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1 Introduction 

When a symplectic manifold M is acted on by a compact Lie group of isometries F, 
then a new symplectic manifold of dimension d i m M - 2 d i m F  can be defined, 
called the Marsden-Weinstein reduction of M by F [MW]. Kfihler manifolds are 
important examples of symplectic manifolds, and in this case the Marsden- 
Weinstein reduction yields a new K/ihler manifold, which as a complex manifold is 
the quotient of the set of stable points of M by the complexified action of F. This is 
called the K/ihler quotient. 

Recently, these constructions have been extended to two other classes of 
manifolds. In the classification of Riemannian manifolds by holonomy [S 2], 
K/ihler manifolds are manifolds with holonomy U(n), and related to these are 
hyperk/ihler manifolds with holonomy Sp(n), and quaternionic Kfihler manifolds 
with holonomy Sp(n)Sp(1). A quotient process for hyperk/ihler manifolds has been 
described by Hitchin et al. [HKLR] that reduces dimension by 4dimH, and this 
was generalised by Galicki and Lawson [-GL] to a quotient for quaternionic 
K/thler manifolds. 

Now in parallel with the classification of Riemannian manifolds by holonomy 
there is a theory [B] that classifies manifolds with torsion-free connections by 
holonomy. K/ihler, hyperk/ihler, and quaternionic K/ihler manifolds have ana- 
logues in this theory: the analogue of a Kfihler manifold is a complex manifold 
[with holonomy GL(n, C)], the analogue ofa hyperkfihler manifold is a hypercom- 
plex manifold [with holonomy GL(n, ~-I)], and the analogue of a quaternionic 
K/ihler manifold is a quaternionic manifold [with holonomy GL(n, I-I)GL(I, ~)].  

The purpose of this paper is to present quotient constructions for hypercom- 
plex and quaternionic manifolds that are analogous to those already known for 
hyperk/~hler and quaternionic K/ihler manifolds. There is an essential difference 
between the new constructions and the known ones, which will now be explained. 

The Marsden-Weinstein reduction and the other reductions above are two- 
stage processes. First, a moment map is defined, which is a map from the manifold 
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M into a vector space or vector bundle satisfying a certain differential equation. 
Under reasonable conditions it is shown that the moment map exists and is unique, 
up to at most the addition of a constant vector. Second, it is shown that the 
quotient of the zero set of the moment map by the group F inherits the structure of 
the original manifold. 

In the processes to be described, a moment map will be defined, but it will not be 
possible to prove either existence or uniqueness. However, given a moment map 
for a particular group action, the second stage of defining structure on the quotient 
of the zero set presents no problems. 

Thus in some cases it is not possible to define the reduction of a hypercomplex 
or quaternionic manifold by a respectable group because no moment map exists, 
whereas in others there may be moduli spaces of distinct reductions of a manifold 
by a fixed group that far exceed the freedom to add a constant vector in the 
hyperk~ihler quotient. 

One special class of quaternionic manifolds are Kiihler surfaces with zero scalar 
curvature; they are quaternionic because they are conformally anti-self-dual. (See 
for instance [L 1 ].) In Sect. 7 it will be shown that the zero-scalar-curvature Kiihler 
condition fits in well with the quotient picture for quaternionic manifolds, higher- 
dimensional analogues will be defined [manifolds with holonomy S L ( n , I - I ) U ( 1 ) ]  

and a quotient process described. 
The principal examples of the reductions we consider are quotients of flat 

spaces by finite-dimensional Lie groups. Since in dimension four, quaternionic 
manifolds are just self-dual conformal manifolds, the quaternionic quotient gives a 
way of producing conformally self-dual 4-manifolds. In particular, LeBrun's 
metrics on n(EB a2 [L2] are quaternionic quotients of ~-IP +1 by U(I) n. The 
simplest case of this correspondence, the construction of Poon's metrics on 
IEP 2 4* IEP 2 as quaternionic quotients, will be given as an example in Sect. 6 of this 
paper. A further paper has been written to describe the general case. 

The quotient formalism is convenient for writing down monads for instantons 
on quotients of I - /P,  and using existing ADHM constructions for 6a*, ff~2 and the 
ALE spaces as models, we have been able to find monads for instantons on 
weighted projective spaces and LeBrun's metrics on n ~ P  2. 

2 Review of necessary theory 

We shall begin by briefly recalling the basic properties of hypercomplex, 
hyperkiihler, quaternionic, and quaternionic K/ihler manifolds, and explain how 
to each quaternionic or quaternionic Kiihler manifold M one can associate a 
bundle ~ with fibre I-I/( + 1 }, the total space of which carries respectively a 
hypereomplex structure and a pseudo-hyperkiihter structure. 

We will then describe the connection between the hyperk~ihler and quater- 
nionic Kiihler quotients found by Swann [Sw], that the quaternionic K/ihler 
quotient is simply the hyperkiihler quotient in the associated bundle ~/(M). Having 
defined the hypercomplex quotient, this model will then enable us to define a 
quotient construction for quaternionic manifolds. 

A hypercomplex manifold M is defined to be a 4n-dimensional smooth 
manifold M with 3 integrable complex structures I 1 , I 2 , I 3  that satisfy the 
quaternionic relations I l I 2 = 13 ,1311  = 12 , I 2I  3 = 11 . Each hypercomplex manifold 
has a unique torsion-free connection IzM called the O b a t a  c o n n e c t i o n  IS 3, Sect. 6] 
satisfying V U  l l = O. 
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Conversely, a manifold M that has three almost complex structures 11,12, I a 
satisfying I iI  2 = I a and a torsion-free connection g M with VMIi = 0 is hypercom- 
plex, for VUli = 0 implies that I i is integrable. A (pseudo-)hyperk/ihler manifold is 
then a hypercomplex manifold together with a (pseudo-)Riemannian metric g that 
is K/ihler with respect to each complex structure. 

In dimensions greater than four, a quaternionic manifold is a manifold M with a 
subbundle fr of End(TM) allowing at each point a basis 11,/2,/3 of almost com- 
plex structures satisfying Ili2 = I3, that admits a torsion-free connection V M pre- 
serving (~. A quaternionic K/ihler manifold is then a quaternionic manifold M 
with a metric g preserved by the complex structures in ~, such that lzu is the 
Levi-Civita connection of g. In four dimensions we must make the special defi- 
nitions that a quaternionic manifold is a self-dual conformal manifold and 
a quaternionic K/ihler manifold is a Riemannian manifold that is self-dual 
and Einstein. 

These types of manifold may alternatively be defined and described in the 
language of G-structures. If G is a Lie group, a G-structure Q on a manifold M is a 
principal bundle Q over M for the group G, that is a subbundle of the frame bundle 
of M. For  each of the four types of manifold above, we let G be the group of 
automorphisms of the tangent plane at a point that preserve the structures defined 
on it. 

