Plan of talk:

1. PTVV’s shifted symplectic geometry
2. A Darboux theorem for shifted symplectic schemes
3. D-critical loci
4. Categorification using perverse sheaves
5. Motivic Milnor fibres
1. PTVV’s shifted symplectic geometry

Let K be an algebraically closed field of characteristic zero, e.g. $K = \mathbb{C}$. Work in the context of Toën and Vezzosi’s theory of derived algebraic geometry. This gives ∞-categories of derived K-schemes dSch_K and derived stacks dSt_K. For this talk we are interested in derived schemes, though we are working on extensions to derived Artin stacks. Think of a derived K-scheme X as a geometric space which can be covered by Zariski open sets $Y \subseteq X$ with $Y \cong \text{Spec} \ A$ for $A = (A, d)$ a commutative differential graded algebra (cdga) over K.

Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a notion of k-shifted symplectic structure on a derived K-scheme or derived K-stack X, for $k \in \mathbb{Z}$. This is complicated, but here is the basic idea. The cotangent complex \mathbb{L}_X of X is an element of a derived category $L_{\text{qcoh}}(X)$ of quasicoherent sheaves on X. It has exterior powers $\Lambda^p \mathbb{L}_X$ for $p = 0, 1, \ldots$. The de Rham differential $d_{dR}: \Lambda^p \mathbb{L}_X \to \Lambda^{p+1} \mathbb{L}_X$ is a morphism of complexes, though not of \mathcal{O}_X-modules. Each $\Lambda^p \mathbb{L}_X$ is a complex, so has an internal differential $d: (\Lambda^p \mathbb{L}_X)^k \to (\Lambda^p \mathbb{L}_X)^{k+1}$. We have

$$d^2 = d_{dR}^2 = d \circ d_{dR} + d_{dR} \circ d = 0.$$
A p-form of degree k on X for \(k \in \mathbb{Z} \) is an element \([\omega^0]\) of \(H^k(\wedge^p \mathbb{L}_X, d) \). A closed p-form of degree k on X is an element

\[
[(\omega^0, \omega^1, \ldots)] \in H^k(\bigoplus_{i=0}^{\infty} \wedge^{p+i} \mathbb{L}_X[i], d + d_{dR}).
\]

There is a projection \(\pi : [(\omega^0, \omega^1, \ldots)] \mapsto [\omega^0] \) from closed p-forms \([(\omega^0, \omega^1, \ldots)]\) of degree k to p-forms \([\omega^0]\) of degree k.

Note that a closed p-form is not a special example of a p-form, but a p-form with an extra structure. The map \(\pi \) from closed p-forms to p-forms can be neither injective nor surjective.
Pantev et al. prove that if Y is a Calabi–Yau m-fold over \mathbb{K} and \mathcal{M} is a derived moduli scheme or stack of (complexes of) coherent sheaves on Y, then \mathcal{M} has a natural $(2-m)$-shifted symplectic structure ω. So Calabi–Yau 3-folds give -1-shifted derived schemes or stacks.

We can understand the associated nondegenerate 2-form ω^0 in terms of *Serre duality*. At a point $[E] \in \mathcal{M}$, we have $h^i(\mathcal{T}_E) |_{[E]} \cong \text{Ext}^{i-1}(E, E)$ and $h^i(\mathcal{L}_E) |_{[E]} \cong \text{Ext}^{1-i}(E, E)^\ast$. The Calabi–Yau condition gives $\text{Ext}^i(E, E) \cong \text{Ext}^{m-i}(E, E)^\ast$, which corresponds to $h^i(\mathcal{T}_E) |_{[E]} \cong h^i(\mathcal{L}_E[2-m]) |_{[E]}$. This is the cohomology at $[E]$ of the quasi-isomorphism $\omega^0 : \mathcal{T}_E \to \mathcal{L}_E[2-m]$.

