2-form α1 on H3. Note that as ∗ is conformally invariant

on 2-forms this is an invariant definition.

LeBrun then shows that with this choice of V1, α1 is closed and represents an integral cohomology

class upon the complement of the singular point in H3, and so α1 is the curvature form for a connection

form ω1 for a suitable circle bundle over the complement of the singular point. This circle bundle and

connection lifts to S1 ×H3, where the curvature form is (29), and in fact extends smoothly over the fixed

point set of Ψ(u1, 1) : u1 ∈ U(1), which corresponds to the sphere at infinity in H3.

So from the four-dimensional point of view, α1 is closed, defined everywhere in S4 except a single

U(1)- orbit, and represents an integral cohomology class of the complement of this orbit. Thus there is

a circle bundle, P1 say, over the complement of this orbit with a connection form ω1, with curvature α1.

Also, the U(1) action Ψ(u1, 1) : u1 ∈ U(1) lifts to the circle bundle, and in fact the bundle and connection

are lifted from a bundle and connection on the quotient by the U(1) action.

Now we may construct a singular U(1) instanton from the data we have. Given a connection ω1

upon a circle bundle P1, one may add a 1-form to get another connection upon the circle bundle. Thus

ω′1 = ω1 + V1dθ1 is a connection upon P1. The curvature of ω′1 is

Ω′1 = dω′1 = dω1 + dV1 ∧ dθ1 = α1 + dV1 ∧ dθ1. (30)

But from (29) and the fact that ∗2 = 1 on 2-forms it is clear that ∗Ω′1 = Ω′1, i.e. ω′1 is a self-dual connection,

a U(1) instanton.

To define more general U(1)- invariant U(1) instantons that are undefined upon the finite collection

of n orbits r1 = aj , z2 = cj for some finite set {(aj , cj) : j = 1, . . . , n} in R>0 × C, in §5 of [L2] LeBrun

defines V1 = 1 + ΣjGj , where Gj is defined by (28) using aj , cj in place of a, c, and continues as above.
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All this subsection so far has been the work of LeBrun taken from [L2], with changes of notation and

concepts to fit the four-dimensional rather than the three-dimensional picture. Now it is time to introduce

some new material by considering singular U(1)2- invariant instantons.

What is the condition for one of the U(1) instantons defined above to be invariant under the other

U(1) factor Ψ(1, u2) : u2 ∈ U(1)? As this action takes (z1, z2) to (z1, u2z2) it is clear that the effect of

Ψ(1, u2) is to take the instanton defined by the set {(aj , cj) : j = 1, . . . , n} to the instanton defined by the

set {(aj , u2cj) : j = 1, . . . , n}, and the condition for invariance is that cj = 0 for each j. In the H3 picture

this simply says that the U(1) action is rotation about a line in H3, and for invariance the n points should

all lie on the line.

However, there is a catch: there is no unique lifting of Ψ(1, u2) : u2 ∈ U(1) to P1, as a lifting of

the action may be composed with the action of rotation in the fibres raised to any integer power, to give

another lifting. It will be explained later which lifting to choose in the situation we consider. For the

present, simply suppose some lifting of Ψ(1, u2) : u2 ∈ U(1) to P1 that preserves ω′1 has been selected. As

Ψ(u1, 1) : u1 ∈ U(1) already acts upon P1 this means that the whole action Ψ lifts to P1; the lifted action

will also be called Ψ.

Differentiating Ψ gives a map from the Lie algebra of U(1)2 into the vector fields on P1. Denote this

map by ψ1. Then ψ1(1, 0) is a vector field that exponentiates to give the 1-parameter group Ψ(u1, 1) :

u1 ∈ U(1) acting on P1, and similarly ψ1(0, 1) exponentiates to give Ψ(1, u2) : u2 ∈ U(1). Now V1 is just

the function ω′1(ψ1(1, 0)) formed by contracting together the 1-form ω′1 and the vector field ψ1(1, 0). In

the same way we form the function W1 = ω′1(ψ1(0, 1)). Note that this depends upon the particular lifting

of Ψ to P1 chosen, and choosing a different lifting has the effect of changing W1 by an integer.

An interesting fact is that V1 and W1 together, as functions, actually define the bundle P1 and the

connection ω′1 explicitly. This is shown as follows. Choose locally a Ψ- invariant trivialization for P1. Then

the connection ω′1 is represented by a 1-form β1 in this trivialization. The definitions of V1,W1 imply β1

takes the form

β1 = V1(r1, r2)dθ1 + W1(r1, r2)dθ2 + A(r1, r2)dr1 + B(r1, r2)dr2. (31)

Since ω′1 is an instanton, its curvature dβ1 is self-dual. But this forces d(A(r1, r2)dr1+B(r1, r2)dr2) =

0, as this is the dr1∧dr2 component of dβ1, and the dual r1r2dθ1∧dθ2 component is zero. So by changing

the trivialization one can locally make A = B = 0, and V1dθ1 + W1dθ2 is a connection matrix for ω′1.
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To express W1 explicitly in terms of the ai’s, consider first the case n = 1, a1 = a. The Hodge star

acts by ∗dr1 ∧ (r1dθ1) = dr2 ∧ (r2dθ2), ∗dr2 ∧ (r1dθ1) = −dr1 ∧ (r2dθ2), and so from (28) and (29) we

calculate

α1 =

(
2a2(r2

2 − r2
1 + a2)r2dr2 + 4r1a

2r2
2dr1

) ∧ dθ2

((r2
1 + r2

2 + a2)2 − 4r2
1a

2)
3
2

. (32)

But α1 = dW1 ∧ dθ2, and so as dW1 has no dθ2 component this gives us dW1. Integrating gives

W1 =
r2
1 + r2

2 − a2

2 ((r2
1 + r2

2 + a2)2 − 4r2
1a

2)
1
2

+ C, (33)

for some constant C.

To understand the rôle of C, consider what happens when r2 = 0. Then

W1 =
r2
1 − a2

2 ((r2
1 − a2)2)

1
2

+ C.

Now when r2 > 0, the expression in the root in (33) is always positive, so the root cannot change sign,

and by continuity the sign must be constant – say, positive – when r2 = 0 as well. Thus when r2 = 0,

W1 = C − 1/2 when r1 < a and W1 = C + 1/2 when r1 > a.

What is happening here is that we are dealing with a coordinate singularity: when r2 = 0, θ2 is not

defined because the point is a fixed point in S4 of the U(1) action Ψ(1, u2) : u2 ∈ U(1). But because the

point is fixed, Ψ(1, u2) : u2 ∈ U(1) acts upon the fibre U(1) of P1 over the point. Actions of U(1) on U(1)

are classified by the integers, as in eiθ 7→ un
2 eiθ for some n ∈ Z. The connection 1-form ω′1 restricted to a

fibre is just dθ, and this gives W1 = ω′1(ψ1(0, 1)) = n.

So it has been shown that when r2 = 0, W1 must take an integer value. Thus C + 1/2 and C − 1/2

must both be integers, and W1 is determined up to an integer rather than just a constant. It will be

determined entirely by the choice of lifting of Ψ(1, u2) : u2 ∈ U(1) to P1, as remarked above.

This explains how we have managed to give a global connection matrix (choice of gauge), and thus

apparently a global trivialization, for a topologically nontrivial bundle. When r2 = 0, W1 takes an integer

value, and if that integer is nonzero then the trivialization does not extend over that portion of the set

r2 = 0 — it has a coordinate singularity because it involves dθ2. The set r2 = 0 will be divided up into

disconnected subsets by the collection of singular orbits, and W1 will take a different integer value on each.
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4.5.3. Construction of the metrics

The key idea introduced next is that because the situation has been set up so that the rôles of z1 and

z2 are interchangeable, one can also consider Ψ- invariant U(1) instantons that are undefined upon orbits

of the other U(1) factor, z1 = 0, r2 = bj for some finite set of positive reals bj . Let k, l be nonnegative

integers, and let a1, . . . , ak, b1, . . . , bl be positive real numbers such that ai 6= aj and bi 6= bj when i 6= j.

Define

V1(r1, θ1, r2, θ2) = 1 +
1
2

k∑

j=1


 r2

1 + r2
2 + a2

j(
(r2

1 + r2
2 + a2

j )2 − 4r2
1a

2
j

)1/2
− 1


 (34)

and

V2(r1, θ1, r2, θ2) = 1 +
1
2

l∑

j=1


 r2

1 + r2
2 + b2

j(
(r2

1 + r2
2 + b2

j )2 − 4r2
2b

2
j

)1/2
− 1


 . (35)

Let α1 = ∗(dV1 ∧ dθ1) and α2 = ∗(dV2 ∧ dθ2). As above, α1, α2 are closed and define integral cohomology

classes upon the complements of the respective collections of U(1)- orbits, so there are circle bundles P1, P2

with connections ω1, ω2 such that dωi = αi.

Define a connection ω′1 upon P1 by ω′1 = ω1 + V1dθ1 and a connection ω′2 on P2 by ω′2 = ω2 + V2dθ2.

Then A = (ω′1, ω
′
2) is a self-dual U(1)2 connection on the U(1)2 bundle P = P1 × P2, which is undefined

on the set X = {(z1, z2) : |z1| = aj , z2 = 0 or z1 = 0, |z2| = bj} ⊂ S4.

To apply Theorem 3.1.1 we need to choose a lifting of Ψ to P1×P2, as in the §4.5.2. To get a manifold

after the twisting and not an orbifold or worse, the lifted action Ψ must be free on P1×P2. The action will

in fact automatically be free except on the fibres of P1 ×P2 over 0 and ∞ in S4. Now to get a free action

on the fibre at 0, a sufficient (nearly a necessary) condition is that either Ψ(1, u2) : u2 ∈ U(1) should act

trivially on the fibre of P1 at 0 or Ψ(u1, 1) : u1 ∈ U(1) should act trivially on the fibre of P2 at 0.

So to ensure the action is free on both fibres, let us define the lifting of Ψ to P1 by requiring that

Ψ(1, u2) : u2 ∈ U(1) should act trivially upon the fibre of P1 at 0, and the lifting of Ψ to P2 by requiring

that Ψ(u1, 1) : u1 ∈ U(1) should act trivially upon the fibre of P2 at ∞.

Let ψ1, ψ2 be the derivatives at (1, 1) of Ψ acting on P1, P2. As in §4.5.2, define W1 = ω′1(ψ1(0, 1)) and

W2 = ω′2(ψ2(1, 0)). The work above enables us to write down W1,W2 explicitly up to integer constants.

But as Ψ(1, u2) : u2 ∈ U(1) acts trivially upon the fibre of P1 at 0, W1 = 0 at 0, and since Ψ(u1, 1) acts

trivially upon the fibre of P2 at ∞, W2 = 0 at ∞. This gives the following explicit expressions for W1 and

W2:
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W1 =
1
2

k∑

j=1


 r2

1 + r2
2 − a2

j(
(r2

1 + r2
2 + a2

j )2 − 4r2
1a

2
j

) 1
2

+ 1


 , (36)

W2 =
1
2

l∑

j=1


 r2

1 + r2
2 − b2

j(
(r2

1 + r2
2 + b2

j )2 − 4r2
2b

2
j

) 1
2
− 1


 . (37)

There is another constraint, which is this: the transversality condition requires that the vector sub-

space 〈(ψ1(1, 0), ψ2(1, 0)), (ψ1(0, 1), ψ2(0, 1))〉 should be transverse to the horizontal subspaces of ω′. Using

the explicit form of the connection matrix, this boils down to

∣∣∣∣
V1 W1

W2 V2

∣∣∣∣ 6= 0. (38)

But this is trivially true, for V1, V2 > 0 everywhere, and W1 ≥ 0, W2 ≤ 0 everywhere since

−1 ≤ r2
1 + r2

2 − a2
j(

(r2
1 + r2

2 + a2)2 − 4r2
1a

2
j

) 1
2
≤ 1,

which implies that W1 ≥ 0, and similarly for W2. The chosen lifting of Ψ to P1 × P2 thus acts freely, and

the transversality condition holds everywhere.

Now apply Theorem 3.1.1, with G = U(1)2, M = S4 \X, and Ψ, P, A as defined above. The theorem

shows that the conformal metric on P/Ψ(U(1)2) defined by twisting is self-dual (where it is nonsingular).

In the dense open set 0 < r1, r2 < ∞ an explicit expression for the conformal metric in coordinates will

be given, as follows. The effect of dividing by Ψ(G) is to get rid of the coordinates θ1, θ2, so that P1, P2

become circle bundles over R2
>0, a set with coordinates r1, r2. The quotient of P1 × P2 by U(1)2 can be

identified with the restriction of P1 × P2 to θ1 = θ2 = 0.

Let λ1, λ2 be U(1) coordinates for the fibres of P1, P2 using the ‘global trivialization’ constructed

above. Then the u(1)+u(1)- valued connection 1-form on P1×P2 is (dλ1 +V1dθ1 +W1dθ2, dλ2 +W2dθ1 +

V2dθ2). The vanishing of this 1-form can thus be written as a pair of equations, and in fact as a matrix

transformation:

(
dλ1

dλ2

)
= −

(
V1 W1

W2 V2

) (
dθ1

dθ2

)
. (39)

To write down the twisted conformal metric, we substitute this transformation into the expression for

the original metric, eliminating dθ1, dθ2. What you get is the new metric, in terms of r1, r2, λ1, λ2 which

are the coordinates. The original metric can be written
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ds2 = dr2
1 + dr2

2 + (dθ1 dθ2)
(

r2
1 0
0 r2

2

)(
dθ1

dθ2

)
.

So inverting (39) and substituting in gives

ds2 =dr2
1 + dr2

2 + (V1V2 −W1W2)−2·
(dλ1 dλ2)

(
V2 −W2

−W1 V1

)(
r2
1 0
0 r2

2

)(
V2 −W1

−W2 V1

)(
dλ1

dλ2

)
,

and multiplying out and conformally rescaling gives

ds2 = (V1V2−W1W2)2(dr2
1 + dr2

2) + (r2
1V

2
2 + r2

2W
2
2 )dλ2

1 + (r2
1W

2
1 + r2

2V
2
1 )dλ2

2

− 2(r2
1V2W1 + r2

2V1W2)dλ1dλ2,

(40)

the final form of the conformal metric on the open set 0 < r1, r2 < ∞.

The work above shows that this conformal structure is nonsingular on the twisted 4-manifold. How-

ever, the 4-manifold is noncompact. The final stage of LeBrun’s argument is to show that his conformal

4-manifold can be compactified by adding n points in place of the n removed U(1) orbits, to give a non-

singular self-dual structure on nCP2. The same holds in this case, and for exactly the same reason. To

compactify the new conformal metric we must add k + l points in place of the (k+ l) U(1) orbits originally

removed from S4, i.e. where P1 × P2 was undefined.

In a neighbourhood of each of these orbits one of the two U(1)- instantons is singular and one

nonsingular. Imagining the twisting process as happening by first twisting by the nonsingular instanton

and then by the singular, one can see that twisting by the nonsingular instanton does not actually change

the situation, and so the behaviour of the twisted conformal metric close to the removed orbit is basically

U(1)- twisting by the singular U(1) instanton. But the singularities of each U(1) instanton are of LeBrun’s

type, and therefore are such that the twisted conformal structure can be locally compactified in a smooth

way by adding a single point.

So adding k+l points gives a compact 4-manifold with a self-dual conformal structure. The 4-manifold

is (k + l)CP2, as it arises by twisting S4 by (k + l) U(1) instantons, each of which is singular upon a single

S1 in S4, and as in LeBrun’s work each of these twistings adds another CP2.

This can be seen explicitly by letting one of the aj approach ∞ or one of the bj approach 0, whilst

keeping the others constant. As this happens the conformal metric decays into a connected sum of the

self-dual metric constructed from the remaining aj and bj , and a copy of CP2, joined by a very long neck.

So performing this process in reverse shows that adding another aj or bj means taking a connected sum
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with another CP2. (It is necessary to let aj → ∞ and bj → 0, rather than the other way round, because

of the way the lifting of Ψ to P1, P2 involved 0 and ∞. When aj → 0 or bj →∞ with the others constant,

the metric decays into the generalized connected sum of orbifolds.)



Chapter 5: Homogeneous Hypercomplex

and Quaternionic Manifolds

In the fifth chapter of this thesis we will explore the idea of a homogeneous hypercomplex or quater-

nionic structure using the structure theory of Lie groups. It will be shown that, given any compact Lie

group G, there exists k with 0 ≤ k ≤ max(3, rk G) such that U(1)k × G admits a homogeneous hy-

percomplex structure (Theorem 5.1.2). An analogous statement holds for general compact homogeneous

hypercomplex manifolds and for quaternionic manifolds.

The theory of homogeneous complex structures on compact manifolds was given in the 1950’s by

Wang [W] and Samelson [Sm], and most of what follows is a straightforward adaptation of material in

these papers; the problem is to find three homogeneous complex structures satisfying the quaternion

relations. In Chapter 6, several sorts of noncompact homogeneous complex structures will be brought in

to make four or more anticommuting complex structures, and we shall see that the compact case is much

simpler than the noncompact case.

Samelson describes homogeneous complex structures on groups, which are relatively straightforward.

Wang describes general homogeneous complex manifolds, at the expense of losing the simplicity of Samel-

son’s approach. We will follow this pattern, first finding hypercomplex structures on groups to make the

basic idea clear, and then extending to homogeneous spaces.

We now briefly summarize Samelson’s results. In [Sm] it is shown that every compact Lie group G of

even dimension has a complex structure such that left translations are holomorphic mappings. This is an

extension of the well-known theorem of Borel which states that the quotient of a compact Lie group by

its maximal torus always has a homogeneous complex structure.

Suppose G is a compact Lie group and H is a maximal torus of G, with Lie algebras g, h respectively.

Now as G is compact it has a finite cover G′ that is the product T ×S of a torus and a semisimple group.

Then lifting H to H ′ ⊂ G′, it is clear that H ′ = T × C, where C is a maximal torus of S. Thus for our

purposes we may treat G as though it were semisimple, and H as though it were the maximal torus of a

semisimple group, and perform the usual structure theory decomposition of g relative to h.

When g is a Lie algebra, denote its complexification by g̃. From the structure theory of Lie algebras

([V], §4.3), the complexified Lie algebra g̃ of G is decomposed into root subspaces:

67
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g̃ = h̃ +
∑

α∈∆

gα, (41)

where ∆ is a finite subset of non-zero elements of h̃∗ (the roots), and each gα is the one-dimensional

subspace of g defined by

gα =
{
x : x ∈ g, [h, x] = α(h)x ∀ h ∈ h

}
. (42)

Samelson defines a complex structure on G by choosing a positive system of roots ([V], p. 280), which

is a set P ⊆ ∆ satisfying P ∩ (−P ) = ∅; P ∪ (−P ) = ∆; α, β ∈ P, α + β ∈ ∆ ⇒ α + β ∈ P . For let I ′ be a

complex structure on h. Then if W is the set of (1,0)-forms in h̃ with respect to I ′, we can define m as a

subspace of g̃ by

m = W +
∑

α∈P

gα. (43)

From structure theory we see that m is closed under the complexified Lie bracket, and thus generates

a complex subgroup M of the complexified group G̃ with Lie algebra m. Samelson shows [Sm] that G̃/M

is diffeomorphic to G, and as G̃,M are both complex groups, this makes G a complex manifold. The

complex structure on g is easily described: as real vector spaces g̃ = g+m, and this gives an identification

g = g̃/m, which is a quotient of complex vector spaces and so gives a complex structure on g. It is clear

that m is simply the (1,0)-forms for the complex structure on g.

We note that the results of Theorem 5.1.2 are already known – they appear in a Physics paper by

Spindel et al. ([SSTV], see p. 685, Table 1). The proof we give is different to theirs, and is needed as an

introduction to Theorem 5.2.1 and the following sections. They approach the problem from the point of

view of supersymmetry, and restrict their attention to hypercomplex structures on groups. Our results

go quite a lot further, for we define hypercomplex structures on general homogeneous spaces as well as

groups, and we consider the question of homogeneous quaternionic manifolds, which they do not touch.

Also, our presentation should be much easier for mathematical readers to understand, as [SSTV] is written

in the language of physics. I am grateful to Professor Galicki for drawing this paper to my attention.
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5.1. Homogeneous hypercomplex structures on groups

In Theorem 5.1.2 an analogue of Samelson’s result for the hypercomplex case will be given. First we

prove a preparatory Lemma.

Lemma 5.1.1. Let G be a compact Lie group, with Lie algebra g. Then g can be decomposed as

g = b +
n∑

k=1

dk +
n∑

k=1

fk, (44)

where b is abelian, dk is a subalgebra of g isomorphic to su(2), b + Σkdk contains the Lie algebra of a

maximal torus of G and f1, . . . , fn are (possibly empty) vector subspaces of g, such that for each k =

1, 2, . . . , n, fk satisfies the following two conditions:

(i) [dl, fk] = {0} whenever l < k, and

(ii) fk is closed under the Lie bracket with dk, and the Lie bracket action of dk on fk is isomorphic

to the sum of m copies of the action of su(2) on C2 by left multiplication, for some integer m.

Proof. Let H be a maximal torus in G with Lie algebra h, and ∆1 the set of roots of g̃ relative to h. Let

b0 = g. Choose a highest root α1 in ∆1. Then the three-dimensional subspace gα1 + g−α1 + [gα1 , g−α1 ]

of g̃ is in fact a complex subalgebra of g̃ isomorphic to sl(2,C), and its intersection with g is a subalgebra

isomorphic to su(2). So let d1 = g ∩ (
gα1 + g−α1 + [gα1 , g−α1 ]

)
; then d1 is a subalgebra of b0 isomorphic

to su(2).

Define b1 to be the centralizer of d1 in b0; b1 is also a subalgebra. Define f1 by

f1 = b0 ∩
∑

β∈∆1:
β+α1∈∆1

gβ + gβ+α1 , (45)

where gβ is the root subspace for the root β. Then b0 decomposes as b0 = b1 + d1 + f1. This is because

for every root β 6= ±α1, gβ appears as a summand in either b̃1 or f̃1, but not both, depending on

whether [d1, gβ ] is zero or non-zero respectively. Also, the g±α1 appear as summands in d̃1, and h̃ splits as

[gα1 , g−α1 ] + (α1)◦, of which the first summand comes from d̃1 and the second summand from b̃1. Thus

from (41) it follows that b̃0 = b̃1 + d̃1 + f̃1, and hence the result.

Now h ∩ b1 is the Lie algebra of a maximal torus for the subgroup of G generated by b1, and the

roots ∆2 of b̃1 relative to this subalgebra are just the roots in ∆1 that are zero on [gα1 , g−α1 ]. Either b1 is
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abelian (and hence contained in h) or else we may in exactly the same way choose a highest root α2 and

decompose b1 as b1 = b2 + d2 + f2.

By repeating this process, we obtain a succession of subalgebras b0, . . . , bn, d1, . . . , dn and subspaces

f1, . . . fn such that bi−1 = bi + di + fi, di is isomorphic to su(2), bi is the centralizer of di in bi−1, and bn

is abelian. Then, recalling that b0 = g,

g = bn +
n∑

i=1

di +
n∑

i=1

fi. (46)

Putting b = bn gives the decomposition (44). Condition (i) is satisfied because if l < k then fk ⊂ bl,

which is the centralizer of dl; thus [dl, fk] = 0.

Condition (ii) is satisfied because αi is a highest root in bi−1, and so by structure theory the roots

of bi−1 that do not commute with ±αi are split into pairs β, β + αi. It is then easy to see that fi splits as

the sum of vector subspaces bi−1 ∩ (gβ + g−β + gβ+αi + g−β−αi), and each of these is a representation of

di of the required form.

It will now be shown that a decomposition of this form is just what is needed to define a hypercomplex

structure on U(1)k ×G for some k.

Theorem 5.1.2 [SSTV]. Let G be a compact Lie group. Then there exists an integer k with 0 ≤ k ≤

max(3, rk G) such that U(1)k ×G admits a homogeneous hypercomplex structure.

Proof. By Lemma 5.1.1, the Lie algebra g of G admits a decomposition

g = b +
n∑

k=1

dk +
n∑

k=1

fk

satisfying certain conditions. Now either dim b ≤ n or dim b > n. If dim b ≤ n, define k = n− dim b, and

0 ≤ k < rkG; let m = 0. Otherwise choose k = 0, 1, 2 or 3 such that dim b + k = n + 4m for m some

positive integer.

The Lie algebra of U(1)k × G is ku(1) + g. We will define a hypercomplex structure on this Lie

algebra, which gives an almost hypercomplex structure on the group by left translation, and use Samelson’s

characterization of homogeneous complex structures on groups to show that the complex structures are

integrable, and thus that the almost hypercomplex structure is hypercomplex.

Choose an identification (of real vector spaces) of ku(1)+b with Hm+Rn; by abuse of notation we will

write ku(1)+b = Hm +Rn. Note that there is a freedom in doing this of (n+4m)2 parameters. In general
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this will mean that there are infinitely many non-isomorphic hypercomplex structures on U(1)k ×G. Let

(e1, . . . , en) be the standard basis for Rn.

For each k, choose an isomorphism φk from su(2) to dk. (There are 3n parameters of freedom in doing

this, but the different ways will lead to hypercomplex structures isomorphic up to conjugacy.)

Now the Lie algebra su(2) may be written as 〈i1, i2, i3〉, where i1, i2 and i3 satisfy [i1, i2] = 2i3,

[i2, i3] = 2i1 and [i3, i1] = 2i2. Define complex structures I1, I2, I3 on g by components as follows:

(a) Let the actions of I1, I2, I3 on Hm be as usual.

(b) Let the actions of I1, I2, I3 on Rn + Σjdj be given by

Ia(ej) = φj(ia), Ia(φj(ia)) = −ej , and Ia(φj(ib)) = φj(ic),

Ia(φj(ic)) = −φj(ib) whenever (abc) is an even permutation of (123).

(c) Let the actions of I1, I2, I3 on fj be given by

Ia(v) = [v, φj(ia)], for each v ∈ fj .

The proof of Theorem 5.1.2 will be completed by the following

Lemma 5.1.3. The I1, I2, I3 defined above are complex structures on ku(1) + g satisfying I1I2 = I3, and

the almost complex structures on U(1)k ×G generated by left translation are integrable.

Proof. For the first part, it is clear that parts (a) and (b) lead to complex structures I1, I2 and I3 satisfying

I1I2 = I3 on their respective components, so it remains only to verify this for part (c), that is, for fj . But

from condition (ii) of Lemma 5.1.1 it can be seen that the action of dj on fj by conjugation is isomorphic

to the action of ImH on Hl for some l, and (c) is just a way of writing down this isomorphism.

So I1, I2, I3 do form a hypercomplex structure on ku(1) + g. Using Samelson’s results it will now be

shown that they generate homogeneous complex structures by left translation.

Let a be 1,2 or 3. Define t by

t = Hm + Rn + 〈φ1(ia), . . . , φn(ia)〉; (47)

then t is the Lie algebra of a maximal torus T of U(1)k × G. Let V ⊂ ˜ku(1) + g be the vector subspace

of (1, 0)- forms of Ia in ˜ku(1) + g. We will construct a basis for V involving a positive system of roots for

˜ku(1) + g relative to t, and hence by Samelson’s results show that Ia gives an integrable complex structure

on U(1)k ×G.
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We describe V by components (a), (b), (c) as above.

(a) The (1, 0)- forms of Hm with respect to Ia are as usual.

(b) The (1, 0)- forms of Rn + Σjdj are

〈e1 + iφ1(ia), . . . , en + iφn(ia), φ1(ib) + iφ1(ic), . . . , φn(ib) + iφn(ic)〉,

where (abc) is an even permutation of (123). Now ej + iφj(ia) is an element of t̃, and φj(ib) + iφj(ic) is a

root vector of g̃ relative to t. Let αj be the root corresponding to the root vector φj(ib) + iφj(ic). Also

[φj(ia), φj(ib) + iφj(ic)] = −2i(φj(ib) + iφj(ic))

= αj(φj(ia))(φj(ib) + iφj(ic)),
(48)

and so αj(φj(ia)) = −2i. Thus αj(iφj(ia)) > 0. (Note that β(iφj(ia)) is real for all roots β.)

(c) Now we claim that the (1, 0)- forms of f̃j are given by

V ∩ f̃j =
∑

β∈∆j :β 6=αj,

β(iφj(ia))>0

gβ , (49)

in other words, the sum of all root subspaces of bj−1 corresponding to roots β other than αj that have

β(iφj(ia)) > 0. Recall that in the proof of Lemma 5.1.1 it was shown that f̃j splits into subspaces of the

form gβ +gβ+αj +g−β +g−β−αj , upon which the representation of dj is the complexification of the standard

representation of su(2) upon C2. It is an easy calculation to show that the (1, 0)- forms of this subspace

are gβ+αj + g−β , which verifies the claim, as by structure theory we have αj(iφj(ia)) = −2β(iφj(ia)).

Now the roots of b̃j are exactly the roots of g̃ that give zero when evaluated upon φ1(ia), . . . , φj(ia),

because these are the roots that centralize d1, . . . , dj . So define a subset P of ∆, the set of roots of g̃, by

P =
{
α ∈ ∆ : α(φ1(ia)) = · · · = α(φj−1(ia)) = 0,

α(iφj(ia)) > 0 for some j ∈ {1, 2, . . . , n}}.

(50)

Then P is a positive system (as defined above). But by examination we see that

V = V ∩ t̃ +
∑

α∈P

gα. (51)

So V , the (1, 0)- forms of Ia, are the sum of the (1, 0)- forms of some complex structure on t together

with a positive system of roots. Therefore by [Sm], the left translation of Ia gives a homogeneous complex

structure on U(1)k ×G.
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5.2. General homogeneous hypercomplex manifolds

The previous section extended Samelson’s result on existence of homogeneous complex structures on

even-dimensional groups to the hypercomplex case. In this section we extend some of Wang’s results

on existence of homogeneous complex structures on general homogeneous manifolds to the hypercomplex

case. His Theorem II ([W], p. 15) states:

Let X be a C-subgroup of a simply-connected compact semisimple Lie group K. If K/X is

even-dimensional, then K/X has a homogeneous complex structure.

Here a C-subgroup of K is a closed and connected subgroup whose semisimple part coincides with

the semisimple part of the centralizer of a toral subgroup of K.

This theorem of Wang generalizes Samelson’s result. An extension to the hypercomplex case will now

be given; it will be seen that the restrictions on the subgroup X are quite severe.

First we make some definitions. Let G be a compact Lie group. We may choose a maximal torus H,

and decompose g̃ into weight spaces with respect to h. If α is any highest root, then there is a subalgebra

of g̃ isomorphic to sl(2,C) generated by g±α, and the intersection of this with g is a subalgebra of g

isomorphic to su(2). Define a D-subgroup of G to be the centralizer in G of any such su(2) embedded in

g that comes from a highest root in this way.

Now we define an E-subgroup of G to be any subgroup E of G such that there is a chain of subgroups

and inclusions

G = G0 ⊃ G1 ⊃ . . . ⊃ Gj = E, (52)

such that Gi+1 is a D-subgroup of Gi. We call j the length of E; it is well defined.

The hypercomplex version of Wang’s result quoted above is:

Theorem 5.2.1. Let G be a compact Lie group, and let E be an E-subgroup of G of length j. Let F

be the semisimple part of E, and let X be any closed subgroup of G such that F ⊆ X ⊆ E. Then there

exists an integer k with 0 ≤ k ≤ max(3, j) such that U(1)k × G/X admits a homogeneous hypercomplex

structure, that is, one that is preserved by left translations in U(1)k ×G.

Proof. The proof is very similar to the proof of Theorem 5.1.2, but using, where appropriate, ideas from

[W] instead of ideas from [Sm], so it will only be briefly sketched. Using the definition of the E-subgroup
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E, one may carry out a decomposition of g into subalgebras bi, di and subspaces fi as in Lemma 5.1.1,

but instead of stopping when bn is abelian, we stop at bj = e, where j is the length of E and e is the

Lie algebra of E. Now X lies between E and F , so e is just x plus the Lie algebra of some torus. As

in the proof of Theorem 5.1.2, choose a suitable k and define a hypercomplex structure on ku(1) + g/x.

Then a similar analysis to that of Lemma 5.1.3 shows that the complex structures I1, I2, I3 give integrable

complex structures when extended over the space by left translation, using methods of Wang [W].

(Note that to be able to define the left translation of the complex structure it is necessary that it

should be invariant under conjugation by X. This is true because the complex structures are defined using

a sequence of highest roots, and X is a subgroup of the centralizer of these roots.)

5.2.1. Examples

As by Theorems 5.1.2 and 5.2.1 every compact Lie group provides examples of homogeneous hyper-

complex spaces, just a few interesting cases will be given. The hypercomplex structures on U(2) and SU(3)

are the first examples of hypercomplex structures on the families U(2n) and SU(2n + 1), and more gen-

erally on U(2k + l)/U(l). Also, inclusions of groups can lead to inclusions of hypercomplex manifolds; for

instance, U(1)n × Sp(n) can appear as a hypercomplex submanifold in U(1)2n × SO(4n), if the sequences

of highest roots are chosen in a suitable way.

We will give U(1) × SO(6) as a worked example of Theorem 5.1.2, and as a worked example of

Theorem 5.2.1 a pretty, compact, simply-connected hypercomplex 12-manifold: if SU(2) is embedded in

U(3) ⊂ SO(6), it will be shown that SO(6)/SU(2) is hypercomplex. Let G be SO(6), and H, a maximal

torus, be the diagonal matrices in U(3) ⊂ SO(6). The Lie algebra h of H is then the set of matrices

in u(3) ⊂ so(6) of the form diag(iλ1, iλ2, iλ3), λj ∈ R. Define coordinates (x1, x2, x3) on h̃∗ such that

(x1, x2, x3) is the element of h̃∗ taking diag(iλ1, iλ2, iλ3) to 2(x1λ1 + x2λ2 + x3λ3).

In these coordinates the twelve roots of SO(6) are given by (±i,±i, 0), (±i, 0,±i), (0,±i,±i). These

roots are all equivalent under automorphisms of G preserving H, so every root is a highest root. Choose

(i, i, 0) as a highest root to generate d1. This gives

d̃1 = 〈diag(i, i, 0)〉+ g(i,i,0) + g(−i,−i,0),

f̃1 turns out to be the sum of the eight root spaces of the roots (±i, 0,±i), (0,±i,±i), and b̃1 is
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b̃1 = 〈diag(i,−i, 0), diag(0, 0, i)〉+ g(i,−i,0) + g(−i,i,0).

There is then only one choice for d2:

d̃2 = 〈diag(i,−i, 0)〉+ g(i,−i,0) + g(−i,i,0),

and we have f2 = 0 and b2 = 〈diag(0, 0, i)〉, which is abelian. So n = 2, and this completes the decom-

position of Lemma 5.1.1. To apply Theorem 5.1.2, we must have k such that dim bn + k = n + 4m for

some m; here n = 2 and dim b2 = 1, so k = 1 and m = 0 will do. Thus by Theorem 5.1.2 U(1) × SO(6)

is hypercomplex; the freedom in the hypercomplex structure is the freedom to choose a basis (e1, e2) for

u(1) + b2, and so is of four real parameters.

To apply Theorem 5.2.1, we follow the decomposition of so(6) above, but stop at e = b1. The

semisimple part of ẽ is

f̃ = 〈diag(i,−i, 0)〉+ g(i,−i,0) + g(−i,i,0),

and to apply Theorem 5.2.1 we must choose X such that F ⊆ X ⊆ E. Let X=F ; then X is given by

X =
{(

A 0
0

0 0 1

)
: A ∈ SU(2)

}
⊂ U(3) ⊂ SO(6), (53)

and e = x+〈diag(0, 0, i)〉 is the splitting of e into x and the Lie algebra of a torus. To make a hypercomplex

structure we now need to take the product with U(1)k for suitable k. But because the length of E is 1 and

there is one dimension left over of the maximal torus, generated by diag(0, 0, i), we can take k = 0. The

freedom in making the hypercomplex structure is the freedom in choosing a basis (e1) for 〈diag(0, 0, i)〉, and

so is of one real parameter. So by Theorem 5.2.1, G/X = SO(6)/SU(2) is a homogeneous hypercomplex

manifold.

5.3. Homogeneous quaternionic manifolds

There is one obvious source of homogeneous quaternionic manifolds: if a quaternionic manifold has a

homogeneous associated bundle, then it will be homogeneous. As the associated bundle of a quaternionic

manifold is hypercomplex, we can construct homogeneous quaternionic manifolds from homogeneous hy-

percomplex manifolds.
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In general, this sort of homogeneous quaternionic manifold will be of the form G/U(2)X, where G/X

is a compact homogeneous hypercomplex manifold, and U(2) embedded in G centralizes X, descends to

a hypercomplex submanifold in G/X, and the action of U(2) on the right on G/X permutes the complex

structures in the way that H∗ does on itself by left multiplication. The problem, then, given a homogeneous

hypercomplex manifold G/X as from the last section, is to find a suitable embedded (or immersed) U(2).

Let the embedding be Φ, so that in terms of Lie algebras we seek a Lie algebra endomorphism Φ : u(2) → g.

This can be done using the method of construction of the last two sections, which involves a sequence

of highest roots. Using the notation of Theorem 5.1.2, Φ(su(2)) must be

Φ(su(2)) = 〈φ1(i1) + · · ·+ φn(i1), φ1(i2) + · · ·+ φn(i2), φ1(i3) + · · ·+ φn(i3)〉. (54)

This is because the hypercomplex structure is defined using φi(su(2)), and so to permute the complex

structures in the necessary way, the Lie bracket with Φ(su(2)) must act on φi(su(2)) as the Lie bracket

with itself.

In order that Φ(U(2)) should be a hypercomplex submanifold of G/X, Φ(u(2)) must be closed under

I1, I2, I3. This requirement determines the fourth basis vector for Φ(u(2)): it is e1 + · · ·+ en. So put

Φ(u(2)) = 〈e1 + · · ·+ en, φ1(i1) + · · ·+ φn(i1), φ1(i2) + · · ·+ φn(i2), φ1(i3) + · · ·+ φn(i3)〉. (55)

Then Φ(u(2)) is a subalgebra of g isomorphic to u(2), and we can form the subgroup of G generated

by it. But this subgroup may not be an embedding, or even an immersion, of U(2), because it may not

be closed. When n > 1 this is a non-trivial condition upon the hypercomplex structure chosen on G/X in

§5.2, and is a rationality condition, as it simply says that the centre of the embedded U(2) (generated by

e1 + · · ·+ en) should be a closed subgroup of the maximal torus of G. The condition therefore holds for a

dense subset of the homogeneous hypercomplex structures on G/X constructed in §5.2.

Suppose that this rationality condition holds for the choice of hypercomplex structure on G/X. Then

the Lie algebra endomorphism Φ lifts to give a group homomorphism Φ : U(2) → G which is an embedding

or an immersion.

Proposition 5.3.1. G/Φ(U(2))X is a compact, homogeneous quaternionic manifold.

Proof. Let U(1) × U(1) ⊂ U(2) be the subgroup of U(2) preserving the complex structure I1 on G/X.

Define Z = G/Φ(U(1) × U(1))X. Then Z is complex with complex structure I1, as it is the quotient of
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G/X by Φ(U(1) × U(1)), which is a complex group with respect to I1. Also, Z fibres over G/Φ(U(2))X

with fibre U(2)/(U(1)×U(1)) = CP1, and if x is any element of SU(2) that anti-commutes with the fixed

U(1) ⊂ SU(2), then Φ(x) induces an involution σ that preserves the fibres and is independent of x. This

σ is antiholomorphic because, acting on the right on G/X, it takes I1 to −I1.

So to see that Z is a twistor space for a quaternionic structure on G/Φ(U(2))X, we only need to

show that the normal bundle of the fibres is 2aO(1) for some integer a. By homogeneity it is enough

to show this for the identity fibre Φ(U(2))X/X. Let ν be the normal bundle of Φ(U(2))X/X in G/X.

As Φ(U(2))X/X is a hypercomplex submanifold of G/X, which is hypercomplex, the total space of ν is

hypercomplex. The left action of Φ(U(2)) on ν preserves this hypercomplex structure and identifies all of

the fibres; thus it gives a trivialization of ν.

This does not trivialize ν as a holomorphic bundle, as the flat connection on U(2) it is associated

with is not torsion-free. However, it can be seen that as a hypercomplex manifold, the total space of ν

only depends upon a and the hypercomplex structure of Φ(U(2))X/X: the Lie algebra structure in the

normal directions does not affect the hypercomplex structure of ν. So the normal bundle of Φ(U(2))X/X

in G/X is isomorphic as a hypercomplex manifold to some standard example.

As this standard example, let G′ be GL(a + 1,H). Then G′ acts transitively on Ha+1/Z, where Z

acts by dilation; we choose the action of Z so that H/Z ⊂ Ha+1/Z and Φ(U(2))X/X are isomorphic as

hypercomplex manifolds. Let X ′ be the stabilizer of a point. From above, the bundle ν over Φ(U(2))X/X

is isomorphic to the normal bundle of H/Z in G′/X ′ = Ha+1/Z. Dividing by U(1)× U(1) shows that the

normal bundle of the identity fibre in Z is isomorphic to the normal bundle of CP1 in CP2a+1, which is

2aO(1).

We should point out the connection between G/X and the associated bundle of G/Φ(U(2))X: in

general G/X can be constructed from the quotient of the associated bundle of G/Φ(U(2))X by a dila-

tion action of Z, by twisting by some homogeneous quaternionic U(1)-connection on G/Φ(U(2))X, as in

Chapter 3.

