Kuranishi spaces and Symplectic Geometry

Volume I.
Basic theory of (m-)Kuranishi spaces

Dominic Joyce

The Mathematical Institute,
Radcliffe Observatory Quarter,
Woodstock Road,
Oxford,
OX2 6GG,
U.K.

joyce@maths.ox.ac.uk

Kuranishi spaces and Symplectic Geometry. Volume I.
Basic theory of (m-)Kuranishi spaces

<table>
<thead>
<tr>
<th>Contents of volume I</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents of volume II</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction to the series</td>
<td>v</td>
</tr>
<tr>
<td>1 Introduction to volume I</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Manifolds with corners

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The definition of manifolds with corners</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Boundaries and corners of manifolds with corners</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Tangent bundles and b-tangent bundles</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Generalizations of manifolds with corners</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Transversality, submersions, and fibre products</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Orientations</td>
<td>27</td>
</tr>
</tbody>
</table>

3 Assumptions about 'manifolds'

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Core assumptions on 'manifolds'</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Examples of categories satisfying the assumptions</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Differential geometry in (\mathbf{Man})</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Extension to 'manifolds with corners'</td>
<td>47</td>
</tr>
</tbody>
</table>

4 M-Kuranishi spaces

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The strict 2-category of m-Kuranishi neighbourhoods</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>The stack property of m-Kuranishi neighbourhoods</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>The weak 2-category of m-Kuranishi spaces</td>
<td>61</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparing m-Kuranishi spaces from different (\mathbf{Man})</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Discrete properties of 1-morphisms in (\mathbf{MKur})</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>M-Kuranishi spaces with corners</td>
<td>102</td>
</tr>
</tbody>
</table>

5 \(\mu \)-Kuranishi spaces

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Linearity of 2-morphisms of (\mu)-Kuranishi neighbourhoods</td>
<td>106</td>
</tr>
<tr>
<td>5.2</td>
<td>The category of (\mu)-Kuranishi neighbourhoods</td>
<td>109</td>
</tr>
<tr>
<td>5.3</td>
<td>The category of (\mu)-Kuranishi spaces</td>
<td>114</td>
</tr>
<tr>
<td>5.4</td>
<td>(\mu)-Kuranishi spaces with corners</td>
<td>122</td>
</tr>
<tr>
<td>5.5</td>
<td>(\mu)-Kuranishi neighbourhoods on (\mu)-Kuranishi spaces</td>
<td>125</td>
</tr>
<tr>
<td>5.6</td>
<td>Proof of Theorem 5.23</td>
<td>127</td>
</tr>
<tr>
<td>6</td>
<td>Kuranishi spaces, and orbifolds</td>
<td>135</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>6.1</td>
<td>The weak 2-category of Kuranishi neighbourhoods</td>
<td>135</td>
</tr>
<tr>
<td>6.2</td>
<td>The weak 2-category of Kuranishi spaces</td>
<td>145</td>
</tr>
<tr>
<td>6.3</td>
<td>Kuranishi spaces with corners.</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Boundaries, (k)-corners, and the corner 2-functor</td>
<td>157</td>
</tr>
<tr>
<td>6.5</td>
<td>Kuranishi neighbourhoods on Kuranishi spaces</td>
<td>162</td>
</tr>
<tr>
<td>6.6</td>
<td>Isotropy groups</td>
<td>165</td>
</tr>
<tr>
<td>6.7</td>
<td>Orbitoids and Kuranishi spaces</td>
<td>170</td>
</tr>
<tr>
<td>6.8</td>
<td>Proof of Theorems 4.13 and 6.16</td>
<td>178</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Relation to other Kuranishi-type spaces (To be rewritten.)</th>
<th>188</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Fukaya–Oh–Ohta–Ono’s Kuranishi spaces</td>
<td>188</td>
</tr>
<tr>
<td>7.2</td>
<td>Fukaya–Oh–Ohta–Ono’s good coordinate systems</td>
<td>193</td>
</tr>
<tr>
<td>7.3</td>
<td>McDuff–Wehrheim’s Kuranishi atlases</td>
<td>196</td>
</tr>
<tr>
<td>7.4</td>
<td>Dingyu Yang’s Kuranishi structures, and polyfolds</td>
<td>199</td>
</tr>
<tr>
<td>7.5</td>
<td>Relating our Kuranishi spaces to previous definitions</td>
<td>202</td>
</tr>
<tr>
<td>7.6</td>
<td>Proof of Theorem 7.26</td>
<td>209</td>
</tr>
</tbody>
</table>

| 8 | (M-)Kuranishi spaces as stacks | 220 |

<table>
<thead>
<tr>
<th>A</th>
<th>Categories and 2-categories</th>
<th>221</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Basics of category theory</td>
<td>221</td>
</tr>
<tr>
<td>A.2</td>
<td>Strict and weak 2-categories</td>
<td>222</td>
</tr>
<tr>
<td>A.3</td>
<td>2-functors, 2-natural transformations, and modifications</td>
<td>226</td>
</tr>
<tr>
<td>A.4</td>
<td>Fibre products in 2-categories</td>
<td>228</td>
</tr>
<tr>
<td>A.5</td>
<td>Sheaves on topological spaces</td>
<td>229</td>
</tr>
<tr>
<td>A.6</td>
<td>Stacks on topological spaces</td>
<td>231</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>Differential geometry in (\mathsf{Man}) and (\mathsf{Man}^c)</th>
<th>233</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Functions on manifolds, and the structure sheaf</td>
<td>233</td>
</tr>
<tr>
<td>B.2</td>
<td>Vector bundles</td>
<td>237</td>
</tr>
<tr>
<td>B.3</td>
<td>The cotangent sheaf, and connections</td>
<td>239</td>
</tr>
<tr>
<td>B.4</td>
<td>Tangent sheaves</td>
<td>242</td>
</tr>
<tr>
<td>B.5</td>
<td>The (O(s)) and (O(s^2)) notation</td>
<td>260</td>
</tr>
<tr>
<td>B.6</td>
<td>Discrete properties of morphisms in (\mathsf{Man})</td>
<td>263</td>
</tr>
<tr>
<td>B.7</td>
<td>Comparing different categories (\mathsf{Man})</td>
<td>264</td>
</tr>
<tr>
<td>B.8</td>
<td>Differential geometry in (\mathsf{Man}^c)</td>
<td>268</td>
</tr>
<tr>
<td>B.9</td>
<td>Proof of Theorem 3.17</td>
<td>277</td>
</tr>
</tbody>
</table>

References for volume II 298

Glossary of notation, all volumes 305

Index to all volumes 319
Contents of volume II

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Tangent and obstruction spaces</td>
<td>3</td>
</tr>
<tr>
<td>10.1 Optional assumptions on tangent spaces</td>
<td>3</td>
</tr>
<tr>
<td>10.2 The definition of tangent and obstruction spaces</td>
<td>14</td>
</tr>
<tr>
<td>10.3 Quasi-tangent spaces</td>
<td>23</td>
</tr>
<tr>
<td>10.4 Minimal ((m, \mu)-)Kuranishi neighbourhoods at (x \in X)</td>
<td>28</td>
</tr>
<tr>
<td>10.5 Conditions for (\text{étale} (1-))morphisms, equivalences,</td>
<td>42</td>
</tr>
<tr>
<td>and coordinate changes</td>
<td></td>
</tr>
<tr>
<td>10.6 Determinants of complexes</td>
<td>51</td>
</tr>
<tr>
<td>10.7 Canonical line bundles and orientations</td>
<td>61</td>
</tr>
<tr>
<td>11 Transverse fibre products and submersions</td>
<td>78</td>
</tr>
<tr>
<td>11.1 Optional assumptions on transverse fibre products</td>
<td>79</td>
</tr>
<tr>
<td>11.2 Transverse fibre products and submersions in (\mathbf{mKur})</td>
<td>87</td>
</tr>
<tr>
<td>11.3 Fibre products in (\mathbf{mKur}_{\text{st}}, \mathbf{mKur}^{\text{gc}}, \mathbf{mKur}^{\text{c}})</td>
<td>98</td>
</tr>
<tr>
<td>11.4 Discussion of fibre products of (\mu)-Kuranishi spaces</td>
<td>106</td>
</tr>
<tr>
<td>11.5 Transverse fibre products and submersions in (\mathbf{Kur})</td>
<td>108</td>
</tr>
<tr>
<td>11.6 Fibre products in (\mathbf{Kur}_{\text{st}}, \mathbf{Kur}^{\text{gc}}) and (\mathbf{Kur}^{\text{c}})</td>
<td>119</td>
</tr>
<tr>
<td>11.7 Proof of Proposition 11.14</td>
<td>127</td>
</tr>
<tr>
<td>11.8 Proof of Theorem 11.17</td>
<td>133</td>
</tr>
<tr>
<td>11.9 Proof of Theorem 11.19</td>
<td>138</td>
</tr>
<tr>
<td>11.10 Proof of Theorem 11.22</td>
<td>157</td>
</tr>
<tr>
<td>11.11 Proof of Theorem 11.25</td>
<td>161</td>
</tr>
<tr>
<td>12 M-homology and M-cohomology (Not written yet.)</td>
<td>164</td>
</tr>
<tr>
<td>13 Virtual (co)cycles and (co)chains for (m-)Kuranishi spaces</td>
<td>165</td>
</tr>
<tr>
<td>in M-(co)homology (Not written yet.)</td>
<td></td>
</tr>
<tr>
<td>14 Orbifold strata of Kuranishi spaces (Not written yet.)</td>
<td>166</td>
</tr>
<tr>
<td>15 Bordism and cobordism for (m-)Kuranishi spaces</td>
<td>167</td>
</tr>
<tr>
<td>(Not written yet.)</td>
<td></td>
</tr>
<tr>
<td>References for volume II</td>
<td>168</td>
</tr>
</tbody>
</table>
Glossary of notation, all volumes
Index to all volumes
Introduction to the series

On the foundations of Symplectic Geometry

Several important areas of Symplectic Geometry involve ‘counting’ moduli spaces \mathcal{M} of J-holomorphic curves in a symplectic manifold (S, ω) satisfying some conditions, where J is an almost complex structure on S compatible with ω, and using the ‘numbers of curves’ to build some interesting theory, which is then shown to be independent of the choice of J. Areas of this type include

- Gromov–Witten theory [12, 39, 52, 68, 73, 79, 102, 104], Quantum Cohomology [68, 79],
- Lagrangian Floer cohomology [2, 21, 24, 29, 92, 102],
- Fukaya categories [18, 98, 100],
- Symplectic Field Theory [9, 15, 16],
- Contact Homology [14, 94],
- and Symplectic Cohomology [99].

Setting up the foundations of these areas, rigorously and in full generality, is a very long and difficult task, comparable to the work of Grothendieck and his school on the foundations of Algebraic Geometry, or the work of Lurie and Toën–Vezzosi on the foundations of Derived Algebraic Geometry. Any such foundational programme for Symplectic Geometry can be divided into five steps:

(i) We must define a suitable class of geometric structures \mathcal{G} to put on the moduli spaces \mathcal{M} of J-holomorphic curves we wish to ‘count’. This must satisfy both (ii) and (iii) below.

(ii) Given a compact space X with geometric structure \mathcal{G} and an ‘orientation’, we must define a ‘virtual class’ $[X]_{\text{virt}}$ in some homology group, or a ‘virtual chain’ $[X]_{\text{virt}}$ in the chains of the homology theory, which ‘counts’ X. Actually, usually one studies a compact, oriented \mathcal{G}-space X with a ‘smooth map’ $f : X \to Y$ to a manifold Y, and defines $[X]_{\text{virt}}$ or $[X]_{\text{virt}}$ in a suitable (co)homology theory of Y, such as singular homology or de Rham cohomology. These virtual classes/(co)chains must satisfy a package of properties, including a deformation-invariance property.

(iii) We must prove that all the moduli spaces \mathcal{M} of J-holomorphic curves that will be used in our theory have geometric structure \mathcal{G}, preferably in a natural way. Note that in order to make the moduli spaces \mathcal{M} compact (necessary for existence of virtual classes/chains), we have to include singular J-holomorphic curves in \mathcal{M}. This makes construction of the \mathcal{G}-structure on \mathcal{M} significantly more difficult.
(iv) We combine (i)–(iii) to study the situation in Symplectic Geometry we are interested in, e.g. to define Lagrangian Floer cohomology $HF^*(L_1, L_2)$ for compact Lagrangians L_1, L_2 in a compact symplectic manifold (S, ω).

To do this we choose an almost complex structure J on (S, ω) and define a collection of moduli spaces \mathcal{M} of J-holomorphic curves relevant to the problem. By (iii) these have structure \mathcal{G}, so by (ii) they have virtual classes/(co)chains $[\mathcal{M}]_{\text{virt}}$ in some (co)homology theory.

There will be geometric relationships between these moduli spaces – for instance, boundaries of moduli spaces may be written as sums of fibre products of other moduli spaces. By the package of properties in (ii), these geometric relationships should translate to algebraic relationships between the virtual classes/(co)chains, e.g. the boundaries of virtual cochains may be written as sums of cup products of other virtual cochains.

We use the virtual classes/(co)chains, and the algebraic identities they satisfy, and homological algebra, to build the theory we want – Quantum Cohomology, Lagrangian Floer Theory, and so on. We show the result is independent of the choice of almost complex structure J using the deformation-invariance properties of virtual classes/(co)chains.

We use the virtual classes/(co)chains, and the algebraic identities they satisfy, and homological algebra, to build the theory we want – Quantum Cohomology, Lagrangian Floer Theory, and so on. We show the result is independent of the choice of almost complex structure J using the deformation-invariance properties of virtual classes/(co)chains.

(v) We apply our new machine to do something interesting in Symplectic Geometry, e.g. prove the Arnold Conjecture.

Many authors have worked on programmes of this type, since the introduction of J-holomorphic curve techniques into Symplectic Geometry by Gromov \cite{Gromov1984} in 1985. Oversimplifying somewhat, we can divide these approaches into three main groups, according to their answer to (i) above:

(A) **(Kuranishi-type spaces.)** In the work of Fukaya, Oh, Ohta and Ono \cite{FOOOGromov1985,Fukaya-Ohta-Ohta-Ono-2000}, moduli spaces are given the structure of *Kuranishi spaces* (we will call their definition *FOOO Kuranishi spaces*).

(B) **(Polyfolds.)** In the work of Hofer, Wysocki and Zehnder \cite{Hofer-Wysocki-Zehnder-2003,Hofer-Wysocki-Zehnder-2005}, moduli spaces are given the structure of *polyfolds*.

(C) **(The rest of the world.)** One makes restrictive assumptions on the symplectic geometry – for instance, consider only noncompact, exact symplectic manifolds, and exact Lagrangians in them – takes J to be generic, and arranges that all the moduli spaces \mathcal{M} we are interested in are smooth manifolds (or possibly ‘pseudomanifolds’, manifolds with singularities in codimension 2). Then we form virtual classes/chains as for fundamental classes of manifolds. A good example of this approach is Seidel’s construction \cite{Seidel-2005} of Fukaya categories of Liouville domains.

We have not given complete references here, much important work is omitted.
Although Kuranishi-type spaces in (A), and polyfolds in (B), do exactly the same job, there is an important philosophical difference between them. Kuranishi spaces basically remember the minimal information needed to form virtual cycles/chains, and no more. Kuranishi spaces contain about the same amount of data as smooth manifolds, and include manifolds as examples.

In contrast, polyfolds remember the entire functional-analytic moduli problem, forgetting nothing. Any polyfold curve moduli space, even a moduli space of constant curves, is a hugely infinite-dimensional object, a vast amount of data.

Approach (C) makes one’s life a lot simpler, but this comes at a cost. Firstly, one can only work in rather restricted situations, such as exact symplectic manifolds. And secondly, one must go through various contortions to ensure all the moduli spaces \mathcal{M} are manifolds, such as using domain-dependent almost complex structures, which are unnecessary in approaches (A),(B).

The aim and scope of the series, and its novel features

The aim of this series of books is to set up the foundations of these areas of Symplectic Geometry built using J-holomorphic curves following approach (A) above, using the author’s own definition of Kuranishi space. We will do this starting from the beginning, rigorously, in detail, and as the author believes the subject ought to be done. The author hopes that in future, the series will provide a complete framework which symplectic geometers can refer to for theorems and proofs, and use large parts as a ‘black box’.

The author currently plans four or more volumes, as follows:

Volume I Basic theory of (m-)Kuranishi spaces. Definitions of the category μKur of μ-Kuranishi spaces, and the 2-categories m\,Kur of m-Kuranishi spaces and Kur of Kuranishi spaces, over a category of ‘manifolds’ Man such as classical manifolds Man or manifolds with corners Man^c. Boundaries, corners, and corner (2-)functors for (m- and μ-)Kuranishi spaces with corners. Relation to similar structures in the literature, including Fukaya–Oh–Ohta–Ono’s Kuranishi spaces, and Hofer–Wysocki–Zehnder’s polyfolds. ‘Kuranishi moduli problems’, our approach to putting Kuranishi structures on moduli spaces, canonical up to equivalence.

Volume II Differential Geometry of (m-)Kuranishi spaces. Tangent and obstruction spaces for (m- and μ-)Kuranishi spaces. Canonical bundles and orientations. (W-)transversality, (w-)submersions, and existence of w-transverse fibre products in m\,Kur and Kur. M-(co)homology of manifolds and orbifolds [63], virtual (co)chains and virtual (co)cycles for compact, oriented (m-)Kuranishi spaces in M-(co)homology. Orbifold strata of Kuranishi spaces. Bordism and cobordism for (m-)Kuranishi spaces.

Volume III Kuranishi structures on moduli spaces of J-holomorphic curves. For very many moduli spaces of J-holomorphic curves \mathcal{M} of interest in Symplectic Geometry, including singular curves,
curves with Lagrangian boundary conditions, marked points, etc.,
we show that \(\mathcal{M} \) can be made into a Kuranishi space \(\mathcal{M} \), uniquely
up to equivalence in \(\mathbb{Kur} \). We do this by a new method using
2-categories, similar to Grothendieck’s representable functor ap-
proach to moduli spaces in Algebraic Geometry. We do the same
for many other classes of moduli problems for nonlinear elliptic
p.d.e.s, including gauge theory moduli spaces. Natural relations
between moduli spaces, such as maps \(F_i : \mathcal{M}_{k+1} \rightarrow \mathcal{M}_k \) forgetting
a marked point, correspond to relations between the Kuranishi
spaces, such as a 1-morphism \(F_i : \mathcal{M}_{k+1} \rightarrow \mathcal{M}_k \) in \(\mathbb{Kur} \). We
discuss orientations on Kuranishi moduli spaces.

Volumes IV– Big theories in Symplectic Geometry. To include Gromov–
Witten invariants, Quantum Cohomology, Lagrangian Floer coho-
mology, and Fukaya categories.

For steps (i)–(v) above, (i)–(iii) will be tackled in volumes I–III respectively, and
(iv)–(v) in volume IV onwards.

Readers familiar with the field will probably have noticed that our series
sounds a lot like the work of Fukaya, Oh, Ohta and Ono [19–39], in particular,
their 2009 two-volume book [24] on Lagrangian Floer cohomology. And it is
very similar. On the large scale, and in a lot of the details, we have taken many
ideas from Fukaya–Oh–Ohta–Ono, which the author acknowledges with thanks.
Actually this is true of most foundational projects in this field: Fukaya, Oh, Ohta
and Ono were the pioneers, and enormously creative, and subsequent authors
have followed in their footsteps to a great extent.

However, there are features of our presentation that are genuinely new, and here
we will highlight three:

(a) The use of Derived Differential Geometry in our Kuranishi space theory.
(b) The use of M-(co)homology to form virtual cycles and chains.
(c) The use of ‘Kuranishi moduli problems’, similar to Grothendieck’s rep-
resentable functor approach to moduli spaces in Algebraic Geometry, to
prove moduli spaces of \(J \)-holomorphic curves have Kuranishi structures.

We discuss these in turn.

(a) Derived Differential Geometry

Derived Algebraic Geometry, developed by Lurie [74] and Toën–Vezzosi [106,
107], is the study of ‘derived schemes’ and ‘derived stacks’, enhanced versions
of classical schemes and stacks with a richer geometric structure. They were
introduced to study moduli spaces in Algebraic Geometry. Roughly, a classical
moduli space \(\mathcal{M} \) of objects \(E \) knows about the infinitesimal deformations of \(E \),
but not the obstructions to deformations. The corresponding derived moduli
space \(\mathcal{M} \) remembers the deformations, obstructions, and higher obstructions.

Derived Algebraic Geometry has a less well-known cousin, Derived Differential
Geometry, the study of ‘derived’ versions of smooth manifolds. Probably the first
reference to Derived Differential Geometry is a short final paragraph in Lurie [74, §4.5]. Lurie’s ideas were developed further in 2008 by his student David Spivak [103], who defined an ∞-category \(\text{DerManSp} \) of ‘derived manifolds’. When I read Spivak’s thesis [103], armed with a good knowledge of Fukaya–Oh–Ohta–Ono’s Kuranishi space theory [24], I had a revelation:

Kuranishi spaces are really derived smooth orbifolds.

This should not be surprising, as derived schemes and Kuranishi spaces are both geometric structures designed to remember the obstructions in moduli problems.

This has important consequences for Symplectic Geometry: to understand Kuranishi spaces properly, we should use the insights and methods of Derived Algebraic Geometry. Fukaya–Oh–Ohta–Ono could not do this, as their Kuranishi spaces predate Derived Algebraic Geometry by several years. Since they lacked essential tools, their FOOO Kuranishi spaces are not really satisfactory as geometric spaces, though they are adequate for their applications. For example, they give no definition of morphism of FOOO Kuranishi spaces.

A very basic fact about Derived Algebraic Geometry is that it always happens in higher categories, usually ∞-categories. We have written our theory in terms of 2-categories, which are much simpler than ∞-categories. There are special features of our situation which mean that 2-categories are enough for our purposes. Firstly, the existence of partitions of unity in Differential Geometry means that structure sheaves are soft, and have no higher cohomology. Secondly, we are only interested in ‘quasi-smooth’ derived spaces, which have deformations and obstructions, but no higher obstructions. As we are studying Kuranishi spaces with deformations and obstructions – two levels of tangent directions – these spaces need to live in a higher category \(\mathcal{C} \) with at least two levels of morphism, 1- and 2-morphisms, so \(\mathcal{C} \) needs to be at least a 2-category.

Our Kuranishi spaces form a weak 2-category \(\hat{\text{Kur}} \). One can take the homotopy category \(\text{Ho}(\hat{\text{Kur}}) \) to get an ordinary category, but this loses important information. For example:

- 1-morphisms \(f : X \to Y \) in \(\text{Kur} \) are a 2-sheaf (stack) on \(X \), but morphisms \([f] : X \to Y \) in \(\text{Ho}(\hat{\text{Kur}}) \) are not a sheaf on \(X \), they are not ‘local’. This is probably one reason why Fukaya et al. do not define morphisms for FOOO Kuranishi spaces, as higher category techniques would be needed.
- As in Chapter 11 of volume I, there is a good notion of (w-)transverse 1-morphisms \(g : X \to Z, \ h : Y \to Z \) in \(\text{Kur} \), and (w-)transverse fibre products \(X \times_{g,Z,h} Y \) exist in \(\text{Kur} \), characterized by a universal property involving the 2-morphisms in \(\text{Kur} \). In \(\text{Ho}(\text{Kur}) \) this universal property makes no sense, and (w-)transverse fibre products may not exist.

Derived Differential Geometry will be discussed in §4.8 of volume I.

(b) **M-(co)homology and virtual cycles**

In Fukaya–Oh–Ohta–Ono’s Lagrangian Floer theory [24], a lot of extra complexity and hard work is due to the fact that their homology theory for forming virtual
chains (singular homology) does not play nicely with FOOO Kuranishi spaces. For example, they deal with moduli spaces $\mathcal{M}_k(\alpha)$ of stable J-holomorphic discs Σ in (S,ω) with boundary in a Lagrangian L, with homology class $[\Sigma] = \alpha$ in $H_2(S,L;\mathbb{Z})$, and k boundary marked points. These satisfy boundary equations

$$\partial \mathcal{M}_k(\alpha) \simeq \bigsqcup_{\alpha = \beta + \gamma, \ k = i + j} \mathcal{M}_{i+1}(\beta) \times_{ev_{i+1},L,ev_{j+1}} \mathcal{M}_{j+1}(\gamma).$$

One would like to choose virtual chains $[\mathcal{M}_k(\alpha)]_{\text{virt}}$ in homology satisfying

$$\partial [\mathcal{M}_k(\alpha)]_{\text{virt}} = \sum_{\alpha = \beta + \gamma, \ k = i + j} [\mathcal{M}_{i+1}(\beta)]_{\text{virt}} \bullet_L [\mathcal{M}_{j+1}(\gamma)]_{\text{virt}},$$

where \bullet_L is a chain-level intersection product/cup product on the (co)homology of L. But singular homology has no chain-level intersection product.

In their later work [27, §12], [33], Fukaya et al. define virtual cochains in de Rham cohomology, which does have a cochain-level cup product. But there are disadvantages to this too, for example, one is forced to work in (co)homology over \mathbb{R}, rather than \mathbb{Z} or \mathbb{Q}.

As in Chapter 12 of volume II, the author [63] defined new (co)homology theories $MH_*(X;\mathbb{R})$, $MH^*(X;\mathbb{R})$ of manifolds and orbifolds X, called ‘M-homology’ and ‘M-cohomology’. They satisfy the Eilenberg–Steenrod axioms, and so are canonically isomorphic to usual (co)homology $H_*(X;\mathbb{R})$, $H^*(X;\mathbb{R})$, e.g. singular homology $H_*(X;\mathbb{R})$. They are specially designed for forming virtual (co)chains for (m-)Kuranishi spaces, and have very good (co)chain-level properties.

In Chapter 13 of volume II we will explain how to form virtual (co)cycles and (co)chains for (m-)Kuranishi spaces in M-(co)homology. There is no need to perturb the (m-)Kuranishi space to do this. Our construction has a number of technical advantages over competing theories: we can make infinitely many compatible choices of virtual (co)chains, which can be made strictly compatible with relations between (m-)Kuranishi spaces, such as boundary formulae.

These technical advantages mean that applying our machinery to define some theory like Lagrangian Floer cohomology, Fukaya categories, or Symplectic Field Theory, will be significantly easier. Identities which only hold up to homotopy in the Fukaya–Oh–Ohta–Ono model, often hold on the nose in our version.

(c) Kuranishi moduli problems

The usual approaches to moduli spaces in Differential Geometry, and in Algebraic Geometry, are very different. In Differential Geometry, one defines a moduli space (e.g. of J-holomorphic curves, or instantons on a 4-manifold), initially as a set \mathcal{M} of isomorphism classes of the objects of interest, and then adds extra structure: first a topology, and then an atlas of charts on \mathcal{M} making the moduli space into a manifold or Kuranishi-type space. The individual charts are defined by writing the p.d.e. as a nonlinear Fredholm operator between Sobolev or Hölder spaces, and using the Implicit Function Theorem for Banach spaces.

In Algebraic Geometry, following Grothendieck, one begins by defining a functor F called the moduli functor, which encodes the behaviour of families of objects in the moduli problem. This might be of the form $F : (\text{Sch}^{\text{aff}})^{op} \to \text{Sets}$.
(to define a moduli \mathbb{C}-scheme) or $F : (\text{Sch}_{\mathbb{C}}^\text{aff})^\text{op} \to \text{Groupoids}$ (to define a moduli \mathbb{C}-stack), where $\text{Sch}_{\mathbb{C}}^\text{aff}$, Sets, Groupoids are the categories of affine \mathbb{C}-schemes, and sets, and groupoids, and $(\text{Sch}_{\mathbb{C}}^\text{aff})^\text{op}$ is the opposite category of $\text{Sch}_{\mathbb{C}}^\text{aff}$. Here if S is an affine \mathbb{C}-scheme then $F(S)$ is the set or groupoid of families of objects in the moduli problem over the base \mathbb{C}-scheme S.

We say that the moduli functor F is \textit{representable} if there exists a \mathbb{C}-scheme \mathcal{M} such that F is naturally isomorphic to $\text{Hom}(-, \mathcal{M}) : (\text{Sch}_{\mathbb{C}}^\text{aff})^\text{op} \to \text{Sets}$, or an Artin \mathbb{C}-stack \mathcal{M} such that F is naturally equivalent to $\text{Hom}(\mathcal{M}, -) : \text{Sch}_{\mathbb{C}}^\text{aff} \to \text{Sets}$, that is, a category \mathcal{C} with a functor G to $\text{Sch}_{\mathbb{C}}^\text{aff}$ satisfying some lifting properties of morphisms in $\text{Sch}_{\mathbb{C}}^\text{aff}$ to morphisms in \mathcal{C}.

We introduce a new approach to constructing Kuranishi structures on Differential-Geometric moduli problems, including moduli of J-holomorphic curves, which is a 2-categorical analogue of the ‘category fibred in groupoids’ version of moduli functors in Algebraic Geometry. Our analogue of $\text{Sch}_{\mathbb{C}}^\text{aff}$ is the 2-category GKN of \textit{global Kuranishi neighbourhoods} (V, E, Γ, s), which are basically Kuranishi spaces X covered by a single chart (V, E, Γ, s, ψ).

We define a \textit{Kuranishi moduli problem} (KMP) to be a 2-functor $F : \mathcal{C} \to \text{GKN}$ satisfying some lifting properties, where \mathcal{C} is a 2-category. For example, if $\mathcal{M} \in \text{Kur}$ is a Kuranishi space we can define a 2-category $\mathcal{C}_{\mathcal{M}}$ with objects $((V, E, \Gamma, s), f)$ for $(V, E, \Gamma, s) \in \text{GKN}$ and $f : (s^{-1}(0)/\Gamma, (V, E, \Gamma, s, \text{id}_{s^{-1}(0)/\Gamma})) \to \mathcal{M}$ a 1-morphism, and a 2-functor $F_{\mathcal{M}} : \mathcal{C}_{\mathcal{M}} \to \text{GKN}$ acting by $F_{\mathcal{M}} : ((V, E, \Gamma, s), f) \mapsto (V, E, \Gamma, s)$ on objects. A KMP $F : \mathcal{C} \to \text{GKN}$ is called \textit{representable} if it is equivalent in a certain sense to $F_{\mathcal{M}} : \mathcal{C}_{\mathcal{M}} \to \text{GKN}$ for some \mathcal{M} in Kur, which is unique up to equivalence. Then Kuranishi moduli problems form a 2-category KMP, and the full 2-subcategory KMP^re of representable KMP’s is equivalent to Kur.

To construct a Kuranishi structure on some moduli space \mathcal{M}, e.g. a moduli space of J-holomorphic curves in some (S, ω), we carry out three steps:

1. Define a 2-category \mathcal{C} and 2-functor $F : \mathcal{C} \to \text{GKN}$, where objects A in \mathcal{C} with $F(A) = (V, E, \Gamma, s)$ correspond to families of objects in the moduli problem over the base Kuranishi neighbourhood (V, E, Γ, s).

2. Prove that $F : \mathcal{C} \to \text{GKN}$ is a Kuranishi moduli problem.

3. Prove that $F : \mathcal{C} \to \text{GKN}$ is representable.

Here step (1) is usually fairly brief — far shorter than constructions of curve moduli spaces in $[24, 39, 52]$, for instance. Step (2) is also short and uses standard arguments. The major effort is in (3). Step (3) has two parts: firstly we must show that a topological space \mathcal{M} naturally associated to the KMP is Hausdorff and second countable (often we can quote this from the literature), and secondly
we must prove that every point of \mathcal{M} admits a Kuranishi neighbourhood with a certain universal property.

We compare our approach to moduli problems with other current approaches, such as those of Fukaya–Oh–Ohta–Ono or Hofer–Wysocki–Zehnder:

- Rival approaches are basically very long ad hoc constructions, the effort is in the definition itself. In our approach we have a short-ish definition, followed by a theorem (representability of the KMP) with a long proof.

- Rival approaches may involve making many arbitrary choices to construct the moduli space. In our approach the definition of the KMP is natural, with no arbitrary choices. If the KMP is representable, the corresponding Kuranishi space \mathcal{M} is unique up to canonical equivalence in $\hat{\text{Kur}}$.

- In our approach, morphisms between moduli spaces, e.g. forgetting a marked point, are usually easy and require almost no work to construct.

Kuranishi moduli problems are introduced in Chapter 8 of volume I and volume III is dedicated to constructing Kuranishi structures on moduli spaces using the KMP method.

Acknowledgements

I would like to acknowledge, with thanks, the profound influence of the work of Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, throughout this series. I was introduced to the Fukaya–Oh–Ohta–Ono Lagrangian Floer theory by Paul Seidel in 2001, and have been thinking about how to do it differently off-and-on ever since. I have had helpful conversations with many people, but I would particularly like to thank Mohammed Abouzaid, Lino Amorim, Jonny Evans, Kenji Fukaya, Helmut Hofer, Jacob Lurie, Dusa McDuff, Alexander Ritter, Paul Seidel, Ivan Smith, and Bertrand Toën. This research was supported at various points by EPSRC grants EP/H035303/1, EP/J016950/1, and EP/I033343/1, and a Simons Collaboration grant on Special Holonomy in Geometry, Analysis and Physics from the Simons Foundation.
Chapter 1

Introduction to volume I

Kuranishi spaces were introduced in the work of Fukaya, Oh, Ohta and Ono [19–39], as the geometric structure on moduli spaces of J-holomorphic curves, which was to be used to define virtual cycles and virtual chains for such moduli spaces, for applications in Symplectic Geometry such as Gromov–Witten invariants, Lagrangian Floer cohomology, and Symplectic Field Theory.

Something which has consistently been a problem with Kuranishi spaces, since their introduction by Fukaya and Ono [39 §5] in 1999, has been to find a satisfactory definition, preferably as a category (or higher category) of geometric spaces, with a well-behaved notion of morphism, and good functorial properties. The definition used by Fukaya et al. has changed several times as their work has evolved [19–39], and others including McDuff and Wehrheim [77, 78, 80–83] have proposed their own variations.

This first volume will develop a theory of Kuranishi spaces. We use a new, more complex definition of Kuranishi space, first introduced by the author [60] in 2014, which form a 2-category Kur. They are not the same as the Kuranishi spaces of Fukaya–Oh–Ohta–Ono [19–39] (which we will call FOOO Kuranishi spaces), but we prove in §7.5 that any FOOO Kuranishi space X can be made into a Kuranishi space X' in our sense, uniquely up to equivalence in Kur. Therefore their work may be easily translated into our new language.

In fact, we give three variations on the notion of Kuranishi space:

(i) a simple ‘manifold’ version, ‘μ-Kuranishi spaces’, with trivial isotropy groups, which form an ordinary category $\mathsf{\muKur}$ in Chapter 5

(ii) a more complicated ‘manifold’ version, ‘m-Kuranishi spaces’, with trivial isotropy groups, which form a weak 2-category mKur in Chapter 4

(iii) the full ‘orbifold’ version, ‘Kuranishi spaces’, with finite isotropy groups, which form a weak 2-category Kur in Chapter 6

These are related by an equivalence of categories $\mathsf{\muKur} \simeq \text{Ho}(\mathsf{mKur})$, where $\text{Ho}(\mathsf{mKur})$ is the homotopy category of mKur, and by a full and faithful embedding $\mathsf{mKur} \hookrightarrow \mathsf{Kur}$. Symplectic geometry will need Kuranishi spaces,
since we allow \(J \)-holomorph curves with finite symmetry groups, which cause finite isotropy groups at the corresponding point in the moduli space.

Our definitions start with a category of ‘manifolds’ \(\text{Man} \) satisfying some assumptions given in Chapter 5 and yield corresponding (2-)categories of \((\text{m- and } \mu\text{-})\)Kuranishi spaces \(\text{mKur}, \mu\text{Kur, Kur} \). Here \(\text{Man} \) can be the category of classical manifolds \(\text{Man} \), but there are many other possibilities, including the categories \(\text{Man}^c, \text{Man}_{\text{st}}^c, \text{Man}_{\text{ac}}^c, \text{Man}_{\text{ac}}^{\ast c} \) of manifolds with corners, and generalizations, discussed in Chapter 2. This gives many different (2-)categories \(\text{mKur}^c, \text{mKur}_{\text{st}}^c, \ldots, \mu\text{Kur}^c, \mu\text{Kur}_{\text{st}}^c, \ldots, \text{Kur}^c, \text{Kur}_{\text{st}}^c, \ldots \) of variations on the theme of \((\text{m- and } \mu\text{-})\)Kuranishi spaces, useful in different problems.

Like manifolds, an \((\text{m- or } \mu\text{-})\)Kuranishi space \(X = (X, \mathcal{K}) \) is a Hausdorff, second countable topological space \(X \) with an ‘atlas of charts’ \(\mathcal{K} \). For \(\text{m- and } \mu\text{-Kuranishi spaces the ‘charts’ are } (V_i, E_i, s_i, \psi_i) \) for \(V_i \) a manifold, \(E_i \to V_i \) a vector bundle, \(s_i : V_i \to E_i \) a smooth section, and \(\psi_i : s_i^{-1}(0) \to X \) a homeomorphism with an open set \(\text{Im} \psi_i \subseteq X \). For Kuranishi spaces the charts are \((V_i, E_i, \Gamma_i, s_i, \psi_i)\) for \(V_i, E_i, s_i \) as above, \(\Gamma_i \) a finite group acting on \(V_i, E_i \) with \(s_i \), equivariant, and \(\psi_i : s_i^{-1}(0)/\Gamma_i \to \text{Im} \psi_i \) a homeomorphism.

As in Chapter 2, this is also true for other definitions of Kuranishi-type spaces due to Fukaya–Oh–Ohta and Ono [7] §4 and McDuff and Wehrheim [77, 78, 80–83]. The main technical innovation in our definition is our treatment of coordinate changes between the \((\text{m- or } \mu\text{-})\)Kuranishi neighbourhoods on \(X \) — the ‘transition functions’ between the charts in the atlas.

For \(\mu\text{-Kuranishi spaces, coordinate changes and more general morphisms } \Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) are germs \([V_{ij}, \phi_{ij}, \phi_{ij}^*] \) of equivalence classes of triples \((V_{ij}, \phi_{ij}, \phi_{ij}^*) \), where \((V_{ij}, \phi_{ij}, \phi_{ij}^*) \) is a generalized Fukaya–Oh–Ohta–Ono-style coordinate change, and the equivalence relation is not obvious. They have the property that coordinate changes \((V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) form a sheaf on \(\text{Im} \psi_i \cap \text{Im} \psi_j \). Also, coordinate changes are exactly the invertible morphisms between \(\mu\text{-Kuranishi neighbourhoods.} \)

For \((\text{m-})\)Kuranishi spaces, we have FOOO-style coordinate changes and more general 1-morphisms \(\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) between Kuranishi neighbourhoods, but we also introduce 2-morphisms \(\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi_{ij}^* \) between 1-morphisms \(\Phi_{ij}, \Phi_{ij}^* \), involving germs of equivalence classes, and making \((\text{m-})\)Kuranishi neighbourhoods on \(X \) into a 2-category. This 2-category has the property that coordinate changes \((V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) form a 2-sheaf (stack) on \(\text{Im} \psi_i \cap \text{Im} \psi_j \). Also, coordinate changes are 1-morphisms of Kuranishi neighbourhoods which are invertible up to 2-isomorphism.

These sheaf/stack properties of \((\text{m- and } \mu\text{-})\)Kuranishi neighbourhoods are crucial in our theory. For example, they are essential in defining compositions \(g \circ f \) of \((1\text{-})\)morphisms \(f : X \to Y, g : Y \to Z \) between \((\text{m- or } \mu\text{-})\)Kuranishi spaces \(X, Y, Z \), so that we can make \((\text{m- and } \mu\text{-})\)Kuranishi spaces into well behaved (2-)categories \(\text{mKur}, \mu\text{Kur, Kur} \). The lack of such a sheaf property in the Fukaya–Oh–Ohta–Ono picture is why they have no good notion of morphism between FOOO Kuranishi spaces \(X, Y \).

An \((\text{m- or } \mu\text{-})\)Kuranishi space \(X \) has a virtual dimension vdim \(X \in \mathbb{Z} \), which
may be negative, where $\text{vdim} \, X = \dim V_i - \text{rank} \, E_i$ for any (m- or μ-)Kuranishi neighbourhood (V_i, E_i, s_i, ψ_i) or $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ on X.

We begin in Chapter 2 with background material on categories of manifolds with corners, of which there are several versions $\text{Man}^c, \text{Man}^c_{st}, \text{Man}^{gc}, \ldots$. Chapter 3 states assumptions on categories Man, Man^c of ‘manifolds’ and ‘manifolds with corners’, and explains how these assumptions allow us to do differential geometry in Man, Man^c, defining vector bundles, $E \to X$, tangent and cotangent bundles (sheaves) TX, T^*X, and so on. Detailed definitions and proofs from Chapter 3 are postponed to Appendix B.

Given a category Man or Man^c satisfying the assumptions of Chapter 3, Chapters 4–6 define (2-)categories $\text{mKur}, \mu \text{Kur}, \text{Kur}$ or $\text{mKur}^c, \mu \text{Kur}^c, \text{Kur}^c$ of m-Kuranishi spaces, μ-Kuranishi spaces, and Kuranishi spaces, respectively. Taking Man, Man^c to be different examples yields a large number of interesting (2-)categories $\text{mKur}, \mu \text{Kur}^c, \text{mKur}^c_{st}, \text{mKur}^c_{gc}, \ldots$. We also study topics such as interesting classes of (1-)morphisms in $\text{mKur}, \mu \text{Kur}, \text{Kur}$, and boundaries and corners in $\text{mKur}^c, \mu \text{Kur}^c, \text{Kur}^c$, and isotropy groups in Kur.

Chapter 7 explains the relation of our Kuranishi spaces with other Kuranishi-type spaces defined by Fukaya, Oh, Ohta and Ono [19–39] and McDuff and Wehrheim [77, 78, 80–83]. Chapter 8 introduces Kuranishi moduli problems, which will be our principal tool in volume III for proving that moduli spaces of J-holomorphic curves have Kuranishi structures, and proves some theorems about them. We illustrate their use by defining a truncation functor from the polyfold theory of Hofer, Wysocki and Zehnder [46–53] to our Kuranishi spaces.

Appendix A gives background on categories and 2-categories, and Appendix B gives more detail and proofs on the differential geometry in Man, Man^c that was outlined in Chapter 3.
Chapter 2

Manifolds with corners

We begin with background material about manifolds, manifolds with boundary, and manifolds with corners. We define the category of ordinary manifolds Man in §2.2 as a subcategory of the category of manifolds with corners Man^c, and generally we treat manifolds as special cases of manifolds with corners. Some references on manifolds are Lee [71] and Lang [70], and on manifolds with boundary and corners are Melrose [85, 86] and the author [59, 64].

2.1 The definition of manifolds with corners

Definition 2.1. Use the notation $\mathbb{R}^m_k = [0, \infty)^k \times \mathbb{R}^{m-k}$ for $0 \leq k \leq m$, and write points of \mathbb{R}^m_k as $u = (x_1, \ldots, x_m)$ for $x_1, \ldots, x_k \in [0, \infty)$, $x_{k+1}, \ldots, x_m \in \mathbb{R}$.

Let $U \subseteq \mathbb{R}^m_k$ and $V \subseteq \mathbb{R}^n_l$ be open, and $f = (f_1, \ldots, f_n) : U \to V$ be a continuous map, so that $f_j = f_j(x_1, \ldots, x_m)$ maps $U \to [0, \infty)$ for $j = 1, \ldots, l$ and $U \to \mathbb{R}$ for $j = l + 1, \ldots, n$. Then we say:

(a) f is \textit{weakly smooth} if all derivatives $\frac{\partial^{a_1+\cdots+a_m}}{\partial x_1^{a_1} \cdots \partial x_m^{a_m}} f_j(x_1, \ldots, x_m) : U \to \mathbb{R}$ exist and are continuous for all $j = 1, \ldots, n$ and $a_1, \ldots, a_m \geq 0$, including one-sided derivatives where $x_i = 0$ for $i = 1, \ldots, k$.

(b) f is \textit{smooth} if it is weakly smooth and every $u = (x_1, \ldots, x_m) \in U$ has an open neighbourhood \tilde{U} in U such that for each $j = 1, \ldots, l$, either:

(i) we may uniquely write $f_j(\tilde{x}_1, \ldots, \tilde{x}_m) = F_j(\tilde{x}_1, \ldots, \tilde{x}_m) \cdot \tilde{x}_1^{a_1,j} \cdots \tilde{x}_k^{a_k,j}$ for all $(\tilde{x}_1, \ldots, \tilde{x}_m) \in \tilde{U}$, where $F_j : \tilde{U} \to (0, \infty)$ is weakly smooth and $a_1,j, \ldots, a_k,j \in \mathbb{N} = \{0, 1, 2, \ldots\}$, with $a_i,j = 0$ if $x_i \neq 0$; or

(ii) $f_j|_{\tilde{U}} = 0$.

(c) f is \textit{interior} if it is smooth, and case (b)(ii) does not occur.

(d) f is \textit{b-normal} if it is interior, and in case (b)(i), for each $i = 1, \ldots, k$ we have $a_{i,j} > 0$ for at most one $j = 1, \ldots, l$.

(e) f is \textit{strongly smooth} if it is smooth, and in case (b)(i), for each $j = 1, \ldots, l$ we have $a_{i,j} = 1$ for at most one $i = 1, \ldots, k$, and $a_{i,j} = 0$ otherwise.

4
(f) \(f \) is \textit{simple} if it is interior, and in case (b)(i), for each \(i = 1, \ldots, k \) with \(x_i = 0 \) we have \(a_{i,j} = 1 \) for exactly one \(j = 1, \ldots, l \) and \(a_{i,j} = 0 \) otherwise, and for all \(j = 1, \ldots, l \) we have \(a_{i,j} = 1 \) for at most one \(i = 1, \ldots, k \).

(g) \(f \) is a \textit{diffeomorphism} if it is a smooth bijection with smooth inverse.

All the classes (a)–(g) include identities and are closed under composition.

Definition 2.2. Let \(X \) be a second countable Hausdorff topological space. An \(m \)-\textit{dimensional chart} on \(X \) is a pair \((U, \phi)\), where \(U \subseteq \mathbb{R}^m_\ast \) is open for some \(0 \leq k \leq m \), and \(\phi : U \rightarrow X \) is a homeomorphism with an open set \(\phi(U) \subseteq X \).

Let \((U, \phi),(V, \psi)\) be \(m \)-dimensional charts on \(X \). We call \((U, \phi)\) and \((V, \psi)\) \textit{compatible} if \(\psi^{-1} \circ \phi : \phi(U) \cap \psi(V) \rightarrow \psi^{-1} (\phi(U) \cap \psi(V)) \) is a diffeomorphism between open subsets of \(\mathbb{R}^m_\ast \), in the sense of Definition 2.1(g).

An \(m \)-\textit{dimensional atlas} for \(X \) is a system \(\{(U_a, \phi_a) : a \in A \} \) of pairwise compatible \(m \)-dimensional charts on \(X \) with \(X = \bigcup_{a \in A} \phi_a(U_a) \). We call such an atlas \textit{maximal} if it is not a proper subset of any other atlas. Any atlas \(\{(U_a, \phi_a) : a \in A \} \) is contained in a unique maximal atlas, the set of all charts \((U, \phi)\) of this type on \(X \) which are compatible with \((U_a, \phi_a)\) for all \(a \in A \).

An \(m \)-\textit{dimensional manifold with corners} is a second countable Hausdorff topological space \(X \) equipped with a maximal \(m \)-dimensional atlas. Usually we refer to \(X \) as the manifold, leaving the atlas implicit, and by a chart \((U, \phi)\) on \(X \), we mean an element of the maximal atlas.

Now let \(X, Y \) be manifolds with corners of dimensions \(m, n \), and \(f : X \rightarrow Y \) a continuous map. We call \(f \) weakly smooth, or smooth, or interior, or \(b \)-\textit{normal}, or strongly smooth, or simple, if whenever \((U, \phi),(V, \psi)\) are charts on \(X, Y \) with \(U \subseteq \mathbb{R}^m_\ast \), \(V \subseteq \mathbb{R}^n_\ast \) open, then

\[
\psi^{-1} \circ f \circ \phi : (f \circ \phi)^{-1}(\psi(V)) \longrightarrow V
\]

(2.1)

is weakly smooth, or smooth, \ldots, or simple, respectively, as maps between open subsets of \(\mathbb{R}^m_\ast \), \(\mathbb{R}^n_\ast \) in the sense of Definition 2.1.

We write \(\text{Man}^c \) for the category with objects manifolds with corners \(X, Y \), and morphisms smooth maps \(f : X \rightarrow Y \) in the sense above. We will also write \(\text{Man}^c_{\text{in}}, \text{Man}^c_{\text{bn}}, \text{Man}^c_{\text{st}}, \text{Man}^c_{\text{st, in}}, \text{Man}^c_{\text{st, bn}}, \text{Man}^c_{\text{si}} \) for the subcategories of \(\text{Man}^c \) with morphisms interior maps, and \(b \)-normal maps, and strongly smooth maps, and strongly smooth interior maps, and strongly smooth \(b \)-normal maps, and simple maps, respectively.

We write \(\text{Man}_{\text{we}} \) for the category with objects manifolds with corners and morphisms weakly smooth maps.

Remark 2.3. There are several non-equivalent definitions of categories of manifolds with corners. Just as objects, without considering morphisms, most authors define manifolds with corners as in Definition 2.2. However, Melrose \cite{Melrose1, Melrose2} imposes an extra condition: in \(\text{Man}_{\text{we}} \) we will define the boundary \(\partial X \) of a manifold with corners \(X \), with an immersion \(i_X : \partial X \rightarrow X \). Melrose requires that \(i_X |_C : C \rightarrow X \) should be injective for each connected component \(C \) of \(\partial X \) (such \(X \) are sometimes called \textit{manifolds with faces}).
There is no general agreement in the literature on how to define smooth maps, or morphisms, of manifolds with corners:

(i) Our smooth maps are due to Melrose \cite{Melrose86, Melrose84}, who calls them b-maps. Interior and b-normal maps are also due to Melrose.

(ii) The author \cite{Guenther59} defined and studied strongly smooth maps above (which were just called ‘smooth maps’ in \cite{Guenther59}).

(iii) Monthubert’s morphisms of manifolds with corners \cite{Monthubert91, Def. 2.8} coincide with our strongly smooth b-normal maps.

(iv) Most other authors, such as Cerf \cite{Cerf11, §I.1.2}, define smooth maps of manifolds with corners to be weakly smooth maps, in our notation.

2.2 Boundaries and corners of manifolds with corners

The material of this section broadly follows the author \cite{Guenther59, 64}.

Definition 2.4. Let $U \subseteq \mathbb{R}^m_k$ be open. For each $u = (x_1, \ldots, x_m) \in U$, define the *depth* $\text{depth}_U u$ of u in U to be the number of x_1, \ldots, x_k which are zero. That is, $\text{depth}_U u$ is the number of boundary faces of U containing u.

Let X be an m-manifold with corners. For $x \in X$, choose a chart (U, ϕ) on the manifold X with $\phi(u) = x$ for $u \in U$, and define the *depth* $\text{depth}_X x$ of x in X by $\text{depth}_X x = \text{depth}_U u$. This is independent of the choice of (U, ϕ). For each $l = 0, \ldots, m$, define the *depth l stratum* of X to be

$$S^l(X) = \{ x \in X : \text{depth}_X x = l \}.$$

Then $X = \coprod_{k=0}^m S^k(X)$ and $\overline{S^k(X)} = \bigcup_{l=k}^m S^l(X)$. The *interior* of X is $X^\circ = S^0(X)$. Each $S^l(X)$ has the structure of an $(m-l)$-manifold without boundary.

The following lemma is easy to prove from Definition 2.1(b).

Lemma 2.5. Let $f : X \to Y$ be a smooth map of manifolds with corners. Then f is compatible with the depth stratifications $X = \coprod_{k=0}^m S^k(X)$, $Y = \coprod_{l=0}^m S^l(Y)$ in Definition 2.4, in the sense that if $\emptyset \neq W \subseteq S^k(X)$ is a connected subset for some $k \geq 0$, then $f(W) \subseteq S^l(Y)$ for some unique $l \geq 0$.

The analogue of Lemma 2.5 is false for weakly smooth maps, so the functorial properties of corners below are false for Man^{we}.

Definition 2.6. Let X be an m-manifold with corners, $x \in X$, and $k = 0, 1, \ldots, m$. A *local k-corner component* γ of X at x is a local choice of connected component of $S^k(X)$ near x. That is, for each small open neighbourhood V of x in X, γ gives a choice of connected component W of $V \cap S^k(X)$ with $x \in \overline{W}$, and any two such choices V, W and V', W' must be compatible in that $x \in (W \cap W')$.

When $k = 1$, we call γ a *local boundary component*.

6
As sets, define the boundary ∂X and k-corners $\operatorname{C}_k(X)$ of manifold with corners $\operatorname{C}_k(X)$ for $k=0,1,\ldots,m$ by

$$\partial X = \{(x,\beta) : x \in X, \beta \text{ is a local boundary component of } X \text{ at } x\},$$

$$\operatorname{C}_k(X) = \{(x,\gamma) : x \in X, \gamma \text{ is a local } k\text{-corner component of } X \text{ at } x\}.$$

Define $i_X : \partial X \to X$ and $\Pi_k : \operatorname{C}_k(X) \to X$ by $i_X : (x,\beta) \mapsto x$, $\Pi_k : (x,\gamma) \mapsto x$.

If (U,ϕ) is a chart on X with $U \subseteq \mathbb{R}^m_+$ open, then for each $i=1,\ldots,k$ we can define a chart (U_i,ϕ_i) on ∂X by

$$U_i = \{(x_1,\ldots,x_{m-1}) \in \mathbb{R}^{m-1}_{k-1} : (x_1,\ldots,x_{i-1},0,x_i,\ldots,x_{m-1}) \in U \subseteq \mathbb{R}^m_k\},$$

$$\phi_i : (x_1,\ldots,x_{m-1}) \mapsto (\phi(x_1,\ldots,x_{i-1},0,x_i,\ldots,x_{m-1}),\phi_*(\{x_i = 0\})).$$

The set of all such charts on ∂X forms an atlas, making ∂X into a manifold with corners of dimension $m-1$, and $i_X : \partial X \to X$ into a smooth (but not interior) map. Similarly, we make $\operatorname{C}_k(X)$ into an $(m-k)$-manifold with corners, and $\Pi_k : \operatorname{C}_k(X) \to X$ into a smooth map. We have $\partial X = \operatorname{C}_1(X)$.