Let (X, ω) be a k-shifted symplectic derived scheme or stack. Then Pantev et al. define a notion of *Lagrangian* L in (X, ω), which is a morphism $i : L \to X$ of derived schemes or stacks together with a homotopy $i^!(\omega) \sim 0$ satisfying a nondegeneracy condition, implying that $\mathcal{T}_L \cong \mathcal{L}_{L/X}[k-1]$.

If L, M are Lagrangians in (X, ω), then the fibre product $L \times_X M$ has a natural $(k-1)$-shifted symplectic structure.

If (S, ω) is a classical smooth symplectic scheme, then it is a 0-shifted symplectic derived scheme in the sense of PTVV, and if $L, M \subset S$ are classical smooth Lagrangian subschemes, then they are Lagrangians in the sense of PTVV. Therefore the (derived) Lagrangian intersection $L \cap M = L \times_S M$ is a -1-shifted symplectic derived scheme.
2. A Darboux theorem for shifted symplectic schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose \((X, \omega)\) is a \(k\)-shifted symplectic derived \(\mathbb{K}\)-scheme for \(k < 0\). If \(k \neq 2 \mod 4\), then each \(x \in X\) admits a Zariski open neighbourhood \(Y \subseteq X\) with \(Y \simeq \text{Spec} A\) for \((A, d)\) an explicit cdga over \(\mathbb{K}\) generated by graded variables \(x_j^{-i}, y_j^{k+i}\) for \(0 \leq i \leq -k/2\), and \(\omega|_Y = [(\omega^0, 0, 0, \ldots)]\) where \(x_j^l, y_j^l\) have degree \(l\), and

\[
\omega^0 = \sum_{i=0}^{[-k/2]} \sum_{j=1}^{m_i} dRy_j^{k+i} dRx_j^{-i}.
\]

Also the differential \(d\) in \((A, d)\) is given by Poisson bracket with a Hamiltonian \(H\) in \(A\) of degree \(k + 1\).

If \(k \equiv 2 \mod 4\), we have two statements, one étale local with \(\omega^0\) standard, and one Zariski local with the components of \(\omega^0\) the degree \(k/2\) variables depending on some invertible functions.

Sketch of the proof of the theorem

Suppose \((X, \omega)\) is a \(k\)-shifted symplectic derived \(\mathbb{K}\)-scheme for \(k < 0\), and \(x \in X\). Then \(\mathbb{L}_X\) lives in degrees \([k, 0]\). We first show that we can build Zariski open \(x \in Y \subseteq X\) with \(Y \simeq \text{Spec} A\), for \(A = \bigoplus_{i \leq 0} A^i\) a cdga over \(\mathbb{K}\) with \(A^0\) a smooth \(\mathbb{K}\)-algebra, and such that \(A\) is freely generated over \(A^0\) by graded variables \(x_j^{-i}, y_j^{k+i}\) in degrees \(-1, -2, \ldots, k\). We take \(\dim A^0\) and the number of \(x_j^{-i}, y_j^{k+i}\) to be minimal at \(x\).

Using theorems about periodic cyclic cohomology, we show that on \(Y \simeq \text{Spec} A\) we can write \(\omega|_Y = [(\omega^0, 0, 0, \ldots)]\), for \(\omega^0\) a 2-form of degree \(k\) with \(d\omega^0 = dR\omega^0 = 0\). Minimality at \(x\) implies \(\omega^0\) is strictly nondegenerate near \(x\), so we can change variables to write \(\omega^0 = \sum_{i,j} dRy_j^{k+i} dRx_j^{-i}\). Finally, we show \(d\) in \((A, d)\) is a symplectic vector field, which integrates to a Hamiltonian \(H\).
When $k = -1$ the Hamiltonian H in the theorem has degree 0. Then the theorem reduces to:

Corollary

Suppose (X, ω) is a -1-shifted symplectic derived K-scheme. Then (X, ω) is Zariski locally equivalent to a derived critical locus $\text{Crit}(H : U \to \mathbb{A}^1)$, for U a smooth classical K-scheme and $H : U \to \mathbb{A}^1$ a regular function. Hence, the underlying classical K-scheme $X = t_0(X)$ is Zariski locally isomorphic to a classical critical locus $\text{Crit}(H : U \to \mathbb{A}^1)$.