5.3.1. An example

We consider the case of G = SU(5), X trivial, which shows what can happen when n > 1. Choose

as highest weights the SU(2)’s embedded as 2× 2 matrices in the first, second and third, fourth diagonal

positions of the 5× 5 matrix. The construction gives that SU(5)/Φ(U(2)) is quaternionic, where
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Φ(SU(2)) =








A 0
0

0
0

0
0

0
0

0
0 A 0

0
0 0 0 0 1


 : A ∈ SU(2)



 , (56)

and Φ(U(1)) is some closed subgroup of

U(1)× U(1) =








θI 0
0

0
0

0
0

0
0

0
0 ηI 0

0
0 0 0 0 θ−2η−2


 : θ, η ∈ U(1)



 ; (57)

here I is the 2× 2 identity matrix.

Now the important point is that for different choices of closed subgroup Φ(U(1)), SU(5)/Φ(U(2))

will have different topology. This one example, then, provides us with an infinite collection of distinct,

compact, simply-connected quaternionic manifolds, and in fact each of these manifolds has infinitely many

distinct quaternionic structures.

5.3.2. Different types of homogeneity

Above we have given a way of making homogeneous quaternionic manifolds. Perhaps all compact

homogeneous quaternionic manifolds with homogeneous associated bundle are constructed in this man-

ner. But what about homogeneous quaternionic manifolds for which the group is not big enough to act

transitively on the associated bundle? In Chapter 3 an example of this phenomenon was given: a quater-

nionic structure on SU(3) was made with symmetry group U(3), which is of too small dimension to act

transitively on the associated bundle.

The quaternionic structure on such a homogeneous space G/X is given by a hypercomplex structure

upon g/x. One approach to finding integrability conditions for a quaternionic structure specified in this

way is to define, using linear functionals, first-order sections of the bundle of complex structures, and

require that the Nijenhuis tensor of these sections should vanish. In this way I have shown that each

of the homogeneous hypercomplex manifolds defined in §§5.1, 5.2 also admits homogeneous quaternionic

structures that are not hypercomplex. The method is to construct a hypercomplex structure on the

quotient of the Lie algebras using a sequence of highest roots as before, but instead of putting a standard

hypercomplex structure on each of the embedded u(2)’s, to choose a hypercomplex structure corresponding

to a quaternionic structure on U(2) that is not hypercomplex. The calculation mentioned above then shows

that the almost quaternionic structure defined by left translation is quaternionic, but not hypercomplex.



Chapter 6: Many Anticommuting Complex Structures

To finish off this part of the thesis, some rather unpolished ideas are presented on how to extend the

work in what is, as far as I can tell, a new direction. We do not give anything like a complete picture, we

just show that nontrivial examples of certain sorts of geometrical structure do exist, a fact that seemed

very surprising to me when I first found it out.

Whether the ideas are ever fleshed out into a complete theory depends on whether anyone else is

interested in them, and thinks them worthy of study. There comes a point when it is silly to make more

and more abstruse generalizations just for the sake of it. The structures seem to come up in supersymmetry,

at least, as Spindel et al. [SSTV] tried to construct examples of this sort in a Physics paper. Their effort

failed, in effect because they restricted themselves to compact semisimple groups.

Hypercomplex manifolds have three anticommuting complex structures. This chapter explains some

methods of making non-flat manifolds with four, five or arbitrarily many integrable, anticommuting com-

plex structures. Such a manifold is therefore a hypercomplex manifold in lots of different ways. To

understand how these complex structures could act upon a tangent space of the manifold takes us into the

realm of Clifford algebras and their modules, which are treated in detail by Atiyah et al. in [ABS], and

also summarized in [SSTV], Appendix C. We shall define them now.

Consider the normed vector space V = Rk with the usual distance |.|, and let Tk be the graded algebra

Tk =
⊕∞

i=0⊗iV , where ⊗0V = R, and multiplication is by tensor products in the obvious way. Let Ik be

the two-sided ideal of Tk generated by elements of the form x⊗ x + |x|2 · 1 for x ∈ V . Define Ck to be the

quotient algebra Tk/Ik. Then Ck is the kth Clifford algebra, as defined in [ABS], §2.

Suppose (e1, . . . , ek) is an orthonormal basis of V . Then ea also represent elements of Ck, by inclusion,

and it is easily shown that they satisfy e2
a = −1 and eaeb = −ebea for all a, b = 1, . . . , k with a 6= b. These

elements therefore behave like a set of anticommuting complex structures. The first three Clifford algebras

are C0
∼= R, C1

∼= C and C2
∼= H, and from [ABS], Table 1, the sequence continuesH⊕H, M(2,H), M(4,C),

M(8,R), M(8,R) ⊕M(8,R), M(16,R), and so on, where M(k, A) is the algebra of k × k matrices with

entries in the algebra A. In §5, Atiyah et al. also classify modules over Clifford algebras. A module

over Ck corresponds precisely to a real vector space with k anticommuting complex structures. Thus the

79
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classification, which we will not go into, tells us exactly what the possible actions are of k anticommuting

complex structures upon a single tangent space.

This is a geometry that is intrinsically without metrics; in the hypercomplex case hyperkähler mani-

folds are metric analogues, but from the classification [S2] of holonomy groups of Riemannian manifolds,

any structure consisting of more than three anticommuting structures all of which are Kähler w.r.t. some

metric, must be flat, as the group preserving this structure is not a possible holonomy group for a curved

metric. Moreover, the structures do not fit within the theory of holonomy groups of torsion-free con-

nections either, because there is no corresponding holonomy group in the classification [Br] of holonomy

groups of torsion-free connections.

However, given a set of anticommuting complex structures on a manifold, every pair of them defines a

hypercomplex structure, which is preserved by a unique torsion-free connection ∇, the Obata connection.

So if the structure is not flat, these Obata connections cannot all be the same, and we have a collection of

torsion-free connections that each preserve a part of the structure, and not the whole.

In §§6.1-6.3 we shall show that there do exist non-flat examples with arbitrarily many anticommuting

structures, and that a few of them can be made compact. The structures of §6.1 use the ideas on twisting

from Chapter 3, and those of §6.2 are homogeneous, as in Chapter 5. In §6.3 we consider a more pedestrian

sort of homogeneous structure, that can be made compact by dividing by a discrete subgroup. The resulting

manifolds are nontrivial torus bundles over tori.

It is also possible by the same means to construct non-flat examples of structures on manifolds

that stand in the same relation to the collections of anticommuting complex structures as quaternionic

structures do to hypercomplex structures. For these new structures there are complex twistor spaces fibred

by complex manifolds; the fibre is the set of complex structures at a point, and usually has quite a high

dimension. We shall not deal with these ideas here.

6.1. Making many anticommuting complex structures by twisting

We begin with the simplest, most explicit example, that of four anticommuting complex structures

on R8. Let us view R8 as C4 with coordinates (w, x, y, z). Define four complex structures I1, I2, I3, I4 by

their effect upon the vectors ∂/∂w, . . . , ∂/∂z as follows:
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I1




∂
∂w
∂
∂x
∂
∂y
∂
∂z


 =




i ∂
∂w

i ∂
∂x

−i ∂
∂y

−i ∂
∂z


 , I2




∂
∂w
∂
∂x
∂
∂y
∂
∂z


 =




∂
∂x

− ∂
∂w

− ∂
∂z
∂
∂y


 , I3




∂
∂w
∂
∂x
∂
∂y
∂
∂z


 =




i ∂
∂x

−i ∂
∂w

−i ∂
∂z

i ∂
∂y


 , I4




∂
∂w
∂
∂x
∂
∂y
∂
∂z


 =




∂
∂y
∂
∂z

− ∂
∂w

− ∂
∂x


 .

(58)

Taking real and imaginary parts in these equations gives the actions of I1, . . . , I4 upon eight basis vectors of

TC4 at each point, and so four complex structures are defined. It can easily be verified that IjIk = −IkIj

for j 6= k. Notice also that I3 6= I1I2 here, so (I1, I2, I3) is not our usual hypercomplex structure; this is

because if I3 = I1I2 and I4 anticommutes with I1, I2, then I3 and I4 commute, and I1, . . . , I4 do not form

an anticommuting set.

We shall use the ideas of Chapter 3 to twist this structure by an ‘instanton’ to get another structure

(I1, . . . , I4) that is not flat. From §3.1, the first thing that is required is a principal bundle P over R8

with Lie group G, and a connection A on P with curvature Ω that is of type (1, 1) with respect to each

complex structure. Therefore let us consider the 2-forms on R8 that are of type (1, 1) with respect to

each of I1, . . . , I4. It is an easy calculation to show that there is a real 3-dimensional space generated by

f1, f2, f3, where

f1 = idw∧dw−idx∧dx+idy∧dy−idz∧dz, f2 = Re(dw∧dx+dy∧dz), f3 = Im(dw∧dx+dy∧dz). (59)

The problem, then, is to find a bundle P with connection A, such that the 2-form part of the curvature Ω

is made up only of the 2-forms f1, f2 and f3.

Let G be the group R under addition. Then because G is abelian, locally Ω is the curvature of a

connection on a G- bundle if and only if it is closed. So any combination of f1, f2, f3 that is closed will

lift to a suitable connection on a G- bundle. I do not know if there are any non-constant combinations of

f1, f2, f3 that are closed, but it is clear that any constant 2-form is closed. So let Ω be the constant 2-form

2f1. As Ω is closed and H2(R8) = 0, there is a 1-form α such that dα = Ω; and in fact we may choose

α = iwdw − iwdw − ixdx + ixdx + iydy − iydy − izdz + izdz. (60)

Then on the trivial bundle P = R×R8, with coordinates (u,w, x, y, z), where u ∈ G = R and (w, x, y, z) ∈

C4 ' R8, the 1-form ω = du + α is a connection 1-form with curvature dω = dα = Ω = 2f1 as we want.
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The next thing that is needed is an action of G on P preserving the bundle structure, the complex

structures, and the connection; then, provided that this action satisfies a transversality condition, dividing

P by this action gives a new (I1, I2, I3, I4)- structure on N = P/G that may not be flat. Therefore let us

consider the automorphisms of the whole structure P . There is a trivial action of R = G by translation

in the fibres, taking u to u + t and fixing w, x, y and z. But as Ω is constant and so invariant under

translations in R8, we also expect to be able to lift translations in R8 to P .

To try and do this, suppose w, x, y and z transform as (w, x, y, z) 7→ (w̃, x̃, ỹ, z̃) = (w + p, x + q, y +

r, z + s), and let us consider how u must transform to fix ω = du + α. From (60), α transforms to

α̃ = α + ipdw − ipdw − iqdx + iqdx + irdy − irdy − isdz + isdz,

so for ω̃ = ω, we must have

dũ = du− ipdw + ipdw + iqdx− iqdx− irdy + irdy + isdz − isdz,

and thus

ũ = u + t− ipw + ipw + iqx− iqx− iry + iry + isz − isz. (61)

With this definition, the transformation preserves the complex structures, the bundle structure and the

connection and is given by

(u, w, x, y, z) 7→ (u + t− ipw + ipw + iqx− iqx− iry + iry + isz − isz, w + p, x + q, y + r, z + s). (62)

The set of all transformations of this type forms a group K, say. Denoting the transformation (62)

by (t, p, q, r, s), the composition law is

(t1, p1, q1, r1, s1) ◦ (t2, p2, q2, r2, s2) = (t1+t2 − ip1p2 + ip1p2 + iq1q2 − iq1q2 − ir1r2 + ir1r2

+ is1s2 − is1s2, p1 + p2, q1 + q2, r1 + r2, s1 + s2).
(63)

It is a nonabelian group, and is a group extension fitting into the sequence

0 −→ R −→ K −→ R8 −→ 0. (64)
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Note that K is not the full automorphism group of the structures on P : there are also automorphisms

lifting affine transformations of R8 rather than just translations. But K is large enough for our purposes.

Choose a subgroup H of K isomorphic to R, generated by some nonzero (t, p, q, r, s). Then the

transversality condition is that the vector field generating this subgroup, contracted with ω, should be

nonzero. Clearly this vector field is

v = (t−ipw + ipw + iqx− iqx− iry + iry + isz − isz)
∂

∂u

+ p
∂

∂w
+ p

∂

∂w
+ q

∂

∂x
+ q

∂

∂x
+ r

∂

∂y
+ r

∂

∂y
+ s

∂

∂z
+ s

∂

∂z
,

(65)

and its contraction with ω is

ω(v) = t + 2(−ipw + ipw + iqx− iqx− iry + iry + isz − isz). (66)

When t 6= 0 and p = q = r = s = 0, ω(v) is nonzero everywhere, but this is just the principal bundle

action, and dividing by it gives the flat structure back again.

If p, q, r and s are not all zero, ω(v) vanishes upon a hyperplane in P , so that the twisted structures

become singular on this hyperplane. Away from this hyperplane, though, twisting by the action of H in

the manner of §3.1 gives a quadruple (I1, I2, I3, I4) of complex structures on R8 that is not flat, in the

sense that there is no coordinate system in which all four are constant in coordinates. One can write

these complex structures down explicitly in coordinates, by choosing a (t, p, q, r, s) for which t is nonzero,

and then using u = 0 as a transversal for the orbits when u,w, x, y and z are small, a technique used in

Appendix A.

The centralizer C of H in K is an eight-dimensional group containing H as a normal subgroup, and it

is C that commutes with the action of H and so descends to N =
(
R×R8

)
/H. But H ⊂ C acts trivially

on N , so the actual group acting on N is C/H, which has seven dimensions and is abelian, whilst N is

eight-dimensional. Therefore N is not homogeneous, which is not surprising, as the structure (I1, I2, I3, I4)

becomes singular on a hyperplane in N .

We have seen that on an open set in R8 there exist anticommuting, integrable complex structures

I1, . . . , I4, that together make up a structure that is not homogeneous or flat. The same idea of taking a

vector space with an arrangement of complex structures, choosing an R- connection of constant curvature,

and twisting by a group action, is one that will work whenever the arrangement of complex structures

allows a 2-form of type (1, 1) w.r.t. each complex structure. Usually it can easily be shown that the
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resulting structure is not flat, though there are some simple cases such as a single complex structure or a

collection of commuting complex structures, where the result may be flat for an injudicious choice of the

2-form.

However, for some collections of complex structures on a vector space there are no 2-forms of type

(1, 1) with respect to each complex structure. Consider again the case of R8, following Appendix C of

[SSTV]. The algebra generated by the above four complex structures is M(2,H), acting upon R8 ' H2,

and there is a commuting action of H; we may think of the three forms f1, f2, f3 as corresponding to ImH.

Now five anticommuting complex structures can also act on R8, and the algebra they generate is M(4,C),

acting upon R8 ' C4. In this case there is only one form of type (1, 1) under all five complex structures, as

the additional complex structure kills of the other two forms; we may think of this form as corresponding

to ImC, where C is the algebra acting on R8 commuting with M(4,C).

Going up the final stage, we can have seven complex structures acting on R8 (as the product of

six anticommuting complex structures is a seventh anticommuting complex structure). The algebra they

generate is M(8,R), and the commuting algebra is R, which has no imaginary part. This corresponds

to the fact that there are no 2-forms on R8 invariant under all seven anticommuting complex structures,

and therefore the twisting game we played above does not work. I conjecture this means that seven

anticommuting complex structures on an eight-dimensional manifold must necessarily be flat.

By increasing the dimension, though, we may show that there exist patches of manifold with arbitrarily

many anticommuting complex structures which taken together are not flat, provided the dimension of the

manifold is high enough. For given any integer n > 1, there exists an integer k > 1 such that there are

n anticommuting elements in U(2k) that square to −1. These give n anticommuting complex structures

upon C2k

, and as they are in the unitary group they preserve the Kähler form of the metric, which is of

type (1, 1) with respect to each one. This is the form we need to make a nontrivial connection to twist by.

6.2. Homogeneous manifolds with many anticommuting complex structures

In Chapter 5, homogeneous hypercomplex manifolds were constructed, effectively by embedding a

series of copies of the algebra H into the Lie algebra of a group. If the embeddings were chosen correctly,

then every element of H with square −1 gave rise to a homogeneous complex structure on the group. We

shall now show that this is a general principle applying to any finite-dimensional algebra A over R: given

a suitable embedding of a collection of copies of A into the Lie algebra g of a group G (perhaps with a
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subgroup H), then each element in A with square −1 gives rise to a homogeneous complex structure on

the group G, or homogeneous space G/H. In particular, if A is the Clifford algebra Ck defined in the

introduction to this chapter, then G or G/H has k anticommuting complex structures.

The difference is that the trick of constructing a suitable embedding of Lie algebras by choosing a

sequence of highest roots now no longer works, so we must suppose the embedding is given to begin with.

This means that examples for more complicated algebras A are somewhat sparse. By an embedding of an

algebra into a Lie algebra we mean an embedding in the sense of vector spaces, such that the commutator

[a, b] = (ab− ba)/2 of the algebra agrees with the Lie bracket of the Lie algebra.

The result we need generalizes Theorem 5.1.2, and the hypotheses come from Lemma 5.1.1. There is

also a similar result for general homogeneous spaces G/H, corresponding to Theorem 5.2.1.

Proposition 6.2.1. Let A be a finite-dimensional algebra over R that is generated by its elements of

square −1, and let G be a Lie group, with Lie algebra g. Suppose that g can be decomposed as

g =
n∑

k=1

dk +
n∑

k=1

fk, (67)

where dk is a subalgebra of g isomorphic to A under the isomorphism ιk, and f1, . . . , fn are (possibly

empty) vector subspaces of g, such that for each k = 1, 2, . . . , n, fk satisfies the following two conditions:

(i) [dl, fk] = {0} whenever l < k, and

(ii) fk is closed under the Lie bracket with dk, and for each e ∈ A such that e2 = −1, ιk(e) acts

as a complex structure on fk under the Lie bracket.

Then this decomposition defines an A- module structure on g, such that each element of A with square −1

exponentiates to give a homogeneous, integrable complex structure on G.

Proof. The underlying principles are the same as those of the proof of Theorem 5.1.2. With this as a

rough guide, the proof will be left to the reader.

Examples of suitable algebras A include M(k,H), M(k,C) and M(2k,R). The only algebras A that

can be included in the Lie algebras of compact groups G are R, C and H, so any structures arising in

this fashion that are more complicated than hypercomplex structures must occur on noncompact groups.

There is a reason for this. In [SSTV], Spindel et al. prove as their main result that nontrivial homogeneous

structures of four or more anticommuting complex structures on semisimple groups do not exist. I believe

that their argument is correct for compact groups, but false for noncompact groups. The problem comes



6.2. Homogeneous manifolds with many anticommuting complex structures 86

on p. 676, the sentence after (4.37), in which they reduce the noncompact case to the compact case: this

step is wrong.

To justify this claim we shall delve briefly into the differences between the theory of compact and

noncompact semisimple Lie groups. Recall the summary of the structure theory of Lie groups in the

introduction to Chapter 5. The difference between the compact and noncompact cases comes in here.

For in the compact case, the set of roots ∆ ⊂ h̃∗ is actually a subset of ih∗, where h is the Lie algebra

of a maximal torus, and h̃ denotes its complexification. But in the noncompact case, ∆ need not lie in

this subspace. Thus in the compact case, complex conjugation of a root just changes its sign, but in the

noncompact case this need not apply.

In Chapter 5, defining a complex structure on G was done by dividing the roots up into positive and

negative roots, so that ∆ = P ∪ (−P ). This is the compact case; to deal with the noncompact case too,

this analysis must be changed, for what is needed is a splitting of ∆ into P and P , rather than P and

−P . The new concept of positive system of roots, which covers the noncompact case too, is a set P ⊆ ∆

satisfying P ∩ P = ∅; P ∪ P = ∆; α, β ∈ P, α + β ∈ ∆ ⇒ α + β ∈ P . In the compact case, complex

conjugation coincides with change of sign, so this is the same as the old definition.

This marks a divide between the compact and noncompact cases, for it means that all the old argu-

ments about choosing a highest root, and then a sequence of highest roots, do not work in the noncompact

case. It also means that more bizarre sorts of positive system exist, and it is these that get put together

to form larger sets of anticommuting complex structures.

Finally we give some examples of many complex structures on noncompact groups and homogeneous

manifolds. For the case of four anticommuting structures the relevant Clifford algebra is M(2,H), and

this may be embedded k times in 2 × 2 diagonal squares in M(2k,H), which gives a structure of four

anticommuting complex structures on GL(2k,H). Interestingly, for k > 1 this is not the obvious flat

structure on the same group, but is curved. This generalizes to GL(2k + l,H)/GL(l,H).

For five anticommuting complex structures the algebra is M(4,C), which may be suitably embedded

k times in the Lie algebras of GL(4k,C) (k > 1) and SL(4k + 1,C), also giving non-flat structures. The

same tricks work with matrices over the reals too. More interesting examples occur when we embed general

linear groups into orthogonal groups of mixed sign; for instance, GL(k,R) may be embedded into SO(k, k)

by allowing it to act on a maximal null subspace of R2k with its indefinite metric. Then the algebras may

be embedded into the Lie algebras of these general linear subgroups, as before.
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6.3. Compact examples

In this section we shall construct compact manifolds with many anticommuting complex structures.

We shall do it using groups that are not semisimple, and hence are not dealt with by the last section, but

instead are nilpotent. Indeed, the groups G we consider are in a sense as close to being abelian as a Lie

group can get, for if x, y, z are elements of the Lie algebra g of G, they will satisfy [x, [y, z]] = 0.

Let A,B be nonzero real vector spaces, and let f : A×A → B be a nonzero, bilinear, antisymmetric

map. Let E = A⊕B. We define a group operation on E by

(a1, b1) ◦ (a2, b2) =
(
a1 + a2, b1 + b2 + f(a1, a2)

)
. (68)

It is easily verified that with this operation, E is a nonabelian Lie group with Lie algebra e = A⊕B, such

that [e1, [e2, e3]] = 0 for any e1, e2, e3 ∈ e. Also, E fits into the exact sequence of groups

0 −→ B −→ E −→ A −→ 0.

Let V be a finite-dimensional vector space over R on which anticommuting complex structures

I1, . . . , Ik act linearly. Let { , } : V × V → V be a symmetric bilinear operation, and suppose that

{ , } satisfies {v, w} = {Ijv, Ijw} for all v, w ∈ V and j = 1, . . . , k. Define g to be the tensor product

e⊗ V , and define a bilinear bracket operation on g by

[e1 ⊗ v1, e2 ⊗ v2] = [e1, e2]⊗ {v1, v2}. (69)

We claim that this operation makes g into a Lie algebra. To verify this it must be shown that [ , ] is

antisymmetric and satisfies the identity [x, [y, z]]+ [y, [z, x]]+ [z, [x, y]] = 0. The first holds because [ , ] on

e is antisymmetric and { , } on V is symmetric, and the second holds trivially because we have arranged

that any triple bracket vanishes in e, and therefore each term in the identity vanishes individually.

So g is a Lie algebra. Let G be the connected Lie group with Lie algebra g. We may in fact explicitly

identify G with g, and write the group operation · as x · y = x + y + [x, y]/2, where [ , ] is the Lie bracket

of g. It may easily be shown that as [x, [y, z]] = 0 for x, y, z ∈ g, this defines a group operation, which

has the correct Lie bracket. Now the complex structures I1, . . . , Ik on V induce anticommuting complex
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structures, also denoted I1, . . . , Ik, on g. In the next lemma we shall show that these complex structures

induce integrable homogeneous complex structures on G.

Lemma 6.3.1. The anticommuting complex structures I1, . . . , Ik of g induce right-invariant, integrable,

anticommuting complex structures on G.

Proof. Let g̃ denote the complexification of g. To show that Ij defines an integrable complex structure on

G, it must be shown that the (1, 0)- forms of Ij in g̃ are a Lie subalgebra of g̃, so that G can be regarded

as the quotient of Gc by a complex group, as in Chapter 5. The (1, 0)- forms of Ij are those of the form

(1− iIj)x for x ∈ g.

Therefore we have to prove that for all x, y ∈ g, there exists z ∈ g such that
[
(1− iIj)x, (1− iIj)y

]
=

(1− iIj)z. But

[
(1− iIj)x, (1− iIj)y

]
=

(
[x, y]− [Ijx, Ijy]

)− i
(
[Ijx, y] + [x, Ijy]

)
,

and from our assumption that {v, w} = {Ijv, Ijw} for v, w ∈ V , it follows that [x, y] = [Ijx, Ijy] for

x, y ∈ g, and both terms on the right hand side vanish separately. Thus we may take z = 0, and the (1, 0)-

forms of Ij are an abelian subalgebra of g̃, so Ij defines a right-invariant, integrable complex structure.

Now G will be nonabelian provided E is nonabelian and { , } is nonzero. To be able to define a

suitable operation { , } on a vector space V equipped with anticommuting complex structures I1, . . . , Ik

— thus, a Ck- module — we need V to possess some nonzero symmetric bilinear forms that are invariant

under each Ij . This can easily be arranged for arbitrarily large k; for instance, we may choose V = R2a

and I1, . . . , Ik ∈ SO(2a) for some large enough positive integer a, and then I1, . . . , Ik leave invariant the

usual metric on V = R2a

. Then we choose an arbitrary nonzero map from the dual of this space of forms

into V , and this defines the operation { , }.

When this holds, G is a nontrivial group extension appearing in the exact sequence

0 −→ B ⊗ V −→ G −→ A⊗ V −→ 0. (70)

Our goal is to produce compact manifolds with anticommuting structures. To achieve this we shall find

a discrete subgroup H of G such that G/H is compact. Because the complex structures on G have been

chosen to be right-invariant, they descend to the coset space G/H, and so this will provide an example of

a compact manifold with non-flat, integrable, anticommuting complex structures I1, . . . , Ik.
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To choose such a subgroup H we need to put extra conditions upon the elements used in the construc-

tion of G. The conditions we need are that A should admit a basis (a1, . . . , ak) such that the elements

f(ai, aj) of B generate a discrete subgroup of B over Z, and that V admits a basis (v1, . . . , vl) such that

the elements {vi, vj} generate a discrete subgroup of V over Z. These conditions mean that the subgroups

of the vector spaces generated over Z by the elements given should be discrete, and not dense in any

nonzero vector subspaces.

Both of these conditions can easily be achieved. For instance, for the first we may set B = Λ2A and

f to be the map f(a, b) = a ∧ b, so that the first condition is fulfilled. To satisfy the second condition,

for any k we may choose I1, . . . , Ik in SO(2a) for some suitable a, and then the condition is satisfied by

putting V = R2a

, (v1, . . . , v
2a

) to be an orthonormal basis of V , and letting {x, y} = (x ·y)v for some fixed

nonzero v ∈ V , where x · y is the inner product in V .

Suppose that the conditions are satisfied and bases (a1, . . . , ak) and (v1, . . . , vl) have been chosen as

above. Then the elements ai ⊗ vj generate a discrete subgroup P of A⊗ V , such that A⊗ V/P is a torus.

Using (70) we may pull P back to G and take the commutator of the resulting (nondiscrete) group to get

a subgroup Q of B ⊗ V . The two conditions above imply that Q is a discrete subgroup of B ⊗ V .

Choose a discrete subgroup R of B⊗V that contains Q, such that B⊗V/R is a compact torus. Define

H to be the subgroup of G generated by the elements of R and by arbitrary lifts to G of a basis over Z of

P . Then H is a discrete subgroup of G; its projection to A ⊗ V is P ; and its intersection with B ⊗ V is

R. Therefore G/H is a compact manifold, being a nontrivial fibre bundle over the torus A ⊗ V/P , with

fibre the torus B ⊗ V/R. So we have proved the following lemma:

Lemma 6.3.2. For arbitrarily large k, there exist compact, nontrivial torus bundles over tori that admit

k anticommuting, integrable complex structures, that considered as a single structure are not locally flat.

However, these examples are really as close to being flat as they could be. To better understand the

incidence of compact examples, I would like to be able to answer the next question.

Question 6.3.3. Do there exist compact, simply-connected manifolds admitting four or more anticom-

muting complex structures?



Part II: Constant Scalar Curvature Metrics on

Connected Sums and the Yamabe Problem

Chapter 7: Background Material for Part II

The background we shall need for this part of the thesis is a working knowledge of the Yamabe

problem, and some of the mathematical techniques used in its solution. The problem is posed in §7.1 as a

geometric problem, and the first steps in the solution are followed to show how it reduces to a problem in

Analysis, the task being to construct a smooth and positive solution to a certain equation (the Yamabe

equation) on a Riemannian manifold. In §7.2 we give the necessary analytic preliminaries, defining Sobolev

spaces and norms, quoting the Sobolev embedding theorem, and proving a regularity result stating that a

weak solution of the Yamabe equation in a certain Sobolev space must be smooth.

Section 7.3 goes into greater detail on a part of the solution of the Yamabe problem, the contribution

of Schoen and Yau to the proof of the Yamabe problem on the subject of asymptotically flat manifolds

and positive mass. In doing this stereoscopic projections are introduced, which are a means of making an

asymptotically flat manifold of zero scalar curvature from a compact manifold of positive scalar curvature,

and which are very important in the following chapters.

7.1. The Yamabe problem

Given a Riemannian manifold M with metric g, one may form the Riemann curvature tensor Ri
jkl,

the Ricci curvature Rij = Rk
ikj , and the scalar curvature S = gijRij . The scalar curvature is thus a

real-valued function on M . Now given a smooth positive function γ on M , g̃ = γg is a Riemannian metric

on M conformal to g, and will have its own scalar curvature S̃. So one scalar function, γ, gives rise to

another scalar function, S̃. The Yamabe problem is to find γ such that S̃ is constant.

The Yamabe Problem: Given a compact Riemannian manifold M with metric g of dimension ≥ 3,

find a metric conformal to g with constant scalar curvature.

In 1960, Yamabe [Y] claimed to have solved it. However, his proof contained an error, discovered in

1968 by Trüdinger [T]. Trüdinger found that Yamabe’s proof could be repaired, but only with a rather

90
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restrictive assumption on the manifold M . The problem has now been completed by Aubin, Schoen and

Yau. Yamabe’s approach is a variational one, and will now be briefly described; for a more thorough

introduction to the Yamabe problem, with references, we recommend the survey paper [LP] by Lee and

Parker.

Suppose M is a compact, connected Riemannian manifold of dimension n ≥ 3, with metric g. Any

metric conformal to g can be written g̃ = e2fg, for some f ∈ C∞(M). Then by [Bs], Theorem 1.159, the

Ricci curvatures Rij and R̃ij of g and g̃ are related by

R̃ij = Rij − (n− 2)
(∇i∇jf − (∇if)(∇jf)

)
+

(
∆f − (n− 2)|∇f |2)gij , (71)

where ∇ is the covariant derivative with respect to g, and ∆f is the Laplacian ∆ = −∇i∇i of f .

Let S and S̃ denote the scalar curvatures of g and g̃, respectively. Then S = Rijg
ij and S̃ = R̃ij g̃

ij ,

so contracting (71) with g̃ij gives

S̃ = e−2f
(
S + 2(n− 1)∆f − (n− 1)(n− 2)|∇f |2) . (72)

Now if k is a real number and ψ a smooth function, ∆ψk = kψk−1∆ψ − k(k− 1)ψk−2|∇ψ|2. Making

the substitution e2f = ψk in (72), for one particular value of k the term in |∇ψ|2 vanishes, and the formula

simplifies. This value of k is k = 4/(n− 2), so put e2f = ψp−2, with p = 2n/(n− 2) and g̃ = ψp−2g. Then

(72) becomes

S̃ = ψ1−p

(
4
n− 1
n− 2

∆ψ + Sψ

)
. (73)

Definition 7.1.1. In line with [LP], we shall use the definitions n = dim M ≥ 3, p = 2n/(n − 2),

a = 4(n− 1)/(n− 2) throughout.

So g̃ = ψp−2g has constant scalar curvature ν if and only if ψ satisfies the Yamabe equation:

a∆ψ + Sψ = ν|ψ|p−1. (74)

Consider now the functional Q defined upon the set of Riemannian metrics on M by

Q(g) =

∫
M

SdVg

vol(M)2/p
. (75)
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This functional is known as the total scalar curvature, or Hilbert action, and the purpose of the power of

the volume in the denominator is to normalize it so that it is invariant under homotheties. We wish to

apply the calculus of variations to Q and find its stationary points. Therefore let g be a fixed metric on

M , and h a smooth symmetric (2, 0) tensor that is small compared to g.

The scalar curvature of g + h is given by Sg+h = S + ∆(gijhij) +∇i∇jhij − Rijhij + O(h2), and as

by Stokes’ Theorem the second and third terms on the right integrate over M to give zero, we find that

Q(g + h) = Q(g) +
1

vol(M)2/p
·
∫

M

(
S

2
gij −Rij

)
hijdVg − Q(g)

p vol(M)
·
∫

M

gijhijdVg + O(h2). (76)

Thus g is a stationary point of Q if

S

2
gij −Rij − n− 2

2n

(∫
M

SdVg

)

vol(M)
gij = 0, (77)

so that g is a stationary point of Q if and only if Rij = gij ·
∫

M
SdVg/

(
n vol(M)

)
, that is, if g is Einstein

with constant scalar curvature; this calculation has been taken from [Bs], §4C.

Now consider the stationary points of Q within a single conformal class. This means restricting to

variations hij = θgij for small scalar functions θ, and (76) shows that g is a stationary point of Q within

its conformal class if and only if S ≡ ∫
M

SdVg/ vol(M), i.e. if S is constant.

It can easily be shown using Hölder’s inequality that Q is bounded below in its conformal class. So

we may define

λ(M) = inf
{
Q(g̃) : g̃ conformal to g

}
. (78)

This constant λ(M) is an invariant of the conformal class of g on M , called the Yamabe invariant. It plays

an important rôle in the solution of the Yamabe problem.

Yamabe’s method aims to show that the infimum λ(M) is actually achieved by some smooth, nonsin-

gular g̃ conformal to g, and that as g̃ is a stationary point of the Hilbert action Q, it must have constant

scalar curvature. Such a minimizing metric g̃ is called a Yamabe metric. It is now known that Yamabe

metrics always exist, although Yamabe’s original proof was flawed. The corrected proof can be summarized

in two theorems:

Theorem A (Yamabe, Trüdinger, Aubin). The Yamabe problem can be solved on any compact

Riemannian manifold M with λ(M) < λ(Sn), where Sn is the sphere with its standard metric.
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Theorem B (Aubin, Schoen, Yau). If M is a compact Riemannian manifold, then λ(M) < λ(Sn)

unless M is Sn and its metric is conformal to the standard metric on Sn.

In §7.3 we will go into Theorem B in greater detail, by examining the rôles of test functions and

positive mass. To prepare for this, and give an intuitive idea of why the problem is split up into these two

theorems, we will try to explain how the condition λ(M) < λ(Sn) arises.

Let M be a Riemannian manifold, and m a point in M . Using geodesic coordinates we may identify

a small ball around M with a small ball about the origin in Rn in such a way that, sufficiently close to

m, the agreement between the metric on M and the standard metric on Rn is very good. Now Rn has a

whole family of conformal identifications with the complement of a point in Sn, and some of these take a

very small ball about the origin in Rn to almost the whole of Sn, whilst crushing the rest of Rn down to

a very small size.

We may choose a conformal rescaling of M that is like this, in that the conformal factor is very small

except on a small ball about m, and on this small ball it looks like the conformal factor corresponding to

a conformal identification of a small ball about the origin in Rn with almost all of Sn. The conformally

rescaled metric then looks quite like the standard metric on Sn, with a small hole cut out and a very small

copy of M glued in its place.

A simple argument shows that the Hilbert action of this conformal rescaling is quite close to that

of the standard metric on Sn. So taking a limit, it can be seen that λ(M) ≤ λ(Sn) for all Riemannian

manifolds M . Now suppose that λ(M) = λ(Sn) for some Riemannian manifold M . Then as a minimizing

sequence for the Hilbert action we can choose a sequence of conformal factors as above, which become

progressively more and more concentrated around a point. These clearly have no subsequence converging

to a nonsingular metric on M . Thus, if λ(M) = λ(Sn), then minimizing sequences for the Hilbert action

need not converge to a Yamabe metric on M .

However, if λ(M) < λ(Sn), it is clear that a minimizing sequence for the Hilbert action cannot become

concentrated around single points in the above fashion. This makes it intuitively credible, at least, that

the condition λ(M) < λ(Sn) implies that a minimizing sequence must have some convergent subsequence.

7.2. Sobolev spaces, embedding theorems, and elliptic regularity

We begin by fixing our notation for Lesbesgue spaces and Sobolev spaces, which will be used a lot

in the next chapters. Then we explain the Sobolev embedding theorem, and go on to prove a result on
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smoothness of solutions to the Yamabe equation that lie in a Sobolev space.

Let M be a Riemannian manifold with metric g. For q ≥ 1, define the Lesbesgue space Lq(M) to be

the set of locally integrable functions u on M for which the norm

‖u‖q =
(∫

M

|u|qdVg

)1/q

(79)

is finite. Here dVg is the volume form of the metric g. Suppose that r, s, t ≥ 1 and that 1/r = 1/s + 1/t.

If φ ∈ Ls(M), ψ ∈ Lt(M), then φψ ∈ Lr(M), and ‖φψ‖r ≤ ‖φ‖s‖ψ‖t; this is Hölder’s inequality.

Let q ≥ 1 and let k be a nonnegative integer. Define the Sobolev space Lq
k(M) to be the set of

u ∈ Lq(M) such that u is k times weakly differentiable and |∇iu| ∈ Lq(M) for i ≤ k. Define the Sobolev

norm on Lq
k(M) to be

‖u‖q,k =

(
k∑

i=0

∫

M

|∇iu|qdVg

)1/q

. (80)

Then Lq
k(M) is a Banach space w.r.t. the Sobolev norm. Furthermore, L2

k(M) is a Hilbert space.

Here weak differentiation is defined as follows. If ∇ is a connection on a bundle E, we say that f is the

weak derivative of u, written f = ∇u, if u, f are locally integrable sections of E, E⊗T ∗ respectively, and for

every compactly supported smooth vector field v on M , u and f satisfy the identity
∫

M
(f ·v−u∇∗v)dVg = 0.

If u is differentiable in the ordinary sense, the first term integrates by parts to give
∫

M
v · (f −∇u)dVg = 0,

so the weak derivative is equal to the usual derivative.

For each integer r ≥ 0, define the space Cr(M) to be the space of continuous, bounded func-

tions that have r continuous, bounded derivatives, and define the norm ‖.‖Cr on Cr(M) by ‖u‖Cr =

max0≤l≤r sup
∣∣∇lu

∣∣.

An important tool in problems involving Sobolev spaces is the Sobolev embedding theorem, which

includes one Sobolev space inside another.

Theorem 7.2.1 (Sobolev embedding theorem for compact manifolds). Suppose M is a compact

Riemannian manifold of dimension n. If

1
r
≥ 1

q
− k

n
, (81)

then Lq
k(M) is continuously embedded in Lr(M) by inclusion. If
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− r

n
>

1
q
− k

n
, (82)

then Lq
k(M) is continuously embedded in Cr(M) by inclusion.

Proof. Sobolev embedding theorems are dealt with at length by Aubin in [Au], §§2.3-2.9. This version is

a partial statement of Theorem 2.20, p. 44.

In Chapters 9 and 10, solutions in L2
1(M) to the Yamabe equation (74) will be constructed for certain

special compact manifolds M . For these solutions to give Riemannian metrics of constant scalar curvature,

it is necessary that they be not just L2
1 solutions, but C∞ solutions. We will now prove a result showing

that this is the case. It relies upon a result of Trüdinger, and is part of the much more general theory of

elliptic operators, which we will not go into.

Proposition 7.2.2. Let M be a compact Riemannian manifold and u be an L2
1(M) solution of the

equation

a∆u + Su = S̃|u| n+2
n−2 , (83)

for S̃ some smooth function on M . Then u ∈ C2(M), and where u is nonzero it is C∞.

Proof. In the proof of his Theorem 3 ([T], p. 271), Trüdinger shows that if the hypotheses of the proposition

hold, then u ∈ Lr(M) for some r > p. We will not go into the proof of this as it is quite long, but a crude

idea of how it works is that using (83) to locally bound
∥∥|u|2/(n−2)∇u

∥∥
2

in terms of ‖u‖p, and then using

a Sobolev embedding theorem to bound ‖u‖r in terms of
∥∥|u|2/(n−2)∇u

∥∥
2
+

∥∥u
∥∥

p
, one can show that ‖u‖r

exists in small neighbourhoods and is controlled by ‖u‖p.

This is the crucial step in the proof, which is otherwise quite standard, and an exercise in the appli-

cation of the Sobolev embedding theorem. We quote the following local elliptic regularity result, which is

a partial statement of [LP], Theorem 2.4:

Theorem 7.2.3 (Local elliptic regularity). Suppose that K is a compact subset of Rn, g is any

Riemannian metric on an open set of Rn containing K, and that f, u are locally integrable functions on

this set that satisfy ∆u = f weakly. If f ∈ Lq
k(K), then u ∈ Lq

k+2(K).

We have seen that u ∈ Lr(M) for some r > p. This implies that S̃|u| n+2
n−2 − Su ∈ L(n−2)r/(n+2)(M),

as S, S̃ are bounded. Therefore by Theorem 7.2.3, u ∈ L
(n−2)r/(n+2)
2 locally, and so u ∈ L

(n−2)r/(n+2)
2 (M)
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as M is compact. But then by the Sobolev embedding theorem (Theorem 7.2.1), u ∈ Lr1(M), where r1 is

defined by

1
r1

=
n + 2

(n− 2)r
− 2

n
.

Since r > p, it follows that r1 > r, and by repeated applications of this process, we see that u ∈ Lq
2(M)

for arbitrarily large q. In particular, this holds for some q > n, and applying the second part of Theorem

7.2.1, u ∈ C1(M). Therefore u ∈ Lq
1(M) for arbitrarily large q. But if u ∈ Lq

1(M), then S̃|u| n+2
n−2 − Su ∈

L
(n−2)q/(n+2)
1 (M), as before. Applying Theorem 7.2.3 again gives that u ∈ L

(n−2)q/(n+2)
3 (M). Choosing

q such that (n − 2)q/(n + 2) > n and applying the second part of Theorem 7.2.1, we conclude that

u ∈ C2(M), which is one of the conclusions of the proposition.

