Constructing compact manifolds with exceptional holonomy

Dominic Joyce
Oxford University
England
Riemannian geometry

Let M^n be a manifold of dimension n. Let $x \in M$. Then $T_x M$ is the tangent space to M at x. Let g be a Riemannian metric on M. Let ∇ be the Levi-Civita connection of g. Let $R(g)$ be the Riemann curvature of g.
Holonomy groups

Fix \(x \in M \). The holonomy group \(\text{Hol}(g) \) of \(g \) is the set of isometries of \(T_xM \) given by parallel transport using \(\nabla \) about closed loops \(\gamma \) in \(M \) based at \(x \). It is a subgroup of \(O(n) \). Up to conjugation, it is independent of the base-point \(x \).
Berger’s classification

Let M be simply-connected and g be irreducible and nonsymmetric. Then $\text{Hol}(g)$ is one of $SO(m)$, $U(m)$, $SU(m)$, $Sp(m)$, $Sp(m)Sp(1)$ for $m \geq 2$, or G_2 or $Spin(7)$. We call G_2 and $Spin(7)$ the exceptional holonomy groups. \(\text{Dim}(M)\) is 7 when $\text{Hol}(g)$ is G_2 and 8 when $\text{Hol}(g)$ is $Spin(7)$.
Understanding Berger’s list

The four *inner product algebras* are

\[
\begin{align*}
\mathbb{R} & \quad \text{real numbers.} \\
\mathbb{C} & \quad \text{complex numbers.} \\
\mathbb{H} & \quad \text{quaternions.} \\
\mathbb{O} & \quad \text{octonions, or Cayley numbers.}
\end{align*}
\]

Here \(\mathbb{C}\) is not ordered, \(\mathbb{H}\) is not commutative, and \(\mathbb{O}\) is not associative.

Also we have \(\mathbb{C} \cong \mathbb{R}^2\), \(\mathbb{H} \cong \mathbb{R}^4\) and \(\mathbb{O} \cong \mathbb{R}^8\), with \(\text{Im} \mathbb{O} \cong \mathbb{R}^7\).
<table>
<thead>
<tr>
<th>Group</th>
<th>Acts on</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SO(m)$</td>
<td>\mathbb{R}^m</td>
</tr>
<tr>
<td>$O(m)$</td>
<td>\mathbb{R}^m</td>
</tr>
<tr>
<td>$SU(m)$</td>
<td>\mathbb{C}^m</td>
</tr>
<tr>
<td>$U(m)$</td>
<td>\mathbb{C}^m</td>
</tr>
<tr>
<td>$Sp(m)$</td>
<td>\mathbb{H}^m</td>
</tr>
<tr>
<td>$Sp(m)Sp(1)$</td>
<td>\mathbb{H}^m</td>
</tr>
<tr>
<td>G_2</td>
<td>$\text{Im } \mathbb{O} \cong \mathbb{R}^7$</td>
</tr>
<tr>
<td>$Spin(7)$</td>
<td>$\mathbb{O} \cong \mathbb{R}^8$</td>
</tr>
</tbody>
</table>

Thus there are two holonomy groups for each of $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.
The goal of the talk
To discuss constructions of examples of compact manifolds of holonomy G_2 and $Spin(7)$.

Why is this difficult?
In many problems in geometry the simplest examples are symmetric. But G_2- and $Spin(7)$-manifolds have no continuous symmetries.
Why is this interesting?
• Such manifolds are Ricci-flat.
• They are important to physicists working in String Theory.
• They have beautiful geometrical properties.
Geometry of G_2