Thus for the hypercomplex manifolds G must preserve three complex 
structures, so G =  GL(n,I-I), for the hyperk/ihler manifolds G preserves three 
complex structures and a metric, so G=Sp(n), and in the quaternionic and 
quaternionic K~ihler cases we allow elements of G also to act on the family of 
complex structures in f#, so G is GL(n, ~-I)GL(1, H-I) and Sp(n)Sp(1), respectively. 

So the structures on the four families of manifolds are encapsulated by a 
G-structure Q on M for the four families of groups. The additional integrability 
conditions can then be summed up by saying that there should exist a torsion-free 
connection V u on M that preserves Q. A good reference for the above material is 
[S 2, Chaps. 8, 9]. 

Given a principal bundle Q over M for the group G, to each representation V 
of G one may associate a bundle ~e ~ over M defined by ~r = Q x G V. The bundle 
has fibre V. Now the groups GL(n, ~-I)GL(1, ~ and Sp(n)Sp(1) have double covers 
GL(n,R-I) x Sp(1) and Sp(n)x Sp(1). Thus for each quaternionic or quaternionic 
K/ihler manifold M with G-structure Q, locally there is a double cover ~ which is a 
principal bundle with group GL(n, ~ ) x  Sp(1) or Sp(n)x Sp(1). (4 need not exist 
globally.) 

We shall now take V to be the natural representation of GL(1, ~I) or Sp(l) on the 
right on the quaternions R with GL(n, ~I) or Sp(n) acting trivially. Actually, in the 
quaternionic case it is necessary to let the scalars N*C GL(n, H-I)GL(1, IH) act to 
some prescribed power on V; this corresponds to regarding GL(n, H-I)GL(1, ~ not 
as GL(n, I-I)Sp(1) or as SL(n, ~-I)GL(1, ~ but as a mixture of the two. 

Forming the bundle associated to the local principal bundle ~ gives a local fibre 
bundle ~7- over M with fibre ~-I, called the natural quaternionic line bundle. To make 
a bundle that exists globally it is necessary to divide ~ by + 1, as a double cover of 
Q may not exist, and this gives a global bundle ~ over M with fibre M/{ _ 1 }, 
called the associated bundle. 

By projectivising the fibre ~ / {  _ 1 } with respect to any of the left actions of C, 
we get a fibre bundle Z over M with fibre C F  1 called the twistor space. It is well 
known that the twistor space of a conformal 4-manifold has an almost complex 
structure that is complex if and only if the manifold is self-dual. 
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A large part of the theory of quaternionic and quaternionic K~ihler manifolds is 
an extension and a generalisation of this fact. In [S 3, Corollary 7.4], Salamon 
proves that quaternionic manifolds have complex twistor spaces by first proving 
that the total space of the associated bundle, which he calls u is hypercomplex. 
This then implies that the twistor space Z is complex. Quaternionic manifolds can 
therefore be regarded as the most general sort of manifolds that admit a complex 
twistor space in analogy with the four-dimensional case (see, e.g. [$2, p. 135]). 

As a quaternionic K~hler manifold is quaternionic, its associated bundle will 
certainly be hypercomplex. However, Swarm goes on to prove [Sw, Theorem 3.5] 
that the Riemannian metric on M induces a pseudo-Riemannian metric on q/(M) 
which together with the hypercomplex structure makes it pseudo-hyperk/ihler. 

Now if a compact Lie group F acts freely and smoothly on a quaternionie 
K/ihler manifold M preserving the quaternionic K/ihler structure, Galicki and 
Lawson have shown [GL] that there exists a quaternionic K~ihler reduction of M 
by F. But there is an induced action of F on the associated bundle q/(M) preserving 
the complex structures and the metric, and so one can do a pseudo-hyperk~ihler 
quotient of q/(M) by F. Swarm shows [Sw, Theorem 4.6] that these two processes 
are the same. By constraining the moment map to vanish on the zero section of the 
fibration, the moment map is uniquely defined and the resulting pseudo- 
hyperk/ihler quotient is the associated bundle of the quaternionic K/ihler quotient 
of M by F. 

3 The hypercomplex quotient 

Let M be a hypercomplex manifold with complex structures 11, I2, and 13 and F be 
a compact Lie group acting smoothly and freely on M preserving Ii. Let the Lie 
algebra of F be 3. Then F acts on ~ by the adjoint action. 

We define a hypercomplex moment map to be a triple #=(Pt,#2,P3) of 
F-equivariant maps # i : M ~ *  satisfying the following two conditions: 

(i) ~t satisfies the "Cauchy-Riemann equations" 

11 dt~ 1 = I2d~ 2 = 13d#3 ,  (1) 

where Ii acts on the cotangent bundle of ~*-valued 1-forms, T * M |  
(ii) Let X : ~ F ( T M )  be the map assigning to each f e  ~ the vector field Jt 

induces on M. Then for every non-zero f in i~, # must satisfy the "transversality 
condition" 

( I l d # l ( f ) ) ( X ( f ) )  does not vanish on M.  (2) 

We make two remarks about these conditions. Firstly, an equivalent formu- 
lation of condition (i) is 

I i(dlz 2 + id~3) = - i(dl~2 -t- idl23), 

I2(d#a + id#~) = - i(d#3 + idlz~), (.3) 

I3(d# 1 + id#2) = - i(dtq + id#2), 

and these three are the Cauchy-Riemann conditions for ~2-~i/t 3 tO be a 
holomorphic function with respect to the complex structure I1, #3 +i#~ to be 
holomorphie w.r.t. I2 and #1 + i~2 to be holomorphic w.r.t. 13. This is why they 
were called Cauchy-Riemann conditions. 
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Secondly, (ii) can actually be replaced with the weaker but more complicated 
condition that for every non-zero f e  ~ and m ~ M there should exist some f '  in 
such that 

(I1 dl~ (f'))m(X(f)),, # O. 

We shall prove the following 

Proposition 3.1. Let M, F, and I~ be as above, and let (1, ~2, ~3 be elements of the 
centre of 5*. Define P={m~M:  ~q(m)=~l,/12(m)=~2, #3(m)=~3} and N=P/F.  
Then N has a natural hypercomplex structure. 

Two proofs will be given, the first one being the informal proof that led us to the 
result, and the second being more technically satisfactory as it does not rely on 
complexifying group actions. The second method of proof extends to the 
quaternionic quotient, where it has the advantage of being direct, and not an 
application of the hypercomplex quotient in the associated bundle. 

First proof. To show that the quotient has three integrable complex structures, 
observe that restricting to the solutions of pj = ~ (j = 1,2, 3) and dividing by F is 
locally equivalent to restricting to the solutions of #2 + i/~3 = ~2 + i~3 and dividing 
by the complexification of F by I1. This is because condition (ii) ensures that 
locally each orbit of the complexification of F meets the solutions of gl = ~1 in only 
one orbit of F. 