Now there is a difficulty in continuing this process further, which is that as |u|(n+2)/(n−2) is no

more than a C1 function of u at zero, we cannot conclude that if u ∈ Lq
2(M), then |u|(n+2)/(n−2) ∈

L
(n−2)q/(n+2)
2 (M). The next step, of proving that u ∈ C3(M), therefore fails. What remains to be shown,

however, is that u is C∞ wherever it is nonzero; this avoids the difficulty, as |u|(n+2)/(n−2) is a C∞ function

where u is nonzero.

Let K be a compact subset of M upon which u does not vanish. We will show by induction that

u ∈ Ck(K) for every k, and hence that u is C∞ in K. It has been shown that u ∈ C1(K), which is the

first step. Suppose by induction that u ∈ Ck(K). Then u ∈ Lq
k(K) for arbitrarily large q. As u is nonzero

in K, it follows that S̃|u| n+2
n−2 − Su ∈ L

(n−2)q/(n+2)
k (K), since S, S̃ are C∞. Therefore by Theorem 7.2.3,

u ∈ L
(n−2)q/(n+2)
k+2 (K) for arbitrarily large q. Choosing q so large that (n− 2)q/(n + 2) > n, we may apply

the second part of Theorem 7.2.1 to show that u ∈ Ck+1(K). This proves the inductive step, and so by

induction u ∈ C∞(K), and the proposition is complete.

7.3. Asymptotically flat manifolds and the positive mass theorem

Let M be a compact Riemannian manifold with metric g and scalar curvature S. Then from §7.1,

the condition for g̃ = ψp−2g to have zero scalar curvature is a∆ψ + Sψ = 0. This is a linear equation,

and so is quite easy to treat. In particular, we may apply standard analytic results on the existence of

Green’s functions. (For any point m ∈ M , a Green’s function for a∆ + S is a function Γm on M \ {m}

such that (a∆ + S)Γm = δm in the sense of distributions.) The condition for existence and positivity of

these functions turns out to be the positivity of the Yamabe constant λ(M) of §7.1.
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Proposition 7.3.1. Suppose λ(M) > 0. Then for each m ∈ M the Green’s function Γm for a∆ + S

exists, and is unique, smooth and strictly positive.

Proof. This is [LP], Lemma 6.1, p. 63.

In line with [LP], Definition 6.2, we make the following definition.

Definition 7.3.2. Suppose (M, g) is a compact Riemannian manifold with λ(M) > 0. For m ∈ M define

the metric ĝ = Γp−2
m g on M̂ = M \{m}. The manifold (M̂, ĝ) together with the natural map from M \{m}

to M̂ is called the stereographic projection of M from m.

The stereographic projection of Sn is Rn. The general case is similar: M̂ is noncompact, and its

noncompact end asymptotically resembles Rn. Let us adopt the notation (used by Lee and Parker in

[LP], p. 64) that φ = O′(|v|q) means φ = O(|v|q) and ∇φ = O(|v|q−1), and φ = O′′(|v|q) means φ =

O(|v|q), ∇φ = O(|v|q−1), and ∇∇φ = O(|v|q−2). With this notation we make precise what we mean by

asymptotically resembling Rn in the next definition, which is [LP], Definition 6.3.

Definition 7.3.3. A Riemannian manifold N with C∞ metric ĝ is called asymptotically flat of order

s > 0 if there exists a decomposition N = N0 ∪ N∞ with N0 compact, and a diffeomorphism Φ from

Rn \ BR(0) to N∞ for some R > 0, satisfying ĝij(x) = δij + O′′(|x|−s) for large x. Here xi are the

coordinates induced on N∞ by the standard coordinates on Rn, called asymptotic coordinates, and ĝij

are the components of ĝ with respect to {xi}.

The reason for making this definition is that in the next chapters, stereographic projections will

be used to construct metrics of nearly constant scalar curvature on the connected sum M ′#M ′′ of two

Riemannian manifolds M ′, M ′′. The device used is to take a stereographic projection of M ′′, choose some

large ball within this that is close at its edge the metric of a ball in Rn, shrink it very small with a

homothety, and then ‘glue’ it into a small hole in M ′ with its given metric. The result is a copy of M ′

with a very tiny copy of M ′′ glued in.

To make the definition of connected sum easier, and avoid having many error terms, we shall sup-

pose that the manifolds M ′,M ′′ are conformally flat around the connected sum points. In this case the

asymptotic expansion of the metric ĝ is particularly simple.

Proposition 7.3.4. Suppose (M, g) is a compact Riemannian manifold of dimension n ≥ 3 with λ(M) >

0, and m ∈ M has a neighbourhood that is conformally flat. Then the stereographic projection (M̂, ĝ) of

M from m has zero scalar curvature, is asymptotically flat of order n− 2, and there is some real constant

µ and asymptotic coordinates {xi}, with respect to which ĝij satisfies
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ĝij(x) = ψp−2(x)δij , where ψ(v) = 1 + µ|x|2−n + O′(|x|1−n) for large |x|. (84)

Proof. The metric ĝ has zero scalar curvature as explained at the beginning of this section. The rest of

the proposition is case (a) of Theorem 6.5 of [LP], with a little bit of extra thought to see that in the

conformally flat case the error O′′(ρ−2) of their equation (6.4) is zero.

The constant µ appearing in the proposition is proportional to an important invariant of asymptoti-

cally flat manifolds called the mass. From [LP], p. 79, the constant µ of Proposition 7.3.4 (called A in [LP])

is related to the usual definition of mass by 4(n− 1)µ = m(ĝ). The concept arose from general relativity,

where one reasons that any 3-dimensional asymptotically flat gravitational system, when viewed from a

long way off, should look like a point concentration of mass, that is, a Schwarzschild metric.

Thus the highest-order deviation from flatness of an asymptotically flat metric satisfying some field

equation, should equal the highest order deviation from flatness of a Schwarzschild metric. But associated

to the Schwarzschild metric is a number, the mass of the black hole. So by comparing highest-order

terms, an invariant of asymptotically flat gravitational systems, called the mass, is defined. The definition

generalizes easily to dimensions higher than three, and is given in [LP], Definition 8.2.

From the physical considerations that gave rise to the concept of mass, it was reasonable to conjecture

that the mass of an asymptotically flat manifold of nonnegative scalar curvature should be nonnegative,

and zero only if the manifold is isometric to Rn with its Euclidean metric; much effort went into proving

results along these lines because of their importance in physics.

The relevance of positive mass to the Yamabe conjecture is as follows. As we saw in §7.1, given

a compact Riemannian manifold Mn, it is easy to produce conformally equivalent metrics on M with

Hilbert action Q close to λ(Sn), but to show the Yamabe conjecture holds for M we need to prove that

λ(M) < λ(Sn). A method developed for doing this is the method of test functions, and involves choosing

a conformal factor, called a test function, that is concentrated around a point in the manner of §7.1,

evaluating its Hilbert action and showing that it is less than λ(Sn).

This test function is constructed by taking the Green’s function of a point used to make a stereographic

projection, and smoothing off the function around the pole, so that the asymptotically flat end is replaced,

approximately, by a large round sphere. The Hilbert action of the test function is approximately λ(Sn),

and the difference is given, to highest order, in terms of geometric invariants of the stereographic projection
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of M . Thus it is that the sign of the geometric invariants is of crucial importance: with one sign, the

Hilbert action of test functions with only small degrees of smoothing will be smaller than λ(Sn), and the

Yamabe conjecture holds for M , but with the other sign, the Hilbert action will be larger than λ(Sn), and

nothing is proved.

It turns out ([LP], §7 and Lemma 6.4) that if n ≥ 6, and M is not conformally flat at m, then the

highest order term in the expansion of the Hilbert action of the test function involves the Weyl conformal

curvature of M at m, and has a favourable sign, so that the Yamabe conjecture holds for manifolds of

dimension n ≥ 6 that are not conformally flat. But in the other cases n = 3, 4, 5 and n ≥ 6, M conformally

flat, the highest order term involves the mass, and its sign is favourable provided the mass is positive.

Therefore the remaining cases of the Yamabe conjecture would be implied by a general n- dimensional

positive mass theorem, as discussed above.

Such a theorem has been proved by Schoen and Yau, and was announced [Sc] by Schoen in 1984;

one version is given in [LP] as Theorem 10.1. We shall only need the case when the metric g of M is

conformally flat about m, which we state as follows:

Theorem 7.3.5 (Schoen, Yau). In the situation of Proposition 7.3.4, the constant µ is greater than or

equal to zero, with equality if and only if M is Sn, and its metric is conformal to the round metric.

To finish off this section we give an analogue of the Sobolev embedding theorem, Theorem 7.2.1, for

asymptotically flat manifolds.

Theorem 7.3.6 (Sobolev embedding theorem for asymptotically flat manifolds). Suppose that

N is an asymptotically flat Riemannian manifold of dimension n, and that

1
r

=
1
q
− k

n
. (85)

Then Lq
k(N) is continuously embedded in Lr(N).

Proof. This can be deduced from Theorem 2.21 of [Au], p. 45. To apply the theorem, it is necessary to

show that N has bounded curvature and injectivity radius δ > 0. But these are obvious as the asymptotic

conditions ensure that the curvature becomes small and the local injectivity radius becomes large towards

infinity in N .

In the special case of q = 2, k = 1 there is a stronger, homothety-invariant statement which reads
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Theorem 7.3.7. Suppose that (N, gN) is a connected, asymptotically flat Riemannian manifold of dimen-

sion n. Then there is a constant A such that

‖φ‖p ≤ A

(∫

N

|∇φ|2dVgN

) 1
2

for φ ∈ L2
1(N). (86)

This is an isoperimetric inequality.

Proof. I cannot find a proof of this in the literature, but it is not really relevant to the exposition, so it

has been relegated to Appendix C.



Chapter 8: Approximate Metrics on Connected Sums

The central results of this part of the thesis come in Chapters 9 and 10, and they will say that

if a Riemannian manifold (M, g) has scalar curvature S sufficiently close to a constant function, where

‘sufficiently close’ depends upon other geometrical invariants of M , then M admits a small conformal

change giving a metric of constant scalar curvature. In this chapter, we shall consider the connected sum

M of two constant scalar curvature Riemannian manifolds (M ′, g′) and (M ′′, g′′), and define families of

metrics gt upon M with scalar curvature sufficiently close to constant, in the above sense.

Two families will be considered, defined in §§8.1 and 8.2 respectively. The first family, in §8.1, is

made by taking a manifold of constant scalar curvature ν, cutting out a small ball, and then gluing in an

asymptotically flat manifold, homothetically shrunk very small. Now shrinking a manifold by a homothety

makes its scalar curvature large, unless the scalar curvature is zero in the first place. Therefore, to control

the scalar curvature on the resulting manifold, the asymptotically flat manifold to be glued in should

have zero scalar curvature. Stereographic projections of positive scalar manifolds, defined in §7.3, are thus

suitable candidates (indeed, the only candidates) for the asymptotically flat manifold, and so these are

used.

The second family, in §8.2, is made by joining together two manifolds with metrics of constant scalar

curvature ν. They are joined by a small ‘neck’, to form a connected sum. The problem is to ensure

that the scalar curvature is controlled on this neck. We do this by modelling the neck on a Riemannian

manifold N of zero scalar curvature, that has two asymptotically flat ends. Gluing these two ends into

the two manifolds that form the connected sum reduces this case to the case of §8.1.

The chapter is finished off with two results, Lemma 8.3.1 and Lemma 8.4.1, about the families of

metrics. The first gives explicit bounds for their scalar curvature, to determine how good an approximation

to constant scalar curvature they are. The second shows that the Sobolev constant for a certain Sobolev

embedding of function spaces can be given a bound independent of the width of the neck, for small values

of this parameter; this gives an inequality relating two Sobolev norms that will be needed many times in

the analysis of the next chapter.

Some diagrams giving a visual picture of the manifolds (M, gt) defined in this chapter will be found

in §11.1; they have been put there for easy reference, rather than scattering them through the text. We
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recommend that the reader should study the diagrams before reading §§8.1 and 8.2, and at any point later

in the text when it is necessary to recall what the metrics look like.

8.1. Combining a metric of constant and a metric of positive scalar curvature

Let (M ′, g′) be a compact Riemannian manifold of dimension n ≥ 3 with constant scalar curvature

ν; for instance, g′ could be a Yamabe metric for some conformal class. Applying a homothety to M ′ if

necessary, we may assume that ν = 1, 0 or −1. To make it easier to define metrics on connected sums with

M ′, assume M ′ contains a point m′ that has a neighbourhood in which g′ is conformally flat. Then M ′

contains a ball B′ about m′, with a diffeomorphism Φ′ from Bδ(0) ⊂ Rn to B′ for some δ with 0 < δ < 1,

such that Φ′(0) = m′ and (Φ′)∗(g′) = (ψ′)p−2h for some function ψ′ on Bδ(0), where h is the standard

metric on Rn. By choosing a different conformal identification with Bδ(0) if necessary, we may suppose

ψ′(0) = 1 and dψ′(0) = 0, so that ψ′(v) = 1 + O′(|v|2) in the notation of §7.3.

Let M ′′ be a compact Riemannian manifold of the same dimension n with positive scalar curvature,

that is, with λ(M ′′) > 0. As with M ′, suppose M ′′ contains a point m′′, with a neighbourhood in which

the metric of M ′′ is conformally flat. From Proposition 7.3.4, there is an asymptotically flat metric g′′ of

zero scalar curvature in the conformal class of M ′′ \ {m′′}. There is a subset N ′′ of M ′′ \ {m′′} that is the

complement of a compact set in M ′′ \{m′′}, and a diffeomorphism X′′ : Rn \BR(0) → N ′′ for some R > 0,

such that (X′′)∗(g′′) = ξp−2h, where ξ is a smooth function on Rn \BR(0) satisfying ξ(v) = 1+O′(|v|2−n).

By making δ smaller if necessary, we set R = δ−4.

A family of metrics {gt : t ∈ (0, δ)} on M = M ′#M ′′ will now be written down. For any t ∈ (0, δ),

define M and the conformal class of gt by

M =
(
M ′ \ Φ′[Bt2(0)]

)
q

(
M ′′ \ ({m′′} ∪X′′[Rn \Bt−5(0)]

))/
˜ t

, (87)

where ˜ t
is the equivalence relation defined by

Φ′ [v] ˜ t
X′′[t−6v] whenever v ∈ Rn and t2 < |v| < t. (88)

The conformal class [gt] of gt is then given by the restriction of the conformal classes of g′ and g′′ to

the open sets of M ′,M ′′ that make up M ; this definition makes sense because the conformal classes agree
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on the annulus of overlap where the two open sets are glued by ˜ t
. Let At be this annulus in M . Then

At is diffeomorphic via Φ′ to the annulus {v ∈ Rn : t2 < |v| < t} in Rn.

To define a metric gt within the conformal class just given, we shall let gt = g′ on the component of

M \ At coming from M ′, and gt = t12g′′ on the component of M \ At coming from M ′′. So it remains to

choose a conformal factor on At itself. Using Φ′, this is the same as choosing a conformal factor for the

subset {v ∈ Rn : t2 < |v| < t} of Rn. On this subset, we let (Φ′)∗(gt) = ψp−2
t h, where ψt is a positive

real-valued function that will shortly be defined.

The conditions for smoothness at the edges of the annulus At are that ψt(v) should join smoothly

onto ψ′(v) at |v| = t, and that ψt(v) should join smoothly onto ξ(t−6v) at |v| = t2. Such a function ψt(v)

may easily be defined using a smooth partition of unity. Choose a C∞ function σ : R→ [0, 1], that is 0 for

x ≥ 2 and 1 for x ≤ 1, and that is strictly decreasing in the interval [1, 2]. Then define smooth functions

β1, β2 by β1(v) = σ(log |v|/ log t) and β2(v) = 1− β1(v) for all v ∈ Rn such that t2 < |v| < t.

Finally, define the function ψt by

ψt(v) = β1(v)ψ′(v) + β2(v)ξ(t−6v). (89)

This finishes the definition of the metric gt for t ∈ (0, δ). The reasons for defining the metrics this way —

why M ′′ \ {m′′} is shrunk by a factor of t6, but the cut-off functions change between radii t and t2, for

instance — will emerge in §8.3, where we show that for this definition the scalar curvature of gt is close

to the constant function ν in the Ln/2 norm.

8.2. Combining two metrics of constant scalar curvature ν

The previous section showed how to shrink an asymptotically flat Riemannian manifold of zero scalar

curvature by a homothety, and then glue it into a Riemannian manifold of constant scalar curvature ν,

to get a Riemannian metric on the connected sum. There we dealt with the case of gluing a manifold

with a single asymptotically flat end into another manifold at a single point, but the definition clearly

works just as well for gluing a collection of asymptotically flat manifolds, or a single manifold with several

asymptotically flat ends, into a collection of manifolds of constant scalar curvature.

In this section a family of metrics will be defined on the connected sum of two Riemannian manifolds

with constant scalar curvature ν. We shall do this by considering a zero scalar curvature Riemannian
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manifold that has two asymptotically flat ends, and gluing one end into each of the constant scalar

curvature manifolds; the new manifold will form the ‘neck’ in between.

Let N be the Riemannian manifold Rn \ {0} with the metric gN = (1 + |v|−(n−2))p−2h. Then, by

Definition 7.3.3, N is clearly asymptotically flat of order n − 2 (neglecting the condition N0 compact),

taking the diffeomorphism Φ to be the identity upon Rn \BR(0) ⊂ N , for some R > 1. But the involution

v 7→ v/|v|2 of N may easily be shown to preserve the metric. Therefore the other noncompact end of N ,

close to zero in Rn, is also asymptotically flat of order n− 2, because it is identified with the first end by

this involution. Also, as ∆|v|−(n−2) = 0, equation (73) shows that N has zero scalar curvature.

We shall use the gluing method of the previous section to glue each of the two asymptotically flat

ends of N into a manifold of constant scalar curvature. Let (M ′, g′) and (M ′′, g′′) be two Riemannian

manifolds of dimension n, with constant scalar curvature ν; applying homotheties if necessary we shall

assume that ν = 1, 0 or −1. Let M = M ′#M ′′. A family of metrics {gt : t ∈ (0, δ)} on M will now be

defined, such that when t is small, gt resembles the union of M ′ and M ′′ with their metrics g′ and g′′,

joined by a small ‘neck’ of approximate radius t6, which is modelled upon N with metric t12gN . It will be

done quite briefly, because the treatment simply generalizes the definition of the previous section.

As in §8.1, suppose that M ′,M ′′ contain points m′,m′′ respectively, having neighbourhoods in which

g′, g′′ are conformally flat. Thus M ′,M ′′ contain open balls B′, B′′ with diffeomorphisms Φ′, Φ′′ from Bδ(0)

in Rn to B′, B′′, such that Φ′(0) = m′,Φ′′(0) = m′′ and (Φ′)∗(g′) = (ψ′)p−2h, (Φ′′)∗(g′′) = (ψ′′)p−2h, for

some functions ψ′, ψ′′ on Bδ(0). By choosing different conformal identifications with Bδ(0) if necessary,

we may suppose that ψ′(0) = ψ′′(0) = 1 and dψ′(0) = dψ′′(0) = 0, so that ψ′(v) = 1 + O′(|v|2) and

ψ′′(v) = 1 + O′(|v|2).

For any t ∈ (0, δ), define M and the conformal class of gt by

M =
(
M ′ \ Φ′[Bt2(0)]

)
q

(
M ′′ \ Φ′′[Bt2(0)]

)
q {

v ∈ N : t5 < |v| < t−5
}/

˜ t
, (90)

where ˜ t
is the equivalence relation defined by

Φ′
[
t6v

]
˜ t

v if v ∈ N and t−4 < |v| < t−5, and

Φ′′
[

t6v

|v|2
]

˜ t
v if v ∈ N and t5 < |v| < t4.

(91)

The conformal class [gt] of gt is then given by the restriction of the conformal classes of g′, g′′ and gN

to the open sets of M ′,M ′′ and N that make up M ; this definition makes sense because the conformal
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classes agree on the annuli of overlap where the four open sets are glued by ˜ t
. Let At be this region of

gluing in M . Then At is diffeomorphic via Φ′ and Φ′′ to two copies of the annulus {v ∈ Rn : t2 < |v| < t}.

To define a metric gt within this conformal class, let gt = g′ on the component of M \At coming from

M ′, gt = g′′ on the component of M \ At coming from M ′′, and gt = t12gN on the component on M \ At

coming from N . So it remains to choose a conformal factor on At itself. Using Φ′ and Φ′′, this is the same

as choosing a conformal factor for two copies of the subset {v ∈ Rn : t2 < |v| < t} of Rn.

As in §8.1, define the smooth partition of unity β1, β2 on At, and define the function ψt by ψt(v) =

β1(v)ψ′(v)+β2(v)(1+t6(n−2)|v|−(n−2)) on the component of At coming from M ′, and ψt(v) = β1(v)ψ′′(v)+

β2(v)(1+ t6(n−2)|v|−(n−2)) on the component coming from M ′′. Here ψt is thought of as a function on At,

which by abuse of notation is identified by Φ′ and Φ′′ with two disjoint copies of {v ∈ Rn : t2 < |v| < t}.

Now let gt be equal to ψp−2
t h in At, where h is the push-forward to At by Φ′,Φ′′ of the standard metric

on {v ∈ Rn : t2 < |v| < t}. This completes the definition of gt.

8.3. Estimating the scalar curvature of the metrics gt

Our goal in the last two sections in defining the metrics gt, was to make the scalar curvature of gt

approach the constant value ν in the Ln/2 norm as t → 0. In Chapters 9 and 10 it will be shown that

when the scalar curvature is sufficiently close to ν, a small conformal change exists to make the scalar

curvature constant (and equal to ν, unless ν = 0).

So the important thing in defining the metrics gt is to control their scalar curvatures. This is the

point of the next lemma.

Lemma 8.3.1. Let {gt : t ∈ (0, δ)} be one of the families of metrics defined on the manifold M = M ′#M ′′

in §8.1 and §8.2. Let the scalar curvature of the metric gt be ν − εt. Then there exist constants Y,Z > 0

such that |εt| ≤ Y and ‖εt‖n/2 ≤ Zt2.

Proof. The proof will be given for the metrics gt of §8.1 only, the (trivial) modifications for the case of

§8.2 being left to the reader. We first derive an expression for εt. Outside the annulus At, the metric gt

has scalar curvature ν and 0 on the regions coming from M ′ and M ′′ respectively. So it is only necessary

to evaluate the scalar curvature in At. Calculating with (73) gives
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ν − εt(v) = νβ1(v)(ψ′(v))(n+2)/(n−2)ψ
−(n+2)/(n−2)
t (v) + ψ

−(n+2)/(n−2)
t (v)

(
∆β1(v)

)(
ψ′(v)− ξ(t−6v)

)

−2ψ
−(n+2)/(n−2)
t (v)

(∇β1(v)
) · (∇(

ψ′(v)− ξ(t−6v)
))

,
(92)

using the fact that β1 + β2 = 1.

As ψ′(v) = 1+O′(|v|2), ξ(v) = 1+O′(|v|2−n), and t2 ≤ |v| ≤ 1, it follows easily that ψ′(v)−ξ(t−6v) =

O′(|v|2). The reason for choosing to scale g′′ by a factor of t12 whilst making β1 change between t2 and t is

to make this estimate work — the first power has to be as high as 12 to work in dimension 3. Substituting

it into (92) gives that

|εt| ≤ |ν| ·
∣∣∣β1(ψ′)(n+2)/(n−2)ψ

−(n+2)/(n−2)
t − 1

∣∣∣ + ψ
−(n+2)/(n−2)
t ·

{∣∣∇β1

∣∣O(|v|) +
∣∣∆β1

∣∣O(|v|2)
}

.

Moreover, using a lower bound for ψ′, we can easily show that on the subannulus t2 ≤ |v| ≤ t, the

estimate |ψt(v)| ≥ C0 > 0 holds for some constant C0 and any t ∈ (0, δ). Using this expression to get rid

of the ψt terms on the right hand side, and an upper bound on ψ′, it can be seen that

|εt| = O(1) + |∇β1|O(|v|) + |∆β1|O
(|v|2) (93)

on the subannulus t2 ≤ |v| ≤ t. But

|∇β1| =
∣∣dτ1

dx

∣∣
|v| log t

= O
(|v|−1

)
, (94)

and in a similar way |∆β1| = O
(|v|−2

)
. Substituting into (93), we find that for all t with 0 < t < δ,

|εt| ≤ Y on the subannulus t2 ≤ |v| ≤ t, for some constant Y ≥ |ν|.

We conclude that |εt| is bounded by Y on the annulus At embedded in M , and outside the annulus

At, εt = 0 on the component coming from M ′, and |εt| = |ν| ≤ Y on the component coming from M ′′.

Therefore |εt| ≤ Y , which establishes the first part of the lemma. To prove the second part, observe that

using the estimates on ψt above, the volume of the support of εt is easily shown to be ≤ C1t
n, for some

constant C1 > 0. So ‖ε‖n/2 ≤ Zt2, where Z = Y C
2/n
1 .

8.4. A uniform bound for a Sobolev embedding

If M is a compact Riemannian manifold of dimension n, then by the Sobolev embedding theorem

Theorem 7.2.1, L2
1(M) is continuously embedded in L

2n
n−2 (M) = Lp(M). (Notice that this is a borderline
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case of the theorem.) This means that L2
1(M) ⊂ Lp(M), and there exists a real constant A such that

‖φ‖p ≤ A‖φ‖2,1 for all φ ∈ L2
1(M). The constant A depends on the metric on M .

Now for the work that follows this inequality will be needed for the families of metrics {gt : t ∈ (0, δ)}

of §8.1 and §8.2, but for a constant A that is independent of t. Therefore we must prove the following

lemma:

Lemma 8.4.1. Let {gt : t ∈ (0, δ)} be one of the families of metrics defined on the manifold M = M ′#M ′′

in §8.1 and §8.2. Then there exist constants A > 0 and ζ, 0 < ζ < δ, such that t‖φ‖p ≤ A·t‖φ‖2,1 whenever

φ ∈ L2
1(M) and 0 < t ≤ ζ. Here norms are taken with respect to gt.

Proof. The proof is by ‘gluing’ inequalities upon the component manifolds that were used to make M .

By the Sobolev embedding theorem (Theorem 7.2.1), there exists a constant D0 such that on M ′, ‖φ‖p ≤

D0‖φ‖2,1 for φ ∈ L2
1(M

′), where norms are with respect to g′, and for the case of §8.2, the inequality

‖φ‖p ≤ D0‖φ‖2,1 for φ ∈ L2
1(M

′′) also holds on M ′′, where norms are with respect to g′′.

We also need a Sobolev-type inequality applying to the asymptotically-flat manifold glued into M ′,

or M ′ and M ′′, to control functions upon the corresponding part of M . For the case of §8.1, this

asymptotically-flat manifold is (M ′′ \ {m′′}, g′′), and by Theorem 7.3.7 the following Sobolev inequal-

ity holds:

‖φ‖p ≤ D1

(∫

M ′′\{m′′}
|∇φ|2dVg′′

) 1
2

for φ ∈ L2
1

(
M ′′ \ {m′′}). (95)

For the case of §8.2, this asymptotically-flat manifold is the ‘neck’ manifold N , and by Theorem 7.3.7

a Sobolev inequality of the form

‖φ‖p ≤ D1

(∫

N

|∇φ|2dVgN

) 1
2

for φ ∈ L2
1(N) (96)

must hold on N . It can easily be verified that these inequalities are invariant under homotheties. So (95)

and (96) apply to L2
1 functions on the rescaled metric used to construct gt. Let D2 = max(D0, D1). Then

D2 is a bound for the embedding of L2
1 into Lp for each of the Riemannian manifolds that were glued

together with a partition of unity to make (M, gt).

The lemma will now be completed for the case of the metrics of §8.1 only; for the case of §8.2, the

method is just the same from this point, and is left to the reader. The volume form of (M, gt) on the subset

At is ψ
2n/(n−2)
t dVh, and for X, Y ≥ 0, the inequality (X+Y )2n/(n−2) ≤ 2(n+2)/(n−2)(X2n/(n−2)+Y 2n/(n−2))
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holds. Substituting (89) into the volume form on the annulus, and using this inequality to divide it into

terms upon the two component manifolds, we conclude that

vol. form of (M, gt) ≤ 2
n+2
n−2

(
βp

1 · vol. form of (M ′, g′) + βp
2 · vol. form of (M ′′ \ {m′′}, g′′)),

in which we have abused notation by identifying open sets of M with the open sets of M ′, M ′′ used to

define M and gt.

Therefore

∫

M

|φ|pdVgt
≤ 2

n+2
n−2

(∫

M ′
βp

1 |φ|pdVg′ +
∫

M ′′\{m′′}
βp

2 |φ|pdVg′′

)
for φ ∈ Lp(M),

where we have abused notation in a similar way, by identifying functions on M with functions on open

sets of M ′ and M ′′, that must be extended by zero to the rest of the manifolds. Taking pth roots gives

that

t‖φ‖p ≤ 2
n+2
2n

(
M ′‖β1φ‖p + M ′′\{m′′}‖β2φ‖p

)
;

here M ′‖.‖ is a shorthand for norms on M ′ taken with respect to g′, and so on.

But we have already shown that D2 bounds the embedding of L2
1 into Lp for the two manifolds and

metrics. So for φ ∈ L2
1(M),

t‖φ‖p ≤ 2
n+2
2n D2

(
M ′‖β1φ‖2,1 + M ′′\{m′′}‖β2φ‖2,1

)

≤ 2
n+2
2n D2

(
D3 · t‖φ‖2,1 + t‖φ|∇β1|‖2 + t‖φ|∇β2|‖2

)
,

(97)

where D3 ≥ 1 is some constant such that β2
1dVg′ + β2

2dVg′′ ≤ D3dVgt in the identified subsets of M ′, M ′′

and M for all t ∈ (0, δ). Such a D3 can be shown to exist by bounding dVg′ and dVg′′ above and below by

constant multiples of dVh independently of t, using estimates on ψ′ and ψ′′.

By Hölder’s inequality, t‖φ|∇βi|‖2 ≤ t‖φ‖2n/(n−2) · t
∥∥|∇βi|

∥∥
n
. Substituting this into (97) and rear-

ranging gives

t‖φ‖p

(
1− 2

n+2
2n D2

(
t
∥∥|∇β1|

∥∥
n

+ t
∥∥|∇β2|

∥∥
n

)) ≤ 2
n+2
2n D2D3 · t‖φ‖2,1. (98)

Now if the βi satisfy
∥∥|∇βi|

∥∥
n
≤ (4 · 2(n+2)/2n ·D2)−1, then (98) implies that



8.4. A uniform bound for a Sobolev embedding 109

t‖φ‖p ≤ 2
3n+2
2n D2D3 · t‖φ‖2,1 for all φ ∈ L2

1(M), (99)

and setting A = 2(3n+2)/2n ·D2D3, the lemma is complete.

Therefore it remains only to show that
∥∥|∇βi|

∥∥
n
≤ (4 · 2(n+2)/2n ·D2)−1 for t sufficiently small. As

the Ln norm is conformally invariant on 1-forms it can be evaluated with respect to the standard metric

on Rn, and since βi depends only on r = |v| we have

∥∥|∇βi|
∥∥

n
=

(
D4 ·

∫ t

t2
rn−1

∣∣∣dβi

dr

∣∣∣
n

dr

) 1
n

=
(

D4 ·
∫ log t

2 log t

∣∣∣ dβi

d(log r)

∣∣∣
n

d(log r)
) 1

n

=
(

D4 ·
∫ 2

1

∣∣∣ 1
log t

· dτi

dx

∣∣∣
n

| log t|dx

) 1
n

= | log t|(1−n)/n ·
(

D4 ·
∫ 2

1

∣∣∣dτi

dx

∣∣∣
n

dx

) 1
n

,

(100)

where D4 is the volume of the (n−1)- dimensional sphere of radius 1. So
∥∥|∇βi|

∥∥
n

is proportional to

| log t|(1−n)/n with constant of proportionality depending only on n, and there exists a constant ζ with

0 < ζ < δ, such that
∥∥|∇βi|

∥∥
n
≤ (4 · 2(n+2)/2n ·D2)−1 when 0 < t ≤ ζ. This completes the proof of the

lemma.



Chapter 9: Constant Positive and Negative Scalar Curvature

on Connected Sums

Let M be the manifold of §8.1 or §8.2 with one of the metrics gt defined there, and denote its scalar

curvature by S. As in §7.1, a conformal change to g̃t = ψp−2gt may be made, and the condition for g̃t to

have constant scalar curvature ν is the Yamabe equation

a∆ψ + Sψ = ν|ψ|p−1. (101)

Now the metrics gt have scalar curvature close to ν, so let S = ν − ε; then by Lemma 8.3.1, ‖ε‖n/2 ≤ Zt2.

Also we would like the conformal change to be close to 1, so put ψ = 1+φ, where we aim to make φ small.

Substituting both of these changes into (101) gives

a∆φ− νbφ = ε + εφ + νf(φ), (102)

where b = 4/(n− 2) and f(t) = |1 + t|(n+2)/(n−2) − 1− (n + 2)t/(n− 2).

In this chapter, we shall suppose that ν = ±1, as the zero scalar curvature case requires different

analytic treatment and will be considered in Chapter 10. Equation (102) has been written so that on the

left is a linear operator a∆− νb applied to φ, and on the right are the ‘error terms’. We think of them as

error terms because our approach to them will be simply to try and ensure that they are small, and the

precise form of the functions on the right hand side will matter less than crude limits on their size.

The method of §9.1 is to define by induction a sequence {φi}∞i=0 of functions in L2
1(M) by φ0 = 0,

and

a∆φi − νbφi = ε + εφi−1 + νf(φi−1). (103)

This definition depends upon being able to invert the operator a∆− νb. The question of invertibility and

the size of the inverse is deferred to §9.2 and §9.3; the case ν = −1 is easy, but the case ν = 1 requires

some discussion. Given this invertibility, the argument proceeds by showing that provided ε is sufficiently

small, the sequence {φi}∞i=0 converges in L2
1(M); the limit φ is therefore a weak L2

1 solution to (102).

110
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The condition that ε should be small is because of the nonlinearity of the equation, as when φi−1 is

small, f(φi−1) is very small, but when φi−1 is large, f(φi−1) is very large and the sequence cannot be

controlled. The argument is finished off by showing that φ is in fact smooth and ψ = 1+φ is positive, and

therefore the conformally changed metric g̃t, with which we began, is a Riemannian metric with constant

scalar curvature ν.

In §§9.2 and 9.3 we state the existence theorems for constant positive and negative scalar curvature

respectively on connected sums, the main results of this chapter. The work done in these sections is to

apply the abstract result of §9.1 to the specific cases of the metrics of §§8.1 and 8.2, for scalar curvature −1

and 1. Note that §9.3 produces three distinct metrics of scalar curvature 1 in the conformal class of each

suitable connected sum of positive scalar curvature manifolds, in contrast to the negative scalar curvature

case, where any metric of scalar curvature −1 is unique in its conformal class.

9.1. The main result

Fix ν equal to 1 or −1, and let M be a compact Riemannian manifold of dimension n, with metric

g. Let A,B,X and Y be positive constants, to be chosen later. We shall now write down four properties,

which (M, g) may or may not satisfy:

Property 1. The volume of M satisfies X/2 ≤ vol(M) ≤ X.

Property 2. Let the scalar curvature of g be ν − ε. Then |ε| ≤ Y .

Property 3. Whenever φ ∈ L2
1(M), φ ∈ Lp(M), and ‖φ‖p ≤ A‖φ‖2,1.

Property 4. For every ξ ∈ L2n/(n+2)(M), there exists a unique φ ∈ L2
1(M) such that a∆φ − νbφ = ξ

(that is, ∆φ exists in the weak sense, and satisfies the equation). Moreover, ‖φ‖2,1 ≤ B‖ξ‖2n/(n+2).

We of course think of (M, g) as being the manifold M of §8.1 or §8.2, with one of the metrics gt defined

there. Then Property 1 is clear from the definitions, Property 2 comes from Lemma 8.3.1, Property 3

from Lemma 8.4.1, and Property 4 remains to be proved. In terms of these properties, we state the next

result, which is the core of the analysis of this chapter.

Theorem 9.1.1. Let A,B, X and Y be given positive constants, and n ≥ 3 a fixed dimension. Then there

exist positive constants W, c depending only upon A,B, X, Y and n, such that if (M, g) satisfies Properties

1–4 above and ‖ε‖n/2 ≤ c, then the metric g admits a smooth conformal rescaling to g̃ = (1 + φ)p−2g,
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which is a nonsingular Riemannian metric of constant scalar curvature ν. Moreover, φ satisfies ‖φ‖2,1 ≤

W‖ε‖n/2.

Proof. Suppose that (M, g) satisfies Properties 1–4 above. Define a map T : L2
1(M) → L2

1(M) by Tη = ξ,

where

a∆ξ − νbξ = ε + εη + νf(η). (104)

By Property 4, ξ exists and is unique, provided that the right hand side is in L2n/(n+2)(M). So

it must be shown that if η ∈ L2
1(M), then ε + εη + νf(η) ∈ L2n/(n+2)(M). Now ε ∈ Ln/2(M) implies

that ε ∈ L2n/(n+2)(M); by the Sobolev embedding theorem η ∈ L2n/(n−2)(M), and as ε ∈ Ln/2(M) it

follows that εη ∈ L2n/(n+2)(M). Thus the first two terms are in L2n/(n+2)(M). For the third term, as

η ∈ L2n/(n−2)(M), 1 + η is too, and (1 + η)(n+2)/(n−2) ∈ L2n/(n+2)(M). This deals with the first part

of f(η), and the last two parts are trivially in L2n/(n+2)(M). Therefore the right hand of (104) is in

L2n/(n+2)(M), and the map T is well defined.

Now define a sequence {φi}∞i=0 of elements of L2
1(M) by φi = T i(0). Our first goal is to prove that if

‖ε‖n/2 is sufficiently small, then this sequence converges in L2
1(M). Setting φ as the limit of the sequence,

(104) implies that φ will satisfy (102), as we would like. This will be achieved via the next lemma.

Lemma 9.1.2. Suppose L is a Banach space with norm ‖.‖, and T : L → L is a map satisfying

‖T (0)‖ ≤ F0s and

‖T (v)− T (w)‖ ≤ ‖v − w‖
{

F1s + F2

(‖v‖+ ‖w‖) + F3

(‖v‖ 4
n−2 + ‖w‖ 4

n−2
)}

for all v, w ∈ L, (105)

where F0, F1, F2, F3 and s are positive constants. Then there exists a constant W > 0 depending only on

F0, F1, F2, F3 and n, such that if s is sufficiently small, then the sequence {φi}∞i=0 defined by φi = T i(0)

converges to a limit φ, satisfying ‖φ‖ ≤ Ws.

Proof. Putting v = φi−1 and w = 0 into (105) gives ‖φi−T (0)‖ ≤ F1s‖φi−1‖+F2‖φi−1‖2 +F3‖φi−1‖
n+2
n−2 ,

and as ‖T (0)‖ ≤ F0s this implies that ‖φi‖ ≤ χ(‖φi−1‖), where χ(x) = F0s+F1sx+F2x
2+F3x

(n+2)/(n−2).

From the form of this equation, it is clear after a little thought, or by drawing a picture, that there

exists W > 0 such that whenever s is small enough, there exists an x for which 0 < x ≤ Ws and 2χ(x) = x.

This constant W obviously depends only on F0, F1, F2, F3 and n. Suppose that s is small enough, so that
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such an x exists. Now φ0 = 0, so that ‖φ0‖ ≤ x, and if ‖φi−1‖ ≤ x then ‖φi‖ ≤ χ(‖φi−1‖) ≤ χ(x) ≤ x.

Thus by induction, ‖φi‖ ≤ x for all i.

Put v = φi and w = φi−1 in (105). This gives ‖φi+1−φi‖ ≤ ‖φi−φi−1‖ ·
(
F1s+2F2x+2F3x

4/(n−2)
)
,

using the inequality ‖φi‖ ≤ x that we have just proved. Dividing the equation x = 2χ(x) by x and

subtracting some terms it follows that 1 > F1s + 2F2x + 2F3x
4/(n−2) > 0, and so {φi}∞i=0 converges, by

comparison with a geometric series. Let the limit of the sequence be φ. Then as ‖φi‖ ≤ x ≤ Ws for all i,

by continuity φ also satisfies ‖φ‖ ≤ Ws.

To apply this lemma we must show that the operator T : L2
1(M) → L2

1(M) defined above satisfies

the hypotheses of the lemma. Let s = ‖ε‖n/2. We will now define constants F0, F1, F2, F3 depending only

upon A,B,X and n, such that these hypotheses are satisfied.

Putting η = 0 in (104), and applying Properties 1 and 4, we see that ‖T (0)‖2,1 ≤ B‖ε‖2n/(n+2) ≤

B vol(M)(n−2)/2n‖ε‖n/2 ≤ BX(n−2)/2ns, so let F0 = BX(n−2)/2n. From the definition of f , it can be seen

that

∣∣f(x)− f(y)
∣∣ ≤ ∣∣x− y

∣∣ ·
(
F4

(|x|+ |y|) + F5

(|x| 4
n−2 + |y| 4

n−2
))

, (106)

where F4, F5 are constants depending only on n, and F4 = 0 if n ≥ 6. Let η1, η2 ∈ L2
1(M), and let

T (ηi) = ξi. Then taking the difference of (104) with itself for i = 1, 2 we get

(a∆− νb)(ξ1 − ξ2) = ε · (η1 − η2) + ν
(
f(η1)− f(η2)

)
.