We call X a manifold without boundary (or just a manifold) if $\partial X = \emptyset$, and a manifold with boundary if $\partial^2 X = \emptyset$. We write Man and Man^b for the full subcategories of Man^c with objects manifolds without boundary, and manifolds with boundary, respectively. This definition of Man is equivalent to the usual definition of the category of manifolds. We also write $\operatorname{Man}_{\text{in}}^b, \operatorname{Man}_{\text{si}}^b$ for the subcategories of Man^b with morphisms interior maps, and simple maps.

For X a manifold with corners and $k \geq 0$, there are natural identifications

$$\partial^k X \cong \{(x,\beta_1,\ldots,\beta_k) : x \in X, \beta_1,\ldots,\beta_k \text{ are distinct local boundary components for } X \text{ at } x\},$$

$$\operatorname{C}_k(X) \cong \{(x,\{\beta_1,\ldots,\beta_k\}) : x \in X, \beta_1,\ldots,\beta_k \text{ are distinct local boundary components for } X \text{ at } x\}. \quad (2.2) \quad (2.3)$$

There is a natural, free, smooth action of the symmetric group S_k on $\partial^k X$, by permutation of β_1,\ldots,β_k in (2.2), and (2.2)–(2.3) give a natural diffeomorphism

$$\operatorname{C}_k(X) \cong \partial^k X/S_k. \quad (2.4)$$

Corners commute with boundaries: there are natural isomorphisms

$$\partial \operatorname{C}_k(X) \cong \operatorname{C}_k(\partial X) \cong \{(x,\{\beta_1,\ldots,\beta_k,\beta_{k+1}\}) : x \in X, \beta_1,\ldots,\beta_{k+1} \text{ are distinct local boundary components for } X \text{ at } x\}. \quad (2.5)$$

For products of manifolds with corners we have natural diffeomorphisms

$$\partial(X \times Y) \cong (\partial X \times Y) \amalg (X \times \partial Y), \quad (2.6)$$

$$\operatorname{C}_k(X \times Y) \cong \prod_{i,j \geq 0, i+j = k} \operatorname{C}_i(X) \times \operatorname{C}_j(Y). \quad (2.7)$$
Example 2.7. The teardrop $T = \{(x,y) \in \mathbb{R}^2 : x \geq 0, y^2 \leq x^2 - x^4\}$, shown in Figure 2.1, is a manifold with corners of dimension 2. The boundary ∂T is diffeomorphic to $[0,1]$, and so is connected, but $i_T : \partial T \to T$ is not injective. Thus T is not a manifold with faces, in the sense of Remark 2.3.

It is not true that general smooth $f : X \to Y$ induce maps $\partial f : \partial X \to \partial Y$ or $C_k(f) : C_k(Y) \to C_k(Y)$, though this is true for simple maps f. For example, if $f : X \to Y$ is the inclusion $[0,\infty) \hookrightarrow \mathbb{R}$ then no map $\partial f : \partial X \to \partial Y$ exists, as $\partial X \neq \emptyset$ and $\partial Y = \emptyset$. However, by working in an enlarged category Man^c of manifolds with corners of mixed dimension and considering $C(X) = \coprod_{k \geq 0} C_k(X)$, we can define a functor.

Definition 2.8. Write Man^c for the category whose objects are disjoint unions $\coprod_{m=0}^{\infty} X_m$, where X_m is a manifold with corners of dimension m, allowing $X_m = \emptyset$, and whose morphisms are continuous maps $f : \coprod_{m=0}^{\infty} X_m \to \coprod_{n=0}^{\infty} Y_n$, such that $f|_{X_m \cap f^{-1}(Y_n)} : X_m \cap f^{-1}(Y_n) \to Y_n$ is a smooth map of manifolds with corners for all $m, n \geq 0$. Objects of Man^c will be called \textit{manifolds with corners of mixed dimension}. We will also write $\mathsf{Man}_{\text{in}}^c, \mathsf{Man}_{\text{st}}^c$ for the subcategories of Man^c with morphisms interior maps, and strongly smooth maps.

Definition 2.9. Define the \textit{corners} $C(X)$ of a manifold with corners X by

$$C(X) = \coprod_{k=0}^{\dim X} C_k(X) = \{(x,\gamma) : x \in X, \gamma \text{ is a local } k\text{-corner component of } X \text{ at } x, k \geq 0\},$$

considered as an object of Man^c in Definition 2.8 as a manifold with corners of mixed dimension. Define $\Pi : C(X) \to X$ by $\Pi : (x,\gamma) \mapsto x$. This is smooth (i.e. a morphism in Man^c) as the maps $\Pi_k : C_k(X) \to X$ are smooth for $k \geq 0$.

Let $f : X \to Y$ be a smooth map of manifolds with corners, and suppose γ is a local k-corner component of X at $x \in X$. For each sufficiently small open neighbourhood V of x in X, γ gives a choice of connected component W of $V \cap S^k(X)$ with $x \in W$, so by Lemma 2.5, $f(W) \subseteq S^i(Y)$ for some $i \geq 0$. As f is continuous, $f(W)$ is connected, and $f(x) \in f(W)$. Thus there is a unique local ℓ-corner component $f_\ast(\gamma)$ of Y at $f(x)$, such that if \tilde{V} is a sufficiently small open neighbourhood of $f(x)$ in Y, then the connected component \tilde{W} of $\tilde{V} \cap S^i(Y)$ given by $f_\ast(\gamma)$ has $f(\tilde{W}) \cap \tilde{W} \neq \emptyset$. This $f_\ast(\gamma)$ is independent of the choice of sufficiently small V, \tilde{V}, so is well-defined.
Define a map $C(f) : C(X) \to C(Y)$ by $C(f) : (x, \gamma) \mapsto (f(x), f_\ast(\gamma))$. Then $C(f)$ is an interior morphism in Man^c. If $g : Y \to Z$ is another smooth map of manifolds with corners then $C(g \circ f) = C(g) \circ C(f) : C(X) \to C(Z)$, so $C : \text{Man}^c \to \text{Man}_{\text{in}}^c \subset \text{Man}^c$ is a functor, which we call a corner functor.

From [64] Prop. 2.11 we have:

Proposition 2.10. Let $f : X \to Y$ be a morphism in Man^c. Then

(a) f is interior if and only if $C(f)$ maps $C_0(X) \to C_0(Y)$.

(b) f is b-normal if and only if $C(f)$ maps $C_k(X) \to \coprod_{l=0}^k C_l(Y)$ for all k.

(c) If f is simple then $C(f)$ maps $C_k(X) \to C_k(Y)$ for all $k \geq 0$, and $C_k(f) := C(f)|_{C_k(X)} : C_k(X) \to C_k(Y)$ is also a simple map.

Thus we have a boundary functor $\partial : \text{Man}_{\text{si}}^c \to \text{Man}_{\text{si}}^c$ mapping $X \mapsto \partial X$ on objects and $f \mapsto \partial f := C(f)|_{C_1(X)} : \partial X \to \partial Y$ on (simple) morphisms $f : X \to Y$, and for all $k \geq 0$ a k-corner functor $C_k : \text{Man}_{\text{si}}^c \to \text{Man}_{\text{si}}^c$ mapping $X \mapsto C_k(X)$ on objects and $f \mapsto C_k(f) := C(f)|_{C_k(X)} : C_k(X) \to C_k(Y)$ on (simple) morphisms.

As in [59] Def. 4.5 there is also a second corner functor on Man^c, which we write as $C^\ast : \text{Man}^c \to \text{Man}^c$.

Definition 2.11. Define $C^\ast(X) = C(X)$ in Man^c for each X in Man^c.

Let $f : X \to Y$ be a smooth map of manifolds with corners. Define a map $C^\ast(f) : C^\ast(X) \to C^\ast(Y)$ by $C^\ast(f) : (x, \gamma) \mapsto (y, \delta)$, where $y = f(x)$ in Y, and δ is the unique maximal local corner component of Y at y with the property that if V is an open neighbourhood of y in Y and $a : V \to [0, \infty)$ is smooth with $a(y) = a \circ f(x) = 0$ and $a \circ f|_{\gamma} = 0$ then $a|_{\delta} = 0$.

Here δ is maximal means that if δ is any other local corner component with this property then $\dim \delta \geq \dim \delta$ (so that $\codim \delta \leq \codim \delta$) and δ is contained in the closure of δ. By considering local models in coordinates we can show that $C^\ast(f) : C^\ast(X) \to C^\ast(Y)$ is a morphism in Man^c, and that this defines a functor $C^\ast : \text{Man}^c \to \text{Man}^c$, which we also call a corner functor.

The next proposition is easy:

Proposition 2.12. Let $f : X \to Y$ be a morphism in Man^c. Then $C^\ast(f)$ maps $C_0(X) \to C_0(Y)$, and $C^\ast(f) = C(f)$ if and only if f is interior.

By Proposition 2.10(c), this implies that if f is simple (hence interior) then $C^\ast(f) = C(f)$ maps $C_k(X) \to C_k(Y)$ for all $k \geq 0$, and $C_k(f) := C^\ast(f)|_{C_k(X)} : C_k(X) \to C_k(Y)$ is also a simple map.

Equations (2.5) and (2.7) imply that if X, Y are manifolds with corners, we have natural isomorphisms

\[
\partial C(X) \cong C(\partial X), \tag{2.8}
\]

\[
C(X \times Y) \cong C(X) \times C(Y). \tag{2.9}
\]
The corner functors C, C' preserve products and direct products. That is, if $f : W \to Y$, $g : X \to Y$, $h : X \to Z$ are smooth then the following commute

$$
\begin{align*}
&\begin{array}{c}
C(W \times X) \xrightarrow{C((f \times h))} C(Y \times Z) \\
\cong
\end{array}
\begin{array}{c}
C(W) \times C(X) \xrightarrow{C(f) \times C(h)} C(Y) \times C(Z),
\end{array}
\begin{array}{c}
C(X) \xrightarrow{C((g,h))} C(Y) \times C(Z),
\end{array}
\begin{array}{c}
C(Y) \xrightarrow{C((g,h))} C(Y) \times C(Z),
\end{array}
\begin{array}{c}
C(Y) \xrightarrow{C((g,h))} C(Y) \times C(Z),
\end{array}
\begin{array}{c}
C((g,h))
\end{array}
\end{align*}

$$

where the columns are the isomorphisms (2.9).

Example 2.13. (a) Let $X = [0, \infty)$, $Y = [0, \infty)^2$, and define $f : X \to Y$ by $f(x) = (x, x)$. We have

$$
C_0(X) \cong [0, \infty), \quad C_1(X) \cong \{0\}, \quad C_0(Y) \cong [0, \infty)^2,
$$

$$
C_1(Y) \cong ([0] \times [0, \infty)) \sqcup ([0, \infty) \times \{0\}), \quad C_2(Y) \cong \{(0, 0)\}.
$$

Then $C(f)$ maps $C_0(X) \to C_0(Y)$, $x \mapsto (x, x)$, and $C_1(X) \to C_2(Y)$, $0 \mapsto (0, 0)$. Also $C'(f) = C(f)$, as f is interior.

(b) Let $X = \ast$, $Y = [0, \infty)$ and define $f : X \to Y$ by $f(\ast) = 0$. Then $C_0(X) \cong \ast$, $C_0(Y) \cong [0, \infty)$, $C_1(Y) \cong \{0\}$; and $C(f)$ maps $C_0(X) \to C_1(Y)$, $\ast \mapsto 0$, but $C'(f)$ maps $C_0(X) \to C_0(Y)$, $\ast \mapsto 0$, so $C'(f) \neq C(f)$.

Note that $C(f), C'(f)$ need not map $C_k(X) \to C_k(Y)$.

2.3 Tangent bundles and b-tangent bundles

Manifolds with corners X have two notions of tangent bundle with functorial properties, the (ordinary) tangent bundle TX, the obvious generalization of tangent bundles of manifolds without boundary, and the b-tangent bundle bTX introduced by Melrose [84 §2, 85 §2.2, 86 §I.10]. Taking duals gives two notions of cotangent bundle T^*X, bT^*X. First we discuss vector bundles:

Definition 2.14. Let X be a manifold with corners. A vector bundle $E \to X$ of rank k is a manifold with corners E and a smooth map $\pi : E \to X$, such that each fibre $E_x := \pi^{-1}(x)$ for $x \in X$ is given the structure of a real vector space of dimension k, and X may be covered by open $U \subseteq X$ with diffeomorphisms $\pi^{-1}(U) \cong U \times \mathbb{R}^k$ identifying $\pi|_{\pi^{-1}(U)} : \pi^{-1}(U) \to U$ with the projection $U \times \mathbb{R}^k \to \mathbb{R}^k$, and the vector space structure on E_x with that on $\{x\} \times \mathbb{R}^k \cong \mathbb{R}^k$, for each $x \in U$. A section of E is a smooth map $s : X \to E$ with $\pi \circ s = \text{id}_X$.

We write $\Gamma^\infty(E)$ for the vector space of smooth sections of E, and $C^\infty(X)$ for the \mathbb{R}-algebra of smooth functions $X \to \mathbb{R}$. Then $\Gamma^\infty(E)$ is a $C^\infty(X)$-module.

Morphisms of vector bundles, dual vector bundles, tensor products of vector bundles, exterior products, and so on, all work as usual.
Definition 2.15. Let X be an m-manifold with corners. The tangent bundle $\pi : TX \to X$ and b-tangent bundle $\pi : bTX \to X$ are natural rank m vector bundles on X, with a vector bundle morphism $I_X : bTX \to TX$. The fibres of TX, bTX at $x \in X$ are written $T_x X, bT_x X$. We may describe TX, bTX, I_X in local coordinates as follows.

If (U, ϕ) is a chart on X, with $U \subseteq \mathbb{R}^m_+$ open, and (x_1, \ldots, x_m) are the coordinates on U, then over $\phi(U)$, TX is the trivial vector bundle with basis of sections $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_m}$, and bTX is the trivial vector bundle with basis of sections $x_1 \frac{\partial}{\partial x_1}, \ldots, x_m \frac{\partial}{\partial x_m}$.

We have corresponding charts $(TU, T\phi)$ on TX and $(bTU, bT\phi)$ on bTX, where $TU = bTU = U \times \mathbb{R}^m \subseteq R^m_+$, such that $(x_1, \ldots, x_m, q_1, \ldots, q_m)$ in TU represents the vector $q_1 \frac{\partial}{\partial x_1} + \cdots + q_m \frac{\partial}{\partial x_m}$ over $\phi(x_1, \ldots, x_m) \in X$, and $(x_1, \ldots, x_m, r_1, \ldots, r_m)$ in bTU represents $r_1 x_1 \frac{\partial}{\partial x_1} + \cdots + r_m x_m \frac{\partial}{\partial x_m} + r_{k+1} \frac{\partial}{\partial x_{k+1}} + \cdots + r_m \frac{\partial}{\partial x_m}$ over $\phi(x_1, \ldots, x_m)$ in X, and I_X maps $(x_1, \ldots, x_m, r_1, \ldots, r_m)$ in bTU to $(x_1, \ldots, x_m, x_1 r_1, \ldots, x_m r_m, \ldots, r_m)$ in TU.

Under change of coordinates $(x_1, \ldots, x_m) \sim (\tilde{x}_1, \ldots, \tilde{x}_m)$ from (U, ϕ) to $(\tilde{U}, \tilde{\phi})$, the corresponding change $(x_1, \ldots, x_m, q_1, \ldots, q_m) \sim (\tilde{x}_1, \ldots, \tilde{q}_m)$ from $(TU, T\phi)$ to $(\tilde{TU}, \tilde{T}\phi)$ is determined by $\frac{\partial}{\partial \tilde{x}_i} = \sum_{j=1}^m \frac{\partial \tilde{x}_i}{\partial x_j} (x_1, \ldots, x_m) \cdot \frac{\partial}{\partial x_j}$, so that $\tilde{q}_i = \sum_{j=1}^m \frac{\partial \tilde{x}_i}{\partial x_j} (x_1, \ldots, x_m) q_j$, and similarly for $(bTU, bT\phi)$. Elements of $\Gamma^k(TX)$ are called vector fields, and of $\Gamma^k(bTX)$ are called b-vector fields. The map $(I_X)_* : \Gamma^\infty(bTX) \to \Gamma^\infty(TX)$ is injective, and identifies $\Gamma^\infty(bTX)$ with the vector subspace of $v \in \Gamma^\infty(TX)$ such that $v|_{S^k(X)}$ is tangent to $S^k(X)$ for all $k = 1, \ldots, \dim X$.

Taking duals gives two notions of cotangent bundle T^*X, bT^*X. The fibres of T^*X, bT^*X at $x \in X$ are written $T^* x X, bT^* x X$.

Now suppose $f : X \to Y$ is a smooth map of manifolds with corners. Then there is a natural smooth map $Tf : TX \to TY$ so that the following commutes:

$$
\begin{array}{ccc}
TX & \xymatrix{\ar[r]^Tf & \ar[d]^\pi TY} \\
X & \ar[r]^f & Y.
\end{array}
$$

Let (U, ϕ) and (V, ψ) be coordinate charts on X, Y with $U \subseteq \mathbb{R}^m_+, V \subseteq \mathbb{R}^n_+$, with coordinates $(x_1, \ldots, x_m) \in U$ and $(y_1, \ldots, y_n) \in V$, and let $(TU, T\phi)$, $(TV, T\psi)$ be the corresponding charts on TX, TY, with coordinates $(x_1, \ldots, x_m, q_1, \ldots, q_m)$ in TU and $(y_1, \ldots, y_n, r_1, \ldots, r_n)$ in TV. Equation (2.1) defines a map $\psi^{-1} \circ f \circ \phi$ between open subsets of U, V. Write $\psi^{-1} \circ f \circ \phi = (f_1, \ldots, f_n)$, for $f_j = f_j(x_1, \ldots, x_m)$. Then the corresponding $T\psi^{-1} \circ T \circ T\phi$ maps

$$
T\psi^{-1} \circ T \circ T\phi : (x_1, \ldots, x_m, q_1, \ldots, q_m) \mapsto (f_1(x_1, \ldots, x_m), \ldots, f_n(x_1, \ldots, x_m), \sum_{i=1}^m \frac{\partial f_i}{\partial x_i}(x_1, \ldots, x_m) q_i, \ldots, \sum_{i=1}^m \frac{\partial f_i}{\partial x_i}(x_1, \ldots, x_m) q_i).
$$

We can also regard Tf as a vector bundle morphism $df : TX \to f^*(TY)$ on X, which has dual morphism $df : f^*(T^*Y) \to T^*X$. If $x \in X$ with $f(x) = y$ in Y we have linear maps $T_x f : T_x X \to T_y Y$ and $T^* f : T^*_y Y \to T^*_x X$ on the fibres.
If \(g : Y \to Z \) is smooth then \(T(g \circ f) = Tg \circ Tf : TX \to TZ \), and \(T(\text{id}_X) = \text{id}_{TX} : TX \to TX \). Thus, the assignment \(X \mapsto TX, f \mapsto Tf \) is a functor, the \textit{tangent functor} \(T : \text{Man}^c \to \text{Man}^c \). It restricts to \(T : \text{Man}^c_{\text{in}} \to \text{Man}^c_{\text{in}} \).

As in [64], §2, the analogue of the morphisms \(Tf : TX \to TY \) for \(b \)-tangent bundles works only for \textit{interior} maps \(f : X \to Y \). So let \(f : X \to Y \) be an \textit{interior} map of manifolds with corners. If \(f \) is interior, there is a unique \textit{interior} map \(bTf : bTX \to bTY \) so that the following commutes:

\[
\begin{array}{ccc}
 TX & \xrightarrow{Tf} & TY \\
 \downarrow{\pi} & \searrow{\pi} & \downarrow{\pi} \\
 X & \xrightarrow{f} & Y.
\end{array}
\]

The assignment \(X \mapsto bTX, f \mapsto bTf \) is a functor, the \textit{\(b \)-tangent functor} \(bT : \text{Man}^c_{\text{in}} \to \text{Man}^c_{\text{in}} \). The maps \(l_X : bTX \to TX \) give a natural transformation \(l : bT \to T \) of functors \(\text{Man}^c_{\text{in}} \to \text{Man}^c_{\text{in}} \).

We can also regard \(bTf \) as a vector bundle morphism \(bdf : bTX \to f^*(bTY) \) on \(X \), with dual morphism \(bdf : f^*(bT^*Y) \to bT^*X \). If \(x \in X \) with \(f(x) = y \) in \(Y \) we have linear maps \(bT_x f : bT_x X \to bT_y Y \) and \(bT_b f : bT_y Y \to bT_b X \).

Note that if \(f : X \to Y \) is a smooth map in \(\text{Man}^c \) then \(C(f) : C(X) \to C(Y) \) is interior, so \(bTC(f) : bTC(X) \to bTC(Y) \) is well defined, and we can use this as a substitute for \(bTf : bTX \to bTY \) when \(f \) is not interior.

Let \(X \) be a manifold with corners, and \(k \geq 0 \). Then we have an exact sequence of vector bundles on \(C_k(X) \):

\[
0 \to T(C_k(X)) \to \Pi_k^X(TX) \to N_{C_k(X)} \to 0,
\]

where \(N_{C_k(X)} \) is the \textit{normal bundle of} \(C_k(X) \) in \(X \), a natural rank \(k \) vector bundle on \(C_k(X) \). When \(k = 1 \) this becomes

\[
0 \to T(\partial X) \to \text{d}X \to N_{\partial X} \to 0.
\]

Here the normal line bundle \(N_{\partial X} \) has a natural orientation on its fibres, by outward-pointing vectors. Using \((2.12) \) and the orientation on \(N_{\partial X} \), we can show that an orientation on \(X \) induces an orientation on \(\partial X \), as in \((2.6) \).

For \(b \)-tangent bundles, as in [64], Prop. 2.22 there is an analogue of \((2.11) \):

\[
0 \to bN_{C_k(X)} \to \Pi_k^X(bTX) \to bT(C_k(X)) \to 0,
\]

where \(bN_{C_k(X)} \) is the \textit{\(b \)-normal bundle of} \(C_k(X) \) in \(X \), a rank \(k \) vector bundle with a natural flat connection. Note that \((2.13) \) goes in the opposite direction to \((2.11) \). There is no natural map \(b\Pi_k : bT(C_k(X)) \to \Pi_k(bTX) \) for \(k > 0 \), as \(\Pi_k \) is not interior. We can define \(I_X^b \) in \((2.13) \) by noting that \((I_X)_* : \Gamma^\infty(bTX) \to \Gamma^\infty(TX) \) identifies \(\Gamma^\infty(bTX) \) with the vector subspace of \(v \) in \(\Gamma^\infty(TX) \) with \(v|_{S^1X} \) tangent to \(S^1(X) \) for all \(l \), as in Definition \(2.15 \) and under
this identification, I^ι is just restriction/pullback of vector fields from X to $C_k(X)$. When $k = 1$, $^{b}N_{C_1(X)}$ is naturally trivial, giving an exact sequence

$$0 \longrightarrow \mathcal{O}_{\partial X} \longrightarrow \iota^*_X(T^b X) \longrightarrow f^*_X(bT(\partial X)) \longrightarrow 0, \quad (2.14)$$

where $\mathcal{O}_{\partial X} = \partial X \times \mathbb{R} \rightarrow \partial X$ is the trivial line bundle on ∂X.

Here is some similar notation to $N_{C_k(X)}$, $^{b}N_{C_k(X)}$, but working over X rather than $C(X)$, taken from [64, Def. 2.25].

Definition 2.16. Let X be a manifold with corners. For $x \in S^k(X) \subseteq X$, we have a natural exact sequence of real vector spaces

$$0 \longrightarrow T_x(S^k(X)) \xrightarrow{\iota_x X} T_x X \xrightarrow{\pi_x X} \tilde{N}_x X \longrightarrow 0, \quad (2.15)$$

where $\dim \tilde{N}_x X = k$. We call $\tilde{N}_x X$ the *stratum normal space*. There is a unique point $x' \in C_k(X)$ with $\Pi_k(x') = x$, and then $\tilde{N}_x X \cong N_{C_k(X)}|_{x'}$, and $T_x(S^k(X)) \cong bT(C_k(X))|_{x'}$, and (2.15) is canonically isomorphic to the restriction of (2.11) to x'.

Let $f : X \rightarrow Y$ be a morphism in Man^c, and let $x \in S^k(X) \subseteq X$ with $f(x) = y \in S^l(Y) \subseteq Y$. Then f maps $S^k(X) \rightarrow S^l(Y)$ near x by Lemma 2.5. There is a unique linear map $\tilde{N}_x f : \tilde{N}_x X \rightarrow \tilde{N}_y Y$, the *stratum normal map*, fitting into the following commutative diagram, where the rows are (2.15):

$$\begin{array}{ccc}
0 & \longrightarrow & T_x(S^k(X)) \\
\iota_x X & \longmapsto & T_x X \\
\Pi_x X & \longmapsto & \tilde{N}_x X & \longrightarrow & 0 \\
\downarrow T_x(f|S^k(X)) & & \downarrow T_x f & & \downarrow \pi_x Y \\
0 & \longrightarrow & T_y(S^l(Y)) \\
\iota_y Y & \longmapsto & T_y Y & \pi_y Y & \longrightarrow & 0.
\end{array} \quad (2.16)$$

These morphisms $\tilde{N}_x f$ are functorial in f and x. That is, if $g : Y \rightarrow Z$ is another morphism in Man^c then $\tilde{N}_x(g \circ f) = \tilde{N}_y g \circ \tilde{N}_x f$.

There is also a ‘b-tangent’ version. Let X be a manifold with corners. For each $x \in S^k(X) \subseteq X$, we have a natural exact sequence of real vector spaces

$$0 \longrightarrow \tilde{b}N_x X \longrightarrow \iota_x X \longrightarrow T_x X \xrightarrow{\Pi_x X} T_x(S^k(X)) \longrightarrow 0, \quad (2.17)$$

where $\dim \tilde{b}N_x X = k$. We call $\tilde{b}N_x X$ the *stratum b-normal space*. There is a unique point $x' \in C_k(X)$ with $\Pi_k(x') = x$, and then $\tilde{b}N_x X \cong \tilde{b}N_{C_k(X)}|_{x'}$, and $T_x(S^k(X)) \cong bT(C_k(X))|_{x'}$, and (2.17) is canonically isomorphic to the restriction of (2.13) to x'.

Note that the $\tilde{b}N_x X$ are not the fibres of vector bundles on X, as $\dim \tilde{b}N_x X, \dim \tilde{b}N_x X$ are only upper semicontinuous in x.

If $(x_1, \ldots, x_m) \in \mathbb{R}^m_k$ are local coordinates on X near x then we have

$$\tilde{b}N_x X = \langle \frac{\partial}{\partial x_1}, \ldots, x_k \frac{\partial}{\partial x_k} \rangle / \mathbb{R}, \quad T_x(S^k(X)) = \langle \frac{\partial}{\partial x_{k+1}}, \ldots, \frac{\partial}{\partial x_m} \rangle / \mathbb{R},$$

and

$$\tilde{b}T_x X = \langle x_1 \frac{\partial}{\partial x_1}, \ldots, x_k \frac{\partial}{\partial x_k}, \frac{\partial}{\partial x_{k+1}}, \ldots, \frac{\partial}{\partial x_m} \rangle / \mathbb{R}.$$
Using these identifications, define a subset $\tilde{M}_x X \subseteq b\tilde{N}_x X$ by

$$\tilde{M}_x X = \{b_1 \cdot x_1 \frac{\partial}{\partial x_1} + \cdots + b_k \cdot x_k \frac{\partial}{\partial x_k} : b_1, \ldots, b_k \in \mathbb{N}\},$$

so that $\tilde{M}_x X \cong \mathbb{N}^k$. This is independent of the choice of coordinates. We consider $\tilde{M}_x X$ to be a commutative monoid under addition in $b\tilde{N}_x X$, as in Definition 2.17 below.

Now let $f : X \to Y$ be an interior map in Man^c, and let $x \in S^b(X) \subseteq X$ with $f(x) = y \in S^d(Y) \subseteq Y$. Then f maps $S^b(X) \to S^d(Y)$ near x by Lemma 2.5. There is a unique linear map $b\tilde{N}_x f : b\tilde{N}_x X \to b\tilde{N}_y Y$, the stratum b-normal map, fitting into the following commutative diagram, where the rows are (2.17):

![Diagram](image)

We have $b\tilde{N}_x f(M_x X) \subseteq \tilde{M}_y Y$, so we define a monoid morphism $\tilde{M}_x f : \tilde{M}_x X \to \tilde{M}_y Y$ by $\tilde{M}_x f = b\tilde{N}_x f |_{\tilde{M}_x X}$. These morphisms $b\tilde{N}_x f, \tilde{M}_x f$ are functorial in f and x. That is, if $g : X \to Z$ is another interior morphism in Man^c then $b\tilde{N}_z f \circ b\tilde{N}_x f = b\tilde{N}_y f$ and $\tilde{M}_z f \circ \tilde{M}_x f = \tilde{M}_y f \circ \tilde{M}_x f$.

We have canonical isomorphisms $b\tilde{N}_x f : M_x X \cong M_y X \otimes_{\mathbb{N}} \mathbb{R}$ for all x, Y, which identify $b\tilde{N}_x f : b\tilde{N}_x X \to b\tilde{N}_y Y$ with $\tilde{M}_x f \otimes 1_{\mathbb{R}} : M_x X \otimes \mathbb{R} \to M_y Y \otimes \mathbb{R}$.

An interior map $f : X \to Y$ is b-normal if $b\tilde{N}_x f$ is surjective for all $x \in X$.

In (10.1.5) and (10.3) we will refer to $\tilde{N}_x X, b\tilde{N}_x X, \tilde{M}_x X$ as quasi-tangent spaces, as they behave quite like tangent spaces.

2.4 Generalizations of manifolds with corners

We briefly discuss the categories Man^{gc} of *manifolds with g-corners* from [64] and Man^{ac} of *manifolds with a-corners* from [66].

2.4.1 Manifolds with generalized corners

In [64] the author introduced an extension of manifolds with corners called *manifolds with generalized corners*, or *manifolds with g-corners*. They are locally modelled on certain spaces X_P for P a weakly toric monoid.

Definition 2.17. A *(commutative) monoid* $(P, +, 0)$ is a set P with a commutative, associative operation $+ : P \times P \to P$ and an identity element $0 \in P$. Monoids are like abelian groups, but without inverses. They form a category Mon. Some examples of monoids are the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$, the integers \mathbb{Z}, any abelian group G, and $[0, \infty) = ([0, \infty), 1)$.

A monoid P is called *weakly toric* if for some $m, k \geq 0$ and $c_i^j \in \mathbb{Z}$ for $i = 1, \ldots, m$, $j = 1, \ldots, k$ we have

$$P \cong \{(l_1, \ldots, l_m) \in \mathbb{Z}^m : c_1^j l_1 + \cdots + c_m^j l_m \geq 0, \ j = 1, \ldots, k\}.$$
The rank of a weakly toric monoid P is rank $P = \dim_{\mathbb{R}}(P \otimes_{\mathbb{N}} \mathbb{R})$. A weakly toric monoid P is called toric if $0 \in P$ is the only invertible element.

Let P be a weakly toric monoid. Define X_P to be the set of monoid morphisms $x : P \to [0, \infty)$, where $([0, \infty), \cdot, 1)$ is the monoid $[0, \infty)$ with operation multiplication and identity 1. Define the interior $X^\circ_P \subset X_P$ of X_P to be the subset of x with $x(P) \subseteq (0, \infty) \subset [0, \infty)$.

For each $p \in P$, define a function $\lambda_p : X_P \to [0, \infty)$ by $\lambda_p(x) = x(p)$. Then $\lambda_{p+q} = \lambda_p \cdot \lambda_q$ for $p, q \in P$, and $\lambda_0 = 1$. Define a topology on X_P to be the weakest such that $\lambda_p : X_P \to [0, \infty)$ is continuous for all $p \in P$. If $U \subseteq X_P$ is open, define the interior U° of U to be $U^\circ = U \cap X^\circ_P$.

Choose generators p_1, \ldots, p_m for P, and a generating set of relations for p_1, \ldots, p_m of the form
\[
a_1^j p_1 + \cdots + a_m^j p_m = b_1^j p_1 + \cdots + b_m^j p_m \quad \text{in } P \quad \text{for } j = 1, \ldots, k,
\]
where $a_i^j, b_i^j \in \mathbb{N}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, k$. Here as P is integral (i.e. a submonoid of an abelian group) we may suppose that $a_i^j = 0$ or $b_i^j = 0$ for all i, j. Then $\lambda_{p_1} \times \cdots \times \lambda_{p_m} : X_P \to [0, \infty)^m$ is a homeomorphism from X_P to
\[
X'_{P} = \{(x_1, \ldots, x_m) \in [0, \infty)^m : x_1^i \cdots x_m^i = x_1^i \cdots x_m^i, \quad i = 1, \ldots, k, j = 1, \ldots, k\},
\]
regarding X'_P as a closed subset of $[0, \infty)^m$ with the induced topology.

Let $U \subseteq X_P$ be open, and $U' = (\lambda_{p_1} \times \cdots \times \lambda_{p_m})(U)$ be the corresponding open subset of X'_P. We say that a continuous function $f : U \to \mathbb{R}$ or $f : U \to [0, \infty)$ is smooth if there exists an open neighbourhood W of U' in $[0, \infty)^m$ and a smooth function $g : W \to \mathbb{R}$ or $g : W \to [0, \infty)$ in the sense of manifolds with (ordinary) corners in $[2.1]$ and $[2.3]$ such that $f = g \circ (\lambda_{p_1} \times \cdots \times \lambda_{p_m})$. This definition turns out to be independent of the choice of generators p_1, \ldots, p_m.

Now let Q be another weakly toric monoid, $V \subseteq X_Q$ be open, and $f : U \to V$ be continuous. We say that f is smooth if $\lambda_q \circ f : U \to [0, \infty)$ is smooth in the sense above for all $q \in Q$. We call a smooth map $f : U \to V$ interior if $f(U') \subseteq V^\circ$, and a diffeomorphism if f has a smooth inverse $f^{-1} : V \to U$.

With these definitions, for any weakly toric monoid P, the interior X°_P is naturally a manifold of dimension rank P, diffeomorphic to $\mathbb{R}^{\text{rank } P}$.

Example 2.18. Let P be the weakly toric monoid $\mathbb{N}^k \times \mathbb{Z}^{m-k}$ for $0 \leq k \leq m$. Then points of X_P are monoid morphisms $x : \mathbb{N}^k \times \mathbb{Z}^{m-k} \to ([0, \infty), \cdot, 1)$, which may be written uniquely in the form
\[
x(p_1, \ldots, p_m) = y_1^{p_1} \cdots y_m^{p_m} e^{p_{k+1}} y_{k+1} \cdots y_m^{p_m}
\]
for $(y_1, \ldots, y_m) \in \mathbb{R}^m_+$. This gives a bijection $X_P \cong \mathbb{R}^m_+ \times \mathbb{R}^{m-k}$. As in $[44]$, $[3.2]$, this bijection identifies the topologies on \mathbb{R}^m_+, X_P, and identifies the notions of smooth map between open subsets of \mathbb{R}^m_+ and between open subsets of X_P, X_Q in Definitions 2.1 and 2.17. Thus, the X_P for general weakly toric monoids P are a class of smooth spaces generalizing the spaces \mathbb{R}^m_+ used as local models for manifolds with corners in $[2.1]$.

15
In [64, §3.3] we use this to define the category Man^{gc} of manifolds with g-corners, by generalizing Definition 2.2. A manifold with g-corners of dimension m is a Hausdorff, second countable topological space X equipped with a maximal atlas $\{(P_a, U_a, \phi_a) : a \in A\}$ of charts (P_a, U_a, ϕ_a), such that P_a is a weakly toric monoid with rank $P_a = m$, and $U_a \subseteq X_{P_a}$ is open, and $\phi_a : U_a \to X$ is a homeomorphism with an open set $\phi_a(U_a) \subseteq X$. Any two such charts $(P_a, U_a, \phi_a), (P_b, U_b, \phi_b)$ are required to be pairwise compatible, in that the transition map $\phi_b^{-1} \circ \phi_a : \phi_a^{-1}(\phi_b(U_b)) \to \phi_b^{-1}(\phi_a(U_a))$ must be a diffeomorphism between open subsets of X_{P_a}, X_{P_b} in the sense of Definition 2.17. For set-theoretic reasons we require the P_a to be submonoids of some \mathbb{Z}^k.

Morphisms $f : X \to Y$ in Man^{gc}, called smooth maps, are continuous maps $f : X \to Y$ such that for all charts $(P_a, U_a, \phi_a), (Q_b, V_b, \psi_b)$ on X, Y, the transfer map $\psi_b^{-1} \circ f \circ \phi_a$ is a smooth map between open subsets of X_{P_a}, X_{Q_b} in the sense of Definition 2.17. We call f interior if the $\psi_b^{-1} \circ f \circ \phi_a : (f \circ \phi_a)^{-1}(\psi_b(V_b)) \to V_b$ are interior maps for all a, b, in the sense of Definition 2.17, and we write $\text{Man}_{\text{in}}^{\text{gc}}$ for the subcategory of Man^{gc} with morphisms interior maps.

Generalizing Definition 2.16 in [64, Def. 3.51], if $X \in \text{Man}^{\text{gc}}$, for each $x \in S^k(X) \subseteq X$ we define a real vector space $b\tilde{N}_x X$ with $\text{dim } b\tilde{N}_x X = k$ in a natural exact sequence (2.17), and a subset $M_x X \subseteq b\tilde{N}_x X$ which is a commutative monoid under addition in $b\tilde{N}_x X$. But now $M_x X$ is a toric monoid of rank k, such that if $M_x X = P$ then X near x is locally modelled on $X_P \times \mathbb{R}^{\text{dim }X - \text{rank } P}$ near $(0, 0)$, and $X \in \text{Man}_{\text{bn}}^{\text{gc}} \subseteq \text{Man}^{\text{gc}}$ if and only if $M_x X \cong \mathbb{N}^k$ for all $x \in X$.

If $f : X \to Y$ is an interior map in Man^{gc} and $x \in S^k(X) \subseteq X$ with $f(x) = y \in S^k(Y) \subseteq Y$, there is a unique linear map $b\tilde{N}_x f : b\tilde{N}_x X \to b\tilde{N}_y Y$ making (2.18) commute. Then $b\tilde{N}_x f(M_x X) \subseteq M_y Y$, so we define a monoid morphism $M_x f : M_x X \to M_y Y$ by $M_x f = b\tilde{N}_x f|_{M_x X}$, as in Definition 2.16.

We call an interior map $f : X \to Y$ simple if $M_x f$ is an isomorphism for all $x \in X$. Write $\text{Man}_{\text{si}}^{\text{gc}}$ for the subcategory of Man^{gc} with simple morphisms. We call an interior map $f : X \to Y$ b-normal if $b\tilde{N}_x f$ is surjective for all $x \in X$. We write $\text{Man}_{\text{bn}}^{\text{gc}}$ for the subcategory of Man^{gc} with morphisms b-normal maps.

Using Example 2.18 to view \mathbb{R}^3_+ as a space X_P, we obtain a full embedding $\text{Man}_{\text{in}}^{\text{gc}} \subseteq \text{Man}^{\text{gc}}$, which restricts to a full embedding $\text{Man}_{\text{in}}^{\text{bn}} \subseteq \text{Man}_{\text{bn}}^{\text{gc}}$. By an abuse of notation we will regard $\text{Man}_{\text{in}}^{\text{gc}}$ as a full subcategory of Man^{gc}, closed under isomorphisms in Man^{gc}, so that Proposition 2.21(b) below holds. We could modify the definitions of $\text{Man}_{\text{in}}^{\text{gc}}, \text{Man}_{\text{bn}}^{\text{gc}}$ to make this true.

Example 2.19. The simplest manifold with g-corners which is not a manifold with corners is $X = \{(x_1, x_2, x_3, x_4) \in [0, \infty)^4 : x_1x_2 = x_3x_4\}$. We have $X \cong X_P$, where P is the monoid $P = \{(a, b, c) \in \mathbb{N}^3 : c \leq a + b\}$.

Then X is 3-dimensional, and has four 2-dimensional boundary faces

- $X_{13} = \{(x_1, 0, x_3, 0) : x_1, x_3 \in [0, \infty)\}$,
- $X_{14} = \{(x_1, 0, 0, x_4) : x_1, x_4 \in [0, \infty)\}$,
- $X_{23} = \{(0, x_2, x_3, 0) : x_2, x_3 \in [0, \infty)\}$,
- $X_{24} = \{(0, x_2, 0, x_4) : x_2, x_4 \in [0, \infty)\}$,
and four 1-dimensional edges

\[X_1 = \{(x_1, 0, 0, 0) : x_1 \in [0, \infty)\}, \quad X_2 = \{(0, x_2, 0, 0) : x_2 \in [0, \infty)\}, \]
\[X_3 = \{(0, 0, x_3, 0) : x_3 \in [0, \infty)\}, \quad X_4 = \{(0, 0, 0, x_4) : x_4 \in [0, \infty)\}, \]

all meeting at the vertex \((0, 0, 0, 0) \in X\). In a 3-manifold with (ordinary) corners such as \([0, \infty)^3\), three 2-dimensional boundary faces and three 1-dimensional edges meet at each vertex, so \(X\) has an exotic corner structure at \((0, 0, 0, 0)\).

As in [64, §3.4–§3.6], the theory of §2.2–§2.3 extends to manifolds with g-corners, but with some important differences:

- As in [2.2] boundaries \(\partial X\), \(k\)-corners \(C_k(X)\), and the first corner functor \(C : \text{Man}^{\text{gc}} \to \text{Man}_\infty^{\text{gc}} \subset \text{Man}^{\text{gc}}\) in Definition 2.9 work for manifolds with g-corners, where \(\text{Man}^{\text{gc}}\) and \(\text{Man}_{\infty}^{\text{gc}}\) are the extensions of \(\text{Man}_{\infty}^{\text{ac}}\) with objects disjoint unions \(\prod_{m=0}^{\infty} X_m\), where \(X_m\) is a manifold with g-corners of dimension \(m\). However, equations (2.2)–(2.5) are false for manifolds with g-corners \(X\): for \(k > 2\) there is no natural \(S_k\)-action on \(\partial^k X\), and no natural diffeomorphism \(C_k(X) \simeq \partial^k X/S_k\).
- The second corner functor \(C'\) in Definition 2.11 does not extend to \(\text{Man}^{\text{gc}}\), as the maximal local corner component \(\delta\) may not be unique.
- B-(co)tangent bundles \(b^* T X, b^* T^* X\) and the functor \(b T : \text{Man}_{\infty}^{\text{gc}} \to \text{Man}_{\infty}^{\text{gc}}\) work nicely for manifolds with g-corners \(X\). But ordinary (co)tangent bundles \(TX, T^* X\) are not well defined. One can define tangent spaces \(T_x X\) for \(x \in X\), but \(\text{dim} T_x X\) is only upper semicontinuous in \(x\), and the \(T_x X\) do not form a vector bundle on \(X\).

As discussed in [2.5.3] transverse fibre products exist in \(\text{Man}^{\text{gc}}\) and \(\text{Man}_{\infty}^{\text{gc}}\) under weak conditions, and this is an important reason for working with \(\text{Man}^{\text{gc}}\). We can think of \(\text{Man}^{\text{gc}}\) as a closure of \(\text{Man}^{\text{ac}}\) under transverse fibre products.

2.4.2 Manifolds with analytic corners

In [60] the author introduced yet another variation on manifolds with corners, called \(\text{manifolds with analytic corners or manifolds with a-corners}\), which form a category \(\text{Man}^{\text{ac}}\). They have applications to some classes of analytic problems.

The motivating idea is that a manifold with corners \(X\) has two tangent bundles \(TX, T^* X\), as in [2.3] Now the definition of smooth functions on \(X\) in [2.1] favours \(TX\), as \(f : X \to \mathbb{R}\) is smooth if \(\nabla^k f\) exists as a continuous section of \(\bigotimes^k T X\) for all \(k = 0, 1, \ldots\). For manifolds with a-corners \(X\) we define ‘\(\alpha\)-smooth functions’ and ‘\(\alpha\)-smooth maps’ using \(b^* T X\), so that roughly speaking \(f : X \to \mathbb{R}\) is \(\alpha\)-smooth if \(b^* \nabla^k f\) exists as a section of \(\bigotimes^k b^* T X\) for all \(k = 0, 1, \ldots\). This gives a different smooth structure even for \(X = [0, \infty)\). For example, \(x^\alpha : [0, \infty) \to \mathbb{R}\) is \(\alpha\)-smooth for all real \(\alpha > 0\).

Here are the \(\alpha\)-smooth versions of Definition 2.1(b)–(g):

17
Definition 2.20. As in [2.1] write \(\mathbb{R}^n_k = [0, \infty)^k \times \mathbb{R}^{m-k} \) for \(0 \leq k \leq m \), let \(U \subseteq \mathbb{R}^m_k \) be open, and \(f : U \to \mathbb{R} \) be continuous. We say that \(f \) is a-smooth if for all \(a_1, \ldots, a_m \in \mathbb{N} \) and for any compact subset \(S \subseteq U \), there exist positive constants \(C, \alpha \) such that

\[
\left| \frac{\partial^{a_1+\cdots+a_m}}{\partial x_1^{a_1} \cdots \partial x_m^{a_m}} f(x_1, \ldots, x_m) \right| \leq C \prod_{i=1}^{l} x_i^{\alpha - a_i},
\]

for all \((x_1, \ldots, x_m) \in S \) with \(x_i > 0 \) if \(i = 1, \ldots, k \) with \(a_i > 0 \), where continuous partial derivatives must exist at the required points.

Now let \(U \subseteq \mathbb{R}^m_k \) and \(V \subseteq \mathbb{R}^n_l \) be open, and \(f = (f_1, \ldots, f_n) : U \to V \) be a continuous map, so that \(f_j = f_j(x_1, \ldots, x_m) \) maps \(U \to [0, \infty) \) for \(j = 1, \ldots, l \) and \(U \to \mathbb{R} \) for \(j = l+1, \ldots, n \). Then we say that

(a) \(f \) is a-smooth if \(f_j : U \to \mathbb{R} \) is a-smooth as above for \(j = l+1, \ldots, n \), and every \(u = (x_1, \ldots, x_m) \in U \) has an open neighbourhood \(\hat{U} \) in \(U \) such that for each \(j = 1, \ldots, l \), either:

(i) we may uniquely write \(f_j(\tilde{x}_1, \ldots, \tilde{x}_m) = F_j(\tilde{x}_1, \ldots, \tilde{x}_m) \cdot \tilde{x}_1^{a_{1,j}} \cdots \tilde{x}_k^{a_{k,j}} \)

for all \((\tilde{x}_1, \ldots, \tilde{x}_m) \in \hat{U} \), where \(F_j : \hat{U} \to (0, \infty) \subseteq \mathbb{R} \) is a-smooth as above, and \(a_{1,j}, \ldots, a_{k,j} \in [0, \infty) \), with \(a_{i,j} = 0 \) if \(x_i \neq 0 \); or

(ii) \(f_j|_{\hat{U}} = 0 \).

(b) \(f \) is interior if it is a-smooth, and case (a)(ii) does not occur.

(c) \(f \) is b-normal if it is interior, and in case (a)(i), for each \(i = 1, \ldots, k \) we have \(a_{i,j} > 0 \) for at most one \(j = 1, \ldots, l \).

(d) \(f \) is strongly a-smooth if it is a-smooth, and in case (a)(i), for each \(j = 1, \ldots, l \) we have \(a_{i,j} > 0 \) for at most one \(i = 1, \ldots, k \).

(e) \(f \) is simple if it is interior, and in case (a)(i), for each \(i = 1, \ldots, k \) with \(x_i = 0 \) we have \(a_{i,j} > 0 \) for exactly one \(j = 1, \ldots, l \), and for all \(j = 1, \ldots, l \) we have \(a_{i,j} > 0 \) for at most one \(i = 1, \ldots, k \).

(f) \(f \) is an a-diffeomorphism if it is an a-smooth bijection with a-smooth inverse.

As in [66], we define the category \(\text{Man}^{\text{ac}} \) of manifolds with a-corners as for \(\text{Man}^{\text{ac}} \) in Definition 2.2, but replacing Definition 2.1(b)–(g) by Definition 2.17(a)–(f). We define subcategories \(\text{Man}^{\text{ac}}_{\text{bn}}, \text{Man}^{\text{ac}}_{\text{bn}}^* \), \(\text{Man}^{\text{ac}}_{\text{st}}, \text{Man}^{\text{ac}}_{\text{st}}^* \), \(\text{Man}^{\text{ac}}_{\text{st,bn}} \), and \(\text{Man}^{\text{ac}}_{\text{si}} \) of \(\text{Man}^{\text{ac}} \) with interior, b-normal, strongly a-smooth, strongly a-smooth interior, strongly a-smooth b-normal, and simple morphisms, respectively. As in [66], there is an (obvious) functor \(F_{\text{Man}^{\text{ac}}_{\text{bn}}} : \text{Man}^{\text{ac}} \to \text{Man}^{\text{ac}} \), and a (non-obvious and nontrivial) functor \(F_{\text{Man}^{\text{ac}}_{\text{st,bn}}} : \text{Man}^{\text{ac}}_{\text{si}} \to \text{Man}^{\text{ac}}_{\text{st}} \).

We also define a category \(\text{Man}^{\text{c,ac}} \) of manifolds with corners and a-corners, including \(\text{Man}^{\text{c}}, \text{Man}^{\text{ac}} \) as full subcategories, and subcategories \(\text{Man}^{\text{c,ac}}_{\text{bn}}, \text{Man}^{\text{c,ac}}_{\text{st,bn}} \).
We call g,h. We would also like the definitions of 'transverse' and 'submersion' to be easy to check, and not to be too restrictive. Chapter II.2 in volume II will extend the results of this section to (m-)Kuranishi spaces.

2.5 Transversality, submersions, and fibre products

Fibre products in categories are defined in A.1. Transversality and submersions are about giving useful criteria for existence of fibre products of manifolds. If we work in some category of manifolds Man such as $\mathsf{Man}_{\mathsf{st}}$, $\mathsf{Man}_{\mathsf{st},\mathsf{in}}, \mathsf{Man}_{\mathsf{st},\mathsf{bn}}, \mathsf{Man}_{\mathsf{si}}$, $\mathsf{Man}_{\mathsf{c,ac}}$ of $\mathsf{Man}_{\mathsf{c,ac}}$ with interior, b-normal, strongly a-smooth, strongly a-smooth interior, strongly a-smooth b-normal, and simple morphisms, respectively. There are functors $F_{\mathsf{Man}_{\mathsf{c,ac}}}^c : \mathsf{Man}_{\mathsf{c,ac}} \to \mathsf{Man}_{\mathsf{c,ac}}$ and $F_{\mathsf{Man}_{\mathsf{c,ac}}}^c : \mathsf{Man}_{\mathsf{c,ac}} \to \mathsf{Man}_{\mathsf{c,ac}}$.

As in [69, §4], the theory of [2.2–2.3] extends to manifolds with a-corners $\mathsf{Man}_{\mathsf{ac}}$, including both corner functors C,C' in Definitions 2.9 and 2.11 with the difference that we do not define ordinary tangent bundles TX for manifolds with a-corners X, but only b-tangent bundles bTX.

If X lies in $\mathsf{Man}_{\mathsf{ac}}$ or $\mathsf{Man}_{\mathsf{c,ac}}$, so that we have the k-corners $C_k(X)$ with a projection $\Pi_k : C_k(X) \to X$, then as in (2.13) there is a rank k bundle $bN_{C_k(X)}$ on $C_k(X)$ in an exact sequence (2.13). When $k = 1$, for $\mathsf{Man}_{\mathsf{c,ac}}$ this $bN_{C_1(X)}$ was naturally trivial, $bN_{C_1(X)} = O_{\partial X}$, giving an exact sequence (2.14) on ∂X. However, for X in $\mathsf{Man}_{\mathsf{ac}}$ or $\mathsf{Man}_{\mathsf{c,ac}}$ this $bN_{C_1(X)} = bN_{\partial X}$ may not be naturally trivial, so that instead of (2.14) we have an exact sequence on ∂X:

\[
\begin{array}{cccccc}
0 & \rightarrow & bN_{\partial X} & \rightarrow & i_X^* bTX & \rightarrow & r_X^* bT(\partial X) \rightarrow 0.
\end{array}
\]

Here $bN_{\partial X} \to \partial X$ is a line bundle which has a natural orientation on its fibres, by outward-pointing vectors. Also $bN_{\partial X}$ has a natural flat connection.

2.5.1 Transversality and submersions in Man

The next definition and theorem are well known, see for instance Lee [71, §4, §6] and Lang [70, §II.2].

Definition 2.21. Let $g : X \to Z$ and $h : Y \to Z$ be smooth maps of manifolds. We call g,h transverse if $T_x g \oplus T_y h : T_x X \oplus T_y Y \to T_x Z$ is surjective for all $x \in X$ and $y \in Y$ with $g(x) = h(y) = z$ in Z. We call g a submersion if $T_x g : T_x X \to T_x Z$ is surjective for all $x \in X$ with $g(x) = z$ in Z.
Theorem 2.22. (a) Suppose \(g : X \to Z \) and \(h : Y \to Z \) are transverse smooth maps of manifolds. Then a fibre product \(W = X \times_{g,Z,h} Y \) exists in \textbf{Man}, with \(\dim W = \dim X + \dim Y - \dim Z \), in a Cartesian square in \textbf{Man}:

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow g & & \downarrow h \\
Y & \xrightarrow{e} & Z
\end{array}
\]

(2.20)

We may write

\[
W = \{(x,y) \in X \times Y : g(x) = h(y) \text{ in } Z\}
\]

(2.21)
as an embedded submanifold of \(X \times Y \), where \(e : W \to X \) and \(f : W \to Y \) act by \(e : (x,y) \mapsto x \) and \(f : (x,y) \mapsto y \). If \(w \in W \) with \(e(w) = x \in X \), \(f(w) = y \in Y \) and \(g(x) = h(y) = z \in Z \) then the following sequence is exact:

\[
0 \to T_w W \xrightarrow{T_w e \oplus T_w f} T_x X \oplus T_y Y \xrightarrow{T_{g,w} \oplus T_{h,w}} T_z Z \to 0.
\]

(2.22)

(b) Suppose \(g : X \to Z \) is a submersion in \textbf{Man}. Then \(g, h \) are transverse for any morphism \(h : Y \to Z \) in \textbf{Man}.