Combining this with results of Pantev et al. from §1 gives interesting consequences in classical algebraic geometry:

Corollary

Let Y be a Calabi–Yau 3-fold over K and \mathcal{M} a classical moduli K-scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} is Zariski locally isomorphic to the critical locus $\text{Crit}(H : U \to \mathbb{A}^1)$ of a regular function on a smooth K-scheme.

Here we note that $\mathcal{M} = t_0(\mathcal{M})$ for \mathcal{M} the corresponding derived moduli scheme, which is -1-shifted symplectic by PTVV. A complex analytic analogue of this for moduli of coherent sheaves was proved using gauge theory by Joyce and Song arXiv:0810.5645, and for moduli of complexes was claimed by Behrend and Getzler. Note that the proof of the corollary is wholly algebro-geometric.
Corollary

Let \((S, \omega)\) be a classical smooth symplectic \(\mathbb{K}\)-scheme, and \(L, M \subseteq S\) be smooth algebraic Lagrangians. Then the intersection \(L \cap M\), as a \(\mathbb{K}\)-subscheme of \(S\), is Zariski locally isomorphic to the critical locus \(\text{Crit}(H : U \to \mathbb{A}^1)\) of a regular function on a smooth \(\mathbb{K}\)-scheme.

In real or complex symplectic geometry, where Darboux Theorem holds, the analogue of the corollary is easy to prove, but in classical algebraic symplectic geometry we do not have a Darboux Theorem, so the corollary is not obvious.

3. D-critical loci

Theorem (Joyce arXiv:1304.4508)

Let \(X\) be a classical \(\mathbb{K}\)-scheme. Then there exists a canonical sheaf \(S_X\) of \(\mathbb{K}\)-vector spaces on \(X\), such that if \(R \subseteq X\) is Zariski open and \(i : R \hookrightarrow U\) is a closed embedding of \(R\) into a smooth \(\mathbb{K}\)-scheme \(U\), and \(I_{R,U} \subseteq \mathcal{O}_U\) is the ideal vanishing on \(i(R)\), then

\[
S_X|_R \cong \ker \left(\frac{\mathcal{O}_U}{I_{R,U}^2} \xrightarrow{d} \frac{T^*U}{I_{R,U} \cdot T^*U} \right).
\]

Also \(S_X\) splits naturally as \(S_X = S_X^0 \oplus \mathbb{K}_X\), where \(\mathbb{K}_X\) is the sheaf of locally constant functions \(X \to \mathbb{K}\).
The meaning of the sheaves \(\mathcal{S}_X, \mathcal{S}_X^0 \)

If \(X = \text{Crit}(f : U \to \mathbb{A}^1) \) then taking \(R = X, i = \text{inclusion} \), we see that \(f + I_{X,U}^2 \) is a section of \(\mathcal{S}_X \). Also \(f|_{X_{\text{red}}} : X_{\text{red}} \to \mathbb{K} \) is locally constant, and if \(f|_{X_{\text{red}}} = 0 \) then \(f + I_{X,U}^2 \) is a section of \(\mathcal{S}_X^0 \). Note that \(f + I_{X,U} = f|_X \in \mathcal{O}_X = \mathcal{O}_U/I_{X,U} \). The theorem means that \(f + I_{X,U}^2 \) makes sense \textit{intrinsically on} \(X \), without reference to the embedding of \(X \) into \(U \).

That is, if \(X = \text{Crit}(f : U \to \mathbb{A}^1) \) then we can remember \(f \) up to second order in the ideal \(I_X \) as a piece of data on \(X \), not on \(U \).