Applying Property 4 gives

‖ξ1 − ξ2‖2,1 ≤ B
(
‖ε · (η1 − η2)‖2n/(n+2) + |ν|∥∥f(η1)− f(η2)

∥∥
2n/(n+2)

)

≤ B‖η1 − η2‖2n/(n−2) ·
(
‖ε‖n/2 + F4

(‖η1‖n/2 + ‖η2‖n/2

)

+ F5

(‖η1‖4/(n−2)
2n/(n−2) + ‖η2‖4/(n−2)

2n/(n−2)

))

≤ ‖η1 − η2‖2,1 ·
(
ABs + ABF4 vol(M)(6−n)/2n

(‖η1‖2n/(n−2) + ‖η2‖2n/(n−2)

)

+ A(n+2)/(n−2)BF5

(‖η1‖4/(n−2)
2,1 + ‖η2‖4/(n−2)

2,1

))

≤ ‖η1 − η2‖2,1 ·
(
ABs + A2BF4X

(6−n)/2n
(‖η1‖2,1 + ‖η2‖2,1

)

+ A(n+2)/(n−2)BF5

(‖η1‖4/(n−2)
2,1 + ‖η2‖4/(n−2)

2,1

))

≤ ‖η1 − η2‖2,1 ·
(
F1s + F2

(‖η1‖2,1 + ‖η2‖2,1

)
+ F3

(‖η1‖4/(n−2)
2,1 + ‖η2‖4/(n−2)

2,1

))
,

(107)
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where F1 = AB, F2 = A2BF4X
(6−n)/2n and F3 = A(n+2)/(n−2)BF5. Here we have freely used Hölder’s

inequality, Property 1, and Property 3, between the first and second lines we have used (106), and between

the second and third lines we have used the expression ‖η‖r ≤ ‖η‖s(vol M)
s−r
rs when 1 ≤ r < s and

η ∈ Lr(M) ⊂ Ls(M), and the fact that F4 = 0 if n ≥ 6 to ensure that n/2 < 2n/(n − 2) whenever the

term involving F4 does not vanish.

This inequality is (105) for the operator T : L2
1(M) → L2

1(M). So putting L = L2
1(M) and applying

Lemma 9.1.2, there is a constant W > 0 depending only on F0, F1, F2, F3 and n, such that if ‖ε‖n/2

is sufficiently small, then the sequence {φi}∞i=0 defined by φi = T i(0) converges to a limit φ, satisfying

‖φ‖ ≤ W‖ε‖n/2. Now W depends only on F0, . . . , F3 and n, and these depend only on n,A, B and X,

so W depends only on n,A, B and X. Since φi = T (φi−1) and T is continuous, taking the limit gives

φ = T (φ), so (104) shows that φ satisfies (102) weakly. Thus we have proved the following lemma:

Lemma 9.1.3. There is a constant W > 0 depending only on n,A, B and X, such that if ‖ε‖n/2 is

sufficiently small, then there exists φ ∈ L2
1(M) satisfying (102) weakly, with ‖φ‖2,1 ≤ W‖ε‖n/2.

It has been shown that weak solutions φ of (102) do exist for small ‖ε‖n/2, and for these ψ = 1 + φ

gives a weak solution of (74). However, for g̃ = ψp−2g to be a sensible metric, it is essential that ψ be a

smooth, positive function. As ψ ∈ L2
1(M) and satisfies (74) weakly, by Proposition 7.2.2 it follows that

ψ ∈ C2(M), and is C∞ wherever it is nonzero. Therefore it remains only to prove that ψ is strictly

positive.

Examples of manifolds (with negative scalar curvature) can be produced for which the Yamabe equa-

tion (74) does admit solutions that change sign. It is therefore an actual problem to show that solutions

ψ to the Yamabe equation produced by some analytic means are in fact positive — but the difficulty does

not really arise in the proof of the Yamabe problem, as there the function ψ is produced as a limit of a

minimizing sequence of functions which are already nonnegative.

We deal with this problem in the following proposition, by showing that if ψ = 1 + φ is a solution to

(74) that is negative somewhere, then ‖φ‖2,1 must be at least a certain size. So if φ is small in L2
1(M),

then ψ = 1 + φ will be nonnegative. It will then easily follow that ψ must be strictly positive, using a

maximum principle.

Proposition 9.1.4. If ‖φ‖2,1 is sufficiently small, then ψ ≥ 0.

Proof. If ξ ∈ L2
1(M), then by Property 3, ξ ∈ L2n/(n−2)(M) and ‖ξ‖2n/(n−2) ≤ A‖ξ‖2,1. Therefore



9.1. The main result 115

∫

M

|∇ξ|2dVg +
∫

M

ξ2dVg ≥ A−2 ·
(∫

M

ξ
2n

(n−2) dVg

)n−2
n

≥ A−2 · vol(supp ξ)−
2
n

∫

M

ξ2dVg,

(108)

so
∫

M
|∇ξ|2dVg ≥

(
A−2 ·vol(supp ξ)−

2
n −1

) · ∫
M

ξ2dVg, and there are constants F6, F7 > 0 depending only

on A and n, such that if vol(supp ξ) ≤ F6, then
∫

M
|∇ξ|2dVg ≥ F7 vol(supp ξ)−

2
n

∫
M

ξ2dVg.

Now let ξ = min(ψ, 0). Then ξ satisfies
∫

M
ξ∆ψdVg =

∫
M
|∇ξ|2dVg, since ξ∆ψ = |∇ξ|2 + 1

2∆ξ2, and
∫

M
∆ξ2dVg = 0. This makes sense because ∆ξ2 does exist weakly provided ∆ψ and ∆ψ2 do; there are no

problems at the points where ψ = 0 because the function taking ψ to ξ2 has two bounded derivatives. So

multiplying (74) by ξ and integrating over M gives

∫

M

(a|∇ξ|2 + Sξ2 + ν|ξ|p)dVg = 0,

as ξ = −|ξ|. But S ≥ ν − Y , and |ν| = 1. Therefore

∫

M

|∇ξ|2dVg ≤ a−1

∫

M

(
(1 + Y )ξ2 + |ξ|p)dVg.

Suppose for the moment that 0 < vol(supp ξ) ≤ F6. Then applying the inequality derived above,

a−1

∫

M

(
(1 + Y )ξ2 + |ξ|p)dVg ≥ F7 vol(supp ξ)−

2
n

∫

M

ξ2dVg,

and thus

∫

M

|ξ|pdVg ≥
(
aF7 vol(supp ξ)−

2
n − (1 + Y )

)∫

M

ξ2dVg.

By making F6 smaller if necessary, we may assume that aF7 F
−2/n
6 ≥ 2(1 + Y ), and so

∫

M

|ξ|pdVg ≥ F8 vol(supp ξ)−
2
n

∫

M

ξ2dVg, (109)

where F8 = aF7/2.

But
∫

M
|ξ|2n/(n−2)dVg ≤

(∫
M

ξ2dVg

)n/(n−2) · vol(supp ξ)−2/(n−2), and substituting in we may cancel

to get

(∫

M

ξ2dVg

) 2
n−2

≥ F8 vol(supp ξ)
4

n(n−2) . (110)

Therefore
∫

M
ξ2dVg ≥ F

(n−2)/2
8 vol(supp ξ)

2
n . Substituting this into (109) we find that
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∫

M

|ξ|pdVg ≥ F
n/2
8 . (111)

So if 0 < vol(supp ξ) ≤ F6, then (111) holds. Thus if ψ is negative anywhere, then either vol(supp ξ) >

F6, or else (111) holds. But in the first case, ‖φ‖2,1 > F
1/2
6 , and in the second case, A‖φ‖2,1 ≥ ‖φ‖p >

‖ξ‖p ≥ F
(n−2)/4
8 . In either case, ‖φ‖2,1 > min(F 1/2

6 , F
(n−2)/4
8 A−1). Conversely, if ‖φ‖2,1 is smaller than

this, then ψ is nonnegative.

We are now ready to define the constant c of the statement of the Theorem. Let c be sufficiently small

that three conditions hold: firstly, ‖ε‖n/2 ≤ c implies ‖ε‖n/2 is sufficiently small to satisfy the hypothesis

of Lemma 9.1.3, so by this lemma φ exists and satisfies ‖φ‖2,1 ≤ cW ; secondly, that ‖φ‖2,1 ≤ cW implies

‖φ‖2,1 is sufficiently small to satisfy the hypothesis of Proposition 9.1.4, so that ψ = 1 + φ is nonnegative;

and thirdly, that ‖φ‖2,1 ≤ cW implies ‖φ‖2,1 is sufficiently small that φ cannot be the constant −1. (As

by Property 1, X/2 ≤ vol(M), this is a condition depending only on X.)

Then c depends only on n,A, B, X and Y , as the three conditions each separately do. Thus if

‖ε‖n/2 ≤ c, then there exists φ with ‖φ‖2,1 ≤ W‖ε‖n/2, such that ψ = 1 + φ is nonnegative and satisfies

(74). Moreover, by the third condition on c, ψ is not identically zero. By Proposition 7.2.2, ψ ∈ C2(M),

and is C∞ wherever it is nonzero. Therefore it remains only to show ψ is strictly positive, for the rescaled

metric g̃ = ψp−2g to be nonsingular and have constant scalar curvature ν. This we achieve using the

strong maximum principle, which is [LP], Theorem 2.6:

Theorem [LP]. Suppose h is a nonnegative, smooth function on a connected manifold M , and u ∈ C2(M)

satisfies (∆ + h)u ≥ 0. If u attains its minimum m ≤ 0, then u is constant on M .

As M is compact and S and ψ are continuous, they are bounded on M , and there is a constant h ≥ 0

such that S−νψp−2 ≤ h on M . Now M is connected, and ψ ∈ C2(M) satisfies (74) and is nonnegative, so

ψ satisfies a∆ψ + hψ ≥ 0. Thus by the strong maximum principle, if ψ attains the minimum value zero,

then ψ is identically zero on M . But it has already been shown that this is not the case, so ψ cannot be

zero anywhere and must be strictly positive. The proof of Theorem 9.1.1 is therefore complete.

Throughout the preceding proofs we chose to use particular Sobolev spaces and work with particular

norms, with very little explanation of why these spaces were chosen and whether others would have

worked. In fact in most cases the Sobolev spaces were the only working possibilities, and we chose them

deliberately to be conformally invariant in a certain sense. The reason is that the exponent p − 1 in the
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Yamabe equation (74) is exactly the critical value for this type of equation, in that the analytic behaviour

of similar equations with smaller and larger values of the exponent are quite different.

This is reflected in the fact that the applications of the Sobolev embedding theorem that were made

were usually borderline cases. If the exponent in (74) were a little larger, (81) would not hold and the

method of proof used above would not work. So choosing the exponents for Sobolev spaces was easy —

borderline cases of the embedding theorem were used whenever possible, and it all worked out neatly.

9.2. Constant negative scalar curvature metrics

We now construct metrics of scalar curvature −1 on connected sums using the results of the previous

section. To apply Theorem 9.1.1 to the metrics gt defined in §8.1 and §8.2, it must be shown that Properties

1-4 of §9.1 hold and that ‖εt‖n/2 is small when t is small. As Properties 1-3 have already been dealt with,

it only remains to prove that Property 4 holds for the metrics. Fixing ν = −1, we see that Property

4 is about the invertibility of a∆ + b; this is quite easy to demonstrate, as the eigenvalues of ∆ are all

nonnegative.

Lemma 9.2.1. Let {gt : t ∈ (0, δ)} be one of the families of metrics defined on the manifold M = M ′#M ′′

in §8.1 or §8.2. Let A, ζ be the constants constructed for this family in Lemma 8.4.1. Then for every

t ∈ (0, ζ] and every ξ ∈ L2n/(n+2)(M), there exists a unique φ ∈ L2
1(M) such that a∆φ + bφ = ξ (that

is, ∆φ exists in the weak sense, and satisfies the equation). Moreover, ‖φ‖2,1 ≤ B‖ξ‖2n/(n+2), where

B = A/b.

Proof. As ∆ is self-adjoint and all its eigenvalues are nonnegative, and as a, b > 0, by some well-known

analysis a∆ + b has a right inverse, T say, from L2(M) → L2(M). Now M is compact, and so L2(M) ⊂

L2n/(n+2)(M). Let ξ ∈ L2(M). We may define φ ∈ L2(M) by φ = Tξ, and a∆φ+ bφ = ξ will hold weakly.

It must first be shown that φ ∈ L2
1(M) and that it satisfies the inequality. Since φ, ξ ∈ L2(M),

∫
M

φξdVgt exists, and by subtraction
∫

M
φ∆φdVgt exists as well. This is weakly equal to

∫
M
|∇φ|2dVgt ,

and so φ ∈ L2
1(M) by definition.

Multiplying the expression above by φ and integrating gives a
∫

M
|∇φ|2dVgt + b‖φ‖22 =

∫
M

φξdVgt . As

a > b, the left hand side is at least b‖φ‖22,1, and the right hand side is at most ‖φ‖2n/(n−2)‖ξ‖2n/(n+2) by

Hölder’s inequality, since φ ∈ L2n/(n−2)(M) by the Sobolev embedding theorem. But by Lemma 8.4.1,
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‖φ‖2n/(n−2) ≤ A‖φ‖2,1. Putting all this together gives b‖φ‖22,1 ≤ A‖ξ‖2n/(n+2)‖φ‖2,1, and so dividing by

b‖φ‖2,1 shows that ‖φ‖2,1 ≤ B‖ξ‖2n/(n+2).

So far we have worked with ξ ∈ L2(M) rather than L2n/(n+2)(M). It has been shown that the operator

T : L2(M) ⊂ L2n/(n+2)(M) → L2
1(M) is linear and continuous with respect to the L2n/(n+2) norm on

L2(M), and bounded by B. But therefore, by elementary functional analysis, the operator T extends

uniquely to a continuous operator on the closure of L2(M) in L2n/(n+2)(M), that is, L2n/(n+2)(M) itself.

Call this extended operator T . Then for ξ ∈ L2n/(n+2)(M), φ = Tξ is a well-defined element of L2
1(M),

satisfies ‖φ‖2,1 ≤ B‖ξ‖2n/(n+2), and a∆φ + bφ = ξ holds in the weak sense, by continuity. This concludes

the proof.

All the previous work now comes together to prove the following two existence theorems for metrics

of scalar curvature −1:

Theorem 9.2.2. Let (M ′, g′) be a compact Riemannian manifold of dimension n ≥ 3 with scalar curvature

−1, and let M ′′ be a compact Riemannian manifold of the same dimension n with positive scalar curvature.

Suppose that M ′ and M ′′ contain points m′,m′′ respectively, with neighbourhoods in which the metrics of

M ′ and M ′′ are conformally flat.

As in §8.1, define the family {gt : t ∈ (0, δ)} of metrics on the connected sum M = M ′#M ′′. Then

there exists a constant C such that for sufficiently small t, the metric gt admits a smooth conformal

rescaling to g̃t = (1 + φ)p−2gt, which is a nonsingular Riemannian metric of scalar curvature −1, and φ

satisfies t‖φ‖2,1 ≤ Ct2. Here t‖.‖2,1 is the L2
1 norm induced by gt.

Theorem 9.2.3. Let (M ′, g′) and (M ′′, g′′) be compact Riemannian manifolds of dimension n ≥ 3 with

scalar curvature −1. Suppose that M ′ and M ′′ contain points m′, m′′ respectively, with neighbourhoods

in which the metrics of M ′ and M ′′ are conformally flat.

As in §8.2, define the family {gt : t ∈ (0, δ)} of metrics on the connected sum M = M ′#M ′′. Then

there exists a constant C such that for sufficiently small t, the metric gt admits a smooth conformal

rescaling to g̃t = (1 + φ)p−2gt, which is a nonsingular Riemannian metric of scalar curvature −1, and φ

satisfies t‖φ‖2,1 ≤ Ct2. Here t‖.‖2,1 is the L2
1 norm induced by gt.

The proofs of the theorems are nearly the same, so only the first will be given. To get the second

proof, change vol(M ′) to vol(M ′) + vol(M ′′) in the definition of X.
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Proof of Theorem 9.2.2. Applying Lemmas 8.3.1 and 8.4.1 to the family {gt : t ∈ (0, δ)} gives a constant

Y for Property 2 of §9.1, and constants A, ζ such that if t ≤ ζ then Property 3 holds for gt with constant

A. By Lemma 9.2.1, there is a constant B such that Property 4 also holds for gt when t ≤ ζ.

It is clear that as t → 0, vol(M, gt) → vol(M ′) > 0. So there is a constant X > 0 such that

X/2 ≤ vol(M, gt) ≤ X for small enough t. This gives Property 1. Thus there are constants n,A,B,X, Y

such that Properties 1-4 of §9.1 hold for (M, gt) when t is sufficiently small. Theorem 9.1.1 therefore

gives a constant c such that if ‖εt‖n/2 ≤ c, we have the smooth conformal rescaling to a constant scalar

curvature metric that we want.

But by Lemma 8.3.1, ‖εt‖n/2 ≤ Zt2. So for small enough t, ‖εt‖n/2 ≤ c, and there exists a smooth

conformal rescaling to a Riemannian metric g̃t = (1 + φ)p−2gt which has scalar curvature −1. Moreover,

‖φ‖2,1 ≤ W‖εt‖n/2 ≤ WZt2, where W is the constant given by Theorem 9.1.1. Therefore putting C = WZ

completes the theorem.

The case of negative scalar curvature is the simplest case of the Yamabe problem, which is why it has

been tackled first. To give one reason why the negative case is easier, we give a proof taken from [Au],

p. 135 showing that any metric of scalar curvature −1 is unique in its conformal class:

Lemma 9.2.4 [Au]. Suppose that M is a compact Riemannian manifold, and that g and g̃ = ψp−2g are

Riemannian metrics on M which both have scalar curvature −1. Then ψ ≡ 1, so that g = g̃.

Proof. By (73), ψ satisfies a∆ψ + ψ(n+2)/(n−2) = ψ. Now at a point of M where ψ is maximum, ∆ψ ≥ 0

and so ψ(n+2)/(n−2) ≤ ψ and ψ ≤ 1. Similarly, at a point where ψ is minimum, ψ ≥ 1. But since M is

compact, the maximum and minimum of ψ are achieved and 1 ≤ ψ ≤ 1, so ψ ≡ 1 and g = g̃.

This lemma shows that the constant scalar curvature metrics g̃t produced by Theorems 9.2.2 and

9.2.3 are, up to homothety, the unique metrics of constant scalar curvature in their conformal classes, and

are therefore Yamabe metrics. The proof works because, in the case of negative scalar curvature, the signs

are right. In the positive case there is indeed no uniqueness, and a metric may have several conformal

equivalents of scalar curvature 1, which may or not be minimal for the Hilbert action.

9.3. Constant positive scalar curvature metrics

Next we construct metrics of scalar curvature 1 on connected sums. The problems we encounter are in

proving Property 4 of §9.1, which now deals with the invertibility of a∆−b, and they arise because a∆ may
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have eigenvalues close to b. Our strategy is to show that if a∆ has no eigenvalues in a fixed neighbourhood

of b on the component manifolds of the connected sum, then for small t, a∆ has no eigenvalues in a

subneighbourhood of b on (M, gt).

This is the content of the next theorem. We shall indicate here why the theorem holds, but the proof

we leave until Appendix D, because it forms a rather long and involved diversion from the main thread of

this part of the thesis, and few readers will want to look at it.

Theorem 9.3.1. Let {gt : t ∈ (0, δ)} be one of the families of metrics defined on M = M ′#M ′′ in §8.1

or §8.2, and suppose that for some γ > 0, a∆ has no eigenvalues in the interval (b − 2γ, b + 2γ) on M ′

in the case of §8.1, and on both M ′ and M ′′ in the case of §8.2. Then for sufficiently small t, a∆ has

no eigenvalues in the interval (b− γ, b + γ) on (M, gt).

Proof: see Appendix D.

We offer the following explanation of why the theorem is true. Suppose that φ is an eigenvector of a∆

on (M, gt) for small t. Then restricting φ to the portions of M coming from M ′ and M ′′ and smoothing

off gives functions on M ′,M ′′; we may try to show that at least one of these is close to an eigenvector

of a∆ on M ′ or M ′′. This can be done except when φ is large on the neck compared to the rest of the

manifold.

But as the neck is a small region when t is small, for φ to be large there and small elsewhere means

that φ must change quickly around the neck, so that
∫

M
|∇φ|2dVgt has to be large compared to

∫
M

φ2dVgt .

If this is the case then the eigenvalue associated to φ must be large. Conversely, if φ is associated to an

eigenvalue of a∆ close to b, it cannot be large on the neck compared to the rest of the manifold, and

therefore either M ′ or M ′′ must also have an eigenvalue close to b.

Using this result, Property 4 of §9.1 can be proved for the metrics:

Lemma 9.3.2. Let {gt : t ∈ (0, δ)} be one of the families of metrics defined on M = M ′#M ′′ in §8.1 or

§8.2, and suppose that b is not an eigenvalue of a∆ on M ′ in the case of §8.1, and not an eigenvalue on

either of M ′ or M ′′ in the case of §8.2. Then there is a constant B > 0 such that for sufficiently small t,

whenever ξ ∈ L2n/(n+2)(M) there exists a unique φ ∈ L2
1(M) satisfying a∆φ− bφ = ξ on the Riemannian

manifold (M, gt), and moreover ‖φ‖2,1 ≤ B‖ξ‖2n/(n+2).

Proof. The spectrum of a∆ on a compact manifold is discrete, so if b is not an eigenvalue of a∆, then a∆

has no eigenvalues in a neighbourhood of b. Suppose that b is not an eigenvalue of a∆ on M ′ in the case
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of §8.1, and not on either of M ′ or M ′′ in the case of §8.2. Then there exists γ > 0 such that a∆ has no

eigenvalues in the interval (b − 2γ, b + 2γ) on these manifolds. So by Theorem 9.3.1, for small enough t,

a∆ has no eigenvalues in the interval (b− γ, b + γ) on the manifold (M, gt).

Thus easy analytical facts about the Laplacian imply that a∆ − b has a right inverse T : L2(M) →

L2(M). As M is compact, L2(M) ⊂ L2n/(n+2)(M). Let ξ ∈ L2(M). Then φ = Tξ ∈ L2(M) exists and

satisfies the equation a∆φ − bφ = ξ in the weak sense, and as a∆ − b has no kernel, φ is unique. Since

φ, ξ ∈ L2(M), multiplying this equation by φ and integrating gives a convergent integral, so by subtraction,

∫
M
|∇φ|2dVgt

converges, and φ ∈ L2
1(M).

It remains to bound φ in L2
1(M). Let φ1 be the part of φ made up of eigenvectors of a∆ associated to

eigenvalues less than b, and φ2 the part associated to eigenvalues greater than b. Multiplying the equation

a∆φ− bφ = ξ by φ2 − φ1 and integrating gives

∫

M

(
a|∇φ2|2 − bφ2

2

)
dVgt −

∫

M

(
a|∇φ1|2 − bφ2

1

)
dVgt =

∫

M

(φ2 − φ1)ξdVgt . (112)

But the restriction on the eigenvalues of a∆ means that

∫

M

a|∇φ1|2dVgt ≤ (b− γ)
∫

M

φ2
1dVgt and

∫

M

a|∇φ2|2dVgt ≥ (b + γ)
∫

M

φ2
2dVgt ,

and these together with (112) and Hölder’s inequality imply

γa

a + b + γ

∫

M

(|∇φ1|2 + |∇φ2|2 + φ2
1 + φ2

2

)
dVgt ≤ ‖φ2 − φ1‖2n/(n−2)‖ξ‖2n/(n+2). (113)

For t ≤ ζ, we may apply Lemma 8.4.1 to φ2 − φ1 to give ‖φ2 − φ1‖2n/(n−2) ≤ A‖φ2 − φ1‖2,1. But

φ1, φ2 are orthogonal in L2
1(M), so the right hand side of this is equal to A‖φ‖2,1; similarly, the integral

on the left hand side of (113) is ‖φ‖22,1. Therefore

γa

a + b + γ
‖φ‖22,1 ≤ A‖φ‖2,1‖ξ‖2n/(n+2). (114)

Dividing this by γa‖φ‖2,1/(a + b + γ) then gives that ‖φ‖2,1 ≤ B‖ξ‖2n/(n+2) whenever t is small

enough, where B = (a + b + γ)A/aγ. So the lemma holds for ξ ∈ L2(M). This may easily be extended to

ξ ∈ L2n/(n+2)(M) as in the proof of Lemma 9.2.1, and the argument is complete.

We shall now prove the following two existence theorems for metrics of scalar curvature 1:
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Theorem 9.3.3. Let (M ′, g′) be a compact Riemannian manifold of dimension n ≥ 3 with scalar curvature

1, and let M ′′ be a compact Riemannian manifold of the same dimension n with positive scalar curvature.

Suppose that b is not an eigenvalue of a∆ on (M ′, g′), and that M ′ and M ′′ contain points m′,m′′

respectively, with neighbourhoods in which the metrics of M ′ and M ′′ are conformally flat.

As in §8.1, define the family {gt : t ∈ (0, δ)} of metrics on the connected sum M = M ′#M ′′. Then

there exists a constant C such that for sufficiently small t, the metric gt admits a smooth conformal

rescaling to g̃t = (1 + φ)p−2gt, which is a nonsingular Riemannian metric of scalar curvature 1, and φ

satisfies t‖φ‖2,1 ≤ Ct2. Here t‖.‖2,1 is the L2
1 norm induced by gt.

Theorem 9.3.4. Let (M ′, g′) and (M ′′, g′′) be compact Riemannian manifolds of dimension n ≥ 3 with

scalar curvature 1. Suppose that b is not an eigenvalue of a∆ on (M ′, g′) or (M ′′, g′′), and that M ′

and M ′′ contain points m′,m′′ respectively, with neighbourhoods in which the metrics of M ′ and M ′′ are

conformally flat.

As in §8.2, define the family {gt : t ∈ (0, δ)} of metrics on the connected sum M = M ′#M ′′. Then

there exists a constant C such that for sufficiently small t, the metric gt admits a smooth conformal

rescaling to g̃t = (1 + φ)p−2gt, which is a nonsingular Riemannian metric of scalar curvature 1, and φ

satisfies t‖φ‖2,1 ≤ Ct2. Here t‖.‖2,1 is the L2
1 norm induced by gt.

Proof of Theorems 9.3.3 and 9.3.4. These are the same as the proofs of Theorems 9.2.2 and 9.2.3, except

that Lemma 9.3.2 should be applied in place of Lemma 9.2.1, and where the proofs of Theorems 9.2.2 and

9.2.3 mention scalar curvature −1, these proofs should have scalar curvature 1.

In the case of negative scalar curvature, Lemma 9.2.4 shows that any metric of constant scalar

curvature −1 is unique in its conformal class. This uniqueness does not extend to the positive case,

for Theorems 9.3.3 and 9.3.4 show that given two manifolds M ′,M ′′ with scalar curvature 1 and the same

dimension n ≥ 3, we will usually be able to define three metrics of scalar curvature 1 in the conformal

class of their connected sum, when the ‘neck’ parameter t is sufficiently small.

The first of the three metrics resembles M ′ with metric of scalar curvature 1, and with a small,

asymptotically flat copy of M ′′ glued in at one point, as in §8.1. The second is like the first, but reverses

the rôles of M ′ and M ′′. The third metric resembles the union of M ′ and M ′′, each with their metric of

scalar curvature 1, and joined by a small neck, as in §8.2.

Despite having constant scalar curvature, these metrics may not be Yamabe metrics because they may

not be minima of the Hilbert action, and in fact, for sufficiently small t, the third metric is never minimal.
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Suppose that (M ′, g′) and (M ′′, g′′) are Yamabe metrics of scalar curvature 1; suppose moreover that these

Yamabe metrics are unique. In this case I believe that generically either the first or the second metric will

be a Yamabe metric on the connected sum, depending on whether λ(M ′) < λ(M ′′) or λ(M ′′) < λ(M ′)

respectively.

In a codimension 1 set of cases, when λ(M ′) and λ(M ′′) are nearly equal, the Hilbert actions of the

first and second metrics will agree, and in this case I believe that both are (distinct) Yamabe metrics, so

that Yamabe metrics may not be unique. At the moment, however, I have no proof that any of the metrics

I construct in the positive scalar curvature case are Yamabe metrics.

Let us now consider the condition that b is not an eigenvalue of a∆ on a manifold of scalar curvature

1, since if this never holds, then Theorems 9.3.3 and 9.3.4 are useless. Intuitively we expect that for generic

metrics the condition will hold. It is an open condition, as if g is a metric for which b is not an eigenvalue

of a∆, then every conformal class in a small neighbourhood of g also contains a metric close to g with

scalar curvature 1, for which b is not an eigenvalue of a∆.

The condition has already been studied, for it comes up in connection with the local behaviour of

the family of metrics with constant scalar curvature ([Bs], §4F). By 4.46 Remark ii) of [Bs], if g is any

Einstein metric on M with scalar curvature 1, then b is only an eigenvalue of a∆ if M is Sn and g the

round metric. So Einstein metrics, and constant scalar curvature metrics close to them, provide some

examples of Riemannian manifolds for which the condition holds. In the next proposition we show that all

manifolds admitting a metric of positive scalar curvature have some metric of scalar curvature 1 satisfying

the condition.

Proposition 9.3.5. Let M be a compact manifold admitting a metric of positive scalar curvature. Then

there exists a metric g on M with scalar curvature 1, such that b is not an eigenvalue of a∆ on (M, g).

Proof. In the family of metrics on M , there are metrics with positive scalar curvature by the assumption

of the proposition, and there are metrics of negative scalar curvature, because there are on every manifold.

Let g0 be a metric with positive scalar curvature, and g1 be a metric with negative scalar curvature. Thus

λ(g0) > 0 and λ(g1) < 0.

Now by [Bs], Proposition 4.31, λ is a continuous function on the space of metrics on M with the C2

topology, and thus λ
(
(1 − t)g0 + tg1

)
is a continuous function of t. As this function is positive at 0 and

negative at 1, there is at least one t ∈ (0, 1) for which it vanishes. Let t be the smallest such zero of the
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function, and define g′ to be a metric of zero scalar curvature conformal to (1− t)g0 + tg1; such a metric

must exist by the solution to the Yamabe problem.

The scalar curvature is an operator from the set of Riemannian metrics on M to the set of smooth

functions on M that is differentiable when viewed as a map between infinite-dimensional manifolds, so

we may consider the linearization of the scalar curvature operator at g′. A result of Bourguignon ([Bs],

Proposition 4.37) states that this linearization is surjective unless either g′ is Ricci-flat, or g′ has constant

positive scalar curvature sg and sg/(n− 1) is an eigenvalue of ∆. As g′ has zero scalar curvature, we find

that the linearization is surjective unless g′ is Ricci-flat.

Suppose for the moment that g′ is not Ricci-flat. Our basic idea is to use the surjectivity of the

linearized scalar curvature together with an ‘implicit function theorem’, to show that close to g′ there

exist metrics with scalar curvature equal to a small positive constant, and to rescale one of these by

a homothety to provide a metric of scalar curvature 1 satisfying the condition we want. The ‘implicit

function theorem’ is a theorem of Koiso ([Bs], Theorem 4.44, rewritten):

Theorem [Bs]. Let C be the set of metrics g on M with constant scalar curvature sg and volume 1,

and let g ∈ C be such that sg/(n − 1) is not a positive eigenvalue of ∆g. Then, in a neighbourhood of

g, C is an ILH- submanifold of the infinite-dimensional manifold of Riemannian metrics on M , and its

tangent space is the inverse image of the constants under the linearization of the scalar curvature operator

on metrics of volume 1 at g, provided this is surjective.

Here an ILH- manifold is a particular type of infinite-dimensional manifold, and the thrust of the theorem

is that the set of constant scalar curvature metrics is a well-behaved infinite-dimensional manifold, and

does have the tangent space we expect when the linearization is surjective.

Going back to g′, as it is supposed not Ricci-flat, the linearization of the scalar curvature operator

is surjective and there is a vector h taken to the constant function 1 by the linearization. Applying the

Theorem, h is a tangent vector to C, and thus we may move on C a little way away from g′ in the direction

of h, to get a point g′′ of C with constant positive scalar curvature, and satisfying the condition on the

eigenvalues of ∆. Rescale g′′ by a homothety to get a metric of scalar curvature 1, and call this new metric

g. The condition on the eigenvalues of the Laplacian implies that b is not an eigenvalue of a∆ on (M, g),

so that g satisfies the requirements of the Proposition.

To finish the proof of the Proposition, it therefore only remains to consider the case when g′ is Ricci-

flat. As we have taken care that there are metrics of positive scalar curvature arbitrarily close to g′, we
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may eliminate the case that g′ is a local maximum of λ, and with this information we may show, by a

closer examination of Koiso’s result, that the set of metrics of zero scalar curvature close to g′, modulo

diffeomorphisms, is non-empty and infinite-dimensional. As Ricci-flatness is an elliptic condition, the set

of such metrics is finite-dimensional, so there must be metrics of zero scalar curvature close to g′ in C,

that are not Ricci-flat. Replacing g′ by one of these and arguing as above, the proof is complete.

Finally we note that for any Yamabe metric of scalar curvature 1, it may be shown that b is the

minimum possible eigenvalue of a∆. For if g is a Yamabe metric then it minimizes the Hilbert functional

Q in the conformal class, and so Q
(
(1 + xφ)2/pg

) ≥ Q(g) for any smooth function φ and sufficiently small

x. Looking at the second order term in x and manipulating, it can be shown that if φ is a non-constant

eigenvector of a∆, then its associated eigenvalue is at least b.



Chapter 10: Connected Sums involving Manifolds with

Zero Scalar Curvature

In this chapter the methods of Chapters 8 and 9 will be adapted to study zero scalar curvature

manifolds. We have three cases to consider, the connected sum of a zero scalar curvature manifold and

a positive scalar curvature manifold, the connected sum of two manifolds of zero scalar curvature, and

the connected sum of a zero scalar curvature manifold and a negative scalar curvature manifold. Each of

these cases introduces specific difficulties, and each needs some additional methods to prove the existence

of constant scalar curvature metrics.

The first two cases fit into a common analytic framework, and will be handled together. We proceed

as before by defining metrics with nearly constant scalar curvature on the connected sum, and then using

analytic methods to prove the existence of a small conformal change, giving a metric of constant scalar

curvature. Here, however, the approximate metrics must be defined rather more carefully to control the

errors sufficiently, and the constant scalar curvature that results is in fact negative and small, depending

upon the ‘neck’ parameter t of the gluing. These approximate metrics are defined in §10.1 and §10.2.

In §10.3 we prove some estimates and inequalities on the new metrics, which take the place of those of

Chapter 8. Section 10.4 details the modifications needed to make the proof of §9.1 apply in the situation

of this chapter. The new feature of the analysis is that the operator a∆ − νb now has one or two small

eigenvalues, and so when the sequence {φi}∞i=0 is defined inductively, using the inverse of this operator, the

components in the directions of the corresponding eigenvectors have to be carefully controlled, to prevent

the sequence diverging.

The third case is discussed in §10.5. We shall not actually prove any explicit existence results, but

we will explain how they could be proved, what the results are, and why the resulting metrics should look

like they do. This is because no new analytic ideas are required to complete the solution, but instead

the work is in producing metrics gt that are very good approximations to constant scalar curvature, and

this is not very interesting. The picture is that the zero scalar curvature manifold gets homothetically

shrunk by a factor of t(n−2)/n, and then is glued into the negative scalar curvature manifold using a neck

of approximate radius t.

126
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In §11.1 some diagrams are collected which give a mental picture of the Riemannian manifolds (M, gt)

defined in §§10.1 and 10.2, and also a diagram of what the metrics of §10.5 should look like. The reader will

probably find it helpful to look at the diagrams when reading each of these sections, to aid understanding

of the text.

10.1. Combining a metric of zero and a metric of positive scalar curvature

Let (M ′, g′) be a compact Riemannian manifold of dimension n ≥ 3 with zero scalar curvature. As

in the last two chapters, suppose M ′ contains a point m′ with a neighbourhood in which g′ is conformally

flat. Then M ′ contains a ball B′ about m′, with a diffeomorphism Φ′ from Br(0) ⊂ Rn to B′ for some

r < 1, such that Φ′(0) = m′ and (Φ′)∗(g′) = (ψ′)p−2h for some function ψ′ on Br(0), where h is the

standard metric on Rn. As g′ has zero scalar curvature, by (73) ψ′ satisfies ∆ψ′ = 0. By choosing a

different conformal identification with Br(0) if necessary, we may suppose that ψ′(0) = 1 and dψ′(0) = 0,

so that ψ′(v) = 1 + O′(|v|2), in the notation of §7.3.

Let M ′′ be a compact Riemannian manifold of the same dimension n with positive scalar curvature,

that is not conformal to Sn with its round metric. Suppose M ′′ contains a point m′′, with a neighbourhood

in which the metric of M ′′ is conformally flat. Then by Proposition 7.3.4, there is an asymptotically flat

metric g′′ of zero scalar curvature in the conformal class of M ′′ \{m′′}. There is a subset N ′′ of M ′′ \{m′′}

that is the complement of a compact set, and a diffeomorphism X′′ : Rn \ BR(0) → N ′′ for some R > 0,

such that (X′′)∗(g′′) = ξp−2h, for ξ a smooth function on Rn \BR(0). Also, there is a real constant µ such

that

ξ(v) = 1 + µ|v|2−n + O′(|v|1−n). (115)

Moreover, as M ′′ is not conformal to Sn with its round metric, µ > 0 by Theorem 7.3.5.

Choose a real constant k with (n − 2)(n + 2)/2(n + 1) < k < (n − 2)(n + 2)/2n, which will remain

fixed throughout this chapter. Choose another constant δ ∈ (0, 1) such that δ2k/(n+2) ≤ r and δ−2/n ≥ R.

A family of metrics {gt : t ∈ (0, δ)} on M = M ′#M ′′ will now be written down, in a similar way to §8.1.

For any t ∈ (0, δ), define M and the conformal class of gt by

M =
(
M ′ \ Φ′[Bt(n−2)/n(0)]

)
q

(
M ′′ \ ({m′′} ∪X′′[Rn \Bt2k/(n+2)−1(0)]

))/
˜ t

, (116)
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where ˜ t
is the equivalence relation defined by

Φ′ [v] ˜ t
X′′[t−1v] whenever v ∈ Rn and t(n−2)/n < |v| < t2k/(n+2). (117)

As in §8.1, the conformal class [gt] of gt is the restriction of the conformal classes of g′ and g′′ to the

open sets of M ′,M ′′ making up M , and is well-defined because the conformal classes agree on the annulus

of overlap At, where the two open sets are glued by ˜ t
. Define gt within this conformal class by gt = g′

on the component of M \ At coming from M ′, and gt = t2g′′ on the component of M \ At coming from

M ′′. It remains only to choose a conformal factor on At itself. This is done just as in §8.1, except that

the annulus {v ∈ Rn : t(n−2)/n < |v| < t2k/(n+2)} in Rn replaces the annulus {v ∈ Rn : t2 < |v| < t} in Rn

in the definition of the partition of unity. This completes the definition of the metric gt for t ∈ (0, δ).

The difference between this definition and that given in §8.1 is that g′′ has been shrunk by a factor of

t2 rather than t12, and all the nice powers of t such as t and t2 appearing there have been replaced by nasty

and apparently quite arbitrary powers; they will be needed to fine-tune the scalar curvature estimates for

the metrics gt. These estimates are given in the next lemmas.

Lemma 10.1.1. Let the scalar curvature of the metric gt be −εt. Then εt is zero outside At. There exists a

constant Y such that for any t ∈ (0, δ), εt satisfies |εt| ≤ Y , and the volume of At with respect to gt satisfies

vol(At) = O(t2nk/(n+2)). These trivially imply that t‖εt‖2n/(n+2) = O(tk) and t‖εt‖n/2 = O(t4k/(n+2)).

Proof. Outside At, the metric gt is equal to g′ or homothetic to g′′, and so has zero scalar curvature,

verifying the first claim of the lemma. The proof that |εt| ≤ Y is the same as that for the corresponding

statement in Lemma 8.3.1, setting ν = 0. The estimate on the volume of At also easily follows by the

method used in Lemma 8.3.1. And as the lemma says, the last two statements are trivial corollaries of the

facts that εt is supported in At, |εt| ≤ Y , and the estimate on the volume of At.

Note that the use of the constant k in the definition of the metrics gt was in order to make the estimate

on t‖ε‖2n/(n+2) easy to write down. In the next lemma we estimate the integral of εt over M .

Lemma 10.1.2. For small t,

∫

M

εtdVgt = (n− 2)ωn−1µtn−2 + O(tn−2+α), (118)

where µ is the constant of (115), ωn−1 is the volume of the (n−1)- dimensional sphere Sn−1 of radius 1,

and α > 0 is given by α = min
(
2/n, 2k(n + 1)/(n + 2)− (n− 2)

)
.
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Proof. Calculating with (73) gives

εt(v) = ψ
−(n+2)/(n−2)
t (v)

(
2
(∇β1(v)

) · (∇(
ψ′(v)− ξ(t−1v)

))− (
∆β1(v)

)(
ψ′(v)− ξ(t−1v)

))
.

Let F be the quadratic form on Rn given by the second derivatives of ψ′; then ψ′ = 1 + F + O′(|v|3).

Now dVgt
= ψ

2n/(n−2)
t dVh. Multiplying through by this equation and making various estimates gives that

εt(v)dVgt
= ψt(v)

(
2
(∇β1(v)

) · (∇F + O(|v|2)− µtn−2∇(|v|2−n)− tn−1O(|v|−n)
)

− (
∆β1(v)

)(
F + O(|v|3)− µtn−2|v|2−n − tn−1O(|v|1−n)

))
dVh.