(c) Let \(g : X \to Z \) be a morphism in \textbf{Man}. Then \(g \) is a submersion if and only if the following condition holds: for each \(x \in X \) with \(g(x) = z \), there should exist open neighbourhoods \(X', Z' \) of \(x, z \) in \(X, Z \) with \(g(X') = Z' \), a manifold \(Y' \) with \(\dim X = \dim Y' + \dim Z \), and a diffeomorphism \(X' \cong Y' \times Z' \), such that \(g|_{X'} : X' \to Z' \) is identified with \(\pi Z' : Y' \times Z' \to Z' \).

Part (c) gives an alternative definition of submersions in \textbf{Man}: submersions are local projections. Here are some examples of non-transverse fibre products in \textbf{Man}. They illustrate the facts that: (i) non-transverse fibre products need not exist; (ii), (iii) a fibre product \(W = X \times_Z Y \) may exist, but have \(\dim W \neq \dim X + \dim Y - \dim Z \); and (iv) a fibre product \(W = X \times_Z Y \) may exist, but may not be homeomorphic to (2.21) as a topological space.

Example 2.23. (i) Define manifolds \(X = \mathbb{R}^2 \), \(Y = \{\ast\} \), \(Z = \mathbb{R} \), and smooth maps \(g : X \to Z \), \(h : Y \to Z \) by \(g(x,y) = xy \) and \(h(\ast) = 0 \). Then \(g, h \) are not transverse at \((0,0) \in X \) and \(\ast \in Y \). In this case no fibre product \(X \times_{g,Z,h} Y \) exists in \textbf{Man}. Roughly this is because the fibre product ought to be \(\{(x,y) \in \mathbb{R}^2 : xy = 0\} \), which is not a manifold near \((0,0)\).

(ii) Set \(X = Y = \{\ast\} \), \(Z = \mathbb{R} \), and define \(g : X \to Z \), \(h : Y \to Z \) by \(g(\ast) = h(\ast) = 0 \). Then \(g, h \) are not transverse at \(\ast \in X \) and \(\ast \in Y \). A fibre product \(W = X \times_{g,Z,h} Y \) exists in \textbf{Man}, where \(W = \{\ast\} \) with projections \(e : W \to X \), \(f : W \to Y \) given by \(e(\ast) = f(\ast) = \ast \). Note that \(\dim W > \dim X + \dim Y - \dim Z \), so \(W \) has larger than the expected dimension.

(iii) Set \(X = \mathbb{R}^2 \), \(Y = \{\ast\} \), \(Z = \mathbb{R} \), and define \(g : X \to Z \), \(h : Y \to Z \) by \(g(x,y) = x^2 + y^2 \) and \(h(\ast) = 0 \). Then \(g, h \) are not transverse at \((0,0) \in X \) and \(\ast \in Y \). A fibre product \(W = X \times_{g,Z,h} Y \) exists in \textbf{Man}, where \(W = \{\ast\} \) with \(e : W \to X \), \(f : W \to Y \) given by \(e(\ast) = f(\ast) = (0,0) \) and \(f(\ast) = \ast \). Note that \(\dim W < \dim X + \dim Y - \dim Z \), so \(W \) has smaller than expected dimension.

20
(iv) Set $X = \mathbb{R}^2$, $Y = \{x\}$, $Z = \mathbb{R}$, and define smooth $g : X \to Z$, $h : Y \to Z$ by
\[
g(x,y) = \begin{cases}
 e^{-1/x^2}(y - \sin(1/x)), & x \neq 0, \\
 0, & x = 0,
\end{cases}
h(s) = 0.
\]

Then g, h are not transverse at $(0, y) \in X$ and $* \in Y$ for $y \in \mathbb{R}$. A fibre product
$W = X \times_{g, Z, h} Y$ exists in Man. It is the disjoint union $W = (-\infty, 0) \sqcup (0, \infty) \sqcup \{\ast\}$
where $e : W \to X$, $f : W \to Y$ act by $e(x) = (x, \sin(1/x))$ for $x \in (-\infty, 0)$ II
$(0, \infty)$ and $e(y) = (0, y)$ for $y \in \mathbb{R}$, and $f \equiv *$.

We can also form the fibre product in topological spaces Top, which is
\[
X_{\text{top}} \times _{Z_{\text{top}}} Y_{\text{top}} \cong \{(x, y) \in \mathbb{R}^2 : x \neq 0 \text{ and } y = \sin(1/x), \text{ or } x = 0\}.
\]
Note that the fibre products in Man and Top coincide at the level of sets, but
not at the level of topological spaces, since $X \times _Z Y$ has three connected
components but $X_{\text{top}} \times _{Z_{\text{top}}} Y_{\text{top}}$ has only one.

2.5.2 Transversality and submersions in Man^{c}_{st} and Man^{c}

The author [59] studied transverse fibre products and submersions in the category Man^{c}_{st}
of manifolds with corners and strongly smooth maps. The next definition is equivalent to [59] Defs. 3.2, 6.1 & 6.10:

Definition 2.24. Let $g : X \to Z$ and $h : Y \to Z$ be morphisms in Man^{c}_{st}. We call g, h
s-transverse if for all $x \in S^j(X) \subseteq X$ and $y \in S^k(Y) \subseteq Y$ with
$g(x) = h(y) = z \in S^l(Z) \subseteq Z$, the following morphisms are surjective:
\[
\begin{align*}
T_x g|_{T_x S^j(X)} & : T_x S^j(X) \oplus T_y S^k(Y) \to T_z S^l(Z), \\
\hat{N}_z g & : \hat{N}_z X \oplus \hat{N}_y Y \to \hat{N}_z Z.
\end{align*}
\] (2.23)

This is an open condition on $x \in X$ and $y \in Y$. That is, if (2.23) holds for
some x, y, z, then there are open neighbourhoods $x \in X' \subseteq X$ and $y \in Y' \subseteq Y$
such that (2.23) also holds for all $x' \in X'$ and $y' \in Y'$ with $g(x') = h(y') = z'$ in
Z, even though j, k, l may not be constant.

We call g, h t-transverse if they are s-transverse, and if $x \in X$ and $y \in Y$ with
g(x) = h(y) = z \in Z$, then for all $x \in C_j(X)$ and $y \in C_k(Y)$ with $\Pi_j(x) = x$,
$\Pi_k(y) = y$ and $C(g) x = C(h) y = z$ in $C_l(Z)$, we have $j + k \geq l$, and there is
exactly one triple (x, y, z) with $j + k = l$. This is an open condition on $x \in X$
and $y \in Y$.

We call g an s-submersion if for all $x \in S^j(X) \subseteq X$ with $g(x) = z \in S^l(Z) \subseteq Z$,
the following morphisms are surjective:
\[
T_x g|_{T_x S^j(X)} : T_x S^j(X) \to T_z S^l(Z), \quad \hat{N}_z g : \hat{N}_z X \to \hat{N}_z Z.
\] (2.24)

These imply that s-submersions are interior and b-normal. Again, (2.24) is an
open condition on $x \in X$.

21
Theorem 2.25. (a) Suppose \(g : X \to Z \) and \(h : Y \to Z \) are s-transverse smooth maps in \(\text{Man}_{st}^c \). Then a fibre product \(W = X \times_{g,Z,h} Y \) exists in \(\text{Man}_{st}^c \), with \(\dim W = \dim X + \dim Y - \dim Z \), in a Cartesian square (2.20) in \(\text{Man}_{st}^c \), which is also a Cartesian square in \(\text{Man}^c \). We may define \(W \) by (2.21) as an embedded submanifold of \(X \times Y \), where \(e : W \to X \) and \(f : W \to Y \) act by \(e : (x,y) \mapsto x \) and \(f : (x,y) \mapsto y \).

If \(w \in S^i(W) \) with \(e(w) = x \in S^j(X) \), \(f(w) = y \in S^k(Y) \) and \(g(x) = h(y) = z \in S^l(Z) \) then the following sequences are exact:

\[
\begin{array}{cccccc}
0 & \longrightarrow & T_w W & \xrightarrow{T_w \oplus T_w f} & T_x X \oplus T_y Y & \xrightarrow{T_x g \oplus - T_y h} & T_z Z & \longrightarrow 0, \\
0 & \longrightarrow & T_w S^i(W) & \xrightarrow{T_w \oplus T_w f} & T_x S^j(X) \oplus T_y S^k(Y) & \xrightarrow{T_x g \oplus - T_y h} & T_z S^l(Z) & \longrightarrow 0, \\
0 & \longrightarrow & \tilde{N}_w W & \xrightarrow{\tilde{N}_w \oplus \tilde{N}_w f} & \tilde{N}_x X \oplus \tilde{N}_y Y & \xrightarrow{\tilde{N}_x g \oplus - \tilde{N}_y h} & \tilde{N}_z Z & \longrightarrow 0.
\end{array}
\]

(b) In (a), \(g,h \) are t-transverse if and only if the following are s-transverse (and indeed t-transverse) Cartesian squares in \(\text{Man}_{st}^c \) from Definition 2.8,

\[
\begin{array}{ccc}
C(W) & \xrightarrow{C(f)} & C(Y) \\
\downarrow{C(e)} & & \downarrow{C(h)} \\
C(X) & \xrightarrow{C(g)} & C(Z)
\end{array}
\]

(2.28)

\[
\begin{array}{ccc}
C(W) & \xrightarrow{C'(f)} & C(Y) \\
\downarrow{C'(e)} & & \downarrow{C'(h)} \\
C(X) & \xrightarrow{C'(g)} & C(Z)
\end{array}
\]

(2.29)

Here in (2.28) if \(w \in C_i(W) \) with \(C(e)(w) = x \) in \(C_j(X) \), \(C(f)(w) = y \) in \(C_k(Y) \) and \(C(g)(x) = C(h)(y) = z \) in \(C_l(Z) \) then \(i = j + k - l \). Hence we have

\[
C_i(W) \cong \prod_{j,k,l \geq 0, \ i = j + k - l} (C_j(X) \cap C_k(Y) \cap C_h(Z)) (C_j(X) \cap C_k(Y) \cap C_l(Z))^{-1}
\]

(2.30)

for \(i \geq 0 \). When \(i = 1 \), this computes the boundary \(\partial W \). The analogue holds for the second corner functor \(C' \) in Definition 2.11 using (2.29). Also (2.28) and (2.29) are Cartesian in \(\text{Man}^c \). If \(g \) is an s-submersion then \(C(g), C(f), C'(g) \) and \(C'(f) \) are s-submersions in \(\text{Man}_{st}^c \).

(c) Let \(g : X \to Z \) be a morphism in \(\text{Man}_{st}^c \). Then \(g \) is an s-submersion if and only if the following condition holds: for each \(x \in X \) with \(g(x) = z \), there should exist open neighbourhoods \(X', Z' \) of \(x, z \) in \(X, Z \) with \(g(X') = Z' \), a manifold with corners \(Y' \) with \(\dim X = \dim Y' + \dim Z \), and a diffeomorphism \(X' \cong Y' \times Z' \), such that \(g|_{X'} : X' \to Z' \) is identified with \(\pi_{Z'} : Y' \times Z' \to Z' \).

(d) Suppose \(g : X \to Z \) is an s-submersion, and \(h : Y \to Z \) is any morphism in \(\text{Man}^c \), which need not be strongly smooth. Then a fibre product \(W = X \times_{g,Z,h} Y \) exists in \(\text{Man}^c \), in a Cartesian square (2.20) in \(\text{Man}^c \), with \(\dim W = \dim X + \dim Y - \dim Z \).
\[\dim Y - \dim Z, \text{ and is given by } (2.21) \]. Also \(f \) is an s-submersion, and \((2.28) - (2.29) \) are Cartesian in \(\text{Man}^c \), and \((2.30) \) holds. If \(h \) is strongly smooth then \(\epsilon \) is strongly smooth, and \(g, h \) are s- and t-transverse, and \((2.20) \) is Cartesian in \(\text{Man}^c \), and \((2.28) - (2.29) \) are Cartesian in \(\text{Man}^s_{\text{tr}} \).

Proof. For (a), [59, Th. 6.4] shows that a fibre product \(W = X \times_y Z, h Y \) exists in \(\text{Man}^c_{\text{tr}} \), with \(\dim W = \dim X + \dim Y - \dim Z \), given by \((2.21) \) as an embedded submanifold of \(X \times Y \). This embedded submanifold property implies that \((2.20) \) is also Cartesian in \(\text{Man}^c \). Exactness of \((2.25) - (2.27) \) may be deduced from Theorem \(2.22 \) (a) and the proof of \([59, \text{Th. 6.4}]\). Part (b) in \(\text{Man}^c_{\text{tr}} \) is proved in \([59, \text{Th. 6.11}]\), and in \(\text{Man}^c \) follows from the embedded submanifold property. Part (c) is proved in \([59, \text{Prop. 5.1}]\). Part (d) follows easily from (a)–(c).

Example 2.26. Set \(X = Y = [0, \infty) \) and \(Z = [0, \infty)^2 \), and define strongly smooth \(g: X \to Z \), \(h : Y \to Z \) by \(g(x) = (x, 2x) \) and \(h(y) = (2y, y) \). Then \(g, h \) are s-transverse. However

\[C(g)(0, X) = C(h)(0, Y) = ((0, 0), Z) \]

where \((0, X) \in C_0(X) \), \((0, Y) \in C_0(Y) \), \(((0, 0), Z) \in C_0(Z) \), and

\[C(g)(0, \{x = 0\}) = C(h)(0, \{y = 0\}) = ((0, 0), \{x = y = 0\}) \]

with \((0, \{x = 0\}) \in C_1(X) \), \((0, \{y = 0\}) \) in \(C_1(Y) \) and \(((0, 0), \{x = y = 0\}) \) in \(C_2(Z) \), so there are two triples \((x, y, z) \) with \(j + k = l \) over \((x, y, z) = (0, 0, (0, 0)) \), and \(g, h \) are not t-transverse in Definition \(2.24 \).

The fibre product \(W = X_y Z, h Y \) in \(\text{Man}^c_{\text{tr}} \) is a single point \(* \). In \((2.30) \) when \(i = 0 \) the left hand side is one point, and the right hand side is two points, so \((2.30) \) does not hold. For \(i \neq 0 \), both sides of \((2.30) \) are empty.

2.5.3 Transversality and submersions in \(\text{Man}^c_{\text{in}} \) and \(\text{Man}^c \)

In \([64, \S 4.3] \) the author studied transverse fibre products of manifolds with g-corners \(\text{Man}^c_{\text{in}}, \text{Man}^c \) in \(2.4.1 \). The next definition is equivalent to \([64, \text{Defs} 4.3 \& 4.24] \), except for c-fibrations in (e), which are new. The corresponding names and definitions of b-transverse, b-normal and b-fibrations in \(\text{Man}^c \) are due to Melrose \([84, \S 1], [85, \S 2], [87, \S 2.4] \).

Definition 2.27. Let \(g : X \to Z \) and \(h : Y \to Z \) be interior morphisms in \(\text{Man}^c_{\text{in}} \). Then:

(a) We call \(g, h \) b-transverse if \(b T_z g \oplus b T_y h : b T_z X \oplus b T_y Y \to b T_z Z \) is surjective for all \(x \in X \) and \(y \in Y \) with \(g(x) = h(y) = z \in Z \).

(b) We call \(g, h \) c-transverse if they are b-transverse, and whenever there are points \(x, y, z \) in \(C_j(X), C_k(Y), C_l(Z) \) with \(C(g)x = C(h)y = z \), we have either \(j + k > l \) or \(j = k = l = 0 \), for \(C : \text{Man}^c_{\text{in}} \to \text{Man}^c \) as in \(2.4.1 \).

(c) We call \(g \) a b-submersion if \(b T_z g : b T_z X \to b T_z Z \) is surjective for all \(x \in X \) with \(g(x) = z \) in \(Z \).
(d) We call g a b-fibration if it is a b-normal b-submersion. Here g is b-normal if whenever there are x, z in $C_j(X), C_l(Z)$ with $C(g)x = z$, we have $j \geq l$.

(e) We call g a c-fibration if it is a b-fibration, and if $x \in X$ and $z \in C_l(Z)$ with $g(x) = \Pi_l(z) = z \in Z$, then there is exactly one $x \in C_l(X)$ with $\Pi_l(x) = x$ and $C(g)x = z$.

Theorem 2.28. (a) Let $g : X \to Z$ and $h : Y \to Z$ be b-transverse morphisms in $\text{Man}_{\text{in}}^{\text{sc}}$. Then a fibre product $W = X \times_{g, Z, h} Y$ exists in $\text{Man}_{\text{in}}^{\text{sc}}$, in a Cartesian square (2.20) in $\text{Man}_{\text{in}}^{\text{sc}}$, with $\dim W = \dim X + \dim Y - \dim Z$.

Explicitly, we may write

$$W^\circ = \{(x, y) \in X^\circ \times Y^\circ : g(x) = h(y) \text{ in } Z^\circ\},$$

(2.31)

and take W to be the closure W° of W° in $X \times Y$. Then W is a submanifold of $X \times Y$, and $e : W \to X$, $f : W \to Y$ act by $e : (x, y) \mapsto x$, $f : (x, y) \mapsto y$.

If $w \in W$ with $e(w) = x \in X$, $f(w) = y \in Y$ and $g(x) = h(y) = z \in Z$ then the following sequence is exact:

$$0 \to bT_wW \to g, h \in bT_xX \oplus bT_yY \to bT_z Z \to 0.$$ (2.32)

(b) In (a), if g, h are c-transverse then W is also a fibre product in $\text{Man}_{\text{in}}^{\text{sc}}$, and is given by (2.21). Furthermore, (2.28) is Cartesian in $\text{Man}_{\text{in}}^{\text{sc}}$, and (2.30) holds. If g is a b-fibration (or c-fibration) then $C(g)$ and $C(f)$ are b-fibrations (or c-fibrations) in $\text{Man}_{\text{in}}^{\text{sc}}$.

(c) Let $g : X \to Z$ be a b-submersion. Then g, h are b-transverse for any $h : Y \to Z$ in $\text{Man}_{\text{in}}^{\text{sc}}$, and in the Cartesian square (2.20), f is a b-submersion.

(d) Let $g : X \to Z$ be a b-fibration. Then g, h are c-transverse for any $h : Y \to Z$ in $\text{Man}_{\text{in}}^{\text{sc}}$, and in the Cartesian square (2.20), f is a b-fibration.

(e) Let $g : X \to Z$ be a c-fibration, and $h : Y \to Z$ be any morphism in $\text{Man}_{\text{in}}^{\text{sc}}$, which need not be interior. Then a fibre product $W = X \times_{g, Z, h} Y$ exists in $\text{Man}_{\text{in}}^{\text{sc}}$, in a Cartesian square (2.20) in $\text{Man}_{\text{in}}^{\text{sc}}$, with $\dim W = \dim X + \dim Y - \dim Z$, and is given by (2.21). Also f is a c-fibration, and (2.28) is Cartesian in $\text{Man}_{\text{in}}^{\text{sc}}$, and (2.30) holds.

Proof. Part (a) is proved in [64, Th. 4.27], apart from exactness of (2.32), which may be deduced from the proof. Part (b) is [64, Th. 4.28]. The first parts of (c), (d), (e) are in [64, Def. 4.24 & Prop. 4.25]. That f is a b-submersion in (c) follows from exactness of (2.32) and g a b-submersion. Then in (d), f is a b-submersion, and we can show f is b-normal using g b-normal and (2.28) Cartesian at the level of sets, so f is a b-fibration.

For part (e), as g is a b-fibration, $C(g) : C(X) \to C(Z)$ is a b-fibration, and $C(h) : C(Y) \to C(Z)$ is interior even if h is not, so $C(g), C(h)$ are b-transverse, and a fibre product $C(X) \times_{C(g), C(h), C(Y)} C(Y)$ exists in $\text{Man}_{\text{in}}^{\text{sc}}$ by the analogue of (a) in $\text{Man}_{\text{in}}^{\text{sc}}$. Write W for the component of $C(X) \times_{C(Z)} C(Y)$ of dimension $\dim X + \dim Y - \dim Z$. Then using the ideas of [64, §4] and the c-fibration condition, we can show W satisfies (e).
This is a strong result, and means that \(\text{Man}^{gc} \) is useful for problems in ‘manifolds with corners’ in which we want transverse fibre products to exist.

In contrast to Theorems 2.22(c) and 2.25(c), b-submersions and b-fibrations in \(\text{Man}^{gc} \) need not be local projections. For example, \(g : [0, \infty)^2 \to [0, \infty), g(x, y) = xy \), is a b-fibration, but is not a local projection near \((0, 0)\).

Example 2.29. Set \(X = Y = [0, \infty)^2 \) and \(Z = [0, \infty) \), and define \(g : X \to Z \), \(h : Y \to Z \) by \(g(x_1, x_2) = x_1x_2 \) and \(h(x_3, x_4) = x_3x_4 \). Then \(g, h \) are interior and c-transverse, so a fibre product \(W = X \times_{g, Z, h} Y \) exists in \(\text{Man}^{gc}_{in} \) by Theorem 2.28(a),(b), and is also a fibre product in \(\text{Man}^{gc} \). We may write

\[
W = \{(x_1, x_2, x_3, x_4) \in [0, \infty)^4 : x_1x_2 = x_3x_4\},
\]

which as in Example 2.19 is a manifold with g-corners, but not a manifold with corners. Thus, \(\text{Man}^{gc} \) is not closed under c-transverse fibre products in \(\text{Man}^{gc} \).

Example 2.30. Define \(X = [0, \infty)^2 \), \(Z = [0, \infty) \) and a smooth map \(g : X \to Z \) by \(g(x, y) = xy \). Then \(g \) is a b-fibration, but not a c-fibration, since over \(z = (0, 0) \in X \) with \(g(x) = z = 0 \) in \(Z \) and \(z = (0, \{z = 0\}) \) in \(C_1(Z) \) with \(\Pi_1(z) = z \), we have two points \(x = ((0, 0), \{x_1 = 0\}) \) and \(x' = ((0, 0), \{x_1 = 0\}) \) in \(C_1(X) \) with \(\Pi_1(x) = \Pi_1(x') = x \) and \(C(g)x = C(g)x' = z \).

Set \(Y = \ast \) and define \(h : Y \to Z \) by \(h : \ast \to 0 \), so that \(h \) is not interior. No fibre product \(W = X \times_{g, Z, h} Y \) exists in \(\text{Man}^{gc} \).

2.5.4 Transversality and submersions in \(\text{Man}^{gc}_{in} \) and \(\text{Man}^{gc} \)

We can also consider fibre products in \(\text{Man}^{gc}_{in} \) and \(\text{Man}^{gc} \). The appropriate definition of transversality is rather complicated (in particular, b- or c-transversality are not sufficient conditions). It is helpful to regard such fibre products as special cases of fibre products in \(\text{Man}^{gc}_{in} \), \(\text{Man}^{gc} \), as in \(2.25 \).

Definition 2.31. Let \(g : X \to Z \) and \(h : Y \to Z \) be morphisms in \(\text{Man}^{gc}_{in} \). We can consider \(g, h \) as morphisms in \(\text{Man}^{gc} \), so Definition 2.27 makes sense. We call \(g, h \) strictly b-transverse (sb-transverse) or strictly c-transverse (sc-transverse) if they are b-transverse or c-transverse, respectively, and for all \(x \in X \) and \(y \in Y \) with \(g(x) = h(y) = z \in Z \), the toric monoid

\[
\tilde{M}_x X \times_{\tilde{M}_x Z} \tilde{M}_y Y = \{(\lambda, \mu) \in \tilde{M}_x X \times \tilde{M}_y Y : \tilde{M}_x g(\lambda) = \tilde{M}_y h(\mu)\}
\]

is isomorphic to \(\mathbb{N}^n \), for \(n \in \mathbb{N} \) depending on \(x, y, z \).

Here given morphisms \(g : X \to Z \), \(h : Y \to Z \) in \(\text{Man}^{gc}_{in} \) or \(\text{Man}^{gc} \), we first require them to be b- or c-transverse, so that a fibre product \(W = X \times_{g, Z, h} Y \) exists in \(\text{Man}^{gc}_{in} \) or \(\text{Man}^{gc} \) by Theorem 2.28(a),(b). We have \(\tilde{M}_{(x,y)} W \cong \tilde{M}_x X \times_{\tilde{M}_x Z} \tilde{M}_y Y \), so \(W \) lies in \(\text{Man}^{gc} \subset \text{Man}^{gc} \) if and only if \(\tilde{M}_x X \times_{\tilde{M}_x Z} \tilde{M}_y Y \cong \mathbb{N}^n \) for all \(x, y, z \). Since \(\text{Man}^{gc}_{in} \subset \text{Man}^{gc} \), \(\text{Man}^{gc} \subset \text{Man}^{gc} \) are full subcategories, \(W \) is then a fibre product in \(\text{Man}^{gc}_{in} \) or \(\text{Man}^{gc} \). This proves:
Theorem 2.32. Let \(g : X \to Z \) and \(h : Y \to Z \) be sb-transverse morphisms in \(\text{Man}^c_{\text{in}} \). Then a fibre product \(W = X \times_{g,Z,h} Y \) exists in \(\text{Man}^c_{\text{in}} \) with \(\dim W = \dim X + \dim Y - \dim Z \). Explicitly, we may define \(W^c \) by (2.31), and take \(W \) to be the closure \(W^c \) of \(W^c \) in \(X \times Y \). Also (2.32) is exact for all \(w \in W \).

If \(g, h \) are sc-transverse then \(W \) is also a fibre product in \(\text{Man}^c \), and is given by (2.21). Also (2.28) is Cartesian in \(\text{Man}^c \), and (2.30) holds.

Kottke and Melrose [69, §11] study fibre products in \(\text{Man}^c \), and the sc-transverse case in Theorem 2.32 is essentially equivalent to [69, Th. 11.5].

The case when \(\partial Z = \emptyset \) is simpler. The next theorem follows from [59, 64].

Theorem 2.33. Suppose \(g : X \to Z \) and \(h : Y \to Z \) are b-transverse morphisms in \(\text{Man}^c \) with \(\partial Z = \emptyset \). Then a fibre product \(W = X \times_{g,Z,h} Y \) exists in \(\text{Man}^c \), with \(\dim W = \dim X + \dim Y - \dim Z \), and is given by (2.21) as an embedded submanifold of \(X \times Y \). It is also a fibre product in \(\text{Man}^c_{\text{in}} \) and \(\text{Man}^c_{\text{in}} \). Furthermore, \(g \circ i_X, h \) and \(g, h \circ i_Y \) are also b-transverse, and there is a natural diffeomorphism

\[
\partial(X \times_{g,Z,h} Y) \cong (\partial X \times_{g,0,i_X,Z,h} Y) \coprod (X \times_{g,Z,h,0,i_Y} \partial Y).
\]

We would also like classes of ‘submersions’ \(g : X \to Z \) in \(\text{Man}^c \), such that \(g, h \) are sb- or sc-transverse for all (interior) \(h : Y \to Z \) in \(\text{Man}^c \). In both cases, the appropriate notion is s-submersions from Definition 2.24.

Example 2.34. Let \(X, Y, Z, g, h \) be as in Example 2.29. Then \(g, h \) are c-transverse, but they are not sc-transverse, as in (2.33) we have

\[
\bar{M}_{(0,0)} X \times_{\bar{M}_{(0,0)}} \bar{M}_{(0,0)} Y \cong \{(n_1, n_2, n_3, n_4) \in \mathbb{N}^4 : n_1 + n_2 = n_3 + n_4\},
\]

which is not isomorphic to \(\mathbb{N}^k \) for any \(k \geq 0 \). A fibre product \(W = X \times_{g,Z,h} Y \) exists in \(\text{Man}^c_{\text{in}} \) and \(\text{Man}^c_{\text{in}} \), but not in \(\text{Man}^c_{\text{in}} \) or \(\text{Man}^c \).

Example 2.35. Let \(X = [0, \infty) \times \mathbb{R} \), \(Y = [0, \infty) \) and \(Z = [0, \infty)^2 \). Define \(g : X \to Y \) by \(g(x_1, x_2) = (x_1, x_1e^{x_2}) \) and \(h : Y \to Z \) by \(h(y) = (y, y) \). Then \(g \) is a b-submersion and \(h \) is interior, so \(g, h \) are b-transverse by Theorem 2.28(c), and in fact \(g, h \) are sb-transverse. But \(g, h \) are not c-transverse, since we have \((0, x_2), \{x_1 = 0\} \) in \(C_1(X) \) and \((0, \{y = 0\}) \) in \(C_1(Y) \) with \(C(g)((0, x_2), \{x_1 = 0\}) = C(h)((0, \{y = 0\}) = (0, 0), \{z_1 = z_2 = 0\}) \) in \(C_2(Z) \).

Theorem 2.32 gives a fibre product \(W = X \times_{g,Z,h} Y \) in \(\text{Man}^c_{\text{in}} \), where

\[
W = \{(w, 0, w) : w \in [0, \infty)\} \cong [0, \infty).
\]

It is also a fibre product in \(\text{Man}^c_{\text{in}} \). Note that \(W \) is not given by the usual formula (2.21) which also contains points \(((0, x_2), 0) \) for \(0 \neq x_2 \in \mathbb{R} \), that is, \(W \) is not a fibre product at the level of topological spaces. In this case no fibre product \(X \times_Z Y \) exists in \(\text{Man}^c \) or \(\text{Man}^c_{\text{in}} \).
Example 2.36. Let $X = Y = [0, \infty)$ and $Z = [0, \infty)^2$, and define $g : X \to Z$, $h : Y \to Z$ by $g(x) = (x, x)$, $h(y) = (y, y^2)$. Then g, h are sb-transverse. However, they are not c-transverse, since we have $\{0, \{x = 0\}\}$ in $C_1(X)$ and $\{0, \{y = 0\}\}$ in $C_1(Y)$ with $C(g)(0, \{x = 0\}) = C(h)(0, \{y = 0\}) = ((0, 0), \{z_1 = z_2 = 0\})$ in $C_2(Z)$.

The fibre product $W = X \times_{g, Z, h} Y$ in Man^∞ given by Theorem 2.32 is $W = \{(1, 1)\}$, a single point. Although g, h are not c- or sc-transverse, in this case a fibre product $W' = X \times_{g, Z, h} Y$ exists in Man^c with $W' = \{(0, 0), (1, 1)\}$. So fibre products $X \times_{g, Z, h} Y$ in Man^∞ and Man^c exist, but do not coincide.

Remark 2.37. Suppose we have some category of ‘manifolds’ Man such as $\text{Man}, \text{Man}^c, \text{Man}^\infty\ldots$, and morphisms $g : X \to Z$, $h : Y \to Z$ in Man for which a fibre product $W = X \times_{g, Z, h} Y$ exists in Man. When should we expect W to be given, either as a set or as a topological space, by the usual formula

$$W = \{(x, y) \in X \times Y : g(x) = h(y) \text{ in } Z\}. \tag{2.35}$$

From 2.5.1–2.5.4 we observe that:

(i) Theorems 2.22(a), 2.25(a), 2.28(b) and 2.32 show that (2.35) holds in topological spaces for transverse fibre products in Man, and s-transverse fibre products in Man^c, and c-transverse fibre products in Man^∞.

(ii) Theorems 2.28(a) and 2.32 show that b- and sb-transverse fibre products in Man^∞ and Man^c are given by a different formula to (2.35), and in Examples 2.35 and 2.36 equation (2.35) is false at the level of sets.

(iii) Example 2.23(iv) gives a non-transverse fibre product in Man such that (2.35) holds at the level of sets, but not at the level of topological spaces.

For some categories Man, there is a 1-1 correspondence between morphisms $f : \{\ast\} \to X$ in Man, and points $x \in X$ of the underlying topological space, by $f \leftrightarrow f(\ast) = x$. This holds when $\text{Man} = \text{Man}, \text{Man}^c, \text{Man}^\infty, \text{Man}^\ast$. For such Man, the universal property of fibre products in Definition 1.3 applied to $W' = \{\ast\}$ shows that (2.35) holds automatically at the level of sets, though not necessarily for topological spaces, as Example 2.23(iv) shows. In Man^∞ and Man^c, morphisms $f : \{\ast\} \to X$ correspond not to $x \in X$, but to $x \in X^c$. Then (2.35) can be false even for sets, as Examples 2.35 and 2.36 show.

2.6 Orientations

Orientations on manifolds are discussed by Lee [71] §15, and on manifolds with boundary and corners by the author [59, §7], [57] and Fukaya et al. [24, §8.2].

Definition 2.38. An orientation ω_X on a manifold X is an equivalence class $[\omega]$ of top-degree forms $\omega \in \Gamma^\infty(A^\dim X T^*X)$ with $\omega|_x \neq 0$ for all $x \in X$, where two such ω, ω' are equivalent if $\omega' = K \cdot \omega$ for $K : X \to (0, \infty)$ smooth. The opposite
orientation is \(-\alpha_X = [-\omega] \). Then we call \((X, \alpha_X)\) an oriented manifold. Usually we suppress the orientation \(\alpha_X \), and just refer to \(X \) as an oriented manifold, and then we write \(-X\) for \(X \) with the opposite orientation. A nonvanishing top-degree form \(\omega \) on \(X \) is called positive if \([\omega] = \alpha_X\), and negative if \([\omega] = -\alpha_X\).

If \(x \in X \) and \((v_1, \ldots, v_m)\) is a basis for \(T_x X \), then we call \((v_1, \ldots, v_m)\) oriented if \(\omega|_x \cdot v_1 \wedge \cdots \wedge v_m > 0 \), and anti-oriented otherwise.

We will refer to the real line bundle \(\Lambda^{\dim X}T^*X \to X \) as the canonical bundle \(K_X \) of \(X \), following common practice in algebraic geometry. Then an orientation on \(X \) is an orientation on the fibres of \(K_X \).

Let \(f : X \to Y \) be a smooth map of manifolds. A coorientation \(c_f \) for \(f \) is a an equivalence class \([\gamma]\) of \(\gamma \in \Gamma^\infty(\Lambda^{\dim X}T^*X \otimes f^*(\Lambda^{\dim Y}T^*Y)^*) \) with \(\gamma|_x \neq 0 \) for all \(x \in X \), where \(\gamma, \gamma' \) are equivalent if \(\gamma' = K \cdot \gamma \) for \(K : X \to (0, \infty) \) smooth. The opposite coorientation is \(-c_f = [-\gamma]\). If \(Y \) is oriented then coorientations on \(f \) are equivalent to orientations on \(X \). Orientations on \(X \) are equivalent to coorientations on \(\pi : X \to * \), for * the point.

All the above also works for manifolds with boundary \(\text{Man}^b \) and corners \(\text{Man}^c \), their subcategories \(\text{Man}^c_{\text{ext}} \) and \(\text{Man}^c_{\text{ac}} \) in \(\mathcal{C}_{\text{Man}} \). For \(\text{Man}^c \) we can define orientations using either \(\Lambda^{\dim X}T^*X \) or \(\Lambda^{\dim X}(bT^*X) \), and they yield equivalent notions of orientation, since an orientation \(\alpha_X \) on \(X \) is determined by its restriction to \(X^c |_X \), and \(T^*X |_{X^c} = bT^*X |_{X^c} \).

Operations on manifolds with corners \(X,Y,Z, \ldots \) such as products \(X \times Y \), transverse fibre products \(X \times_g Z \), \(X \times_g Z \), and boundaries \(\partial X \), can be lifted to oriented manifolds with corners. To do this requires a choice of orientation convention. Ours are equivalent to those of Fukaya et al. \cite[§8.2]{28}, see also \cite[§5]{50}.

Convention 2.39. (a) Let \(X,Y,Z \) be oriented manifolds. Then there is a natural orientation on \(X \times Y \), such that if \(x \in X \), \(y \in Y \) and \((u_1, \ldots, u_m),(v_1, \ldots, v_n)\) are oriented bases for \(T_x X,T_y Y \) then \((u_1, \ldots, u_m,v_1, \ldots, v_n)\) is an oriented basis for \(T_{(x,y)}(X \times Y) = T_x X \oplus T_y Y \). This also works for manifolds with boundary, corners, g-corners, \ldots, using \(T_x X,T_x Y \) or \(bT_x X,bT_x Y \).

(b) Let \(X,Y,Z \) be oriented manifolds, \(g : X \to Z, h : Y \to Z \) be transverse smooth maps, and \(W = X \times_g Z \) be the fibre product as in \(\ref{2.5.1} \) with projections \(e : W \to X, f : W \to Y \). Then there is a natural orientation on \(W \), such that if \(w \in W \) with \(e(w) = x \in X, f(w) = y \in Y \) and \(g(x) = h(y) = z \in Z \), so that we have an exact sequence of tangent spaces

\[
0 \to T_w W \xrightarrow{T_w e \oplus T_w f} T_x X \oplus T_y Y \xrightarrow{T_{(x,y)}} (X \times Y) \xrightarrow{T_{(z)} g \oplus -T_{(z)} h} T_z Z \to 0,
\]

then if \((u_1, \ldots, u_m)\) is an oriented basis for \(T_w W \), and

\[
((T_w e \oplus T_w f)(u_1), \ldots, (T_w e \oplus T_w f)(u_m),v_1, \ldots, v_n)
\]

is an oriented basis for \(T_{(x,y)}(X \times Y) \) using the orientation from (a), then

\[
((-1)^{\dim Y} (T_z g \oplus -T_y h)(v_1), (T_z g \oplus -T_y h)(v_2), \ldots, (T_z g \oplus -T_y h)(v_n))
\]
is an oriented basis for $T_z Z$. This also works for manifolds with corners, etc.

(c) Let X be an oriented manifold with boundary, or corners (etc.). Then there is a natural orientation on the boundary ∂X, such that if (x_1, \ldots, x_m) in $[0, \infty) \times \mathbb{R}^{m-1}$ are local coordinates on X near $x \in \mathbb{S}^1(X)$ and $(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_m})$ are an oriented basis of $T_x X$, or equivalently $(x_1 \frac{\partial}{\partial x_1}, x_2 \frac{\partial}{\partial x_2}, \ldots, x_m \frac{\partial}{\partial x_m})$ are an oriented basis of $bT_x X$, then $(\frac{\partial}{\partial x_2}, \ldots, \frac{\partial}{\partial x_m})$ are an anti-oriented basis of $T_{(x, [x_1 = 0])}(\partial X)$, or equivalently $bT_{(x, [x_1 = 0])}(\partial X)$. We can also explain this using (2.12) or (2.14).

If X is an oriented manifold with corners then part (c) gives orientations on ∂X, $\partial^2 X$, \ldots, $\partial^{\dim X} X$. Note however that the free S_k-action on $\partial^k X$ does not preserve orientations for $k \geq 2$, so we cannot define an orientation on $C_k(X) \cong \partial^k X/S_k$ in (2.4), and $C_k(X)$ can be non-orientable for $k \geq 2$.

There are often canonical diffeomorphisms between expressions involving fibre products and boundaries of manifolds with corners. When we promote these to oriented manifolds with corners using Convention 2.39, there will be some sign relating the orientations on each side.

For example, in Theorem 2.33, if X, Y, Z are oriented then in oriented manifolds with corners, as in [59, Prop. 7.4], equation (2.34) becomes

$$
\partial(X \times_{g, h} Y) \cong (\partial X \times_{g \circ i_X, h} Y) \Pi (-1)^{\dim X + \dim Z} (X \times_{g, h \circ i_Y} \partial Y). \tag{2.36}
$$

Here [59, Prop. 7.5] are some more identities on orientations:

Proposition 2.40. (a) If $g : X \rightarrow Z$, $h : Y \rightarrow Z$ are transverse smooth maps of oriented manifolds with corners then in oriented manifolds we have

$$
X \times_{g, Z, h} Y \cong (-1)^{\dim X - \dim Z} (\dim Y - \dim Z) Y \times_{h, Z, g} X. \tag{2.37}
$$

(b) If $e : V \rightarrow Y$, $f : W \rightarrow Y$, $g : W \rightarrow Z$, $h : X \rightarrow Z$ are smooth maps of oriented manifolds with corners then in oriented manifolds we have

$$
V \times_{e, Y, f, g, h} (W \times_{g, Z, h} X) \cong (V \times_{e, Y, f, g} W) \times_{g \circ i_W, Z, h} X, \tag{2.38}
$$

provided all four fibre products are transverse.

(c) If $e : V \rightarrow Y$, $f : V \rightarrow Z$, $g : W \rightarrow Y$, $h : X \rightarrow Z$ are smooth maps of oriented manifolds with corners then in oriented manifolds we have

$$
V \times_{(e, f, Y, f \times_{g, h} W \times X) \cong (-1)^{\dim Z (\dim Y + \dim W)} (V \times_{e, Y, f, g} W) \times_{f \circ i_V, Z, h} X, \tag{2.39}
$$

provided all three fibre products are transverse.
Chapter 3

Assumptions about ‘manifolds’

In Chapters 4–6, starting from a category \mathbf{Man} of ‘manifolds’ satisfying some assumptions, we will construct 2-categories $\mathfrak{mKur}, \mathfrak{Kur}$ of ‘(m-)Kuranishi spaces’, and a category \mathfrak{mKur} of ‘m-Kuranishi spaces’ associated to \mathbf{Man}. When \mathbf{Man} is the usual category of smooth manifolds \mathbf{Man}, this will yield our usual (2-)categories of (m- or μ-)Kuranishi spaces $\mathfrak{mKur}, \mathfrak{Kur}, \mathfrak{Kur}$. But there are many other possibilities for \mathbf{Man}.

Sections 3.1–3.3 set out our basic assumptions and additional structures on the category \mathbf{Man}, give examples of categories \mathbf{Man} satisfying these conditions, explain some consequences of them, and define notation to be used later.

If \mathbf{Man} satisfies the assumptions of §3.1 much of conventional differential geometry for classical manifolds \mathbf{Man} can be extended to \mathbf{Man} — smooth functions and partitions of unity, vector bundles, tangent and cotangent bundles, connections, and so on. To streamline our presentation, we will do this extension in detail in Appendix B and summarize the results in §3.3.

Section 3.4 extends §3.1–3.3 to categories \mathbf{Man}^c of ‘manifolds with corners’. In fact §3.1–3.3 already apply without change to $\mathbf{Man} = \mathbf{Man}^c$, as the basic assumptions on \mathbf{Man} in §3.1 are weak enough to include the categories of manifolds with corners \mathbf{Man}^c we are interested in. So the material of §3.1–3.3 and Chapters 4–6 does not need to be repeated, and our focus in §3.4 is on issues special to the corners case, such as interior maps, simple maps, boundaries ∂X, corners $C_k(X)$, and the corner functor $C : \mathbf{Man}^c \to \mathbf{Man}_{\text{in}}^c$.

3.1 Core assumptions on ‘manifolds’

This section gives seven assumptions, Assumptions 3.1–3.7 which we will make on all our categories of ‘manifolds’. They are the minimal assumptions we will need to define nicely behaved (2-)categories $\mathfrak{mKur}, \mathfrak{Kur}, \mathfrak{Kur}$ of (m- and μ-)Kuranishi spaces in Chapters 4–6.

Some assumptions require us to give data, and others require this data to have certain properties. The essential data we have to provide is:

- A category \mathbf{Man} in Assumption 3.1
• A faithful functor $F_{\text{Top}}^{\text{Top}} : \text{Man} \to \text{Top}$ to the category of topological spaces Top in Assumption 3.2.

• An inclusion $\text{Man} \subseteq \hat{\text{Man}}$ of the category of classical manifolds Man as a full subcategory in Assumption 3.4.

Some examples to have in mind when reading this section, which satisfy all the assumptions, are the category Man of classical manifolds, and the categories of manifolds with corners $\text{Man}_{\text{we}}, \text{Man}_{\text{er}}, \text{Man}_{\text{in}}, \text{Man}_{\text{st}}, \text{Man}_{\text{st, in}}, \text{Man}_{\text{ge}}, \text{Man}_{\text{in}}, \text{Man}_{\text{ac}}, \text{Man}_{\text{in}}^{\text{ac}}$, from Chapter 2.

3.1.1 General properties

Assumption 3.1. (Category-theoretic properties.) (a) We are given a category Man. For simplicity, from Chapter 3 onwards, objects X in $\hat{\text{Man}}$ will be called *manifolds* (although they may in examples be differentiable, but some kind of singular space), and morphisms $f : X \to Y$ in Man will be called *smooth maps* (although they may in examples be non-smooth).

Isomorphisms in Man are called *diffeomorphisms*.

(b) There is an object $\emptyset \in \hat{\text{Man}}$ called the *empty set*, which is an initial object in Man (i.e. every $X \in \text{Man}$ has a unique morphism $\emptyset \to X$).

(c) There is an object $\ast \in \hat{\text{Man}}$ called the *point*, which is a terminal object in Man (i.e. every $X \in \text{Man}$ has a unique morphism $\pi : X \to \ast$).

(d) Each object X in Man has a *dimension* $\dim X \in \mathbb{N} = \{0, 1, \ldots\}$, except that $\dim \emptyset = 0$. We have $\dim \ast = 0$.

(e) *Products* $X \times Y$ of objects $X, Y \in \hat{\text{Man}}$ exist in Man, in the sense of category theory (fibre products over \ast), with projections $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$. They have $\dim(X \times Y) = \dim X + \dim Y$. Hence products $f \times g : W \times X \to Y \times Z$ of morphisms $f : W \to Y$, $g : X \to Z$, and direct products $(f, g) : X \to Y \times Z$ of $f : X \to Y$, $g : X \to Z$, exist in Man.

(f) If $X, Y \in \text{Man}$ with $\dim X = \dim Y$ there is a *disjoint union* $X \sqcup Y$ in Man with inclusion morphisms $i_X : X \hookrightarrow X \sqcup Y$, $i_Y : Y \hookrightarrow X \sqcup Y$. It is a coproduct in the sense of category theory, with $\dim(X \sqcup Y) = \dim X = \dim Y$.

Assumption 3.2. (Underlying topological spaces.) (a) There is a faithful functor $F_{\text{Top}}^{\text{Top}} : \text{Man} \to \text{Top}$ from Man to the category of topological spaces Top, mapping objects $X \in \hat{\text{Man}}$ to the *underlying topological space* $X_{\text{top}} := F_{\text{Top}}^{\text{Top}}(X)$, and morphisms $f : X \to Y$ to $f_{\text{top}} := F_{\text{Top}}^{\text{Top}}(f) : X_{\text{top}} \to Y_{\text{top}}$.

So we can think of objects X of Man as ‘topological spaces X_{top} with extra structure’. Since $F_{\text{Top}}^{\text{Top}}$ is faithful (injective on morphisms), so that $f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}$ determines $f : X \to Y$, we can think of morphisms $f : X \to Y$ in Man as ‘continuous maps f_{top} satisfying conditions’.

(b) Underlying topological spaces X_{top} are Hausdorff, locally compact, and second countable, and $F_{\text{Top}}^{\text{Top}}(\emptyset) = \emptyset$, and $F_{\text{Top}}^{\text{Top}}(\ast)$ is a point.
(c) \(F^{\text{Top}}_{\text{Man}} \) takes products and disjoint unions in \(\text{Man} \) functorially to products and disjoint unions in \(\text{Top} \).

(d) If \(X \in \text{Man} \) and \(U' \subseteq X_{\text{top}} \) is open with inclusion \(i' : U' \hookrightarrow X_{\text{top}} \), there is a natural object \(U \) in \(\text{Man} \) called an open submanifold with \(U_{\text{top}} = U' \) and \(\dim U = \dim X \), and an inclusion morphism \(i : U \hookrightarrow X \) with \(i_{\text{top}} = i' \). If \(U' = \emptyset \) then \(U = \emptyset \). Inclusion morphisms are functorial under inclusions of open sets \(U' \hookrightarrow V' \hookrightarrow X_{\text{top}} \). Given a morphism \(f : X \rightarrow Y \) in \(\text{Man} \), we often write \(f|_{U} : U \rightarrow Y \) instead of \(f \circ i : U \rightarrow Y \).

If \(f : W \rightarrow X \) is a morphism in \(\text{Man} \) with \(f_{\text{top}}(W_{\text{top}}) \subseteq U_{\text{top}} \subseteq X_{\text{top}} \) then \(f \) factorizes uniquely as \(f = i \circ f' \) for a morphism \(f' : W \rightarrow U \) in \(\text{Man} \). If \(f \) is an open submanifold then so is \(f' \).

Inclusions \(i_{X} : X \hookrightarrow X \amalg Y \), \(i_{Y} : Y \hookrightarrow X \amalg Y \) are open submanifolds.

(e) Suppose \(X \in \text{Man} \), and \(Y' \) is a topological space, and \(\psi : X_{\text{top}} \rightarrow Y' \) is a homeomorphism. Then there exists an object \(Y \in \text{Man} \) and a diffeomorphism \(\phi : X \rightarrow Y \) such that \(Y_{\text{top}} = Y' \) and \(\phi_{\text{top}} = \psi \).

In later chapters we will generally drop the distinction between \(X \) and \(X_{\text{top}} \), and write \(x \in X \) rather than \(x \in X_{\text{top}} \), identify open submanifolds \(i : U \hookrightarrow X \) with open sets \(U \subseteq X \), and so on, just as one does for ordinary manifolds in differential geometry.

We suppose morphisms and objects in \(\text{Man} \) can be glued over open covers.

Assumption 3.3. (Sheaf-theoretic properties.) (a) Let \(X, Y \) be objects in \(\text{Man} \), and \(f' : X_{\text{top}} \rightarrow Y_{\text{top}} \) be a continuous map, and \(\{ U'_{a} : a \in A \} \) be an open cover of \(X_{\text{top}} \). Write \(i_{a} : U_{a} \hookrightarrow X \) for the open submanifold with \(U_{a,\text{top}} = U'_{a} \), and suppose there is a morphism \(f_{a} : U_{a} \rightarrow Y \) in \(\text{Man} \) with \(f_{a,\text{top}} = f' \circ i_{a,\text{top}} : U_{a,\text{top}} \rightarrow Y_{\text{top}} \) for each \(a \in A \). Then there is a morphism \(f : X \rightarrow Y \) in \(\text{Man} \) with \(f_{\text{top}} = f' \) and \(f \circ i_{a} = f_{a} \) for all \(a \in A \). Note that \(f_{a}, f \) must be unique by faithfulness in Assumption 3.2(a).

This implies that morphisms \(f : X \rightarrow Y \) in \(\text{Man} \) form a sheaf on \(X \).

(b) Let \(X' \) be a Hausdorff, second countable topological space, \(\{ U'_{a} : a \in A \} \) an open cover of \(X' \), and \(\{ U_{a} : a \in A \} \) a family of objects in \(\text{Man} \) with \(U_{a,\text{top}} = U'_{a} \) and \(\dim U_{a} = m \) for all \(a \in A \), with \(m \in \mathbb{N} \). For \(a, b \in A \) write \(i_{ab} : U_{ab} \hookrightarrow U_{a} \) for the open submanifold associated to \(U_{a,\text{top}} \cap U'_{b,\text{top}} \subseteq U'_{a} \).

Suppose that there is a (necessarily unique) diffeomorphism \(j_{ab,\text{top}} : U_{ab,\text{top}} \rightarrow U_{ba,\text{top}} \) in \(\text{Man} \) with \(j_{ab,\text{top}} = \text{id}_{U_{a,\text{top}} \cap U'_{b,\text{top}}} \) for all \(a, b \in A \). Then there exists an object \(X \) in \(\text{Man} \) with \(X_{\text{top}} = X' \) and \(\dim X = m \), unique up to diffeomorphism, covered by open submanifolds \(i_{a} : U_{a} \hookrightarrow X \) for \(a \in A \), for \(U_{a} \) as above.

3.1.2 Relation with classical manifolds

Assumption 3.4. (Inclusion of ordinary manifolds.) The usual category \(\text{Man} \) of smooth manifolds and smooth maps between them is included as a full subcategory \(\text{Man} \subseteq \text{Man} \).
Dimensions of objects in $\text{Man} \subseteq \hat{\text{Man}}$ are as usual in $\hat{\text{Man}}$. Products and disjoint unions in $\hat{\text{Man}}$ of $X, Y \in \hat{\text{Man}}$ agree with those in $\hat{\text{Man}}$. The empty set \emptyset and point $* \in \hat{\text{Man}}$ in Assumption 3.1(b),(c) lie in $\text{Man} \subseteq \hat{\text{Man}}$.

The underlying topological space functor f^Top is as usual on $\text{Man} \subseteq \hat{\text{Man}}$. Open submanifolds in $\text{Man}, \hat{\text{Man}}$ agree. We will often use that \mathbb{R}^n is an object of $\hat{\text{Man}}$ for $n = 0, 1, \ldots$, since $\mathbb{R}^n \in \text{Man} \subseteq \hat{\text{Man}}$. We generally write \mathbb{R}^n rather than $\mathbb{R}^n_{\text{top}}$, and X rather than X_{top} when $X \in \text{Man} \subseteq \hat{\text{Man}}$.

From Chapter 4 onwards, by an abuse of notation we will usually refer to objects X of $\hat{\text{Man}}$ as ‘manifolds’, and morphisms $f : X \to Y$ in $\hat{\text{Man}}$ as ‘smooth maps’. When we need to refer to objects $X \in \text{Man} \subseteq \hat{\text{Man}}$ we will call them ‘classical manifolds’, and morphisms $f : X \to Y$ in $\text{Man} \subseteq \hat{\text{Man}}$ ‘classical smooth maps’.