Suppose \(X = \text{Crit}(f : U \to \mathbb{A}^1) = \text{Crit}(g : V \to \mathbb{A}^1) \) is written as a critical locus in two different ways. Then \(f + I_{X,U}^2, g + I_{X,V}^2 \) are sections of \(\mathcal{S}_X \), so we can ask whether \(f + I_{X,U}^2 = g + I_{X,V}^2 \). This gives a way to compare isomorphic critical loci in different smooth classical schemes.

The definition of d-critical loci

Definition (Joyce arXiv:1304.4508)

An (\textit{algebraic}) \textit{d-critical locus} \((X, s)\) is a classical \(\mathbb{K} \)-scheme \(X \) and a global section \(s \in H^0(\mathcal{S}_X^0) \) such that \(X \) may be covered by Zariski open \(R \subseteq X \) with an isomorphism \(i : R \to \text{Crit}(f : U \to \mathbb{A}^1) \) identifying \(s|_R \) with \(f + I_{R,U}^2 \), for \(f \) a regular function on a smooth \(\mathbb{K} \)-scheme \(U \).

That is, a d-critical locus \((X, s)\) is a \(\mathbb{K} \)-scheme \(X \) which may Zariski locally be written as a critical locus \(\text{Crit}(f : U \to \mathbb{A}^1) \), and the section \(s \) remembers \(f \) up to second order in the ideal \(I_{X,U} \).

We also define \textit{complex analytic d-critical loci}, with \(X \) a complex analytic space locally modelled on \(\text{Crit}(f : U \to \mathbb{C}) \) for \(U \) a complex manifold and \(f \) holomorphic.
Orientations on d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let \((X, s)\) be an algebraic d-critical locus and \(X^{\text{red}}\) the reduced \(\mathbb{K}\)-subscheme of \(X\). Then there is a natural line bundle \(K_{X, s}\) on \(X^{\text{red}}\) called the **canonical bundle**, such that if \((X, s)\) is locally modelled on \(\text{Crit}(f : U \to \mathbb{A}^1)\) then \(K_{X, s}\) is locally modelled on \(K_U^{\otimes 2} |_{\text{Crit}(f)^{\text{red}}}\), for \(K_U\) the usual canonical bundle of \(U\).

Definition

Let \((X, s)\) be a d-critical locus. An **orientation** on \((X, s)\) is a choice of square root line bundle \(K_{X, s}^{1/2}\) for \(K_{X, s}\) on \(X^{\text{red}}\).

This is related to **orientation data** in Kontsevich–Soibelman 2008.

A truncation functor from \(-1\)-symplectic derived schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Let \((X, \omega)\) be a \(-1\)-shifted symplectic derived \(\mathbb{K}\)-scheme. Then the classical \(\mathbb{K}\)-scheme \(X = t_0(X)\) extends naturally to an algebraic d-critical locus \((X, s)\). The canonical bundle of \((X, s)\) satisfies \(K_{X, s} \cong \det \mathbb{L}_X |_{X^{\text{red}}}\).

That is, we define a **truncation functor** from \(-1\)-shifted symplectic derived \(\mathbb{K}\)-schemes to algebraic d-critical loci. Examples show this functor is not full. Think of d-critical loci as **classical truncations** of \(-1\)-shifted symplectic derived \(\mathbb{K}\)-schemes.

An alternative semi-classical truncation, used in D–T theory, is **schemes with symmetric obstruction theory**. D-critical loci appear to be better, for both categorified and motivic D–T theory.
The corollaries in §2 imply:

Corollary

Let \(Y \) be a Calabi–Yau 3-fold over \(K \) and \(\mathcal{M} \) a classical moduli \(K \)-scheme of coherent sheaves, or complexes of coherent sheaves, on \(Y \). Then \(\mathcal{M} \) extends naturally to a \(d \)-critical locus \((\mathcal{M}, s)\). The canonical bundle satisfies \(K_{\mathcal{M}, s} \cong \det(\mathcal{E}^*)|_{\mathcal{M}^{\text{red}}} \), where \(\phi : \mathcal{E}^* \to \mathbb{I}_{\mathcal{M}} \) is the (symmetric) obstruction theory on \(\mathcal{M} \) defined by Thomas or Huybrechts and Thomas.