The action of G_2 on \mathbb{R}^7 preserves the metric g_0 and a 3-form φ_0 on \mathbb{R}^7. Let g be a metric and φ a 3-form on M^7. We call (φ, g) a G_2-structure if $(\varphi, g) \cong (\varphi_0, g_0)$ at each $x \in M$. We call $\nabla \varphi$ the torsion of (φ, g).
If $\nabla \varphi = 0$ then (φ, g) is torsion-free. Also $\nabla \varphi = 0$ iff $d\varphi = d^*\varphi = 0$. If (φ, g) is torsion-free then $\text{Hol}(g) \subseteq G_2$. Conversely, if g is a metric on M^7 then $\text{Hol}(g) \subseteq G_2$ iff there is a G_2-structure (φ, g) with $\nabla \varphi = 0$. If M is compact and $\text{Hol}(g) \subseteq G_2$ then $\text{Hol}(g) = G_2$ iff $\pi_1(M)$ is finite.
The construction, 1

First we choose a compact 7-manifold M. We write down an explicit G_2-structure (φ, g) on M with small torsion. Then we use analysis to deform to a nearby G_2-structure $(\tilde{\varphi}, \tilde{g})$ with zero torsion. If $\pi_1(M)$ is finite then $\text{Hol}(\tilde{g}) = G_2$ as we want.
The construction, 2

It is not easy to find G_2-structures with small torsion! Here is one way to do it, in 4 steps.

Step 1. Choose a finite group Γ of isometries of the 7-torus T^7, and a flat, Γ-invariant G_2-structure (φ_0, g_0) on T^7. Then T^7/Γ is compact, with a torsion-free G_2-structure (φ_0, g_0).
Step 2. However, T^7/Γ is an orbifold. We repair its singularities to get a compact 7-manifold M. We can resolve complex orbifolds using algebraic geometry.

If the singularities of T^7/Γ locally resemble $S^1 \times \mathbb{C}^3/G$ for $G \subset SU(3)$, then we model M on a crepant resolution X of \mathbb{C}^3/G.
Step 3. M is made by gluing patches $S^1 \times X$ into T^7/Γ. Now X carries ALE metrics of holonomy $SU(3)$. As $SU(3) \subset G_2$, these give torsion-free G_2-structures on $S^1 \times X$. We join them to (φ_0, g_0) on T^7/Γ to get a family \{$(\varphi_t, g_t) : t \in (0, \epsilon)$\} of G_2-structures on M.
Step 4. This \((\varphi_t, g_t)\) has \(\nabla \varphi_t = O(t^4)\). So \(\nabla \varphi_t\) is small for small \(t\). But \(R(g_t) = O(t^{-2})\) and the injectivity radius \(\delta(g_t) = O(t)\), since \(g_t\) becomes singular as \(t \to 0\).

For small \(t\) we deform \((\varphi_t, g_t)\) to \((\tilde{\varphi}_t, \tilde{g}_t)\) with \(\nabla \tilde{\varphi}_t = 0\), using analysis. Then \(\text{Hol}(\tilde{g}_t) = G_2\) if \(\pi_1(M)\) is finite.
Steps in the analysis proof:

• Arrange that $d\varphi_t = 0$ and $d^*\varphi_t = d^*\psi_t$, where $\psi_t = O(t^4)$.

• Set $\tilde{\varphi}_t = \varphi_t + d\eta_t$, where $d^*\eta_t = 0$.

• Then $(\tilde{\varphi}_t, \tilde{g}_t)$ is torsion-free iff

$$(d^*d + dd^*)(\eta_t) = d^*\psi_t + dF(d\eta_t),$$

where F is nonlinear with $F(\chi) = O(|\chi|^2)$.
• Integrating by parts gives $\|d\eta_t\|_{L^2} \leq 2\|\psi_t\|_{L^2}$ when $\|d\eta_t\|_{C^0}$ is small.