(119)

Let us integrate this equation over At. By its definition, β1 may be written β1(v) = β(|v|) for a smooth

function β depending on t; in fact β(|v|) = σ(log |v|/ log t), from §8.1. It follows that (∇β1(v)) · (∇F ) =

2|v|−1F dβ
dx , as F is a quadratic form, and similarly (∇β1(v)) · (−µtn−2∇(|v|2−n)) =

(n− 2)µtn−2|v|1−n dβ
dx . Also ∆β1 = −d2β

dx2 + (1− n)|v|−1 dβ
dx . Therefore

∫

At

εt(v)dVgt =
∫

At

ψt(v)
((

4|v|−1F + 2(n− 2)µtn−2|v|1−n
)dβ

dx
+ 2

(∇β1(v)
) · (O(|v|2)− tn−1O(|v|−n)

)

+
(

d2β

dx2
+ (n− 1)|v|−1 dβ

dx

) (
F − µtn−2|v|2−n + O(|v|3)− tn−1O(|v|1−n)

))
dVh.

(120)

But ψt(v) = 1 + O(|v|2) + tn−2O(|v|2−n), and substituting this in gives

∫

At

εt(v)dVgt =
∫

At

(
dβ

dx

(
(n + 3)|v|−1F + (n− 3)µtn−2|v|1−n

)

+ |v|d
2β

dx2

(|v|−1F − µtn−2|v|1−n
))

dVh + error terms.
(121)

Using a Fubini theorem, we may write the integral on the right hand side as a double integral by

∫

At

(. . .)dVh =
∫ t2k/(n+2)

t(n−2)/n

∫

Sn−1
(. . .)|v|n−1dΩd|v|,

where Ω is the volume form of the metric on a round sphere Sn−1 of radius 1. But F is the quadratic form

on Rn given by the second derivatives of ψ′ at m′, and ∆ψ′ = 0, as M ′ has zero scalar curvature. This

implies that the trace of F with respect to h is zero, and so
∫
Sn−1 FdΩ = 0 and the terms on the right

hand side of (121) involving F vanish. So viewing (121) as a double integral and integrating over Sn−1

gives

∫

At

εt(v)dVgt = ωn−1

∫ t2k/(n+2)

t(n−2)/n

(
(n− 3)µtn−2 dβ

dx
− µtn−2x

d2β

dx2

)
dx + error terms,
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where ωn−1 is the volume of Sn−1.

The integral on the right is an exact integral, for the second term integrates by parts. From the

definition of β, we have β(t(n−2)/n) = 0, β(t2k/(n+2)) = 1 and dβ
dx (t(n−2)/n) = 0, dβ

dx (t2k/(n+2)) = 0, and so

the answer is

∫

At

εt(v)dVgt
= (n− 2)ωn−1µtn−2 + error terms, (122)

which is nearly the conclusion of the lemma; it remains only to show that the ‘error terms’ are of or-

der tn−2+α.

This is a simple calculation and will be left to the reader, the necessary ingredients being that as |v|

lies between t(n−2)/n and t2k/(n+2), O(|v|) may be replaced by O
(
t2k/(n+2)

)
and tO

(|v|−1
)

may be replaced

by O
(
t2/n

)
, dβ

dx = O
(|v|−1

)
and d2β

dx2 = O
(|v|−2

)
. The error term that is usually the biggest is O

(|v|n+1
)
,

and in order to ensure that this error term is smaller than the leading term calculated above, that is, to

ensure α > 0, k must satisfy k > (n+2)(n− 2)/2(n+1), which was one of the conditions in the definition

of k above.

Lemma 10.1.2 implies that the average scalar curvature of (M, gt) is close to

−(n− 2)ωn−1µtn−2 vol(M ′)−1. This is why, in §10.4, we shall choose this value for the scalar curvature of

the metric that we construct in the conformal class of gt.

10.2. Combining two metrics of zero scalar curvature

In this section we define metrics on the connected sum of two zero scalar curvature manifolds using

the method of the previous section; the metrics of this section bear the same relation to those of §10.1

as do the metrics of §8.2 to those of §8.1. Let (M ′, g′) and (M ′′, g′′) be two Riemannian manifolds of

dimension n, with zero scalar curvature. Suppose that M ′,M ′′ contain points m′,m′′ respectively, having

neighbourhoods in which g′, g′′ are conformally flat, and let M = M ′#M ′′.

As in §8.2, we may define a family of conformal classes on M depending on t. Now applying a

homothety to a manifold of zero scalar curvature gives another manifold of zero scalar curvature, so to

define a metric in one of these conformal classes that has scalar curvature close to zero, we may start from

the metrics on M ′ and M ′′ scaled homothetically by arbitrary factors, before choosing the metric on the

‘neck’ with a partition of unity. This gives a whole family of metrics in the conformal class that have scalar
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curvature close to zero, and as in general we expect metrics of constant scalar curvature in a conformal

class to be isolated, we need some way to determine the relative sizes M ′ and M ′′ should be for the glued

metric to be close to one of constant scalar curvature.

The necessary condition is that the volumes of M ′ and M ′′ should be the same; the reason for this

will become clear in the next two sections. For the moment let us suppose, by applying a homothety to

M ′ or M ′′ if necessary, that the volumes of M ′ and M ′′ are equal. A family of metrics {gt : t ∈ (0, δ)} on

M will be defined, such that when t is small, gt resembles the union of M ′ and M ′′ with their metrics g′

and g′′, joined by a small ‘neck’ of approximate radius t, which is modelled upon the manifold N of §8.2,

with metric t2gN .

To make the definition, choose a constant k with (n − 2)(n + 2)/2(n + 1) < k < (n − 2)(n + 2)/2n,

and apply the gluing method of §10.1 twice, once to glue one asymptotically flat end of (N, t2gN) into M ′

at m′, and once to glue the other asymptotically flat end into M ′′ at m′′. The constant δ must be chosen

to be the lesser of two constants δ′, δ′′ giving the range of t for each of these gluings.

The rôle of At in §10.1 is played by At = A′t∪A′′t , the union of an annulus A′t at the junction between

N and M ′ and a second annulus A′′t at the junction of N and M ′′; A′t and A′′t are defined to be the

annuli At of §10.1 for the two gluings. With this definition we may state the next two lemmas, which are

analogues of Lemmas 10.1.1 and 10.1.2.

Lemma 10.2.1. Let the scalar curvature of the metric gt be −εt. Then εt is zero outside At. There is a

constant Y such that for any t ∈ (0, δ), εt satisfies |εt| ≤ Y , and the volume of At with respect to gt satisfies

vol(At) = O(t2nk/(n+2)). These trivially imply that t‖εt‖2n/(n+2) = O(tk) and t‖εt‖n/2 = O(t4k/(n+2)).

Proof. This is identical to Lemma 10.1.1, and its proof is the same, except that gt may also be homothetic

to gN in the first sentence.

Lemma 10.2.2. For all small t,

∫

A′t

εtdVgt = (n− 2)ωn−1t
n−2 + O(tn−2+α) and

∫

A′′t

εtdVgt = (n− 2)ωn−1t
n−2 + O(tn−2+α), (123)

where ωn−1 is the volume of the (n−1)- dimensional sphere Sn−1 of radius 1, and α > 0 is given by

α = min
(
2/n, 2k(n + 1)/(n + 2)− (n− 2)

)
.

Proof. This is merely Lemma 10.1.2 applied twice, firstly to the gluing of N into M ′ and secondly to the

gluing of N into M ′′. We have also used the observation that for both asymptotically flat ends of N , the
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constant µ of §10.1 takes the value 1. To see this, compare the definition of µ in Proposition 7.3.4 with

the definition of (N, gN) in §8.2.

10.3. Inequalities on the connected sum manifolds

In this section we derive the analytic inequalities needed for the analysis of the next. First of all,

observe that Lemma 8.4.1 applies to the metrics of §§10.1 and 10.2:

Lemma 10.3.1. Let {gt : t ∈ (0, δ)} be one of the families of metrics defined on the manifold M =

M ′#M ′′ in §10.1 and §10.2. Then there exist constants A > 0 and ζ, 0 < ζ < δ, such that t‖φ‖p ≤

A · t‖φ‖2,1 whenever φ ∈ L2
1(M) and 0 < t ≤ ζ. Here norms are taken with respect to gt.

Proof. The proof follows that of Lemma 8.4.1, applied to the metrics of §§10.1 and 10.2 rather than §§8.1

and 8.2, except for some simple changes to take into account the different powers of t used to define the

new metrics.

As in §9.3, we shall need some results about the spectrum of a∆ on (M, gt) in order to calculate with

the inverse of a∆−νb, and we are again going to relegate the proofs of these results to Appendix D rather

than giving them in full here. For the metrics gt of §10.1, the situation is quite simple: the eigenvalues of

a∆ on M ′ are zero (associated to the constants), and otherwise are positive and bounded below, say by

2γ > 0. Then for sufficiently small t, the eigenvalues of a∆ on M with the metric gt are zero (associated

to the constants) and otherwise are positive and bounded below by γ. This is the content of the next

theorem, which is very similar to Theorem 9.3.1.

Theorem 10.3.2. Let {gt : t ∈ (0, δ)} be the family of metrics defined on the manifold M = M ′#M ′′ in

§10.1. Choose γ > 0 such that all positive eigenvalues of a∆ on M ′ are greater than or equal to 2γ. Then

for all sufficiently small t, zero is an eigenvalue of a∆ on (M, gt) associated to the constant functions,

and all other eigenvalues of a∆ on (M, gt) are greater than or equal to γ.

Proof: see Appendix D.

For the metrics gt of §10.2, though, the situation is more complicated. For small t we expect the

eigenvectors of a∆ on (M, gt) with small eigenvalues to be close to eigenvectors of a∆ on M ′ or M ′′ with

small eigenvalues, that is, to constant functions on M ′ and M ′′. So we expect two eigenvectors on (M, gt)

associated to small eigenvalues, one of which will certainly be a constant function, but the other one of

which will be close to one constant value on the M ′ part of M , and to a different constant value on the
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M ′′ part of M . This is in fact what happens, and in the following proposition we give some information

about the eigenvector.

Proposition 10.3.3. Let {gt : t ∈ (0, δ)} be the family of metrics defined on the manifold M = M ′#M ′′

in §10.2. Then for sufficiently small t, there exists a positive number λ and a function β ∈ C∞(M) such

that a∆β = λβ. Here λ = O(tn−2), and β satisfies

β =





1 + O(tn−2) on M ′ \B′

1 + O(tn−2|v|2−n) on {v : t ≤ |v| < δ} ⊂ B′

−1 + O(tn−2) on M ′′ \B′′

−1 + O(tn−2|v|2−n) on {v : t ≤ |v| < δ} ⊂ B′′,

(124)

identifying subsets of M ′, M ′′ with subsets of M , by abuse of notation.

Proof: see Appendix D.

The proposition is proved by a series method, starting with a function that is 1 on the part of M coming

from M ′ and −1 on the part coming from M ′′, and then adding small corrections to get to an eigenvector

of a∆. Note that β takes the approximate values ±1 on the two halves because vol(M ′) = vol(M ′′) by

assumption; if the volumes were different, then the approximate values would have to be adjusted so that

∫
M

βdVgt = 0.

Having constructed this eigenvector, we may now state the analogue of Theorem 10.3.2 for the metrics

of §10.2, which guarantees that 0 and λ are the only small eigenvalues of a∆ on (M, gt) for small t.

Theorem 10.3.4. Let {gt : t ∈ (0, δ)} be the family of metrics defined on the manifold M = M ′#M ′′ in

§10.2. Choose γ > 0 such that all positive eigenvalues of a∆ on M ′ and M ′′ are greater than or equal to

2γ. Then for all sufficiently small t, zero is an eigenvalue of a∆ associated to the constant functions, λ is

an eigenvalue of a∆ associated to β as in Proposition 10.3.3, and all other eigenvalues of a∆ are greater

than or equal to γ.

Proof: see Appendix D.

Theorems 10.3.2 and 10.3.4 will fit into the existence proofs of the next section in the same way

as Theorem 9.3.1 does into that of §9.3. The one or two small eigenvalues mean that components of

functions in the direction of the corresponding eigenvectors will have to be carefully controlled, to ensure

that inverting an operator with a small eigenvalue does not give a large result. This is the purpose of the

last result of this section, which shows that the β- component of εt is small.
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Lemma 10.3.5. Let {gt : t ∈ (0, δ)} be the family of metrics defined on the manifold M = M ′#M ′′ in

§10.2. Then for sufficiently small t,

∫

M

βεtdVgt
= O(tn−2+α), (125)

where β is the function described in Proposition 10.3.3 and α is the constant of Lemma 10.2.2.

Proof. By Proposition 10.3.3, β = 1 + O(t2(n−2)/n) on A′t and β = −1 + O(t2(n−2)/n) on A′′t , as these are

annuli in which t(n−2)/n < |v| < t2k/(n+2). Applying these estimates and Lemmas 10.2.1 and 10.2.2 to the

integral of βεt over M , we get

∫

M

βεtdVgt
= O(tn−2+α) + Y vol(At) ·O(t2(n−2)/n),

and as vol(At) = O(t2nk/(n+2)), the second term is O(t2nk/(n+2)+2(n−2)/n). But by the definitions of k

and α, it is easily shown that n− 2 + α < 2nk/(n + 2) + 2(n− 2)/n, and so the first error term is larger

and subsumes the second, as required.

We note that this lemma is the reason for requiring that vol(M ′) = vol(M ′′). For if the two are not

equal, then Lemma 10.2.2 still shows that
∫

A′t
εtdVgt and

∫
A′′t

εtdVgt are equal to highest order, but β takes

values approximately proportional to vol(M ′)−1 on A′t, and to vol(M ′′)−1 on A′′t . Thus in this case the

integral of βεt does not cancel out to highest order, but is O(tn−2).

In the next section we will see that the error estimate of Lemma 10.3.5 is crucial for the existence

of a small conformal rescaling to constant scalar curvature. There is a clear geometrical reason for this:

λ−1
∫

M
βεtdVgt is a measure of the relative rescaling of M ′, M ′′ required to define a metric of constant

scalar curvature on the connected sum, as this is the β- component of
(
a∆

)−1(εt− const.), which is a sort

of first approximation to φ, where (1 + φ)p−2 is the rescaling factor. Thus if
∫

M
βεtdVgt = O(tn−2) then

this component is O(1), and the rescaling factor need not be small, but if the integral is O(tn−2+α) then

the component is O(tα), and is small for small t.

10.4. Existence of constant scalar curvature metrics

Now we give the existence results for constant scalar curvature metrics on the connected sums of §10.1

and §10.2.



10.4. Existence of constant scalar curvature metrics 135

Theorem 10.4.1. Let {gt : t ∈ (0, δ)} be one of the families of metrics on the connected sum M =

M ′#M ′′ defined in §10.1 or §10.2. Then there exists a constant C such that for sufficiently small t, the

metric gt admits a smooth conformal rescaling to g̃t = (1 + φ)p−2gt, which is a nonsingular Riemannian

metric of scalar curvature −(n − 2)ωn−1µtn−2 vol(M ′)−1 in the case of §10.1, and of scalar curvature

−(n − 2)ωn−1t
n−2 vol(M ′)−1 in the case of §10.2, and φ satisfies t‖φ‖2,1 ≤ Ctα. Here µ and α are the

constants of §10.1, ωn−1 is the volume of the (n−1)- dimensional sphere of radius 1, and t‖.‖2,1 is the

L2
1 norm induced by gt.

Proof. Let D0 be equal to (n − 2)ωn−1µ vol(M ′)−1 in the case of §10.1 and to (n − 2)ωn−1 vol(M ′)−1 in

the case of §10.2. Define a function η on (M, gt) by η = εt−D0t
n−2. Then −η represents the deviation of

the scalar curvature of gt from the constant value −D0t
n−2. By the same reasoning as in Chapter 9, the

condition for g̃t = (1 + ρ + τ)p−2gt to have scalar curvature −D0t
n−2 is

a∆(ρ + τ) + bD0t
n−2(ρ + τ) = η + η · (ρ + τ)−D0t

n−2f(ρ + τ). (126)

Let P be the constant functions on M for the case of §10.1, and the sum of the constant functions

and multiples of β (described in Proposition 10.3.3), for the case of §10.2. We shall construct ρ and τ

satisfying (126), with ρ ∈ P and τ ∈ P⊥ with respect to the L2
1 inner product.

Define inductively sequences {ρi}∞i=0 of elements of P and {τi}∞i=0 of elements of P⊥ ⊂ L2
1(M) by

ρ0 = τ0 = 0, and having defined the sequences up to i− 1, let ρi and τi be the unique elements of P and

P⊥ satisfying

a∆(ρi + τi) + bD0t
n−2(ρi + τi) = η + η · (ρi−1 + τi−1)−D0t

n−2f(ρi−1 + τi−1). (127)

If we can show that these sequences converge to ρ ∈ P and τ ∈ P⊥ that are small when t is small, then

the arguments of Chapter 9 complete the theorem.

The difficulty lies in inverting the operator a∆+bD0t
n−2: by Theorems 10.3.2 and 10.3.4, the operator

is invertible on P⊥ with inverse bounded by γ−1, as the Lemmas show that all the eigenvectors of a∆ in

P⊥ have eigenvalues at least γ. But on P , the inverse is of order t2−n, which is large; so ρi may be quite

large even if the right hand side of (127) is quite small.

The solution is to ensure that the P components of η are smaller even than tn−2, so that after applying

the inverse of a∆ + bD0t
n−2 to them, they are still small. Let π denote orthogonal projection onto P ;
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both the L2 and the L2
1 inner product give the same answer, and in fact the projection makes sense even

in L1(M). Then from (127) we make the estimates

‖ρi‖2,1 ≤ D1t
2−n

(
‖π(η)‖1 + ‖π(ηρi−1)‖1 + ‖π(ητi−1)‖1

)
+ D2

∥∥π
(
f(ρi−1 + τi−1)

)∥∥
1
, (128)

‖τi‖2,1 ≤ D3

(
‖η‖2n/(n+2) + ‖ηρi−1‖2n/(n+2) + ‖ητi−1‖2n/(n+2) +D0t

n−2‖f(ρi−1 + τi−1)‖2n/(n+2)

)
, (129)

for some constants D1, D2, D3 independent of t. The norms on the right hand side of (128) would normally

be L2n/(n+2) norms, but as P is a finite-dimensional space all norms are equivalent, and we may use the

L1 norm.

Our strategy is to show that if ‖ρi−1‖2,1 ≤ D4t
α and ‖τi−1‖2,1 ≤ D5t

k for large enough constants

D4, D5, then ‖ρi‖2,1 ≤ D4t
α and ‖τi‖2,1 ≤ D5t

k also hold for sufficiently small t, so by induction the

sequences are bounded; convergence for small t easily follows by a similar argument to that used in

Lemma 9.1.2.

From Lemmas 10.1.2, 10.2.2 and 10.3.5 we may deduce that ‖π(η)‖1 = O(tn−2+α), so the first term

on the right of (128) contributes O(tα) to ‖ρi‖2,1, consistent with ‖ρi‖2,1 ≤ D4t
α if D4 is chosen large

enough. The third term ‖π(ητi−1)‖1 is bounded by A‖η‖2n/(n+2)‖τi−1‖2,1, and by Lemmas 10.1.1 and

10.2.1, ‖η‖2n/(n+2) = O(tk); the third term therefore contributes O(t2k+2−n) to ‖ρi‖2,1, and by the

definition of α, this error term is strictly smaller than O(tα). The fourth error term is also easily shown

to be smaller than O(tα).

Thus the only problem term in (128) is the second term, and the only reason it is a problem is that

the P⊥ component of η, multiplied by ρi−1, may have an appreciable component in P . We get round this

as follows. Suppose ξ ∈ P⊥ and ρ ∈ P , and consider the P component of ξρ. In the case of §10.1 this

component is zero, and there is no problem; in the case of §10.2 there may be a component in the direction

of β, and it is measured by
∫

M
ξβ2dVgt . But by the description of β in Proposition 10.3.3, β2 is close to

1, and ξ is orthogonal to the constants, and so in general the P component of ξρ will be small compared

to the sizes of ξ and ρ. Taking this into account, it is easy to get a good bound on ‖π(ηρi−1)‖1.

The rest of the proof will be left to the reader. What remains to be done is to prove inductively that

bounds ‖ρi‖2,1 ≤ D4t
α, ‖τi‖2,1 ≤ D5t

k hold for small enough t, and then to prove the convergence of

the sequences, and these may both be done using the methods of Lemma 9.1.2, working from (128) and
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(129). Setting φ = ρ + τ , where ρ, τ are the limits of the sequences, the reader may then rejoin the proof

of Theorem 9.1.1 after Lemma 9.1.3.

Now as the metrics constructed have negative scalar curvature, they are unique in their conformal

classes by Lemma 9.2.4, and are Yamabe metrics. The theorem thus tells us that the Yamabe metric on

the connected sum, with small neck, of two zero scalar curvature manifolds, balances the volumes of the

two component manifolds so that they are equal, a fact which seems to me to be rather appealing.

10.5. Combining a metric of zero and a metric of negative scalar curvature

We shall not handle this case in very much detail, partly in order not to tire the reader with another

rehash of the material of Chapter 9, and partly for a reason that will be explained later. Consider the

connected sum M of a manifold M ′ with scalar curvature −1, and a manifold M ′′ with scalar curvature

0. What do we expect constant scalar curvature metrics in the conformal class to look like?

Well, the negative scalar curvature will win, because negative scalar curvature is always dominant,

so we expect a metric of scalar curvature −1, which will be unique by Lemma 9.2.4. Imagining M ′′ to

have very small positive or negative scalar curvature instead, and extrapolating from the results of §9.2,

we expect M to look like a copy of M ′ with its metric nearly unchanged, but with a small copy of M ′′

glued in at one point.

It is the nature of this gluing that interests us. What actually happens is that the metric g′′ of

M ′′ is homothetically shrunk by multiplying it by t2(n−2)/n, and then it is joined to M ′ by a ‘neck’ of

approximate radius t, for small t. So the diameter of M ′′ gets multiplied by t(n−2)/n, but the radius of

the neck is t. This is a sort of interpolation between the case that M ′′ has positive scalar curvature, when

in effect the diameter of M ′′ is multiplied by t when the radius of the neck is t, and the case that M ′′ has

negative scalar curvature, when the diameter of M ′′ gets multiplied by 1 when the radius of the neck is t.

One may see this as follows. Let M ′′ be a compact manifold of zero scalar curvature, let m′′ be a

point of M ′′ with a conformally flat neighbourhood, and let ξ be the Green’s function of a∆ satisfying

a∆ξ = δm′′ − vol(M ′′)−1 in the sense of distributions. Since ξ is only defined up to the addition of a

constant, choose ξ to have minimum value 0. Then ξ is a C∞ function on M ′′ \ {m′′} with a pole at

m′′, of the form F0|v|2−n + O′(|v|1−n) in the usual coordinates. Here F0 > 0, and actually takes the

value (n− 2)ω−1
n−1.
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Consider the metric g′′t =
(
t(n−2)2/2n + t(n−2)(n+2)/2n vol(M ′′)ξ

)p−2
g′′ on M ′′ \ {m′′}. Calculating its

scalar curvature St using (73) gives

St = −(
t(n−2)2/2n + t(n−2)(n+2)/2n vol(M ′′)ξ

)− n+2
n−2 · t(n−2)(n+2)/2n = −(

1 + t2(n−2)/n vol(M ′′)ξ
)− n+2

n−2 ,

(130)

so that −1 ≤ St < 0 for t > 0, and when t is small, St is close to −1 everywhere in M ′′ except very close

to m′′.

How shall we describe this new metric g′′t ? For small t, outside a small neighbourhood of m′′ in M ′′

the metric gt is approximately rescaled by t2(n−2)/n, so that the diameter of M ′′ is multiplied by t(n−2)/n

as we said above. But in a small neighbourhood of m′′, the metric resembles

g′′t ∼
(
t(n−2)2/2n + F0 vol(M ′′)t(n−2)(n+2)/2n|v|2−n

)p−2
h =

(
1 + F0 vol(M ′′)tn−2|v|2−n

)p−2
h, (131)

changing variables from v to t(n−2)/nv to simplify the expression. The right hand side is an expression

familiar to us already, and represents a metric with a ‘neck’ of radius proportional to t. So the metric

g′′t looks like M ′′ rescaled by t(n−2)/n, and with a ‘neck’ of radius proportional to t, opening out to an

asymptotically flat end. On the M ′′ side of the neck, the scalar curvature is close to −1, and on the

asymptotically flat side of the neck, the scalar curvature approaches zero.

We may now form a family of metrics {gt : t ∈ (0, δ)} on M by gluing the metrics g′′t into g′ at m′, and

get a good approximation to constant scalar curvature −1. Therefore, the next step is to consider whether

the results of §9.2 may be applied to this family without change. They cannot be, and the reason they fail

is that Lemma 8.4.1 does not hold for this family of metrics. For consider a function φ that is equal to 0

on the M ′ side of the neck and to 1 on the M ′′ side of the neck, and changes over the neck in a smooth

fashion. It may easily be calculated that ‖φ‖2n/(n−2) = O
(
t(n−2)2/2n

)
, but that ‖φ‖2,1 = O

(
t(n−2)/2

)
, so

that ‖φ‖2n/(n−2)/‖φ‖2,1 = O
(
t(2−n)/n

)
. Thus the best result we can hope for to replace Lemma 8.4.1 is

one that says t‖φ‖2n/(n−2) ≤ At(2−n)/n · t‖φ‖2,1 for φ ∈ L2
1(M), where the norms are taken with respect

to gt.

Such a result can indeed be proved, and then we may go on to prove existence results for small

conformal changes of the metrics gt metrics giving scalar curvature −1. The proof roughly follows that

of §§9.1 and 9.2, but constants such as A in the formulae must be replaced by multiples of powers of t,
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and a subterfuge must be used to cut down the number of applications of the modified Lemma 8.4.1. The

difference is that, because the constants of the proof now contain unfavourable powers of t, the estimates

on the difference εt between the scalar curvature of gt, and the constant value −1, must be much better in

order to compensate. So the metrics gt need to be really good approximations to constant scalar curvature

to begin with.

The way we define such good approximations gt is to take the metrics g′′t with a neck of radius

proportional to t, define another family g′t of metrics on M ′ with a neck of the same radius by using a

Green’s function for a∆ in a similar way, and then glue these two metrics g′t, g
′′
t together at the neck itself.

One can then make estimates of the scalar curvature of the resulting metric, and we find that the scalar

curvature is close enough to constant, for small t, for the proof to work. This provides the second reason

for the lack of detail in this section: to treat it properly requires not some interesting analysis, but a lot

of very careful definitions of the metrics gt, and delicate estimates for their scalar curvature.



Chapter 11: Summing Up

This chapter begins with some diagrams to give the reader a mental picture of what all the families

of metrics {gt : t ∈ (0, δ)} defined in Chapters 8 and 10 are actually like. We recommend that they are

studied in conjunction with §§8.1, 8.2, 10.1, 10.2 and 10.5, and referred to later if the reader needs to be

able to picture what is going on.

In §11.2 we consider how the results of the last few chapters would be changed if we removed the

assumption of conformal flatness in neighbourhoods of the points m′,m′′. Our conclusion is that the basic

picture presented there remains unchanged except for minor details. We finish off in §11.3 with a few

interesting questions.

11.1. A pictorial guide to the connected sum metrics

The diagrams that follow are intended to represent n- dimensional manifolds, but have been drawn

as two-dimensional. Below is a diagram of the metrics described in §10.5. The next two pages summarize

the construction of the metrics of §§8.1 and 10.1, and of §§8.2 and 10.2, respectively.
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11.2. Doing without the assumption of conformal flatness

In the definitions of families of metrics {gt : t ∈ (0, δ)} in §§8.1, 8.2, 10.1 and 10.2 above, we

invariably assumed that M ′ and M ′′ were conformally flat in neighbourhoods of the points m′,m′′ at

which the connected sum was performed. There is a lot to be said for this assumption: it gives canonical

coordinate systems about m′,m′′ and a simple, natural family of conformal classes on the connected sum,

it brings in the positive mass theorem in Chapter 10, and the topic of constant scalar curvature metrics on

conformally flat manifolds seems to me to be potentially very interesting. But it restricts the application

of the results and excludes, for instance, application to families of self-dual metrics on 4-manifolds, which

is one reason why this work was undertaken.

So in this section we consider how the assumption may be relaxed. There are (at least) two obvious

ways to try and improve the results. The first is to prove that given two Riemannian manifolds M ′, M ′′

containing points m′,m′′, there exists a family of metrics on the connected sum M , depending on a

parameter t and of constant scalar curvature, that approach the connected sum form we expect for small

values of the parameter. The second way is to prove that given M ′,M ′′ and a family of conformal classes

on M depending upon t that are close to the connected sum conformal classes when t is small, we can

choose constant scalar curvature metrics in the conformal classes that are close to the connected sum form

we expect, for sufficiently small t.

Of these, the second way seems to me to be much more interesting and general than the first, and

would for instance apply to families of self-dual 4-manifolds. So we shall consider how to extend the

results of this part of the thesis following the second way. The first problem in following this programme

is exactly how to define what it means for a family of conformal classes depending on t to approach the

connected sum, as the limit we suppose they approach is singular (an ‘infinitely small neck’, basically the

two manifolds joined at a point). I can’t see a particularly nice way of doing this; perhaps a method

comparing [gt] on M with the obvious metric on M ′ \Bt(m′)qM ′′ \Bt(m′′) would work.

Having done this, the proof we envisage would have two stages. The first stage is to show that

the given conformal classes [gt] contain metrics of close to constant scalar curvature, with the difference

bounded in suitable norms by powers of t – as in Chapter 8 and §§10.1 and 10.2. Then the second stage

is to follow Chapter 9 and §§10.3-10.5 to prove that constant scalar curvature metrics exist when the

approximate metrics have scalar curvature close enough to constant.
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After some thought, it becomes clear that the results and proofs of Chapter 9 are going to work for this

more general case. The only modifications the statements will need is in the estimates on ‖φ‖2,1 in terms

of t; it should be estimated by the Ln/2 norm of ε, the deviation from constant of the scalar curvature,

and whether this is bounded by a multiple of t2, or some other function, depends entirely upon the new

set-up. The reason that the Chapter 9 work extends so readily is that the only important condition the

family of conformal classes must satisfy is that they contain metrics looking quite like the metrics gt of

§8.1 or §8.2, with scalar curvature bounded and close to a constant in the Ln/2 norm. This is quite an

easy condition to satisfy, and if it doesn’t hold, it is clear that the definition chosen for a family of metrics

approaching the connected sum is an inadequate one.

However, the results of Chapter 10 will require significant modification from the conformally flat case.

For §10.1 makes essential use of the constant µ proportional to the mass, and in the non-conformally flat

case, the mass term is dominated by other error terms and may not even be defined. Therefore let us first

consider what results we expect in generalizing Chapter 10 to the non-conformally-flat case.

For the case of §10.1, the value of the constant scalar curvature should be determined by the highest

order term in the deviation from flatness of the stereographic projection of M ′′. Studying [LP], Theorem

6.5 and Proposition 7.1, it turns out that it is natural to expect scalar curvature proportional to −µt2−n

when n = 3, 4, 5 as well as when M ′′ is conformally flat close to m′′, proportional to −
∣∣W (m′′)

∣∣2t−4 log t

when n = 6 and M ′′ is not conformally flat at m′′, and proportional to −
∣∣W (m′′)

∣∣2t−4 when n > 6 and

M ′′ is not conformally flat at m′′. Here W is the Weyl conformal curvature and t is a parameter measuring

the rescaling of M ′′ as before, so that gt agrees with t2g′′ on the M ′′ part of M .

The form of the constant scalar curvature metrics for the generalizations of the metrics of §10.2 to the

non-conformally-flat case will depend very much upon what the metrics gt look like at the ‘neck’. If they

approach our standard conformally flat form as t approaches zero, then we may expect the same behaviour

as in Chapter 10, with the volumes of the two halves equalized, and scalar curvature of order tn−2 when

the width of the neck is t; this is quite a reasonable condition to impose, and probably holds for many

applications. The proofs of Chapter 10 should extend to this case. If, however, the neck is nowhere near

being conformally flat for small t — say, the neck is modelled upon some conformally curved manifold

with two asymptotically flat ends — then the behaviour is much more nasty, and we cannot say very much

about it.
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I believe the picture presented in §10.5 to hold good in the non-conformally-flat case, but I doubt

if the methods of proof suggested there are strong enough to cover this case, and extra work would be

required to prove anything about it.

11.3. Final comments

First we ask some questions on the subject matter of Part II of the thesis.

• Does the Yamabe problem fail for orbifolds? I do not know whether it does or not, but it can

be seen that the techniques used in the solution of the manifold case do not cover the orbifold case as

well. For suppose that (M, g) has an orbifold point m with finite orbifold group Γ. Then by using test

functions concentrated about m, we can show that λ(M) ≤ λ(Sn)/|Γ|. The test function method applied

at any nonsingular point only shows that λ(M) < λ(Sn), so that λ(M) = λ(Sn)/|Γ| is not excluded by

this.

To solve the generalized Yamabe problem using the old methods, it must be shown that λ(M) <

λ(Sn)/|Γ|. But this cannot be guaranteed (at least in four dimensions) because of the failure of the

generalized positive mass theorem for 4-orbifolds [L1]. So the case λ(M) = λ(Sn)/|Γ| could conceivably

arise, and in this case the known methods tell us nothing about the existence of Yamabe metrics.

• Does the constant scalar curvature condition mix well with self-duality of 4-manifolds? That is,

does choosing a constant scalar curvature metric within the conformal class of a self-dual manifold help

in any way with the study of moduli spaces of self-dual metrics, for instance in looking at behaviour at

the edge of the moduli space? In connection with this, King and Kotschick have already found that the

Yamabe invariant plays a rôle in the theory of the moduli spaces ([KK], §3).

• On a compact manifold with positive scalar curvature, is the condition that a conformal class

containing metrics of positive scalar curvature should contain an element of scalar curvature 1 for which

b is not an eigenvalue of a∆, a generic condition on such conformal classes? I firmly believe that it is,

but cannot quite prove it.

• In the case of positive scalar curvature, what are the possible ways in which critical points of the

Hilbert action can vanish as the underlying conformal class changes in a smooth, nonsingular way? As

we shall shortly explain in more detail, by using the results of §9.3 for the connected sum of a manifold of

positive scalar curvature with a sphere with a non-round metric, and then deforming this connected sum



11.3. Final comments 146

conformal class back to the original conformal class, it can be seen that critical points may annihilate

each other in pairs. But are there any other possibilities; can isolated critical points just vanish, for

instance?

Following on from the last question, we shall now discuss the critical points of the Hilbert action Q, to

lead up to formulating a conjecture about them. A conformal class of metrics on a manifold is contractible,

as is a conformal class of metrics modulo homotheties. Trying to use the Hilbert action as a sort of Morse

function on such a conformal class will therefore not yield any interesting information on the topology of

the class, but it might on the other hand yield some information upon the stationary points of the Hilbert

action on the class (modulo homotheties), which are just the metrics of constant scalar curvature in the

class. However, this analogy cannot necessarily be pushed very far, as a conformal class is noncompact,

and the behaviour of the Hilbert action towards the ‘edge’ of it is fairly horrible.

For negative scalar curvature manifolds we know by Lemma 9.2.4 that there is a unique stationary

point of Q that is a minimum, and so has index zero. So we shall consider the positive scalar curvature

case. Let us suppose that critical points of the Hilbert action on a compact conformal class of positive

scalar curvature are well behaved under smooth changes of the conformal class, so that critical points do

not appear or disappear from the ‘edge’ of the conformal class during such changes. Suppose also that

there are only finitely many critical points of Q, that they are all suitably generic, and that they all have

finite index. Can we make any sort of topological invariant from the critical points?

In this simplest situation, the only sort of change in the number and nature of the critical points one

expects during a change of the conformal class, is for pairs of critical points with indices differing by one

to appear or disappear together. Thus the integer r = p − q would be conserved, where p is the number

of critical points of Q on the conformal class of even index, and q is the number of critical points of odd

index. Then r would be an integer invariant of compact smooth manifolds of positive scalar curvature, as

it could be evaluated by choosing a generic conformal class of positive scalar curvature on the manifold,

and counting the stationary points of Q on it.

These are perhaps far-fetched suppositions; on a good day, with the wind behind us, it might be

possible to define this invariant r for some limited class of compact manifolds of some dimension. But

what value would r take? We will now argue heuristically that r should take the value 1 for all positive

scalar curvature manifolds. Let M ′ and M ′′ be compact manifolds of the same dimension n, with suitably

generic metrics of positive scalar curvature. Using the results of §9.3, we can construct the metrics of scalar
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curvature 1 in the conformal class of the connected sum M ′#M ′′, given the metrics of scalar curvature 1

in the chosen conformal classes on M ′ and M ′′. These lead us to the formula

r(M ′#M ′′) = r(M ′) + r(M ′′)− r(M ′)r(M ′′). (132)

Here the first two terms on the right come from the metrics modelled on those of §8.1, and the last term

comes from the metrics modelled on those of §8.2. The last term has a negative sign because it can be

shown that the index of a critical point contributing to this term is 1 plus the sum of the indices of the

relevant critical points on M ′ and M ′′.

Now (132) may be rewritten in the multiplicative form

1− r(M ′#M ′′) =
(
1− r(M ′)

) · (1− r(M ′′)
)
. (133)

It follows that r(Sn) is either 0 or 1. Here is an argument to show that r(Sn) is odd: it can easily be

shown that the round metric on Sn/{±1} is the unique metric of scalar curvature 1 in its conformal class.

As this metric is ‘generic’ in the sense that b is not an eigenvalue of a∆ on it, every nearby conformal class

must also contain exactly one metric of scalar curvature 1.

Taking the double cover, any metrics of scalar curvature 1 in the conformal class of the double cover

that do not come from metrics on Sn/{±1} must come in pairs, and so make no contribution modulo 2 to

r(Sn). Thus r(Sn) ≡ 1 modulo 2, and r(Sn) = 1. Putting M ′′ equal to Sn in (133) then gives r(M ′) = 1

for any M ′ of dimension n and positive scalar curvature.

The informal argument above suggests, rather than proves, that when the integer r exists it ought to

take the value 1. This is the motivation for the following conjecture:

Conjecture 11.3.1. Suppose that M is a compact manifold admitting metrics of positive scalar curvature.

Then on a generic conformal class of positive scalar curvature, the Hilbert action Q has finitely many

stationary points each of finite index, and the difference between the number p of stationary points of even

index and the number q of odd index is p− q = 1.

One might ask whether a proof of this conjecture would lead to an alternative proof of the Yamabe

conjecture in the positive scalar curvature case. I think that it would not; that is, though logically speaking

it would, it would be necessary to use most of the difficult material in the present proof to make the new

proof, so the new proof would simply be the old proof made harder. My reason for thinking this is that
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to show that a critical point cannot disappear during a smooth change of the underlying conformal class

by developing a point concentration of volume — equivalent to ‘budding off’ a copy of Sn with its round

metric by connected sum — a ‘Nonzero mass theorem’ would be required, which is probably just as difficult

to prove as the positive mass theorem.



Appendix A: Another Proof of the

Hypercomplex Case of Theorem 3.1.1

In this appendix we give an alternative proof of the hypercomplex case of Theorem 3.1.1 that does not

involve complexifying group actions, and does not invoke the Ward correspondence; in fact the methods

used are more-or-less a proof of the Ward correspondence. The proof works by defining the new almost

complex structures and showing that the Nijenhuis tensor of each vanishes, and thus that the almost

complex structures are integrable. The quaternionic case of the theorem may be deduced by applying the

hypercomplex case to the associated bundle.

Theorem 3.1.1, hypercomplex case. Let M be hypercomplex and P , Φ and Ψ be as in §3.1, and let

A be a Ψ- invariant quaternionic connection on P . Suppose Ψ(G) acts freely on P . Then the manifold

N = P/Ψ(G) has a natural (possibly singular) hypercomplex structure, which is nonsingular wherever the

Lie algebra of Ψ(G) is transverse to the horizontal subspaces of A in P .

Proof. Let the projections of P to M be π and to N be ρ, and let the field of horizontal subspaces of A in P

be H. Where the Lie algebra of Ψ(G) is transverse to H, projection to N induces an isomorphism between

H and ρ∗(TN). On the other hand, projection to M gives an isomorphism between the H and π∗(TM).

But M is hypercomplex, and so I1, I2, I3 act on TM . The lifting of these almost complex structures to H

is Ψ- invariant, and induces an almost hypercomplex structure (I1, I2, I3) on N .

Thus it is sufficient to prove that each of these almost complex structures Ij on N is integrable,

except at points where Ψ(G) is not transverse to H. As this is a local property, it need only be proved

for arbitrarily small patches of N . This will be done by calculating the Nijenhuis tensors of the almost

complex structures.

If U is a patch of manifold, and i is a smooth almost complex structure on U , then the Nijenhuis

tensor Ni of i is defined by

Ni(x, y) = [x, y] + i[ix, y] + i[x, iy]− [ix, iy], (134)

where x, y are vector fields on U and [ , ] is the Lie bracket. It can be shown that Ni is a tensor (so it is

bilinear with respect to multiplication of x, y by scalar fields), and that i is integrable if and only if Ni

vanishes identically.

149



Appendix A. Another proof of the hypercomplex case of Theorem 3.1.1. 150

Let U be a small open patch of M on which Ψ(G) is transverse to H. If U is sufficiently small,

we may choose a trivialization P |U = U × G, such that the action of Φ on P is given as usual by

Φ(g)
(
(g′, u)

)
= (gg′, u), and the action of Ψ is given by Ψ(g)

(
(g′, u)

)
= (g′g−1, Ψ(g)u).