Assumption 3.5. (Hadamard’s Lemma.) Suppose X is an object in $\hat{\text{Man}}$, and $i : U \hookrightarrow X \times \mathbb{R}^n$ is an open submanifold with $(x, 0, \ldots, 0) \in U_{\text{top}}$ for all $x \in X_{\text{top}}$, and $f : U \to \mathbb{R}$ is a morphism in $\hat{\text{Man}}$. Then there exist morphisms $g_1, \ldots, g_n : U \to \mathbb{R}$ in $\hat{\text{Man}}$ with

$$f_{\text{top}}(x, t_1, \ldots, t_n) = f_{\text{top}}(x, 0, \ldots, 0) + \sum_{i=1}^n t_i \cdot g_i \text{top}(x, t_1, \ldots, t_n) \quad (3.1)$$

for all $(x, t_1, \ldots, t_n) \in U_{\text{top}}$, so that $x \in X_{\text{top}}$ and $t_1, \ldots, t_n \in \mathbb{R}$.

Note that this has strong implications for the differentiability of functions in $\hat{\text{Man}}$. For example, taking partial derivatives of (3.1) in t_1, \ldots, t_n at $t_1 = \cdots = t_n = 0$ and noting that $g_1_{\text{top}}, \ldots, g_n_{\text{top}}$ are continuous implies that

$$\frac{\partial f_{\text{top}}}{\partial t_i}(x, 0, \ldots, 0) = g_i \text{top}(x, 0, \ldots, 0) \quad (3.2)$$

for all $x \in X_{\text{top}}$, where the partial derivative exists. A more complicated argument shows that there exist unique morphisms $h_1, \ldots, h_n : U \to \mathbb{R}$ in $\hat{\text{Man}}$ with $h_i \text{top}(x, t_1, \ldots, t_n) = \frac{\partial f_{\text{top}}}{\partial t_i}(x, t_1, \ldots, t_n)$ for all $(x, t_1, \ldots, t_n) \in U_{\text{top}}$.

The next assumption means that for $X \in \hat{\text{Man}}$, the topology on X_{top} is generated by open subsets $f_{\text{top}}^{-1}((0, \infty)) \subseteq X_{\text{top}}$ for smooth functions $f : X \to \mathbb{R}$.

Assumption 3.6. (Topology is generated by smooth functions to \mathbb{R}.) Let X be an object of $\hat{\text{Man}}$. As $\mathbb{R} \in \hat{\text{Man}}$, we can consider morphisms $f : X \to \mathbb{R}$ in $\hat{\text{Man}}$. Suppose $U' \subseteq X_{\text{top}}$ is open and $x \in U'$. Then there should exist $f : X \to \mathbb{R}$ in $\hat{\text{Man}}$ with $f_{\text{top}}(x) > 0$ and $f_{\text{top}}|_{X_{\text{top}} \setminus U'} \leq 0$.

3.1.3 Extension properties of smooth maps

Assumptions 3.1,[3.6] hold for many categories of manifold-like spaces, including some which are not suitable for defining Kuranishi spaces. Though its significance is probably not clear on a first reading, our next assumption makes many features of ordinary manifolds work in $\hat{\text{Man}}$, and is vital for much that we do in this book. For example, we show in [3.7] that Assumption 3.7(a) allows us to define a ‘tangent sheaf $T\mathcal{X}$’ for objects $X \in \hat{\text{Man}}$, a substitute for the tangent bundle $TX \to X$ for $X \in \text{Man}$.
Assumption 3.7. (Extension properties of smooth maps.) (a) Let X, Y be objects in $\mathcal{M}an$, and $k \geq 2$, $n > 0$. Suppose

$$U_i \hookrightarrow X \times (\mathbb{R}^n)^{k-1}$$

is an open submanifold for $i = 1, \ldots, k$ with $X_{\text{top}} \times \{(0, \ldots, 0)\} \subset U_{i,\text{top}}$, and $f_i : U_i \to Y$ is a morphism in $\mathcal{M}an$ for $i = 1, \ldots, k$ such that

$$f_{i,\text{top}}(x, z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_k) = f_{j,\text{top}}(x, z_1, \ldots, z_{i-1}, 0, z_{i+1}, \ldots, z_k)$$

for all $1 \leq i < j \leq k$, $x \in X_{\text{top}}$ and $z_a \in \mathbb{R}^n$ for $a = 1, \ldots, k$, $a \neq i, j$, such that $(x, z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_j, 0, z_{j+1}, \ldots, z_k) \in U_{i,\text{top}}$ and $(x, z_1, \ldots, z_{i-1}, 0, z_{i+1}, \ldots, z_j, 1, \ldots, z_k) \in U_{j,\text{top}}$. Then there should exist an open submanifold $V \hookrightarrow X \times (\mathbb{R}^n)^k$ with $X_{\text{top}} \times \{(0, \ldots, 0)\} \subset V_{\text{top}}$, and a morphism $g : V \to Y$ in $\mathcal{M}an$ such that

$$f_{i,\text{top}}(x, z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_k) = g_{\text{top}}(x, z_1, \ldots, z_{i-1}, 0, z_{i+1}, \ldots, z_k)$$

for all $i = 1, \ldots, k$, $x \in X_{\text{top}}$ and $z_a \in \mathbb{R}^n$ for $a = 1, \ldots, k$, $a \neq i$, with $(x, z_1, \ldots, z_{i-1}, 0, z_{i+1}, \ldots, z_k) \in U_{i,\text{top}}$. Then there should exist an open submanifold $V \hookrightarrow X \times (\mathbb{R}^n)^k$ with $X_{\text{top}} \times \{(0, \ldots, 0)\} \subset V_{\text{top}}$, and a morphism $g : V \to Y$ in $\mathcal{M}an$ such that

$$f_{i,\text{top}}(x, t_1 \cdot s_{\text{top}}(x), \ldots, t_{i-1} \cdot s_{\text{top}}(x), t_{i+1} \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x)) = h_{\text{top}}(x)$$

for all $i = 1, \ldots, k$, $x \in X_{\text{top}}$ and $t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_k \in \mathbb{R}$ with $t_1 + \cdots + t_{i-1} + t_{i+1} + \cdots + t_k = 1$ and $(x, t_1 \cdot s_{\text{top}}(x), \ldots, t_{i-1} \cdot s_{\text{top}}(x), t_{i+1} \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x)) \in U_{i,\text{top}}$. Then we can choose g to satisfy

$$g_{\text{top}}(x, t_1 \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x)) = h_{\text{top}}(x)$$

for all $x \in X_{\text{top}}$ and $t_1, \ldots, t_k \in \mathbb{R}$ with $t_1 + \cdots + t_k = 1$ and $(x, t_1 \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x)) \in V_{\text{top}}$.

(b) In part (a), suppose in addition that $s : X \to \mathbb{R}^n$ and $h : X \to Y$ are morphisms in $\mathcal{M}an$ with

$$f_{i,\text{top}}(x, s_{\text{top}}(x), \ldots, t_{i-1} \cdot s_{\text{top}}(x), t_{i+1} \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x)) = h_{\text{top}}(x)$$

for all $i = 1, \ldots, k$, $x \in X_{\text{top}}$ and $t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_k \in \mathbb{R}$ with $t_1 + \cdots + t_{i-1} + t_{i+1} + \cdots + t_k = 1$ and $(x, s_{\text{top}}(x), \ldots, t_{i-1} \cdot s_{\text{top}}(x), t_{i+1} \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x)) \in U_{i,\text{top}}$. Then we can choose g to satisfy

$$g_{\text{top}}(x, t_1 \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x)) = h_{\text{top}}(x)$$

for all $x \in X_{\text{top}}$ and $t_1, \ldots, t_k \in \mathbb{R}$ with $t_1 + \cdots + t_k = 1$ and $(x, t_1 \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x)) \in V_{\text{top}}$.

(c) In both (a) and (b), suppose the whole situation is invariant/equivariant under a finite group Γ, which acts on X, Y by diffeomorphisms in $\mathcal{M}an$, and acts linearly on \mathbb{R}^n, and may also act on $\{1, \ldots, k\}$ by permutations, and hence permute the U_i, f_i, z_i, t_i for $i = 1, \ldots, k$, in addition to the Γ-actions on X, Y, \mathbb{R}^n. Then we can choose V to be Γ-invariant, and $g : V \to Y$ to be Γ-equivariant.

3.2 Examples of categories satisfying the assumptions

Here are some examples of categories $\mathcal{M}an$ satisfying Assumptions 3.1, 3.7:

Example 3.8. (i) The usual category of manifolds $\mathcal{M}an$ from Chapter 2 satisfies all assumptions in 3.1.
In Chapter 2 we discussed many categories of manifolds with corners. Of these, the following satisfy all assumptions in §3.1:

\[
\text{Man}^c_{\text{we}}, \text{Man}^c, \text{Man}^c_{\text{in}}, \text{Man}^c_{\text{bn}}, \text{Man}^c_{\text{st}}, \text{Man}^c_{\text{st}, \text{in}}, \\
\text{Man}^{ac}_{\text{we}}, \text{Man}^{ac}_{\text{in}}, \text{Man}^{ac}_{\text{bn}}, \text{Man}^{ac}_{\text{st}}, \text{Man}^{ac}_{\text{st}, \text{in}}, \\
\text{Man}^{ac}, \text{Man}^{ac}_{\text{we}}, \text{Man}^{ac}_{\text{in}}, \text{Man}^{ac}_{\text{bn}}, \text{Man}^{ac}_{\text{st}}, \text{Man}^{ac}_{\text{st}, \text{in}}. \\
\text{Man}^{c, ac}_{\text{we}}, \text{Man}^{c, ac}_{\text{in}}, \text{Man}^{c, ac}_{\text{bn}}, \text{Man}^{c, ac}_{\text{st}}, \text{Man}^{c, ac}_{\text{st}, \text{in}}. \\
\text{Man}^{c, ac, \text{we}}, \text{Man}^{c, ac, \text{in}}, \text{Man}^{c, ac, \text{bn}}, \text{Man}^{c, ac, \text{st}}, \text{Man}^{c, ac, \text{st}, \text{in}}.
\]

Example 3.9. In §6.6 we will define the 2-category of orbifolds \(\text{Orb}\). Define a 2-subcategory \(\text{Orb}_{\text{sur}}^{\text{eff}}\subset \text{Orb}\) with objects \(X\) effective orbifolds, and with 1-morphisms \(f: X \to Y\) whose morphisms of isotropy groups \(G_x f: G_x X \to G_y Y\) are surjective for all \(x \in X\) with \(f(x) = y \in Y\), and with arbitrary 2-morphisms. Consider the homotopy category \(\text{Ho}(\text{Orb}_{\text{sur}}^{\text{eff}})\). The combination of the effective and surjective conditions means that \(\text{Orb}_{\text{sur}}^{\text{eff}}\) is a discrete 2-category (i.e. there is at most one 2-morphism \(\eta: f \Rightarrow g\) between any two 1-morphisms \(f, g: X \to Y\) in \(\text{Orb}_{\text{sur}}^{\text{eff}}\)). So \(\text{Orb}_{\text{sur}}^{\text{eff}}\) is equivalent to \(\text{Ho}(\text{Orb}_{\text{sur}}^{\text{eff}})\) as a 2-category, and passing to the homotopy category does not lose any important information.

Any orbifold \(X\) has a natural locally closed stratification \(X = \bigsqcup_{k=0}^{\dim X} X_k\), where \(X_k\) is the disjoint union of the orbifold strata of \(X\) with codimension \(k\), and \(X_k\) has the structure of a manifold of dimension \(\dim X - k\). Because of the surjectivity on isotropy groups condition, 1-morphisms \(f: X \to Y\) are compatible with these stratifications in the sense of Lemma 2.5, and locally in \(X_k\) induce smooth maps \(f|_{X_k}: X_k \to Y_l\) between manifolds.

One can now show that the category \(\text{Man} = \text{Ho}(\text{Orb}_{\text{sur}}^{\text{eff}})\) satisfies Assumptions 3.1–3.7. There are a few subtle points in the proof. For Assumption 3.3 we use stack-theoretic properties of \(\text{Orb}\) and the fact that \(\text{Orb}_{\text{sur}}^{\text{eff}}\) is a discrete 2-category, so that we get sheaves and not just presheaves when we pass to the homotopy category.

We can also consider ‘corners’ versions of \(\text{Ho}(\text{Orb}_{\text{sur}}^{\text{eff}})\) modelled on one of the categories in (3.3). These all work without any problems.

Remark 3.10. Here are some categories of manifolds which fail parts of Assumptions 3.1–3.7 and so are excluded from our theory:

(a) The category \(\text{Man}_{\text{ra}}\) of real analytic manifolds and real analytic maps fails Assumption 3.4, as there is no inclusion \(\text{Man} \subseteq \text{Man}_{\text{ra}}\). Partitions of unity will be important in our theory, but they do not exist in \(\text{Man}_{\text{ra}}\). So we will not define real analytic Kuranishi spaces.

(b) The category \(\text{Man}_{\text{C}^k}\) of \(\text{C}^k\)-manifolds for \(k \geq 0\) fails Assumption 3.5, since in general maps \(g_1, \ldots, g_n: U \to \mathbb{R}\) satisfying (3.1) would have to be only \(\text{C}^{k-1}\), and so would not be morphisms in \(\text{Man}_{\text{C}^k}\).

(c) The category \(\text{Man}_{\text{b}}\) of manifolds with boundary is not closed under products such as \([0, 1] \times [0, 1]\), so Assumption 3.1(e) fails. To include this example we should embed \(\text{Man}_{\text{b}} \subset \text{Man}^c\) and take \(\text{Man} = \text{Man}^c\).
As in Remark 2.3, Melrose [84–86] works in the full subcategory $\text{Man}_{\text{fa}} \subset \text{Man}^c$ of 'manifolds with faces' X, for which $i_X : \partial X \to X$ is injective on each connected component of ∂X. Since this is not a local condition on X, Assumption 3.3(b) fails for Man_{fa}. Again, we should take $\text{Man} = \text{Man}^c$.

The categories $\text{Man}_{\text{si}}, \text{Man}_{\text{ge}}, \text{Man}_{\text{ac}}, \text{Man}_{\text{si,ac}}$ in Chapter 2 of various kinds of manifolds with corners, and simple maps, fail Assumption 3.6, since if X lies in one of these categories with $\partial X \neq \emptyset$ then no map $f : X \to \mathbb{R}$ is simple, so almost all of §3.3 does not work within $\text{Man}_{\text{si}, \ldots}$. However, these categories will play an important rôle in our treatment of (m- and μ-)Kuranishi spaces with corners in §3.4, §4.6, §5.4 and §6.3.

3.3 Differential geometry in $\dot{\text{Man}}$

Suppose $\dot{\text{Man}}$ is a category satisfying Assumptions 3.1–3.7 in §3.1. Much of conventional differential geometry for classical manifolds Man can be extended to $\dot{\text{Man}}$ — smooth functions and partitions of unity, vector bundles, tangent and cotangent bundles, connections, and so on. To avoid a lengthy diversion in our narrative, we will explain the extension to $\dot{\text{Man}}$ in detail in Appendix B, and summarize it here. Readers primarily interested in the conventional cases $\text{Man} = \dot{\text{Man}}$ or $\dot{\text{Man}} = \text{Man}^c$ should not need to look at Appendix B.

Here are two important differences with conventional differential geometry:

- If $X \in \dot{\text{Man}}$ is a 'manifold', we will define a tangent sheaf T_X and cotangent sheaf T^*_X, which are our substitutes for the (co)tangent bundles TX, T^X of a classical manifold. These T_X, T^*_X may not be vector bundles for general $\dot{\text{Man}}$, but are sheaves of modules over the structure sheaf O_X of smooth functions $X \to \mathbb{R}$. Also TX, T^X may not be dual to each other, though there is a natural pairing $\mu_X : TX \times T^X \to O_X$.

- If $f : X \to Y$ is a morphism in $\dot{\text{Man}}$, we will define a relative tangent sheaf $T_f Y$ of O_X-modules on X, with $T_f Y = TX$ when $X = Y$ and $f = \text{id}_X$. When $\text{Man} = \dot{\text{Man}}$, $T_f Y$ is the sheaf of sections of the pullback vector bundle $f^*(TY) \to X$, but in general we may have $T_f Y \not\cong f^*(TY)$.

In §3.3.5 we describe some ‘$O(s)$’ and ‘$O(s^2)$’ notation, explained in detail in [B.5] which will be important in Chapters 4–6.

3.3.1 Smooth functions and the structure sheaf

We summarize the material of §B.1:

(a) For each $X \in \dot{\text{Man}}$, write $C^\infty(X)$ for the set of morphisms $a : X \to \mathbb{R}$ in $\dot{\text{Man}}$. We show that $C^\infty(X)$ has the structure of a commutative \mathbb{R}-algebra, and also of a C^∞-ring, in the sense of C^∞-algebraic geometry as in the author [56, 65] or Dubuc [13].
(b) We define a sheaf \mathcal{O}_X of commutative \mathbb{R}-algebras or C^∞-rings on the topological space X_{top}, called the structure sheaf, with $\mathcal{O}_X(U_{\text{top}}) = C^\infty(U)$ for all open submanifolds $U \hookrightarrow X$. Sheaves are explained in §A.5.

(c) We show that $(X_{\text{top}}, \mathcal{O}_X)$ is an affine C^∞-scheme in the sense of [13, 56, 65]. If $f : X \rightarrow Y$ is a morphism in Man, we define a morphism $(f_{\text{top}}, f^\#) : (X_{\text{top}}, \mathcal{O}_X) \rightarrow (Y_{\text{top}}, \mathcal{O}_Y)$ of affine C^∞-schemes. This defines a functor $F_{\text{Man}}^{\text{C}^\infty\text{Sch}} : \text{Man} \rightarrow \text{C}^\infty\text{Sch}_{\text{aff}}$ to the category of affine C^∞-schemes, which is faithful, but need not be full.

(d) We show that partitions of unity exist in \mathcal{O}_X subordinate to any open cover $\{U_a : a \in A\}$ of X. Thus, \mathcal{O}_X is a fine sheaf.

When $\hat{\text{Man}} = \text{Man}$ all this is standard material.

3.3.2 Vector bundles and sections

In §B.2 we discuss vector bundles $E \rightarrow X$ in $\hat{\text{Man}}$, and (smooth) sections $s : X \rightarrow E$, and we write $\Gamma^\infty(E)$ for the $C^\infty(X)$-module of sections s of E. The usual definitions and operations on vector bundles and sections in differential geometry also work for vector bundles in $\hat{\text{Man}}$, in exactly the same way with no surprises, so for instance if $E, F \rightarrow X$ are vector bundles we can define vector bundles $E^* \rightarrow X$, $E \oplus F \rightarrow X$, $E \otimes F \rightarrow X$, $\Lambda^k E \rightarrow X$, and so on, and if $f : X \rightarrow Y$ is a morphism in Man and $G \rightarrow Y$ is a vector bundle we can define a pullback vector bundle $f^*(G) \rightarrow X$.

If $E \rightarrow X$ is a vector bundle, we write \mathcal{E} for the sheaf of sections of E, as a sheaf of modules over \mathcal{O}_X. Morphisms of vector bundles $\theta : E \rightarrow F$ are in natural 1-1 correspondence with morphisms of \mathcal{O}_X-modules $\tilde{\theta} : \mathcal{E} \rightarrow \mathcal{F}$.

3.3.3 The cotangent sheaf T^*X, and connections ∇

In §B.3 for each $X \in \hat{\text{Man}}$ we define the cotangent sheaf T^*X, a sheaf of \mathcal{O}_X-modules on X_{top}. We also define the de Rham differential $d : \mathcal{O}_X \rightarrow T^*X$, a morphism of sheaves of \mathbb{R}-vector spaces which is a universal C^∞-derivation. We do this by noting that $(X_{\text{top}}, \mathcal{O}_X)$ is an affine C^∞-scheme in the sense of [13, 56, 65], as in §3.3.1 and §B.1, and then using cotangent sheaves of C^∞-schemes from the author [65, §5].

Example 3.11. (a) If $\hat{\text{Man}} = \text{Man}$ then T^*X is the sheaf of sections of the usual cotangent bundle $T^*X \rightarrow X$ in differential geometry. The same holds if $X \in \text{Man}_{c} \subseteq \text{Man}$ for general Man.

(b) If $\hat{\text{Man}}$ is one of the following categories from Chapter 2

$$\text{Man}_{c}, \text{Man}_{c}^{\text{in}}, \text{Man}_{c}^{\text{st}}, \text{Man}_{c}^{\text{st,in}}, \text{Man}_{c}^{\text{we}},$$

then as in §2.3 there are two notions of cotangent bundle T^*X, bT^*X of X in Man. It turns out that T^*X is isomorphic to the sheaf of sections of T^*X.

37
(c) If \Man is one of the following categories from 2.4

\[\Man^{\text{gc}}, \Man^{\text{ac}}, \Man_{\text{st}}^{\text{ac}}, \Man_{\text{st}}^{\text{g}}, \Man_{\text{st}, \text{in}}^{\text{g}}, \Man_{\text{st}, \text{in}}^{\text{ac}}. \]

then the cotangent bundle T^*X of $X \in \Man$ may not be defined, though the b-cotangent bundle b^*T^*X is. It turns out that T^*X need not be isomorphic to the sheaf of sections of any vector bundle in these cases.

We summarize the material of 3.3.4. We define a connection ∇ on E to be a morphism $\nabla : E \to E \otimes_{\mathcal{O}_X} T^*X$ of sheaves of \mathbb{R}-vector spaces on X_{top}, satisfying the Leibniz rule $\nabla(a \cdot e) = a \cdot (\nabla e) + e \otimes (da)$ for all local sections a of \mathcal{O}_X and e of E. We show that connections ∇ on E always exist, and if ∇, ∇' are two connections then $\nabla' = \nabla + \Gamma$ for $\Gamma : E \to E \otimes_{\mathcal{O}_X} T^*X$ an \mathcal{O}_X-module morphism.

3.3.4 Tangent sheaves $\mathcal{T}X$, and relative tangent sheaves \mathcal{T}_fY

We summarize the material of B.3.4

(a) For each $X \in \Man$ we define the tangent sheaf $\mathcal{T}X$, as a sheaf of \mathcal{O}_X-modules on X_{top}.

(b) If $f : X \to Y$ is a morphism in \Man we define the relative tangent sheaf \mathcal{T}_fY, as an \mathcal{O}_X-module on X_{top}. There is a natural \mathcal{O}_X-module morphism

\[f^* \otimes \text{id}_{\mathcal{O}_X} : f^*(\mathcal{T}Y) = f_{\text{top}}^{-1}(\mathcal{T}Y) \otimes_{f_{\text{top}}^{-1}(\mathcal{O}_Y)} \mathcal{O}_X \to \mathcal{T}_fY. \tag{3.4} \]

If $g : Y \to Z$ is a morphism in \Man we have an \mathcal{O}_X-module morphism

\[f^* \otimes \text{id}_{\mathcal{O}_X} : f^*(\mathcal{T}_gZ) = f_{\text{top}}^{-1}(\mathcal{T}_gZ) \otimes_{f_{\text{top}}^{-1}(\mathcal{O}_Y)} \mathcal{O}_X \to \mathcal{T}_{gf}Z. \tag{3.5} \]

Neither of equations 3.4 or 3.5 need be isomorphisms.

(c) If $f : X \to Y$, $g : Y \to Z$ are morphisms in \Man then we define an \mathcal{O}_X-module morphism $\mathcal{T}g : \mathcal{T}_fY \to \mathcal{T}_{gf}Z$.

(d) If $f : X \to Y$ is a morphism in \Man and $E, F \to X$ are vector bundles then we define morphisms $\theta : E \to \mathcal{T}_fY$, $\phi : \mathcal{T}_fY \to F$. These are just \mathcal{O}_X-module morphisms $\theta : E \to \mathcal{T}_fY$, $\phi : \mathcal{T}_fY \to F$, for E, F the \mathcal{O}_X-modules of sections of E, F.

We can compose such morphisms by composing \mathcal{O}_X-module morphisms, so that $\phi \circ \theta : E \to F$ is a vector bundle morphism $E \to F$.

(e) We define a natural pairing $\mu_X : T^X \times T^*X \to \mathcal{O}_X$ between tangent and cotangent sheaves.

(f) Let $E \to X$ be a vector bundle in \Man, ∇ a connection on E, and $s \in \Gamma_{\infty}(E)$, so that $\nabla s \in \Gamma(E \otimes_{\mathcal{O}_X} T^*X)$ as in 3.3.3. Using the pairing μ_X in (e) we can regard ∇s as a morphism $\nabla s : T^X \to E$.

38
(g) Let \(f : X \to Y, \ g : Y \to Z \) be morphisms in \(\mathfrak{Man} \), \(F \to Y \) be a vector bundle, and \(\theta : F \to T_Z Y \) be a morphism on \(Y \), as in (d). We define a morphism \(f^*(\theta) : f^*(F) \to T_{gOf} Z \) by composing \(f^{\ast} \) with the pullback of \(\theta \) under \(f_{\text{op}} \). This is something of an abuse of notation: we will treat \(T_{gOf} Z \) as if it were the pullback \(f^*(T_Z Y) \), although \(f^* \) may not be an isomorphism. Incorporating \((3.5) \) in the definition of \(f^*(\theta) \) allows us to omit \(f^* \otimes \text{id}_X \) in \((3.3) \) from our notation.

(h) Let \(f : X \to Y \) be a morphism in \(\mathfrak{Man} \), \(F \to Y \) be a vector bundle, \(\nabla \) a connection on \(F \), and \(t \in \Gamma^\infty(F) \), so that \(\nabla t \in \Gamma(F \otimes_{\mathcal{O}_X} T^\ast Y) \). We define a morphism \(f^*(\nabla t) : T_{fY} \to f^*(F) \). This is not done by pulling back the morphism \(\nabla t : T_Y \to F \) along \(f \), since the morphism \((3.4) \) goes the wrong way, but by a different method.

Example 3.12. Let \(\mathfrak{Man} = \mathfrak{Man} \). Then \(TX \) in (a) is the sheaf of sections of the usual tangent bundle \(TX \to X \) in differential geometry, and \(T_f Y \) in (b) is the sheaf of sections of \(f^*(TY) \to X \), and \((3.4)-(3.5) \) are isomorphisms. In (c), \(f^*(T_g) : f^*(TY) \to (g \circ f)^*(TZ) \) of the derivative map \(T_g : TY \to g^*(TZ) \). In (d), morphisms are vector bundle morphisms \(\theta : E \to f^*(TY) \), \(\phi : f^*(TY) \to F \). In (e), \(\mu_X \) is the usual dual pairing \(TX \times T^\ast X \to \mathcal{O}_X \). In (g),(h), \(f^*(\theta), f^*(\nabla t) \) are the usual pullbacks in differential geometry.

The moral is that when \(\mathfrak{Man} = \mathfrak{Man} \), we should remember that \(T_f Y \) means \(f^*(TY) \), all the sheaves \(\mathcal{O}_X, T^\ast X, TX, T_f Y \) are vector bundles, and all of (a)–(h) are standard differential geometry of classical manifolds.

Example 3.13. Let \(\mathfrak{Man} \) be one of the following categories from Chapter 2
\[\mathfrak{Man}_{\text{st}, \mathfrak{in}}, \mathfrak{Man}^{\mathfrak{ac}}_{\mathfrak{in}}, \mathfrak{Man}^{\mathfrak{ac}}_{\mathfrak{st}, \mathfrak{in}}, \mathfrak{Man}^{\mathfrak{ac}}_{\mathfrak{in}}, \mathfrak{Man}^{\mathfrak{ac}}_{\mathfrak{ac}}. \]

Then \(TX \) in (a) is the sheaf of sections of the b-tangent bundle \({}^bTX \to X \) from \((2.3) \) and \(T_f Y \) in (b) is the sheaf of sections of \(f^*({}^bTY) \to X \), and \((3.4)-(3.5) \) are isomorphisms. Note that in these cases \(TX \) and \(T^\ast X \) may not be dual, since as in Example 3.11(b),(c) either \(T^\ast X \) is the sheaf of sections of \(T^\ast X \to X \) (not \({}^bT^\ast X \to X \)), or \(T_f Y \) may not be a vector bundle.

Example 3.14. Let \(\mathfrak{Man} \) be one of the following categories from Chapter 2
\[\mathfrak{Man}^{\mathfrak{st}}, \mathfrak{Man}^{\mathfrak{ac}}_{\mathfrak{st}}, \mathfrak{Man}^{\mathfrak{ac}}, \mathfrak{Man}^{\mathfrak{ac}}_{\mathfrak{st}}, \mathfrak{Man}^{\mathfrak{ac}}, \mathfrak{Man}^{\mathfrak{ac}}_{\mathfrak{st}}, \mathfrak{Man}^{\mathfrak{ac}}_{\mathfrak{st}}. \]

Then \(TX \) in (a) is the sheaf of sections of the b-tangent bundle \({}^bTX \to X \), but \(T_f Y \) in (b) is the sheaf of sections of the vector bundle of mixed rank \(C(f)^*({}^bTC(Y))|_{\mathcal{C}_0(X)} \to X \), using the corner functor \(C(f) : C(X) \to C(Y) \) and the identification \(X \cong \mathcal{C}_0(X) \) from \((2.2) \). Also \((3.4)-(3.5) \) may not be isomorphisms, and \(TX \) and \(T^\ast X \) may not be dual.

3.3.5 The \(O(s) \) and \(O(s^2) \) notation

Section \(3.2 \) defines some ‘\(O(s) \)’ and ‘\(O(s^2) \)’ notation, which will be important in \(4.1 \), \(5.1 \) and \(6.1 \) Here is an informal version of Definition 3.3.6.
Definition 3.15. Let X be an object in $\hat{\text{Man}}$, and $\pi : E \to X$ be a vector bundle, and $s \in \Gamma^\infty(E)$ be a section. Then:

(i) If $F \to X$ is a vector bundle and $t_1, t_2 \in \Gamma^\infty(F)$, we write $t_2 = t_1 + O(s)$ if there exists a morphism $\alpha : E \to F$ such that $t_2 = t_1 + \alpha \circ s$ in $\Gamma^\infty(F)$. Similarly, we write $t_2 = t_1 + O(s^2)$ if there exists $\beta : E \otimes E \to F$ such that $t_2 = t_1 + \beta \circ (s \otimes s)$ in $\Gamma^\infty(F)$. This implies that $t_2 = t_1 + O(s)$.

We can also apply this $O(s), O(s^2)$ notation to morphisms of vector bundles $\theta_1, \theta_2 : F \to G$, by regarding θ_1, θ_2 as sections of $F^* \otimes G$.

(ii) If $F \to X$ is a vector bundle, $f : X \to Y$ is a morphism in $\hat{\text{Man}}$, and $\Lambda_1, \Lambda_2 : F \to T_f Y$ are morphisms as in [3.3.4.d], we define a notion of when $\Lambda_2 = \Lambda_1 + O(s)$. Basically this says that locally near $0_{E,\text{top}}(s_{\text{top}}^{-1}(0)) \subseteq E_{\text{top}}$, there should exist $M : \pi^*(F) \to T_{f \circ s} Y$ on E with $0_E(M) = \Lambda_1$ and $s^*(M) = \Lambda_2$, where $0_E : X \to E$ is the zero section.

(iii) If $f, g : X \to Y$ are morphisms, we define a notion of when $g = f + O(s)$. Basically this says that locally near $0_{E,\text{top}}(s_{\text{top}}^{-1}(0)) \subseteq E_{\text{top}}$, there should exist a morphism $v : E \to Y$ with $v \circ 0_E = f$ and $v \circ s = g$.

(iv) Let $f, g : X \to Y$ with $g = f + O(s)$ be as in (iii), and $F \to X, G \to Y$ be vector bundles, and $\theta_1 : F \to f^*(G), \theta_2 : F \to g^*(G)$ be morphisms. We wish to compare θ_1, θ_2, though they map to different vector bundles.

We define a notion of when $\theta_2 = \theta_1 + O(s)$. Basically this says that locally near $0_{E,\text{top}}(s_{\text{top}}^{-1}(0)) \subseteq E_{\text{top}}$, there should exist a morphism $v : E \to Y$ with $v \circ 0_E = f$ and $v \circ f = g$ as in (iii), and a morphism $\phi : \pi^*(F) \to v^*(G)$ on E with $0_E(\phi) = \theta_1$ and $s^*(\phi) = \theta_2$.

(v) Let $f, g : X \to Y$ with $g = f + O(s)$ be as in (iii), and $F \to X$ be a vector bundle, and $\Lambda_1 : F \to T_f Y, \Lambda_2 : F \to T_g Y$ be morphisms, as in [3.3.4.d]. We wish to compare Λ_1, Λ_2, though they map to different sheaves.

We define a notion of when $\Lambda_2 = \Lambda_1 + O(s)$. Basically this says that locally near $0_{E,\text{top}}(s_{\text{top}}^{-1}(0)) \subseteq E_{\text{top}}$, there should exist a morphism $v : E \to Y$ with $v \circ 0_E = f$ and $v \circ s = g$ as in (iii), and a morphism $M : \pi^*(F) \to T_{f \circ s} Y$ on E with $0_E(M) = \Lambda_1$ and $s^*(M) = \Lambda_2$.

(vi) Suppose $f : X \to Y$ is a morphism in $\hat{\text{Man}}$, and $F \to X, G \to Y$ are vector bundles, and $t \in \Gamma^\infty(G)$ with $f^*(t) = O(s)$ in the sense of (i), and $\Lambda : F \to T_f Y$ is a morphism, as in [3.3.4.d], and $\theta : F \to f^*(G)$ is a vector bundle morphism. We write $\theta = f^*(dt) \circ \Lambda + O(s)$ if whenever ∇ is a connection on G we have $\theta = f^*(\nabla t) \circ \Lambda + O(s)$ in the sense of (i), where $f^*(\nabla t) : T_f Y \to f^*(G)$ is as in [3.3.4.h], so that $f^*(\nabla t) : F \to f^*(G)$ is a vector bundle morphism as in [3.3.4.d].

Here a connection ∇ on G exists as in [3.3.4], and the condition $\theta = f^*(\nabla t) \circ \Lambda + O(s)$ is independent of the choice of connection ∇. The notation ‘dt’ in $\theta = f^*(dt) \circ \Lambda + O(s)$ is intended to suggest that the condition is natural, and independent of the choice of connection.
(vii) Let \(f, g : X \to Y \) with \(g = f + O(s) \) be as in (iii), and \(\Lambda : E \to T_f Y \) be a morphism in the sense of Definition 3.16 (d). We define a notion of when \(g = f + \Lambda \circ s + O(s^2) \). Basically this says that locally near \(0_{E, \text{top}}(s_{\text{top}}(0)) \subseteq E_{\text{top}} \), there should exist a morphism \(v : E \to Y \) with \(v \circ 0_E = f \) and \(v \circ s = g \) as in (iii), and the normal derivative of \(v \) at the zero section \(0_E(X) \subseteq E \) should be \(\Lambda \). Making sense of this formally needs the details of the definition of \(T_f Y \) in B.4 which we have not explained.

Here are equivalent but simpler definitions when \(\tilde{\text{Man}} = \text{Man} \). We combine Definition 3.15 (i), (ii) into Definition 3.16 (i), and Definition 3.15 (iv), (v) into Definition 3.16 (iii), since the sheaf \(T_f Y = f^*(TY) \) is a vector bundle when \(\tilde{\text{Man}} = \text{Man} \), and does not need separate treatment.

Definition 3.16. Let \(X \) be a classical manifold, \(E \to X \) a vector bundle, and \(s \in \Gamma^\infty(E) \) a smooth section.

(i) If \(F \to X \) is another vector bundle and \(t_1, t_2 \in \Gamma^\infty(F) \) are smooth sections, we write \(t_2 = t_1 + O(s) \) if there exists \(\alpha \in \Gamma^\infty(E^* \otimes F) \) such that \(t_2 = t_1 + \alpha \cdot s \) in \(\Gamma^\infty(F) \), where the contraction \(\alpha \cdot s \) is formed using the natural pairing of vector bundles \((E^* \otimes F) \times E \to F \) over \(X \).

Similarly, we write \(t_2 = t_1 + O(s^2) \) if there exists \(\alpha \in \Gamma^\infty(E^* \otimes E^* \otimes F) \) such that \(t_2 = t_1 + \alpha \cdot (s \otimes s) \) in \(\Gamma^\infty(F) \).

(ii) Suppose \(f, g : X \to Y \) are smooth maps of classical manifolds. We write \(g = f + O(s) \) if whenever \(\alpha : Y \to \mathbb{R} \) is a smooth map, there exists \(\beta \in \Gamma^\infty(E^*) \) such that \(\alpha \circ g = \alpha \circ f + \beta \cdot s \).

(iii) Let \(f, g : X \to Y \) with \(g = f + O(s) \) be as in (ii), and \(F \to X, G \to Y \) be vector bundles, and \(\theta_1 : F \to f^*(G), \theta_2 : F \to g^*(G) \) be morphisms. We wish to compare \(\theta_1, \theta_2 \), though they map to different vector bundles.

We write \(\theta_2 = \theta_1 + O(s) \) if for all \(\alpha \in \Gamma^\infty(F) \) and \(\beta \in \Gamma^\infty(G) \) we have \(g^*(\beta) \cdot (\theta_2 \circ \alpha) = f^*(\beta) \cdot (\theta_1 \circ \alpha) + O(s) \) in \(C^\infty(X) \), in the sense of (i).

(iv) Suppose \(f : X \to Y \) is a smooth map of classical manifolds, \(F \to X, G \to Y \) are vector bundles, \(t \in \Gamma^\infty(G) \) with \(f^*(t) = O(s) \) in the sense of (i), and \(\Lambda : F \to f^*(TY) \), \(\theta : F \to f^*(G) \) are vector bundle morphisms.

We write \(\theta = f^*(dt) \circ \Lambda + O(s) \) if \(\theta = f^*(\nabla t) \circ \Lambda + O(s) \) in the sense of (i) when \(\nabla \) is a connection on \(G \), so that \(\nabla t \in \Gamma^\infty(T^*Y \otimes G) \) and \(f^*(\nabla t) : f^*(TY) \to f^*(G) \) is a vector bundle morphism. This condition is independent of the choice of connection \(\nabla \) on \(G \).

(v) Let \(f, g : X \to Y \) with \(g = f + O(s) \) be as in (ii), and \(\Lambda : E \to f^*(TY) \) be a vector bundle morphism. We write \(g = f + \Lambda \circ s + O(s^2) \) if whenever \(\alpha : Y \to \mathbb{R} \) is a smooth map, there exists \(\beta \in \Gamma^\infty(E^* \otimes E^*) \) such that \(\alpha \circ g = \alpha \circ f + \Lambda \cdot (s \otimes f^*(dh)) + \beta \cdot (s \otimes s) \). Here \(s \otimes f^*(dh) \) lies in \(\Gamma^\infty(E \otimes f^*(T^*Y)) \), and so pairs with \(\Lambda \).
When $\text{Man} = \text{Man}$, we can interpret the $O(s)$ and $O(s^2)$ conditions in Definitions 3.15(iii)–(vi) in terms of C^∞-algebraic geometry, as in Definition 3.16. A manifold X corresponds to a C^∞-scheme \mathfrak{X}. Given a vector bundle $E \to X$, and $s \in \Gamma^\infty(E)$, we have closed C^∞-subschemes $\mathcal{S}_1 \subseteq \mathcal{S}_2 \subseteq X$, where \mathcal{S}_1 is defined by $s = 0$, and \mathcal{S}_2 by $s \otimes s = 0$. Roughly, an equation on X holds up to $O(s)$ if when translated into C^∞-scheme language, the restriction of the equation to $\mathcal{S}_1 \subseteq X$ holds, and it holds up to $O(s^2)$ if its restriction to $\mathcal{S}_2 \subseteq X$ holds. For example, $t_2 = t_1 + O(s) \Leftrightarrow t_2|_{\mathcal{S}_1} = t_1|_{\mathcal{S}_1}$, and $t_2 = t_1 + O(s^2) \Leftrightarrow t_2|_{\mathcal{S}_2} = t_1|_{\mathcal{S}_2}$ in Definition 3.15(i), and $g = f + O(s) \Leftrightarrow g|_{\mathcal{S}_1} = f|_{\mathcal{S}_1}$ in Definition 3.15(iii).

The next theorem gives the properties of this $O(s)$ and $O(s^2)$ notation we will need for our (m- and μ-)Kuranishi space theories. It will be proved in Theorem 3.17.

Theorem 3.17. Work in the situation of Definition 3.15. Then:

(a) All the ‘$O(s)$’ and ‘$O(s^2)$’ conditions above are local on $s_{\text{top}}^{-1}(0) \subseteq X_{\text{top}}$. That is, each condition holds on all of X_{top}, if and only if it holds on a family of open subsets of X_{top} covering $s_{\text{top}}^{-1}(0)$.

(b) In Definition 3.15(i),(ii),(iv)–(vii) the conditions are $C^\infty(X)$-linear in $t, t_1, t_2, \theta, \theta_1, \theta_2, \Lambda, \Lambda_1, \Lambda_2$. For example, in (i) if $t_2 = t_1 + O(s)$, $t'_2 = t'_1 + O(s)$ and $a, b \in C^\infty(X)$ then $(at_2 + bt'_2) = (at_1 + bt'_1) + O(s)$.

(c) In Definition 3.15(i)–(iii) the conditions are equivalence relations. For example, in (i) if $f, g, h : X \to Y$ are morphisms in Man, then $f = f + O(s)$ and $g = f + O(s)$ implies that $f = g + O(s)$, and $g = f + O(s)$ imply that $h = f + O(s)$.

(d) In Definition 3.15(iv),(v) the conditions are equivalence relations relative to the equivalence relation of (iii). For example, if $f, g, h : X \to Y$ are morphisms in Man with $g = f + O(s)$, $h = g + O(s)$, and $F \to X, G \to Y$ are vector bundles, and $\theta_1 : F \to F^*(G), \theta_2 : F \to g^*(G), \theta_3 : F \to h^*(G)$ with $\theta_2 = \theta_1 + O(s)$ (using $g = f + O(s)$) and $\theta_3 = \theta_2 + O(s)$ (using $h = g + O(s)$) as in (iv), then $h = f + O(s)$ by (c), and $\theta_3 = \theta_1 + O(s)$ (using $h = f + O(s)$) as in (iv).

(e) Let $X_a \hookrightarrow X$ for $a \in A$ be open submanifolds with $s_{\text{top}}^{-1}(0) \subseteq \bigcup_{a \in A} X_{a, \text{top}}$. Write $X_{ab} \hookrightarrow X$ for the open submanifold with $X_{ab, \text{top}} = X_{a, \text{top}} \cap X_{b, \text{top}}$ for $a, b \in A$. Suppose we are given morphisms $f_a : X_a \to Y$ in Man for all $a \in A$ with $f_a|_{X_{ab}} = f_b|_{X_{ab}} + O(s)$ on X_{ab} for all $a, b \in A$. Then there exist an open submanifold $j : X' \hookrightarrow X$ with $s_{\text{top}}^{-1}(0) \subseteq X'_\text{top}$, and a morphism $g : X' \to Y$ such that $g|_{X' \cap X_a} = f_a|_{X' \cap X_a} + O(s)$ for all $a \in A$.

Suppose also that a finite group Γ acts on X, Y by diffeomorphisms in Man, and that the $X_a \hookrightarrow X$ are Γ-invariant, and the $f_a : X_a \to Y$ are Γ-equivariant, for all $a \in A$. Then we can choose X' to be Γ-invariant, and g to be Γ-equivariant.

(f) Let $X, E, s, f, g, F, G, \theta_1$ be as in Definition 3.15(iv). Then there exists $\theta_2 : F \to g^*(G)$ with $\theta_2 = \theta_1 + O(s)$, as in (iv). If θ_2 is an alternative choice for θ_1 then $\tilde{\theta}_2 = \theta_2 + O(s)$, as in (i).
(g) Let $X, E, s, f, g, F, G, \Lambda_1$ be as in Definition 3.15(v). Then there exists $\Lambda_2 : F \to T_f Y$ with $\Lambda_2 = \Lambda_1 + O(s)$ as in (v). If Λ_2 is an alternative choice for Λ_2 then $\tilde{\Lambda}_2 = \Lambda_2 + O(s)$, as in (ii).

(h) Let $X, E, s, f, Y, F, G, t, \Lambda$ be as in (vi). Then there exists a vector bundle morphism $\theta : F \to f^*(G)$ on X such that $\theta = f^*(dt) \circ \Lambda + O(s)$, in the sense of (vi). If θ is an alternative choice for θ then $\tilde{\theta} = \theta + O(s)$ as in (i), regarding $\theta, \tilde{\theta}$ as sections of $F^* \otimes f^*(G)$.

(i) Suppose $f, g : X \to Y$ are morphisms with $g = f + O(s)$ as in (iii). Then there exists $\Lambda : E \to T_f Y$ with $g = f + \Lambda \circ s + O(s^2)$ as in (vii). Then $f + \Lambda \circ s + O(s^2)$.

(j) Let $X, E, s, f, g, Y, \Lambda$ with $g = f + \Lambda \circ s + O(s^2)$ be as in (vii), and $\tilde{\Lambda} : E \to T_f Y$ be a morphism with $\tilde{\Lambda} = \Lambda + O(s)$ as in (ii). Then $g = f + \tilde{\Lambda} \circ s + O(s^2)$.

(k) Let $X, E, s, f, g, Y, \Lambda$ with $g = f + \Lambda \circ s + O(s^2)$ be as in (vii). Part (g) gives $\tilde{\Lambda}_2 : E \to T_f Y$ with $\tilde{\Lambda}_2 = \Lambda + O(s)$ as in (v), where Λ is unique up to $O(s)$. Then $f = g + (\Lambda_1 + \tilde{\Lambda}_2) \circ s + O(s^2)$ as in (vii).

(l) Let $f, g, h : X \to Y$ be morphisms in Man with $g = f + O(s)$, $h = g + O(s)$, so that $h = f + O(s)$ by (c), and $\Lambda_1 : E \to T_f Y, \Lambda_2 : E \to T_g Y$ be morphisms with $g = f + \Lambda_1 \circ s + O(s^2)$ and $h = g + \Lambda_2 \circ s + O(s^2)$ be as in (vii). Part (g) gives $\tilde{\Lambda}_2 : E \to T_f Y$ with $\tilde{\Lambda}_2 = \Lambda_2 + O(s)$ as in (v), unique up to $O(s)$. Then $h = f + (\Lambda_1 + \Lambda_2) \circ s + O(s^2)$ as in (vii).

(m) Let $f, g : X \to Y$ be morphisms in Man with $g = f + O(s)$, and $\Lambda_1, \ldots, \Lambda_k : Y \to T_f Y$ be morphisms with $g = f + \Lambda_a \circ s + O(s^2)$ for $a = 1, \ldots, k$ as in (vii), and $\alpha_1, \ldots, \alpha_k \in C^\infty(X)$ with $\alpha_1 + \cdots + \alpha_k = 1$. Then $g = f + (\alpha_1 \cdot \Lambda_1 + \cdots + \alpha_k \cdot \Lambda_k) \circ s + O(s^2)$ as in (vii).

(n) Let $f : X \to Y$ be a morphism in Man, and $F, G \to Y$ be vector bundles, $t \in \Gamma^\infty(F)$ with $f^*(t) = O(s)$, and $u_1, u_2 \in \Gamma^\infty(G)$. If $u_1 = u_1 + O(t)$ as in (i) then $f^*(u_2) = f^*(u_1) + O(s)$, and if $u_2 = u_1 + O(t^2)$ as in (i) then $f^*(u_2) = f^*(u_1) + O(s^2)$.

(o) Let $f : X \to Y, g : Y \to Z$ be morphisms in Man, and $F, G \to Y$ be vector bundles, and $t \in \Gamma^\infty(F)$ with $f^*(t) = O(s)$, and $\Lambda_1, \Lambda_2 : G \to T_f Y$ with $\Lambda_2 = \Lambda_1 + O(t)$ as in (ii). Then $f^*(\Lambda_2) = f^*(\Lambda_1) + O(s)$ as in (iii), where $f^*(\Lambda_1), f^*(\Lambda_2) : f^*(G) \to T_{g \circ f} Z$ are as in (iii).

(p) Suppose $f : X \to Y$ and $g, h : Y \to Z$ are morphisms in Man, and $F \to Y$ is a vector bundle, and $t \in \Gamma^\infty(F)$ with $f^*(t) = O(s)$. If $h = g + O(t)$ as in (iii) then $h \circ f = g \circ f + O(s)$.

If $h = g + \Lambda \circ t + O(t^2)$ as in (vii) for $\Lambda : F \to T_f Y$, and $\theta : E \to f^*(F)$ is a morphism with $\theta \circ s = f^*(t) + O(s^2)$ as in (i), then

$$h \circ f = g \circ f + [f^*(\Lambda) \circ \theta] \circ s + O(s^2),$$

where $f^*(\Lambda) \circ \theta : E \to T_{g \circ f} Z$ is as in (3.3.4)(d),(g).
(q) Let \(f : X \to Y, g, h : Y \to Z \) be morphisms in \(\mathfrak{Man} \), and \(F, G \to Y, H \to Z \) be vector bundles, and \(t \in \Gamma^\infty(F) \) with \(f^*(t) = O(s) \) and \(h = g + O(t) \), and \(\theta_1 : G \to g^*(H) \). Then \(f^*(\theta_2) = f^*(\theta_1) + O(s) \) as in (iv).

(r) Let \(f : X \to Y, g, h : Y \to Z \) be morphisms in \(\mathfrak{Man} \), and \(F, G \to Y \) be vector bundles, and \(t \in \Gamma^\infty(F) \) with \(f^*(t) = O(s) \), \(h = g + O(t) \), and \(\Lambda : G \to T_g Z, \Lambda_2 : G \to T_h Z \) with \(\Lambda_2 = \Lambda_1 + O(t) \) as in (v). Then \(f^*(\Lambda_2) = f^*(\Lambda_1) + O(s) \) as in (v), where \(f^*(\Lambda_1) : f^*(G) \to T_{g\circ f}Z \) and \(f^*(\Lambda_2) : f^*(G) \to T_{h\circ f}Z \) are as in \(\text{(3.3.4)}(g) \).

(s) Let \(f : X \to Y, g : Y \to Z \) be morphisms in \(\mathfrak{Man} \), and \(F, G \to Y \) be vector bundles, and \(t \in \Gamma^\infty(F) \), \(u \in \Gamma^\infty(H) \) with \(f^*(t) = O(s) \), \(g^*(u) = O(t) \) as in (i), and \(\Lambda : G \to T_Z \theta, \theta : G \to g^*(H) \) with \(\theta = g^*(du) \circ \Lambda + O(t) \) as in (v). Then \(f^*(\Lambda) = (g \circ f)^*(du) \circ f^*(\Lambda) + O(s) \) as in (vi), and \(f^*(\Lambda) : f^*(G) \to T_{g\circ f}Z \) are as in \(\text{(3.3.4)}(g) \).

(t) Let \(f : X \to Y, g, h : Y \to Z \) be morphisms in \(\mathfrak{Man} \), and \(F \to Y \) a vector bundle, and \(\Lambda, \Lambda_2 : F \to T_y Y \) with \(\Lambda_2 = \Lambda_1 + O(s) \) as in (ii). Then \(T_g \circ \Lambda_2 = T_g \circ \Lambda_1 + O(s) \) as in (ii), where \(T_g \circ \Lambda_1, T_g \circ \Lambda_2 : F \to T_{g\circ f}Z \) are as in \(\text{(3.3.4)}(c),(d) \).

(u) Let \(f, g : X \to Y, h : Y \to Z \) be morphisms in \(\mathfrak{Man} \). If \(g = f + O(s) \) as in (iii), then \(h \circ g = h \circ f + O(s) \). If \(g = f + \Lambda \circ s + O(s^2) \) as in (vii) for \(\Lambda : E \to T_y Y, \) then \(h \circ g = h \circ f + [T_h \circ \Lambda] \circ s + O(s^2) \), where \(T_h \circ \Lambda : E \to T_{g\circ f}Z \) is as in \(\text{(3.3.4)}(c),(d) \).

(v) Let \(f, g : X \to Y, h : Y \to Z \) be morphisms in \(\mathfrak{Man} \) with \(g = f + O(s) \) as in (iii), so that \(h \circ g = h \circ f + O(s) \) by (u). Suppose \(F \to X \) is a vector bundle, and \(\Lambda_1 : F \to T_Y Y, \Lambda_2 : F \to T_y Y \) are morphisms with \(\Lambda_2 = \Lambda_1 + O(s) \) as in (v). Then \(T_h \circ \Lambda_2 = T_h \circ \Lambda_1 + O(s) \) as in (v), where \(T_h \circ \Lambda_1 : E \to T_{h\circ f}Z \) and \(T_h \circ \Lambda_2 : E \to T_{h\circ g}Z \) are as in \(\text{(3.3.4)}(c),(d) \).

3.3.6 Discrete properties of morphisms in \(\mathfrak{Man} \)

Section B.6 defines a condition for classes of morphisms in \(\mathfrak{Man} \) to lift nicely to classes of \((1) \)-morphisms in \(\mathfrak{mKur}, \mathfrak{Kur}, \mathfrak{Kur} \) in Chapters 4–6.

Definition 3.18. Let \(P \) be a property of morphisms in \(\mathfrak{Man} \), so that for any morphism \(f : X \to Y \) in \(\mathfrak{Man} \), either \(f \) is \(P \), or \(f \) is not \(P \). For example, if \(\mathfrak{Man} \) is \(\text{Man}^c \) from \(\text{2.1} \), then \(P \) could be interior, or \(b \)-normal.

We call \(P \) a **discrete property of morphisms in \(\mathfrak{Man} \)** if:

(i) All diffeomorphisms \(f : X \to Y \) in \(\mathfrak{Man} \) are \(P \).

(ii) All open submanifolds \(i : U \to X \) in \(\mathfrak{Man} \) are \(P \).

(iii) If \(f : X \to Y \) and \(g : Y \to Z \) in \(\mathfrak{Man} \) are \(P \) then \(g \circ f : X \to Z \) is \(P \).

44
(iv) For a morphism \(f : X \to Y \) in \(\mathbf{Man} \) to be \(P \) is a local property on \(X \), in the sense that if we can cover \(X \) by open submanifolds \(i : U \hookrightarrow X \) such that \(f \circ i : U \to Y \) is \(P \), then \(f \) is \(P \).