But by (i), ,U2-4- i~3 =(2-4-i(3 is a holomorphic condition w.r.t. 11, and so the 
quotient N is equivalent to the quotient of a complex manifold by a complex 
group, and is complex with complex structure I i .  Thus N has three complex 
structures upon it. 

To show that these satisfy the relation Ii12 = 13, for each p in P let Vp be defined 
by 

Vp = {v ~ TpM: dl~,(v) = d#2(v) = d/~a(v) = (IldgO(v)= 0} 

---- (/J ~ TpP: (Ild#l)(V)-- 0}. (4) 

This defines a vector bundle V over P that is a subbundle of TP C TMb,. Now by 
(ii) the condition (Ild/~O(v)= 0 is transverse to the infinitesimal action of F, and 
thus there is a natural isomorphism between Vp and T~r 

So there is an isomorphism between 7t*(TN) and the subbundle V of TP. But 
condition (i) implies that V, considered as a subbundle of TMIe, is closed under 
I1, I2,13. As 11, Iz, I3 are F-invariant, this defines actions of I l, 12, I3 on TN which 
are clearly the same as the ones above defining integrable complex structures on N. 
Because I1,I2,I 3 satisfy IlI2=I3 on V, this relation also holds on N. [] 

Second proof. Using V u, I~, I2, and 13, a connection V N and three almost complex 
structures Ia, I2, I3 will be defined on N. It will then be shown that V N is torsion- 
free and satisfies VNI~ = 0. From Sect. 2, this will imply that N is hypercomplex. 

As F acts freely the map X,, : ~ - ,  TraM is an injection for each m in M. By abuse 
of notation ~ will be identified with its image X,,(~) in each T,,M. Now by (ii) and 
the definition of #, 

TMI~,= T P O ) I ~ I z ~ O I 3 ~ ,  (5) 

where both sides are vector bundles over P. 
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Because of the transversality condition on the moment map, ~ is transverse to 
the annihilator of Iadl~ in TP. So there is a direct sum decomposition TP = VO~, 
where V is the bundle defined above. 

Thus P satisfies TMIt ,=TP~ImI-I .  ~ and TP= VO)~, where V is some 
~- invar iant  vector subbundle of TMIe. It will be shown that under these 
conditions, N = P/F is a hypercomplex manifold. 

Lemma 3.2. Let M be hypercomplex and acted on smoothly and freely by a compact 
Lie group F preserving the structure. Suppose P is an F-invariant submanifold of M 
satisfying TM]e = TP~Im~-I.  ~ and TP = VO)~, where V is an ~-I-invariant vector 
subbundle of TM[1,. Then there is a natural hypercomplex structure on N = P/F. 

Proof. A torsion-free connection V N on N and three almost complex structures 
I1,I2,I 3 will be defined on N and it will be shown that VNIi=O. Let 7z be the 
projection from P to N. Observe that Vp is identified with T~p)N by ~. Now the 
complex structures I s,/2, [3 on M act on Vp, and therefore also on T~t~N. The 
actions are F-invariant, and so descend to give three almost complex structures 
I 1 , 1 2 ,  I a o n  N .  

To define the connection on N, let vl, v 2 be vector fields on N. They lift uniquely 
to give F-invariant sections ~ ,  v2 of V over P. We shall think of ~ as a section of 
TP  and 17 2 as a section of TMle. 

M W Now if wl, w 2 are vector fields on M, the vector field V~I 2 may be formed. This 
action of V M can be restricted to P: if w~ is a section of TP and w 2 is a section of 
TMip, then fzule,,, is a section of TMle. �9 wt �9 

Thus t7ule~ is defined as a section of TMle. As V M is unique, it is F-invariant, �9 ~a ~2 
and so is this section. To get a vector field on N, project to V and then push down. 
So I 7N is defined by the equation 

( V~v2~) = O( V~leez) , (6) 

where Q is projection to the first factor in the vector bundle decomposition 
TM[e = V@~I. ~. 

This definition gives a connection V u on N. Note that in the hyperk/ihler case 
where there are metrics, this definition is the same as usual one involving 
orthogonal projection. It will now be shown that the connection is torsion-free. 

It is sufficient to show that whenever ~ is a 1-form on N, then the anti-symmetric 
part of VU0cis the same as d~. Using the direct-sum decomposition, lift 0~ to a unique 
F-invariant section ~ of T*M]p [different from lt*(~), which is a section of T'P]. 
Choose a section fl of T*M in a neighbourhood of P such that/~]e = ~. (As this is a 
local question, we need not worry about  global existence.) 

Let A denote anti-symmetrisation. As F n is torsion-free, A(FUfl)= d[3. Restrict 
this identity to P and take horizontal parts. On the right there is (d/~)]e=d(]~lr) 
=dn*(~), which is horizontal. On the left, restriction is in two stages, first 
restricting to T*MIe, giving vMle~, and then projecting T*MIe to T*P. By 
definition of Vsot, the horizontal part of this double restriction is n*(VN~). 

Now anti-symmetrisation commutes with restriction to P and taking hori- 
zontal parts, and so A(rc*(VN~))= dr~*(ot). Pushing down to N gives A(VNa)= d~, 
and 17N is torsion-free. 

Finally, it will be shown that if IrMI~ = 0, then 17NI~ = 0. This is equivalent to the 
statement that whenever va, v2 are vector fields on N, then V~(l~vz)=I~V~v2. 
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Lifting to TMIp, this equation is 

a(v JP(l, 9) = (7) 

But since Q commutes with I~, this is equivalent to showing that 

e(V~le(I,z72)) = e(I, V~Ie~72), (8) 

which is an immediate consequence of the fact that VMli=O. Therefore, 
VNIi = O. [] 

This completes the second proof of Proposition 3.1. 
It is necessary to assume that F is compact to ensure that the quotient N is 

Hausdorff. One can remove this assumption by instead assuming that N or M/G is 
a manifold. An example of a group action for which no moment map exists is the 
dilation action of U(1} on the Hopf surface. 

The hypercomplex quotient construction can be used to show that for all n > 2 
there exist compact, nonsingular, simply-connected 4n-dimensional hypercom- 
plex manifolds that are not (even locally) hyperk~ihler, and are not (even locally) 
products of other hypercomplex manifolds. The examples we have found are non- 
trivial fibre bundles over compact nonsingular quaternionic manifolds with fibre a 
Hopf surface, and will be described in a later paper. This contrasts with the four- 
dimensional case, where it is known [Bo] that the only compact hypercomplex 
four-manifolds are the hyperk~ihler K3 surfaces and conformally flat examples, 
that is, tori and Hopf surfaces. So all compact hypercomplex four-manifolds are 
locally hyperkfihler. 