• Solve by contraction method in $L^{14}_2(\Lambda^2 T^* M)$, using elliptic regularity of $d^*d + dd^*$, balls of radius t and Sobolev embedding.
The construction, 3

Using different groups Γ acting on T^7 or T^8, and resolving T^k/Γ in more than one way, we get many compact manifolds with holonomy G_2 and $Spin(7)$. We can generalize the construction by replacing T^7 or T^8 with another space made from a Calabi-Yau manifold.
Geometry of $Spin(7)$

The action of $Spin(7)$ on \mathbb{R}^8 preserves the metric g_0 and a 4-form Ω_0 on \mathbb{R}^8. Let g be a metric and Ω a 4-form on M^8. We call (Ω, g) a $Spin(7)$-structure if $(\Omega, g) \cong (\Omega_0, g_0)$ at each $x \in M$. We call $\nabla \Omega$ the torsion of (Ω, g).
If $\nabla \Omega = 0$ then (Ω, g) is torsion-free. Also $\nabla \Omega = 0$ iff $d\Omega = 0$. If $\nabla \Omega = 0$ then $\text{Hol}(g) \subseteq \text{Spin}(7)$. If g is a metric on M^8 then $\text{Hol}(g) \subseteq \text{Spin}(7)$ iff there is a $\text{Spin}(7)$-structure (Ω, g) with $\nabla \Omega = 0$. If M is compact and $\text{Hol}(g) \subseteq \text{Spin}(7)$ then g has holonomy $\text{Spin}(7)$ iff $\pi_1(M) = \{1\}$, $\hat{A}(M) = 1$. 20
Compact examples

The first examples of compact 8-manifolds with holonomy $Spin(7)$ were constructed by me in 1995. Here is how. Let T^8 be a torus with flat $Spin(7)$-structure (Ω_0, g_0), and let Γ be a finite group acting on T^8 preserving (Ω_0, g_0). Then T^8/Γ is an orbifold.
We choose Γ so that the singularities of T^8/Γ are locally modelled on \mathbb{C}^4/G, for $G \subset SU(4)$. Then we use complex algebraic geometry to resolve T^8/Γ, giving a compact 8-manifold M. Finally we use analysis to construct metrics on M with holonomy $Spin(7)$.
A new construction

We shall describe a new way of making compact 8-manifolds with holonomy $Spin(7)$, where we start not with a torus T^8 but with a Calabi-Yau 4-orbifold Y with isolated singular points p_1, \ldots, p_k.
Instead of a group Γ we use an antiholomorphic, isometric involution σ on Y fixing only the p_j. Then $Z = Y/\langle \sigma \rangle$ is a real 8-orbifold with singular points p_1, \ldots, p_k. We resolve the p_j to get a compact 8-manifold M, and construct holonomy $\text{Spin}(7)$ metrics on M.
Calabi-Yau orbifolds

A Calabi-Yau orbifold is a compact complex orbifold with a Kähler metric of holonomy $SU(m)$. One can find many examples using algebraic geometry and Yau’s proof of the Calabi conjecture.
The construction

Let Y be a Calabi-Yau 4-orbifold with only isolated singular points p_1, \ldots, p_k, each modelled on $\mathbb{C}^4/\mathbb{Z}_4$, where the generator of \mathbb{Z}_4 acts by

$$(z_1, \ldots, z_4) \mapsto (iz_1, iz_2, iz_3, iz_4).$$

We call this a singular point of type $\frac{1}{4}(1, 1, 1, 1)$.
Pick an antiholomorphic, isometric involution σ on Y, fixing only p_1, \ldots, p_k, and let $Z = Y/\langle \sigma \rangle$. As $SU(4) \subset Spin(7)$ and Y has holonomy $SU(4)$, there is a torsion-free $Spin(7)$-structure (Ω, g) on Y. We can choose (Ω, g) to be σ-invariant, so (Ω, g) pushes down to Z. Thus Z is a $Spin(7)$-orbifold.
All the singularities p_j of \mathbb{Z} are modelled on \mathbb{R}^8/G, where $G = \langle \alpha, \sigma \rangle$ is a non-abelian group of order 8, and α, σ act on $\mathbb{R}^8 = \mathbb{C}^4$ by

$\alpha : (z_1, \ldots, z_4) \mapsto (iz_1, iz_2, iz_3, iz_4),$

$\sigma : (z_1, \ldots, z_4) \mapsto (\bar{z}_2, -\bar{z}_1, \bar{z}_4, -\bar{z}_3).$

There are two different ways to resolve \mathbb{R}^8/G within holonomy $\text{Spin}(7)$.