Some notation: if \(f : X \to Y \) in \(\mathbf{Man} \) and \(S \subseteq X_{\text{top}} \) then we say that \(f \) is \(P \) near \(S \) if there exists an open submanifold \(i : U \to X \) such that \(S \subseteq U_{\text{top}} \subseteq X_{\text{top}} \) and \(f \circ i : U \to Y \) is \(P \). This is a well behaved notion as \(P \) is a local property, e.g. \(f \) is \(P \) if and only if \(f \) is \(P \) near each \(x \in X_{\text{top}} \).

(v) All morphisms in \(\mathbf{Man} \subseteq \mathbf{\hat{Man}} \) are \(P \).

(vi) Suppose \(f : X \times \mathbb{R} \to Y \) is a morphism in \(\mathbf{\hat{Man}} \). If \(f \) is \(P \) near \(X_{\text{top}} \times \{0\} \) in \(X_{\text{top}} \times \mathbb{R} \), then \(f \) is \(P \).

(vii) Suppose \(E \to X \) is a vector bundle in \(\mathbf{\hat{Man}} \), and \(s \in \Gamma^\infty(E) \), so that \(s^{-1}\text{top}(0) \subseteq X_{\text{top}} \), and \(f, g : X \to Y \) are morphisms in \(\mathbf{\hat{Man}} \) with \(g = f + O(s) \) in the sense of Definition \([3.15](iii)\). Then \(f \) is \(P \) near \(s^{-1}\text{top}_0(0) \) if and only if \(g \) is \(P \) near \(s^{-1}\text{top}_0 \).

(viii) Suppose we are given a diagram in \(\mathbf{\hat{Man}} \):

\[
\begin{array}{ccc}
U' & \xrightarrow{f'} & U \\
\downarrow{j'} & & \downarrow{i} \\
V' & \xrightarrow{j} & V
\end{array}
\]

\[
\begin{array}{ccc}
\quad & \xrightarrow{f} & X \\
\downarrow{g} & & \downarrow{j} \\
\quad & \xrightarrow{j} & Y
\end{array}
\]

(3.6)

where \(i, i', j, j' \) are open submanifolds in \(\mathbf{\hat{Man}} \), and \(f \circ i' = j \circ f' : U' \to Y \), \(g \circ j' = i \circ g' : V' \to X \), and we are given points \(x \in U'_{\text{top}} \subseteq U_{\text{top}} \subseteq X_{\text{top}} \) and \(y \in V'_{\text{top}} \subseteq V_{\text{top}} \subseteq Y_{\text{top}} \) such that \(f_{\text{top}}(x) = y \) and \(g_{\text{top}}(y) = x \). Suppose too that there are vector bundles \(E \to U' \) and \(F \to V' \) and sections \(s \in \Gamma^\infty(E) \), \(t \in \Gamma^\infty(F) \) with \(s(x) = t(y) = 0 \), such that \(g \circ f' = i \circ g' + O(s) \) on \(U' \) and \(f \circ g' = j \circ j' + O(t) \) on \(V' \) in the sense of Definition \([3.15](iii)\). Then \(f, f' \) are \(P \) near \(x \), and \(g, g' \) are \(P \) near \(y \).

Example 3.19. (a) When \(\mathbf{\hat{Man}} \) is \(\mathbf{Man}^c \) from \([2.1]\) the following properties of morphisms in \(\mathbf{Man}^c \) are discrete: interior, b-normal, strongly smooth, simple.

(b) When \(\mathbf{\hat{Man}} \) is \(\mathbf{Man}^{bc} \) from \([2.4.1]\) the following properties of morphisms in \(\mathbf{Man}^{bc} \) are discrete: interior, b-normal, simple.

(c) When \(\mathbf{\hat{Man}} \) is \(\mathbf{Man}^{ac} \) or \(\mathbf{Man}^{c,ac} \) from \([2.4.2]\) the following properties of morphisms in \(\mathbf{Man} \) are discrete: interior, b-normal, strongly a-smooth, simple.

3.3.7 Comparing different categories \(\mathbf{Man} \)

In \([3.7]\) we discuss how to compare different categories \(\mathbf{Man}, \mathbf{\hat{Man}} \) satisfying Assumptions \([3.1] [3.7] \). Here is Condition \([3.40]\).
Condition 3.20. Suppose \(\tilde{\text{Man}}, \text{Man} \) satisfy Assumptions 3.1–3.7 and \(F_{\text{Man}} : \text{Man} \to \tilde{\text{Man}} \) is a functor in a commutative diagram

\[
\begin{array}{ccc}
\text{Man} & \xrightarrow{\approx} & \tilde{\text{Man}} \\
\downarrow & & \downarrow \\
\text{Top} & \xrightarrow{\approx} & \tilde{\text{Top}}
\end{array}
\tag{3.7}
\]

where the functors \(F_{\text{Top}}^{\tilde{\text{Man}}} \), \(F_{\text{Top}}^{\text{Man}} \) are as in Assumption 3.2, and the inclusions \(\text{Man} \hookrightarrow \tilde{\text{Man}}, \text{Man} \) as in Assumption 3.4. We require \(F_{\text{Man}} \) to take products, disjoint unions, and open submanifolds in \(\text{Man} \) to products, disjoint unions, and open submanifolds in \(\tilde{\text{Man}} \), and to preserve dimensions.

Note that \(F_{\text{Man}} \) must be faithful (injective on morphisms), as \(F_{\text{Top}}^{\text{Man}} \) is.

In §B.7 we explain that given a functor \(F_{\text{Man}}^{\tilde{\text{Man}}} \) satisfying Condition 3.20, all the geometry of \(3.3.1 \)–\(3.3.5 \) in \(\text{Man} \) from §3.3.1–§3.3.5 maps functorially to its analogue in \(\tilde{\text{Man}} \). We chose the definitions in Appendix B to ensure this. For example, if \(\tilde{X} \in \tilde{\text{Man}} \) and \(\tilde{X} = F_{\text{Man}}^{\tilde{\text{Man}}} (\tilde{X}) \) there are natural sheaf morphisms

\[
O_{\tilde{X}} \longrightarrow O_{\tilde{X}}, \quad T\tilde{X} \longrightarrow T\tilde{X}, \quad T^*\tilde{X} \longrightarrow T^*\tilde{X}
\]

on the common topological space \(\tilde{X}_{\text{top}} = \tilde{X}_{\text{top}} \).

Proposition B.43 discusses inclusions of subcategories \(\text{Man} \subseteq \tilde{\text{Man}} \):

Proposition 3.21. Suppose \(F_{\text{Man}}^{\tilde{\text{Man}}} : \text{Man} \hookrightarrow \tilde{\text{Man}} \) is an inclusion of subcategories satisfying Condition 3.20 and either:

(a) All objects of \(\tilde{\text{Man}} \) are objects of \(\text{Man} \), and all morphisms \(f : X \to \mathbb{R} \) in \(\tilde{\text{Man}} \) are morphisms in \(\text{Man} \), and for a morphism \(f : X \to Y \) in \(\tilde{\text{Man}} \) to lie in \(\text{Man} \) is a discrete condition, as in Definition 3.18; or

(b) \(\text{Man} \) is a full subcategory of \(\tilde{\text{Man}} \) closed under isomorphisms in \(\tilde{\text{Man}} \).

Then all the material of \(3.3.1 \)–\(3.3.5 \) for \(\text{Man} \) is exactly the same if computed in \(\text{Man} \) or \(\tilde{\text{Man}} \), and the functorial maps from geometry in \(\text{Man} \) to geometry in \(\tilde{\text{Man}} \) discussed above are the identity maps. For example, if \(f : X \to Y \) lies in \(\text{Man} \subseteq \tilde{\text{Man}} \) then the relative tangent sheaves \((T_f Y)_{\text{Man}}, (T_f Y)_{\tilde{\text{Man}}} \) on \(X_{\text{top}} \) from §3.3.4 computed in \(\text{Man} \) and \(\tilde{\text{Man}} \) are not just canonically isomorphic, but actually the same sheaf.

For example, Figure 3.1 gives a diagram of functors from Chapter 2 which satisfy Condition 3.20. Arrows ‘\(\to \)’ are inclusions of subcategories satisfying Proposition 3.21(a) or (b). Arrows marked ‘\(\ast \)’ involve the non-obvious functor \(F_{\text{Man}}^{\text{ac}} : \text{Man} \to \text{Man}^{\text{ac}} \) from §2.4.2; some cycles in Figure 3.1 including arrows ‘\(\ast \)’ do not commute.
Figure 3.1: Functors satisfying Condition 3.20. Arrows ‘→’ satisfy Proposition 3.21(a) or (b).

Chapters 4–6 will associate (2-)categories $\mathfrak{m}\mathfrak{Kur}, \mu\mathfrak{Kur}, \mathfrak{Kur}$ of (m- or μ-) Kuranishi spaces to each such category $\mathfrak{M}an$. When Condition 3.20 holds, by mapping geometry in $\mathfrak{M}an$ to $\mathfrak{M}an$ as above, we will define natural (2)-functors $F_{\mathfrak{m}\mathfrak{Kur}} : \mathfrak{m}\mathfrak{Kur} \to \mathfrak{m}\mathfrak{Kur}$, $F_{\mu\mathfrak{Kur}} : \mu\mathfrak{Kur} \to \mu\mathfrak{Kur}$, $F_{\mathfrak{Kur}} : \mathfrak{Kur} \to \mathfrak{Kur}$ between the (2-)categories $\mathfrak{m}\mathfrak{Kur}, \mu\mathfrak{Kur}, \mathfrak{Kur}$ and $\mathfrak{m}\mathfrak{Kur}, \mu\mathfrak{Kur}, \mathfrak{Kur}$ associated to $\mathfrak{M}an$ and $\mathfrak{M}an$. When Proposition 3.21(a) or (b) holds, these are inclusions of (2)-subcategories.

3.4 Extension to ‘manifolds with corners’

The assumptions of §3.1 include many categories of manifolds with corners, as in Example 3.8(ii), giving corresponding (2-)categories of (m- or μ-)Kuranishi spaces in Chapters 4–6. So to study ‘(m- or μ-)Kuranishi spaces with corners’ we do not need to start again. Instead, we give extra assumptions about special features of manifolds with corners: boundaries ∂X, k-corners $C_k(X)$, and the corner functor C. We change notation from $\mathfrak{M}an$ in §3.1–§3.3 to $\mathfrak{M}an^c$.

3.4.1 Core assumptions on ‘manifolds with corners’

Assumption 3.22. (a) We are given a category $\mathfrak{M}an^c$. For simplicity, objects X in $\mathfrak{M}an^c$ will be called manifolds with corners, and morphisms $f : X \to Y$ in $\mathfrak{M}an^c$.
\(\mathcal{M}an^c\) will be called \textit{smooth maps}.

(b) The category \(\mathcal{M}an^c\) satisfies Assumptions 3.1–3.7 with \(\mathcal{M}an^c\) in place of \(\mathcal{M}an\). The functor in Assumption 3.2 will be written \(F_{\mathcal{M}an^c} : \mathcal{M}an^c \to \mathcal{S}et\).

(c) We are given a class of morphisms in \(\mathcal{M}an^c\) called \textit{simple maps}. To be simple is a discrete property in the sense of \(\mathcal{M}an^c\). We write \(\mathcal{M}an^c_{si} \subseteq \mathcal{M}an^c\) for the subcategory of \(\mathcal{M}an^c\) with all objects, and simple morphisms.

(d) For each object \(X\) in \(\mathcal{M}an^c\) and each \(k = 0, \ldots, \dim X\), we are given an object \(C_k(X)\) of \(\mathcal{M}an^c\) called the \textit{k-corners} of \(X\) with \(\dim C_k(X) = \dim X - k\), and a morphism \(\Pi_k : C_k(X) \to X\) in \(\mathcal{M}an^c\), such that \(\Pi_{k,\text{top}} : C_k(X)_{\text{top}} \to X_{\text{top}}\) is proper, with finite fibres \(\Pi_{k,\text{top}}^{-1}(x), x \in X_{\text{top}}\).

We write \(C_k(X) = \emptyset\) for \(k > \dim X\).

(e) If \(X \in \mathcal{M}an \subseteq \mathcal{M}an^c\) then \(C_k(X) = \emptyset\) for \(k > 0\), so that \(\partial X = \emptyset\).

(f) For all \(X\) in \(\mathcal{M}an^c\) and \(k, l \geq 0\) with \(k + l \leq \dim X\) there is a natural morphism \(I_{k,l} : C_k(C_l(X)) \to C_{k+l}(X)\) such that the following commutes:

\[C_k(C_l(X)) \xrightarrow{\Pi_k} C_l(X) \xrightarrow{\Pi_l} X. \]

Also \(I_{k,l}\) is étale, that is, a local diffeomorphism in \(\mathcal{M}an^c\), and surjective.

(g) As for \(\mathcal{M}an^c\) in Definition 2.8, construct a category \(\mathcal{M}an^{\infty}\) from \(\mathcal{M}an^c\), such that \(\mathcal{M}an^{\infty}\) has objects \(\bar{X} = \bigsqcup_{m=0}^{\infty} X_m\), for \(X_m\) an object of \(\mathcal{M}an^c\) with \(\dim X_m = m\), allowing \(X_m = \emptyset\), and \(\mathcal{M}an^c\) has morphisms

\[\bar{f} = \bigsqcup_{m,n=0}^{\infty} f_{mn} : \bar{X} = \bigsqcup_{m=0}^{\infty} X_m \to \bar{Y} = \bigsqcup_{n=0}^{\infty} Y_n, \]

where for each \(m = 0, 1, \ldots\) we have a disjoint union \(X_m = \bigsqcup_{n=0}^{\infty} X_{mn}\) in \(\mathcal{M}an^c\), with \(X_{mn}\) open and closed in \(X_m\), allowing \(X_{mn} = \emptyset\), and \(f_{mn} : X_{mn} \to Y_n\) is a morphism in \(\mathcal{M}an^c\). Composition and identities are defined in the obvious way. We write \(\mathcal{M}an^{\infty}_{si}\) for the subcategory of \(\mathcal{M}an^c\) in which the \(f_{mn}\) are simple.

There is an obvious full and faithful \textit{inclusion functor} \(\text{Inc} : \mathcal{M}an^c \to \mathcal{M}an^{\infty}\), which maps \(X\) to \(\bigsqcup_{m=0}^{\infty} X_m\) with \(X_m = X\) if \(m = \dim X\) and \(X_m = \emptyset\) otherwise.

Then we are given a functor \(C : \mathcal{M}an^c \to \mathcal{M}an^{\infty}\) called the \textit{corner functor}, which on objects acts as \(C(X) = \bigsqcup_{k=0}^{\dim X} C_k(X)\), for \(C_k(X)\) the \(k\)-corners of \(X\) as in (d). The morphisms \(\pi_k : C_k(X) \to X\) in \(\mathcal{M}an^c\) for \(k = 0, \ldots, \dim X\) from (d) give a morphism \(\Pi = \bigsqcup_{k \geq 0} \pi_k : C(X) \to \text{Inc}(X)\) in \(\mathcal{M}an^c\), and over all \(X\) these comprise a natural transformation \(\Pi : C \Rightarrow \text{Inc}\) of functors \(\mathcal{M}an^c \to \mathcal{M}an^{\infty}\). That is, we have \(\Pi \circ C(f) = f \circ \Pi : C(X) \to Y\) for all morphisms \(f : X \to Y\) in \(\mathcal{M}an^c\).
We may extend C to a functor $\hat{C} : \hat{\mathbf{Man}}^c \to \hat{\mathbf{Man}}^c$ in the obvious way. Then the morphisms $I_{k,l}$ in (f) induce a natural transformation $I : \hat{C} \circ C \Rightarrow C$ of functors $\mathbf{Man}^c \to \hat{\mathbf{Man}}^c$.

(h) For all $X, Y \in \mathbf{Man}^c$ and $k \geq 0$ there are natural diffeomorphisms

$$C_k(X \times Y) \cong \bigsqcup_{i,j \geq 0, i+j=k} C_i(X) \times C_j(Y).$$

By part (g) these combine to give a diffeomorphism (isomorphism) in \mathbf{Man}^c

$$C(X \times Y) \cong C(X) \times C(Y). \quad (3.8)$$

The corner functor C in (g) preserves products and direct products. That is, if $f : W \to Y$, $g : X \to Y$, $h : X \to Z$ are smooth then the following commute

\[
\begin{array}{ccc}
C(W \times X) & \xrightarrow{C(f \times h)} & C(Y \times Z) \\
\cong & & \cong \\
C(W) \times C(X) & \xrightarrow{C(f) \times C(h)} & C(Y) \times C(Z),
\end{array}
\]

where the columns are the isomorphisms (3.8).

(i) Suppose $f : X \to Y$ is a simple map in \mathbf{Man}^c. Then $C(f) : C(X) \to C(Y)$ in (g) lies in $\hat{\mathbf{Man}}^c_i$ and maps $C_k(X) \to C_k(Y)$ for all $k = 0, \ldots, \dim X$. Hence we have functors $C_k : \hat{\mathbf{Man}}^c_{\leq i} \to \hat{\mathbf{Man}}^c_{\leq i}$ for $k = 0, 1, \ldots$, called the k-corner functors, which on objects map X to $C_k(X)$, and on morphisms map $f : X \to Y$ to the component $C_k(f)$ of $C(f) : C(X) \to C(Y)$ mapping $C_k(X) \to C_k(Y)$. We also write $\partial = C_1 : \hat{\mathbf{Man}}^c_1 \to \hat{\mathbf{Man}}^c_1$, and call it the boundary functor.

(j) Let $i : U \hookrightarrow X$ be an open submanifold in \mathbf{Man}^c. Then i is simple by Definition (3.18(ii)), as simple is a discrete property by (c), so we have morphisms $C_k(i) : C_k(U) \to C_k(X)$ in \mathbf{Man}^c for $k = 0, \ldots, \dim X$ by (i). We require these $C_k(i)$ to be open submanifolds in \mathbf{Man}^c, with topological spaces $C_k(U)_{\text{top}} = \Pi_{k,\text{top}}(U) \subseteq C_k(X)_{\text{top}}$.

(k) Let $f : X \to Y$ be a morphism in \mathbf{Man}^c with $\partial X = \partial Y = \emptyset$. Then f is simple.

Remark 3.23. For the corner functor $C : \hat{\mathbf{Man}}^c \to \hat{\mathbf{Man}}^c$ in Assumption (3.22) we shall be interested in cases in which there is a discrete property P of morphisms in \mathbf{Man}^c such that C maps to the subcategory $\hat{\mathbf{Man}}^c_{P_0}$ of $\hat{\mathbf{Man}}^c$ whose morphisms are P. For example, for \mathbf{Man}^c in $\hat{2.1}$ we have $C : \mathbf{Man}^c \to \mathbf{Man}^c_{\text{in}} \subset \mathbf{Man}^c$, with P interior morphisms in \mathbf{Man}^c.

3.4.2 Examples of categories satisfying the assumptions

Here are some examples satisfying Assumption (3.22).

Example 3.24. (a) The standard example is to take $\hat{\mathbf{Man}}^c$ to be \mathbf{Man}^c from $\hat{2.1}$ and to define simple maps as in $\hat{2.1}$ and k-corners $C_k(X)$, projections
We can take Man_c to be $\mathsf{Man}^c_{\text{st}}$ in Definition 2.2, as in Remark 3.23. Notate that C maps to $\mathsf{Man}^c_{\text{st}} \subset \mathsf{Man}^c$, but use the second corner functor $C' : \mathsf{Man}^c \to \mathsf{Man}^c$ from Definition 2.11.

We can take Man_c to be $\mathsf{Man}_c^{\text{st}}$ as in 2.1 with simple maps, $C_k(X), \Pi_k$ as in 2.2, and either corner functor $C : \mathsf{Man}_c^{\text{st}} \to \mathsf{Man}_c^{\text{st, in}} \subset \mathsf{Man}_c^{\text{st}}$ or $C' : \mathsf{Man}_c^{\text{st}} \to \mathsf{Man}_c^{\text{st}}$.

We can take $\mathsf{Man}_c^{\text{ac}} = \mathsf{Man}_c^{\text{ac, st}}$ with simple maps, $C_k(X), \Pi_k$ as in 2.4.2, and either $C : \mathsf{Man}_c^{\text{ac}} \to \mathsf{Man}_c^{\text{ac, st}} \subset \mathsf{Man}_c^{\text{ac}}$ or $C' : \mathsf{Man}_c^{\text{ac}} \to \mathsf{Man}_c^{\text{ac}}$.

We can take $\mathsf{Man}_c^{\text{ac}} = \mathsf{Man}_c^{\text{ac, st}}$ with simple maps, $C_k(X), \Pi_k$ as in 2.4.2, and either $C : \mathsf{Man}_c^{\text{ac}} \to \mathsf{Man}_c^{\text{ac, st, in}} \subset \mathsf{Man}_c^{\text{ac}}$ or $C' : \mathsf{Man}_c^{\text{ac}} \to \mathsf{Man}_c^{\text{ac}}$.

We can take $\mathsf{Man}_c^{\text{ac}} = \mathsf{Man}_c^{\text{ac, st}}$ with simple maps, $C_k(X), \Pi_k$ as in 2.4.2, and either $C : \mathsf{Man}_c^{\text{ac}} \to \mathsf{Man}_c^{\text{ac, st, in}} \subset \mathsf{Man}_c^{\text{ac}}$ or $C' : \mathsf{Man}_c^{\text{ac}} \to \mathsf{Man}_c^{\text{ac}}$.

We can take $\mathsf{Man}_c^{\text{ac}} = \mathsf{Man}_c^{\text{ac, st}}$ with simple maps, $C_k(X), \Pi_k$ as in 2.4.2, and either $C : \mathsf{Man}_c^{\text{ac}} \to \mathsf{Man}_c^{\text{ac, st, in}} \subset \mathsf{Man}_c^{\text{ac}}$ or $C' : \mathsf{Man}_c^{\text{ac}} \to \mathsf{Man}_c^{\text{ac}}$.

A trivial example: if Man satisfies Assumptions 3.1, 3.7, such as $\mathsf{Man} = \mathsf{Man}$, we can set $\mathsf{Man}^c = \mathsf{Man}$, define all morphisms in Man^c to be simple, and for each X in Man^c we put $C_0(X) = X, \partial X = \emptyset$ and $C_k(X) = \emptyset$ for $k > 0$. Then Assumption 3.22 holds. This allows us for example to take $\mathsf{Man}^c = \mathsf{Man}^c$, but to have $\partial X = \emptyset$ for $k > 0$, for all X in Man^c.

Note that Example 3.24 does not include the category $\mathsf{Man}_c^{\text{we}}$ of manifolds with corners and weakly smooth maps from 2.4. This is because Lemma 2.5 is false for $\mathsf{Man}_c^{\text{we}}$, so the corner functor C in 2.4 cannot be defined for $\mathsf{Man}_c^{\text{we}}$, and Assumption 3.22 fails.

3.4.3 Pulling back morphisms $\theta : E \to T_\tau Y$ by $\Pi : C(X) \to X$

Suppose throughout this section that Man^c satisfies Assumption 3.22 in 3.4.1. In [B.5.8.1] we define a morphism $\theta : E \to T_\tau Y$ on X we define a ‘pullback’ morphism $\Pi^*(\theta) : \Pi^*(E) \to T_{C(f)}(C(Y))$ on X. This does not follow from the material of 3.3.1–3.3.5, it is a new feature for manifolds with corners Man^c.

Definition 3.25. Let $f : X \to Y$ be a morphism in Man^c, and $E \to X$ be a vector bundle on X, and $\theta : E \to T_\tau Y$ be a morphism on X in the sense of 3.3.4 and 3.4.8. Then we have a morphism $C(f) : C(X) \to C(Y)$ in Man^c, and pulling back by $\Pi : C(X) \to X$ gives a vector bundle $\Pi^*(E) \to C(X)$. Definition 3.45 in 3.3.4 defines a morphism $\Pi^*(\theta) : \Pi^*(E) \to T_{C(f)}(Y)$ on $C(X)$, in the sense of 3.4.1 and 3.4.8.

We think of $\Pi^*(\theta)$ as a kind of pullback of θ by $\Pi : C(X) \to X$.

50
We write the restriction \(\Pi^\circ(\theta)|_{C_k(X)} \) for \(k = 0,1, \ldots \) as \(\Pi^\circ_k(\theta) \). Thus if \(f : X \to Y \) is simple, so that \(C(f) \) maps \(C_k(X) \to C_k(Y) \) by Assumption 3.22, we have morphisms \(\Pi^\circ_k(\theta) : \Pi^\circ_k(E) \to T_{C_k(f)}C_k(Y) \) for \(k = 0,1, \ldots \).

Example 3.26. Take \(\text{Man}^c = \text{Man}^c \), and let \(f : X \to Y \) be an interior map in \(\text{Man}^c \), and \(E \to X \) a vector bundle. Then \(T_fY \) is the sheaf of sections of \(f^*(bTY) \to X \), as in Example 3.13, so morphisms \(\theta : E \to T_fY \) correspond to vector bundle morphisms \(\bar{\theta} : E \to f^*(bTY) \) on \(X \). Then \(\Pi^\circ(\theta) \) corresponds to the composition of vector bundle morphisms on \(C(X) \)

\[
\Pi^\circ(E) \xrightarrow{\Pi^\circ(\theta)} \Pi^\circ \circ f^*(bTY) = C(f)^* \circ \Pi^\circ(bTY) \xrightarrow{C(f)^*(\Pi^\circ)} C(f)^*(bTC(Y)),
\]

where \(I^\circ_2 : \Pi^\circ(bTY) \to bTC(Y) \) is as in (2.13).

Here is Theorem B.47 giving properties of the morphisms \(\Pi^\circ(\theta) \):

Theorem 3.27. (a) Let \(f : X \to Y \) be a morphism in \(\text{Man}^c \), and \(E \to X \) a vector bundle, and \(\theta : E \to T_fY \) be a morphism, in the sense of 3.3.4(d). Then the following diagram of sheaves on \(C(X)_{\text{top}} \) commutes:

\[
\begin{array}{ccc}
\Pi^\circ(E) & \xrightarrow{\Pi^\circ(\theta)} & \Pi^\circ \circ f^*(bTY) = C(f)^* \circ \Pi^\circ(bTY) \\
\downarrow{\Pi^\circ(\theta)} & & \downarrow{C(f)^*(\Pi^\circ)} \\
\mathcal{T}_{\mathcal{C}(f)C(Y)} & \xrightarrow{\mathcal{T}\Pi} & \mathcal{T}_{\Pi \circ C(f)C(Y)},
\end{array}
\]

where \(\mathcal{T}\Pi \) and \(\Pi^\circ(\theta) \) are as in 3.3.4(c),(g).

(b) Let \(f : X \to Y \) be a morphism in \(\text{Man}^c \), \(D, E \to X \) vector bundles, \(\lambda : D \to E \) a vector bundle morphism, and \(\theta : E \to T_fY \) a morphism. Then

\[
\Pi^\circ(\theta \circ \lambda) = \Pi^\circ(\theta) \circ \Pi^\circ(\lambda) : \Pi^\circ(D) \to \mathcal{T}_{C(f)C(Y)}.
\]

(c) Let \(f : X \to Y, g : Y \to Z \) be morphisms in \(\text{Man}^c \), and \(E \to X \) a vector bundle, and \(\theta : E \to T_fY \) a morphism. Then the following diagram of sheaves on \(C(X)_{\text{top}} \) commutes:

\[
\begin{array}{ccc}
\Pi^\circ(E) & \xrightarrow{\Pi^\circ(\theta)} & \Pi^\circ \circ f^*(bTY) = C(f)^* \circ \Pi^\circ(bTY) \\
\downarrow{\Pi^\circ(T_g \circ \theta)} & & \downarrow{T_{C(f)C(Y)}} \\
\mathcal{T}_{C(g) \circ C(f)C(Z)} & = & \mathcal{T}_{C(\lambda) \circ C(f)C(Z)}.
\end{array}
\]

(d) Let \(f : X \to Y, g : Y \to Z \) be morphisms in \(\text{Man}^c \), and \(F \to Y \) a vector bundle, and \(\phi : F \to T_fZ \) a morphism. Then

\[
C(f)^* \circ (\Pi^\circ(\phi)) = C(f)^* \circ \Pi^\circ(F) = \Pi^\circ \circ f^*(F)
\]

\[
\to \mathcal{T}_{C(g) \circ C(f)C(Z)} = \mathcal{T}_{C(\lambda) \circ C(f)C(Z)}.
\]
Here is Theorem 3.28 which shows that the $O(s), O(s^2)$ notation of Definition 3.15(i)–(vii) on X pulls back under $\Pi : C(X) \to X$ to the corresponding $O(\Pi(s)), O(\Pi(s^2))$ notation, using Π^* to pull back morphisms $\lambda : E \to T_f Y$.

Theorem 3.28. Let X be an object in Man^{c}, and $E \to X$ be a vector bundle, and $s \in \Gamma^\infty(E)$ be a section. Then:

(i) Suppose $F \to X$ is a vector bundle and $t_1, t_2 \in \Gamma^\infty(F)$ with $t_2 = t_1 + O(s)$ (or $t_2 = t_1 + O(s^2)$) on X as in Definition 3.15(i). Then $\Pi^*(t_2) = \Pi^*(t_1) + O(\Pi^*(s))$ (or $\Pi^*(t_2) = \Pi^*(t_1) + O(\Pi^*(s^2))$) on $C(X)$.

(ii) Suppose $F \to X$ is a vector bundle, $f : X \to Y$ is a morphism in Man^{c}, and $\Lambda_1, \Lambda_2 : F \to T_f Y$ are morphisms with $\Lambda_2 = \Lambda_1 + O(s)$ on X as in Definition 3.15(ii). Then Definition 3.25 gives morphisms $\Pi^*(\Lambda_1), \Pi^*(\Lambda_2) : \Pi^*(F) \to T_{\Pi(f)} C(Y)$ on $C(X)$, which satisfy $\Pi^*(\Lambda_2) = \Pi^*(\Lambda_1) + O(\Pi^*(s))$ on $C(X)$.

(iii) Suppose $f, g : X \to Y$ are morphisms in Man^{c} with $g = f + O(s)$ on X as in Definition 3.15(iii). Then $C(g) = C(f) + O(\Pi^*(s))$ on $C(X)$.

(iv) Suppose $f, g : X \to Y$ with $g = f + O(s)$ are in (iii), and $F \to X$, $G \to Y$ are vector bundles, and $\theta_1 : F \to f^*(G)$, $\theta_2 : F \to g^*(G)$ are morphisms with $\theta_2 = \theta_1 + O(s)$ on X as in Definition 3.15(iv). Then $\Pi^*(\theta_2) = \Pi^*(\theta_1) + O(\Pi^*(s))$ on $C(X)$.

(v) Suppose $f, g : X \to Y$ with $g = f + O(s)$ are in (iii), and $F \to X$ is a vector bundle, and $\Lambda_1 : F \to T_f Y$, $\Lambda_2 : F \to T_g Y$ are morphisms with $\Lambda_2 = \Lambda_1 + O(s)$ on X as in Definition 3.15(v). Then $C(g) = C(f) + O(\Pi^*(s))$ on $C(X)$.

(vi) Suppose $F \to X$ is a morphism in Man^{c}, and $F \to X, G \to Y$ are vector bundles, and $t \in \Gamma^\infty(G)$ with $f^*(t) = O(s)$, and $\Lambda : F \to T_f Y$ is a morphism, and $\theta : F \to f^*(G)$ is a vector bundle morphism with $\theta = f^*(dt) \circ \Lambda + O(s)$ on X as in Definition 3.15(vi). Then $\Pi^*(\theta) = C(f)^*(dt) \circ \Pi^*(\Lambda) + O(\Pi^*(s))$ on $C(X)$.

(vii) Suppose $f, g : X \to Y$ with $g = f + O(s)$ are in (iii), and $\Lambda : E \to T_f Y$ is a morphism with $g = f + \Lambda \circ s + O(s^2)$ on X as in Definition 3.15(vii). Then $C(g) = C(f) + \Pi^*(\Lambda) \circ \Pi^*(s) + O(\Pi^*(s^2))$ on $C(X)$.

3.4.4 Comparing different categories Man^{c}

Condition 3.26 in B.37 and B.7 compared two categories $\mathsf{Man}, \mathsf{Man}$ satisfying Assumptions 3.1.5. Here is Condition 3.49 in B.8.2, the corners analogue:
Condition 3.29. Let $\tilde{\text{Man}}^c, \tilde{\text{Man}}^c$ satisfy Assumption 3.22, and $F_{\tilde{\text{Man}}^c : \text{Man}^c}$ be a functor in the commutative diagram, as in 3.7.

$$\text{Man} \xrightarrow{\subset} \tilde{\text{Man}}^c \xrightarrow{\subset} \text{Top.}$$

We also require:

(i) $F^\text{Man}^c : \text{Man}^c$ should take products, disjoint unions, open submanifolds, and simple maps in $\tilde{\text{Man}}^c$ to products, disjoint unions, open submanifolds, and simple maps in Man^c, and preserve dimensions.

(ii) There are canonical isomorphisms $F_{\tilde{\text{Man}}^c}(C_k(X)) \cong C_k(F_{\text{Man}^c}(X))$ for all X in $\tilde{\text{Man}}^c$ and $k \geq 0$, so $k = 1$ gives $F_{\tilde{\text{Man}}^c}(\partial X) \cong \partial(F_{\text{Man}^c}(X))$. These isomorphisms commute with the projections $\Pi : C_k(X) \rightarrow X$ and $I_{k,l} : C_k(C_l(X)) \rightarrow C_{k+l}(X)$ in Man^c and $\tilde{\text{Man}}^c$, and induce a natural isomorphism $F_{\tilde{\text{Man}}^c} F_{\text{Man}^c} : \tilde{\text{Man}}^c \rightarrow \text{Man}^c$ of functors $\text{Man}^c \rightarrow \tilde{\text{Man}}^c$.

As for Figure 3.1 Figure 3.2 gives a diagram of functors from Chapter 2 which satisfy Condition 3.29, with the first corner functor C from Definition 2.9. With the second corner functor C' from Definition 2.9 we get the same diagram omitting Man^c. Arrows \to' satisfy Proposition 3.21(a) or (b). The arrow marked \to' is the non-obvious functor $F_{\text{Man}^c_{ac}} : \text{Man}^c_{ac} \rightarrow \tilde{\text{Man}}^c$ from 2.4.2.

$$\text{Man}_{st}^c \xrightarrow{\subset} \tilde{\text{Man}}_{st}^c \xrightarrow{\subset} \text{Man}^c$$

Figure 3.2: Functors satisfying Condition 3.29 with the first corner functor C. Arrows \to' satisfy Proposition 3.21(a) or (b).

Condition 3.29 implies that $F_{\tilde{\text{Man}}^c : \text{Man}^c}$ satisfies Condition 3.20. Thus 3.3.7 applies, so that all the material of 3.3.1–3.3.5 in $\tilde{\text{Man}}^c$ maps functorially to its analogue in Man^c. Remark B.50 explains that the morphisms $\Pi^c(\theta)$ in 3.3.4.3 are also compatible with these functorial maps.
Chapter 4

M-Kuranishi spaces

Throughout this chapter we suppose we are given a category $\tilde{\text{Man}}$ satisfying Assumptions 3.1–3.7 in §3.1. Examples of such categories are given in §3.2. The primary example is the category Man of ordinary manifolds, and the assumptions are almost all well-known differential-geometric facts in this case. To each such category Man we will associate a 2-category mKur of ‘m-Kuranishi spaces’. The possibilities for Man include many categories of manifolds with corners, such as Man^c in §2.1. In §4.6, to discuss the corners case, we switch notation from Man to a category $\tilde{\text{Man}}^c$ satisfying Assumption 3.22, with a corresponding 2-category mKur^c of ‘m-Kuranishi spaces with corners’.

We will use the notation of Appendix B for differential geometry in $\tilde{\text{Man}}$ throughout, which is summarized in §3.3. In particular, readers should familiarize themselves with ‘relative tangent sheaves’ T_fY in §3.3.4 and §B.4 and the ‘$O(s)$’ and ‘$O(s^2)$’ notation in §3.3.5 and §B.5 before proceeding.

By an abuse of notation we will often refer to objects X of $\tilde{\text{Man}}$ as ‘manifolds’ (though they may in examples have singularities, corners, etc.), and morphisms $f : X \rightarrow Y$ in Man as ‘smooth maps’ (though they may in examples be non-smooth). As in Assumption 3.4 we have an inclusion $\text{Man} \subseteq \tilde{\text{Man}}$. We will call objects $X \in \text{Man} \subseteq \tilde{\text{Man}}$ ‘classical manifolds’, and call morphisms $f : X \rightarrow Y$ in $\text{Man} \subseteq \tilde{\text{Man}}$ ‘classical smooth maps’.

In Chapter 3 we distinguished between objects X, Y and morphisms $f : X \rightarrow Y$ in $\tilde{\text{Man}}$, and the corresponding topological spaces X_{top}, Y_{top} and continuous maps $f_{\text{top}} : X_{\text{top}} \rightarrow Y_{\text{top}}$. We will now drop this distinction, and just write X, Y, f in place of X_{top}, Y_{top}, f_{top}, as usual in differential geometry. We will also treat open submanifolds $i : U \hookrightarrow X$ in Assumption 3.2(d) just as open subsets $U \subseteq X$.

On a first reading it may be helpful to take $\tilde{\text{Man}} = \text{Man}$. For an introduction to 2-categories, see Appendix A.

4.1 The strict 2-category of m-Kuranishi neighbourhoods

We work throughout in a category $\tilde{\text{Man}}$ satisfying Assumptions 3.1–3.7.
Definition 4.1. Let X be a topological space. An m-Kuranishi neighbourhood on X is a quadruple (V, E, s, ψ) such that:

(a) V is a manifold (object in \Man). We allow $V = \emptyset$.
(b) $\pi : E \to V$ is a vector bundle over V, called the obstruction bundle.
(c) $s : V \to E$ is a section of E, called the Kuranishi section.
(d) ψ is a homeomorphism from $s^{-1}(0)$ to an open subset $\Im \psi$ in X, where $\Im \psi = \{ \psi(x) : x \in s^{-1}(0) \}$ is the image of ψ, and is called the footprint of (V, E, s, ψ).

If $S \subseteq X$ is open, by an m-Kuranishi neighbourhood over S, we mean an m-Kuranishi neighbourhood (V, E, s, ψ) on X with $S \subseteq \Im \psi \subseteq X$.

We call (V, E, s, ψ) a global m-Kuranishi neighbourhood if $\Im \psi = X$.

Definition 4.2. Let X, Y be topological spaces, $f : X \to Y$ a continuous map, (V_i, E_i, s_i, ψ_i), (V_j, E_j, s_j, ψ_j) be m-Kuranishi neighbourhoods on X, Y respectively, and $S \subseteq \Im \psi_i \cap f^{-1}(\Im \psi_j) \subseteq X$ be an open set. A 1-morphism $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ of m-Kuranishi neighbourhoods over (S, f) is a triple $\Phi_{ij} = (V_{ij}, \phi_{ij}, \tilde{\phi}_{ij})$ satisfying:

(a) V_{ij} is an open neighbourhood of $\psi_i^{-1}(S)$ in V_i. We do not require that $V_{ij} \cap s_i^{-1}(0) = \psi_i^{-1}(S)$, only that $\psi_i^{-1}(S) \subseteq V_{ij} \cap s_i^{-1}(0) \subseteq V_j$.
(b) $\phi_{ij} : V_{ij} \to V_j$ is a smooth map.
(c) $\tilde{\phi}_{ij} : E_i|_{V_{ij}} \to \phi_{ij}^*E_j$ is a morphism of vector bundles on V_{ij}.
(d) $\tilde{\phi}_{ij}(s_i|_{V_{ij}}) = \phi_{ij}^*(s_j) + O(s_j^2)$, in the sense of Definition 3.15(i).
(e) $f \circ \psi_i = \psi_j \circ \phi_{ij}$ on $s_i^{-1}(0) \cap V_{ij}$.

When $X = Y$ and $f = \id_X$ we just call Φ_{ij} a 1-morphism over S. In this case, the identity 1-morphism $\id_{(V_i, E_i, s_i, \psi_i)} : (V_i, E_i, s_i, \psi_i) \to (V_i, E_i, s_i, \psi_i)$ over S is $\id_{(V_i, E_i, s_i, \psi_i)} = (V_i, \id_{V_i}, \id_{E_i})$.

Definition 4.3. Let $f : X \to Y$ be a continuous map of topological spaces, (V_i, E_i, s_i, ψ_i), (V_j, E_j, s_j, ψ_j) be m-Kuranishi neighbourhoods on X, Y, and $\Phi_{ij}, \Phi_{ij}' : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ be 1-morphisms of m-Kuranishi neighbourhoods over (S, f) for $S \subseteq \Im \psi_i \cap f^{-1}(\Im \psi_j) \subseteq X$ open, where $\Phi_{ij} = (V_{ij}, \phi_{ij}, \tilde{\phi}_{ij})$ and $\Phi_{ij}' = (V_{ij}', \phi_{ij}', \tilde{\phi}_{ij}')$. Consider pairs $(\hat{V}_{ij}, \hat{\lambda}_{ij})$ satisfying:

(a) \hat{V}_{ij} is an open neighbourhood of $\psi_i^{-1}(S)$ in $V_{ij} \cap V_{ij}'$.
(b) $\hat{\lambda}_{ij} : E_i|_{\hat{V}_{ij}} \to T_{\phi_{ij}}V_j|_{\psi_i}$ is a morphism in the notation of 3.3.4 with $\phi_{ij}' = \phi_{ij} + \lambda_{ij} \circ s_i + O(s_i^2)$ and $\hat{\phi}_{ij}' = \hat{\phi}_{ij} + \phi_{ij}'(ds_j) \circ \hat{\lambda}_{ij} + O(s_i)$ on \hat{V}_{ij}, (4.1) in the sense of Definition 3.15(iv),(vi),(vii).
Define a binary relation \(\sim \) on such pairs by \((\hat{V}_{ij}, \hat{\lambda}_{ij}) \sim (\hat{V}'_{ij}, \hat{\lambda}'_{ij})\) if there exists an open neighbourhood \(\hat{V}_{ij} \) of \(\psi^{-1}_i(S) \) in \(\hat{V}_{ij} \cap \hat{V}'_{ij} \) with \[
abla_{ij}|_{\hat{V}_{ij}} = \hat{\lambda}_{ij}|_{\hat{V}_{ij}} + O(s_i) \quad \text{on} \quad \hat{V}_{ij},
\] (4.2)
in the sense of Definition \[3.15\](ii). We see from Theorem \[3.17\](c) that \(\sim \) is an equivalence relation. We also write \(\sim_S \) in place of \(\sim \) if we want to emphasize the open set \(S \subseteq X \).

Write \([\hat{V}_{ij}, \hat{\lambda}_{ij}]\) for the \(\sim \)-equivalence class of \((\hat{V}_{ij}, \hat{\lambda}_{ij})\). We say that \([\hat{V}_{ij}, \hat{\lambda}_{ij}] : \Phi_{ij} \Rightarrow \Phi'_{ij}\) is a 2-morphism of 1-morphisms of m-Kuranishi neighbourhoods on \(X \) over \((S,f)\), or just a 2-morphism over \((S,f)\). We often write \(\Lambda_{ij} = [\hat{V}_{ij}, \hat{\lambda}_{ij}] \).

When \(X = Y \) and \(f = \text{id}_X \) we just call \(\Lambda_{ij} \) a 2-morphism over \(S \).

The identity 2-morphism of \(\Phi_{ij} \) over \((S,f)\) is \(\text{id}_{\Phi_{ij}} = [V_{ij}, 0] : \Phi_{ij} \Rightarrow \Phi_{ij} \).

Definition 4.4. Let \(X, Y, Z \) be topological spaces, \(f : X \to Y, g : Y \to Z \) be continuous maps, \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j), (V_k, E_k, s_k, \psi_k)\) be m-Kuranishi neighbourhoods on \(X, Y, Z \) respectively, and \(T \subseteq \text{Im} \psi_i \cap g^{-1}\text{Im} \psi_k \subseteq Y \) and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(T) \subseteq X \) be open. Suppose \(\Phi_{ij} = (V_{ij}, \phi_{ij}, \hat{\phi}_{ij}) : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) is a 1-morphism of m-Kuranishi neighbourhoods over \((S,f)\), and \(\Phi_{jk} = (V_{jk}, \phi_{jk}, \hat{\phi}_{jk}) : (V_j, E_j, s_j, \psi_j) \to (V_k, E_k, s_k, \psi_k) \) is a 1-morphism of m-Kuranishi neighbourhoods over \((T,g)\). Then \(\Phi_{ik} = (V_{ik}, \phi_{ik}, \hat{\phi}_{ik}) \) is a 1-morphism of m-Kuranishi neighbourhoods over \((S,f)\), using Theorem \[3.17\](n) to prove that Definition \[4.2\](d) holds.

An important special case is when \(X = Y = Z, f = g = \text{id}_X \), and \(S = T, \) so that \(\Phi_{ij}, \Phi_{jk} \) and \(\Phi_{jk} \circ \Phi_{ij} \) are all 1-morphisms over \(S \subseteq X \).

Clearly, composition of 1-morphisms is strictly associative, that is,
\[
(\Phi_{kl} \circ \Phi_{jk}) \circ \Phi_{ij} = \Phi_{kl} \circ (\Phi_{jk} \circ \Phi_{ij}) : (V_i, E_i, s_i, \psi_i) \to (V_k, E_k, s_k, \psi_k),
\]
for a 1-morphism \(\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) over \((S,f)\).

Definition 4.5. Let \(X, Y \) be topological spaces, \(f : X \to Y \) be continuous, \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)\) be m-Kuranishi neighbourhoods on \(X, Y \), \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X \) be open, and \(\Phi_{ij}, \Phi'_{ij}, \Phi''_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)\) be 1-morphisms over \((S,f)\) with \(\Phi_{ij} = (V_{ij}, \phi_{ij}, \hat{\phi}_{ij}), \Phi'_{ij} = (V'_{ij}, \phi'_{ij}, \hat{\phi}'_{ij}), \Phi''_{ij} = (V''_{ij}, \phi''_{ij}, \hat{\phi''}_{ij}) \). Suppose \(\Lambda_{ij} = [\hat{V}_{ij}, \hat{\lambda}_{ij}] : \Phi_{ij} \Rightarrow \Phi'_{ij} \) and \(\Lambda'_{ij} = [\hat{V}'_{ij}, \hat{\lambda}'_{ij}] : \Phi'_{ij} \Rightarrow \Phi''_{ij} \) are 2-morphisms over \((S,f)\). We will define the vertical composition of 2-morphisms, written
\[
\Lambda'_{ij} \odot \Lambda_{ij} = [\hat{V}'_{ij}, \hat{\lambda}'_{ij}] \odot [\hat{V}_{ij}, \hat{\lambda}_{ij}] : \Phi_{ij} \Rightarrow \Phi''_{ij} \quad \text{over} \quad (S,f).
\]
Choose representatives \((\hat{V}_{ij}, \hat{\lambda}_{ij}), (\hat{V}_{ij}', \hat{\lambda}_{ij}')\) in the \(\sim\)-equivalence classes \(\Lambda_{ij}, \Lambda_{ij}'\). Define \(\hat{V}_{ij}'' = \hat{V}_{ij} \cap \hat{V}_{ij}' \subseteq V_i\). Since \(\phi_{ij}|_{\hat{V}_{ij}''} = \phi_{ij}|_{\hat{V}_{ij}'} + O(s_i)\) by (iv), Theorem \ref{thm:3.17}(g) shows that there exists \(\hat{\lambda}_{ij}' : E_i|_{\hat{V}_{ij}''} \to T_{\phi_{ij}} V_j|_{\hat{V}_{ij}''}\), unique up to \(O(s_i)\), with \(\hat{\lambda}_{ij}'|_{\hat{V}_{ij}''} = \hat{\lambda}_{ij}|_{\hat{V}_{ij}''} + \hat{\lambda}_{ij}'\). Then Theorem \ref{thm:3.17}(b),(c),(d),(g),(j),(l) imply \((\hat{V}_{ij}'', \hat{\lambda}_{ij}'')\) satisfies Definition \ref{def:4.3}(b) for \(\Phi_{ij}, \Phi_{ij}''\). Hence \(\Lambda_{ij}'' = [\hat{V}_{ij}'', \hat{\lambda}_{ij}''] : \Phi_{ij} \Rightarrow \Phi_{ij}''\) is a 2-morphism over \((S, f)\). Since \(\hat{\lambda}_{ij}'\) is unique up to \(O(s_i)\) in Theorem \ref{thm:3.17}(f), the equivalence class \(\Lambda_{ij}'' = [\hat{V}_{ij}'', \hat{\lambda}_{ij}''']\) is independent of choices. We define \(\Lambda_{ij}'' \circ \Lambda_{ij} = \Lambda_{ij}'''\), and call this the vertical composition of 2-morphisms over \((S, f)\). When \(X = Y\) and \(f = \text{id}_X\) we call it vertical composition of 2-morphisms over \(S\).

Let \(\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi_{ij}\) be a 2-morphism over \((S, f)\), and choose a representative \((\hat{V}_{ij}, \hat{\lambda}_{ij})\) for \(\Lambda_{ij} = [\hat{V}_{ij}, \hat{\lambda}_{ij}]\). Now \(\phi_{ij}|_{\hat{V}_{ij}} = \phi_{ij}|_{\hat{V}_{ij}'} + O(s_i)\) by (iv), so Theorem \ref{thm:3.17}(f) gives \(\hat{\lambda}_{ij}' : E_i|_{\hat{V}_{ij}'} \to T_{\phi_{ij}} V_j|_{\hat{V}_{ij}'}\), unique up to \(O(s_i)\), with \(\hat{\lambda}_{ij}' = -\hat{\lambda}_{ij} + O(s_i)\), in the sense of Definition \ref{def:3.15}(v). We can then show that \(\Lambda_{ij}' = [\hat{V}_{ij}, \hat{\lambda}_{ij}']\) : \(\Phi_{ij}' \Rightarrow \Phi_{ij}\) is a 2-morphism over \((S, f)\), and is a two-sided inverse \(\Lambda_{ij}^{-1}\) for \(\Lambda_{ij}\) under vertical composition. Thus, all 2-morphisms over \((S, f)\) are invertible under vertical composition, that is, they are 2-isomorphisms.

Definition 4.6. Let \(X, Y, Z\) be topological spaces, \(f : X \to Y\), \(g : Y \to Z\) be continuous maps, \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j), (V_k, E_k, s_k, \psi_k)\) be m-Kuranishi neighbourhoods on \(X, Y, Z\), and \(T \subseteq \text{Im} \psi_j \cap g^{-1}(\text{Im} \psi_k) \subseteq Y\) and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(T) \subseteq X\) be open. Suppose \(\Phi_{ijk}, \Phi_{ijk}' : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)\) are 1-morphisms of m-Kuranishi neighbourhoods over \((S, f)\), and \(\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi_{ij}\) is a 2-morphism over \((S, f)\), and \(\Phi_{jk}, \Phi_{jk}' : (V_j, E_j, s_j, \psi_j) \to (V_k, E_k, s_k, \psi_k)\) are 1-morphisms of m-Kuranishi neighbourhoods over \((T, g)\), and \(\Lambda_{jk} : \Phi_{jk} \Rightarrow \Phi_{jk}\) is a 2-morphism over \((T, g)\).

We will define the *horizontal composition of 2-morphisms*, written

\[
\Lambda_{jk} \ast \Lambda_{ij} : \Phi_{jk} \circ \Phi_{ij} \Rightarrow \Phi_{jk}' \circ \Phi_{ij}'
\]

over \((S, g \circ f)\).

Use our usual notation for \(\Phi_{ijk}, \ldots, \Lambda_{ijk}\), and write \((V_{ik}, \phi_{ik}, \hat{\phi}_{ik}) = \Phi_{ijk} \circ \Phi_{ij}\), \((V_{ik}', \phi_{ik}', \hat{\phi}_{ik}') = \Phi_{ijk}' \circ \Phi_{ij}'\), as in Definition \ref{def:4.4} Choose representatives \((\hat{V}_{ijk}, \hat{\lambda}_{ijk})\), \((\hat{V}_{ijk}', \hat{\lambda}_{ijk}')\) for \(\Lambda_{ijk}, \Lambda_{ijk}'\).

Set \(\hat{V}_{ik} = \hat{V}_{ij} \cap \hat{V}_{jk}''(\hat{V}_{ik}) \subseteq V_i\). Define a morphism on \(\hat{V}_{ik}\)

\[
\hat{\lambda}_{ik} : E_i|_{\hat{V}_{ik}} \to T_{\phi_{ik}} V_k|_{\hat{V}_{ik}}
\]

by

\[
\hat{\lambda}_{ik} = T_{\phi_{ik}} \circ \hat{\lambda}_{ijk} + \phi_{ij}|_{\hat{V}_{ik}} \circ \hat{\phi}_{ij}|_{\hat{V}_{ik}}.
\]

We can now check using Theorem \ref{thm:3.17}(b),(c),(d),(g),(j),(l),(n),(p),(q),(t),(u) that \((\hat{V}_{ik}, \hat{\lambda}_{ik})\) satisfies Definition \ref{def:4.3}(b) for \(\Phi_{jk} \circ \Phi_{ij}, \Phi_{jk}' \circ \Phi_{ij}'\), so \(\Lambda_{ik} = [\hat{V}_{ik}, \hat{\lambda}_{ik}]\) is a 2-morphism over \((S, g \circ f)\), which is independent of choices. We define horizontal composition of 2-morphisms to be \(\Lambda_{jk} \ast \Lambda_{ij} = \Lambda_{ik}\).

When \(X = Y = Z\), \(f = g = \text{id}_X\) and \(S = T\) we call this horizontal composition of 2-morphisms over \(S\).
We have now defined all the structures of a strict 2-category, as in \textsection A.2 objects (m-Kuranishi neighbourhoods on \(X \) over open \(S \subseteq X \)), 1- and 2-morphisms, their three kinds of composition, and two kinds of identities. The next theorem has a long but straightforward proof, using Theorem 3.17 at some points, and we leave it as an exercise.

Theorem 4.7. The structures in Definitions \textsection A.1,A.2 satisfy the axioms of a strict 2-category in \textsection A.2.