4 The quaternionic moment map 

One would at first except the torsion-free connection on a quaternionic manifold 
M to define a connection on fr and that as in the quaternionic K/ihler case of 
[GL], a moment map on a quaternionic manifold should be defined as a section of 
* |  where F is the quotient group. 

For technical reasons this is not quite true. As explained in [S 3, Sect. 5] to 
define invariant differential operators on vector bundles over quaternionic 
manifolds it is usually necessary to tensor through by some power of the real line 
bundle of volume forms on the manifold, because otherwise the operators defined 
will not be independent of the choice of connection. 

Thus to define "moment maps" which can be differentiated in a meaningful 
fashion we work not with the bundle (9, but with the bundle ~, = fC| which is fr 
tensored with a non-zero power e of the real line bundle of volume forms. (In fact, 
in the notation of [S 3], the bundle ~ is S2H, and the condition imposed on the 
moment maps is that their image under the operator D : S2H~E| should be 
zero. By Corollary 5.4 of [S 3], this operator can only be defined from S2H ' to 
E'| ', where E'=d'E, H' = d - ' H  with m non-zero, and d is a real line bundle 
whose 4n th power is the bundle of volume forms.) 

On ~ there is a connection V M induced from a torsion-free connection on M. 
The condition we write down in terms of V M will be independent of the choice of 
connection on M. 
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Suppose F is a connected Lie group acting smoothly and freely on M, and let 
be its Lie algebra. Define a quaternionic moment map to be an F-equivariant 
section ~ of f~| which satisfies the following two conditions: 

(i) For v some section of T*M| 

VM# = 11 @(I iv) + 12 | ) + 13 | (9) 

(ii) Define X : ~ F ( T M )  to be the map assigning to each f e  ~ the vector field 
induced by f. Then for each non-zero f e  ~ the section v must satisfy 

v(f)X(f) does not vanish on M, (10) 

where v(f)X(f)  is a section of e. 
These conditions are direct translations of conditions (i) and (ii) of Sect. 3 into 

the quaternionic context. Condition (i) is independent of the local basis I1, I2, I3 of 
f9 because it says that VM# should be the contraction of f2 and v, where f2 is I1 @In 
+ 12@12 +I3| which is independent of the choice of I1, I2, I3. 

Another way of writing (i) is this: certainly VM#=II@vl +I2@v2+13@v3, 
where vl,v2,v3 are sections of T*M|174 Then vl, vE, V 3 must satisfy the 
condition Ilvl = lzv2 = I3v3. As vl, v2, ~a are the analogues of d#a, d#z, d#a in the 
hypercomplex case, this is a translation of Ildpl=I2d#2=I3d#3. As in the 
hypercomplex case, (ii) may be replaced by a weaker condition. 

Because the class of hypercomplex manifolds is included in the class of 
quaternionic manifolds, this new definition also defines quaternionic moment 
maps on hypercomplex manifolds. However, in the original definition # is a section 
of a trivial vector bundle, and in the new it is a section of a trivial vector bundle 
tensored with e. Therefore, the two definitions are only consistent if the connection 
on e is fiat, that is, if the holonomy of the hypercomplex manifold reduces to 
SL(n, I-I}. It can be shown that in the non-trivial case, the moment map equation in 
sections of e has no non-zero solutions. 

From [GL], the condition on the quaternionic Kiihler moment map is that for 
each f e  ~, 17M#(f) = ixff~f2, where ixti) is contraction with X(f)  using the metric. 
This can be put in a. neater form by observing that X defines a section v' of 
T*M|  assigning to each f the covector field associated by the metric to 
the vector field X(f). Then the condition on # is that V~# should be the contrac- 
tion of v' and ~, as in the quaternionic case above. 

Thus the difference between the quaternionic and the quaternionic K~ihler case 
is that in the quaternionic case FM# may be the contraction of f2 with any section v 
of T*M|174 whereas in the quaternionic K/ihler case it must be the 
contraction with a particular section v' given by the group action and the metric. 
This holds for the hypercomplex and hyperk/ihler quotients, where for the 
former Ild#1 can be any suitable section of a bundle and for the latter it must be 
a particular section given by the group action and the metric. 

The definition of quaternionic moment map given above may be related to our 
previous definition of hypercomplex moment map on the associated bundle. A 
moment map/t on the associated bundle consists of three ~*-valued functions on 
the associated bundle which are quadratic on each fibre. By restricting (1) to the 
fibre, one finds that on each fibre the solutions # form ~* tensored with a three- 
dimensional vector space, and this vector space is simply S2H ', the fibre of 9. 
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5 The quaternionie quotient 

In the previous section the quaternionic moment map has been defined, It will now 
be shown that if such a moment map exists, then the quotient of the zero set by the 
group has a natural quaternionic structure. 

The first proof we give is by applying the hypercomplex quotient to the 
associated bundle of a quaternionic manifold, following the example of Swarm in 
the quaternionic K/ihler case (Sect. 2 above), and was what led us to the result. 

However, to understand the process on the level of quaternionic manifolds, a 
second proof will be given that does not use associated bundles. Again, the first 
proof is informal and the second more technical. 

Proposition 5.1. Let M be a quaternionic manifold acted on freely and smoothly by a 
connected Lie group F preserving the structure. Suppose that there exists a moment 
map ~t for the action of the group that is not everywhere zero. Let P be the zero set of 
p in M and let N = P/F. Then N has a natural quaternionic structure. 

First proof. From IS 2, p. 135], we know that the torsion-free connection V M is not 
unique, but can be made unique by choosing a volume form for it to preserve. 
Choose an F-invariant volume form on M. Then there is a torsion-free connection 
V ~ preserving the quaternionic structure and the volume form, and as it is unique 
it is F-invariant. 

The choice of connection gives a hypercomplex structure on q/(M), and as V M is 
F-invariant, the induced action of F on q/(M) must preserve the hypercomplex 
structure. 

Observe that/~ is simply a hypercomplex moment map for the induced action of 
F on the associated bundle. By the results of Sect. 3, one can perform a 
hypercomplex quotient. The new hypercomplex manifold is easily seen to fibre 
over N with fibre I-I/{ + 1). It is therefore the associated bundle for a quaternionic 
structure on N, which can be reconstructed from the hypercomplex structure of 
the bundle. N is therefore a quaternionic manifold. [] 

Second proof. As above, choose V M to be F-invariant. Let I1,12,13 be a local 
F-invariant basis for the bundle of almost complex structures that satisfies 
ltI2 =I3,  and s be a local, smooth, non-vanishing F-invariant section of e. Then 
#=#ts|  +#2s |  +/z3s| where/~1, P2, #3 are scalar functions. At the points 
where # = 0, i.e. on P, we have 

VMIt = (dlat)C~s| 1 + (dlx2)|174 + (d#3)|174 , (11) 

which is not generally true away from P because V u (s| need not vanish. Then 
condition (i) becomes 11dlz 1 = I2d/l 2 =13dlt 3, as in the hypercomplex case. As P is 
defined by the vanishing of the scalar functions gl, ~2,/t3, the vector bundle V may 
be defined as in the hypercomplex case. Therefore, TMIp= TP~)Im[-I. q~ and 
TP= V ~ ,  where V is a subbundle of TP that is invariant under It,  I2,I 3 as a 
subbundle of TMIv. 