Let ω be the g-valued 1-form on U that represents A with respect to this trivialization. Regarding

P |U as U × G, the submanifold U × {1} is transverse to the action of Ψ(G), and so is isomorphic to a

small open set V in N . (Note that U ×{1} would not be transverse to Ψ(G) if the trivialization had been

chosen Ψ- invariant.) We shall identify U and V in the obvious way.

From above, it is sufficient to show that I1, I2, I3 (acting on TN) are integrable on V . Choose j = 1, 2

or 3. Denote the complex structure Ij on U (coming from M) by i, and the almost complex structure Ij

on V (coming from N) by J ; under the identification of U, V this gives two almost complex structures i, J

on U .

We shall give a formula for J in terms of i. Now the action Ψ of G on M induces a map ψ : g → Γ(TU)

that is a Lie algebra homomorphism (where Γ(TU) is a Lie algebra with operation the Lie bracket of vector

fields). The isomorphism of TU with H|U×{1} is x 7→ (x,−ω(x)) (so that ω vanishes on H), and under the

identification of U and V , the isomorphism of H|U×{1} with TV is (x,−ω(x)) 7→ x−ψ(ω(x)). (Since in the

chosen trivialization the action of the Lie algebra of Ψ(G) on TP |U×{1} is g′ : (x, g) 7→ (x + ψ(g′), g− g′),

for x a vector on U and g, g′ ∈ g.)

Thus, although we have identified U and V , the identification of TU and TV coming from the double

identification of π∗(TU) and ρ∗(TV ) with H|U×G is x 7→ x− ψ(ω(x)). Let A = ψ ◦ ω. Then J is defined

by the formula

J = (1−A)i(1−A)−1, (135)

where 1 denotes the identity on TU (to avoid confusion with almost complex structures.) Note that 1−A

is invertible exactly when Ψ(G) is transverse to H, which by assumption holds on U .

We calculate NJ(x−Ax, y −Ay) for arbitrary vector fields x, y:

NJ(x−Ax, y −Ay) = [x−Ax, y −Ay] + J [J(x−Ax), y −Ay] + J [x−Ax, J(y −Ay)]

− [J(x−Ax), J(y −Ay)]

= [x−Ax, y −Ay] + J [ix−Aix, y −Ay] + J [x−Ax, iy −Aiy]

− [ix−Aix, iy −Aiy].

(136)



Appendix A. Another proof of the hypercomplex case of Theorem 3.1.1. 151

As 1 − A is invertible, NJ(x, y) vanishes for all x, y if NJ(x − Ax, y − Ay) does, and the proof of

Theorem 3.1.1 will be completed by the next lemma.

Lemma A.1. Under the hypotheses above,

NJ(x−Ax, y −Ay) =[x−Ax, y −Ay] + J [ix−Aix, y −Ay]

+ J [x−Ax, iy −Aiy]− [ix−Aix, iy −Aiy] = 0.

(137)

Proof. Let Ω be the curvature of A on U . As by assumption A is of type (1, 1) with respect to i, for vector

fields x, y we have Ω(x, y)− Ω(ix, iy) = 0. Applying ψ to this equation gives

ψ(Ω(x, y))− ψ(Ω(ix, iy)) = 0,

and also

ψ(Ω(ix, y)) + ψ(Ω(x, iy) = 0.

Therefore

ψ(Ω(x, y)) + Jψ(Ω(ix, y)) + Jψ(Ω(x, iy))− ψ(Ω(ix, iy)) = 0. (138)

This condition will be expressed in terms of ω, and it will be seen that it differs from (137) by a term that

vanishes because Ψ preserves J .

First we find an expression for ψ(Ω(x, y)). Now the curvature Ω is usually written dω + 1
2 [ω ∧ ω]. In

terms of vector fields x, y,

dω(x, y) = Lx(ω(y))− Ly(ω(x))− ω([x, y]) and
1
2
[ω ∧ ω](x, y) = [ω(x), ω(y)]g,

where Lx is the Lie derivative with respect to the vector field x, and [ , ]g is the Lie bracket in g (to

distinguish it from the Lie bracket of vector fields). Thus

Ω(x, y) = Lx(ω(y))− Ly(ω(x))− ω([x, y]) + [ω(x), ω(y)]g. (139)

So
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ψ(Ω(x, y)) = ψ
(Lx(ω(y))

)− ψ
(Ly(ω(x)

)− ψ ◦ ω([x, y]) + ψ([ω(x), ω(y)]g)

= [x,Ay]− [y,Ax]−A([x, y])− (Lxψ
)
ω(y) +

(Lyψ
)
ω(x)

+
(LAxψ

)
ω(y)− (LAyψ

)
ω(x)− [Ax,Ay],

(140)

where we justify the substitution for ψ([ω(x), ω(y)]g) as follows: choose a connection ∇ on TU . Then

ψ([ω(x), ω(y)]g) =
(∇Axψ

)
ω(y)− (∇Ayψ

)
ω(x)

=
(LAxψ

)
ω(y)− (LAyψ

)
ω(x) +∇Ay(Ax)−∇Ax(Ay)

=
(LAxψ

)
ω(y)− (LAyψ

)
ω(x) + [Ay, Ax];

here the first line holds because ψ is a Lie algebra homomorphism, and so relates [ , ]g and [ , ].

We substitute (140) into (138). Rearranging the terms gives

[x−Ax, y −Ay]− (1−A)[x, y] + J

{
[ix−Aix, y −Ay]− (1−A)[ix, y]

+[x−Ax, iy −Aiy]− (1−A)[x, iy]
}
− [ix−Aix, iy −Aiy] + (1−A)[ix, iy]

= −(Lx−Axψ
)
ω(y) +

(Ly−Ayψ
)
ω(x)− J

{(Lix−Aixψ
)
ω(y)− (Ly−Ayψ

)
ω(ix)

+
(Lx−Axψ

)
ω(iy)− (Liy−Aiyψ

)
ω(x)

}
+

(Lix−Aixψ
)
ω(iy)− (Liy−Aiyψ

)
ω(ix)

(141)

But the left hand side of (141) is NJ(x−Ax, y−Ay)− (1−A)Ni(x, y), from (137) and using the fact

that J = (1 − A)i(1 − A)−1. As the almost complex structure i is integrable, Ni is zero and so the left

hand side is just NJ (x − Ax, y − Ay). So Lemma A.1 will be completed by showing that the right hand

side of (141) vanishes.

Now i is Ψ- invariant, and ψ is Ψ- equivariant. A special property of the trivialization chosen for

P is that ω has the opposite sort of Ψ- equivariance to ψ, so that A = ψ ◦ ω is Ψ- invariant. Thus J

is Ψ- invariant. This reflects the fact that Φ induces an action of G on N preserving J . So Lψ(v)J=0

for each v in g. Thus if x is a vector field on U , then Lψ(v)(Jx) = JLψ(v)x. But this is equivalent to

LJx(ψ(v)) = JLx(ψ(v)). As this holds for all v in g, we have

LJxψ = JLxψ.

So for instance,

J
(Lix−Aixψ

)
ω(y) = −(Lx−Axψ

)
ω(y). (142)
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But this shows that two of the terms from the right hand side of (141) cancel out. In the same way,

all the terms on the right hand side of (141) cancel out in pairs, and so NJ(x−Ax, y −Ay) = 0.

A similar proof could be given for the hypercomplex case of Theorem 3.1.2. It would be different to

the above in detail because for general G the diagonal is not a normal subgroup of G × G, so N = P/G

does not have a natural G- action and the last part of the proof, that uses the invariance of J by ψ, cannot

be used. For abelian G, this proof is sufficient.



Appendix B: Quotient Constructions for Compact

Self-Dual Four-Manifolds

In Chapter 2 quotients for quaternionic and hypercomplex manifolds were described. In this appendix

some families of four-dimensional self-dual conformal manifolds and orbifolds will be constructed using the

quaternionic quotient. Most of the appendix is actually about the notation and organization necessary to

write down the quotients, rather than being actual mathematics.

The connected sum of two 4-manifolds M1,M2 at the points m1,m2 is made by removing small balls

around m1 and m2 and then gluing small S3 × [−1, 1]- neighbourhoods of the holes by an orientation-

preserving map, identifying the inside of one neighbourhood and the outside of the other. To form the

generalized connected sum at m1,m2 of two 4-orbifolds M1,M2, the points m1,m2 must have neighbour-

hoods isomorphic to B4/Γ1, B4/Γ2 with Γ1, Γ2 subgroups of SO(4) (possibly trivial), such that there is an

orientation-reversing automorphism D of R4 identifying Γ1 and Γ2. Then D acts on S3 and the generalized

connected sum of M1 and M2 is defined by cutting out small B4/Γi neighbourhoods of mi from Mi and

gluing (S3/Γi)× [−1, 1] neighbourhoods of the holes by the map (s, x) 7→ (D(s),−x), where D maps from

S3/Γ1 to S3/Γ2.

The building blocks of the family are the weighted projective spaces described in §4.2. In each weighted

projected space three special points called corners will be defined, which are usually orbifold points. Two

subgroups Γ1, Γ2 of SO(4) will be called complementary if they can be identified by an orientation-reversing

automorphism D of R4. Similarly, if two weighted projective spaces M1,M2 have corners m1,m2 modelled

on B4/Γi, then m1,m2 are called complementary if Γ1 and Γ2 are complementary.

Given a collection of n+1 weighted projective spaces with n identified pairs of complementary corners

forming a connected whole (so that loops in the tree of weighted projective spaces are not allowed), we

shall present a method for writing down a quaternionic quotient for self-dual conformal metrics on the

generalized connected sum of the collection of weighted projective spaces at the n pairs of identified,

complementary corners.

The quotients that result are quaternionic quotients of HPn+1 by U(1)n. This method yields many

examples of non-singular self-dual conformal manifolds, which are invariably connected sums of CP2’s.

154
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However, as n increases the method yields many distinct families of metrics on nCP2, because for large n,

nCP2 decays into weighted projective spaces in lots of different ways which give inequivalent quotients.

The simplest family of metrics on nCP2 made by this method have symmetry groups with identity

component U(1) for n > 2, and are the same as the metrics given by LeBrun in [L2]. The other families

all have identity component U(1)× U(1), and are described in an alternative way in §4.5.

The method also gives self-dual conformal orbifolds with a single orbifold point, which can be viewed

as asymptotically flat, zero-scalar-curvature Kähler resolutions of the quotient of C2 by a subgroup of

U(2). Examples are the ALE spaces for cyclic groups [Hi], [Kr] and LeBrun’s metrics on line bundles over

CP1 [L1]. Such resolutions exist for every cyclic subgroup Γ of the group U(1)×U(1) of diagonal elements

of U(2) that acts freely on S3. This might be useful to someone wishing to desingularize a general self-dual

orbifold by extensions of methods in [DF].

Using the results of §2.4, the Kähler metrics in the conformal class of the quotients can be described

in detail. Thus we have many examples of Kähler metrics with zero scalar curvature. Viewed as Kähler

manifolds these examples are never compact, because the conformal rescaling always becomes infinite

somewhere, but they can usually be chosen to be asymptotically Euclidean or locally Euclidean. A

method for including Asymptotically Locally Flat Kähler metrics of zero scalar curvature into our general

scheme will also be given.

B.1. Singular points of weighted projective spaces

In §4.2 we defined quaternionic structures on weighted projective spaces CP2
p,q,r using the quaternionic

quotient, and we saw that if p, q, r are pairwise coprime then the space has at most three singular points,

the orbifold points [1, 0, 0], [0, 1, 0], [0, 0, 1]. These three points in each weighted projective space will be

called corners, and are the points at which we will do generalized connected sums. In the associated bundle

they are given by the equations x = l = 0, y = m = 0 and z = n = 0 respectively. In this section we shall

explain how to find the group Γ for an orbifold point of a weighted projective space CP2
p,q,r. It will then

be possible to decide when two corners of two weighted projected spaces are complementary.

Consider the weighted projective space CP2
p,q,r near the point [1, 0, 0]. Every point [f, g, h] in a

neighbourhood of [1, 0, 0] can be written as [1, g, h], uniquely up to a transformation (g, h) 7→ (uqg, urh)

with up = 1. Therefore a neighbourhood of [1, 0, 0] in CP2
p,q,r is biholomorphic to a neighbourhood of the

origin in C2/Γ, where
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Γ =
{(

uq 0
0 ur

)
: up = 1, u ∈ C∗

}
. (143)

If p is coprime to q and r then Γ has p elements. To give a criterion for when two such groups Γ1, Γ2

are complementary, observe that (x, y) 7→ (x, y) is orientation-reversing. Thus

Γ′ =
{(

u−q 0
0 ur

)
: up = 1, u ∈ C∗

}

and

Γ′′ =
{(

u−r 0
0 uq

)
: up = 1, u ∈ C∗

}

are both complementary to Γ, and these are in fact the only groups of this form complementary to Γ.

So suppose that (p1, q1, r1) and (p2, q2, r2) are two triples of pairwise coprime positive integers. Then

CP2
p1,q1,r1

and CP2
p2,q2,r2

will be complementary at [1, 0, 0] and [1, 0, 0] if and only if either

(i) p1 = p2 and there is some integer s such that

sq1 ≡ −q2 (mod p1), sr1 ≡ r2 (mod p1), (144)

or

(ii) p1 = p2 and there is some integer s such that

sq1 ≡ −r2 (mod p1), sr1 ≡ q2 (mod p1). (145)

These tests may be used to build up clusters of weighted projective spaces with selected pairs of comple-

mentary corners.

B.2. Definitions and notation

In the following sections it will be shown how, given two quotients of HPn+1 by U(1)n and selected,

complementary corners of each, one can define a quotient that is the generalized connected sum of the two

quotients at the two corners.

First we establish some notation. A quaternionic quotient of HPn+1 by U(1)n will be denoted by Q. So

Q represents the quadruple (space HPn+1, group U(1)n, action φ, χ or ψ of U(1)n on HPn+1, quaternionic

moment maps for action). It will frequently be necessary to distinguish between the quotient, which is



B.2. Definitions and notation 157

this quadruple, and the quaternionic orbifold that is the result of the quotient. Therefore the quotient

quaternionic orbifold will be denoted Q. The associated bundle Hn+2 \ {0} of HPn+1 will be described by

n+2 pairs of complex coordinates, labelled (xi, li), (yi,mi) or (zi, ni) (i = 1, . . . , n+2), which are complex

with respect to I1, and upon which I2 acts as (xi, li) 7→ (li,−xi).

It would be possible to write everything in quaternionic coordinates, i.e. to have one quaternion-

valued coordinate instead of each pair of complex coordinates. This would make the moment maps appear

somewhat simpler. We have opted not to do this for three reasons. Firstly, to write out the moment maps

in complex form makes it clear that µ2 + iµ3 is holomorphic in I1, which is one of the conditions, and

would not be obvious from a quaternionic formula. Secondly, complex coordinates make it easier to deal

with twistor spaces, and so the computations in §2.3 are much easier, for instance. Thirdly, the standard

sorts of action of U(1)n we consider are easily written out in complex coordinates.

These pairs of coordinates will be called quaternionic pairs. In general the equations xi = 0, li = 0

for a particular i will determine a unique point in the quaternionic quotient, and this will be called the

corner associated to (xi, li).

The group action φ (or χ, or ψ) will be of a standard form. It will be given by an endomorphism

φ : U(1)n → U(1)n+2, where φ = (φ1, . . . , φn+2) and each φi is a homomorphism U(1)n → U(1). Then the

action φ is defined by φ(g)
(
(x1, l1, . . . , xn+2, ln+2)

)
= (φ1(g)x1, φ

−1
1 (g)l1, . . . , φn+2(g)xn+2, φ

−1
n+2(g)ln+2)

for g ∈ U(1)n.

The quaternionic moment maps are given by an n- dimensional vector space V of twistor functions

that are invariant under the action of the group (as U(1)n is commutative, this is the same as being

equivariant) and suitably transverse. As each µi determines the other two, a twistor function µ on the

associated bundle is defined by giving µ1.

Now V is an n-dimensional subspace of the vector space W of invariant twistor functions, and W is

fairly easily described. If neither φi = φj nor φi = φ−1
j holds for any distinct i, j, and for no i is φi = 1,

then W = 〈|x1|2 − |l1|2, . . . , |xn+2|2 − |ln+2|2〉 (these are the functions µ1). If on the other hand φi = φj

or φi = φ−1
j then one must add other quadratic basis elements that mix up xi, li, xj , lj , and if φi = 1 then

one must add the basis elements Rexili, Im xili.

Let Q1, Q2 be quotients of HPr+1 by U(1)r and HPs+1 by U(1)s respectively. The coordinates on

the associated bundle of HPr+1 will be (x1, l1, . . . , xr+2, lr+2) and the group action φ = (φ1, . . . , φr+2),

and the coordinates on the associated bundle of HPs+1 will be (y1,m1, . . . , ys+2,ms+2) with group action
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χ = (χ1, . . . , χs+2). The quaternionic moment maps will be r- and s- dimensional vector subspaces V1, V2

of the vector spaces W1,W2 of φ- and χ- invariant twistor functions on HPr+1 and HPs+1.

Now the extra basis elements for W1,W2 that are introduced if the actions of φ, χ are not sufficiently

general will cause complications in the construction of quotients for connected sums. We shall therefore

suppose until after the proof of Theorem B.4.1 that V1, V2 are vector subspaces of 〈|x1|2−|l1|2, . . . , |xr+2|2−

|lr+2|2〉, 〈|y1|2 − |m1|2, . . . , |ys+2|2 − |ms+2|2〉 respectively. After the proof some comments will be made

about the more general case.

Let q1 and q2 be complementary corners in Q1,Q2; for convenience suppose that these are associated

to the quaternionic pairs (x1, l1) and (y1, m1). In the next two sections a quaternionic quotient for the

generalized connected sum of Q1,Q2 at q1 and q2 will be described.

B.3. Data for the generalized connected sum

To make the generalized connected sum of Q1 and Q2 at q1, q2, some information is needed on exactly

how to join the two orbifolds together. In this section the necessary information will be described, and

some group actions required later will be defined. The connected sum M1#M2 of two conformal manifolds

M1,M2 at the points m1,m2 can be thought of as the union of M1,M2 with small holes cut out about

m1,m2, joined by a thin neck. Making the holes very small and the neck very thin, the connected sum

starts to resemble the union of M1 and M2, joined in some way at m1 and m2.

The appropriate way to join M1, M2 at m1, m2 is to identify Tm1M1\{0} and Tm2M2\{0}. This is done

by a map C : Tm1M1 \ {0} −→ Tm2M2 \ {0} defined by C(v) = D(v)/‖v‖2, where D : Tm1M1 −→ Tm2M2

is an orientation-reversing isomorphism of conformal vector spaces and ‖.‖ is some norm in the conformal

class of Tm1M1. Then by choosing identifications of neighbourhoods of zero in the tangent spaces with

neighbourhoods of mi, C can be used to identify small annuli about mi, and thus to define a connected

sum. In fact in the quaternionic case the most convenient way of describing C is as an isomorphism of the

associated bundles of Tm1M1 \ {0} and Tm2M2 \ {0}. These are the normal bundles of the fibres of the

associated bundles of M1,M2 over m1 and m2 respectively, and are isomorphic to H2 \ (H×{0}∪{0}×H).

Now when dealing with generalized connected sums, q1, q2 can be orbifold points, and TqiQi may

have to be replaced by the quotient of a vector space by a finite group. These will be called first-order

neighbourhoods as they are not strictly tangent spaces. We give first-order neighbourhoods of the points
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q1, q2 in Q1,Q2, and choose an identification C between them which is the data necessary to form the

generalized connected sum.

Firstly, coordinates (x, l) will be defined on the fibre of the associated bundle over q1, and similarly

coordinates (y,m) over the fibre of the associated bundle over q2. Now q1 is the point in Q1 where

x1 = l1 = 0. But V1 cannot contain |x1|2−|l1|2 +α(|xi|2−|li|2) for any i > 0 and real constant α, because

it can be shown that this would contradict the transversality of V1. Thus V1 restricted to x1 = l1 = 0

is an r- dimensional subspace of the r+1- dimensional vector space 〈|x2|2 − |l2|2, . . . , |xr+2|2 − |lr+2|2〉

containing no elements of the form |xi|2 − |li|2. So there exist non-zero real constants λ3, . . . λr+2 such

that the restricted solutions (x2, l2, . . . , xr+2, lr+2) of V1 satisfy |xi|2 − |li|2 = λi(|x2|2 − |l2|2), i > 2.

The transversality condition for V1 ensures that given any such solution (x2, . . . , lr+2), it is possible

to choose a point (x′2, . . . , l
′
r+2) in its orbit of U(1)r such that x′i =

√
λix

′
2, l

′
i =

√
λil

′
2 if i > 2 and λi > 0,

and x′i =
√−λil

′
2, l

′
i = −√−λix

′
2 if i > 2 and λi < 0. Then as coordinates on the fibre of the associated

bundle of Q1 over q1, either x = x′2, l = l′2 or x = l′2, l = −x′2 will be chosen. Later one of these two

choices will be selected. They are quaternionic coordinates, that is, they are triholomorphic in the usual

way with respect to the quotient hypercomplex structure.

The point (x′2, . . . , l
′
r+2) is not necessarily the only point in the orbit of (x2, . . . , lr+2) under the group

U(1)r satisfying the conditions above. There will in fact be a finite subgroup Γ1 (possibly trivial) of

U(1)r that preserves the conditions, and the different possible choices for (x′2, . . . , l
′
r+2) are exactly the

orbit under Γ1 of any given possible (x′2, . . . , l
′
r+2). So as q1 may be an orbifold point, the fibre of the

associated bundle over q1 may not be H/{±1} but instead H/({±1} × Γ1). Therefore one should regard

the coordinates (x, l) as lying not in H but in H/({±1} × Γ1). As Γ1 is a subgroup of U(1)r it also acts

on (x1, l1) with action φ1. This gives an action of Γ1 on H2 with coordinates (x, l, x1, l1).

In practice, to apply the method we describe, it is necessary first to work out the finite subgroup Γ1

of U(1)r that fixes elements (x′2, . . . , l
′
r+2) in the special form above, and then to find the action of Γ1 on

(x, l) and (x1, l1). The end product of this calculation is a finite (cyclic) group Γ1, and an action of Γ1

upon H2 with coordinates (x, l, x1, l1).

The relevance of this information is that H2/({±1} × Γ1) is the normal bundle of the fibre of the

associated bundle of Q1 over q1, which is the associated bundle of the first-order neighbourhood of q1, and

(x, l, x1, l1) are the natural coordinates on it. In the same way, one finds a finite group Γ2 acting on H2

with coordinates (y, m, y1,m1). As by assumption Γ1 and Γ2 are compatible, there is an isomorphism of
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the two copies of H2 that identifies the actions of {±1} × Γ1 and {±1} × Γ2. This is the isomorphism C

above that gives the data for the generalized connected sum.

The factor {±1} comes in because the fibre of associated bundles is H/{±1} and not H, so that it is

only necessary to identify the actions of Γi on H2/{±1}, not on H2. If the manifolds Q1,Q2 are spin then

the associated bundles have double covers with fibre H, and the generalized connected sum will be spin if

C identifies the actions of Γ1, Γ2. In §B.5 an example is given in which C does not identify the actions of

Γ1, Γ2 on H2, and so inserting {±1} is necessary.

To achieve the effect of inverting about the unit sphere in the definition of C, this isomorphism must

identify the quaternionic pairs (x, l) and (y1,m1), and also the quaternionic pairs (x1, l1) and (y, m).

Consider how one might identify the first pair. Up to the action of complex constants acting like (x, l) 7→

(wx, wl) (w ∈ C∗), there are two ways of identifying the two quaternionic pairs compatible with the

standard U(1) actions used here. These are x = y1, l = m1 and x = m1, l = −y1.

There are two identifications of pairs to make, so there are four possibilities. Define the involution

σ of Q1 by σ(xi) = li, σ(li) = −xi, σ(φ) = φ−1, σ(V1) = V1; it is an automorphism of Q1. Applying σ

shows that the four possible identifications of (x, l), (y1,m1) and (x1, l1), (y, m) are isomorphic in pairs, so

there are only two real choices. For general groups Γ1 and Γ2 only one of these will identify the actions of

the groups {±1} × Γ1, {±1} × Γ2. But for groups Γi which are represented at most by ±1 on one of the

quaternionic pairs (so, for instance, a connected sum rather than a generalized one) both will identify the

group actions.

Thus for general Γi there is only one distinct way to glue the neighbourhoods together to make a

quotient, but for Γi contained in either SU(2) ⊂ SO(4) there are two distinct ways that can lead to two

different quotients for the generalized connected sum Q1#Q2. Let C be one of the identifications above

identifying the action of {±1} × Γ1 and {±1} × Γ2. Recall that in defining the quaternionic pairs (x, l)

and (y, m) there were two possibilities for the definition of each. We now stipulate that (x, l) and (y, m)

should be defined such that the identification C is given by (y, m, y1,m1) = C
(
(x, l, x1, l1)

)
= (x1, l1, x, l).

Now the definition of (x, l) implies that for i = 2, . . . , r + 2 there is a non-zero real constant ai such

that either x′i = aix, l′i = ail or x′i = ail, l′i = −aix. Define ci to be 1 in the first case, and −1 in the

second. Similarly, define bi, di so that when di = 1, y′i = biy and m′
i = bim, and when di = −1, y′i = bim

and m′
i = −biy.
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Consider U(1) acting in the standard way on (x, l) and (y, m) by (x, l) 7→ (ux, u−1l), (y, m) 7→

(uy, u−1m). As x, l, y, m are defined in terms of x2, . . . , lr+2 and y2, . . . , ms+2, we will give natural actions

τ, υ of U(1) upon Hr+1 and Hs+1 respectively that induce these actions upon (x, l) and (y,m).

For i = 2, . . . , r+2, let τi(u) = uci . Then define the action τ of U(1) on Hr+1 by τ(u)
(
(x2, l2, . . . , xr+2,

lr+2)
)

= (τ2(u)x2, τ
−1
2 (u)l2, . . ., τr+2(u)xr+2, τ−1

r+2(u)lr+2). The special property of this action τ is that

not only does it commute with φ, it also commutes with the map taking (x2, . . . , lr+2) to the Γ1 coset of

(x′2, . . . , l
′
r+2) and hence with the action of U(1) on (x, l).

Similarly define υi(u) = udi and the corresponding action υ of U(1) on Hs+1. An important point

about the definitions of τ, υ is that they depend upon discrete information from V1, V2 respectively. The

sign of the action of U(1) upon each variable pair is decided by ci, di, and the transversality conditions

ensure that these are well-defined. To define the group action needs discrete information, and here is

an example of how some of that information is taken from the moment maps, which are continuous

information.

To summarize this section, for each i = 2, . . . , r + 2 there is a non-zero real number ai, and ci which

is ±1, such that whenever (x2, l2, . . . , xr+2, lr+2) satisfies V1 restricted to x1 = l1 = 0 there is an element

(x′2, . . . , l
′
r+2) in its orbit under U(1)r of the form x′i = aix, l′i = ail if ci = 1 and x′i = ail, l

′
i = −aix

otherwise, where (x, l) is an element of H, and moreover that (x, l) is unique up to the action of a finite

subgroup Γ1 of U(1)r. A similar statement holds for (y2, . . . , ms+2) with (y,m) ∈ H.

Then (x, l), (y, m) are quaternionic coordinates on the fibres of the associated bundles over q1 and

q2 defined up to the actions of Γ1, Γ2, such that the identification C given on the associated bundles by

(y, m, y1,m1) = C
(
(x, l, x1, l1)

)
= (x1, l1, x, l) identifies the quotient groups {±1} × Γ1, {±1} × Γ2 and is

the data for the generalized connected sum. Actions τ, υ on Hr+1 and Hs+1 have also been defined, that

are in a certain sense natural liftings of the standard actions of U(1) upon (x, l) and (y, m), and will be

used in the definition of the quotient Q1#2 for the generalized connected sum Q1#Q2.

B.4. A quotient for the generalized connected sum

In this section a quaternionic quotient will be given for the generalized connected sum of two quater-

nionic quotients Q1,Q2 considered in the last two sections. Let e2, . . . , er+2 be real numbers such

that e2c2a
2
2 + . . . + er+2cr+2a

2
r+2 = 1 and f2, . . . , fs+2 also be real numbers satisfying f2d2b

2
2 + . . . +
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fs+2ds+2b
2
s+2 = 1. Define w1, w2 as twistor functions on Hr+1,Hs+1 by w1 = e2(|x2|2 − |l2|2) + . . . +

er+2(|xr+2|2 − |lr+2|2) and w2 = f2(|y2|2 − |m2|2) + . . . + fs+2(|ys+2|2 − |ms+2|2).

Now from the definition of the coordinates (x, l), when (x2, . . . , lr+2) is a point descending to (x, l)

in the fibre of the associated bundle over q1, then |xi|2 − |li|2 = cia
2
i (|x|2 − |l|2) and so w1(x2, . . . , lr+2) =

(e2c2a
2
2 + . . . + er+2cr+2a

2
r+2)(|x|2 − |l|2) = |x|2 − |l|2, because of the condition on e2, . . . , er+2. Thus w1

is an arbitrary twistor function that descends to give |x|2 − |l|2 on the fibre over q1. Similarly w2 gives

|y|2 − |m|2 on the fibre over q2. The twistor functions w1, w2 will be used in defining the moment maps

for the new quotient.

Let ε be a real number. Now V1 is a real vector space of functions of x2, . . . , lr+2 with linear terms

in |x1|2 − |l1|2. Define V ε
1 to be the real vector space of functions of x2, . . . , lr+2, y2, . . . , ms+2 given by

substituting ε2w1 for every occurrence of |x1|2 − |l1|2 in V1. Similarly define V ε
2 by substituting ε2w1 in

place of |y1|2 − |m1|2 in V2. Define V ε
1#2 by V ε

1#2 = V ε
1 ⊕ V ε

2 . Then V ε
1#2 is a vector space of U(1)r+s-

invariant twistor functions on Hr+s+2, of dimension r + s. It will be the space of moment maps for the

new quotient.

We shall prove the following theorem:

Theorem B.4.1. Define the quaternionic quotient Q1#2 to be the quaternionic quotient of HPr+s+1 with

coordinates (x2, l2, . . . , xr+2, lr+2, y2,m2, . . . , ys+2, ms+2) on the associated bundle Hr+s+2 by U(1)r+s,

with the action

(x2, l2, . . . , xr+2, lr+2)

(y2, m2, . . . , ys+2,ms+2)
(g1,g2)7−→

(
τ2(χ1(g2))φ2(g1)x2, τ

−1
2 (χ1(g2))φ−1

2 (g1)l2, . . . ,
τr+2(χ1(g2))φr+2(g1)xr+2, τ

−1
r+2(χ1(g2))φ−1

r+2(g1)lr+2

)
(
υ2(φ1(g1))χ2(g2)y2, υ

−1
2 (φ1(g1))χ−1

2 (g2)m2, . . . ,

υs+2(φ1(g1))χs+2(g2)ys+2, υ
−1
s+2(φ1(g1))χ−1

s+2(g2)ms+2

)
(g1, g2) ∈ U(1)r × U(1)s,

(146)

and V ε
1#2 the vector space of moment maps. Then for sufficiently small ε 6= 0, Q1#2 is as an orbifold the

generalized connected sum of the quaternionic quotients Q1,Q2 at the points q1, q2, and is non-singular

except for other orbifold points present in Q1 and Q2. Moreover, as ε → 0 there is a well-defined limiting

process whereby the quotient approaches the singular union of Q1 and Q2, joined together at q1, q2 by C.

Proof. Putting ε = 0, the zero set in Hr+s+2 of V 0
1#2 is the Cartesian product of the solutions of V1

restricted to x1 = l1 = 0 and the solutions of V2 restricted to y1 = m1 = 0. The quotient by U(1)r+s is

not the associated bundle of the union of Q1 and Q2 as one might hope, but is in fact H2/Γi. This can be

viewed as the identification of the associated bundles of first-order neighbourhoods of q1 and q2. To obtain
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Q1 ∪ Q2 as a limit requires a different viewpoint. It will be shown that the quotient of the topological

limit set

S1 = lim
ε→0

{
(x2, . . . , lr+2, y2, . . . ,ms+2) : (εx2, . . . , εlr+2, y2, . . . ,ms+2) is a zero of V ε

1#2

}
(147)

by U(1)r+s can be identified with the associated bundle of the quotient Q1. (Here the topological limit

means that s is in the limit set if it is a limit of a sequence of points from the sequence of sets.) Suppose

that s = (x2, . . . , lr+2, y2, . . . ,ms+2) is in S1. Now because the powers of ε cancel out, the vector space of

functions V 1
1 vanishes on each set in the sequence, and thus on the limit S1. Thus s is a zero of V 1

1 .

On the other hand, (y2, . . . , ms+2) is in the zero set of V2 restricted to y1 = m1 = 0, because the extra

powers of ε make the w1 substituted into V2 vanish. Therefore the quotient of (y2, . . . ,ms+2) by U(1)s

lies in the fibre of the associated bundle of Q2 over q2.

Recall that the coordinates (y,m) (up to the action of Γ2) were identified with (x1, l1) by x1 = y,

l1 = m. Let this be the definition of x1, l1 in the limiting situation. Then w2 = |x1|2−|l1|2 by its definition,

so V 1
1 = V . It remains only to observe that although (y,m) is defined only up to an orbit of Γ2, Γ2 acts

on x2, . . . , lr+2 as well through τ and that the definitions of τ and υ ensure that Γ1 and Γ2 actually have

the same action on (x2, . . . , lr+2, y2, . . . ,ms+2). So one may equally regard (y, m) as being defined only

up to an orbit of Γ1.

This means that the quotient of S1 by U(1)s is naturally identified with the quotient of the zero set

of V1 in Hr+2 by the finite subgroup Γ1 of U(1)r. So dividing by U(1)r gives the quotient of the zero set

of V1 in Hr+2 by U(1)r, because first dividing by Γ1 ⊂ U(1)r makes no difference. Thus Q1 is a limit of

Q1#2 in the sense that its associated bundle is the quotient of the limit set S1 by U(1)r+s. In the same

way the associated bundle of Q2 appears as a limit as it is the quotient of the set S2 by U(1)r+s, where

S2 has the obvious definition.

Note: We can now see the point of the careful defining of τ and υ to identify the actions of Γ1, Γ2. If

τ, υ had been defined in a way that did not identify Γ1, Γ2 then the quotient of S1 by U(1)s would be the

zero set of V1 divided by Γ2, not Γ1, and as the action of Γ2 on Hr+2 would not then need to be contained

in the action of U(1)r, the result of further dividing by U(1)r would not be the quotient Q1 but instead

Q1 divided by an action of Γ2, not necessarily trivial.

Therefore the result of trying to make a generalized connected sum of Q1,Q2 at q1, q2 with respective

orbifold groups Γ1,Γ2 which have not been chosen to be complementary, is in fact the generalized connected



B.4. A quotient for the generalized connected sum 164

sum of Q1/Γ2 and Q2/Γ1, and the orbifold groups will both be some quotient group of Γ1 × Γ2. Only if

Γ1, Γ2 are complementary do we get the generalized connected sum of Q1 and Q2.

To continue with the proof, observe that heuristically it has been shown that as ε → 0, the zeros

(x2, . . . , lr+2, y2, . . . , ms+2) of V ε
1#2 in which (y2, . . . ,ms+2) is large compared with (x2, . . . , lr+2) approxi-

mate the quotient Q1, and the zeros (x2, . . . , lr+2, y2, . . . , ms+2) in which (y2, . . . ,ms+2) is small compared

with (x2, . . . , lr+2) approximate Q2. And we saw at the beginning that the solutions with (y2, . . . , ms+2)

about the same size as (x2, . . . , lr+2) approximate the identified neighbourhoods of q1 and q2.

To make these statements precise it is necessary to clarify what is meant by approximation. The

argument above can be rewritten like this: let the map αε : Qε
1#2 −→ HPr+s+1/U(1)r+s be the quotient

by U(1)r+s of the map given on the associated bundles by mapping a zero (x2, . . . , lr+2, y2, . . . , ms+2) of

V ε
1#2 to (x2, . . . , lr+2, εy2, . . . , εms+2). Then one shows that the topological limit of αε[Qε

1#2] is a subset

of HPr+s+1/U(1)r+s that has an explicit isomorphism β with Q1.

Now by differential topology, where β is well-behaved there is a diffeomorphism γ of a neighbourhood

of β[Q1] in HPr+s+1 and a neighbourhood of the zero section in the normal bundle of β[Q1]. So γ gives

a smooth retraction δ of a neighbourhood of β[Q1] onto β[Q1]. But β is well-behaved everywhere except

at q1, so by cutting out the part of Q1#2 sent to a small neighbourhood of q1 the rest of Q1#2 may be

mapped to Q1.

We assume that for sufficiently small ε the subset U1 of Q1#2 coming from the set

T1 =
{
(x2, . . . , lr+2, y2, . . . , ms+2) : |x2|2 + |l2|2 + . . . + |lr+2|2 < 2(|y2|2 + |m2|2 + . . . + |ms+2|2)

}
(148)

is mapped by αε into the range of δ, and that the smooth map ρε = β−1 ◦ δ ◦ αε : U1 −→ Q1 is a

diffeomorphism between U1 and its image in Q1. We also assume that for sufficiently small ε the subset

U2 of Q1#2 coming from the set

T2 =
{
(x2, . . . , lr+2, y2, . . . , ms+2) : |y2|2 + |m2|2 + . . . + |ms+2|2 < 2(|x2|2 + |l2|2 + . . . + |lr+2|2)

}
(149)

can be mapped diffeomorphically to its image in Q2 under the map σε, constructed in the same way as

ρε. These are reasonable assumptions because they mean that away from q1, the limit of half of Q1#2 to

Q1 is well-behaved, and similarly for Q2.
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By applying the same arguments to the associated bundles, ρε, σε may be lifted to maps of bundles,

also denoted ρε, σε, between the associated bundles of U1, U2 and Q1,Q2 that fibre over the first maps.

The proof will be completed by studying the join between U1 and U2 when ε is small. It will be seen that

in the quotient it forms a ‘neck’ as in the generalized connected sum of the quotients Q1,Q2 at q1 and q2.

Thus the quotient manifold is indeed the generalized connected sum of Q1 and Q2.

Suppose that ε is small. Let A be the region in Hr+s+2 defined by

A =
{
(x2, . . . , lr+2, y2, . . . , ms+2) :

1
2
(|x2|2 + |l2|2 + . . . + |lr+2|2) < |y2|2 + |m2|2 + . . . + |ms+2|2

< 2(|x2|2 + |l2|2 + . . . + |lr+2|2)
}
;

(150)

then A = T1∩T2 and the subset of Q1#2 coming from A is U1∩U2. So ρε[U1∩U2] is defined by the condition

1
2ρε(|x2|2 + |l2|2 + . . . + |lr+2|2) < ρε(|y2|2 + |m2|2 + . . . + |ms+2|2) < 2ρε(|x2|2 + |l2|2 + . . . + |lr+2|2). Now

as ε → 0, ρε(|x2|2 + . . .+ |lr+2|2) → |x2|2 + . . .+ |lr+2|2, and ε2ρε(|y2|2 + . . .+ |ms+2|2) → K1(|x1|2 + |l1|2),

for some positive constant K1. Thus for small ε, ρε[U1 ∩ U2] is approximately the subset of Q1 coming

from

A1 =
{
(x1, l1, x2, . . . , lr+2) ∈ Q1 :

ε2

2
(|x2|2 + |l2|2 + . . . + |lr+2|2) < K1(|x1|2 + |l1|2)

< 2ε2(|x2|2 + |l2|2 + . . . + |lr+2|2)
}
.

(151)

It is easy to see that the subset of Q1 coming from A1 is a small ‘annulus’ about q1, for q1 is the point

x1 = l1 = 0, and the condition on A1 is that x1 and l1 should be small compared to the other quotient

variables, but not too small. Similarly, σε[U1 ∩ U2] is approximately the subset of Q2 coming from

A2 =
{
(y1,m1, y2, . . . , ms+2) ∈ Q2 :

ε2

2
(|y2|2 + |m2|2 + . . . +|ms+2|2) < K2(|y1|2 + |m1|2)

< 2ε2(|y2|2 + |m2|2 + . . . + |ms+2|2)
}
.

(152)

Now the assumptions about ρε, σε above imply that when ε is sufficiently small, Q1#2 is the union of

two open sets U1, U2, of which U1 is diffeomorphic to Q1 minus a small ball about q1 and U2 diffeomorphic

to Q2 minus a small ball about q2, and moreover that the overlap between U1 and U2 is mapped to a small

annulus of size about ε in each of Q1,Q2. Therefore, once it is shown that the identification between the
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two annuli is the one required, the proof that when ε is small Q1#2 is the generalized connected sum of

Q1 and Q2 at q1, q2 will be complete.

Recall from §B.3 that (x, l, x1, l1) are coordinates for the normal bundle of the fibre of the associated

bundle of Q1 over q1, and similarly (y, m, y1,m1) for Q2. The techniques used to make ρε, σε above give a

smooth coordinate system (x, l, x1, l1) on a neighbourhood of the fibre of the associated bundle of Q1 over

q1 inducing the old x, l, x1, l1 on the normal bundle, and similarly for Q2. For small ε these coordinate

systems can be pulled back using ρε and σε to the associated bundle of U1 ∩ U2.

Comparing the two on the associated bundle of U1 ∩U2 gives a description of the identification of the

annuli in Q1 and Q2. In the approximation of Q1#2 to Q1, x1 and l1 were defined using y and m. In

fact the factors of ε used in the definition of S1 imply that when ε is small, (ρε)−1(x1) ≈ ε(σε)−1(y) and

(ρε)−1(l1) ≈ ε(σε)−1(m). Similarly (σε)−1(y1) ≈ ε(ρε)−1(x) and (σε)−1(m1) ≈ ε(ρε)−1(l).