We define three 2-categories of m-Kuranishi neighbourhoods:

Definition 4.8. Write \(\text{mKN} \) for the strict 2-category of m-Kuranishi neighbourhoods defined using \(\text{Man} \), where:

- Objects of \(\text{mKN} \) are triples \((X,S,(V,E,s,\psi))\), where \(X \) is a topological space, \(S \subseteq X \) is open, and \((V,E,s,\psi)\) is an m-Kuranishi neighbourhood over \(S \), as in Definition 4.1.
- 1-morphisms \((f,\Phi_{ij}) : (X,S,(V_i,E_i,s_i,\psi_i)) \to (Y,T,(V_j,E_j,s_j,\psi_j))\) of \(\text{mKN} \) are a pair of a continuous map \(f : X \to Y \) with \(S \subseteq f^{-1}(T) \subseteq X \) and a 1-morphism \(\Phi_{ij} : (V_i,E_i,s_i,\psi_i) \to (V_j,E_j,s_j,\psi_j) \) over \((S,f)\), as in Definition 4.2.
- For 1-morphisms \((f,\Phi_{ij}),(f,\Phi'_{ij}) : (X,S,(V_i,E_i,s_i,\psi_i)) \to (Y,T,(V_j,E_j,s_j,\psi_j))\) with the same continuous map \(f : X \to Y \), a 2-morphism \(\Lambda_{ij} : (f,\Phi_{ij}) \Rightarrow (f,\Phi'_{ij}) \) of \(\text{mKN} \) is a 2-morphism \(\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij} \) over \((S,f)\), as in Definition 4.3.
- Identities, and the three kinds of composition of 1- and 2-morphisms, are defined in the obvious way using Definitions 4.2,4.6.

Define \(\text{GmKN} \) to be the full 2-subcategory of \(\text{mKN} \) with objects \((s^{-1}(0),s^{-1}(0),(V,E,s,\id_{s^{-1}(0)})\)) for which \(X = S = s^{-1}(0) \) and \(\psi = \id_{s^{-1}(0)} \). We call \(\text{GmKN} \) the strict 2-category of global m-Kuranishi neighbourhoods. For brevity we usually write objects of \(\text{GmKN} \) as \((V,E,s)\) rather than \((s^{-1}(0),s^{-1}(0),(V,E,s,\id_{s^{-1}(0)})\)). For a 1-morphism in \(\text{GmKN} \)

\[
(f,\Phi_{ij}) : (s^{-1}_i(0),s^{-1}_i(0), (V_i,E_i,s_i,\id_{s^{-1}_i(0)})) \to (s^{-1}_j(0),s^{-1}_j(0), (V_j,E_j,s_j,\id_{s^{-1}_j(0)}))
\]

with \(\Phi_{ij} = (V_i,\phi_{ij},\hat{\phi}_{ij}) \) we must have \(f = \phi_{ij}|_{s^{-1}_i(0)} : s^{-1}_i(0) \to s^{-1}_j(0) \) by Definition 4.2(e), so \(f \) is determined by \(\Phi_{ij} \), and we write 1-morphisms of \(\text{GmKN} \) as \(\Phi_{ij} : (V_i,E_i,s_i) \to (V_j,E_j,s_j) \) rather than as \((f,\Phi_{ij})\). Similarly, we write 2-morphisms of \(\text{GmKN} \) as \(\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij} \).

Let \(X \) be a topological space and \(S \subseteq X \) be open. Write \(\text{mKN}_S(X) \) for the 2-subcategory of \(\text{mKN} \) with objects \((X,S,(V,E,s,\psi))\) for \(X,S \) as given, 1-morphisms \((\id_X,\Phi_{ij}) : (X,S,(V_i,E_i,s_i,\psi_i)) \to (X,S,(V_j,E_j,s_j,\psi_j))\)
for $f = \text{id}_X$, and all 2-morphisms $\Lambda_{ij} : (\text{id}_X, \Phi_{ij}) \Rightarrow (\text{id}_X, \Phi'_{ij})$. We call $\mathcal{MKN}_S(X)$ the strict 2-category of m-Kuranishi neighbourhoods over $S \subseteq X$.

We generally write objects of $\mathcal{MKN}_S(X)$ as (V,E,s,ψ), omitting X,S, and 1-morphisms of $\mathcal{MKN}_S(X)$ as Φ_{ij}, omitting id_X. That is, objects, 1- and 2-morphisms of $\mathcal{MKN}_S(X)$ are just m-Kuranishi neighbourhoods over S and 1- and 2-morphisms over S as in Definitions 4.2, 4.4.

The accent ‘‘’ in $\mathcal{MKN}, \mathcal{GmKN}, \mathcal{MKN}_S(X)$ is because they are constructed using Man. For particular Man we modify the notation in the obvious way, e.g. if $\text{Man} = \text{Man}^c$ we write $\mathcal{MKN}, \mathcal{GmKN}^c, \mathcal{MKN}_S(X)$, and if $\text{Man} = \text{Man}^c$ we write $\mathcal{MKN}^c, \mathcal{GmKN}^c, \mathcal{MKN}_S(X)$.

If $f : X \to Y$ is continuous, $(V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)$ are m-Kuranishi neighbourhoods on X, Y, and $S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X$ is open, write $\text{Hom}_{S,f}((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$ for the groupoid with objects 1-morphisms $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ over (S, f), and morphisms 2-morphisms $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ over (S, f).

If $X = Y$ and $f = \text{id}_X$, we write $\text{Hom}_S((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$ in place of $\text{Hom}_{S,f}((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$.

Theorem 4.7 and the last part of Definition 4.5 imply:

Corollary 4.9. In Definition 4.8 $\mathcal{MKN}, \mathcal{GmKN}$ and $\mathcal{MKN}_S(X)$ are strict 2-categories, and in fact $(2,1)$-categories, as all 2-morphisms are invertible.

Definition 4.10. Let X be a topological space, and $S \subseteq X$ be open, and $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ be a 1-morphism of m-Kuranishi neighbourhoods on X over S. Then Φ_{ij} is a 1-morphism in the 2-category $\mathcal{MKN}_S(X)$ of Definition 4.8. We call Φ_{ij} a coordinate change over S if it is an equivalence in $\mathcal{MKN}_S(X)$. That is, Φ_{ij} is a coordinate change if there exist a 1-morphism $\Phi_{ji} : (V_j, E_j, s_j, \psi_j) \to (V_i, E_i, s_i, \psi_i)$ and 2-(iso)morphisms $\eta : \Phi_{ji} \circ \Phi_{ij} \Rightarrow \text{id}_{(V_i, E_i, s_i, \psi_i)}$ and $\zeta : \Phi_{ij} \circ \Phi_{ji} \Rightarrow \text{id}_{(V_j, E_j, s_j, \psi_j)}$ over S. Write

$$\text{Equ}_S((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \subseteq \text{Hom}_S((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$$

for the subgroupoid with objects coordinate changes over S.

Theorems 10.57 and 10.58 in [10.5.4] give criteria for when 1-morphisms of m-Kuranishi neighbourhoods are coordinate changes.

Definition 4.11. Let $T \subseteq S \subseteq X$ be open. Define the restriction 2-functor $|_T : \mathcal{MKN}_S(X) \to \mathcal{MKN}_T(X)$ to map objects (V_i, E_i, s_i, ψ_i) to exactly the same objects, and 1-morphisms Φ_{ij} to exactly the same 1-morphisms but regarded as 1-morphisms over T, and 2-morphisms $\Lambda_{ij} = [\tilde{V}_{ij}, \tilde{\lambda}_{ij}]$ over S to $\Lambda_{ij}|_T = [\tilde{V}_{ij}|_T, \tilde{\lambda}_{ij}|_T]$, where $[\tilde{V}_{ij}, \tilde{\lambda}_{ij}]$ is the \sim_T-equivalence class of any representative $(\tilde{V}_{ij}, \tilde{\lambda}_{ij})$ for the \sim_S-equivalence class $[V_{ij}, \lambda_{ij}]$.

Then $|_U : \mathcal{MKN}_S(X) \to \mathcal{MKN}_U(X)$ commutes with all the structure, so it is a strict 2-functor of strict 2-categories as in [4.3]. If $U \subseteq T \subseteq S \subseteq X$ are open then $|_U \circ |_T = |_{U \cap T} : \mathcal{MKN}_S(X) \to \mathcal{MKN}_{U \cap T}(X)$.
Now let \(f : X \to Y \) be continuous, \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)\) be \(m\)-Kuranishi neighbourhoods on \(X, Y\), and \(T \subseteq S \subseteq \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j) \subseteq X \) be open. Then as for \(|T| \) on 1- and 2-morphisms above, we define a functor

\[
|T| : \text{Hom}_{S,f}((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \to \text{Hom}_{T,f}((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)).
\]

(4.3)

Convention 4.12. So far we have discussed 1- and 2-morphisms of \(m\)-Kuranishi neighbourhoods, and coordinate changes, over a specified open set \(S \subseteq X\), or over \((S, f)\). We now make the convention that when we do not specify a domain \(S\) for a 1-morphism, 2-morphism, or coordinate change, the domain should be as large as possible. For example, if we say that \(\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)\) is a 1-morphism (or a 1-morphism over \(f : X \to Y \)) without specifying \(S\), we mean that \(S = \text{Im } \psi_i \cap \text{Im } \psi_j\) (or \(S = \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j)\)).

Similarly, if we write a formula involving several 2-morphisms (possibly defined on different domains), without specifying the domain \(S\), we make the convention that the domain where the formula holds should be as large as possible. That is, the domain \(S\) is taken to be the intersection of the domains of each 2-morphism in the formula, and we implicitly restrict each morphism in the formula to \(S\) as in Definition 4.11, so that it makes sense.

4.2 The stack property of \(m\)-Kuranishi neighbourhoods

In [A.6] we define stacks on topological spaces, a 2-category version of sheaves on topological spaces discussed in [A.5]. The next theorem follows from the orbifold version Theorem 6.16 proved in [6.7] by taking \(\Gamma_i = \Gamma_j = \{1\} \). It is very important in our theory. We call it the stack property. We will use it in 4.3 to construct compositions of 1- and 2-morphisms of \(m\)-Kuranishi spaces.

Theorem 4.13. Let \(f : X \to Y \) be a continuous map of topological spaces, and \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)\) be \(m\)-Kuranishi neighbourhoods on \(X, Y\). For each open \(S \subseteq \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j) \subseteq X\), define a groupoid

\[
\mathcal{H}om_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))(S) = \text{Hom}_{S,f}((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)),
\]

as in Definition 4.8 for all open \(T \subseteq S \subseteq \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j) \) define a functor

\[
\rho_{ST} : \mathcal{H}om_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))(S) \to \mathcal{H}om_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))(T)
\]

between groupoids by \(\rho_{ST} = |T| \), as in 4.3, and for all open \(U \subseteq T \subseteq S \subseteq \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j) \) take the obvious isomorphism \(\eta_{STU} = \text{id}_{\rho_{STU}} \circ \rho_{TU} \circ \rho_{ST} \Rightarrow \rho_{SU} \). Then \(\mathcal{H}om_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \) is a stack on the open subset \(\text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j) \) in \(X\), as in [A.6].
When \(X = Y \) and \(f = \text{id}_X \) we write \(\mathcal{H}om((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \) rather than \(\mathcal{H}om_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \). Then coordinate changes \(\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) also form a stack \(\mathcal{E}qu((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \) on \(\text{Im } \psi_i \cap \text{Im } \psi_j \), a substack of \(\mathcal{H}om((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \).

Here it is clear that \(\mathcal{H}om_f(\cdots) \) is a prestack on \(\text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j) \), but not at all obvious that it is a stack; the point is that 1- and 2-morphisms of m-Kuranishi neighbourhoods have important gluing properties over open covers.

4.3 The weak 2-category of m-Kuranishi spaces

We can now at last give one of the main definitions of the book:

Definition 4.14. Let \(X \) be a Hausdorff, second countable topological space, and \(n \in \mathbb{Z} \). An m-Kuranishi structure \(\mathcal{K} \) on \(X \) of virtual dimension \(n \) is data \(\mathcal{K} = (I, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, i,j \in I, \Lambda_{ijk}, i,j,k \in I) \), where:

(a) \(I \) is an indexing set (not necessarily finite).

(b) \((V_i, E_i, s_i, \psi_i) \) is an m-Kuranishi neighbourhood on \(X \) for each \(i \in I \), with \(\text{dim } V_i - \text{rank } E_i = n \).

(c) \(\Phi_{ij} = (V_{ij}, \psi_{ij}, \bar{\Phi}_{ij}) : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) is a coordinate change for all \(i,j \in I \) (over \(S = \text{Im } \psi_i \cap \text{Im } \psi_j \), as in Convention 4.12).

(d) \(\Lambda_{ijk} = [\bar{V}_{ijk}, \bar{\Lambda}_{ijk}] : \Phi_{jk} \circ \Phi_{ij} \Rightarrow \Phi_{ik} \) is a 2-morphism for all \(i,j,k \in I \) (over \(S = \text{Im } \psi_i \cap \text{Im } \psi_j \cap \text{Im } \psi_k \), as in Convention 4.12).

(e) \(\bigcup_{i \in I} \text{Im } \psi_i = X \).

(f) \(\Phi_{ii} = \text{id}_{(V_i, E_i, s_i, \psi_i)} \) for all \(i \in I \).

(g) \(\Lambda_{ij} = \Lambda_{ij} = \text{id}_{\Phi_{ij}} \) for all \(i,j \in I \).

(h) The following diagram of 2-morphisms over \(S = \text{Im } \psi_i \cap \text{Im } \psi_j \cap \text{Im } \psi_k \cap \text{Im } \psi_l \) commutes for all \(i,j,k,l \in I \):

\[
\begin{array}{ccc}
\Phi_{kl} \circ \Phi_{jk} \circ \Phi_{ij} & \Rightarrow & \Phi_{jl} \circ \Phi_{ij} \\
\downarrow_{\text{id}_{\Phi_{kl}} \cdot \Lambda_{ijkl}} & & \downarrow_{\Lambda_{ijkl}} \\
\Phi_{kl} \circ \Phi_{ik} & \Rightarrow & \Phi_{il}.
\end{array}
\]

We call \(X = (X, \mathcal{K}) \) an m-Kuranishi space, of virtual dimension \(\text{vdim } X = n \).

When we write \(x \in X \), we mean that \(x \in X \).

Remark 4.15. Our basic assumption on the topological space \(X \) of an m-Kuranishi space \(X = (X, \mathcal{K}) \) is that \(X \) should be Hausdorff and second countable, following the usual topological assumptions on manifolds, and the definitions of d-manifolds in [57][58][61]. Here is how this relates to other conditions.

Since \(X \) can be covered by open sets \(\text{Im } \psi_i \cong s_i^{-1}(0) / \Gamma \), it is automatically locally compact, locally second countable, and regular. Hausdorff, second countable, and locally compact imply paracompact. Hausdorff, second countable, and regular...

Thus, if \(X = (X, \mathcal{K}) \) is an \(m \)-Kuranishi space in our sense, then \(X \) is also Hausdorff, second countable, locally compact, regular, paracompact, and metrizable. Paracompactness is very useful.

The usual topological assumption in previous papers on Kuranishi spaces \cite{30, 39, 77, 78, 80, 83, 110, 112} is that \(X \) is compact and metrizable. Since \(X \) is automatically locally second countable as it can be covered by \(m \)-Kuranishi neighbourhoods, this implies that \(X \) is Hausdorff and second countable.

Example 4.16. Let \(V \) be a manifold, \(E \rightarrow V \) a vector bundle, and \(s : V \rightarrow E \) a smooth section, so that \((V, E, s) \) is an object in \(\text{GmKKN} \) from Definition 4.8. Set \(X = s^{-1}(0) \subseteq V \), as a topological space with the subspace topology. Then \(X \) is Hausdorff and second countable, as \(V \) is.

Define an \(m \)-Kuranishi structure \(\mathcal{K} = \{(0), (V_0, E_0, s_0, \psi_0), \Phi_{00}, \Lambda_{000}\} \) on \(X \) with indexing set \(I = \{0\} \), one \(m \)-Kuranishi neighbourhood \((V_0, E_0, s_0, \psi_0) \) with \(V_0 = V, E_0 = E, s_0 = s \) and \(\psi_0 = \text{id}_X \), one coordinate change \(\Phi_{00} = \text{id}_{(V_0, E_0, s_0, \psi_0)} \), and one 2-morphism \(\Lambda_{000} = \text{id}_{\Phi_{00}} \). Then \(X = (X, \mathcal{K}) \) is an \(m \)-Kuranishi space, with \(\text{vdim} \ X = \dim V - \text{rank} E \). We write \(S_{V, E, s} = X \).

We will need notation to distinguish \(m \)-Kuranishi neighbourhoods, coordinate changes, and 2-morphisms on different \(m \)-Kuranishi spaces. We will often use the following notation for \(m \)-Kuranishi spaces \(\mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z} \):

\[
\mathcal{W} = (W, \mathcal{H}), \quad \mathcal{H} = (H, (T_h, C_h, \varphi_h)_{h \in H}, \quad (5.1)
\Sigma_{h' h} = (T_{h'h'}, \sigma_{h'h}, \bar{\sigma}_{h'h})_{h, h' \in H}, \quad I_{h'h'} = \{[\tilde{T}_{h'h'}(v')]_{h,h' \in H}\}, \quad (5.2)
\mathcal{X} = (X, \mathcal{I}), \quad \mathcal{I} = (I, (U_i, D_i, r_i, \chi_i))_{i \in I}, \quad (5.3)
T_{i'i'} = (U_{i'i'}, \tau_{i'i'}, \bar{\tau}_{i'i'})_{i,i' \in I}, \quad K_{i'i'} = \{\tilde{U}_{i'i'}(v')_{i,i' \in I}\}, \quad (5.4)
\mathcal{Y} = (Y, \mathcal{J}), \quad \mathcal{J} = (J, (V_j, E_j, s_j, \psi_j))_{j \in J}, \quad (5.5)
Y_{j,j'} = (V_{j,j'}, \psi_j', \tilde{\psi}_{j,j'})_{j,j' \in J}, \quad \Lambda_{j,j'}(v') = \{\tilde{V}_{j,j'}(v')_{j,j' \in J}\}, \quad (5.6)
\mathcal{Z} = (Z, \mathcal{K}), \quad \mathcal{K} = (K, (W_{kk'}, \phi_{kk'}, \bar{\phi}_{kk'})_{k,k' \in K}, \quad (5.7)
\Phi_{kk'} = (W_{kk'}, \phi_{kk'}, \bar{\phi}_{kk'})_{k,k' \in K}, \quad M_{kk''} = \{\tilde{W}_{kk'}(v')_{k,k' \in K}\}, \quad (5.8)
\Phi_{kk''} = \{W_{kk''}, \phi_{kk''}, \bar{\phi}_{kk''}\}_{k,k'' \in K}, \quad (5.9)
\]

The rest of the section until Theorem 4.28 will make \(m \)-Kuranishi spaces into a weak 2-category, as in \(\Sigma_{X, \mathcal{A}, \mathcal{Z}} \). We first define 1- and 2-morphisms of \(m \)-Kuranishi spaces. Note a possible confusion: we will be defining 1-\textit{morphisms of \(m \)-Kuranishi spaces} \(f, g : \mathcal{X} \rightarrow \mathcal{Y} \) and 2-\textit{morphisms of \(m \)-Kuranishi spaces} \(\eta : f \Rightarrow g \), but these will be built out of 1-\textit{morphisms of \(m \)-Kuranishi neighbourhoods} \(f_{ij}, g_{ij} : (U_i, D_i, r_i, \chi_i) \rightarrow (V_j, E_j, s_j, \psi_j) \) and 2-\textit{morphisms of \(m \)-Kuranishi neighbourhoods} \(\eta_{ij} : f_{ij} \Rightarrow g_{ij} \) in the sense of \(\Sigma_{X, \mathcal{A}, \mathcal{Z}} \).

Definition 4.17. Let \(X = (X, \mathcal{I}) \) and \(Y = (Y, \mathcal{J}) \) be \(m \)-Kuranishi spaces, with notation \((4.6)-(4.7) \). A 1-\textit{morphism of \(m \)-Kuranishi spaces} \(f : \mathcal{X} \rightarrow \mathcal{Y} \) is data

\[
f = (f, f_{ij}, i \in I, j \in J, f_{ij} : U_i \rightarrow V_j, f_{ij} : \tilde{f}_{ij} : i \in I, j \in J), \quad (4.9)
\]
satisfying the conditions:

(a) \(f : X \to Y \) is a continuous map.

(b) \(f_{ij} = (U_{ij}, f_{ij}, \hat{f}_{ij}) : (U_i, D_i, r_i, \chi_i) \to (V_j, E_j, s_j, \psi_j) \) is a 1-morphism of m-Kuranishi neighbourhoods over \(f \) for all \(i, j \in J \) (defined over \(S = \text{Im} \chi_i \cap f^{-1}(\text{Im} \psi_j) \), as usual).

(c) \(F^i_{ij} = [U^i_{ij}, F^i_{ij}] : f_{ij} \circ T_{ij} \Rightarrow f_{ij} \) is a 2-morphism over \(f \) for all \(i, i' \in I \) and \(j \in J \) (defined over \(S = \text{Im} \chi_i \cap \text{Im} \chi_{i'} \cap f^{-1}(\text{Im} \psi_j) \)).

(d) \(F^{ij'}_i = [U^{ij'}_i, F^{ij'}_i] : T_{ij'} \circ f_{ij} \Rightarrow f_{ij'} \) is a 2-morphism over \(f \) for all \(i \in I \) and \(j, j' \in J \) (defined over \(S = \text{Im} \chi_i \cap f^{-1}(\text{Im} \psi_{j'} \cap \text{Im} \psi_j) \)).

(e) \(F^j_i = F^{ij}_i = \text{id}_{f_{ij}} \) for all \(i \in I, j \in J \).

(f) The following commutes for all \(i, i', j \in J \):

\[
\begin{align*}
 & f'_{i,j} \circ T_{i',i} \circ f_{i,j} \ar[r] & f'_{i',j} \circ T_{i',i} \\
 & \ar[d]_{\text{id}_{T_{i,j}}} \ar[r]_{F'_{i,j} + \text{id}_{T_{i,j}}} & \ar[d]_{F'_{i',j}} \\
 & f'_{i,j} \circ T_{i,j} \ar[r] & f'_{i,j}.
\end{align*}
\]

(4.10)

(g) The following commutes for all \(i, i' \in I \) and \(j, j' \in J \):

\[
\begin{align*}
 & \Upsilon_{i,j'} \circ f_{i,j'} \circ T_{i,j} \ar[r] & \Upsilon_{i,j'} \circ f_{i,j'} \\
 & \ar[d]_{\text{id}_{T_{i,j}}} \ar[r]_{F_{i,j} + \text{id}_{T_{i,j}}} & \ar[d]_{F_{i,j}'} \\
 & \Upsilon_{i,j'} \circ f_{i,j} \ar[r] & \Upsilon_{i,j'} \circ f_{i,j}.
\end{align*}
\]

(4.11)

(h) The following commutes for all \(i \in I \) and \(j, j', j'' \in J \):

\[
\begin{align*}
 & \Upsilon_{i,j''} \circ \Upsilon_{j,j'} \circ f_{ij} \ar[r] & \Upsilon_{i,j''} \circ f_{ij} \\
 & \ar[d]_{\text{id}_{\Upsilon_{j,j'}}} \ar[r]_{F_{i,j''} + \text{id}_{\Upsilon_{j,j'}}} & \ar[d]_{F_{i,j''}} \\
 & \Upsilon_{i,j''} \circ f_{ij} \ar[r] & \Upsilon_{i,j''} \circ f_{ij}.
\end{align*}
\]

(4.12)

If \(x \in X \) (i.e. \(x \in X \)), we will write \(f(x) = f(x) \in Y \).

When \(Y = X \), define the identity 1-morphism \(\text{id}_X : X \to X \) by

\[
\text{id}_X = (\text{id}_X, T_{ij}, i,j \in I, K_{ij}, i \in I, K_{ji}, i,j \in I).
\]

(4.13)

Then Definition 4.14(h) implies that (f)–(h) above hold.

Definition 4.18. Let \(X = (X, \mathcal{I}) \) and \(Y = (Y, \mathcal{J}) \) be m-Kuranishi spaces, with notation as in (4.6), (4.7), and \(f, g : X \to Y \) be 1-morphisms, with notation (4.9). Suppose the continuous maps \(f, g : X \to Y \) in \(f, g \) satisfy \(f = g \). A 2-morphism of m-Kuranishi spaces \(\eta : f \Rightarrow g \) is data \(\eta = (\eta_{ij}, i,j \in I) \), where \(\eta_{ij} = [U_{ij}, \hat{\eta}_{ij}] : f_{ij} \Rightarrow g_{ij} \) is a 2-morphism of m-Kuranishi neighbourhoods over \(f = g \) (defined over \(S = \text{Im} \chi_i \cap f^{-1}(\text{Im} \psi_j) \), as usual), satisfying the conditions:
(a) \(G_{ii'}^{ij} \circ (\eta_{ij} + \text{id}_{T_{ii'}}) = \eta_{ij} \circ F_{ii'}^{ij} : f_{ij} \circ T_{ii'} = g_{ij} \) for all \(i, i' \in I, j \in J \).

(b) \(G_{i}^{ij'} \circ (\text{id}_{Y_{jj'}} \times \eta_{ij}) = \eta_{ij} \circ F_{ij}^{ij'} : Y_{jj'} \circ f_{ij} = g_{ij} \) for all \(i \in I, j, j' \in J \).

Note that by definition, 2-morphisms \(\eta : f \Rightarrow g \) only exist if \(f = g \).

If \(f = g \), the identity 2-morphism is \(\text{id}_f = (\text{id}_{f_{ij}}, i \in I, j \in J) : f \Rightarrow f \).

Next we will define composition of 1-morphisms. We must use the stack property in Theorem 4.13 to construct compositions of 1-morphisms \(g \circ f : X \to Z \), and \(g \circ f \) is only unique up to 2-isomorphism.

In the next proposition, part (a) constructs candidates \(h \) for \(g \circ f \); part (b) shows such \(h \) are unique up to canonical 2-isomorphism, and part (c) that \(g \) and \(f \) are allowed candidates for \(g \circ \text{id}_X \), \(\text{id}_Y \circ f \) respectively.

Proposition 4.19. (a) Let \(X = (X, \mathcal{X}) \), \(Y = (Y, \mathcal{Y}) \), and \(Z = (Z, \mathcal{Z}) \) be \(m \)-Kuranishi spaces with notation (4.6)–(4.8), and \(f : X \to Y, g : Y \to Z \) be 1-morphisms, with \(f = (f_{ij}, F_{ii'}^{ij}, F_{ii'}^{ij}) \), \(g = (g_{ik}, G_{ik}^{ij}, G_{ik}^{ij}) \). Then there exists a 1-morphism \(h : X \to Z \) with \(h = (h, h_{ik}, \check{H}_{ik}^{bk}, \check{H}_{ik}^{bk}) \), such that \(h = g \circ f : X \to Z \), and for all \(i \in I, j \in J, k \in K \) we have 2-morphisms of \(m \)-Kuranishi neighbourhoods over \(h \)

\[
\Theta_{ij} : g_{jk} \circ f_{ij} \Rightarrow h_{ik}, \tag{14.14}
\]

where as usual (4.14) holds over \(S = \text{Im} \chi_i \cap f^{-1}(\text{Im} \psi_j) \cap h^{-1}(\text{Im} \omega_k) \), and for all \(i, i' \in I, j, j' \in J, k, k' \in K \) the following commute:

\[
g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{\Theta_{ij} \circ \text{id}_{Y_{jj'}}} g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{h_{ik}} h_{ik}.
\]

\[
g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{\text{id}_{T_{ii'}} + \Theta_{ij} \circ \text{id}_{T_{ii'}}} g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{h_{ik}} h_{ik}.
\]

\[
g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{\Theta_{ij} \circ \text{id}_{Y_{jj'}}} g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{h_{ik}} h_{ik}.
\]

\[
g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{\text{id}_{T_{ii'}} + \Theta_{ij} \circ \text{id}_{T_{ii'}}} g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{h_{ik}} h_{ik}.
\]

\[
g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{\Theta_{ij} \circ \text{id}_{Y_{jj'}}} g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{h_{ik}} h_{ik}.
\]

\[
g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{\text{id}_{T_{ii'}} + \Theta_{ij} \circ \text{id}_{T_{ii'}}} g_{jk} \circ f_{ij} \circ T_{ii'} \xlongequal{h_{ik}} h_{ik}.
\]

(b) If \(\check{h} = (h, \check{h}_{ik}, \check{H}_{ik}^{bk}, \check{H}_{ik}^{bk}) \), \(\check{\Theta}_{ij} \) are alternative choices for \(h, \Theta_{ij} \) in (a), then there is a unique 2-morphism of \(m \)-Kuranishi spaces \(\eta = (\eta_{ik}) : h \Rightarrow \check{h} \) satisfying \(\eta_{ik} \circ \Theta_{ij} = \Theta_{ij} \circ \text{id}_{f_{ij}} = h_{ik} \) for all \(i \in I, j \in J, k \in K \).

(c) If \(X = Y \) and \(f = \text{id}_Y \) in (a), so that \(I = J \), then a possible choice for \(h, \Theta_{ij} \) in (a) is \(h = g \) and \(\Theta_{ij} = G_{ij}^{bk} \).

Similarly, if \(Z = Y \) and \(g = \text{id}_Y \) in (a), so that \(K = J \), then a possible choice for \(h, \Theta_{ij} \) in (a) is \(h = f \) and \(\Theta_{ij} = F_{ij}^{bk} \).

64
Proof. For (a), define $h = g \circ f : X \to Z$. Let $i \in I$ and $k \in K$, and set

$$S = \text{Im} \chi_i \cap h^{-1}(\text{Im} \omega_k),$$

so that S is open in X. We want to choose a 1-morphism $h_{ik} : (U_i, D_i, r_i, \chi_i) \to (W_k, F_k, t_k, \omega_k)$ of m-Kuranishi neighbourhoods over (S, h). Since $\{\text{Im} \psi_j : j \in J\}$ is an open cover of Y and f is continuous, $\{S \cap f^{-1}(\text{Im} \psi_j) : j \in J\}$ is an open cover of S. For all $j, j' \in J$ we have a 2-morphism over $S \cap f^{-1}(\text{Im} \psi_j \cap \text{Im} \psi_{j'})$, h

\[
(g_{jk} \circ f_{ij} |_{S \cap f^{-1}(\text{Im} \psi_j \cap \text{Im} \psi_{j'})})^{-1} = (\text{id}_{[S \cap f^{-1}(\text{Im} \psi_j \cap \text{Im} \psi_{j'}))} \circ (G_{ij'}^k \circ \text{id}_{f_{ij}}))^{-1}.
\]

(4.18)

For $j, j', j'' \in J$, consider the diagram of 2-morphisms of 1-morphisms $(\alpha, (4.18))$ in place of $(\Theta, 4.21)$ in the proposition. Thus (4.19) commutes. This implies that

\[
((\text{id}_{g_{jk}} \circ F_{ij}^j)^{-1}) \circ (G_{ij'}^k \circ \text{id}_{f_{ij}}) = (\text{id}_{g_{jk}} \circ F_{ij}^j)^{-1}.
\]

(4.20)

Now Theorem 4.13 says that 1- and 2-morphisms from (U_i, D_i, r_i, χ_i) to $(W_k, F_k, t_k, \omega_k)$ over h form a stack on S, so applying Definition 4.18 of the open cover $\{S \cap f^{-1}(\text{Im} \psi_j) : j \in J\}$ of S with $g_{jk} \circ f_{ij}$ in place of $\alpha_{j, j'}$, in place of $\alpha_{j, j'}$, and (4.20), shows that there exist a 1-morphism $h_{ik} : (U_i, D_i, r_i, \chi_i) \to (W_k, F_k, t_k, \omega_k)$ over (S, h), and 2-morphisms

$$\Theta_{ijk} : g_{jk} \circ f_{ij} |_{S \cap f^{-1}(\text{Im} \psi_j)} \Rightarrow h_{ik} |_{S \cap f^{-1}(\text{Im} \psi_j)}$$

for all $j, j' \in J$, satisfying for all $j, j' \in J$

$$\Theta_{ijk} |_{S \cap f^{-1}(\text{Im} \psi_j \cap \text{Im} \psi_{j'})} = (\text{id}_{g_{jk}} \circ F_{ij}^j) \circ (G_{ij'}^k \circ \text{id}_{f_{ij}})^{-1}.
\]

(4.21)

Observe that (4.21) is equivalent to equation (4.16) in the proposition.

So far we have chosen the data h, h_{ik} for all i, k in $h = (h, h_{ik}, H_{i, i'}, H_{i, i'}^{k, k'})$, where h_{ik} involved an arbitrary choice. To define $H_{i, i'}^{k, k'}$ for $i, i' \in I$ and $k \in K$.

65
note that for each $j \in J$, equation (4.15) of the proposition implies that

$$H_{ij}^t |_{\text{Im} \chi_i \cap \text{Im} \chi_j \cap f^{-1}(\text{Im} \psi_j) \cap h^{-1}(\text{Im} \omega_k)} = \Theta_{ij} \otimes (\text{id}_{g_{ij}} \ast F_{ij}^t) \otimes (\Theta_{ij} \ast \text{id}_{T_{ij'}})^{-1}.$$

(4.22)

Using (4.21) for i, i' and a similar commutative diagram to (4.19), we can show that the prescribed values (4.22) for $j, j' \in J$ agree when restricted to $\text{Im} \chi_i \cap \text{Im} \chi_j \cap f^{-1}(\text{Im} \psi_j \cap \text{Im} \psi_j') \cap h^{-1}(\text{Im} \omega_k)$. Therefore the stack property Theorem 4.13 and Definition A.17(iii),(iv) show that there is a unique 2-morphism $H_{ij'}^t : h_{ij'} \circ T_{ij'} \Rightarrow h_k$ over h satisfying (4.22) for all $j \in J$, or equivalently, satisfying (4.15) for all $j \in J$. Similarly, there is a unique 2-morphism $H_{ijk'} : \Phi_{ik'} \circ h_{ik} \Rightarrow h_{ik'}$ over h satisfying (4.17) for all $j \in J$.

We now claim that $h = (\tilde{h}, h_{ik}, H_{ij'}, H_{ijk'})$ is a 1-morphism $h : X \to Z$. It remains to show Definition 4.17(f)–(h) hold for h. To prove this, we first fix $j \in J$ and prove the restrictions of (f)–(h) to the intersections of their domains with $f^{-1}(\text{Im} \psi_j)$. For instance, for part (f), for $i, i', i'' \in I$ and $k \in K$ we have

$$(H_{ij'}^{i''} \circ (\text{id}_{g_{ij'}} \ast K_{ij''})) |_{\text{Im} \chi_i \cap \text{Im} \chi_i' \cap f^{-1}(\text{Im} \psi_j) \cap h^{-1}(\text{Im} \omega_k)} = [\Theta_{ij} \otimes (\text{id}_{g_{ij}} \ast F_{ij}^{i''}) \otimes (\Theta_{ij} \ast \text{id}_{T_{ij''}})^{-1}] \circ (\text{id}_{h_{ij'}} \ast K_{ij''})$$

$$= [\Theta_{ij} \otimes (\text{id}_{g_{ij}} \ast (F_{ij}^{i''} \otimes (\text{id}_{f_{ij''}} \ast K_{ij''}))) \circ ((\Theta_{ij}^{-1} \ast \text{id}_{T_{ij''}}) \ast \text{id}_{\text{Im} \chi_i})$$

$$= [\Theta_{ij} \otimes (\text{id}_{g_{ij}} \ast F_{ij}^{i''}) \otimes (\Theta_{ij} \ast \text{id}_{T_{ij''}})^{-1} \circ (\text{id}_{h_{ij'}} \ast (\text{id}_{f_{ij''}} \ast K_{ij''})) \circ ((\Theta_{ij}^{-1} \ast \text{id}_{T_{ij''}}) \ast \text{id}_{T_{ij''}})$$

$$= [\Theta_{ij} \otimes (\text{id}_{g_{ij}} \ast F_{ij}^{i''}) \otimes (\Theta_{ij} \ast \text{id}_{T_{ij''}})^{-1} \ast \text{id}_{T_{ij''}})$$

$$\subset [\Theta_{ij} \otimes (\phi_{ij} \ast F_{ij}^{i''}) \otimes (\Theta_{ij} \ast \text{id}_{T_{ij''}})^{-1} \ast \text{id}_{T_{ij''}})$$

$$= (H_{ij'}^{i''} \circ (\text{id}_{g_{ij'}} \ast K_{ij''})) |_{\text{Im} \chi_i \cap \text{Im} \chi_i' \cap f^{-1}(\text{Im} \psi_j) \cap h^{-1}(\text{Im} \omega_k)},$$

using (4.23) in the first and fifth steps, Definition 4.17(f) for f in the third, and properties of strict 2-categories. Then we use the stack property Theorem 4.13 and Definition A.17(iii) to deduce that as Definition 4.17(f)–(h) for h hold on the sets of an open cover, they hold globally. Therefore $h : X \to Z$ is a 1-morphism of m-Kuranishi spaces satisfying (4.15)–(4.17), proving (a).

For (b), if \tilde{h}, Θ_{ijk} are alternatives, then $h_{ik}, h_{ik'}$ are alternative solutions to the application of Theorem 4.13 and Definition A.17(v) above, for all $i \in I$ and $k \in K$. Thus, the last part of Definition A.17(v) implies that there is a unique 2-morphism $\eta_{ik} : h_{ik} \Rightarrow \tilde{h}_{ik}$ over h such that for all $j \in J$ we have

$$\eta_{ik} |_{\text{Im} \chi_i \cap f^{-1}(\text{Im} \psi_j) \cap h^{-1}(\text{Im} \omega_k)} = \Theta_{ij} \otimes \Theta_{ij}^{-1}.$$

(4.23)

This implies that $\eta_{ik} \otimes \Theta_{ijk} = \Theta_{ijk}$, as in (b). For each $j \in J$ we have

$$(\tilde{h}_{ij'}^{i''} \circ (\eta_{ij} \ast \text{id}_{T_{ij'}})) |_{\text{Im} \chi_i \cap \text{Im} \chi_i' \cap f^{-1}(\text{Im} \psi_j) \cap h^{-1}(\text{Im} \omega_k)} = [\Theta_{ij} \otimes (\text{id}_{g_{ij}} \ast F_{ij}^{i''}) \otimes (\Theta_{ij} \ast \text{id}_{T_{ij''}})^{-1}] \circ [\Theta_{ij} \otimes \Theta_{ij}^{-1}]$$

$$= [\Theta_{ij} \otimes \Theta_{ij}^{-1}] \circ [\Theta_{ij} \otimes (\text{id}_{g_{ij}} \ast F_{ij}^{i''}) \otimes (\Theta_{ij} \ast \text{id}_{T_{ij''}})^{-1}]$$

$$= (\eta_{ik} \otimes H_{ijk}^{i''}) |_{\text{Im} \chi_i \cap \text{Im} \chi_i' \cap f^{-1}(\text{Im} \psi_j) \cap h^{-1}(\text{Im} \omega_k)}.$$
using \((4.22)\) and \((4.23)\) in the first and third steps. So by Definition \(A.17\)(iii) we deduce that \(\tilde{H}_{ii'}^k \circ (\eta_{\pi k} \circ \id_{\Gamma_{i',r}}) = \eta_{ik} \circ \tilde{H}_{ir}^k\), which is Definition \(4.18\)(a) for \(\eta = (\eta_{ri}) : h \Rightarrow \tilde{h}\). Similarly Definition \(4.18\)(b) holds, so \(\eta : h \Rightarrow h\) is a 2-morphism of m-Kuranishi spaces. This proves (b). Part (c) is immediate, using Definition \(4.17\)(f)–(h) for \(f, g\) to prove \((4.15)\)–\((4.17)\) hold for the given choices of \(h\) and \(\Theta_{ijk}\). This completes the proof of Proposition \(4.19\). \(\square\)

Proposition \(4.19\)(a) gives possible values \(h\) for the composition \(g \circ f : X \to Z\). Since there is no distinguished choice, we choose \(g \circ f\) arbitrarily.

Definition 4.20. For all pairs of 1-morphisms of m-Kuranishi spaces \(f : X \to Y\) and \(g : Y \to Z\), use the Axiom of Global Choice (see Remark \(4.21\)) to choose possible values of \(h : X \to Z\) and \(\Theta_{ijk}\) in Proposition \(4.19\)(a), and write \(g \circ f = h\), and for \(i \in I, j \in J, k \in K\) write

\[
\Theta_{ijk}^g \circ \eta_{ij} = \Theta_{ijk} : g_{ij} \circ f_{ij} \Rightarrow (g \circ f)_{ij}.
\]

We call \(g \circ f\) the **composition of 1-morphisms of m-Kuranishi spaces**.

For general \(f, g\) we make these choices arbitrarily. However, if \(X = Y\) and \(f = \id_X\) then we choose \(g \circ \id_Y = g\) and \(\Theta_{ij}^g \circ \id_Y = G_{ij}^g\), and if \(Z = Y\) and \(g = \id_Y\) then we choose \(\id_Y \circ f = f\) and \(\Theta_{ij}^{\id_Y} \circ f = F_{ij}^{\id_Y}\). This is allowed by Proposition \(4.19\)(c).

The definition of a weak 2-category in Appendix \(A\) includes 2-isomorphisms \(\beta_f : f \circ \id_X \Rightarrow f\) and \(\gamma_f : \id_Y \circ f \Rightarrow f\) in \((A.10)\), since one does not require \(f \circ \id_X = f\) and \(\id_Y \circ f = f\) in a general weak 2-category. We define

\[
\beta_f = \id_f : f \circ \id_X \Rightarrow f, \quad \gamma_f = \id_f : \id_Y \circ f \Rightarrow f.
\]

Remark 4.21. As in Shulman \([101, \S 7]\) or Herrlich and Strecker \([45, \S 1.2]\), the **Axiom of Global Choice**, or **Axiom of Choice for classes**, used in Definition \(4.20\) is a strong form of the Axiom of Choice.

As in Jech \([54]\), in Set Theory one distinguishes between sets, and ‘classes’, which are like sets but may be larger. We are not allowed to consider things like ‘the set of all sets’, or ‘the set of all manifolds’, as this would lead to paradoxes such as ‘the set of all sets which are not members of themselves’. Instead sets, manifolds, . . . form classes, upon which more restrictive operations are allowed.

The Axiom of Choice says that if \(\{S_i : i \in I\}\) is a family of nonempty sets, with \(I\) a set, then we can simultaneously choose an element \(s_i \in S_i\) for all \(i \in I\). The Axiom of Global Choice says the same thing, but allowing \(I\) (and possibly also the \(S_i\)) to be classes rather than sets. As in \([101, \S 7]\), the Axiom of Global Choice follows from the axioms of von Neumann–Bernays–Gödel Set Theory.

The Axiom of Global Choice is used, implicitly or explicitly, in the proofs of important results in category theory in their most general form, for example, Adjoint Functor Theorems, or that every category has a skeleton, or that every weak 2-category can be strictified.

We need to use the Axiom of Global Choice above because we make an arbitrary choice of \(g \circ f\) for all \(f : X \to Y\) and \(g : Y \to Z\) in \(m\Kur\), and as we
have defined things, the collection of all such \((f,g)\) may be a proper class, not a set. We could avoid this by arranging our foundations differently. For example, if we required \textbf{Man} and \textbf{Top} to be small categories, then the collection of all \((f,g)\) would be a set, and the usual Axiom of Choice would suffice.

If we did not make arbitrary choices of compositions \(g \circ f\) at all, then \(\mathbf{mKur}\) would not be a weak 2-category in Theorem \[4.28\] below, since for 1-morphisms \(f : X \to Y\) and \(g : Y \to Z\) in \(\mathbf{mKur}\) we would not be given a unique composition \(g \circ f : X \to Z\), but only a nonempty family of possible choices for \(g \circ f\), which are all 2-isomorphic. Such structures appear in the theory of quasi-categories, as in Boardman and Vogt \[5\] or Joyal \[55\], which are a form of \(\infty\)-category, and \(\mathbf{mKur}\) would be an example of a 3-coskeletal quasi-category.

Since composition of 1-morphisms \(g \circ f\) is natural only up to canonical 2-isomorphism, as in Proposition \[4.19\](b), composition is associative only up to canonical 2-isomorphism. Note that the 2-isomorphisms \(\alpha_{g,f,e}\) in \[4.26\] are part of the definition of a weak 2-category in \[A.2\] as in \[(A.7)\].

Proposition 4.22. Let \(e : W \to X, \; f : X \to Y, \; g : Y \to Z\) be 1-morphisms of \(m\)-Kuranishi spaces, and define composition of 1-morphisms as in Definition \[4.20\]. Then using notation \[4.5\]–\[4.8\], there is a unique 2-morphism

\[
\alpha_{g,f,e} : (g \circ f) \circ e \implies g \circ (f \circ e)
\]

with the property that for all \(h \in H, \; i \in I, \; j \in J\) and \(k \in K\) we have

\[
(\alpha_{g,f,e})_{hjk} \circ \Theta^g_{hik} \circ (\Theta^f_{ijk} \circ \id_{

\Xi_{f,e}}) = \Theta^g_{hik} \circ (\id_{g_{ik}} \circ \Theta^e_{hjk}).
\]

\[\alpha_{g,f,e} = (\alpha_{g,f,e})_{hjk} \circ (\Theta^g_{hik} \circ (\Theta^f_{ijk} \circ \id_{

\Xi_{f,e}})). \]

Proof. The proof uses similar ideas to that of Proposition \[4.19\] so we will be brief. Note that for \(h \in H, \; i \in I, \; j \in J, \; k \in K\), equation \[4.27\] implies that

\[
(\alpha_{g,f,e})_{hjk} \circ (\id_{g_{ik}} \circ \Theta^f_{hik}) \circ (\Theta^g_{ijk} \circ (\id_{g_{ik}} \circ \Theta^e_{hjk})^{-1}) = (\Theta^g_{hik} \circ \id_{g_{ik}} \circ \Theta^e_{hjk})^{-1}.
\]

We show that for \(i' \in I, \; j' \in J\), the right hand sides of \[4.28\] for \(h, i, j, k\) and for \(h, i', j', k\) agree on the overlap of their domains, using the properties \[4.15\]–\[4.17\] of the \(\Theta^g_{ijh} \). Then we use the stack property Theorem \[4.13\] and Definition \[A.17\](iii),(iv) to deduce that there is a unique 2-morphism \((\alpha_{g,f,e})_{hjk}\) satisfying \[4.28\] for all \(i, j \in J\).

We prove the restrictions of Definition \[4.18\](a),(b) for \(\alpha_{g,f,e} = ((\alpha_{g,f,e})_{hjk})\) to the intersection of their domains with \(e^{-1}(\im \chi_i) \cap (f \circ e)^{-1}(\im \psi_j)\), for all \(i \in I\), \(j \in J\), using \[4.28\] and properties of the \(\Theta^g_{ijh}\). Since these intersections form an open cover of the domains, Theorem \[4.13\] and Definition \[A.17\](iii) imply that Definition \[4.18\](a),(b) for \(\alpha_{g,f,e}\) hold on the correct domains, so \(\alpha_{g,f,e}\) is a 2-morphism, as in \[4.26\]. Uniqueness follows from uniqueness of \((\alpha_{g,f,e})_{hjk}\) above. This completes the proof.

We define vertical and horizontal composition of 2-morphisms:
Definition 4.23. Let \(f, g, h : X \to Y \) be 1-morphisms of \(m \)-Kuranishi spaces, using notation (4.16)-(4.17), and \(\eta = (\eta_{ij}) : f \Rightarrow g \), \(\zeta = (\zeta_{ij}) : g \Rightarrow h \) be 2-morphisms. Define the vertical composition of 2-morphisms \(\zeta \circ \eta : f \Rightarrow h \) by
\[
\zeta \circ \eta = (\zeta_{ij} \circ \eta_{ij}), \quad i \in I, \; j \in J.
\] (4.29)
To see that \(\zeta \circ \eta \) satisfies Definition 4.18(a),(b), for (a) note that for all \(i, i' \in I \) and \(j \in J \), by Definition 4.18(a) for \(\eta, \zeta \) we have
\[
H^J_{ii'} \circ ((\zeta_{i'i} \circ \eta_{i'i}) \ast \text{id}_{T_{ii'}}) = H^J_{ii'} \circ (\zeta_{ii'} \ast \text{id}_{T_{ii'}}) \circ (\eta_{ii'} \ast \text{id}_{T_{ii'}})
\]
\[
= \zeta_{ij} \circ G^J_{ii'} \circ (\eta_{ii'} \ast \text{id}_{T_{ii'}}) = (\zeta_{ij} \circ \eta_{ij}) \circ F^J_{ii'},
\]
and Definition 4.18(b) for \(\zeta \circ \eta \) is proved similarly.

Clearly, vertical composition of 2-morphisms of \(m \)-Kuranishi spaces is associative, \((\theta \circ \zeta) \circ \eta = \theta \circ (\zeta \circ \eta) \), since vertical composition of 2-morphisms of \(m \)-Kuranishi neighbourhoods is associative.

If \(g = h \) and \(\zeta = \text{id}_g \) then \(\eta_{ii'} = (\text{id}_{g_{ii'}} \circ \eta_{ii'}) = (\eta_{ii'}) = \eta \), and similarly \(\zeta \circ \text{id}_g = \zeta \), so identity 2-morphisms behave as expected under \(\circ \).

If \(\eta = (\eta_{ij}) : f \Rightarrow g \) is a 2-morphism of \(m \)-Kuranishi spaces, then as 2-morphisms \(\eta_{ij} \) of \(m \)-Kuranishi neighbourhoods are invertible, we may define \(\eta^{-1} = (\eta^{-1}_{ij}) : g \Rightarrow f \). It is easy to check that \(\eta^{-1} \) is a 2-morphism, and \(\eta \circ \eta^{-1} = \text{id}_f, \eta^{-1} \circ \eta = \text{id}_g \). Thus, all 2-morphisms of \(m \)-Kuranishi spaces are 2-isomorphisms.

Definition 4.24. Let \(e, f : X \to Y \) and \(g, h : Y \to Z \) be 1-morphisms of \(m \)-Kuranishi spaces, using notation (4.6)-(4.8), and \(\eta = (\eta_{ij}) : e \Rightarrow f \), \(\zeta = (\zeta_{jk}) : g \Rightarrow h \) be 2-morphisms. We claim there is a unique 2-morphism \(\theta = (\theta_{ijk}) : g \circ e \Rightarrow h \circ f \), such that for all \(i \in I, \; j, k \in J, k \in K \), we have
\[
\theta_{ijk} \mid_{\text{Im } \chi_i \cap e^{-1}(\text{Im } \psi_j) \cap (g \circ e)^{-1}(\text{Im } \omega_k)} = G^h_{ijk} \circ (\zeta_{jk} \ast \eta_{ij}) \circ (\Theta^{h,e}_{ijk})^{-1}.
\] (4.30)
To prove this, suppose \(j, j' \in J \), and consider the diagram of 2-morphisms over \(\text{Im } \chi_i \cap e^{-1}(\text{Im } \psi_j) \cap (g \circ e)^{-1}(\text{Im } \omega_k) \):

Here the left and right quadrilaterals commute by (4.16), and the central rectangles commute by Definition 4.18(a),(b) for \(\zeta, \eta \). Hence (4.31) commutes.

The two routes round the outside of (4.31) imply that the prescribed values (4.30) for \(\theta_{ijk} \) agree on overlaps between open sets for \(j, j' \). As the \(\text{Im } \chi_i \cap e^{-1}(\text{Im } \psi_j) \cap (g \circ e)^{-1}(\text{Im } \omega_k) \) for \(j \in J \) form an open cover of the correct domain.
Im χi ∩ (g ∘ e)^−1(Im ωj), by Theorem \[\text{A.13}\] and Definition \[\text{A.17(iii),(iv)}\], there is a unique 2-morphism \(\theta_{jk} : (g ∘ e)_{ik} ⇒ (h ∘ f)_{jk}\) satisfying \[\text{(4.30)}\] for all \(j \in J\).

To show \(\theta = (\theta_{jk}) : g ∘ e ⇒ h ∘ f\) is a 2-morphism, we must verify Definition \[\text{4.18(a),(b)}\] for \(\theta\). We do this by first showing that (a),(b) hold on the intersections of their domains with \(e^{-1}(\text{Im } \psi_j)\) for \(j \in J\) using \[\text{4.15}, \text{4.17}, \text{4.30}\], and Definition \[\text{4.18}\] for \(\eta, \zeta\), and then use Theorem \[\text{4.13}\] and Definition \[\text{A.17(ii)}\] to deduce that Definition \[\text{4.18(a),(b)}\] for \(\theta\) hold on their whole domains. So \(\theta\) is a 2-morphism of \(m\)-Kuranishi spaces.

Define the horizontal composition of 2-morphisms \(\zeta * \eta : g ∘ e ⇒ h ∘ f\) to be \(\zeta * \eta = \theta\). By \[\text{(4.30)}\], for all \(i, j, k \in K\) we have

\[
(\zeta * \eta)_{ik} \circ \Theta^{\phi, e}_{ijk} = \Theta^{\phi, f}_{ijk} \circ (\zeta_{jk} * \eta_{ij}),
\]

(4.32)

and this characterizes \(\zeta * \eta\) uniquely.

We have now defined all the structures of a weak 2-category of \(m\)-Kuranishi spaces \(\text{mKur}\), as in Appendix \[A\] objects \(X, Y\), 1-morphisms \(f, g : X ⇒ Y\), 2-morphisms \(\eta : f ⇒ g\), identity \(1\)- and 2-morphisms, composition of 1-morphisms, vertical and horizontal composition of 2-morphisms, 2-isomorphisms \(\alpha_{g,f,e}\) in \(\text{(4.26)}\) for associativity of 1-morphisms, and \(\beta_f, \gamma_f\) in \(\text{(4.25)}\) for identity 1-morphisms. To show that \(\text{mKur}\) is a weak 2-category, it remains only to prove the 2-morphism identities \(\text{(A.6)}, \text{(A.8)}, \text{(A.9)}, \text{(A.11)}\) and \(\text{(A.12)}\). Of these, \(\text{(A.11)}\) \(\text{(A.12)}\) are easy as \(\beta_f = \gamma_f = \text{id}_f\), and we leave them as an exercise. The next three propositions prove \(\text{(A.6)}, \text{(A.8)}\) and \(\text{(A.9)}\) hold.