The proof of Proposition 5.1 will therefore be completed by the 

Lemma 5.2. Suppose M, F, and V ~ are as above, and that P is an F-invariant 
subrnanifold of M satisfying TM[v= T P ~ I m ~ I .  ~ and TP= V~O~, where V is a 
subbundle of TP that is invariant under 11,12,13 as a subbundle of TMIv. Then 
N ~ P/F has a natural quaternionic structure. 
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Proof. A connection V N and three almost complex structures I t, 12, and 13 can be 
defined on N exactly as in the proof of Lemma 3.2, with the proviso that I~ are only 
local, and the proof there that V N is torsion-free also transfers unchanged to this 
situation. It will now be shown that V N preserves the family of almost complex 
structures on N. This then implies that N is quaternionic, except in four 
dimensions, as the definition of quaternionic manifold is stronger in this case. 

On M the Ii satisfy V~Ii = % |  1 i, using the summation convention, where (%) 
is an anti-symmetric 3 x 3 matrix of 1-forms on M. 

Choosing the local almost complex structures 11,12,13 to be F-invariant makes 
the 1-forms eq F-invariant. The horizontal parts of the % project down to give an 
anti-symmetric matrix of 1-forms (e,j) on N. It will be shown that VNIi = eij| 

N I N It is sufficient to show that g~,(l,v2)= iV[,,v 2 + %(vOIjv2, where v~, v2 are any 
vector fields on N and a(v) is the contraction of the 1-form ~ with the vector field v. 
We lift this equation to TMIp. The fields v~, v2 lift uniquely to give F-invariant 
sections vl, ~2 of V over P. We shall again think of Oa as a section of TP and 02 as a 
section of TMtp. 

By definition of V N, the first two terms lift to Q(V~V'(Ii~2)) and I~Q(V~IJ'~2). The 
scalar field %(v~) lifts to ao(~0, because although the vertical part of % is lost on 
projection to N, vt is horizontal and so this does not matter. Also l f 2  lifts to I:~2. 

Thus we must demonstrate that 

Q(V~Ie(I,62)) = 1,0(V~IPO2) + adg,  )I jr2. (12) 

But this is just the application of Q to the equation 

V~le(I,~2) = I ygi~'~2 + ~ij~l)Ijo2, (13) 

which follows from V ~ I i = % |  [] 

As with the hypercomplex quotient, we have been able to show that the 
quatemionic quotient facilitates the construction of compact, nonsingular, 
simply-connected quaternionic manifolds in all dimensions, that are not (even 
locally) quaternionic K/ihler or hypercomplex, and whose associated bundles are 
not (even locally) products of other associated bundles. We believe these are the 
first examples of this kind, and will describe them in a later paper. 

6 An example of  the quaternionic quotient: 
Poon's metrics on C l W #  C P  2 

In [P], Poon describes a family of self-dual metrics on (EP 2 ~= (El ~2 parametfised 
by an open interval of the real line. This is done by showing that the intersection of 
two quadrics in t IP  s can be given a real structure and desingularised so that it is 
the twistor space of a nonsingular manifold. Poon's description of the twistor 
space is (from p. 114 of [P]) a small resolution of the intersection of the two 
quadrics 

2(z~ + z~) + 2zl ~ 2 2 2 + : 3  + ( z 4 + z s ) = O ,  (Qo) 
2 2 2 2 2 2 Zo + ZI nU Z2 + Z3 ~-Z4 + Zs-~O (~o~) 

in C F  5, with the real structure 

(zo, z l ,  z2, z3, z4, zs) ~ (~0, ~1, ~2, - ~3, - ~4, - ~5). (/r 
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Consider the quaternionic quotient of l i p  3 by the group U(1) • U(1). For 
convenience in what follows the complex structure 11 will be singled out, and 
everything will be written in complex coordinates with respect to I~. We choose 
complex coordinates (xl,  lx, x2,12,x3,13,x4,14) on I-14, the associated bundle of 
I-IF 3, with the other complex structures given by the antilinear action of 12: 

12((xl, 11, x2,12, x3,13, x4,14))=(~l, -2~1,r2, - x 2 ,  iv3,- 3c3, ~4,-x4). (14) 

The action of U(1) • U(1) is 

(M, 13) 

(Xl,ll ,  x2,12, x3,13, x4,14)l ,(UXx, u - l l l ,  u x 2 , u - l l 2 , v x 3 , v - l l 3 , v x 4 , v - l l 4 ) ,  

(u, v) E v ( 1 )  • t : (1 ) ,  (15)  

which preserves I~, 12 and 13 = I~12, and the quaternionic moment maps we choose 
are 

(Ixd2-11~]2 +lx212-11212 +~(Ix312-11312-1x412 +l1412)~ (16) 
Pl = \ ix312 _ 11312 + ix412 _ 11412 + ~(Ixl 12- Ilx 12 -Ix212 + 11212)J ' 

#2 + ills = 2i I x111 + x212 + ~(x313 - x414)~ (17) 
\X313 + X414 + ~(X 1 ll -- X212) j ' 

in coordinates on the associated bundle, where ~ is a real parameter which lies in 
the interval (0,1). 

We will prove that the twistor spaces described by Poon and the twistor spaces 
of the quaternionic quotient above are isomorphic. 

Proposition 6.1. The twistor space o f  the quaternionic quotient above with 
parameter ~ is biholomorphic to Poon's description o f  the twistor space with 

2 + ~  4 
parameter 2 = ~ in a way that identifies the real structures. 

Proof. A holomorphic map will be defined from the twistor space of the 
quaternionic quotient, which is the projectivisation of the associated bundle with 
respect to I~, to ~ p 5  with homogeneous coordinates (z o ..... z5). The image will be 
seen to satisfy (Qo) and ( Q J  and the real structure on the quotient twistor space 
will induce the real structure (R) on ff~F 5. This map is the required 
biholomorphism. 

We make the following string of definitions: 

let w o = x 112, W 1 = - -  Xzll ,  W2 = 0~X314, W3 = -- ~x413, Zo = w~ + wl w o -- w~ 
-----2 ~ '  z l = 2i ' 

z4_  w2 - w3 w2 + w3 
2 , and z5 = 2i 

This gives wow1 = - (x t 12)(x211) = z~ + z~, - w2w3 = o~2(x314)(x413) = z?, + z~, and 
the action o f /2  : (Zo, zi, z4, Zs) ~ (Zo, z�92 - z4, - zs). 