Thus when ε is small, the identification between the annuli in Q1 and Q2 is given approximately

in coordinates on the associated bundles by x1 = εy, l1 = εm, εx = y1, εl = m1. But this is just the

identification C chosen in §B.3 for the generalized connected sum, up to factors of ε. Therefore the

quotient Q1#2 is the generalized connected sum of Q1 and Q2 at q1 and q2.

Recall that in §B.2 the assumption was made that V1, V2 should be respectively contained in 〈|x1|2 −

|l1|2, . . . , |xr+2|2 − |lr+2|2〉 and 〈|y1|2 − |m1|2, . . . , |ys+2|2 − |ms+2|2〉, and that this will be true anyway

unless the actions φ, χ have extra symmetries. Now we consider whether this assumption can be removed.

The problem with allowing Vi to be more general is that it may no longer be possible to define the actions

τ, υ, firstly because τ, υ would have to preserve V1 and V2, and secondly because V1, V2 are used to define

τ and υ and the definitions no longer make sense. Thus the construction cannot be carried out for more

general moment maps Vi.

However, there is another possibility, which is that if the actions φ, χ are not sufficiently general – that

is, some φi or χi is trivial, or for some distinct i, j either φi = φj , φi = φ−1
j , χi = χj or χi = χ−1

j – then

the new action of U(1)r+s on HPr+s+1 may be in the same sense not sufficiently general. This happens in

the quotients given as examples in §§B.5 and B.6. In this case, we may consider allowing the moment maps

V1#2 to be a subspace of the larger vector space W1#2 not contained in 〈|x2|2−|l2|2, . . . , |ys+2|2−|ms+2|2〉.

It is clear that for such V1#2 sufficiently close to one of the nonsingular quotients produced above,

the quotient with moment maps V1#2 will also be nonsingular. Thus the moduli spaces of nonsingular

quotients will be of larger dimension in the case when the group action is not general than it would
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otherwise be, because of the extra freedom to vary the moment maps. An example of this will appear

in §B.6.

B.5. Poon’s metrics on CP2#CP2

As an example in §4.4, it was shown that a certain quaternionic quotient of HP3 by U(1)2 gives

Poon’s self-dual metrics on the connected sum of two CP2’s [P]. In this section it will be explained why

this particular quotient was chosen: as the simplest non-trivial examples of the application of Theorem

B.4.1 we shall consider the connected sum of two CP2’s, and the generalized connected sum of two CP2
2,1,1’s

with the quaternionic structures of §4.2. These will both turn out to be the quotient given in §4.4, but

represent different ends of the open interval (0, 1) of self-dual conformal structures on CP2#CP2.

We begin with the connected sum of two CP2’s. Let Q1 be the quotient of HP2 with coordi-

nates (x1, l1, x2, l2, x3, l3) on the associated bundle by the action φ : (x1, l1, x2, l2, x3, l3) 7−→ (ux1, u
−1l1,

ux2, u
−1l2, ux3, u

−1l3) of U(1) and moment maps V1 = 〈|x1|2 + |x2|2 + |x3|2 − |l1|2 − |l2|2 − |l3|2〉. Let Q2

be the same quotient but with coordinates (y1,m1, y2,m2, y3,m3) and action χ. Then Q1,Q2 are CP2.

Let q1, q2 be the corners associated to (x1, l1) and (y1,m1).

Now Γ1, Γ2 are just {±1}, and thus give no constraints on the definitions of x, l, y,m. Examining the

solutions of V1 when x1 = l1 = 0 shows that c2 = −c3. So set c2 = 1, c3 = −1, and define coordinates

(x, l) on the fibre of the associated bundle over q1 by x′2 = 1√
2
x, l′2 = 1√

2
l, x′3 = 1√

2
l, l′3 = − 1√

2
x. Then

c2, c3 define the action τ of U(1) upon x2, l2, x3, l3. Because of the ‘
√

2’s in the definitions of x, l we can

put e2 = 1, e3 = −1 and thus get the twistor function w1 = |x2|2 − |l2|2 − |x3|2 + |l3|2.

Similarly let d2 = 1, d3 = −1, and define y,m, υ and w2 as x, l, τ, w1 so that w2 = |y2|2 − |m2|2 −

|y3|2 + |m3|2. Now apply Theorem B.4.1 to get a new quaternionic quotient Q1#2 which is the connected

sum of Q1,Q2 at q1, q2.

The theorem states that if Q1#2 is defined as the quaternionic quotient of HP3 with coordinates

(x2, l2, x3, l3, y2,m2, y3, m3) on the associated bundle by U(1)2 with action

(x2, l2, x3, l3,

y2,m2, y3,m3)
(u1,u2)7−→ (u1u2x2, u

−1
1 u−1

2 l2, u1u
−1
2 x3, u

−1
1 u2l3,

u1u2y2, u
−1
1 u−1

2 m2, u
−1
1 u2y3, u1u

−1
2 m3)

, (u1, u2) ∈ U(1)× U(1),

(153)
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and moment maps V1#2 = 〈ε2(|y2|2 − |m2|2 − |y3|2 + |m3|2) + |x2|2 − |l2|2 + |x3|2 − |l3|2, ε2(|x2|2 − |l2|2 −

|x3|2+|l3|2)+|y2|2−|m2|2+|y3|2−|m3|2〉, then for small ε the quotient Q1#2 is a non-singular quaternionic

structure on CP2#CP2.

To simplify this, make the following definitions:

z1 = x2, n1 = l2, z2 = y2, n2 = m2,

z3 = x3, n3 = l3, z4 = m3, n4 = −y3,

u = u1u2, v = u1u
−1
2 .

(154)

Then the quotient can be written as the quaternionic quotient of HP3 with coordinates (z1, n1, . . . , z4, n4)

on the associated bundle by U(1)2 with action

(z1, n1, z2, n2,

z3, n3, z4, n4)
(u,v)7−→ (uz1, u

−1n1, uz2, u
−1n2,

vz3, v−1n3, vz4, v−1n4)
, (u, v) ∈ U(1)× U(1), (155)

and moment maps V1#2 = 〈(1+ ε2)(|z1|2− |n1|2 + |z2|2− |n2|2)+ (1− ε2)(|z3|2− |n3|2− |z4|2 + |n4|2), (1+

ε2)(|z3|2−|n3|2 + |z4|2−|n4|2)+(1−ε2)(|z1|2−|n1|2−|z2|2 + |n2|2)〉, where we have changed basis in V1#2.

Now by inspection this is the same as the quaternionic quotient of §4.4, with parameter α = 1−ε2

1+ε2 .

Thus when ε is small, α is in (0, 1) and very close to 1. So α = 1 corresponds to the metric decaying into

two CP2’s.

Our second application of Theorem B.4.1 is to the generalized connected sum of two CP2
2,1,1’s. This

time let Q1 be the quotient of HP2 with coordinates (x1, l1, x2, l2, x3, l3) on the associated bundle by the

action φ : (x1, l2, x2, l2, x3, l3) 7−→ (x1, l1, ux2, u
−1l2, ux3, u

−1l3) of U(1) and moment maps V1 = 〈|x1|2 +

|x2|2 + |x3|2−|l1|2−|l2|2−|l3|2〉. Let Q2 be the same quotient but with coordinates (y1,m1, y2,m2, y3,m3)

and action χ. Then from §4.2, Q1,Q2 are quaternionic structures on CP2
2,1,1. Let q1, q2 be the corners

associated to (x1, l1) and (y1, m1). Then q1, q2 are the orbifold points of Q1,Q2.

Then Γ1,Γ2 are again equal to {±1}, but the actions onH2 are different, since−1 acts by (x, l, x1, l1) 7→

(x, l,−x1,−l1) and (y, m, y1,m1) 7→ (y,m,−y1,−m1). The identification C does not actually identify the

actions of Γ1 and Γ2, but only the actions of {±1} × Γ1 and {±1} × Γ2, as discussed in §B.3. The

disagreement arises because CP2
2,1,1 is spin, but CP2#CP2 is not.

Let x, l, y,m, τ, υ, w1 and w2 be as in the previous case. Actually, the definitions of τ, υ don’t matter,

since φ1 = χ1 = 1 and so τ, υ act trivially. Theorem B.4.1 then says that if Q1#2 is defined to be the

quaternionic quotient of HP3 with coordinates (x2, l2, x3, l3, y2,m2, y3, m3) on the associated bundle, by

U(1)2 with action
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(x2, l2, x3, l3,

y2,m2, y3,m3)
(u1,u2)7−→ (u1x2, u

−1
1 l2, u1x3, u

−1
1 l3,

u2y2, u
−1
2 m2, u2y3, u

−1
2 m3)

, (u1, u2) ∈ U(1)× U(1), (156)

and moment maps V1#2 = 〈ε2(|y2|2 − |m2|2 − |y3|2 + |m3|2) + |x2|2 − |l2|2 + |x3|2 − |l3|2, ε2(|x2|2 − |l2|2 −

|x3|2+|l3|2)+|y2|2−|m2|2+|y3|2−|m3|2〉, then for small ε the quotient Q1#2 is a non-singular quaternionic

structure on the generalized connected sum of CP2
2,1,1 with itself at the orbifold points.

This will again be rewritten by defining

z1 = x2, n1 = l2, z2 = x3, n2 = l3,

z3 = y2, n3 = m2, z4 = y3, n4 = m3,

u = u1, v = u2.

(157)

Then the quotient can be written as the quaternionic quotient of HP3 with coordinates (z1, n1, . . . , z4, n4)

on the associated bundle, by U(1)2 with action

(z1, n1, z2, n2,

z3, n3, z4, n4)
(u,v)7−→ (uz1, u

−1n1, uz2, u
−1n2,

vz3, v−1n3, vz4, v−1n4)
, (u, v) ∈ U(1)× U(1), (158)

and moment maps V1#2 = 〈(|z1|2 − |n1|2 + |z2|2 − |n2|2) + ε2(|z3|2 − |n3|2 − |z4|2 + |n4|2), (|z3|2 − |n3|2 +

|z4|2 − |n4|2) + ε2(|z1|2 − |n1|2 − |z2|2 + |n2|2)〉.

By inspection this is the quotient of §4.4 with parameter α = ε2, and also of course the same as the

previous quotient except that ε2 replaces 1−ε2

1+ε2 . Note that when ε is small, α is in (0, 1) and very close to 0.

Therefore α = 0 corresponds to the metric decaying into two CP2
2,1,1’s (which are ALE spaces associated

to the group {±1}) glued at their orbifold points.

Theorem B.4.1 has been applied in two different situations to give the same quotient, but we found

that small ε parameterized different regions of the space of moment maps in each case. This means that

the space of self-dual conformal structures on CP2#CP2 is an open interval, and the two cases construct

the same quotient, but start at opposite ends of the interval.

B.6. LeBrun’s metrics on nCP2

To each finite subgroup Γ of SU(2) there is associated a family of four-dimensional, nonsingular

hyperkähler manifolds called ALE spaces which approach the flat metric on C2/Γ at infinity [Hi]. A

construction of these metrics as hyperkähler quotients has been given by Kronheimer in [Kr]. The simplest
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ALE spaces are those associated to cyclic subgroups of SU(2), and these are hyperkähler quotients of Hn+1

by U(1)n, and so are also quaternionic quotients of HPn+1 by U(1)n.

Thus the ALE spaces associated to finite cyclic groups are the type of quotient considered in §B.2.

They can in fact be constructed from weighted projective spaces using the methods of §B.4, as will be

explained in §B.7.

Recall that weighted projective spaces with only one orbifold point were studied in §4.2. They are

exactly the weighted projective spaces CP2
n,1,1 with n > 1. The orbifold group at [1, 0, 0] in CP2

n,1,1 is

Γ =
{(

u 0
0 u

)
: un = 1

}
, (159)

which with our orientation conventions is complementary to the orbifold group of the orbifold point of an

ALE space associated to the cyclic group of order n.

Using these two ingredients and the results of §B.4, a quaternionic quotient will be constructed for

the generalized connected sum of these two orbifolds, which will be shown in Theorem B.6.1 to be one of

LeBrun’s self-dual metrics on nCP2 [L2].

Let Q1 be the quaternionic quotient of HPn with coordinates (x1, l1, . . . , xn+1, ln+1) on the associated

bundle by U(1)n−1, with action

(x1, l1, . . . , xi, li, . . . , xn, ln, xn+1, ln+1)
(u1,...,un−1)7−→

(u1x1, u
−1
1 l1, . . . , uiu

−1
i−1xi, u

−1
i ui−1li, . . . , u

−1
n−1xn, un−1ln, xn+1, ln+1),

(u1, . . . , un−1) ∈ U(1)n−1,

(160)

and moment maps

V1 = 〈|x1|2 − |l1|2 − |x2|2 + |l2|2 + ζ1(|xn+1|2 − |ln+1|2), . . . ,

|xn−1|2 − |ln−1|2 − |xn|2 + |ln|2 + ζn−1(|xn+1|2 − |ln+1|2)〉;
(161)

then Q1 is in fact the quotient given in [Kr] for the ALE space associated to the cyclic group of order n,

rewritten in quaternionic form and with moment maps µ2 = µ3 = 0 and µ1 given by ζ1, . . . , ζn−1, which

are some real constants. Let ζ1, . . . , ζn−1 be generic; then Q1 is nonsingular except for the orbifold point

xn+1 = ln+1 = 0.

Let Q2 be the quotient given in §4.2 for CP2
n,1,1, so that Q2 is the quaternionic quotient of HP2 with

coordinates (y1,m1, y2, m2, y3,m3) on the associated bundle, by U(1) with action
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(y1,m1, y2,m2, y3, m3)
u7−→(u2−ny1, u

n−2m1, u
ny2, u

−nm2, u
ny3, u

−nm3), u ∈ U(1), (162)

and moment maps V2 = 〈|y1|2 + |y2|2 + |y3|2 − |m1|2 − |m2|2 − |m3|2〉. Then the corners q1, q2 associated

to (xn+1, ln+1) in Q1 and (y1, m1) in Q2 are complementary, and Theorem B.4.1 may be applied to get

a quotient Q1#2, such that Q1#2 is the generalized connected sum of Q1 and Q2 at q1, q2, and is thus a

compact, non-singular 4-manifold.

In defining x, l, y,m, the moment maps give c1 = . . . = cn and d2 = −d3; as the orbifold group is

contained in SU(2) ⊂ SO(4) it does not matter which signs are chosen. Choose c1 = . . . = cn = 1 and

define the coordinates (x, l) by x′i = 1√
n
x, l′i = 1√

n
l. Put ei = 1, so that w1 = |x1|2−|l1|2+. . .+|xn|2−|ln|2.

Also choose d2 = 1, d3 = −1 and define (y, m) by y′2 = 1√
2
y, m′

2 = 1√
2
m, y′3 = 1√

2
m, m′

3 = − 1√
2
y. Then we

may put f2 = 1, f3 = −1 so that w2 = |y2|2 − |m2|2 − |y3|2 + |m3|2.

So by Theorem B.4.1, if Q1#2 is defined as the quaternionic quotient of HPn+1 with coordinates

(x1, . . . , ln, y2, . . . ,m3) on the associated bundle, by U(1)n with action

(x1, l1, . . . , xi, li, . . . ,
(u1,...,un−1,u)7−→ (u2−nu1x1, u

n−2u−1
1 l1, . . . , u

2−nuiu
−1
i−1xi, u

n−2u−1
i ui−1li, . . . ,

xn, ln, y2,m2, y3,m3) u2−nu−1
n−1xn, un−2un−1ln, uny2, u

−nm2, u
ny3, u

−nm3),

(u1, . . . , un−1, u) ∈ U(1)n,

(163)

and moment maps

V1#2 = 〈|x1|2 − |l1|2 − |x2|2 + |l2|2 + ζ1ε
2(|y2|2 − |m2|2 − |y3|2 + |m3|2), . . . ,

|xn−1|2 − |ln−1|2 − |xn|2 + |ln|2 + ζn−1ε
2(|y2|2 − |m2|2 − |y3|2 + |m3|2),

ε2(|x1|2 − |l1|2 + . . . + |xn|2 − |yn|2) + |y2|2 − |m2|2 + |y3|2 − |m3|2〉,

(164)

then Q1#2 is the nonsingular generalized connected sum of Q1 and Q2 at q1, q2 for ε sufficiently small.

One very special feature of the quotient Q1#2 is that the group action upon the quaternionic pairs

(y2,m2) and (y3,m3) is the same. This is a consequence of the fact that Q1 is hypercomplex rather than

simply quaternionic, which causes φn+1 to be trivial. This fact will be used in the proof of Theorem B.6.1;

it also means that Re(y2y3−m2m3), Im(y2y3−m2m3) are U(1)n- invariant twistor functions and can thus

be used to make deformations of V1#2 to get different metrics, as at the end of §B.4.
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Starting from a quotient known to be nonsingular, such as Q1#2 with ε small, it is clear that for

sufficiently small changes to the vector space V1#2 of moment maps in the vector space W1#2 of U(1)n- in-

variant twistor functions, the new quotient will also be nonsingular, for nonsingularity is an open condition.

(We think of fixing ε small, and then making changes much smaller than ε.)

A parameter count reveals that allowing V1#2 to vary in W1#2 gives 3n − 6 parameters of distinct

quaternionic structures on W1#2 for n > 2. This is the same as the number of parameters in LeBrun’s

construction, and it will be proved below that the two constructions yield exactly the same families of

quaternionic structures.

For the rest of this section, we shall suppose that Q1#2 is the quotient produced above, but that the

vector space of moment maps V1#2 is any n- dimensional subspace of W1#2 such that Q1#2 is compact

and nonsingular.

Theorem B.6.1. The nonsingular quotient Q1#2 defined above is one of LeBrun’s metrics on nCP2 [L2].

Moreover, so is any nonsingular quotient given by choosing a different vector space of moment maps in

W1#2. All of LeBrun’s metrics on nCP2 are examples of this construction.

Proof. Each self-dual conformal 4-manifold M has a twistor space Z fibring over it that is a 3-dimensional

complex manifold with a real structure. If M has a conformally isometric action of U(1), this action can

be lifted to Z and then complexified, to give an action of C∗. Quotienting a suitable open set of Z by

this action gives a 2-dimensional complex manifold T with a real structure, called a mini-twistor space.

Mini-twistor spaces correspond to 3-manifolds with a structure on them called an Einstein-Weyl geometry,

in the same way as twistor spaces correspond to 4-manifolds with a self-dual conformal structure.

In twistor language, LeBrun’s construction of self-dual metrics on nCP2 is the reverse of this process:

one begins with a mini-twistor space T and defines the twistor space Z as a line bundle L over T ; if L is

chosen carefully, its total space can be compactified to give the twistor space of a compact manifold. The

extra information of the scalar-flat Kähler metric in the conformal class is given by a real section of K
− 1

2
T .

(For all the above material, see [L2], §6.)

What we will do is produce a conformally isometric action of U(1) on the quotient Q1#2, and show

that the mini-twistor space T1#2 constructed from the twistor space Z1#2 is the mini-twistor space of

the hyperbolic 3-plane H3. It will then follow that the quaternionic structure on Q1#2 is constructed by

LeBrun’s ‘Hyperbolic Ansatz’ ([L2], §4, Proposition 2).
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Examining the fixed points of the U(1) action then show us the ‘nuts and bolts’ that must be glued

in to compactify the metric, and one can tell exactly which of LeBrun’s metrics Q1#2 is by projecting the

fibres of the isolated fixed points to the mini-twistor space T1#2; under the isomorphism of T1#2 with the

mini-twistor space of H3 these correspond to the points {p1, . . . , pn} that are the data LeBrun uses in §5

of [L2] to construct his metrics.

Define an action θ of U(1) on Q1#2 by

θ : (x1, l1, . . . , xn, ln, y2,m2, y3,m3)
v7−→(vx1, v

−1l1, . . . , vxn,v−1ln, y2,m2, y3, m3),

v ∈ U(1);
(165)

then θ induces actions of U(1) on Q1#2 and the twistor space Z1#2 that will also be called θ. Let the

complexification of θ on Z1#2 be θc.

Now the mini-twistor space of H3 is the quotient T of the stable points of the twistor space CP3 of

S4 by a complexified action of U(1); in homogeneous coordinates [z0, z1, z2, z3] on CP3 with real structure

[z0, z1, z2, z3] 7→ [z1,−z0, z3,−z2], the action is

[z0, z1, z2, z3]
v7−→[vz0, v

−1z1, vz2, v
−1z3], v ∈ C∗. (166)

Using the fact that Z1#2 may equally be defined using the real group U(1)n and all three moment

maps, or the complexification (C∗)n and the complex moment map µ2 + iµ3, the quotient T1#2 of the

stable points of Z1#2 by θc may be mapped biholomorphically to T by the map

[x1, l1, . . . , xn, ln, y2,m2, y3,m3]/(C∗)n+1 7−→ [y2, m2, y3,m3]/C∗. (167)

This maps into the right space because of the actions (163) and (165), and it is a biholomorphism

because given any [z0, z1, z2, z3] in T , the identifications y2 = z0, m2 = z1, y3 = z2, m3 = z3 do define

the terms in y2,m2, y3,m3 in the complex moment maps exactly, and then the space of complex moment

maps corresponding to V1#2 defines the values of x1l1, . . . , xnln.

But these values are sufficient to define the orbit of (x1, l1, . . . , xn, ln) under (C∗)n. So given an element

of T , one can define the orbit under (C∗)n+1 of a solution of the complex moment maps corresponding

to V1#2, in other words, an element of T1#2. This gives a holomorphic inverse to the holomorphic map

T1#2 → T , so the two are biholomorphic; moreover, the map identifies the real structures of T and T1#2.
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It is easy to verify that the isolated fixed points of the action θ on Q1#2 are the corners associated

to the quaternionic pairs (x1, l1),. . . ,(xn, ln), and that the non-isolated fixed points can be represented by

points (x1, . . . , m3) with y2 = y3 = 0 (alternatively, m2 = m3 = 0). Now xi = li = 0 defines a real line in

T1#2 that is identified with the fibre over some point pi in H3 under the identification with T . In this way

one defines points p1, . . . , pn in H3 corresponding to isolated fixed points of the action θ of U(1) on Q1#2,

and it is clear that Q1#2 is isomorphic to the metric constructed from p1, . . . , pn by LeBrun in §5 of [L2].

The correspondence can be made explicit: there is a unique basis for V1#2 with ith element |xi|2 −

|li|2 + αi(|y2|2 − |m2|2)+ βi(|y3|2 − |m3|2)+ γi Re(y2y3 −m2m3)+ δi Im(y2y3 −m2m3). Rescaling (xi, li)

by a real factor rescales (αi, . . . , δi) by a positive real factor, so only the equivalence class [αi, βi, γi, δi] in

S3 of (αi, . . . , δi) matters.

Then [αi, βi, γi, δi] ∈ S3 defines the point pi through a 1-1 correspondence between an open set of

S3 and H3. (The rest of S3 leads to a singular quotient.) Conversely, p1, . . . , pn define α1, . . . , δn up to

positive real factors and choosing the factors gives V1#2, and then the quotient Q1#2 is isomorphic to

LeBrun’s metric on nCP2 constructed from p1, . . . , pn. This concludes the proof of Theorem B.6.1.

For n > 2 and generic moment maps V1#2, θ gives the entire symmetry group of Q1#2, since other

U(1) actions on HPn+1 will not preserve V1#2. The vector space of twistor functions on Q1#2 is simply

W1#2/V1#2, so its dimension is four. From §2.4, these represent the Kähler metrics of zero scalar curvature

in the conformal class of Q1#2.

The metrics that are asymptotically Euclidean are represented by twistor functions that vanish at

only one point in Q1#2, and it is easy to see that there is (up to homothety) exactly one of these for

every fixed point of θ; the twistor function |xi|2−|li|2 is an asymptotically Euclidean Kähler metric on the

complement of the corner associated to (xi, li) in Q1#2 for i = 1, . . . , n, and there is also a two-sphere’s

worth of metrics that are asymptotically Euclidean close to a point on the two-sphere fixed by θ.

B.7. Generalized connected sums of weighted projective spaces

We now have at our disposal a collection of orbifolds – the weighted projective spaces – and a method

which gives quaternionic structures on generalized connected sums of them at their corners, which are

usually their orbifold points. In this section it will be shown how to build up nonsingular spaces from

these elements.
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Firstly we will show that every orbifold singularity of a weighted projective space can be desingularized

by making a generalized connected sum with a collection of weighted projective spaces. In fact for each

orbifold group, a particular collection of weighted projective spaces will be built up in an inductive way,

that will be called the standard resolution of the orbifold group.

Consider resolving the corner [1, 0, 0] of CP2
p,q,r with p, q, r pairwise coprime. (Actually q, r do not

need to be coprime.) Recall from §B.1 that CP2
p,q,r and CP2

p,q′,r′ have complementary singularities at

[1, 0, 0] if either there is an integer s such that sq′ ≡ −q(mod p) and sr′ ≡ r(mod p) or there is an integer

s such that sq′ ≡ −r(mod p) and sr′ ≡ q(mod p).

There is a unique integer q′ such that rq′ ≡ −q(mod p) and 1 ≤ q′ < p, and a unique integer q′′

such that qq′′ ≡ −r(mod p) and 1 ≤ q′′ < p. Then the points [1, 0, 0] in CP2
p,q′,1 and CP2

p,q′′,1 are both

complementary to the point [1, 0, 0] in CP2
p,q,r. Define p0 = p and p1 = min{q′, q′′}. Then p0, p1 are

coprime, p1 < p0 and CP2
p0,p1,1 has only two singular points at [1, 0, 0] and [0, 1, 0], of which [1, 0, 0] is

complementary to the point [1, 0, 0] in CP2
p,q,r.

Construct a finite sequence p0 = p > p1 > . . . > pk = 1 inductively, as follows. Make p0, p1 as above.

Having just constructed pl, if pl = 1 then set k = l and terminate the sequence. Otherwise make pl+1 in

the same way as p1, so that pl, pl+1 are coprime, 1 ≤ pl+1 < pl and [1, 0, 0] in CP2
pl,pl+1,1 is complementary

to [0, 1, 0] in CP2
pl−1,pl,1

. The sequence must terminate because it is a decreasing sequence of positive

integers.

The point [1, 0, 0] in CP2
p,q,r may now be desingularized by doing a chain of connected sums: take the

generalized connected sum of CP2
p,q,r at [1, 0, 0] with CP2

p0,p1,1 at [1, 0, 0], and then for l = 2, . . . , k take

the generalized connected sum of CP2
pl−1,pl,1

at [0, 1, 0] with CP2
pl,pl+1,1 at [1, 0, 0]. The last element of the

chain is CP2
pk−1,1,1 which has only the one singular point [1, 0, 0].

So given a quotient Q and a corner q such that the orbifold singularity at q in Q is that of CP2
p,q,r

at [1, 0, 0], using the sequence CP2
p0,p1,1, . . . , CP2

pk−1,1,1 and the method of §B.4 a quotient Q′ may be

built up, such that for small values of the parameters in the moment maps, Q′ is this chain of generalized

connected sums. Then Q′ is Q with the orbifold point q desingularized by gluing in a collection of weighted

projective spaces. This will be called the standard resolution of Q at q.

For each orbifold group of a point in a weighted projective space, this method also yields quaternionic

structures upon a compact manifold with one orbifold point complementary to the orbifold group, by just

taking the generalized connected sum of the chain CP2
p0,p1,1,. . . , CP

2
pk−1,1,1. It can be shown that for finite
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cyclic subgroups of U(1) acting by scalar multiplication, these spaces are the corresponding ALE spaces

which appeared in §B.6.

The simplest way to build up non-singular spaces using the techniques of §B.4 is just to take the

connected sum of several CP2’s at their corners. The discussion above gives another method: take any

weighted projective space or generalized connected sum of a collection of weighted projective spaces, and

then desingularize by performing the standard resolution of each remaining orbifold point. For example,

LeBrun’s metrics of §B.6 are just the standard resolution of CP2
n,1,1.

We shall now see that these methods yield more than one different quaternionic quotient for nCP2

when n > 3. There are in fact quotients for nCP2 for which the group action is not the same for any two

quaternionic pairs, and which cannot therefore be isomorphic as quotients to the quaternionic quotient for

nCP2 in §B.6.

The simplest such example is the connected sum of 4 CP2’s with three of the four joined on at the

three corners of the fourth. Applying the methods of §B.4 yields a quaternionic quotient of HP5 by U(1)4

with its space of moment maps depending on three small parameters ε1, ε2, ε3, and by inspection all six

quaternionic pairs in the quotient have distinct group actions. So the quotient is not isomorphic to the

quotient for LeBrun’s metrics on 4CP2. It can be shown by induction that for n > 4 there are similar

connected sums yielding quotients not isomorphic to the corresponding quotient for LeBrun’s metrics.

To show that these other quotients do not nevertheless yield subfamilies of the LeBrun metrics, observe

that we understand the boundary of the moduli space of LeBrun’s metrics well enough to say that they

cannot decay into connected sums in certain ways. Thus, as well as LeBrun’s metrics on nCP2 there

are for n > 3 other distinct families of quaternionic structures on nCP2 that can be constructed by the

quaternionic quotient.

All of these families are quaternionic quotients of HPn+1 by U(1)n, such that the group actions on all

n +2 quaternionic pairs are non-trivial and distinct. These facts imply that the vector space W of U(1)n-

invariant twistor functions is just 〈|x1|2 − |l1|2, . . . , |xn+2|2 − |ln+2|2〉 if (x1, . . . , ln+2) are quaternionic

coordinates on the associated bundle of HPn+1; there are 2n parameters for the choice of the moment map

vector space V , but these are acted upon by an n + 1- dimensional group of isomorphisms coming from

rescaling the quaternionic pairs, and so the dimension of the moduli space is n− 1.

Thus each of these other families of self-dual metrics on nCP2 for n > 3 should have dimension

n − 1, which fits nicely with the observation that repeated applications of Theorem B.4.1 to build up a
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connected sum of n CP2’s result in n − 1 small parameters ε1, . . . , εn−1 for the quotient. In contrast, for

n > 2 LeBrun’s family of metrics on nCP2 has 3n − 6 parameters. Also the space of twistor functions

W/V on the quotients has two dimensions, there are up to homothety n + 2 different asymptotically flat

Kähler metrics with zero scalar curvature in the conformal class of each, and the identity component of

the symmetry group is generically U(1)2, rather than U(1) as in LeBrun’s case.

A concrete description of these families of metrics, similar to LeBrun’s description of his metrics, has

been given in §4.5 of Chapter 4.

B.8. Quotients for Asymptotically Locally Flat metrics

In the study of ‘gravitational instantons’ initiated by Gibbons and Hawking, attention has focussed

on complete self-dual solutions of Einstein’s vacuum equations with two sorts of asymptotic behaviour

at infinity, called Asymptotically Locally Euclidean (ALE) and Asymptotically Locally Flat (ALF). ALE

metrics are metrics which at infinity asymptotically resemble R4/Γ, where Γ is some finite subgroup of

SO(4) (usually also of SU(2)) acting freely on R4 \ {0}. Thus the conformal compactification of an ALE

end of some metric on a manifold is just an orbifold, with orbifold group Γ at the extra point.

A space is ALF if outside a compact set the metric approaches the metric

ds2 = dr2 + r2(σ2
1 + σ2

2) + σ2
3 , (168)

where σi are the left invariant 1-forms on S3/Γ, and Γ is a finite isometry group of this U(2)- invariant

metric. So the topology of an ALF end of a Riemannian manifold may be the same as the topology of such

a manifold with an ALE end; it is just the asymptotic properties of the metric which differ. Note that

the metric does not actually approach a flat model at infinity, but does have finite action. Some simple

Ricci-flat ALF spaces have been written down by Hawking [Ha], for cyclic groups Γ.

In this section we will write down a quotient for the basic hyperkähler ALF metric on R4, and then see

how to include it into the general scheme of the last few sections of taking connected sums of quotients.

The first corollary of this is a quotient construction for Hawking’s ALF spaces; I would like to note

that this quotient was already known to P.B. Kronheimer (personal communication, 1991), who also has a

construction of hyperkähler ALF spaces for dihedral groups Γ, using a monopole moduli space. The second

corollary is the ability to stick ALF ends onto self-dual manifolds that are already known as quotients.
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In particular, there is a large supply of complete ALF Kähler manifolds with zero scalar curvature, which

are perhaps interesting.

B.8.1. An ALF metric on R4

Consider the following quaternionic quotient of HP2 by R. Let (x, y, z, l,m, n) be complex coordinates

on H3, the associated bundle of HP2, in the usual way, and let R act by

(x, y, z, l, m, n) t7−→(eitx, y + tz, z, e−itl,m + tn, n), t ∈ R, (169)

with moment maps

µ1 = |x|2 − |l|2 − iyz + iyz + imn− imn (170)

and µ2 + iµ3 = 2ixl − 2yn + 2zm. (171)

This quotient has only one ‘corner’ that can be used to form a connected sum in the sense of the

previous sections, since the nonstandard action means that the other two variable pairs cannot be incor-

porated into their scheme. The corner is associated to (x, l) and is a nonsingular point of the quotient,

corresponding to 0 in R4. The point z = 0, n = 0 of the quotient is the singular point where the ALF end

is; when z = n = 0 the action of R is no longer free, as 2πiZ ⊂ R acts trivially.

The quotient can be seen as a hyperkähler quotient, as fixing z=1 and n=0 gives the quotient of H2

with coordinates x, y, l, m by the action

(x, y, l,m) t7−→(eitx, y + t, e−itl, m), t ∈ R, (172)

with moment maps

µ1 = |x|2 − |l|2 − 2 Im y (173)

and µ2 + iµ3 = 2ixl + 2m, (174)

which is the hyperkähler quotient of H2 by the given action.

This hyperkähler quotient is isometric to the metric
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ds2 =
r + 1

r
dr2 + r(r + 1)(σ2

1 + σ2
2) +

r

r + 1
σ2

3 , (175)

which is the simplest example of the ALF metrics in [Ha]. To see this, divide the solution set of the

moment maps by 2πiZ ⊂ R to get a U(1)- bundle over R3×S1 with coordinates (y +2πiZ,m). The U(1)-

bundle comes from a monopole on R3, derived from a Green’s function for the origin. The metric thus

comes from ‘twisting’ R3×S1 by this monopole, which is how Hawking constructs his metrics; these ideas

were explained in Chapter 3.

B.8.2. Including ALF ends in more general quotients

A quotient has been given with a single corner associated to (x, l) – call this quotient Q1. To make

a connected sum with another quotient Q2 the method of the previous sections may be followed, the only

nonstandard part being the definition of the action τ , which should be

τ(u) : (y, z, m, n) 7−→ (uy, uz, u−1m,u−1n), u ∈ U(1). (176)

One can also make a generalized connected sum with an orbifold corner of Q2. If the orbifold group is Γ

then the result is a self-dual metric with an ALF end with group Γ.

Let Q2 be the hyperkähler quotient for an ALE space associated to a cyclic group Γ, and the chosen

corner in Q2 be the orbifold point. (To write Q2 in our standard quaternionic quotient form involves

introducing an extra variable pair as coordinates for the quaternionic lines of the associated bundle, and

this variable pair is the ‘corner’ associated to the orbifold point. Functions of this variable pair replace

the constants in the hyperkähler moment map equations, and the quotient group acts trivially upon the

extra variables.)

The considerations above show that the resulting connected sum will be self-dual, with the topology

of the chosen ALE space but with an ALF end. We claim that it is in fact one of the metrics of [Ha].

Again, this is shown by the method of twisting by monopoles mentioned above, but here we will just show

that the quotient is hyperkähler.

This can be seen by displaying the quotient as the quaternionic form of a hyperkähler quotient, but

also follows from a more general principle: the quotient will certainly be hypercomplex, as the quotient

group of the new quotient Q1#2 acts trivially upon the variable pair (z, n) from Q1, which is the condition

for a quaternionic quotient to be hypercomplex. But for general reasons a hypercomplex 4-manifold that
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is compact or has suitable asymptotic ends will be locally hyperkähler, for the connection induced by ∇

upon the real line bundle of volume forms is self-dual.

A self-dual connection on a trivial bundle that is either over a compact 4-manifold, or else over a

non-compact manifold but which is asymptotically trivial at the ends, must be flat by the usual topolog-

ical argument. So the holonomy locally reduces from GL(1,H) to SL(1,H), i.e. the manifold is locally

hyperkähler. This argument is essentially that given by Boyer ([Bo], top of p. 163).

Finally we remark that the twistor function µ1 = |z|2 − |n|2, µ2 + iµ3 = 2izn transfers to the new

quotient Q1#2, and defines a Kähler metric of zero scalar curvature on Q1#2 that is complete and ALF.

So, for instance, taking Q2 to be a quotient for nCP2, it can be seen that C2 blown up at n points (in

some sufficiently special configuration) admits an ALF zero-scalar-curvature Kähler metric.



Appendix C: A Sobolev Embedding Theorem for

Asymptotically Flat Manifolds

This appendix contains a sketch proof of Theorem 7.3.7, which is a strengthened particular case of

the Sobolev embedding theorem for asymptotically flat manifolds.

Theorem C. Suppose that (N, gN) is a connected, asymptotically flat Riemannian manifold of dimension

n. Then there is a constant A such that

‖φ‖p ≤ A

(∫

N

|∇φ|2dVgN

) 1
2

for φ ∈ L2
1(N). (177)

Proof. By [Au], Theorem 2.28, the theorem holds for N equal to Rn with its flat metric. Now for any

other asymptotically flat metric on Rn (with the standard coordinates as asymptotic coordinates), there

are uniform estimates relating volume forms and length of vectors of this new metric and the standard

metric, and so by increasing the constant A, the Theorem holds for any asymptotically flat metric on Rn.

Using a gluing argument, we may construct a smooth, asymptotically flat metric ĝ on Rn, that

outside some ball in Rn is isometric to the metric on N , outside some compact set. We may also make a

Riemannian metric g̃ on Ñ , the one-point compactification of N , that agrees with the metric on N outside

some ball about the added point. Let these metrics ĝ, g̃ be chosen such that the regions of N on which

they agree with gN have union N , and intersection AN , an annulus in N .

Choose a smooth partition of unity (β1, β2) for N , that is identically (0, 1) and (1, 0) respectively on

the two components of N \ AN . Now given a function φ ∈ L2
1(N), φ = β1φ + β2φ; these two functions

may be regarded as functions on Rn and Ñ in the obvious way. But it has already been shown that the

theorem applies to functions on Rn with respect to ĝ, and by Theorem 7.2.1 a suitable Sobolev embedding

theorem applies on Ñ . Using these two inequalities and manipulating, it can be shown that

‖φ‖p ≤ K

(∫

N

|∇φ|2dVgN

) 1
2

+
∫

N

u|φ|dVgN for φ ∈ L2
1(N), (178)

where u is some fixed nonnegative C∞ function, of compact support in N .
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Because N is connected and asymptotically flat, it can be shown using the method of Green’s functions

that there exists a C∞ function f with |∇f | = O(|v|1−n) for large |v|, such that ∆f = u on N . Integrating

by parts, we find that

∫

N

u|φ|dVgN
=

∫

N

∇f · ∇|φ|dVgN
≤

(∫

N

|∇f |2dVgN

) 1
2

·
(∫

N

|∇φ|2dVgN

) 1
2

, (179)

by Hölder’s inequality, and as
∫

N
|∇f |2dVgN exists, combining this with (178) proves the theorem.



Appendix D: The Spectrum of a∆ on Connected Sum Manifolds

In this appendix we prove some results about the eigenvalues and eigenvectors of the operator a∆

on the manifold M with the metrics gt defined in §§8.1, 8.2, 10.1 and 10.2. They were quoted in §9.3 and

§10.3, and appear here and not in the main text because the proofs are fairly long, rather unenlightening

calculations that probably will not interest most readers of this thesis.

The first result, which takes up §§D.1 and D.2, is about the metrics of §§8.1 and 8.2. The metrics gt

of §8.1 consist of a small asymptotically flat manifold M ′′ glued into a constant scalar curvature manifold

M ′. For these, the first result says that if a∆ on M ′ has no eigenvalues within 2γ of b, then a∆ on M

with the metric gt has no eigenvalues within γ of b for small t. It also gives a similar statement for the

metrics of §8.2.

It is natural to divide the problem up into the eigenvalues smaller than b and the eigenvalues larger

than b. The eigenvectors with eigenvalues smaller than b form a finite dimensional space E, say, and

when t is small, E approximates E′ in the case of §8.1 and E′ ⊕ E′′ in the case of §8.2. So one way to

approach the proof would be to construct the space E on (M, gt) for small t, starting from E′ or E′ ⊕E′′

as appropriate, and then to show that all eigenvalues for eigenvectors in E are at most b − γ, and all

eigenvalues for eigenvectors in E⊥ are at most b + γ.

Our proof does not do this, as providing an explicit construction of E, say using a sequence method,

would be a lot of work. Instead we define a space Et that is quite a good approximation to E. The extra

idea we need is this. For any nonzero φ ∈ L2
1(M), we may define a sort of ‘average eigenvalue’ of a∆ on φ

by λ =
∫

M
a
∣∣∇φ

∣∣2dVgt/
(∫

M
φ2dVgt

)
. Then we show that for sufficiently small t and any nonzero φ ∈ Et,

this ‘average eigenvalue’ is at most b − γ, and for any nonzero φ ∈ (Et)⊥ it is at least b + γ. With these

two statements we are able to prove, by contradiction, that a∆ has no eigenvalues in (b− γ, b + γ).