28
The first way is to take a crepant resolution W_1 of $\mathbb{C}^4/\langle \alpha \rangle$, and lift σ to a free antiholomorphic involution of W_1. Then $X_1 = W_1/\langle \sigma \rangle$ is a resolution of \mathbb{R}^8/G. There is an ALE metric with holonomy $SU(4)$ on W_1 which pushes down to a metric on $W_1/\langle \sigma \rangle$ with holonomy $\mathbb{Z}_2 \times SU(4)$.
But there is a second complex structure on \mathbb{R}^8, so that σ is holomorphic and α anti-holomorphic. Resolve $\mathbb{C}^4/\langle \sigma \rangle$ to get W_2, lift α to W_2, and $X_2 = W_2/\langle \alpha \rangle$ is a resolution of \mathbb{R}^8/G, with ALE metrics of holonomy $\mathbb{Z}_2 \ltimes SU(4)$. Note that we have used two different inclusions of $\mathbb{Z}_2 \ltimes SU(4)$ in $Spin(7)$.
We resolve each point p_j in Z using either X_1 or X_2, to get a compact 8-manifold M. Now Z, X_1 and X_2 carry torsion-free $Spin(7)$-structures. We glue these together to get a $Spin(7)$-structure (Ω_t, g_t) on M for $t \in (0, \epsilon)$, with torsion $O(t^{24}/5)$.
For small t we can deform (Ω_t, g_t) to a torsion-free $Spin(7)$-structure $(\tilde{\Omega}, \tilde{g})$ on M. If we resolve using X_1 for all p_j then $\pi_1(M) = \mathbb{Z}_2$ and $\text{Hol}(\tilde{g}) = \mathbb{Z}_2 \rtimes SU(4)$. If we use X_2 for any p_j then $\pi_1(M) = \{1\}$ and $\text{Hol}(\tilde{g}) = Spin(7)$. This is what we want.
An example

Let Y be the degree 12 hypersurface in the weighted projective space $\mathbb{C}P^{5}_{1,1,1,1,4,4}$ given by
\[
\left\{ [z_0, \ldots, z_5] \in \mathbb{C}P^{5}_{1,\ldots,4} : \\
z_0^{12} + z_1^{12} + z_2^{12} + z_3^{12} \\
+ z_4^3 + z_5^3 = 0 \right\}.
\]
Then $c_1(Y) = 0$, so Y is a Calabi-Yau 4-orbifold. It has 3 singularities p_1, p_2, p_3, of type $\frac{1}{4}(1, 1, 1, 1)$.
Define $\sigma : Y \to Y$ by

\[\sigma : [z_0, \ldots, z_5] \mapsto [\bar{z}_1, -\bar{z}_0, \bar{z}_3, -\bar{z}_2, \bar{z}_5, \bar{z}_4].\]

Then σ is an anti-holomorphic involution, fixing only p_1, p_2, p_3. We apply our construction to Y and σ, to get a compact 8-manifold M with holonomy Spin(7) and Betti numbers $b^2 = 0$, $b^3 = 0$ and $b^4 = 2446$.

34
Conclusions

Using hypersurfaces in other weighted projective spaces, and dividing by finite groups, we can find many new examples of compact 8-manifolds with holonomy $\text{Spin}(7)$. Here are some of their Betti numbers.
Betti numbers \((b^2, b^3, b^4)\)

\[
\begin{align*}
(4, 33, 200) & \quad (3, 33, 202) \\
(2, 33, 204) & \quad (1, 33, 206) \\
(0, 33, 208) & \quad (1, 0, 908) \\
(0, 0, 910) & \quad (1, 0, 1292) \\
(0, 0, 1294) & \quad (1, 0, 2444) \\
(0, 0, 2446) & \quad (0, 6, 3730) \\
(0, 0, 4750) & \quad (0, 0, 11662)
\end{align*}
\]

Note that \(b^4\) tends to be rather large — bigger than in the first construction, where \(b^4 \approx 100-200\).