Define z2= ~(1 + e4)1/2. (xt l l  -x212), z3 = ( x l l l +  x212). 

Then I2:(z2,z3)~-.( i2,--~3).  Let ~ =  2 + e 4  Note that all the new variables 
1 + e 4 .  

above are not acted upon by the quotient variables of the quaternionic quotient, 
and thus descend to functions on the associated bundle of the quotient that are 
holomorphic w.r.t. I1. 
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Then 

(zg +z~)+(;~-l)z~ + 5z3= -(xA)(xA)+ ~ (a +~") "~ .(Xlll-x212) 

1 1 z 
+-2 (-~(x , l~  + x212)) 

=0  08) 

and 

1 2  .2 5. ~" (ig_(l+ot4)U2.(x,l_x212)~ 2 (2 - 2)z2 z + ~ z 3 + (z 4 + zsl = 

1 1 2 
+ ~ ( ~ ( x ~ l ,  + x212)) -]-ct2(x313)(x414) 

O~ 4 1 2 
-- 4 (xlll--xzl2)2 + 4 (xll14-xz12) +cd(x31a)(x414)" 

(19) 
Now, from the quaternionic moment map equations, 

(1 + cdJx t 11 + (1 - -  I 2 ) x 2 / 2  
x313 = -- 2~t ' (20) 

(1 - -  ~Z2)X 111 d" (1 q- ~2)X212 
x#l,~ = 2~ ' (21) 

so at2(xala)(x4I~) = - �88 I + x2/2) 2 - ~4(x 111 - x212)2) �9 Therefore, 

(2_,~)z 2 + X2z a2 + (z~,+z~)= --�88 --xfl2) 2 + �88 + xfl2): 
- -  �88 1 I I "4- X 2/2) 2 - -  0(~(X t l l  - -  X212) 2) 

=o .  (22) 

Collecting all the above information together, we find that there is a map from 
the twistor space of the quaternionic quotient to C F  s with homogeneous 
coordinates (zo, ..., zs), such that the action of I2 induces the involution 

(z o, zl, z:, z3, z4, zs) ~ (zo, Zl, z2, - z3, - z4, - zs), (23) 

that is, Eq. (R), and such that the image of the twistor space in IEF s satisfies (18) 
and (22); equivalently, the image satisfies 2(18)+ (22) and (18)+ (22), which are 

2 2 2 ~. 2 2 2 2(zo + zO+ Lz2 + 2z3+(z4+zs)=0  

and 

Zo+Zl  
that is, (Qo) and (Qoo). 

Thus it has been shown that the quotient model of the twistor space of 
~ p 2  ~{EF2 can be mapped directly to Poon's model of the twistor space with the 

value 2 = 2 + ~___~4 Also, the interval of the parameter ~, whieh is (0, 1), is mapped 
1 +~4" 
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bijectively to the interval of Poon's parameter 2, which is (~, 2). This completes the 
proof. [] 

We were able to write down a quaternionic quotient for metrics on ~ 2  ~ C•2 
because there is a general method for finding quotients for self-dual metrics on 
generalised connected sums of weighted projective spaces at orbifold points. This 
involves building up the quotient and its moment maps from smaller quotients and 
moment maps in a formal way. 

A quotient may then be seen to be composed of basic building blocks, which are 
the self-dual metrics on weighted projective spaces described by Galicki and 
Lawson [GL]. Altering the expressions for the quaternionic moment maps 
corresponds to deforming the metrics. Then for sufficiently small generic changes 
to the moment maps from the connected sum form, the metrics are non-singular. 

The result is a quaternionic quotient of ~IP ~+ 1 by U(1) ~. An approach of this 
sort is necessary because, although it is easy to write down such a quotient, it is in 
general difficult to tell if the quotient is non-singular. 

As mentioned in the Introduction, I have recently been able to show that 
LeBrun's self-dual metrics o n  n C ~  2 [L 2] are examples of this method. Other 
distinct families of self-dual metrics can also be constructed on n ~  2, which have 
h~ 1/2)=2 and symmetry groups of identity component U(1)x U(1). 

7 Quaternionic complex manifolds 

Let M be a quaternionic 4-manifold. The complex structures at a point x in M 
compatible with the quaternionic structure are parametrised by the points of the 
fibre of the twistor space Z of M over the point x. Thus an almost complex 
structure I on M compatible with the quaternionic structure is a section of the 
fibration Z ~ M ;  1 is integrable whenever the section is a complex hypersurface 
in Z. 

By convention a quaternionic 4-manifold is conformally self-dual. However, a 
complex surface has a natural orientation, and we wish to consider metrics that are 
anti-self-dual with respect to this. So the complex orientation is opposite to the 
usual quaternionic orientation. This should not cause any confusion. 

We begin by quoting a result of Pontecorvo [Pt, Theorem 2.1], that if M is 
Hermitian with metric g and complex structure ! and anti-self-dual, then g is 
conformal to a K~ihler metric if and only if the line bundle defined by the divisor 
[X] is isomorphic to K z 1/2. 

Here K z is the canonical line bundle over Z and IX] is the sum of the 
hypersurface ~ in Z defined by the complex structure I and the hypersurface 
defined by - I .  So the K/ihler metrics in the conformal class of M are exactly given 
by real holomorphic sections of K z 1/2 

Using a calculation in IS 1, Theorem 4.3], we find that a real holomorphic 
section of Kz 1/2 is a complex function W on the associated bundle that is quadratic, 
holomorphic with respect to I1, and satisfies the reality condition i p ( h ) - - ~  for 
h in the associated bundle. 

As ~0 is quadratic it has two zeros in each fibre of the twistor space Z, which are 
interchanged by the real structure a on Z because v? is real. So ~p defines a complex 
structure I and its conjugate - I on M. Also, the "norm" of ip on each fibre lies in a 
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non-zero power of the volume forms, which gives a volume form on M. So M has a 
complex structure, a conformal structure and a volume form, which together make 
M Hermitian. Pontecorvo's result is that M is in fact K/ihler with zero scalar 
curvature. 

We shall make an observation that will enable us to put this information in a 
form that does not single out the complex structure 11 on the associated bundle. 

The quaternionic moment maps defined in Sect. 4 were interpreted on the 
associated bundle as triples of L~-valued quadratic functions #1,#2,#3 with 
#2 +i#3 holomorphic w.r.t. 11. The remaining conditions are equivalent to the 
reality condition (#2 + i#3)(h) = (#2 - i#3)(12h). 

So a real holomorphic section ~p of K z 1/2 is equivalent to a triple # of quadratic 
scalar functions #1,/~2, #a on the associated bundle satisfying (1). On M this is a 
section # of ~, satisfying (9). 