Corollary

Let \((S, \omega)\) be a classical smooth symplectic \(K \)-scheme, and \(L, M \subseteq S \) be smooth algebraic Lagrangians. Then \(X = L \cap M \) extends to naturally to a \(d \)-critical locus \((X, s)\). The canonical bundle satisfies \(K_{X, s} \cong K_L|_{X^{\text{red}}} \otimes K_M|_{X^{\text{red}}} \). Hence, choices of square roots \(K_L^{1/2} \) and \(K_M^{1/2} \) give an orientation for \((X, s)\).

Dominic Joyce, Oxford University
Categorification of D–T theory

4. Categorification using perverse sheaves

Theorem (Brav, Bussi, Dupont, Joyce, Szendrői arXiv:1211.3259)

Let \((X, s)\) be an algebraic \(d \)-critical locus over \(K \), with an orientation \(K_{X,s}^{1/2} \). Then we can construct a canonical perverse sheaf \(P_{X,s}^* \) on \(X \), such that if \((X, s)\) is locally modelled on \(\text{Crit}(f : U \to \mathbb{A}^1) \), then \(P_{X,s}^* \) is locally modelled on the perverse sheaf of vanishing cycles \(P_{U,f}^* \) of \((U, f)\).
Similarly, we can construct a natural \(\mathcal{D} \)-module \(D_{X,s}^* \) on \(X \), and when \(K = \mathbb{C} \) a natural mixed Hodge module \(M_{X,s}^* \) on \(X \).
Sketch of the proof of the theorem

Roughly, we prove the theorem by taking a Zariski open cover \(\{ R_i : i \in I \} \) of \(X \) with \(R_i \cong \text{Crit}(f_i : U_i \to \mathbb{A}^1) \), and showing that \(\mathcal{PV}_{U_i,f_i} \) and \(\mathcal{PV}_{U_j,f_j} \) are canonically isomorphic on \(R_i \cap R_j \), so we can glue the \(\mathcal{PV}_{U_i,f_i} \) to get a global perverse sheaf \(P_{X,s}^\bullet \) on \(X \).

In fact things are more complicated: the (local) isomorphisms \(\mathcal{PV}_{U_i,f_i} \cong \mathcal{PV}_{U_j,f_j} \) are only canonical up to sign. To make them canonical, we use the orientation \(K^{1/2}_{X,s} \) to define natural principal \(\mathbb{Z}_2 \)-bundles \(Q_i \) on \(R_i \), such that \(\mathcal{PV}_{U_i,f_i} \otimes_{\mathbb{Z}_2} Q_i \cong \mathcal{PV}_{U_j,f_j} \otimes_{\mathbb{Z}_2} Q_j \) is canonical, and then we glue the \(\mathcal{PV}_{U_i,f_i} \otimes_{\mathbb{Z}_2} Q_i \) to get \(P_{X,s}^\bullet \).

The first corollary in §2 implies:

Corollary

Let \(Y \) be a Calabi–Yau 3-fold over \(\mathbb{K} \) and \(\mathcal{M} \) a classical moduli \(\mathbb{K} \)-scheme of coherent sheaves, or complexes of coherent sheaves, on \(Y \), with (symmetric) obstruction theory \(\phi : \mathcal{E}^\bullet \to \mathbb{L}_\mathcal{M} \). Suppose we are given a square root \(\det(\mathcal{E}^\bullet)^{1/2} \) for \(\det(\mathcal{E}^\bullet) \) (i.e. orientation data, K–S). Then we have a natural perverse sheaf \(P_{\mathcal{M},s}^\bullet \) on \(\mathcal{M} \).