The first part of the argument, the construction of the space Et and the proof that the average

eigenvalues of Et are at most b− γ, is carried out in §D.1, and the second part of the argument, showing

that the average eigenvalues of (Et)⊥ are at least b + γ, is carried out in §D.2.

In the third section §D.3, we prove similar results for use in the zero scalar curvature material of

Chapter 10. Most of the work needed to prove them has already been done in §§D.1 and D.2, and the

main problem is the construction of an eigenvector β of a∆ with a small eigenvalue λ. This is done by

183
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a sequence method, the basic idea being to start with an approximation to β and repeatedly invert a∆

upon it; as λ is the smallest positive eigenvalue, the β- component of the resulting sequence grows much

faster than any other and so comes to dominate.

D.1. Eigenvalues of a∆ smaller than b

In this section and the next we prove Theorem 9.3.1, which is reproduced here.

Theorem 9.3.1. Let {gt : t ∈ (0, δ)} be one of the families of metrics defined on M = M ′#M ′′ in §8.1

or §8.2, and suppose that for some γ > 0, a∆ has no eigenvalues in the interval (b − 2γ, b + 2γ) on M ′

in the case of §8.1, and on both M ′ and M ′′ in the case of §8.2. Then for sufficiently small t, a∆ has

no eigenvalues in the interval (b− γ, b + γ) on (M, gt).

Proof. It is well known that the spectrum of the Laplacian on a compact Riemannian manifold is discrete

and nonnegative, and that the eigenspaces are finite-dimensional. Therefore on M ′ and M ′′ there are only

finitely many eigenvalues of a∆ smaller than b, and to each is associated a finite-dimensional space of

eigenfunctions.

Let E′ be the finite-dimensional vector space of smooth functions on M ′ generated by eigenfunctions

of a∆ on M ′ associated to eigenvalues less than b; we think of E′ as a subspace of L2
1(M

′). For the case

of §8.2, define E′′ on M ′′ in the same way. From the statement of the theorem, we assume that a∆ has

no eigenvalues in the interval (b− 2γ, b + 2γ). This implies the following two statements:

if φ ∈ E′, then
∫

M ′
a
∣∣∇φ

∣∣2dVg′ ≤
∫

M ′
(b− 2γ)φ2dVg′ , (180)

if φ ∈ (E′)⊥ ⊂ L2
1(M

′), then
∫

M ′
a
∣∣∇φ

∣∣2dVg′ ≥
∫

M ′
(b + 2γ)φ2dVg′ , (181)

and also two analogous inequalities for M ′′ in the case of §8.2. The perpendicular subspace (E′)⊥ of (181)

may be taken with respect to the inner product of L2
1(M

′) or with respect to that of L2(M ′) — both give

the same space, as E′ is a sum of eigenspaces of a∆.

Now if we have two statements like (180) and (181) but applying to M rather than M ′, then we can

prove the result. This is the content of the next lemma.

Lemma D.1.1. Suppose that for small enough t there is a subspace Et of L2
1(M) satisfying the following

two conditions:
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if φ ∈ Et, then
∫

M

a
∣∣∇φ

∣∣2dVgt ≤
∫

M

(b− γ)φ2dVgt , (182)

if φ ∈ (Et)⊥ ⊂ L2
1(M), then

∫

M

a
∣∣∇φ

∣∣2dVgt
≥

∫

M

(b + γ)φ2dVgt
, (183)

where the inner product used to construct (Et)⊥ is that of L2
1(M). Then Theorem 9.3.1 holds.

Proof. Let t be sufficiently small that such a space Et exists. We must show that l ∈ (b− γ, b + γ) cannot

be an eigenvalue of a∆ on (M, gt). Suppose for a contradiction that φ is an eigenfunction of a∆ for this

eigenvalue l. Let φ1 and φ2 be the components of φ in Et and (Et)⊥ respectively. Then, as a∆φ− lφ = 0,

0 =
∫

M

(φ2 − φ1)
(
a∆(φ1 + φ2)− l(φ1 + φ2)

)
dVgt

=
∫

M

(
a|∇φ2|2 − lφ2

2

)
dVgt −

∫

M

(
a|∇φ1|2 − lφ2

1

)
dVgt

≥
∫

M

(
(γ + l − b)φ2

1 + (γ + b− l)φ2
2

)
dVgt ,

using (182) and (183) in the last line. But as γ + l − b, γ + b − l > 0, this shows that φ1 = φ2 = φ = 0,

which is a contradiction.

To complete the proof of the theorem, we therefore need to produce some spaces Et of functions on M

satisfying (182) and (183). The space Et approximates the vector space of eigenfunctions of a∆ associated

to eigenvalues smaller than b. Let η be such an eigenfunction. In the case of §8.1, we intuitively recognize

two possibilities: firstly, that η is of order 1 on the parts of M coming from both M ′ and M ′′, so that η

approximates an eigenfunction of a∆ on M ′, and secondly, that η is small on the part coming from M ′

and large on that from M ′′.

The second possibility we may exclude, for as η is large on only a very small volume, ‖∇η‖2 is large

compared to ‖η‖2, and thus η must be associated to a large eigenvalue of a∆, and not one smaller than b.

So in the case §8.1, it is natural to model the space Et upon E′. A similar heuristic argument shows that

for the case of §8.2, it is natural to model Et upon E′ ⊕ E′′.

As a first step towards constructing the spaces Et, a space Ẽ′ of functions on M ′ will be made that

is close to E′, but the functions of which vanish on a small ball around m′; in the case of §8.2, a similar

space Ẽ′′ will also be made. Let σ′ be a C∞ function on M ′ that is identically 1 on the complement of a

small ball about m′, identically 0 on a smaller ball about m′, and otherwise taking values in [0, 1]. Now

define Ẽ′ by
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Ẽ′ = σ′E′ = {σ′v : v ∈ E′}. (184)

By choosing the ball outside of which σ′ is identically 1 to be sufficiently small, and making sure

that σ′ is reasonably well behaved on that ball, we can ensure that Ẽ′ is close to E′ in L2
1(M

′) in the

following sense: the two have the same dimension, and any ṽ ∈ Ẽ′ may be written as ṽ = v1 + v2, where

v1, v2 ∈ E′, (E′)⊥ respectively, and satisfy

‖v2‖22,1 ≤
γ

2(a + b + 2γ)
‖v1‖22,1. (185)

Suppose that σ′ has been chosen so that these hold. Then two statements similar to (180) and (181)

hold for Ẽ′, as we shall see in the next lemma.

Lemma D.1.2. The subspace Ẽ′ satisfies the following two conditions:

if φ ∈ Ẽ′, then
∫

M ′
a
∣∣∇φ

∣∣2dVg′ ≤
∫

M ′
(b− 3

2γ)φ2dVg′ , (186)

if φ ∈ (Ẽ′)⊥ ⊂ L2
1(M

′), then
∫

M ′
a
∣∣∇φ

∣∣2dVg′ ≥
∫

M ′
(b + 3

2γ)φ2dVg′ , (187)

where the inner product used to construct (Ẽ′)⊥ is that of L2
1(M

′).

Proof. First we prove (186). Let φ ∈ Ẽ′; then φ = v1 + v2, with v1 ∈ E′ and v2 ∈ (E′)⊥. Because v1 and

v2 are orthogonal in both L2 and L2
1,

a

∫

M ′

∣∣∇φ
∣∣2dVg′ = a

∫

M ′

∣∣∇v1

∣∣2dVg′ + a

∫

M ′

∣∣∇v2

∣∣2dVg′

≤ a

∫

M ′

∣∣∇v1

∣∣2dVg′ + a‖v2‖22,1

≤ a

∫

M ′

∣∣∇v1

∣∣2dVg′ +
aγ

2(a + b + 2γ)
‖v1‖22,1

= a

(
1 +

γ

2(a + b + 2γ)

) ∫

M ′

∣∣∇v1

∣∣2dVg′ +
aγ

2(a + b + 2γ)

∫

M ′
v2
1dVg′

≤
(

(b− 2γ)
(

1 +
γ

2(a + b + 2γ)

)
+

aγ

2(a + b + 2γ)

) ∫

M ′
v2
1dVg′

≤ (b− 3
2γ)

∫

M ′
φ2dVg′ .

(188)

Here between the second and third lines we have used (185), between the fourth and fifth lines we have

used (180), and between the last two we have used the L2- orthogonality of v1 and v2 and the trivial

inequality (b− 2γ)[1 + γ/2(a + b + 2γ)] + aγ/2(a + b + 2γ) ≤ b− 3γ/2. This proves (186).



D.1. Eigenvalues of a∆ smaller than b 187

To prove (187), observe that by (185), orthogonal projection from Ẽ′ to E′ is injective, and as they

have the same (finite) dimension, it must also be surjective. Let ṽ2 ∈ (Ẽ′)⊥. Then ṽ2 = v1 + v2 with

v1 ∈ E′ and v2 ∈ (E′)⊥. By this surjectivity, there exists ṽ1 ∈ Ẽ′ such that ṽ1 = v1 + v3 with v3 ∈ (E′)⊥,

that is, the E′- component of ṽ1 is v1, the same as that of ṽ2. But ṽ1 and ṽ2 are orthogonal in L2
1(M

′), so

taking their inner product gives that ‖v1‖22,1 = −v2 · v3 ≤ ‖v3‖2,1‖v2‖2,1.

As ṽ1 = v1 + v3 ∈ Ẽ′, we may square this inequality, substitute in for ‖v3‖22,1 using (185), and divide

through by ‖v1‖22,1. The result is that

‖v1‖22,1 ≤
γ

2(a + b + 2γ)
‖v2‖22,1, for ṽ2 = v1 + v2 ∈ (Ẽ′)⊥, (189)

which is the analogue of (185) for (Ẽ′)⊥ instead of Ẽ′. This is the ingredient needed to prove (187) by the

method used above for (186), and the remainder of the proof will be left to the reader.

For the case of §8.2, a subspace Ẽ′′ of functions on M ′′ is created in exactly the same way, and Lemma

D.1.2 clearly applies to this space too. The point of defining the modified spaces Ẽ′, Ẽ′′ is that, since they

vanish on neighbourhoods of m′,m′′, the functions may easily be transferred to functions on (M, gt) for

sufficiently small t. This is because subsets of (M, gt) are identified as Riemannian manifolds with the

complements of balls about m′,m′′ in M ′,M ′′; the functions are then naturally extended by zero outside

the subsets on which they are defined. The transferred spaces will give the function spaces Et needed to

apply Lemma D.1.1.

Define the space of functions Et on M as follows. For the case of §8.1, let Et be the space of functions

that are equal to some function in Ẽ′ on the subset of M naturally identified with M ′ \Φ′[Bt(0)], and are

zero outside this subset. For the case of §8.2, let Et be the direct sum of this space of functions, and the

space of functions made in the same way, but with the rôles of M ′ and M ′′ reversed.

For sufficiently small t, the functions of Ẽ′ vanish upon Φ′[Bt(0)] (and similarly for Ẽ′′), and so the

functions in Et are C∞. Also, in this case the metric gt actually agrees with that of M ′ (M ′′) on the

support of the functions in Et. Thus (186) applies to Et.

Lemma D.1.3. For small enough t, the subspace Et of L2
1(M) satisfies

if φ ∈ Et, then
∫

M

a
∣∣∇φ

∣∣2dVgt ≤
∫

M

(b− 3
2γ)φ2dVgt . (190)

A fortiori, it satisfies the inequality (182) of Lemma D.1.1.
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Proof. In the case of §8.1, this follows immediately from (186), because of the preceding remark that the

metrics of M and M ′ agree upon the support of the functions of Et. In the case of §8.2, the function φ

is the sum of a function from Ẽ′ and a function from Ẽ′′; both sides of (190) split into two terms, each

involving one function. So (190) is the sum of two inequalities, which follow immediately from (186) as

before, and from the counterpart of (186) applying to Ẽ′′.

The previous lemma showed that the space of functions Et upon M satisfies inequality (182) of Lemma

D.1.1. In the next proposition we show that the inequality (183) is satisfied too.

Proposition D.1.4. For sufficiently small t, inequality (183) of Lemma D.1.1 holds.

Proof: see §D.2.

The proof of this proposition is somewhat messy, and is the subject of the next section. Suppose

for the moment that the proposition holds. Then a space of functions Et upon M has been constructed,

satisfying inequality (182) by Lemma D.1.3, and inequality (183) by Proposition D.1.4. So by Lemma

D.1.1, the proof of Theorem 9.3.1 is finished.

D.2. Eigenvalues of a∆ larger than b

This section is devoted to the proof of the last proposition of the previous section, which will finish

the proof of Theorem 9.3.1. The idea of the proof is as follows. Given a function φ in (Et)⊥, we want to

show that its ‘average eigenvalue’ of a∆ is at least b + γ. We may restrict φ to M ′ or both M ′ and M ′′

and use facts about the average eigenvalues of a∆ on these manifolds, but the process of restriction does

not use the values of φ upon the small copy of M ′′ or the ‘neck’, and thus this method only works if the

proportion of
∫

φ2dVgt in these regions is small enough.

So we are left with the case of φ ∈ (Et)⊥ with φ2 concentrated in a small region. When t is small,

this implies that φ is large on this region compared with its values elsewhere, and therefore φ must change

a lot in a neighbourhood of the small region. This enables us to give a lower bound for
∫

M
a
∣∣∇φ

∣∣2dVgt in

terms of
∫

M
φ2dVgt , and hence a lower bound for the ‘average eigenvalue’.

Proposition D.1.4. Let M , gt and Et be as in §D.1. Then for sufficiently small t, if φ ∈ (Et)⊥ ⊂

L2
1(M), then

∫

M

a
∣∣∇φ

∣∣2dVgt ≥
∫

M

(b + γ)φ2dVgt . (191)
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Proof. For simplicity we shall prove the proposition for the case of the metrics of §8.1 only, and the fairly

easy modifications to get the case of §8.2 will be left to the reader. We will start from (187) of Lemma

D.1.2. The constants in (191) and (187) are different — the first has b + γ, the second b + 3γ/2. This

difference will be needed in the course of the proof to absorb several error terms into. In order to avoid

lots of numerical constants, let b0 = b + 3γ/2, let b5 = b + γ, and choose constants b1, b2, b3, b4 such that

b0 > b1 > b2 > b3 > b4 > b5. These will be used to contain four separate error terms.

Shortly we shall define three constants r1, r2, r3 such that r1 < r2 < r3. They are be independent of

t, and define three compact Riemannian submanifolds Rt ⊂ St ⊂ Tt of (M, gt), with boundaries, which

will be the subsets of M coming from subsets R,S and T of M ′′ respectively, where

R = M ′′ \ Φ′′
[
Rn \ Br1(0)

]
, S = M ′′ \ Φ′′

[
Rn \ Br2(0)

]
and T = M ′′ \ Φ′′

[
Rn \ Br3(0)

]
. (192)

When t is sufficiently small, Rt, St and Tt lie in the region of M in which the function β2, used in

§8.1 to define gt, is equal to 1. Then Rt, St, Tt are homothetic to R,S, T respectively, by a homothety

multiplying their metrics by t12.

The idea is this. A diffeomorphism Ψ′t from M ′ \ {m′} onto M \Rt will be constructed, which will be

the identity (with the natural identifications) outside the set Tt. Using the diffeomorphism, any function

in L2
1(M) will define a function in L2

1(M
′). Applying (187) of Lemma D.1.2 therefore induces an inequality

upon functions in L2
1(M). We will be able to show that for functions that are not in some sense too large

in St, this inequality implies (191) as we require. Then only the case of functions that are large in St will

remain.

Suppose, for the moment, that r1, r2, r3 are fixed with r1 < r2 < r3. For the set Rt to be well defined,

r1 must satisfy r1 > δ−4. For Tt to be well defined, t must be sufficiently small that t6r3 < δ; let us also

suppose that t is small enough that the functions of Et vanish on Tt.

Let the map Ψ′t : M ′\{m′} → M be the identity (under the natural identification) outside Φ′
[
Bt6r3(0)

]

in M ′, and on Φ′
[
Bt6r3(0)

]
in M ′ define Ψ′t by

Ψ′t (Φ′(v)) = Φ′
(

t6r1v

|v| +
(r3 − r1)v

r3

)
. (193)

Let φ ∈ L2
1(M), and define φ′ by φ′(x) = φ(Ψ′t(x)). Then, as we shall see, φ′ ∈ L2

1(M
′).

An easy calculation shows that
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b0

∫

M ′
(φ′)2dVg′ = b0

∫

M

φ2 · FtdVgt
, (194)

where Ft is a function on M that is 1 on that part of M coming from M ′ \Φ′
[
Bt6r3(0)

]
, is 0 on that part

of M not coming from M ′ \ Φ′
[
Bt6r1(0)

]
, and in the intermediate annulus is given by

Ft

(
(φ′)−1(v)

)
=

(|v| − t6r1)n−1rn
3

|v|n−1(r3 − r1)n
· ψ′(v)pψt(v)−p. (195)

Similarly, we may easily show that

a

∫

M ′

∣∣∇φ′
∣∣2dVg′ ≤ a

∫

M

∣∣∇φ
∣∣2 ·GtdVgt , (196)

where Gt is a function on M that is 1 on that part of M coming from M ′ \Φ′
[
Bt6r3(0)

]
, is 0 on that part

of M not coming from M ′ \ Φ′
[
Bt6r1(0)

]
, and in the intermediate annulus is given by

Gt

(
(φ′)−1(v)

)
= max

(
(|v| − t6r1)n−1rn+2

3

|v|n−1(r3 − r1)n+2
,
(|v| − t6r1)n−3rn−2

3

|v|n−3(r3 − r1)n−2

)
· ψ′(v)ψt(v)−1. (197)

Here, the first term in the max(. . .) is the multiplier for the radial component of ∇φ, and the second term

is the multiplier for the nonradial components. As Ft, Gt are bounded, we see from (194) and (196) that

φ′ ∈ L2
1(M

′), as was stated above.

Suppose now that φ ∈ (Et)⊥ ⊂ L2
1(M). For small enough t this implies that φ′ ∈ (Ẽ′)⊥, and so (187)

applies by Lemma D.1.2. Combining this with (194) and (196) gives that

a

∫

M

∣∣∇φ
∣∣2 ·GtdVgt ≥ b0

∫

M

φ2 · FtdVgt . (198)

Now by the definition of ψt, ψ′(v)ψt(v)−1 approaches 1 as t → 0. In fact it may be shown that

∣∣ψ′(v)ψt(v)−1 − 1
∣∣ ≤ C0t

6(n−2)|v|−(n−2) when t6 ≤ |v| ≤ t6−2/(n−2),

for some constant C0. For t small enough this certainly holds in the region t6r1 ≤ |v| ≤ t6r3, and in this

region we have
∣∣ψ′(v)ψt(v)−1 − 1

∣∣ ≤ C0r
−(n−2)
1 .

Choose r1 greater than 1 or δ−4 as appropriate, and sufficiently large that b1(1 + C0r
−(n−2)
1 )p ≤ b0

and b2 ≤ b1(1− C0r
−(n−2)
1 ). Then for small t, the ψ′ψ−1

t terms in Ft and Gt can be absorbed by putting

b2 in place of b0. Next, r2 is defined in terms of r3 to be the unique constant satisfying r1 < r2 < r3 and



D.2. Eigenvalues of a∆ larger than b 191

b3(r2 − r1)n−1rn
3 r1−n

2 (r3 − r1)−n = b4. Then b3(|v| − t6r1)n−1rn
3 |v|1−n(r3 − r1)−n ≥ b4 when t6r2 ≤ |v| ≤

t6r3. This is to bound the function Ft below on the region |v| ≥ t6r2.

Finally, we define r3. Choose r3 > r1 sufficiently large that two conditions hold. The first is that

b3 ·max
(
(|v|− t6r1)n−1rn+2

3 |v|1−n(r3− r1)−(n+2), (|v|− t6r1)n−3rn−2
3 |v|3−n(r3− r1)2−n

) ≤ b2 when t6r1 ≤

|v| ≤ t6r3; combining this with one of the inequalities used to define r1 shows that b3Gt ≤ b1. The second

condition is that

vol(S)
vol(T )− vol(S)

≤ b4 − b5

4b5
. (199)

This condition will be needed later.

The last two definitions are somewhat circular, as r2 is defined as a function of r3, and it also enters

into the second condition defining r3 because St depends on r2. However, manipulating the definition

of r2 reveals that however large r3 is, r2 must satisfy r2 ≤ r1(1 − b
1/(n−1)
3 b

−1/(n−1)
2 )−1, and so vol(S) is

bounded in terms of r1, whereas vol(T ) can grow arbitrarily large. Therefore the second condition does

hold for r3 sufficiently large.

The above estimates show that Gt ≤ b1/b3 and Ft ≥ b1b4/b0b3 on M \ St for small t. Substituting

these into (198) gives that when t is sufficiently small,

a

∫

M

∣∣∇φ
∣∣2dVgt ≥ b4

∫

M\St

φ2dVgt . (200)

Suppose that
∫

St
φ2dVgt ≤ (b4/b5−1) · ∫

M\St
φ2dVgt . Then b4

∫
M\St

φ2dVgt ≥ b5

∫
M

φ2dVgt , and from

(200) we see that (191) holds for φ, which is what we have to prove. Therefore it remains only to deal

with the case that
∫

St
φ2dVgt > (b4/b5 − 1) · ∫

M\St
φ2dVgt .

Suppose that this inequality holds. The basic idea of the remainder of the proof is that when t is

small, the volume of St is also small, and this forces φ to be large on St compared to its average value

elsewhere. Therefore φ must change substantially in the neighbourhood Tt of St, and this forces ∇φ to be

large in Tt.

Restrict t further, to be small enough that t6r3 ≤ t2. Then Tt is contained in the region of gluing in

which β2 = 1. So the pair (St, Tt) is homothetic to a pair (S, T ) of compact manifolds with C∞ boundaries

and with S contained in the interior of T ; the metrics on (St, Tt) are the metrics on (S, T ) multiplied by

t12. For these S, T the following lemma holds.
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Lemma D.2.1. Let S, T be compact, connected Riemannian manifolds of dimension n with smooth

boundaries, such that S ⊂ T but S 6= T . Then there exists a constant C1 such that for all φ ∈ L2
1(T ),

(∫
S

φ2dVg

vol(S)

) 1
2

−
( ∫

T\S φ2dVg

vol(T )− vol(S)

) 1
2

≤ C1

(∫

T

∣∣∇φ
∣∣2dVg

) 1
2

. (201)

Proof. We begin by quoting a theorem on the existence of solutions of the equation ∆u = f on a manifold

with smooth boundary.

Theorem [Hö]. Suppose that T is a compact manifold with smooth boundary, and that f ∈ L2(T ) and

satisfies
∫

T
fdVg = 0. Then there exists ξ ∈ L2

2(T ), unique up to the addition of a constant, such that

∆ξ = f , and in addition n · ∇ξ vanishes at the boundary, where n is the unit outward normal to the

boundary.

Proof. This is a partial statement of Example 2 on p. 265 of [Hö]. Hörmander’s example is only stated

for C∞ functions f and ξ, but the proof works for f ∈ H(0)(T ) and ξ ∈ H(2)(T ) in his notation, which are

L2(T ) and L2
2(T ) in ours.

Now put f = vol(S)−1 in S and f = (vol(S) − vol(T ))−1 in T \ S. Then
∫

T
fdVg = 0, so by the

theorem, there exists a function ξ ∈ L2
2(M) satisfying ∆ξ = f , and that ∇ξ vanishes normal to the

boundary. Because of this vanishing, the boundary term has dropped out of the following integration by

parts equation:

∫

T

φ∆ξ = −
∫

T

(∇φ
) · (∇ξ

)
dVg. (202)

Substituting in for ∆ξ and using Hölder’s inequality gives

1
vol(S)

∣∣∣∣
∫

S

φdVg

∣∣∣∣−
1

vol(T )− vol(S)

∣∣∣∣∣
∫

T\S
φdVg

∣∣∣∣∣ ≤
(∫

T

∣∣∇ξ
∣∣2dVg

) 1
2

·
(∫

T

∣∣∇φ
∣∣2dVg

) 1
2

. (203)

Now S is connected, so the constants are the only eigenvectors of ∆ on S with eigenvalue 0 and

derivative vanishing normal to the boundary. By the discreteness of the spectrum of ∆ on S with these

boundary conditions, there is a positive constant KS less than or equal to all the positive eigenvalues. It

easily follows that for φ ∈ L2
1(S),

(∫
S

φ2dVg

vol(S)

) 1
2

≤ 1
vol(S)

∣∣∣∣
∫

S

φdVg

∣∣∣∣ +
(∫

S
|∇φ|2dVg

KS · vol(S)

) 1
2

. (204)
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Also, a simple application of Hölder’s inequality yields

1
vol(T )− vol(S)

∣∣∣∣∣
∫

T\S
φdVg

∣∣∣∣∣ ≤
( ∫

T\S φ2dVg

vol(T )− vol(S)

) 1
2

. (205)

Adding together (203), (204) and (205) gives (201), as we want, with constant C1 =
(∫

T
|∇ξ|2dVg

)1/2+

(KS · vol(S))−1/2.

The point of this calculation is that because (St, Tt) are homothetic to (S, T ) by the constant factor

t12, Lemma D.2.1 implies that for all φ ∈ L2
1(Tt),

(∫
St

φ2dVgt

vol(S)

) 1
2

−
( ∫

Tt\St
φ2dVgt

vol(T )− vol(S)

) 1
2

≤ C1t
6

(∫

Tt

∣∣∇φ
∣∣2dVgt

) 1
2

. (206)

Now, using the mysterious condition (199) that appeared in the definition of r3, it follows that

(∫

St

φ2dVgt

) 1
2

−
(

b4 − b5

4b5

∫

M\St

φ2dVgt

) 1
2

≤ vol(S)
1
2 C1t

6

(∫

M

∣∣∇φ
∣∣2dVgt

) 1
2

. (207)

But, because we are dealing only with the case that
∫

St
φ2dVgt > (b4/b5−1)·∫

M\St
φ2dVgt , substituting

this into (207), squaring and manipulating gives that

b5

∫

M

φ2dVgt <
b4b5

b4 − b5
·
∫

St

φ2dVgt <
4b4b5t

12C2
1 vol(S)

b4 − b5
·
∫

M

∣∣∇φ
∣∣2dVgt . (208)

Therefore, if t is sufficiently small, then inequality (191) holds. This completes the proof of the proposition.

D.3. The spectrum of a∆ in the zero scalar curvature case

Now we prove Proposition 10.3.3 and Theorems 10.3.2 and 10.3.4, whose proofs were deferred until

this appendix. We shall start with a preliminary version of Theorems 10.3.2 and 10.3.4. Suppose as in

these two theorems that we are given γ > 0 such that every positive eigenvalue of a∆ on M ′ is greater or

equal to 2γ, and that in the case of §10.2 the same holds on M ′′. Then

if φ ∈ L2
1(M

′) and
∫

M ′ φdVg′ = 0, then
∫

M ′
a
∣∣∇φ

∣∣2dVg′ ≥
∫

M ′
2γφ2dVg′ , (209)

and the same for M ′′ in the case of §10.2. This is an analogue of (181) of §D.1, and the analogues of E′

and E′′ are the spaces of constant functions on M ′ and M ′′.
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Define spaces of functions Et on M as in §D.1. This involves choosing a function σ′ on M ′ (done just

before Lemma D.1.2) that is equal to 1 outside a small ball around m′, and a similar function σ′′ on M ′′.

For the proof of Proposition 10.3.3 later, we must choose σ′, σ′′ to vary with t rather than being fixed as

they were before. Let σ′, σ′′ be functions on M ′,M ′′ defined in the same way as the functions β1, β2 of

§10.1, but that are equal to 0 when |v| ≤ t2k/(n+2) and equal to 1 when |v| ≥ t(n−2)/(n+1) and outside

B′, B′′.

This definition makes sense for small enough t, because the definition of k in §10.1 implies that

2k/(n + 2) > (n− 2)/(n + 1) so that t2k/(n+2) < t(n−2)/(n+1) < δ for small t. Note also that the choice of

the inner radius t2k/(n+2) means (from §10.1) that gt is identified with g′ and g′′ on the support of σ′ and

σ′′ respectively, so that the functions Et are supported in the parts of M with metric equal to g′ or g′′.

Using the spaces Et, we may state the following first approximation to Theorems 10.3.2 and 10.3.4:

Lemma D.3.1. Let {gt : t ∈ (0, δ)} be one of the families of metrics defined in §§10.1 or 10.2. Then for

all sufficiently small t,

if φ ∈ (Et)⊥ ⊂ L2
1(M), then

∫

M

a
∣∣∇φ

∣∣2dVgt ≥ γ

∫

M

φ2dVgt . (210)

Here the orthogonal space is taken with respect to the L2 inner product.

Proof. This is proved just as is Proposition D.1.4, except that we use the inner product in L2(M) rather

than that in L2
1(M), and instead of choosing a series of constants interpolating between b + 2γ and b + γ,

we choose a series of constants interpolating between 2γ and γ, and some simple changes must be made

to the proof because the powers of t used in defining the metrics of §§10.1 and 10.2 are different to those

used in §§8.1 and 8.2.

Now as Et is modelled on E′ for the case of §10.1 and on E′ ⊕ E′′ for the case of §10.2, it is close to

the constant functions in the first case, and to functions taking one constant value on the M ′ part of M

and another constant value on the M ′′ part in the second case.

These spaces Et are not quite good enough for the purposes of this section, for we shall need spaces

that contain the constants. We therefore produce modified spaces Ẽt, and prove a similar lemma for

them. In the case of §10.1, let Ẽt be the constant functions. For the case of §10.2, let e ∈ Et be the

unique element that is nonnegative on the part of M coming from M ′ and satisfies
∫

M
e dVgt = 0 and

∫
M

e2dVgt = 2vol(M ′), and let Ẽt be the two-dimensional vector space generated by e and the constants.
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Lemma D.3.2. Let {gt : t ∈ (0, δ)} be one of the families of metrics defined in §§10.1 or 10.2. Then for

all sufficiently small t,

if φ ∈ (Ẽt)⊥ ⊂ L2
1(M), then

∫

M

a
∣∣∇φ

∣∣2dVgt
≥ γ

∫

M

φ2dVgt
. (211)

Here the orthogonal space is taken with respect to the L2 inner product.

Proof. Let ξ be the unique element of Et satisfying
∫

M
ξdVgt

= 1, and
∫

M
eξdVgt

= 0 in the case of §10.2.

If φ ∈ (Ẽt)⊥, then φ− 〈φ, ξ〉 ∈ E⊥
t , where 〈. , .〉 is the inner product of L2(M). So by Lemma D.3.1,

∫

M

a
∣∣∇φ

∣∣2dVgt
≥ γ

∫

M

(
φ− 〈φ, ξ〉)2

dVgt

= γ

∫

M

(
φ2 + 〈φ, ξ〉2)dVgt

≥ γ

∫

M

φ2dVgt
.

Here between the first and second lines we have used the fact that φ ∈ (Ẽt)⊥, and thus
∫

M
φdVgt = 0, as

the constants lie in Ẽt.

As Ẽt is just the constant functions in the case of §8.1, we immediately deduce

Corollary D.3.3. Theorem 10.3.2 is true.

We will now construct the eigenvector β of Proposition 10.3.3, using a sequence method. The propo-

sition is stated again here.

Proposition 10.3.3. Let {gt : t ∈ (0, δ)} be the family of metrics defined on the manifold M = M ′#M ′′

in §10.2. Then for sufficiently small t, there exists a positive number λ and a function β ∈ C∞(M) such

that a∆β = λβ. Here λ = O(tn−2), and β satisfies

β =





1 + O(tn−2) on M ′ \B′

1 + O(tn−2|v|2−n) on {v : t ≤ |v| < δ} ⊂ B′

−1 + O(tn−2) on M ′′ \B′′

−1 + O(tn−2|v|2−n) on {v : t ≤ |v| < δ} ⊂ B′′,

(212)

identifying subsets of M ′, M ′′ with subsets of M , by abuse of notation.

Proof. Let y be the unique element of C∞(M) satisfying
∫

M
y dVgt = 0 and a∆y = e. To make β = e + w

and a∆β = λβ, we must find w and λ such that a∆w = λ(e + w)− a∆e. Define inductively a sequence of

real numbers {λi}∞i=0 and a sequence {wi}∞i=0 of elements of C∞(M) beginning with λ0 = w0 = 0. Let

λi = 2vol(M ′)
(∫

M

y(e + wi−1)dVgt

)−1

, (213)



D.3. The spectrum of a∆ in the zero scalar curvature case 196

and let wi be the unique element of C∞(M) satisfying
∫

M
widVgt

= 0 and

a∆wi = λi(e + wi−1)− a∆e. (214)

Note that as
∫

M
e dVgt

=
∫

M
wi−1dVgt

= 0, the right hand side has integral zero over M , and so wi exists.

Thus the sequences {λi}∞i=0 and {wi}∞i=0 are well-defined, provided only that the integral on the right hand

side of (213) is nonzero; we will prove later that it is bounded below by a positive constant.

If both sequences converge to λ and w respectively, say, then (214) implies that a∆w = λ(e+w)−a∆e,

so that β = e + w is an eigenvector of a∆ associated to λ. The rôle of the slightly mysterious (213) is as

follows: multiply (214) by y and integrate over M . Integrating by parts gives

∫

M

wia∆y dVgt = λi

∫

M

y(e + wi−1)dVgt −
∫

M

ea∆y dVgt .

Substituting e for a∆y and recalling that
∫

M
e2dVgt = 2vol(M ′), we get

∫

M

ewidVgt = λi

∫

M

y(e + wi−1)dVgt − 2 vol(M ′) = 0, (215)

so that
∫

M
ewidVgt = 0, and if w is the limit of the sequence then

∫
M

ew dVgt = 0.

Now as
∫

M
widVgt =

∫
M

ewidVgt = 0, wi ∈ (Ẽt)⊥ and Lemma D.3.2 implies that

a
∥∥∇wi

∥∥2

2
≥ γ‖wi‖22. (216)

Multiplying (214) by wi and integrating over M by parts gives

a
∥∥∇wi

∥∥2

2
=

∫

M

a
∣∣∇wi

∣∣2dVgt = λi

∫

M

wi(e + wi−1)dVgt − a

∫

M

∇wi · ∇e dVgt

≤ |λi|‖wi‖2
(‖e‖2 + ‖wi−1‖2

)
+ a

∥∥∇wi

∥∥
2

∥∥∇e
∥∥

2

≤ |λi|a 1
2 γ−

1
2
∥∥∇wi

∥∥
2

(‖e‖2 + ‖wi−1‖2
)

+ a
∥∥∇wi

∥∥
2

∥∥∇e
∥∥

2
,

applying (216) between the second and third lines, and Hölder’s inequality. Dividing by a1/2γ−1/2
∥∥∇wi

∥∥
2

and using (216) on the left hand side gives

γ‖wi‖2 ≤ |λi|
(‖e‖2 + ‖wi−1‖2

)
+ D0, (217)

where D0 = (aγ)1/2
∥∥∇e

∥∥
2
.
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Define D1 =
∫

M
ye dVgt

. Then y = D1e + z, where
∫

M
z dVgt

=
∫

M
ze dVgt

= 0. So z ∈ (Ẽt)⊥, and by

Lemma D.3.2

a
∥∥∇z

∥∥2

2
≥ γ‖z‖22. (218)

As
∫

M
ze dVgt

= 0 and e = a∆y = aD1∆e + a∆z, we find that
∫

M
z
(
D1∆e + ∆z

)
dVgt

= 0, so

∥∥∇z
∥∥2

2
= −D1

∫

M

∇z · ∇e dVgt ≤ D1

∥∥∇z
∥∥

2

∥∥∇e
∥∥

2
.

Multiplying by (aγ)1/2
∥∥∇z

∥∥−1

2
and substituting (218) into the left hand side then gives γ‖z‖2 ≤ D0D1.

As y = D1e + z and
∫

M
ewi−1dVgt

= 0, from (213) we calculate

|λi|
2 vol(M ′)

=
(

D1 +
∫

M

zwi−1dVgt

)−1

≤ (D1 − ‖z‖2‖wi−1‖2)−1 ≤ (
D1 −D0D1‖wi−1‖2/γ

)−1
, (219)

provided D0‖wi−1‖2 < γ.

Now (217) and (219) are what we need to prove that the sequences {λi}∞i=0 and {wi}∞i=0 are well-

defined and convergent, provided the constants D0, D1 satisfy suitable inequalities, that is, that D0 should

be sufficiently small and D1 sufficiently large. In fact it can be shown that if 2D0 ≤ γ and D1 is large

enough, then the two sequences converge to λ and w respectively satisfying a∆w = λ(e+w)−a∆e, where

‖w‖2 ≤ 2D0/γ, and |λ| ≤ 2 vol(M ′)D−1
1 (1 − 2D2

0/γ2) ≤ 4D−1
1 vol(M ′). The proof uses the same sort of

reasoning as Lemma 9.1.2, and will be left to the reader.

Let us now look more closely at the constants D0 and D1. Firstly, D0 = (aγ)1/2
∥∥∇e

∥∥
2
, and e is defined

by the functions σ′ and σ′′ chosen just before Lemma D.3.1. In fact, e = c′σ′ − c′′σ′′, where c′ and c′′ are

close to 1, as vol(M ′) = vol(M ′′). But σ′, σ′′ are defined in the same way as β1, β2 of §8.1, and an estimate

analogous to (94) of §8.3 applies to them, from which it may easily be shown that D0 = O(t(n−2)2/(n+1))

for sufficiently small t. Then because ‖w‖2 ≤ 2D0/γ, this gives that ‖w‖2 = O(t(n−2)2/(n+1)).

Secondly, we need to estimate D1. Let ξ′ be the Green’s function of a∆ on M ′, satisfying a∆ξ′ =

δm′ − 1/ vol(M ′) in the sense of distributions. Then ξ′ has a pole of the form D2|v|2−n + O′′(|v|1−n) at

m′, where D2 is a constant, in fact equal to (n− 2)−1ω−1
n−1. Similarly, we may define the Green’s function

ξ′′ at m′′ of a∆ on M ′′.

The application of this is in modelling the function y on M . We may view M , approximately, as being

made up of the unions of M ′ and M ′′, each with a small ball of radius t cut out. To get a function ξ on M
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with ∆ξ close to vol(M ′)−1 on the part coming from M ′, and close to − vol(M ′′)−1 on the part coming from

M ′′, we try ξ equal approximately to d′−ξ′ on M ′ and ξ′′−d′′ on the part coming from M ′′, for constants

d′ and d′′. To join these two functions together on the neck we must have d′ + d′′ = 2D2t
2−n + O(t1−n),

and for
∫

M
ξdVgt = 0 we must have d′ vol(M ′) = d′′ vol(M ′′) + O(t1−n). As vol(M ′) = vol(M ′′) this gives

d′ = D2t
2−n + O(t1−n) = d′′.

But e is approximately equal to 1 on M ′ and to −1 on M ′′, so that e ∼ vol(M ′)a∆ξ. Therefore

y ∼ vol(M ′)ξ, and D1 =
∫

M
ye dVgt

∼ 2d′ vol(M ′)2. So finally, we conclude that D1 = 2D2 vol(M ′)2t2−n +

O(t1−n). This validates the claim that D1 is large for sufficiently small t, that was used earlier to ensure

convergence.

Taking the limit over i in (213), we find that

λ = 2 vol(M ′)
(

D1 +
∫

M

zw dVgt

)−1

, (220)

so using estimates on D1, z and w gives that λ = O(tn−2) for sufficiently small t, one of the conclusions of

the proposition. Also, if e is a first approximation to β, then λy is the second, and the model of y above

gives a model of β. It can therefore be seen that (212) holds for β, which is the only remaining claim of

the proposition.

Finally, we show that Lemma D.3.2 may be modified further, to apply to functions orthogonal to both

1 and the eigenvector β constructed in the last proposition:

Lemma D.3.4. Let {gt : t ∈ (0, δ)} be the family of metrics defined on the manifold M = M ′#M ′′ in

§10.2. Then for all sufficiently small t, if φ ∈ L2
1(M) satisfies 〈φ, 1〉 = 〈φ, β〉 = 0 in either the L2 or the

L2
1 inner product, then

∫

M

a
∣∣∇φ

∣∣2dVgt ≥ γ

∫

M

φ2dVgt . (221)

Here β is the eigenvector of a∆ constructed in Proposition 10.3.3.

Proof. The proof is almost the same as that of Lemma D.3.2. Note that as 1,β are eigenvectors of ∆,

orthogonality to them with respect to the L2 norm and the L2
1 norm is equivalent, and so we may suppose

that 〈. , .〉 is the inner product of L2(M). Let ξ be the unique element of Ẽt satisfying 〈ξ, β〉 = 1 and

∫
M

ξdVgt = 0. If φ ∈ L2
1(M) satisfies 〈φ, 1〉 = 〈φ, β〉 = 0, then φ− 〈φ, ξ〉β ∈ Ẽ⊥

t , taken with respect to the

L2 norm. So by Lemma D.3.2,
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∫

M

a
∣∣∇φ− 〈φ, ξ〉∇β

∣∣2dVgt ≥ γ

∫

M

(
φ− 〈φ, ξ〉β)2

dVgt .

But as β is an e-value of ∆, it is orthogonal to φ in both L2 and L2
1 norms, so this equation becomes

∫

M

a
(∣∣∇φ

∣∣2 + 〈φ, ξ〉2
∣∣∇β

∣∣2
)
dVgt ≥ γ

∫

M

(
φ2 + 〈φ, ξ〉2β2

)
dVgt . (222)

Now for sufficiently small t, the eigenvalue λ is smaller than γ, so that
∫

M
a
∣∣∇β

∣∣2dVgt ≤ γ
∫

M
β2dVgt , and

subtracting this multiplied by 〈φ, ξ〉2 from (222) gives (221).

Corollary D.3.5. Theorem 10.3.4 is true.
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