Define a twistor function p on a quaternionic manifold M to be a section # of 
satisfying (9). We call them twistor functions because they are in the kernel of a 
differential operator called the (quadratic) twistor operator. (See [S 3, Sect. 5] for 
the theory of invariant differential operators on quaternionic manifolds and [S l, 
Lemma 6.4] for the definition of the quadratic twistor operator D in the 
quaternionic K/ihler case.) Pontecorvo's result now states that the K/ihler metrics 
in the conformal class of a quaternionic 4-manifold M are exactly given by the 
non-vanishing twistor functions # on M. 

A generalisation to higher dimensions is now apparent. The manifolds are 
quaternionic with a preferred complex structure, so we shall adopt the same 
quaternionic complex for them. We define a quaternionic complex manifold to be a 
quaternionic manifold M together with a twistor function # that vanishes nowhere 
on M. It is sometimes convenient to allow ~ to vanish at points on M, and these will 
be called singular points of the quaternionic complex manifold, so in general a 
quaternionic complex manifold will be an open set of a singular quaternionic 
complex manifold. 

The quaternionic quotient generalises very simply to the quaternionic complex 
case: if one does a quaternionic quotient of a quaternionic complex manifold by a 
group preserving the twistor function # then it is easy to see that # descends to a 
twistor function on the quotient, which will again be non-vanishing. (However, 
when dealing with singular quaternionic complex manifolds it is important to 
ensure that # does not lie in the span of the moment maps chosen.) 

We remark that it is easily shown that the only solutions of the twistor equation 
on a connected open set in I-P, and hence F I P ,  are polynomials of degree at most 
two. 

The main result that we will prove about quaternionic complex manifolds is 
that they can alternatively be described as manifolds with a SL(n, I-1)U(1)-structure 
preserved by a torsion-free connection, and that as in the hypercomplex case this 
connection is unique. [The structure group is SL(n,I-I)U(1) because, as in four 
dimensions, the twistor function gives a complex structure and a volume form, and 
the group preserving a quaternionic structure, a complex structure and a volume 
form is SL(n, l-I)U(1).] 

We note that in the classification by Berger [B] of holonomy groups of 
manifolds with torsion-free connections, SL(n,I-IJU(I) is given as a possible 
holonomy group in Theorem 4, p. 320; in Berger's notation, SL(n,I-I)U(I) is 
T 1 x SU*(2n). 
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Theorem 7.1. Let M be a quaternionic complex manifold. Then M has a natural 
SL(n,[)U(l)-structure Q, and there is a unique torsion-free connection I 7M 
preserving Q. 

Proof. As M is quaternionic, it has a GL(n, [ )GL(1,  [])-structure Q'. A point q' in 
the fibre of Q' over m ~ M  is an isomorphism of vector spaces q':I-I"~TmM 
inducing isomorphisms on the families of complex structures on [ "  and TraM. 

But the twistor function on M gives a non-zero volume form 0 on T,~M and 
selects one of the complex structures, denoted I. Define the subset Q of Q' as those 
q' e Q' taking I1 to I and the standard volume form on l-I" to 0. Clearly Q fibres over 
M with fibre SL(n, I-I)U(1), so Q is an SL(n, [)U(1)-structure on M. 

To show that there exists a unique connection V M on M preserving Q, it is 
sufficient to find a unique V u preserving Q', I, and 0. Recall that from [S 2, p. 135] 
the torsion-free connection on a quaternionic manifold may be uniquely defined 
by giving a volume form for it to preserve. Let V M be the torsion-free connection on 
M preserving Q' and the volume form 0. We will show that 17MI = 0. 

Set I~ = I  and choose I2,I3 locally in fr such that I l i 2=I3 .  Then # = s |  
where s is a non-vanishing section of e. As 17~0 = 0 and 0 is some non-zero power of 
s, we have VMs = 0. Also as V M preserves Q' we have VUli = ohjI j, where (a 0 is an 
antisymmetric matrix of 1-forms. Thus FM#=s|174 

However, VM# satisfies the twistor equation, and writing Vulz = s|174 Ij gives 
11V1=I2v2=Iav3. But Vl~--0~ll ~---0, as  (~0 is anti-symmetric. So v2=v3=0  and 
VM~t = 0. 

Therefore, 17uI = 0 and there is a unique torsion-free connection IzM preserving 
the quaternionic structure Q' of M, the complex structure I and the volume 
form 0. [] 

As a corollary we reprove Pontecorvo's result quoted above. 

Corollary 7.2 [Pt, Theorem 2.1]. A four-dimensional quaternionic complex mani- 
fold is exactly a Kiihler surface of  zero scalar curvature. 

Proof. Let M be a four-dimensional quaternionic complex manifold. Then M has 
the structure of a Hermitian manifold, with Riemannian metric g and compatible 
complex structure I. Since V u is torsion-free and preserves g it must be the Levi- 
Civita connection, and as ! satisfies VMI = O, M is by definition Kfihler. But M is 
conformally anti-self-dual, so it must have zero scalar curvature. 

Conversely, if M is a zero-scalar-curvature K/ihler surface, it is quaternionic, 
and the volume form and complex structure together make up a section # of 
satisfying 17u/t = 0, and a fortiori the twistor equation. Thus M is quaternionic 
complex. [] 

We also have an alternative definition for quaternionic complex manifolds: 

Corollary 7.3. In 4n dimensions with n> 1, a quaternionic complex manifold is a 
manifold with a SL(n,[)U(1)-structure preserved by a torsion-free connection. In 
four dimensions a quaternionic complex manifold is a Kdhler surface with zero scalar 
curvature. 

Using Poon's metrics of the last section as an example, we shall show that there 
are K/ihler surfaces with zero scalar curvature that have no infinitesimal 
isometries. 
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To find Kiihler metrics in the conformal class of the Poon metrics, we look for 
twistor functions. These descend from twistor functions on I-IP 3 which are 
invariant under the quotient group. By inspection, there is a 6 real-dimensional 
vector space of twistor functions. The conformal isometry group of the metrics is 
U(1)x U(1), and only 4-dimensional subspaces of the twistor functions are 
invariant by more than a discrete subgroup of U(1) x U(1). 

Thus the K/ihler metrics conformal to Poon's metrics with a U(I) isometry are 
of codimension 2 in the space of all K/ihler metrics conformal to Poon's metrics, 
and we have constructed zero-scalar-curvature K~ihler metrics which have no U(1) 
isometries, and indeed no infinitesimal isometries. 

This contrasts with the quaternionic K/ihler case, for which we have Salamon's 
result [S 1, Lemma 6.5] that the space of twistor functions (my notation) is 
isomorphic to the space of infinitesimal isometrics of the manifold when the scalar 
curvature is non-zero. So every zero-scalar-curvature K~ihler surface that is 
conformal to a quaternionic K/ihler manifold with non-zero scalar curvature has a 
preferred infinitesimal isometry. 