Proposition 4.25. Let \(f, \tilde{f}, \bar{f} : X ⇒ Y\), \(g, \tilde{g}, \bar{g} : Y ⇒ Z\) be \(1\)-morphisms of \(m\)-Kuranishi spaces, and \(\eta : f ⇒ \tilde{f}, \bar{\eta} : \tilde{f} ⇒ \bar{f}, \zeta : g ⇒ \tilde{g}, \bar{\zeta} : \tilde{g} ⇒ \bar{g}\) be \(2\)-morphisms. Then

\[
(\zeta * \eta) * (\bar{\eta} * \bar{\zeta}) = (\zeta * \bar{\eta}) * (\zeta * \bar{\zeta}) : g ∘ f ⇒ \bar{g} ∘ \tilde{f}.
\]

(4.33)

Proof. Use notation \[\text{(4.6)}, \text{(4.8)}\] for \(X, Y, Z\). For \(i, j, k \in K\) we have

\[
[\zeta * \eta]_{ik} \cdot \text{Im } \chi_i \cap (g ∘ e)^{-1}(\text{Im } \psi_j) \cap (g ∘ f)^{-1}(\text{Im } \omega_{jk})
\]

\[
\circ \Theta^{\phi, e}_{ijk} = (\zeta_{jk} * \eta_{ij}) \circ (\Theta^{\phi, f}_{ijk})^{-1}
\]

\[
= \Theta^{\phi, e}_{ijk} \circ (\zeta_{jk} * \eta_{ij}) \circ (\Theta^{\phi, f}_{ijk})^{-1}
\]

\[
= [\Theta^{\phi, e}_{ijk} \circ (\zeta_{jk} * \eta_{ij}) \circ (\Theta^{\phi, f}_{ijk})^{-1}] \circ [\Theta^{\phi, e}_{ijk} \circ (\zeta_{jk} * \eta_{ij}) \circ (\Theta^{\phi, f}_{ijk})^{-1}]
\]

\[
= \zeta * \eta_{ik} \cdot \text{Im } \chi_i \cap (g ∘ e)^{-1}(\text{Im } \psi_j) \cap (g ∘ f)^{-1}(\text{Im } \omega_{jk}),
\]

using \[\text{(4.29)}\] and \[\text{(4.32)}\] in the first and fourth steps, and compatibility of vertical and horizontal composition for 2-morphisms of \(m\)-Kuranishi neighbourhoods in the second. Since the \(\text{Im } \chi_i \cap (g ∘ e)^{-1}(\text{Im } \psi_j) \cap (g ∘ f)^{-1}(\text{Im } \omega_{jk})\) for all \(j \in J\) form an open cover of the domain \(\text{Im } \chi_i \cap (g ∘ f)^{-1}(\text{Im } \omega_{jk})\), Theorem \[\text{4.13}\] and Definition \[\text{A.17(iii)}\] imply that \([\zeta * \eta]_{ik} \cdot \text{Im } \chi_i \cap (g ∘ e)^{-1}(\text{Im } \psi_j) \cap (g ∘ f)^{-1}(\text{Im } \omega_{jk})\) as this holds for all \(i \in I\) and \(k \in K\), equation \[\text{4.33}\] follows. □
Proposition 4.26. Suppose \(e, \epsilon : W \to X, \ f, \hat{f} : X \to Y, \ g, \hat{g} : Y \to Z \) are 1-morphisms of \(m \)-Kuranishi spaces, and \(\epsilon : e \Rightarrow \hat{e}, \eta : f \Rightarrow \hat{f}, \zeta : g \Rightarrow \hat{g} \) are 2-morphisms. Then the following diagram of 2-morphisms commutes:

\[
\begin{array}{ccc}
(g \circ f) \circ e & \stackrel{\alpha_{g,f,e}}{\longrightarrow} & g \circ (f \circ e) \\
\| & \| & \|
\end{array}
\]

(4.34)

Proof. Use notation (4.5) – (4.8) for \(W, X, Y, Z \). For \(h \in H, i \in I, j \in J, k \in K \) we have

\[
[(\zeta \ast (\eta \ast e)) \ast \alpha_{g,f,e}]_{hk} = \text{Im } \varphi_k \cap e^{-1}(\text{Im } \chi_h) \cap (f \circ e)^{-1}(\text{Im } \psi_j) \cap (g \circ f \circ e)^{-1}(\text{Im } \omega_k),
\]

using (4.27) and (4.32) in the first and fourth steps, and properties of strict 2-categories in the second and third. This proves the restriction of the ‘hk’ component of (4.34) to \(\text{Im } \varphi_k \cap e^{-1}(\text{Im } \chi_h) \cap (f \circ e)^{-1}(\text{Im } \psi_j) \cap (g \circ f \circ e)^{-1}(\text{Im } \omega_k) \) commutes. Since these subsets for all \(i, j \) form an open cover of the domain, Theorem 4.13 and Definition 4.17(iii) imply that the ‘hk’ component of (4.34) commutes for all \(h \in H, k \in K, \) so (4.34) commutes.

Proposition 4.27. Let \(d : V \to W, \ e : W \to X, \ f : X \to Y, \ g : Y \to Z \) be 1-morphisms of \(m \)-Kuranishi spaces. Then in 2-morphisms we have

\[
\alpha_{g,f,e,d} \circ \alpha_{g,f,e,d} = (\text{id}_g \ast \alpha_{f,e,d}) \circ \alpha_{g,f,e,d} \circ (\alpha_{g,f,e} \ast \text{id}_d): (g \circ f) \circ e \Rightarrow g \circ (f \circ (e \circ d)).
\]

(4.35)

Proof. Use notation (4.5) – (4.8) for \(W, X, Y, Z \), and take \(G \) to be the indexing set for \(V \). Then for \(g \in G, h \in H, i \in I, j \in J, k \in K, \) on \(\text{Im } v_g \cap d^{-1}(\text{Im } \varphi_k) \)
\[(\alpha_{g,f,e,d}) \circ (\alpha_{g,f,e,d})_{gk} \]

\[= \{G_{g_{jk}}^{f, \text{cod}}(\text{cod}) \circ (\text{id}_{g_{jk}} \circ G_{g_{jk}}^{f, \text{cod}}) \circ (\Theta_{\text{g, f, d, e}}_{g_{jk}} \circ \text{id}_{\text{g, f, d, e}}_{g_{jk}}) \}_{1}^{-1} \circ (\Theta_{g_{jk}}^{f, \text{cod}})_{g_{jk}}^{-1} \circ (\Theta_{g_{jk}}^{f, \text{cod}})_{g_{jk}}^{-1} \]

\[= (\Theta_{g_{jk}}^{f, \text{cod}})_{g_{jk}}^{-1} \circ (\Theta_{g_{jk}}^{f, \text{cod}})_{g_{jk}}^{-1} \circ (\Theta_{g_{jk}}^{f, \text{cod}})_{g_{jk}}^{-1} \]

\[= [\text{id}_{g_{jk}} \circ (\alpha_{g,f,e,d}) \circ (\alpha_{g,f,e,d})_{gk} \]

using (4.27) and (4.32) in the first and fourth steps, and properties of strict 2-categories in the second and third. This proves the restriction of the ‘gk’ component of (4.35) to the subset \((\text{Im} \chi_{i}) \cap (f \circ e \circ d)^{-1} \circ (\text{Im} \psi_{j}) \cap (g \circ f \circ e \circ d)^{-1} \circ (\text{Im} \omega_{k})\). Since these subsets for all \(h, i, j\) form an open cover of the domain, Theorem 4.15 and Definition 4.17 (iii) imply that the ‘gk’ component of (4.35) commutes for all \(g \in G\) and \(k \in K\), so (4.35) commutes.

We summarize the work of this section in the following:

Theorem 4.28. The definitions and propositions above define a weak 2-category of m-Kuranishi spaces \(m\text{Kur}\).

Definition 4.29. In Theorem 4.28 we write \(m\text{Kur}\) for the 2-category of m-Kuranishi spaces constructed from our chosen category \(\text{Man}\) satisfying Assumptions 3.1–3.7 in 3.1. By Example 3.8 the following categories from Chapter 2 are possible choices for \(\text{Man}\):

\[
\text{Man, Man}^{c}, \text{Man}^{\text{we}}, \text{Man}^{\text{gc}}, \text{Man}^{\text{ac}}, \text{Man}^{\text{c, ac}}. \tag{4.36}
\]

We write the corresponding 2-categories of m-Kuranishi spaces as follows:

\[
\text{mKur, mKur}^{c}, \text{mKur}^{\text{we}}, \text{mKur}^{\text{gc}}, \text{mKur}^{\text{ac}}, \text{mKur}^{\text{c, ac}}. \tag{4.37}
\]

Objects of \(\text{mKur}^{c}, \text{mKur}^{\text{gc}}, \text{mKur}^{\text{ac}}, \text{mKur}^{\text{c, ac}}\) will be called m-Kuranishi spaces with corners, and with \(g\)-corners, and with \(a\)-corners, and with corners and \(a\)-corners, respectively.

Actually, Example 3.8 gives lots more categories satisfying Assumptions 3.1–3.7 such as \(\text{Man}^{c}_{\text{in}} \subset \text{Man}^{c}\), but we will not define notation for corresponding 2-categories of m-Kuranishi spaces \(\text{mKur}^{c}_{\text{in}}, \ldots\) here. Instead, in 4.15 we will define the 2-categories \(\text{mKur}^{c}_{\text{in}}, \ldots\) as 2-subcategories of the 2-categories in 4.37. The reason for this is explained in Remark 4.38.
Example 4.30. We will define a weak 2-functor $\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}} : \mathbf{Man} \to \mathbf{mKur}$. Weak 2-functors are explained in §A.3. Since \mathbf{mKur} is a weak 2-category, no other kind of functor to \mathbf{mKur} makes sense.

If $X \in \mathbf{Man}$, define an m-Kuranishi space $\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(X) = X = (X, \mathcal{K})$ with topological space X and m-Kuranishi structure

$$\mathcal{K} = \{(0), (V_0, E_0, s_0, \psi_0), \Phi_{00}, \Lambda_{000}\},$$

with indexing set $I = \{0\}$, one m-Kuranishi neighbourhood (V_0, E_0, s_0, ψ_0) with $V_0 = X$, $E_0 \to V_0$ the zero vector bundle, $s_0 = 0$, and $\psi_0 = \text{id}_X$, one coordinate change $\Phi_{00} = \text{id}_{(V_0, E_0, s_0, \psi_0)}$, and one 2-morphism $\Lambda_{000} = \text{id}_{\Phi_{00}}$.

On 1-morphisms, if $f : X \to Y$ is a morphism in \mathbf{Man} and $X = \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(X)$, $Y = \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(Y)$, define a 1-morphism $\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(f) = f : X \to Y$ by $f = (f, \dot{f}_{00}, \mathcal{F}_{000})$, where $\dot{f}_{00} = (U_{00}, f_{00}, \dot{f}_{00})$ with $U_{00} = X$, $f_{00} = f$, and \dot{f}_{00} is the zero map on zero vector bundles, and $\mathcal{F}_{000} = \mathcal{F}_{000}^0 = \text{id}_{\dot{f}_{00}}$.

On 2-morphisms, regarding \mathbf{Man} as a 2-category, the only 2-morphisms are identity morphisms $\text{id}_f : f \Rightarrow f$ for (1-)morphisms $f : X \to Y$ in \mathbf{Man}. We define $\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(\text{id}_f) = \text{id}_{\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(f)}$.

If $X = \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(X)$ and $Y = \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(Y)$ for $X, Y \in \mathbf{Man}$, it is easy to check that the only 1-morphisms $f : X \to Y$ in \mathbf{mKur} are those of the form $\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(f)$ for morphisms $f : X \to Y$ in \mathbf{Man}, and the only 2-morphisms $g : f \Rightarrow g$ in \mathbf{mKur} for any 1-morphisms $f, g : X \to Y$ are identity 2-morphisms $\text{id}_f : f \Rightarrow f$ when $f = g$.

Suppose $f : X \to Y$, $g : Y \to Z$ are (1-)morphisms in \mathbf{Man}, and write X, Y, Z, f, g for the images of X, Y, Z, f, g under $\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}$. Then Definition 4.20 defines the composition $g \circ f : X \to Z$, by making an arbitrary choice. But the uniqueness property of 1-morphisms above implies that the only possibility is $g \circ f = \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(g \circ f)$. Define

$$(\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}})_{X,f} := \text{id}_{\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(g \circ f)} : \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(g) \circ \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(f) \Rightarrow \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(g \circ f).$$

For any object X in \mathbf{Man} with $X = \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(X)$, define

$$(\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}})_X := \text{id}_{\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(X)} : \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(\text{id}_X) \Rightarrow \text{id}_{\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(X)}.$$

We have defined all the data of a weak 2-functor $\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}} : \mathbf{Man} \to \mathbf{mKur}$ in Definition A.8. It is easy to check that $\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}$ is a weak 2-functor, which is full and faithful, and so embeds \mathbf{Man} as a full 2-subcategory of \mathbf{mKur}.

We say that an m-Kuranishi space X is a manifold if $X \simeq \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}(X')$ in \mathbf{mKur}, for some $X' \in \mathbf{Man}$. Theorem 10.45 in §10.4.2 gives a necessary and sufficient criterion for when X is a manifold.

Assumption 3.4 gives a full subcategory $\mathbf{Man} \subseteq \mathbf{Man}$. Define a full and faithful weak 2-functor $\mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}} = \mathcal{F}^{\mathrm{mKur}}_{\mathrm{Man}}|_{\mathbf{Man}} : \mathbf{Man} \to \mathbf{mKur}$, which embeds
Man as a full 2-subcategory of \(\text{mKur} \). We say that an \(m \)-Kuranishi space \(\mathbf{X} \) is a classical manifold if \(\mathbf{X} \cong F_{\text{Man}}(X') \) in \(\text{mKur} \), for some \(X' \in \text{Man} \).

In a similar way to Example 4.30 we can define a weak 2-functor \(\text{GmKur} \to \text{mKur} \) which is an equivalence from the 2-category \(\text{GmKur} \) of global \(m \)-Kuranishi neighbourhoods in Definition 4.8 to the full 2-subcategory of objects \((X, K) \) in \(\text{mKur} \) for which \(K \) contains only one \(m \)-Kuranishi neighbourhood. It acts by \((V, E, s) \mapsto \mathbf{S}_{V, E, s} \) on objects, for \(\mathbf{S}_{V, E, s} \) as in Example 4.16.

The next example defines products \(\mathbf{X} \times \mathbf{Y} \) of \(m \)-Kuranishi spaces \(\mathbf{X}, \mathbf{Y} \). We discuss products further in [11.2.3] as examples of fibre products \(\mathbf{X} \times_{\ast} \mathbf{Y} \).

Example 4.31. Let \(\mathbf{X} = (X, I), \mathbf{Y} = (Y, J) \) be \(m \)-Kuranishi spaces in \(\text{mKur} \), with notation \([4.6] - [4.7]\). Define the **product** to be \(\mathbf{X} \times \mathbf{Y} = (X \times Y, \mathbf{K}) \), where

\[
\mathbf{K} = (I \times J, (W_{(i,j)}, F(i,j), \hat{t}(i,j), \omega(i,j))_{(i,j) \in I \times J}, \mathbf{\Phi}_{(i,j)(i',j'), (i,j),(i',j')} \in I \times J, M_{(i,j)(i',j')(i'',j'')}, (i,j),(i',j''),(i'',j'') \in I \times J) .
\]

Here for all \((i, j) \in I \times J\) we set \(W_{(i,j)} = U_i \times V_j, F(i,j) = \pi_{U_i} \circ \pi_{V_j} \), and \(t_{(i,j)} = \pi_{U_i} (r_i) \oplus \pi_{V_j} (s_j) \) so that \(t_{(i,j)}^{-1}(0) = r_i^{-1}(0) \times s_j^{-1}(0), \) and \(\omega_{(i,j)} = \chi_i \times \psi_j : r_i^{-1}(0) \times s_j^{-1}(0) \to X \times Y. \) Also

\[
\mathbf{\Phi}_{(i,j)(i',j')}(\pi, \pi') = T_{ii'} \times Y_{jj'} = (U_{ii'} \times V_{jj'}, \tau_{ii'} \times \upsilon_{jj'}, \pi_{U_{ii'}}, \pi_{V_{jj'}}) \circ \pi_{\hat{t}(ii')(jj')} \circ \pi_{\mathbf{K}_{ii',jj'}},
\]

and \(\mathbf{M}_{(i,j)(i',j')(i'',j'')} = \mathbf{K}_{ii',ii''} \times \Lambda_{jj',jj''} \) is defined as a product 2-morphism in the obvious way. It is easy to check that \(\mathbf{X} \times \mathbf{Y} \) is an \(m \)-Kuranishi space, with \(\text{vdim}(\mathbf{X} \times \mathbf{Y}) = \text{vdim} \mathbf{X} + \text{vdim} \mathbf{Y} \).

We can also define explicit projection 1-morphisms \(\pi_{\mathbf{X}} : \mathbf{X} \times \mathbf{Y} \to \mathbf{X}, \pi_{\mathbf{Y}} : \mathbf{X} \times \mathbf{Y} \to \mathbf{Y}, \) where

\[
\pi_{\mathbf{X}} = (\pi_X, \pi_{(i,j)(i',j')}, (i,j) \in I \times J, i' \in I, i \in I, \pi_{(i,j)(i',j')}(i',j') \in I \times J, \mathbf{\Pi}_{(i,j)(i',j')}(i',j') \in I \times J),
\]

\[
\pi_{\mathbf{Y}} = (\pi_Y, \pi_{(i,j)(i',j')}, (i,j) \in I \times J, i' \in I, i \in I, \pi_{(i,j)(i',j')}(i',j') \in I \times J, \mathbf{\Pi}_{(i,j)(i',j')}(i',j') \in I \times J),
\]

with \(\pi_{(i,j)(i',j')} = (U_{ii'} \times V_{jj'}, \tau_{ii'} \circ \pi_{U_{ii'}}, \pi_{V_{jj'}} \circ \mathbf{\Phi}_{(i,j)(i',j')} \circ \mathbf{\Phi}_{(i',j')(ii')}, \mathbf{\Pi}_{(i,j)(i',j')} \circ \mathbf{\Pi}_{(i',j')(ii')} \) are the basically the compositions of the 2-morphism \(\mathbf{K}_{ii',ii''} \) in \(I \) with the projection \(U_i \times V_j \to U_i \). We define \(\pi_{\mathbf{Y}} \) in the same way.

We will show in [11.2.3] that \(\mathbf{X} \times \mathbf{Y}, \pi_{\mathbf{X}}, \pi_{\mathbf{Y}} \) have the universal property of products in a 2-category. That is, \(\mathbf{X} \times \mathbf{Y} \) is a fibre product \(\mathbf{X} \times_{\ast} \mathbf{Y} \) over the point (terminal object) \(\ast \) in \(\text{mKur} \), as in [A.4] in a 2-Cartesian square

\[
\begin{array}{ccc}
\mathbf{X} \times \mathbf{Y} & \xrightarrow{\pi_{\mathbf{X}}} & \mathbf{Y} \\
\downarrow{\pi_{\mathbf{Y}}} & \cong & \downarrow{\mathbf{1}_{\mathbf{Y}}} \\
\mathbf{X} & \rightarrow & \ast,
\end{array}
\]

Products are commutative and associative up to canonical equivalence, and in fact (with the above definition) up to canonical 1-isomorphism. That is, if \(\mathbf{X}, \mathbf{Y}, \mathbf{Z} \) are \(m \)-Kuranishi spaces, we have canonical 1-isomorphisms in \(\text{mKur} \)

\[
\mathbf{Y} \times \mathbf{X} \cong \mathbf{X} \times \mathbf{Y} \quad \text{and} \quad (\mathbf{X} \times \mathbf{Y}) \times \mathbf{Z} \cong \mathbf{X} \times (\mathbf{Y} \times \mathbf{Z}).
\]
We can also define products and direct products of 1-morphisms. That is, if \(f : W \rightarrow Y, \ g : X \rightarrow Y, \ h : X \rightarrow Z \) are 1-morphisms in \(\text{mKur} \) then we have a product 1-morphism \(f \times h : W \times X \rightarrow Y \times Z \) and a direct product 1-morphism \((g, h) : X \rightarrow Y \times Z \) in \(\text{mKur} \), both easy to write down explicitly. The existence of \(f \times h, (g, h) \) is also guaranteed by the universal property of products, uniquely up to canonical 2-isomorphism.

4.4 Comparing m-Kuranishi spaces from different \(\text{Man} \)

Using the ideas of \[3.3.7\] and \[B.7\] we explain how to lift a functor \(F_{\text{Man}} : \text{Man} \rightarrow \text{Man} \) satisfying Condition \[3.20\] to a corresponding weak 2-functor \(F_{\text{mKur}} : \text{mKur} \rightarrow \text{mKur} \) between the 2-categories of m-Kuranishi spaces \(\text{mKur}, \text{mKur} \) associated to \(\text{Man}, \text{Man} \).

Definition 4.32. Suppose \(\text{Man}, \hat{\text{Man}} \) satisfy Assumptions \[3.1\] and \[3.7\] and \(F_{\text{Man}} : \text{Man} \rightarrow \hat{\text{Man}} \) is a functor satisfying Condition \[3.20\] Then in \[3.3.7\] and \[B.7\] we explain how all the material of \[3.3\] on differential geometry in \(\text{Man} \) maps functorially to its analogue in \(\hat{\text{Man}} \) under \(F_{\text{Man}} \).

Write \(\text{mKur}, \text{mKur} \) for the 2-categories of m-Kuranishi spaces constructed from \(\text{Man}, \hat{\text{Man}} \) in \[4.3\]. We will define a weak 2-functor \(F_{\text{mKur}} : \text{mKur} \rightarrow \text{mKur} \). The basic idea is obvious: we apply \(F_{\text{Man}} \) to turn the m-Kuranishi neighbourhoods and their 1- and 2-morphisms over \(\text{Man} \) used in \(\text{mKur} \), into their analogues over \(\hat{\text{Man}} \) used in \(\text{mKur} \).

As in \[B.7\] we will use accents ‘ \(' \)' and ‘ \(' \)' to denote objects associated to \(\text{Man} \) and \(\hat{\text{Man}} \), respectively. When something is independent of \(\text{Man} \) or \(\hat{\text{Man}} \) (such as the underlying topological space \(X \) in \(\hat{X} \)) we omit the accent.

Let \(\hat{X} = (X, \hat{\kappa}) \) be an object in \(\text{mKur} \), where

\[
\hat{\kappa} = (I, (\hat{V}_i, \hat{E}_i, \hat{s}_i, \hat{\psi}_i)_{i \in I}, \hat{\phi}_{ij, i, j, k \in I}, \hat{\Lambda}_{ijk, i, j, k \in I}),
\]

with \(\hat{\phi}_{ij} = (\hat{V}_{ij}, \hat{\phi}_{ij, i, j}) : (\hat{V}_i, \hat{E}_i, \hat{s}_i, \hat{\psi}_i) \rightarrow (\hat{V}_j, \hat{E}_j, \hat{s}_j, \hat{\psi}_j) \) and \(\hat{\Lambda}_{ijk} = [\hat{\nu}_{ijk}, \hat{\lambda}_{ijk}] \) for all \(i, j, k \in I \). Define \(F_{\text{mKur}}(\hat{X}) = \hat{X} = (X, \hat{\kappa}) \) in \(\text{mKur} \), where

\[
\hat{\kappa} = (I, (\hat{V}_i, \hat{E}_i, \hat{s}_i, \hat{\psi}_i)_{i \in I}, \hat{\phi}_{ij, i, j, k \in I}, \hat{\Lambda}_{ijk, i, j, k \in I}),
\]

with \(\hat{\phi}_{ij} = (\hat{V}_{ij}, \hat{\phi}_{ij, i, j}) : (\hat{V}_i, \hat{E}_i, \hat{s}_i, \hat{\psi}_i) \rightarrow (\hat{V}_j, \hat{E}_j, \hat{s}_j, \hat{\psi}_j) \) and \(\hat{\Lambda}_{ijk} = [\hat{\nu}_{ijk}, \hat{\lambda}_{ijk}] \) for all \(i, j, k \in I \). Here \(\hat{V}_i, \hat{E}_i, \hat{s}_i, \hat{\psi}_i, \hat{V}_{ij}, \hat{\phi}_{ij, i, j}, \hat{\nu}_{ijk}, \hat{\lambda}_{ijk} \) are the images of \(V_i, E_i, s_i, \psi_i, V_{ij}, \phi_{ij, i, j}, \nu_{ijk}, \lambda_{ijk} \) under \(F_{\text{mKur}} \), respectively, as in \[B.7\].

Similarly, if \(\hat{f} : \hat{X} \rightarrow \hat{Y} \) is a 1-morphism in \(\text{mKur} \) we define a 1-morphism \(F_{\text{mKur}}(\hat{f}) = \hat{f} : \hat{X} \rightarrow \hat{Y} \) in \(\text{mKur} \), and if \(\hat{\eta} : \hat{f} \Rightarrow \hat{g} \) is a 2-morphism in \(\text{mKur} \) we define a 2-morphism \(F_{\text{mKur}}(\hat{\eta}) = \hat{\eta} : \hat{f} \Rightarrow \hat{g} \) in \(\text{mKur} \), by applying \(F_{\text{mKur}} \) to all the \(\text{Man} \) structures in \(f, \eta \), in the obvious way.

75
Let \(f : \dot{X} \to \dot{Y} \) and \(g : \dot{Y} \to \dot{Z} \) be 1-morphisms in \(\mKur \), and write \(\tilde{f} : \dot{X} \to \ddot{Y} \) and \(\tilde{g} : \dot{Y} \to \ddot{Z} \) for their images in \(\mKur \). Then Definition 4.20 defined \(\tilde{g} \circ \tilde{f} : \dot{X} \to \ddot{Z} \) in \(\mKur \) and \(\tilde{g} \circ \tilde{f} : \dot{X} \to \ddot{Z} \) in \(\mKur \), by making arbitrary choices. Since these choices may not be consistent, we need not have \(\tilde{g} \circ \tilde{f} = F_{m\Kur}(\tilde{g} \circ \tilde{f}) \). However, because \(F_{m\Kur}(\tilde{g} \circ \tilde{f}) \) is one of the possible choices for \(\tilde{g} \circ \tilde{f} \), Proposition 4.19(b) gives a canonical 2-morphism

\[
(F_{m\Kur})_{\tilde{g} \circ \tilde{f}} : F_{m\Kur}(\tilde{g}) \circ F_{m\Kur}(\tilde{f}) = \tilde{g} \circ \tilde{f} \Longrightarrow F_{m\Kur}(\tilde{g} \circ \tilde{f})
\]

in \(m\Kur \), using the data \(\Theta_{\tilde{g} \circ \tilde{f}} \) and their images under \(F_{m\Kur} \).

For \(\hat{X} \) in \(\mKur \) with \(F_{m\Kur}(\hat{X}) = \hat{X} \) in \(\mKur \), we see using (4.13) that \(F_{m\Kur}(\text{id}_X) = \text{id}_X \). Define

\[
(F_{m\Kur})_X = \text{id}_{F_{m\Kur}(X)} : F_{m\Kur}(\text{id}_X) \Longrightarrow \text{id}_{F_{m\Kur}(X)}.
\]

This defines all the data of a weak 2-functor \(F_{m\Kur} : \mKur \to \mKur \), as in §A.3. It is easy to check that the weak 2-functor axioms hold.

Now suppose that \(F_{\Man} : \Man \to \tilde{\Man} \) is an inclusion of subcategories \(\Man \subseteq \tilde{\Man} \) satisfying either Proposition 3.21(a) or (b). Then Proposition 3.21 says that the maps \(F_{\Man} \) in §3.3.7 from geometry in \(\Man \) to geometry in \(\tilde{\Man} \) used above are identity maps. Hence \(\mKur \) is actually a 2-subcategory of \(m\Kur \), and the 2-functor \(F_{m\Kur} \) is the inclusion \(m\Kur \subseteq \mKur \).

For the case of Proposition 3.21(b), when \(\Man \) is a full subcategory of \(\tilde{\Man} \), then \(\mKur \) is a full 2-subcategory of \(m\Kur \). That is, if \(X, Y \) are objects of \(\mKur \) then all 1-morphisms \(f, g : X \to Y \) in \(\mKur \) are 1-morphisms in \(m\Kur \), and all 2-morphisms \(\eta : f \Rightarrow g \) in \(\mKur \) are 2-morphisms in \(m\Kur \).

![Figure 4.1: 2-functors between 2-categories of m-Kuranishi spaces from Definition 4.32. Arrows '→' are inclusions of 2-subcategories.](image)

Applying Definition 4.32 to the parts of the diagram Figure 3.1 of functors \(F_{\Man} \) involving the categories (4.36) yields a diagram Figure 4.1 of 2-functors \(F_{m\Kur} \). Arrows '→' are inclusions of 2-subcategories.
4.5 Discrete properties of 1-morphisms in \mathbf{mKur}

In [3.3.6] and [4.3] we defined when a property P of morphisms in \mathbf{Man} is discrete. For example, when $\mathbf{Man} = \mathbf{Man}^c$ from [2.1] for a morphism $f : X \to Y$ in \mathbf{Man}^c to be interior, or simple, are both discrete conditions.

We will now show that a discrete property P of morphisms in \mathbf{Man} lifts to a corresponding property P of 1-morphisms in \mathbf{mKur}, in a well behaved way. We first define P for 1-morphisms of \mathbf{mKur} neighbourhouds, as in [4.1]

Definition 4.33. Let P be a discrete property of morphisms in \mathbf{Man}. Suppose $f : X \to Y$ is a continuous map and $\Phi_{ij} = (V_{ij}, \phi_{ij}, \phi_{ij}) : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ is a 1-morphism of \mathbf{mKur} neighbourhouds over (S, f), for $S \subseteq X$ open. We say that Φ_{ij} is P if $\phi_{ij} : V_{ij} \to V_j$ is P near $\psi_i^{-1}(S)$ in V_{ij}. That is, there should exist an open submanifold $\iota : U \hookrightarrow V_j$ with $\psi_i^{-1}(S) \subseteq U \subseteq V_{ij}$ such that $\phi_{ij} \circ \iota : U \to V_j$ has property P in \mathbf{Man}.

Proposition 4.34. Let P be a discrete property of morphisms in \mathbf{Man}. Then:

(a) Let $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ be a 1-morphism of \mathbf{mKur} neighbourhouds over (S, f) and $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ a 2-morphism. Then Φ_{ij} is P if and only if Φ'_{ij} is P.

(b) Let $\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ be 1-morphisms over (S, f) and $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ a 2-morphism. Then Φ_{ij} is P if and only if Φ'_{ij} is P.

(c) Let $f : X \to Y$, $g : Y \to Z$ be continuous, $T \subseteq Y$, $S \subseteq f^{-1}(T) \subseteq X$ be open, $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ be a 1-morphism over (S, f), and $\Phi_{jk} : (V_j, E_j, s_j, \psi_j) \to (V_k, E_k, s_k, \psi_k)$ be a 1-morphism over (T, g), so that $\Phi_{jk} \circ \Phi_{ij}$ is a 1-morphism over $(S, g \circ f)$. If Φ_{ij}, Φ_{jk} are P then $\Phi_{jk} \circ \Phi_{ij}$ is P.

(d) Let $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ be a coordinate change of \mathbf{mKur} neighbourhouds over $S \subseteq X$. Then Φ_{ij} is P.

Proof. Part (a) follows from Definition 3.18(iv), and part (b) from Definitions 3.18(vii) and 4.3(b), and part (c) from Definitions 3.18(iii) and 4.3.

For (d), as Φ_{ij} is a coordinate change there exist a 1-morphism $\Phi_{ji} : (V_j, E_j, s_j, \psi_j) \to (V_i, E_i, s_i, \psi_i)$ and 2-morphisms $\Lambda_{ij} : \Phi_{ji} \Rightarrow \Phi_{ij}$ and $\Lambda_{ji} : \Phi_{ji} \Rightarrow \Phi_{ij}$. Write $\Phi_{ij} = (V_{ij}, \phi_{ij}, \phi_{ij})$, $\Phi_{ji} = (V_{ji}, \phi_{ji}, \phi_{ji})$, and as in 3.8 consider the diagram in \mathbf{Man}:

\[
\begin{array}{ccc}
\phi_{ij}^{-1}(V_{ij}) & \to & V_{ij} \\
\phi_{ij}^{-1}(V_{ij}) & \to & V_{ij} \\
\phi_{ji}^{-1}(V_{ji}) & \to & V_{ji} \\
\end{array}
\]

77
For each \(x \in S \) let \(v_i = \psi_i^{-1}(x) \in \phi_{ij}^{-1}(V_{ij}) \subseteq V_{ij} \subseteq V_i \) and \(v_j = \psi_j^{-1}(x) \in \phi_{ji}^{-1}(V_{ji}) \subseteq V_{ji} \subseteq V_j \), so that \(\phi_{ij}(v_i) = v_j \) and \(\phi_{ji}(v_j) = v_i \) by Definition 4.2(e) for \(\Phi_{ij}, \Phi_{ji}. \) Definition 4.3(b) for \(\Lambda_{ii}, \Lambda_{jj} \) implies that \(\phi_{ij} \circ \phi_{ji} = \text{id}_{V_i} + O(x_i) \) on \(\phi_{ij}^{-1}(V_{ij}) \) and \(\phi_{ji} \circ \phi_{ij} = \text{id}_{V_j} + O(x_j) \) on \(\phi_{ji}^{-1}(V_{ji}) \). Therefore Definition 3.18(viii) implies that \(\phi_{ij} \) is \(P \) near \(v_i \). As this holds for all \(x \in S \), Definition 3.18(iv) shows that \(\phi_{ij} \) is \(P \) near \(\psi_i^{-1}(S) \), so \(\Phi_{ij} \) is \(P \).

Definition 4.35. Let \(P \) be a discrete property of morphisms in \(\mathcal{M} \). Suppose \(f : X \to Y \) is a 1-morphism in \(\mathbf{mKur} \), and use notation (4.6), (4.7), (4.9) for \(X, Y, f, g \). We say that \(f \) is \(P \) if \(f_{ij} \) is \(P \) in the sense of Definition 4.33 for all \(i \in I \) and \(j \in J \).

Proposition 4.36. Let \(P \) be a discrete property of morphisms in \(\mathcal{M} \). Then:

(a) Let \(f, g : X \to Y \) be 1-morphisms in \(\mathbf{mKur} \) and \(\eta : f \Rightarrow g \) a 2-morphism. Then \(f \) is \(P \) if and only if \(g \) is \(P \).

(b) Let \(f : X \to Y \) and \(g : Y \to Z \) be 1-morphisms in \(\mathbf{mKur} \). If \(f \) and \(g \) are \(P \) then \(g \circ f : X \to Z \) is \(P \).

(c) Identity 1-morphisms \(\text{id}_X : X \to X \) in \(\mathbf{mKur} \) are \(P \). Equivalences \(f : X \to Y \) in \(\mathbf{mKur} \) are \(P \).

Proof. For (a), use notation (4.6), (4.7), (4.9) for \(X, Y, f, g \). Then we have 2-morphisms of \(\mathbf{mKur} \) morphisms \(\eta_{ij} : f_{ij} \Rightarrow g_{ij} \) for all \(i, j \), so Proposition 4.34(b) implies that \(f_{ij} \) is \(P \) if and only if \(g_{ij} \) is \(P \), and (a) follows.

For (b), use the notation of Definition 4.3(b) and suppose \(f, g \) are \(P \). Then for all \(i \in I \), \(j \in J \), \(k \in K \) we have 2-morphisms \(\Theta_{ijk}^{g,f} : g_{jk} \circ f_{ij} \Rightarrow (g \circ f)_{ik} \) over \(T_{ji} \). As \(f, g \) are \(P \), \(f_{ij}, g_{jk} \) are \(P \), so \(g_{jk} \circ f_{ij} \) is \(P \) by Proposition 4.34(c), and thus \((g \circ f)_{ik} \) is \(P \) over \((T_{ji}, g_{jk}) \) by Proposition 4.34(b). Since this holds for all \(j \in J \), Proposition 4.34(a) implies that \((g \circ f)_{ik} \) is \(P \) over \((S, g \circ f) \) for \(S = \bigcup_{i \in I} J_i = \text{Im } \chi_i \cap (g \circ f)^{-1}(\text{Im } \omega_k) \), which is the domain we want. As this holds for all \(i \in I \) and \(k \in K \), \(g \circ f \) is \(P \).

For (c), that \(\text{id}_X : X \to X \) follows from (4.13) and Proposition 4.34(d), as the \(T_{ij} \) are coordinate changes. Let \(f : X \to Y \) be an equivalence in \(\mathbf{mKur} \), and use notation (4.6), (4.7), (4.9). Then there exist a 1-morphism \(g : Y \to X \) and 2-morphisms \(\eta : g \circ f \Rightarrow \text{id}_X, \zeta : f \circ g \Rightarrow \text{id}_Y \). Using the proof of Proposition 4.34(d) with \(f_{ij}, g_{ji}, \eta_{ji}, \zeta_{ij} \) in place of \(\Phi_{ij}, \Phi_{ji}, \Lambda_{ii}, \Lambda_{jj} \) shows that \(f_{ij} \) is \(P \), for all \(i \in I \) and \(j \in J \), so \(f \) is \(P \).

Definition 4.37. (a) Taking \(\mathcal{M} = \mathcal{M}^c \) from 2.1 gives the 2-category of \(\mathbf{mKur}^c \) from Definition 4.29. We write

\[
\mathbf{mKur}_{\text{in}}^c, \mathbf{mKur}_{\text{bn}}^c, \mathbf{mKur}_{\text{st}}^c, \mathbf{mKur}_{\text{st.in}}^c, \mathbf{mKur}_{\text{st.bn}}^c, \mathbf{mKur}_{\text{si}}^c
\]
for the 2-subcategories of \(\text{mKur}^c \) with 1-morphisms which are interior, and b-normal, and strongly smooth, and strongly smooth-interior, and strongly smooth-b-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^c \) are discrete by Example \(3.19(a) \), so as in Definition \(4.35 \) and Proposition \(4.36 \), we have corresponding notions of interior, ..., simple 1-morphisms in \(\text{mKur}^c \).

(b) Taking \(\text{Man} = \text{Man}^{\text{gc}} \) from \(2.4.1 \) gives the 2-category of m-Kuranishi spaces with g-corners \(\text{mKur}^{\text{gc}} \) from Definition \(4.29 \). We write

\[
\text{mKur}^{\text{gc}}_{\text{in}}, \text{mKur}^{\text{gc}}_{\text{bn}}, \text{mKur}^{\text{gc}}_{\text{si}}
\]

for the 2-subcategories of \(\text{mKur}^{\text{gc}} \) with 1-morphisms which are interior, and b-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^{\text{gc}} \) are discrete by Example \(3.19(b) \), so we have corresponding notions for 1-morphisms in \(\text{mKur}^{\text{gc}} \).

(c) Taking \(\text{Man} = \text{Man}^{\text{ac}} \) from \(2.4.2 \) gives the 2-category of m-Kuranishi spaces with a-corners \(\text{mKur}^{\text{ac}} \) from Definition \(4.29 \). We write

\[
\text{mKur}^{\text{ac}}_{\text{in}}, \text{mKur}^{\text{ac}}_{\text{bn}}, \text{mKur}^{\text{ac}}_{\text{st}}, \text{mKur}^{\text{ac}}_{\text{st, in}}, \text{mKur}^{\text{ac}}_{\text{st, bn}}, \text{mKur}^{\text{ac}}_{\text{si}}
\]

for the 2-subcategories of \(\text{mKur}^{\text{ac}} \) with 1-morphisms which are interior, and b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly a-smooth-b-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^{\text{ac}} \) are discrete by Example \(3.19(c) \), so we have corresponding notions for 1-morphisms in \(\text{mKur}^{\text{ac}} \).

(d) Taking \(\text{Man} = \text{Man}^{\text{c, ac}} \) from \(2.4.2 \) gives the 2-category of m-Kuranishi spaces with corners and a-corners \(\text{mKur}^{\text{c, ac}} \) from Definition \(4.29 \). We write

\[
\text{mKur}^{\text{c, ac}}_{\text{in}}, \text{mKur}^{\text{c, ac}}_{\text{bn}}, \text{mKur}^{\text{c, ac}}_{\text{st}}, \text{mKur}^{\text{c, ac}}_{\text{st, in}}, \text{mKur}^{\text{c, ac}}_{\text{st, bn}}, \text{mKur}^{\text{c, ac}}_{\text{si}}
\]

for the 2-subcategories of \(\text{mKur}^{\text{c, ac}} \) with 1-morphisms which are interior, and b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly a-smooth-b-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^{\text{c, ac}} \) are discrete by Example \(3.19(c) \), so we have corresponding notions for 1-morphisms in \(\text{mKur}^{\text{c, ac}} \).

Figure \(4.1 \) gives inclusions between the 2-categories in \(4.37 \). Combining this with the inclusions between the 2-subcategories in Definition \(4.37 \) we get a diagram Figure \(4.2 \) of inclusions of 2-subcategories of m-Kuranishi spaces.

Remark 4.38. (i) Most of the 2-categories \(\text{mKur}^{\text{c, bn}}, \text{mKur}^{\text{c, si}}, \ldots \) in Definition \(4.37 \) come from categories \(\text{Man}^{\text{c}}, \text{Man}^{\text{bn}}, \ldots \) satisfying Assumptions \(3.1, 3.7 \), so we could have applied \(4.3 \) to construct 2-categories of m-Kuranishi spaces \(\text{mKur}^{\text{c}} \) directly from \(\text{Man} = \text{Man}^{\text{c}}, \text{Man}^{\text{bn}}, \ldots \). But what we actually did was slightly different. We explain this for \(\text{Man}^{\text{c}} \) and \(\text{mKur}^{\text{c}} \) above, though it applies to all the 2-categories above except those with simple 1-morphisms.

If \(X = (X, I) \) lies in \(\text{mKur}^{\text{c}} \), with notation \(4.6 \), each \(T_{ii'} \) in \(I \) includes a morphism \(\tau_{ii'} : U_{ii'} \to U_{i'} \) in \(\text{Man}^{\text{c}} \). Then \(X \) lies in \(\text{mKur}^{\text{c}}_{\text{in}} \) as defined above.
In \mathcal{M}_{Kur} with the notation above, since \mathcal{M}_{Kur} in \mathcal{M}_{Kur} functor F is proper but equivalent 2-subcategories, as in \mathcal{M}_{Kur} property, which is why we prefer this definition of \mathcal{M}_{Kur} but \mathcal{M}_{Kur} under either equivalences of objects or under 2-isomorphism of 1-morphisms, near (\mathcal{M}_{Kur}).

Taking this to be F' is interior near \mathcal{M}_{Kur} we mentioned a functor $F^{\mathcal{M}_{Kur}}_{\text{Man}}: \text{Man}_{\alpha} \to \text{Man}_{\alpha}$ from \cite[3]{66}, (ii) In \cite[2.4.2]{2.4.2} we mentioned a functor $F^{\mathcal{M}_{Kur}}_{\text{Man}_{\alpha}}: \text{Man}_{\alpha} \to \text{Man}_{\alpha}$ and applying \cite[4.4]{4.4} gives a 2-functor $F^{\mathcal{M}_{Kur}}_{\text{Man}}: \mathcal{M}_{Kur} \to \mathcal{M}_{Kur}$. This does not map $\mathcal{M}_{Kur}^{\alpha}_{\text{st}} \to \mathcal{M}_{Kur}^\alpha_{\text{st}}$ with the notation above, since $\mathcal{M}_{Kur} \subseteq \mathcal{M}_{Kur}^\alpha_{\text{st}}$, $\mathcal{M}_{Kur} \subseteq \mathcal{M}_{Kur}^\alpha_{\text{st}}$ are proper but equivalent 2-subcategories, as in (i). However, we can get a 2-functor $F^{\mathcal{M}_{Kur}^\alpha_{\text{st}}}_{\text{Man}_{\alpha}}: \mathcal{M}_{Kur}^\alpha_{\text{st}} \to \mathcal{M}_{Kur}^\alpha_{\text{st}}$ by composing with a quasi-inverse for $\mathcal{M}_{Kur} \leftrightarrow \mathcal{M}_{Kur}^\alpha_{\text{st}}$. The same applies to $F^{\mathcal{M}_{Kur}^\alpha_{\text{st}}}_{\text{Man}_{\alpha}}: \text{Man}_{\alpha}^\alpha_{\text{st}} \to \text{Man}_{\alpha}^\alpha_{\text{st}}$ in \cite[2.4.2]{2.4.2}.

![Figure 4.2: Inclusions of 2-categories of m-Kuranishi spaces.](image)
4.6 M-Kuranishi spaces with corners.
Boundaries, \(k \)-corners, and the corner 2-functor

We now change notation from \(\text{Man} \) in \(\S 3.1 \)–\(\S 3.3 \) to \(\text{Man}^c \), and from \(\mathcal{M} \)Kur in \(\S 4.3 \)–\(\S 4.5 \) to \(\mathcal{M} \)Kur\(^c \). Suppose throughout this section that \(\text{Man}^c \) satisfies Assumption \(3.22 \) in \(\S 3.4.1 \). Then \(\text{Man}^c \) satisfies Assumptions \(3.1 \)–\(3.7 \) so \(\S 4.3 \) constructs a 2-category \(\mathcal{M} \)Kur\(^c \) of m-Kuranishi spaces associated to \(\text{Man}^c \). For instance, \(\mathcal{M} \)Kur\(^c \) could be \(\mathcal{M} \)Kur\(^c \), \(\mathcal{M} \)Kur\(^c \)\(_\text{ac} \), or \(\mathcal{M} \)Kur\(^c \)\(_\text{ac} \) from Definition \(4.29 \). We will refer to objects of \(\mathcal{M} \)Kur\(^c \) as m-Kuranishi spaces with corners. We also write \(\mathcal{M} \)Kur\(^c \)\(_\text{2} \) for the 2-subcategory of \(\mathcal{M} \)Kur\(^c \) with simple 1-morphisms in the sense of \(4.15 \) noting that simple is a discrete property of morphisms in \(\text{Man}^c \) by Assumption \(3.22 \)\(_c \).

Generalizing \(2.2 \) for ordinary manifolds with corners \(\text{Man}^c \), we will define the boundary \(\partial X \) and \(k \)-corners \(C_k(X) \) for each \(X \) in \(\mathcal{M} \)Kur\(^c \), and the corner 2-functor \(C : \mathcal{M} \)Kur\(^c \) \(\rightarrow \) \(\mathcal{M} \)Kur\(^c \). The definitions below are rather long, mechanical, heavy on notation, and boring. Despite this, the underlying ideas are straightforward, with little subtlety — everything just works, mostly in the obvious way. The principle is to apply \(C : \text{Man}^c \rightarrow \text{Man}^c \) in Assumption \(3.22 \)\(_g \) to everything in sight, and use the ideas of \(\S 3.4.3 \) on how differential geometry lifts along \(\Pi_k : C_k(X) \rightarrow X \).

4.6.1 Definition of the \(k \)-corners \(C_k(X) \)

Definition 4.39. Let \(X = (X, \mathcal{K}) \) in \(\mathcal{M} \)Kur\(^c \) be an m-Kuranishi space with corners with vdim \(X = n \), and as in Definition \(4.14 \) write \(\mathcal{K} = (I, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_{ij,i_j \in I}) \) with \(\Phi_{ij} = (V_{ij}, \phi_{ij}, \phi_{ij}) \) and \(\Lambda_{hij} = [\hat{V}_{hij}, \hat{\lambda}_{hij}] \). Let \(k \in \mathbb{N} \). We will define an m-Kuranishi space with corners \(C_k(X) \) in \(\mathcal{M} \)Kur\(^c \) called the \(k \)-corners of \(X \), with vdim \(C_k(X) = n - k \), and a 1-morphism \(\Pi_k : C_k(X) \rightarrow X \) in \(\mathcal{M} \)Kur\(^c \).

Explicitly we write \(C_k(X) = (C_k(X), K_k) \) with

\[
K_k = \{(k) \times I, (V_{k,i}, E_{k,i}, s_{k,i}, \psi_{k,i})_{i \in I}, \Phi_{k,i,j} = (V_{k,i,j}, \phi_{k,i,j}, \phi_{k,i,j}) \}_{i,j \in I}
\]

with

\[
\Phi_{k,i,j} = (V_{k,i,j}, \phi_{k,i,j}, \phi_{k,i,j})
\]

and

\[
\Lambda_{k,h} = [\hat{V}_{k,h}, \hat{\lambda}_{k,h}]
\]

where \(K_k \) has indexing set \(\{k\} \times I \) with elements \((k, i) \) for \(i \in I \), for reasons that will become clear in \(\S 4.6.2 \) and as in \(4.9 \) we write

\[
\Pi_k = \left(\Pi_{k,ii}, \Pi_{k,ij}^{j \in I}, (\Pi_{k,ij}^{j \in I})_{i,j \in I}, \Pi_{k,ij}^{j \in I}, j' \in I \right), \quad \text{where}
\]

\[
\Pi_{k,ii} = (V_{k,i}, E_{k,i}, s_{k,i}, \psi_{k,i}) \quad \rightarrow (V_{j}, E_{j}, s_{j}, \psi_{j})
\]

\[
\Pi_{k,ij}^{j \in I} = [\hat{V}_{k,ij}^{j \in I}, \hat{\Pi}_{k,ij}^{j \in I}], \quad \Pi_{k,ij}^{j \in I} = [\hat{V}_{k,ij}^{j \in I}, \hat{\Pi}_{k,ij}^{j \in I}], \quad \Pi_{k,ij}^{j \in I} \circ \Phi_{k,ij} = \Pi_{k,ij}^{j \in I}
\]

81
The hardest part is to define the topological space \(C_k(X) \) and the continuous maps \(\Pi_k : C_k(X) \to X \), \(\psi(s_{(k,i)}) : s_{(k,i)}^{-1}(0) \to C_k(X) \), and we do these last.

For each \(i \in I \), define \(V_{(k,i)} = C_k(V_i) \) to be the \(k \)-corners of \(V_i \) from Assumption 3.22(d). Define \(E_{(k,i)} \to V_{(k,i)} \) to be the pullback vector bundle \(\Pi_k^*(E_i) \), where \(\Pi_k : V_{(k,i)} = C_k(V_i) \to V_i \) is as in Assumption 3.22(d), and let \(s_{(k,i)} = \Pi_k^*(s_i) \in \Gamma^\infty(E_{(k,i)}) \) be the pullback section. Using Assumption 3.22 we can show these are equivalent to \(E_{(k,i)} = C_k(E_i) \), \(s_{(k,i)} = C_k(s_i) \), where \(s_i : V_i \to E_i \) is simple. Note that

\[
\dim V_{(k,i)} - \text{rank } E_{(k,i)} = \dim C_k(V_i) - \text{rank } E_i = \dim V_i - k - \text{rank } E_i = n - k,
\]

by Assumption 3.22(d), as required in Definition 4.14(b) for \(C_k(X) \).

Although we have not yet defined \(C_k(X) \) and \(\psi(s_{(k,i)}) : s_{(k,i)}^{-1}(0) \to C_k(X) \), the definition we later give will have the property that for \(i, j \in I \) we have

\[
\psi_{(k,i)}^{-1}(\text{Im } \psi_{(k,j)}) = (\Pi_k \circ \psi_{(k,j)})^{-1}(\text{Im } \psi_j) = \Pi_k^{-1}(\psi_j^{-1}(\text{Im } \psi_j)),
\]

where \(\psi_i^{-1}(\text{Im } \psi_j) \subseteq s_i^{-1}(0) \subseteq V_i \) and \(\Pi_k : V_{(k,i)} = C_k(V_i) \to V_i \), and the definition of \(s_{(k,i)} \) implies that \(s_{(k,i)}^{-1}(0) = \Pi_k^{-1}(s_i^{-1}(0)) \).

Let \(i, j \in I \). Since simple maps are a discrete property in \(\mathbb{Man}^c \) by Assumption 3.22(c), Definition 4.33 and Proposition 4.34(d) imply that \(\phi_{ij} : V_{ij} \to V_j \) is simple near \(\psi_i^{-1}(\text{Im } \psi_j) \subseteq V_{ij} \). Let \(V_{ij}' \subseteq V_{ij} \) be the maximal open set on which \(\phi_{ij} \) is simple, so that \(\psi_i^{-1}(\text{Im } \psi_j) \subseteq V_{ij}' \). Write \(\phi_{ij}', \hat{\phi}_{ij} \) for the restrictions of \(\phi_{ij} \), \(\hat{\phi}_{ij} \) to \(V_{ij}' \). Define

\[
V_{(k,i)(k,j)} = C_k(V_{ij}').
\]

Then \(V_{(k,i)(k,j)} \) is open in \(V_{(k,i)} \) by Assumption 3.22(j), as \(V_{ij}' \subseteq V_i \) is open, and \(\psi_{(k,i)}^{-1}(\text{Im } \psi_{(k,j)} \cap \text{Im } \psi_{(k,j)}) \subseteq V_{(k,i)(k,j)} \) as required in Definition 4.2(a) for \(\Phi_{(k,i)(k,j)} \) follows from (4.39) and \(\psi_i^{-1}(\text{Im } \psi_i \cap \text{Im } \psi_j) \subseteq V_{ij}' \). As \(\phi_{ij}' : V_{ij} \to V_j \) is simple, Assumption 3.22(d) gives a morphism \(C_k(\phi_{ij}') : C_k(V_{ij}') \to C_k(V_j) \) in \(\mathbb{Man}^c \). Define

\[
\phi_{(k,i)(k,j)} = C_k(\phi_{ij}') : V_{(k,i)(k,j)} \to V_{(k,j)}.
\]

Assumption 3.22(g) implies that \(\phi_{ij}' \circ \Pi_k = \Pi_k \circ C_k(\phi_{ij}') : C_k(V_{ij}') \to V_j \). Thus we may define

\[
\hat{\phi}_{(k,i)(k,j)} = \Pi_k^*(\hat{\phi}_{ij}') : V_{(k,i)(k,j)} = \Pi_k^*(E_i|_{V_{ij}'}) \to \Pi_k^*(E_j),
\]

\[
= (\phi_{ij}' \circ \Pi_k)^*(E_j) = (\Pi_k \circ C_k(\phi_{ij}'))^*(E_j) \quad \text{(4.42)}
\]

We have \(\hat{\phi}_{ij}(s_{(k,i)}) = \phi_{ij}(s_i) + O(s_i^2) \) by Definition 4.2(d) for \(\Phi_{ij} \), so pulling back by \(\Pi_k : V_{(k,i)(k,j)} = C_k(V_{ij}') \to V_{ij}' \subseteq V_{ij} \) using Theorem 3.28(i) yields

\[
\hat{\phi}_{(k,i)(k,j)}(s_{(k,i)}|_{V_{(k,i)(k,j)}}) = \phi_{(k,i)(k,j)}^*(s_{(k,j)}) + O(s_{(k,i)}^2),
\]

giving Definition 4.2(d) for \(\Phi_{ij} \).
For $\Pi_{(k,i)j}$, define
\begin{align*}
V_{(k,i)j} &= C_k(V_{ij}), \\
\Pi_{(k,i)j} &= \phi_{ij} \circ \Pi_k : V_{(k,i)j} = C_k(V_{ij}) \rightarrow V_j,
\end{align*}
and
\begin{align*}
\hat{\Pi}_{(k,i)j} &= \Pi_k^* (\phi_{ij}) : E_{(k,i)j} \rightarrow \Pi_k^* (E_{ij}) \rightarrow \\
\hat{\Pi}_{(k,i)j} &= \Pi_k^* \phi_{ij}^* (E_j) = (\phi_{ij} \circ \Pi_k)^* (E_j) = \Pi_{(k,i)j}^* (E_j).
\end{align*}

We verify Definition 4.2(d) for $\Pi_{(k,i)j}$ as for Φ_{ij}.