The hypercohomology \(\mathbb{H}^*(P_{\mathcal{M},s}^\bullet) \) is a finite-dimensional graded vector space. The pointwise Euler characteristic \(\chi(P_{\mathcal{M},s}^\bullet) \) is the Behrend function \(\nu_{\mathcal{M}} \) of \(\mathcal{M} \). Thus

\[
\sum_{i \in \mathbb{Z}} (-1)^i \dim \mathbb{H}^i(P_{\mathcal{M},s}^\bullet) = \chi(\mathcal{M}, \nu_{\mathcal{M}}).
\]

Now by Behrend 2005, the Donaldson–Thomas invariant of \(\mathcal{M} \) is \(DT(\mathcal{M}) = \chi(\mathcal{M}, \nu_{\mathcal{M}}) \). So, \(\mathbb{H}^*(P_{\mathcal{M},s}^\bullet) \) is a graded vector space with dimension \(DT(\mathcal{M}) \), that is, a categorification of \(DT(\mathcal{M}) \).
The second corollary in §2 implies:

Corollary

Let \((S, \omega)\) be a classical smooth symplectic \(\mathbb{K}\)-scheme of dimension \(2n\), and \(L, M \subseteq S\) be smooth algebraic Lagrangians, with square roots \(K_L^{1/2}, K_M^{1/2}\) of their canonical bundles. Then we have a natural perverse sheaf \(P_{L,M}^\bullet\) on \(X = L \cap M\).

This is related to Behrend and Fantechi 2009, and Kai’s talk. We think of the hypercohomology \(H^*(P_{L,M}^\bullet)\) as being morally related to the Lagrangian Floer cohomology \(HF^*(L, M)\) by

\[
H^i(P_{L,M}^\bullet) \approx HF^{i+n}(L, M).
\]

We are working on defining ‘Fukaya categories’ for algebraic/complex symplectic manifolds using these ideas.

5. Motivic Milnor fibres

By similar arguments to those used to construct the perverse sheaves \(P_{X,s}^\bullet\) in §4, we prove:

Theorem (Bussi, Joyce and Meinhardt arXiv:1305.6428)

Let \((X, s)\) be an algebraic \(d\)-critical locus over \(\mathbb{K}\), with an orientation \(K_X^{1/2}\). Then we can construct a natural motive \(MF_{X,s}\) in a certain ring of \(\hat{\mu}\)-equivariant motives \(\overline{M}_X^{\hat{\mu}}\) on \(X\), such that if \((X, s)\) is locally modelled on \(\text{Crit}(f : U \to \mathbb{A}^1)\), then \(MF_{X,s}\) is locally modelled on \(L^{-\dim U/2}([X] - MF_{U,f}^{\text{mot}})\), where \(MF_{U,f}^{\text{mot}}\) is the motivic Milnor fibre of \(f\).

Vittoria Bussi’s talk will give more details.
Relation to motivic D–T invariants

The first corollary in §2 implies:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K}-scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^\bullet \to \mathbb{L}_\mathcal{M}$. Suppose we are given a square root $\det(\mathcal{E}^\bullet)^{1/2}$ for $\det(\mathcal{E}^\bullet)$ (i.e. orientation data, K–S). Then we have a natural motive $MF_{\mathcal{M},s}^\bullet$ on \mathcal{M}.

This motive $MF_{\mathcal{M},s}^\bullet$ is essentially the motivic Donaldson–Thomas invariant of \mathcal{M} defined (partially conjecturally) by Kontsevich and Soibelman 2008. K–S work with motivic Milnor fibres of formal power series at each point of \mathcal{M}. Our results show the formal power series can be taken to be a regular function, and clarify how the motivic Milnor fibres vary in families over \mathcal{M}.