A curious aspect of this work is that although we have a quotient for a type of 
Kiihler manifold, it is not a Kiihler quotient. This is because the higher 
dimensional manifolds do not have metrics. I have also found a pseudo-K~ihler 
quotient for the zero-scalar-curvature K/ihler surfaces given as examples of the 
quaternionic complex quotient in the next section. But the two quotients seem 
almost unrelated and I do not know if there is a systematic way of producing zero- 
scalar-curvature K/ibler surfaces as K~ihler quotients. 

8 LeBrun's metrics on line bundles over (~)1  

In this section, as an example of the quaternionic complex quotient, we shall 
consider the two-dimensional weighted projective spaces with at most one singular 
point. There is just one family of these, those of the form ~ F  2, 1,k" It will be shown 
that they admit a quaternionic structure which is U(2)-symmetric. The family are 
in fact adaptations of the weighted projective spaces considered by Galicki and 
Lawson [GL]. 

Then using the results of Sect. 7, the K/ihler metrics of zero scalar curvature 
that are conformal to these manifolds can be simply described, and it will be seen 
that there is one such metric that is U(2)-symmetric. It has a single pole at the 
orbifold point, close to which it is asymptotically fiat. 

Thus each member of the family carries an asymptotically fiat, non-singular 
K/ihler metric of zero scalar curvature with U(2)-symmetry. But all such metrics 
have been classified by LeBrun in his paper [L 1]. He finds that for each k > 0, the 
total space of the line bundle L- k over ~ F  1 admits a K/ihler metric with zero scalar 
curvature that is asymptotically fiat, U(2)-symmetric and unique up to homothety, 
and that these comprise all the cases. Here L is the line bundle over ~1 :'1 that has 
Chern class + 1. 

It is clear on topological grounds how the two descriptions correspond, for 
IEF2. ~,k is the compactification of the total space of the line bundle L - k  over ~,1.  

A weighted projective space is a singular complex manifold that generalises tire 
ordinary notion of projective space. We shall consider weighted projective spaceS 
of two complex dimensions, denoted ~lPp2 ~.r, where p, q, r are coprime positive 
integers. 
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This is defined as the quotient of lE3\{(0, 0, 0)} by an action of lE*, given by 

(f, g, h) ~ (uVf, uqg, u'h), u ~ lE*. (24) 

Thus lEF 2 is C• 2 1 1. The only weighted projective spaces with exactly one 
singular point are l E ~ ,  t.k for k > 1. 

Now a quaternionic structure on lEF 2, 1.k will be given as a quaternionic 
quotient of I-I~ 2 by the group U(I). For  convenience we single out the complex 
structure I1 and work in coordinates that are complex with respect to it. The other 
complex structures are then given by the action of 12. 

The associated bundle of ~ z  is ~3,  represented by complex coordinates 
(x, y, z, i, m, n), with the action of the second complex structure being 

I2((x, y, z, l, m, n)) = (F, nq, ti, - 2, - 37, - z-), (25) 

and the action of the group is 

(x,y,z,l,m,n)~-r(Ukx, uky, u2-kZ, u-kl, u-km, uk-2n), Ue U(I). (26) 

The moment maps we choose are 

# 1  = IX[ 2 -1- ]Yl 2 + 12] 2 --I112 --]m] 2 --Inl ~ (27) 

and 
I.t2 + i#3 = 2i(xl + ym + zn). (28) 

The important point about these moment maps is the relative choice of signs 
between the terms in x, y, l, m and z, n. For k > 2 the signs are consistent with the 
quotient being a quaternionic K/ihler quotient of the non-compact dual of I-I~ 2, 
which has as associated bundle ~--I 3 with an indefinite metric, positive on the first 
two pairs of variables x, t and y, m but negative on the third pair z, n. 

The difference that the signs make is this: with this group action but with the 
other choice of signs there would be singularities when x = y = z = 0 and when I = m 
=n=0 ,  which would lie above the singular line in lEla2_l,k_l.k. 

However, x = y = z = O  and l = m = n = O  are now excluded by the equation 
#1 =0, and in their place we see that the group acts freely, up to _ 1, on the sets 
x = y = n = O  and l=m=z=O.  This is because the line h = 0  in lE~. l ,k  is not 
actually singular. 

So doing a quaternionic quotient by U(1) with the above moment maps gives 
a four-dimensional quaternionic manifold, with one singular point, given in 
associated bundle coordinates by z = n =0. To show that this manifold is lEF 2, Lk, 
a map 7t(~b) from one to the other will be given. 

Consider the vector product of the three-dimensional complex vectors (x, y, z), 
(7~fft, li). This induces a map from K-I a to lE3. The map is fixed by complex 
multiplication by ! t and 12. So up to multiplication by positive real constants, the 
map from H a to IE a is constant on quaternionic lines in I-I a, and thus induces a 
map ~b:UcI-IF2~6es, where U is the set of points in N~,2 for which 
(~,y,z)^(~,n),O. 

It is clear that the zero set of the moment maps in ~11 ~2 lies inside U, for if 
(x, y, z, l, m, n) in ~I~  2 is not in U then (x, y, z) is proportional to (T, r~, fi), and the 
moment maps then force x . . . . .  n = 0, which is a contradiction. 

Now consider the effect of the U(I) action on the image under ~b of a point of 
~ 2 .  Clearly it is 

u 2 (f, g,h)~--~(u f ,  u2g, u2kh), ue  U(I). (29) 
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Pushing ~b down to the quotients of both spaces gives a map n(~b). Thus the 
image under n(~b) of a point in the quotient of ~IIP 2 by U(1) lies in the quotient of 
6asClE a by the action (29) of U(1) on ~3, i.e. in the weighted projective 
space I~]P~, l,k" 

From Sect. 7, the K~ihler metrics in the conformal class of these manifolds are 
given by twistor functions. There is an obvious twistor function on the spaces we 
consider given on the associated bundle by tq = Izl 2 -Inl  2,/~2 + i#3  = 2izn. As this is 
a moment map for a U(1)-action it clearly satisfies the twistor equation, and it 
vanishes only at the orbifold point z = n = 0, so it represents a K~ihler metric which 
is asymptotically flat at the orbifold point and has no other poles. It is up to a 
constant the unique twistor function preserved by the symmetry group U(2) of the 
weighted projective space, so the Kfihler metric it represents has symmetry 
group U(2). 

Thus the quaternionic metric on ~IP~, 1,k is conformal to a U(2)-symmetric, 
nonsingular, complete K~ihler metric of zero scalar curvature that is asymptoti- 
cally fiat near the orbifold point. But by [L 1], this must be one of the metrics 
defined on line bundles over ~ F  t by LeBrun. From the topology, it is the metric on 
the line bundle L -k. 

The first two cases are k = 1, where the quaternionic  manifold is C F  2 and the 
zero-scalar-curvature  Kfihler metric is the Burns metric, and k = 2, which is the 
familiar Eguch i -Hanson  space with its hyperk~ihler metric (see [L  1]). 
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