We have now completely defined the 1-morphisms $\Phi_{(k,i)(k,j)}$, $\Pi_{(k,i)j}$, although we have not yet defined the data $C_k(X)$ or $\Pi_k : C_k(X) \rightarrow X$ or $\psi_{(k,i)}$ in $(V_{(k,i)}, E_{(k,i)}, s_{(k,i)}, \psi_{(k,i)})$, and have not yet verified condition Definition 4.2(e) for $\Phi_{(k,i)(k,j)}$, $\Pi_{(k,i)j}$ which involves $C_k(X)$, Π_k, $\psi_{(k,i)}$. The definition of the 2-morphisms $\Lambda_{(k,h)(k,i)(k,j)}, \Pi^j_{(k,i)(k,j)}$, $\Pi^J_{(k,i)}$ in Definition 4.3 does not involve $C_k(X)$, $\Pi_k, \psi_{(k,i)}$, so we can do these next.

For $h, i, j \in I$, choose a representative (V_{hi}, λ_{hi}) for the \sim-equivalence class Λ_{hi}. Then $V_{hi} \subseteq V_h \cap \phi_{hi}^{-1}(V_{ij}) \cap V_{hj} \subseteq V_h$ is open, and $\lambda_{hi} : E_h \mid V_{hi} \rightarrow T_{\phi_{hi} \circ \phi_{hj}} V_j \mid V_{hj}$ is a morphism. Set $\hat{V}_{hi} = V_{hi} \cap V_{hi} \cap \phi_{hi}^{-1}(V_{ij}) \cap V_{hj}$. Define
\begin{align*}
\hat{V}_{(k,h)(i,j)(k,j)} = C_k(\hat{V}_{hi}) \subseteq C_k(V_h) = V_{(k,i)j}.
\end{align*}

Define a morphism
\begin{align*}
\hat{\lambda}_{(k,h)(i,j)(k,j)} = \Pi_k^* (\hat{\lambda}_{hi}) : E_{(k,h)(i,j)(k,j)} = \Pi_k^* (E_{hi}) \rightarrow \\
\rightarrow T_{\phi_{(k,i)(k,j)}} \phi_{hi} \circ \phi_{hj} V_j \mid V_{hj},
\end{align*}
(4.45)
where $\Pi_k^* (\hat{\lambda}_{hi})$ is as in 3.4.3 and 4.10.

Now Definition 4.3(a) for Λ_{hi} gives
\begin{align*}
\psi_{hi}^{-1}(\text{Im} \psi_h \cap \text{Im} \psi_i \cap \text{Im} \psi_j) \subseteq \hat{V}_{hi}.
\end{align*}
Applying Π_k^{-1} to this and using (4.39) (which we assume for now) yields
\begin{align*}
\psi_{(k,i)}^{-1}(\text{Im} \psi_{(k,i)} \cap \text{Im} \psi_{(k,j)} \cap \text{Im} \psi_{(k,j)}) \subseteq \hat{V}_{(k,h)(i,j)(k,j)},
\end{align*}
(4.46)
which is Definition 4.3(a) for $(V_{(k,h)(i,j)(k,j)}, \hat{\lambda}_{(k,h)(i,j)(k,j)})$ for the domain $S = \text{Im} \psi_{(k,i)} \cap \text{Im} \psi_{(k,j)} \cap \text{Im} \psi_{(k,j)}$ for $\Lambda_{(k,h)(i,j)(k,j)}$ in Definition 4.14(d) for $C_k(X)$.

Definition 4.3(b) for Λ_{hi} gives
\begin{align*}
\phi_{hi} &= \phi_{hi} \circ \phi_{hi} + \hat{\lambda}_{hi} \circ s_h + O(s_h^2), \\
\hat{\phi}_{hi} &= \phi_{hi}^* (\hat{\phi}_{hi}) \circ \phi_{hi} + (\phi_{hi} \circ \phi_{hi})^* (d(s_{hi})) \circ \hat{\lambda}_{hi} + O(s_h).
\end{align*}

Pulling both equations back by $\Pi_k : V_{(k,h)(i,j)(k,j)} = C_k(\hat{V}_{hi}) \rightarrow \hat{V}_{hi}$ and using Theorem 3.28(vi),(vii) yields
\begin{align*}
\phi_{(k,h)(i,j)} &= \phi_{(k,h)(i,j)} \circ \phi_{(k,h)(i,j)} + \hat{\lambda}_{(k,h)(i,j)(k,j)} \circ s_{(k,h)} + O(s_{(k,h)}^2), \\
\hat{\phi}_{(k,h)(i,j)} &= \phi_{hi}^* (\hat{\phi}_{hi}(i,j)) \circ \phi_{hi}(i,j) \\
+ (\phi_{hi}(i,j) \circ \phi_{(k,h)(i,j)})^* (d(s_{hi})) \circ \hat{\lambda}_{(k,h)(i,j)(k,j)} + O(s_{(k,h)}),
\end{align*}
(4.47)
which is Definition 4.3(b) for \((\hat{V}_{(k,i)}(k,j)), \hat{\lambda}_{(k,i)}(k,j)\).

Write \(\Lambda_{(k,i)}(k,j) = [\hat{V}_{(k,i)}(k,j), \hat{\lambda}_{(k,i)}(k,j)]\) for the \(\sim\)-equivalence class of \((\hat{V}_{(k,i)}(k,j)), \hat{\lambda}_{(k,i)}(k,j)\), as in Definition 4.3. Theorem 3.28(ii) implies that equivalence \(\sim\) on pairs \((\hat{V}_{(k,i)}(k,j), \hat{\lambda}_{(k,i)}(k,j))\) lifts to \(\sim\) on pairs \((\hat{V}_{(k,i)}(k,j), \hat{\lambda}_{(k,i)}(k,j))\), so \(\Lambda_{(k,i)}(k,j)\) depends only on \(\Lambda_{(h,i)} = [\hat{V}_{(h,i)}(k,j), \hat{\lambda}_{(h,i)}(k,j)]\), and (once we define \(C_k(X), \hat{\psi}_{(k,i)}\) and verify the \(\Phi_{(k,i)}(k,j)\) are 1-morphisms), we have a well defined 2-morphism of m-Kuranishi neighbourhoods

\[
\Lambda_{(k,i)}(k,j) : \Phi_{(k,i)}(k,j) \circ \Phi_{(k,j)}(k,i) \Rightarrow \Phi_{(k,j)}(k,i).
\]

Next, for \(i, i', j \in I\) and \(i, j, j' \in I\), choose representatives \((\hat{V}_{ij}', \hat{\lambda}_{ij}'j)\) and \((\hat{V}_{ij}, \hat{\lambda}_{ij})\) for \(\Lambda_{ij} = [\hat{V}_{ij}, \hat{\lambda}_{ij}]\) and \(\Lambda_{ijj'} = [\hat{V}_{ij}, \hat{\lambda}_{ijj'}]\), define \(\hat{V}_{ij}(k,i') = C_k(\hat{V}_{ij}')\) and \(\hat{V}_{ij}(k,i') = C_k(\hat{V}_{ijj'}')\), and define morphisms \(\hat{\Pi}_{ij}(k,i') = \hat{\Pi}_{ijj'}(k,i')\) by the commutative diagrams

\[
\begin{align*}
E_{(k,i)}|_{\hat{V}_{ij}(k,i')} & \quad \Pi_k^*(E_{\hat{V}_{ij}(k,i')}) \\
\hat{\Pi}_{ij}(k,i') & \quad \Pi_k^*(\hat{\lambda}_{ij}) \\
\hat{\Pi}_{ij}(k,i') & \quad \hat{\Pi}_{ij}(k,i') \\
\hat{\Pi}_{ij}(k,i') & \quad \hat{\Pi}_{ijj'}(k,i') \\
\hat{\Pi}_{ij}(k,i') & \quad \hat{\Pi}_{ij}(k,i') \\
\end{align*}
\]

where \(\Pi_k^*(\hat{\lambda}_{ij})\) and \(\Pi_k^*(\hat{\lambda}_{ijj'})\) are as in Definition 3.4.\(\hat{\Pi}_{ij}(k,i')\) and \(\hat{\Pi}_{ijj'}(k,i')\) follow from Definition 4.3(a),(b) for \((\hat{V}_{ij}, \hat{\lambda}_{ij})\) and \((\hat{V}_{ijj'}, \hat{\lambda}_{ijj'})\), as for (4.46)–(4.47). Write \(\hat{\Pi}_{ij}(k,i') = [\hat{V}_{ij}(k,i'), \hat{\Pi}_{ij}(k,i')]\) and \(\hat{\Pi}_{ijj'}(k,i') = [\hat{V}_{ijj'}(k,i'), \hat{\Pi}_{ijj'}(k,i')]\) for the \(\sim\)-equivalence classes of \((\hat{V}_{ij}(k,i'), \hat{\Pi}_{ij}(k,i'))\) and \((\hat{V}_{ijj'}(k,i'), \hat{\Pi}_{ijj'}(k,i'))\), in the sense of Definition 4.3. These depend only on \(\Lambda_{ij} = \Lambda_{i'j}\) and \(\Lambda_{ijj'} = \Lambda_{i'j'}\), and (once we define \(C_k(X), \hat{\psi}_{(k,i)}\) and verify the \(\Phi_{(k,i)}(k,j)\) are 1-morphisms), \(\hat{\Pi}_{(k,i)}(k,i') = \hat{\Pi}_{(k,i)}(k,j)\) and \(\hat{\Pi}_{(k,i)}(k,j') = \hat{\Pi}_{(k,i)}(k,j')\) are 2-morphisms of m-Kuranishi neighbourhoods.

It remains to define the topological space \(C_k(X)\) and the continuous maps \(\hat{\psi}_{(k,i)} : s_{(k,i)}^{-1}(0) \to C_k(X), \hat{\psi}_{(k,i)} : C_k(X) \to X\). Define a binary relation \(\sim\) on \(\bigoplus_{i \in I} s_{(k,i)}^{-1}(0)\) by \(v_i \sim v_j\) if \(i, j \in I\) and \(v_i \in V_{(k,i)}(k,j) \cap s_{(k,j)}^{-1}(0)\) with \(\phi_{(k,j)}(v_i) = v_j \in s_{(k,j)}^{-1}(0)\). We claim that \(\sim\) is an equivalence relation on \(\bigoplus_{i \in I} s_{(k,i)}^{-1}(0)\).

To prove this, suppose \(h, i, j \in I\) and \(v_h \in s_{(k,h)}^{-1}(0), v_i \in s_{(k,i)}^{-1}(0), v_j \in s_{(k,j)}^{-1}(0)\).
\(s^{-1}_{(k,j)}(0) \) with \(v_h \approx v_i \) and \(v_i \approx v_j \). Then

\[
v_h \in s^{-1}_{(k,j)}(0) \cap V_{(k,h)(k,i)} = \Pi^{-1}_k(s^{-1}_h(0) \cap V_{hi}) = \Pi^{-1}_k(\psi^{-1}_h(\text{Im } \psi_h \cap \text{Im } \psi_i)),
\]

\[
v_i \in s^{-1}_{(k,j)}(0) \cap V_{(i,j)(k,i)} = \Pi^{-1}_k(s^{-1}_i(0) \cap V_{ij}) = \Pi^{-1}_k(\psi^{-1}_i(\text{Im } \psi_i \cap \text{Im } \psi_j)),
\]

with \(\phi_{(k,h)(k,i)}(v_h) = v_i \), \(\phi_{(i,j)(k,i)}(v_i) = v_j \). Hence

\[
\psi_h \circ \Pi_k(v_h) = \psi_i \circ \phi_{hi} \circ \Pi_k(v_h) = \psi_i \circ \Pi_k \circ \phi_{(k,h)(k,i)}(v_h) = \psi_i \circ \Pi_k(v_i) \in \text{Im } \psi_i \cap \text{Im } \psi_j,
\]

using Definition 4.2(e) for \(\Phi_{hi} \). Thus

\[
v_h \in \Pi^{-1}_k(\psi^{-1}_h(\text{Im } \psi_h \cap \text{Im } \psi_j)) = \Pi^{-1}_k(s^{-1}_h(0) \cap V_{hi}') = s^{-1}_{(k,j)}(0) \cap V_{(k,h)(k,j)},
\]

and \(\phi_{(k,h)(k,j)}(v_h) \) is defined. The first equation of (4.47) and \(s_{(k,j)}(v_h) = 0 \) imply that \(\phi_{(k,h)(k,j)}(v_h) = \phi_{(k,i)(k,j)} \circ \phi_{(k,h)(k,i)}(v_h) = \phi_{(k,i)(k,j)}(v_i) = v_j \). Hence \(v_h \approx v_j \), and \(v_h \approx v_i \), \(v_i \approx v_j \) imply that \(v_h \approx v_j \).

Taking \(j = h \) and noting that \(\phi_{(k,h)(k,h)} = \text{id}_{V_{(k,h)}} \), we see that

\[
\phi_{(k,h)(k,h)}: s^{-1}_{(k,h)}(0) \cap V_{(k,h)(k,h)} \longrightarrow s^{-1}_{(k,h)}(0) \cap V_{(k,h)(k,h)},
\]

\[
\phi_{(k,i)(k,h)}: s^{-1}_{(k,i)}(0) \cap V_{(k,i)(k,h)} \longrightarrow s^{-1}_{(k,h)}(0) \cap V_{(k,h)(k,h)},
\]

are inverse maps. Hence \(v_h \approx v_i \) implies that \(v_i \approx v_h \). And \(v_h \approx v_k \) for any \(v_h \in s^{-1}_{(k,h)}(0) \) as \(\phi_{(k,h)(k,h)} = \text{id}_{V_{(k,h)}} \). Therefore \(\approx \) is an equivalence relation.

Now define \(C_k(X) \) to be the topological space, with the quotient topology,

\[
C_k(X) = \left[\prod_{i \in I} s^{-1}_{(k,i)}(0) \right] / \approx.
\]

For each \(i \in I \) define \(\psi_{(k,i)}: s^{-1}_{(k,i)}(0) \longrightarrow C_k(X) \) by \(\psi_{(k,i)}: v_i \mapsto [v_i] \), where \([v_i]\) is the \(\approx \)-equivalence class of \(v_i \). Define \(\Pi_k : C_k(X) \longrightarrow X \) by \(\Pi_k([v_i]) = \psi_i \circ \Pi_k(v_i) \) for \(i \in I \) and \(v_i \in s^{-1}_{(k,i)}(0) \), so that \(\Pi_k(v_i) \in s^{-1}_i(0) \) and \(\psi_i \circ \Pi_k(v_i) \in X \). To show this is well defined, suppose \([v_i] = [v_j]\), so that \(i, j \in I \) and \(v_i \in s^{-1}_{(k,i)}(0) \), \(v_j \in s^{-1}_{(k,j)}(0) \) with \(v_i \approx v_j \). Then \(v_i \in V_{(i,j)(k,i)} \) with \(\phi_{(i,j)(k,i)}(v_i) = v_j \), so that

\[
\psi_j \circ \Pi_k(v_j) = \psi_j \circ \Pi_k \circ \phi_{(i,j)(k,i)}(v_i) = \psi_j \circ \phi_{ij} \circ \Pi_k(v_i) = \psi_i \circ \Pi_k(v_i),
\]

using Definition 4.2(e) for \(\Phi_{ij} \) in the last step. Hence \(\Pi_k \) is well defined. Observe that (4.39) follows easily from the definitions of \(C_k(X) \), \(\Pi_k \), \(\psi_{(k,i)} \) above.

We have now defined all the data in \(C_k(X) = (C_k(X), K_k) \). It remains to verify the conditions of Definition 4.14. As \(C_k(X) \) is made by gluing the topological spaces \(s^{-1}_{(k,i)}(0) \) for \(i \in I \) by an equivalence relation \(v_h \approx v_i \) for \(v_h \in s^{-1}_{(k,h)}(0) \), \(v_i \in s^{-1}_{(k,i)}(0) \) which identifies open sets \(s^{-1}_{(k,h)}(0) \cap V_{(k,h)(k,i)} \) in \(s^{-1}_{(k,i)}(0) \) and \(s^{-1}_{(k,i)}(0) \cap V_{(i,j)(k,i)} \) in \(s^{-1}_{(k,j)}(0) \) by a homeomorphism (since \(\phi_{(k,h)(k,i)} \), \(\phi_{(k,i)(k,j)} \), \(\phi_{(j,i)(k,i)} \), \(\phi_{(i,j)(k,i)} \), \(\phi_{(i,j)(k,j)} \), \(\phi_{(j,i)(k,j)} \) are continuous, inverse maps), it follows that
\[\psi_{(k,i)} : s_{(k,i)}^{-1}(0) \to C_k(X) \] is a homeomorphism with an open set \(\text{Im} \psi_{(k,i)} \) in \(C_k(X) \) for \(i \in I \), giving Definition 4.14(d) for \(V_{(k,i)}, E_{(k,i)}, s_{(k,i)}, \psi_{(k,i)} \), so \((V_{(k,i)}, E_{(k,i)}, s_{(k,i)}, \psi_{(k,i)}) \) is an m-Kuranishi neighbourhood on \(C_k(X) \) for \(i \in I \).

Because \(\psi_{(k,i)} : s_{(k,i)}^{-1}(0) \to \text{Im} \psi_{(k,i)} \) is a homeomorphism, we see that

\[\Pi_k | \text{Im} \psi_{(k,i)} = \psi_i \circ \Pi_k \circ (\psi_{(k,i)})^{-1} : \text{Im} \psi_{(k,i)} \to X, \]

which is clearly continuous. As the \(\text{Im} \psi_{(k,i)}, i \in I \) cover \(C_k(X) \), this proves that \(\Pi_k : C_k(X) \to X \) is continuous. Also \(\text{Im} \psi_{(k,i)} = \Pi_k^{-1} \text{Im} \psi_{(k,i)} \), and \(\Pi_k | \text{Im} \psi_{(k,i)} \) is a 1-morphism and (d),(f). Hence \(\psi_i \circ \Pi_k \circ (\psi_{(k,i)})^{-1} \) is proper with finite fibres by Assumption 3.22(d), and we see that \(\Pi_k | \text{Im} \psi_i \) is proper with finite fibres. As the \(\text{Im} \psi_i : i \in I \) cover \(X \), it follows that \(\Pi_k : C_k(X) \to X \) is proper with finite fibres.

Suppose \(x_1' \neq x_2' \in C_k(X) \), and set \(x_1 = \Pi_k(x_1') \), \(x_2 = \Pi_k(x_2') \) in \(X \). If \(x_1 \neq x_2 \) then as \(X \) is Hausdorff there exist open \(U_1 \subseteq X \), \(U_2 \subseteq X \) with \(U_1 \cap U_2 = \emptyset \), and then \(U'_1 := \Pi_k^{-1}(U_1) \), \(U'_2 := \Pi_k^{-1}(U_2) \) are open in \(X \) with \(x_1' \in U'_1 \), \(x_2' \in U'_2 \) and \(U'_1 \cap U'_2 = \emptyset \). If \(x_1 = x_2 \) then \(x_1, x_2 \in \text{Im} \psi_i \subseteq X \) for some \(i \in I \), so \(x_1', x_2' \in \text{Im} \psi_{(k,i)} \subseteq C_k(X) \). But \(\text{Im} \psi_{(k,i)} \) is open in \(C_k(X) \) and is homeomorphic to \(s_{(k,i)}^{-1}(0) \subseteq V_{(k,i)} \), which is Hausdorff by Assumption 3.2(b) for \(V_{(k,i)} \). Hence there exist open \(U'_1 \subseteq \text{Im} \psi_{(k,i)} \subseteq C_k(X) \) and \(U'_2 \subseteq \text{Im} \psi_{(k,i)} \subseteq C_k(X) \) with \(U'_1 \cap U'_2 = \emptyset \). Therefore \(C_k(X) \) is Hausdorff.

As \(X \) is second countable and the \(\text{Im} \psi_i, i \in I \) cover \(X \), there exists a countable subset \(J \subseteq I \) with \(X = \bigcup_{i \in J} \text{Im} \psi_i \). Therefore \(C_k(X) = \bigcup_{i \in J} \text{Im} \psi_{(k,i)} \). But each \(\text{Im} \psi_{(k,i)} \) is homeomorphic to \(s_{(k,i)}^{-1}(0) \subseteq V_{(k,i)} \), which is second countable by Assumption 3.2(b) for \(V_{(k,i)} \). So \(C_k(X) \) is a countable union of second countable open subspaces, and is second countable.

For all of Definition 4.14(a)–(h) for \(C_k(X) \), either we have proved them above, or they follow from Definition 4.14(a)–(h) for \(X \) by pulling back by \(\Pi_k \) and using Theorems 3.27, 3.28 (In (c), that \(\Phi_{(k,i)} \) is a 1-morphism follows from \(\Phi_{(k,i)} \) a 1-morphism and (d),(f),) Hence \(C_k(X) = (C_k(X), K) \) is m-Kuranishi space with corners in \(mKur^c \), with \(\text{vdim} C_k(X) = n - k \).

Similarly, for Definition 4.17(a)–(h) for \(\Pi_k : C_k(X) \to X \), either we have proved them above, or they follow from Definition 4.14 for \(X \) using Theorems 3.27, 3.28 where we deduce Definition 4.17(f)–(h) for \(\Pi_k \) from Definition 4.14(h) for \(X \). Thus \(\Pi_k : C_k(X) \to X \) is a 1-morphism in \(mKur^c \).

When \(k = 1 \) we also write \(\partial X = C_1(X) \) and call it the boundary of \(X \), and we write \(i_X : \partial X \to X \) in place of \(\Pi_1 : C_1(X) \to X \).

We summarize Definition 4.39 in:

Theorem 4.40. For each \(X \) in \(mKur^c \) and \(k = 0, 1, \ldots \) we have defined the \(k \)-corners \(C_k(X) \), an object in \(mKur^c \) with \(\text{vdim} C_k(X) = \text{vdim} X - k \), and a 1-morphism \(\Pi_k : C_k(X) \to X \) in \(mKur^c \), whose underlying continuous map \(\Pi_k : C_k(X) \to X \) is proper with finite fibres. We also write \(\partial X = C_1(X) \), called the boundary of \(X \), and we write \(i_X = \Pi_1 : \partial X \to X \).
Definition 4.39 is similar to Fukaya, Oh, Ohta and Ono [24, Def. A1.30] for 1-morphisms. Apart from these, they do not involve the corner functor $C : \text{Man}^c \to \hat{\text{Man}}^c$.

As in Example 3.24 when Man^c is Man^c_{st}, Man^c_{ac}, $\text{Man}^c_{\text{ac,sc}}$, $\text{Man}^c_{\text{ac,sc}}$ or $\text{Man}^c_{\text{ac,sc}}$ there are two possibilities C, C' for $C : \text{Man}^c \to \hat{\text{Man}}^c$. In each case, simple maps, the functor C_k, and projections Π_k, are the same for C, C'. Therefore $C_k(X)$ and $\Pi_k : C_k(X) \to X$ in mKur^c are the same for C and C'.

(b) Definition 4.39 is similar to Fukaya, Oh, Ohta and Ono [24, Def. A1.30] for FOOO Kuranishi spaces — see 7.1 for more details.

4.6.2 The corner 2-functor $C : \text{mKur}^c \to \text{mKur}^c$

Definition 4.42. Define the 2-category mKur^c by following the definition of mKur^c in [4.3] but with the following modifications. In Definition 4.1.14 for objects $X = (X, K)$ in mKur^c, rather than taking $\text{vdim} X$ to be an integer n, it is a locally constant function $\text{vdim} : X \to \mathbb{Z}$. In part (b), we omit $\text{dim} V_i - \text{rank } E_i = n$, but instead we require that $\text{vdim}|_{\text{im } \psi_i} = \text{dim} V_i - \text{rank } E_i$, for all $i \in I$. This determines $\text{vdim} : X \to \mathbb{Z}$, so it is not extra data. Objects of mKur^c will be called m-Kuranishi spaces with corners of mixed dimension.

Then mKur^c embeds as a full 2-subcategory $\text{mKur}_c^c \subset \text{mKur}^c$ in the obvious way. Any X in mKur^c may be uniquely written as $X = \bigcap_{n \in \mathbb{Z}} X_n$, where $X_n \subseteq X$ is open and closed with topological space $X_n = \text{vdim}^{-1}(n)$, and $X_n \in \text{mKur}^c$ with $\text{vdim} X_n = n \in \mathbb{Z}$.

If $f : X \to Y$ is a 1-morphism in mKur^c with $X = \bigcap_{n \in \mathbb{Z}} X_m, Y = \bigcap_{n \in \mathbb{Z}} Y_n$ in mKur^c with $\text{vdim} X_m = m, \text{vdim} Y_n = n$, then $f|_{\text{im } \psi_m} : X_{m,n} \to Y_{m,n}$ is a 1-morphism in mKur^c for all $m, n \in \mathbb{Z}$, where $X_{m,n} := \text{im } \psi_m \cap f^{-1}(Y_n)$ is open and closed in $X_m \subseteq X$, with $X_m = \bigcap_{n \in \mathbb{Z}} X_{m,n}$.

An alternative way to construct mKur^c from mKur^c is to say that objects of mKur^c are $\bigcap_{n \in \mathbb{Z}} X_n$ for $X_n \in \text{mKur}^c$ with $\text{vdim} X_n = n$ as above, and a 1-morphism $f : \bigcap_{n \in \mathbb{Z}} X_m \to \bigcap_{n \in \mathbb{Z}} Y_n$ in mKur^c assigns a decomposition $X_m = \bigcap_{n \in \mathbb{Z}} X_{m,n}$ in mKur^c for $m \in \mathbb{Z}$ with $X_{m,n} \subseteq X_m$ open and closed, and 1-morphisms $f|_{\text{im } \psi_m} : X_{m,n} \to Y_{m,n}$ in mKur^c for all $m, n \in \mathbb{Z}$, and so on.

We write mKur_c^c for the 2-subcategory of mKur^c with the same objects, and with simple 1-morphisms, and all 2-morphisms between 1-morphisms in mKur_c^c. For the examples of $\text{mKur}_c^c \subset \text{mKur}^c$ in [4.3] and [4.5] we use the obvious notation for the corresponding 2-categories $\text{mKur}_{c,k}^c \subset \text{mKur}^c$, so for instance we enlarge mKur^c associated to $\text{Man}^c = \text{Man}_{c,k}^c$ to mKur^c.

Definition 4.43. We will define a weak 2-functor $C : \text{mKur}^c \to \hat{\text{mKur}}^c$, the corner 2-functor. On objects X in mKur^c, define $C(X) = \bigcap_{k=0}^\infty C_k(X)$ in $\hat{\text{mKur}}^c$. Extending the notation of Definition 4.39 we regard $C(X) = (C(X), \kappa_\mathbb{N})$ as a single object in mKur^c, where $\kappa_\mathbb{N}$ has indexing set $\mathbb{N} \times I$, and the part of $C(X)$ with indexing set $\{k\} \times I \subset \mathbb{N} \times I$ for $k \in \mathbb{N}$ is $C_k(X) \subset$
We will define a 1-morphism $\Pi : \mathbf{C}(X) \to X$ in \mathbf{mKur}^e by $\Pi = \bigsqcup_{k=0}^\infty \Pi_k$, for $\Pi_k : \mathbf{C}_k(X) \to X$ as in Definition 4.39.

Let $f : X \to Y$ be a 1-morphism in \mathbf{mKur}^e, and use notation (4.6), (4.7) and (4.9) for X, Y, f. Thus as above we write

$$C(X) = (C(X), T_N), \quad T_N = (N \times I, (U_{k,i,j}, D_{k,i,j}, r_{k,i,j}, \tau_{k,i,j}, \eta_{k,i,j}))(i,j) \in \mathbb{N} \times I,$$

$$T_{k,(i,j)}((k',i')) = (U_{k,(i,j)}(k',i'), \tau_{k,(i,j)}(k',i'), \eta_{k,(i,j)}(k',i'))((i,j),(k',i')) \in \mathbb{N} \times I,$$

$$K_{(k,i,j)}(k',i') = (U_{k,(i,j)}(k',i'), \tau_{k,(i,j)}(k',i'), \eta_{k,(i,j)}(k',i'))((k,i,j),(k',i')) \in \mathbb{N} \times I.$$

$$C(Y) = (C(Y), T'_N), \quad T'_N = (\mathbb{N} \times J, (V_{(i,j)}, E_{(i,j)}, s_{(i,j)}, \psi_{(i,j)}))(i,j) \in \mathbb{N} \times J,$$

$$\Upsilon_{(i,j)}((i',j')) = (V_{(i,j)}(i',j'), \psi_{(i,j)}(i',j'), \theta_{(i,j)}(i',j'))((i,j),(i',j')) \in \mathbb{N} \times J,$$

$$A_{(i,j)}(i',j') = (\hat{V}_{(i,j)}(i',j'), \hat{\psi}_{(i,j)}(i',j'), \hat{\chi}_{(i,j)}(i',j'))((i,j),(i',j')) \in \mathbb{N} \times J.$$

We will define a 1-morphism $C(f) : C(X) \to C(Y)$ in \mathbf{mKur}^e, where

$$C(f) = (C(f), f'_{(i,j)}, (i,j),(k,i,j) \in \mathbb{N} \times I,(i,j),(k,i,j) \in \mathbb{N} \times J),$$

$$\mathbf{F}(l_{(i,j)}, (k,i,j) \in \mathbb{N} \times I),(l',(k',i',j')) \in \mathbb{N} \times J),$$

$$\mathbf{F}(l_{(i,j)}, (k,i,j) \in \mathbb{N} \times I,(l',(k',i',j')) \in \mathbb{N} \times J).$$

First we define the map $C(f) : C(X) \to C(Y)$. Suppose $x' \in C_k(X) \subseteq C(X)$ with $\Pi_k(x') = x \in X$, and let $y = f(x) \in Y$. Choose $i \in I$ and $j \in J$ with $x \in \operatorname{Im} \chi_i$ and $y \in \operatorname{Im} \psi_j$, so that $x' \in \operatorname{Im} \chi_i$. Write $u_i = \chi_i^{-1}(x) \in r_i^{-1}(0) \subseteq U_i$, $u'_i = \chi_i^{-1}(x') \in r_i^{-1}(0) \subseteq U_i$, so that $\Pi_k(u'_i) = u_i$, and write $v_j = \psi_j^{-1}(y) \in s_j^{-1}(0) \subseteq V_j$. Then $f_{ij}(v_j) = v_j$ by Definition 4.2(e) for f_{ij}.

In f we have $f_{ij} = (U_{ij}, f_{ij}, \hat{f}_{ij}) : (U_i, \nu_i, \tau_i, \chi_i) \to (V_j, E_j, s_j, \psi_j)$, and $u_i \in U_{ij} \subseteq U_i$, so that $u'_i \in C_k(U_{ij}) \subseteq C_k(U_i)$. Then $f_{ij} : U_i \to V_j$ is a morphism in \mathbf{mMan}^e, so $C(f_{ij}) : C(U_{ij}) \to C(V_j)$ is a morphism in \mathbf{mMan}^e by Assumption 4.22(g). Write $v'_j = C(f_{ij})(u'_i) \in C(V_j)$. Then

$$\Pi_l(v'_j) = \Pi_l \circ C(f_{ij})(u'_i) = f_{ij} \circ \Pi_k(u'_i) = f_{ij}(u_i) = v_j \in s_j^{-1}(0),$$

so $v'_j \in \Pi_l^{-1}(s_j^{-1}(0))$. Define $C(f)(x') = \psi_{(i,j)}(b'_j) \in C(Y) \subseteq C(Y)$.

To show this well defined, let $i \in I$, $j \in J$ be alternative choices with $x \in \operatorname{Im} \chi_i$, $y \in \operatorname{Im} \psi_j$, and write u_i, u'_i, v_j, v'_j for the alternative u_i, u'_i, v_j, v'_j. We have coordinate changes $T_{i_1} = (U_{i_1}, \tau_{i_1}, \tilde{\tau}_{i_1}), T_{i_1} = (V_{j_1}, v_{j_1}, \tilde{v}_{j_1})$ in X, Y. Then

$$\psi_{(i,j)}(b'_j) = \psi_{(i,j)} \circ C(f_{ij}) (u'_i) = \psi_{(j,i)} \circ C(v_{j_1}) \circ C(\tau_{i_1}) (u'_i) \circ C(\eta_{i_1}) (u'_i) \circ C(\psi_{(i,j)}) (u'_i) \circ C(f_{ij})(u'_i) \circ \psi_{(i,j)} (v'_j).$$

Here in the first and fifth steps we use the definitions of v'_j, v_j, in the second the definition of $C_k(X), C(Y)$ in (4.19) with τ_{i_1}, v_{j_1} simple near u_i, v_j so that k, l do not change, in the third that $C : \mathbf{mMan}^e \to \mathbf{mMan}^e$ is a functor, and in the fourth Definition 4.17(g) for f. Hence $C(f)(x')$ is well defined.

We now have a commutative diagram

$$\begin{array}{c}
\chi_{(i,k)}(\cdot) \\
\downarrow \quad \downarrow \\
U_{k,(i,k)}(i',k') \\
\uparrow \quad \uparrow \\
U_{i,k}(i',k') \\
\uparrow \quad \uparrow \\
0 \\
\uparrow \quad \uparrow \\
C(f) \\
\downarrow \quad \downarrow \\
C(V_j) \\
\end{array}$$

(4.51)
As the top row is continuous, and the columns are homeomorphisms with open subsets of \(C(X), C(Y) \), we see that \(C(f) \) is continuous in an open neighbourhood of \(x' \) in \(C(X) \). As this holds for all \(x' \), \(C(f) \) is continuous.

If \(f : X \to Y \) is simple then \(f_{ij} : U_{ij} \to V_j \) is simple near \(r_i^{-1}(0) \) for all \(i, j \), so \(C(f_{ij}) \) maps \(C_k(U_{ij}) \to C_k(V_j) \) near \(r_i^{-1}(0) \) for all \(k = 0, 1, \ldots \), and hence \(C(f) \) maps \(C_k(X) \to C_k(Y) \) for all \(k = 0, 1, \ldots \).

For \((k, i) \in \mathbb{N} \times I \) and \((l, j) \in \mathbb{N} \times J \), with \(f_{ij} = (U_{ij}, f_{ij}, \hat{f}_{ij}) \), define

\[
U_{(k,i)(l,j)} = C_k(U_{ij}) \cap C(f_{ij})^{-1}(C_l(V_j)) \subseteq U_{(k,i)} = C_k(U_i), \]
\[
f_{(k,i)(l,j)} = C(f_{ij})|_{U_{(k,i)}(l,j)} : U_{(k,i)(l,j)} \to V_{(l,j)} = C_l(V_j), \]
\[
\hat{f}_{(k,i)(l,j)} = \Pi^*_k(\hat{f}_{ij})|_{U_{(k,i)(l,j)}} : D_{(k,i)}|_{\hat{U}_{(k,i)(l,j)}} = \Pi^*_k|_{\hat{U}_{(k,i)(l,j)}}(D_i). \]

\[
\to \Pi_k|_{\hat{U}_{(k,i)(l,j)}} \circ f'_{ij}(E_j) = C_k(f_{ij})|_{\hat{U}_{(k,i)(l,j)}} \circ \Pi_k^*(E_j) = f'_{(k,i)(l,j)}(E_{(l,j)}). \]

Then we have a 1-morphism of \(m \)-Kuranishi neighbourhoods

\[
\begin{align*}
f_{(k,i)(l,j)} &= (U_{(k,i)(l,j)}, f_{(k,i)(l,j)}, \hat{f}_{(k,i)(l,j)}) : (U_{(k,i)}, D_{(k,i)}, \tau_{(k,i)}, \chi_{(k,i)}) \to (V_{(l,j)}, E_{(l,j)}, s_{(l,j)}, \psi_{(l,j)}),
\end{align*}
\]

(4.52) over \(C(f) : C(X) \to C(Y) \) and \(S = \text{Im} \chi_{(k,i)} \cap C(f)^{-1}(\text{Im} \psi_{(l,j)}) \). Here Definition 4.2(3)–(5) for \(f_{(k,i)(l,j)} \) are immediate, (d) follows by applying \(\Pi^*_k \) to (d) for \(f_{ij} \) and using Theorem 3.28(1), and (e) holds by (4.51).

Let \(i, i' \in I \) and \(j, j' \in J \), and choose representatives \((\hat{U}_{i'i'}, \hat{F}_{i'i'}, (\hat{U}_{j'j'}, \hat{F}_{j'j'})\) for \(F_{k'} = [\hat{U}_{i'i'}, \hat{F}_{i'i'}], F_{k''} = [\hat{U}_{j'j'}, \hat{F}_{j'j'}] \) in \(f \). For \(k, l \in \mathbb{N} \), define

\[
\begin{align*}
\hat{U}_{(k,i)(l,j)} &= C_k(\hat{U}_{i'i'}) \cap C(f_{i'i'} \circ \tau_{i'i'})^{-1}(C_l(V_j)), \\
\hat{U}_{(k,i)(l,j)} &= C_k(\hat{U}_{j'j'}) \cap C(v_{j'j'} \circ f_{j'j'})^{-1}(C_l(V_j)).
\end{align*}
\]

(4.53)

As for \(4.45 \), define morphisms

\[
\begin{align*}
\hat{F}_{(k,i)(l,j)} &= \Pi^*_k(\hat{F}_{i'i'})|_{\hat{U}_{(k,i)(l,j)}} : D_{(k,i)}|_{\hat{U}_{(k,i)(l,j)}} = \Pi^*_k(D_i)|_{\hat{U}_{(k,i)(l,j)}}, \\
\to \nabla_{f_{(k,i)(l,j)}} \circ \tau_{(k,i)(l,j)} \circ V_{(l,j)}|_{\hat{U}_{(k,i)(l,j)}} &= \Pi^*_k(D_i)|_{\hat{U}_{(k,i)(l,j)}}, \\
\hat{F}_{(k,i)(l,j)} &= \Pi^*_k|_{\hat{U}_{(k,i)(l,j)}}(D_i)|_{\hat{U}_{(k,i)(l,j)}} : D_{(k,i)}|_{\hat{U}_{(k,i)(l,j)}} = \Pi^*_k(D_i)|_{\hat{U}_{(k,i)(l,j)}}, \\
\nabla_{f_{(k,i)(l,j)}} \circ \tau_{(k,i)(l,j)} \circ V_{(l,j)}|_{\hat{U}_{(k,i)(l,j)}} &= \Pi^*_k(D_i)|_{\hat{U}_{(k,i)(l,j)}},
\end{align*}
\]

(4.54)

(4.55)

where \(\Pi^*_k(\hat{F}_{i'i'}), \Pi^*_k(\hat{F}_{j'j'}) \) are as in 3.4.3.

Now define 2-morphisms of \(m \)-Kuranishi neighbourhoods

\[
\begin{align*}
F_{(k,i)(l,j)} &= \left[\hat{U}_{(k,i)(l,j)}, \hat{F}_{(k,i)(l,j)} \right] : f_{(k,i')(l,j)} \circ T_{(k,i)(k,i')} \implies f_{(k,i)(l,j)}, \\
F_{(k,i)(l,j)} &= \left[\hat{U}_{(k,i)(l,j)}, \hat{F}_{(k,i)(l,j)} \right] : \Upsilon_{(l,j)(l,j')} \circ f_{(k,i)(l,j)} \implies f_{(k,i')(l,j')}.
\end{align*}
\]

89
This makes sense as Theorem 3.28(ii), so \(F_{ij}^{(i',j')} \) depend only on \(F_{ij}^{(i,j)} \).

If \(k \neq k' \) and \(l \neq l' \), we define \(F_{ij}^{(i,k),(k',j')} = \emptyset \) for \(\text{Definition 4.17(a),(b)} \) for \(C_k \).

We have now defined all the data in \(C(f) \) in (4.50), and verified Definition 4.17(a)–(d) for \(C(f) \). We deduce (e)–(h) from Definition 4.17(e)–(h) for \(f \) by pulling back by \(\Pi_k : C_k(V_i) \rightarrow V_i \) using Theorems 3.27, 3.28. This proves \(C(f) : C(X) \rightarrow C(Y) \) is a 1-morphism in \(\text{mKur}^e \).

If \(f : X \rightarrow Y \) is simple (that is, a 1-morphism in \(\text{mKur}^e \)) then \(C(f) \) maps \(C_k(X) \rightarrow C_k(Y) \) for \(k = 0, 1, \ldots \) Also as \(f_{ij} : U_{ij} \rightarrow V_j \) is simple near \(r_{ij}^{-1}(0) \), \(C(f_{ij}) : C(U_{ij}) \rightarrow C(V_j) \) is simple near \(r_{ij}^{-1}(0) \) by Assumption 3.22, so \(f_{ij}(U_{ij}) \) and \(f_{ij}(U_{ij}) \) in (4.52) are simple. Therefore \(C(f) : C(X) \rightarrow C(Y) \) is simple and decomposes as \(C(f) = \bigoplus_{k=0}^{\infty} C_k(f) \) for \(C_k(f) : C_k(X) \rightarrow C_k(Y) \) in \(\text{mKur}^e_k \).

Now let \(f, g : X \rightarrow Y \) be 1-morphisms and \(\eta : f \Rightarrow g \) a 2-morphism in \(\text{mKur}^e \). Use the notation above for \(X, Y, f, C(X), C(Y), C(f) \), and the obvious extensions to \(g, C(g) \), and write \(\eta = (\eta_{ij}, i \in I, j \in J) \). For \(i \in I \) and \(j \in J \), choose a representative \((U_{ij}, \tilde{\eta}_{ij}) \) for \(\eta_{ij} = [U_{ij}, \tilde{\eta}_{ij}] : f_{ij} \Rightarrow g_{ij} \). Let \(k, l \in \mathbb{N} \).

As in 4.53–4.55, define

\[
\hat{U}_{ij}(U_{ij}) = C_k(U_{ij}) \cap C(f_{ij})^{-1}(C_l(V_j))
\]

\[
\hat{\eta}_{ij}(U_{ij}) = \Pi_k^* (\tilde{\eta}_{ij}(U_{ij})) D_{(k,i)}(\hat{U}_{ij}(U_{ij})) = \Pi_k^* (\hat{U}_{ij}(U_{ij})(D_i)) \rightarrow T_{U_{ij}(U_{ij})} V_{ij} \quad \text{and} \quad C(f_{ij}) \hat{U}_{ij}(U_{ij}) \subset C_l(V_j),
\]

where \(\Pi_k^* (\tilde{\eta}_{ij}) \) is as in 3.4.3. The same proof as for \(F_{ij}^{(i,j)}(U_{ij}) \) shows

\[
\eta_{ij}(U_{ij}) = [U_{ij}(U_{ij}), \hat{\eta}_{ij}(U_{ij})] : f_{ij}(U_{ij}) \Rightarrow g_{ij}(U_{ij})
\]

is a 2-morphism of \(\text{mKur} \) neighbourhoods, and is independent of the choice of \((U_{ij}, \tilde{\eta}_{ij})\). Define

\[
C(\eta) = (\eta_{U_{ij}(U_{ij}), U_{ij}(U_{ij})} : (i,j) \in \mathbb{N} \times I, (l,j) \in \mathbb{N} \times J) : C(f) \Rightarrow C(g).
\]
We can deduce Definition 4.18(a),(b) for \(C(\eta) \) from Definition 4.18(a),(b) for \(\eta \), by pulling back by \(\Pi_k : C_k(V_i) \rightarrow V_i \) using Theorems 3.27–3.28. Hence \(C(\eta) : C(f) \Rightarrow C(g) \) is a 2-morphism in \(m\text{Kur}^c \).

Let \(f : X \rightarrow Y \), \(g : Y \rightarrow Z \) be 1-morphisms in \(m\text{Kur}^c \), with notation \((4.6.1)\)–\((4.9)\). Definition 4.20 defines the composition \(g \circ f : X \rightarrow Z \) in \(m\text{Kur}^c \), by making an arbitrary choice, with 1-morphisms \(\Theta_{ij}^k : g_{jk} \circ f_{ij} \Rightarrow (g \circ f)_{kj} \) in \((4.24)\) making \((4.15)–(4.17)\) commute. The constructions above now give \(C(f) : C(X) \rightarrow C(Y) \) and \(C(g) : C(Y) \rightarrow C(Z) \) and \(C(g \circ f) : C(X) \rightarrow C(Z) \) in \(m\text{Kur}^c \). Definition 4.20 also defines the composition \(C(g) \circ C(f) : C(X) \rightarrow C(Z) \) in \(m\text{Kur}^c \), by making an arbitrary choice.

Since the choices in \(g \circ f \) and \(C(g) \circ C(f) \) may not be consistent, we need not have \(C(g) \circ C(f) = C(g \circ f) \). However, by applying the corner functor to the 2-morphisms \(\Theta_{ijk}^l \) as for \(\Lambda_{kij}, F_{ij}^k, \ldots \) above, we can show that \(C(g) \circ C(f) \) is one of the possible choices for \(C(g) \circ C(f) \). Hence Proposition 4.19(b) gives a canonical 2-morphism \(C_{g,f} : C(g) \circ C(f) \Rightarrow C(g \circ f) \) in \(m\text{Kur}^c \).

For any \(X \) in \(m\text{Kur}^c \) we can show from the definitions that \(C(\text{id}_X) = \text{id}_{C(X)} \). Define a 2-morphism \(C_X = \text{id}_{\text{id}_{C(X)}} : C(\text{id}_X) \Rightarrow \text{id}_{C(X)} \) in \(m\text{Kur}^c \). This defines all the data of a weak 2-functor \(C : m\text{Kur}^c \rightarrow m\text{Kur}^c \), as in (3.3). It is easy to check that the weak 2-functor axioms hold.

As above, if \(f : X \rightarrow Y \) lies in \(m\text{Kur}^c_{si} \) then \(C(f) = \prod_{i=0}^\infty C_k(f) \) for \(C_k(f) : C_k(X) \rightarrow C_k(Y) \) 1-morphisms in \(m\text{Kur}^c_{si} \). Hence \(C_{m\text{Kur}^c_{si}} \) decomposes as \(C_{m\text{Kur}^c_{si}} = \prod_{i=0}^\infty C_k \) where \(C_k : m\text{Kur}^c_{si} \rightarrow m\text{Kur}^c_{si} \) is a weak 2-functor. Let the boundary 2-functor be \(\partial : C_1 : m\text{Kur}^c_{si} \rightarrow m\text{Kur}^c_{si} \).

If for some discrete property \(P \) of morphisms in \(\text{Man}^c \) the corner functor \(C : \text{Man}^c \rightarrow \text{Man}^c \) in Assumption 3.22(g) maps to the subcategory \(\text{Man}_P^c \) of \(\text{Man}^c \) whose morphisms are \(P \), then in the definition of \(C(f) \) above the 1-morphisms \(f_{(k,i)(i,j)} \) are \(P \), so that \(C : m\text{Kur}^c \rightarrow m\text{Kur}^c \) maps to the 2-subcategory \(m\text{Kur}^c_P \) of \(m\text{Kur}^c \) whose 1-morphisms are \(P \).

We summarize Definition 4.43 in:

Theorem 4.44. We have defined a weak 2-functor \(C : m\text{Kur}^c \rightarrow m\text{Kur}^c \) called the **corner 2-functor**. It acts on objects \(X \) in \(m\text{Kur}^c \) by \(C(X) = \prod_{i=0}^\infty C_k(X) \). If \(f : X \rightarrow Y \) is simple then \(C(f) : C(X) \rightarrow C(Y) \) is simple and maps \(C_k(X) \rightarrow C_k(Y) \) for \(k = 0, 1, \ldots \). Thus \(C_{m\text{Kur}^c_{si}} \) decomposes as \(C_{m\text{Kur}^c_{si}} = \prod_{i=0}^\infty C_k \), where \(C_k : m\text{Kur}^c_{si} \rightarrow m\text{Kur}^c_{si} \) is a weak 2-functor acting on objects by \(X \) \(\Rightarrow C_k(X) \), for \(C_k(X) \) as in (4.6.1). We also write \(\partial = C_1 : m\text{Kur}^c_{si} \rightarrow m\text{Kur}^c_{si} \), and call it the **boundary 2-functor**.

If for some discrete property \(P \) of morphisms in \(\text{Man}^c \) the corner functor \(C : \text{Man}^c \rightarrow \text{Man}^c \) maps to the subcategory \(\text{Man}_P^c \) of \(\text{Man}^c \) whose morphisms are \(P \), then \(C : m\text{Kur}^c \rightarrow m\text{Kur}^c \) maps to the 2-subcategory \(m\text{Kur}^c_P \) of \(m\text{Kur}^c \) whose 1-morphisms are \(P \).
4.6.3 Examples, and easy consequences

Example 4.45. Example 3.24(a)–(h) give examples of data \(\mathcal{M} \mathbf{a}n^{\mathbf{c}} \), simple maps, corner functors \(C : \mathcal{M} \mathbf{a}n^{\mathbf{c}} \to \mathcal{M} \mathbf{a}n^{\mathbf{c}} \), etc., satisfying Assumption 3.32, where the corner functors are written either \(C \) as in Definition 4.6.2 or \(C^\prime \) as in Definition 4.6.1. Applying the constructions of 4.6.4 to this data \(\mathcal{M} \mathbf{a}n^{\mathbf{c}} \), \(\partial X \) and 1-morphisms \(\Pi_k : C_k(X) \to X \), \(i_X : \partial X \to X \) for \(X \) in \(\mathcal{M} \mathbf{a}n^{\mathbf{c}} \), and corner 2-functors \(C : mK \mathbf{u}r^c \to m \mathbf{K} \mathbf{u}r^c \).

We write the corner 2-functors coming from Example 3.24(a)–(h) as:

\[
\begin{align*}
C : mK \mathbf{u}r^c &\to mK \mathbf{u}r^c_{\text{in}} \subset mK \mathbf{u}r^c, & C^\prime : mK \mathbf{u}r^c &\to mK \mathbf{u}r^c, \\
C : mK \mathbf{u}r^{\text{st}} &\to mK \mathbf{u}r^{\text{st, in}} \subset mK \mathbf{u}r^{\text{st}}, & C^\prime : mK \mathbf{u}r^{\text{st}} &\to mK \mathbf{u}r^{\text{st}}, \\
C : mK \mathbf{u}r^{\text{ac}} &\to mK \mathbf{u}r^{\text{ac, in}} \subset mK \mathbf{u}r^{\text{ac}}, & C^\prime : mK \mathbf{u}r^{\text{ac}} &\to mK \mathbf{u}r^{\text{ac}}, \\
C : mK \mathbf{u}r^{\text{st, ac}} &\to mK \mathbf{u}r^{\text{st, in, ac}} \subset mK \mathbf{u}r^{\text{st, ac}}, & C^\prime : mK \mathbf{u}r^{\text{st, ac}} &\to mK \mathbf{u}r^{\text{st, ac}}, \\
C : mK \mathbf{u}r^{\text{ac, st}} &\to mK \mathbf{u}r^{\text{st, ac}}, & C^\prime : mK \mathbf{u}r^{\text{ac, st}} &\to mK \mathbf{u}r^{\text{ac, st}}.
\end{align*}
\]

As in Example 3.24(h) and 2.4.1, there is no second corner functor \(C^\prime \) on \(\mathcal{M} \mathbf{a}n^{\mathbf{c}} \), and so no 2-functor \(C^\prime \) on \(mK \mathbf{u}r^{\mathbf{c}} \). The functors \(C \) map to interior morphisms in \(\mathcal{M} \mathbf{a}n^{\mathbf{c}} \),..., where interior is a discrete property as in 3.3.6, so the last part of Theorem 4.44 implies that the corresponding 2-functors \(C \) map to interior 1-morphisms in \(mK \mathbf{u}r^{\mathbf{c}} \).

Remark 4.41(a) explains that the notions of boundary \(\partial X \), \(k \)-corners \(C_k(X) \), and 1-morphisms \(\Pi_k : C_k(X) \to X \) in \(mK \mathbf{u}r^{\mathbf{c}} \), \(mK \mathbf{u}r^{\mathbf{c}, \text{st}} \), \(mK \mathbf{u}r^{\mathbf{c}, \text{ac}} \), and \(mK \mathbf{u}r^{\text{st, ac}} \) are independent of whether we choose \(C \) or \(C^\prime \) in Assumption 3.22. So in each of the first six lines of (4.56), the 2-functors \(C \) and \(C^\prime \) agree on objects, but differ on 1- and 2-morphisms.

As in Proposition 2.10(a),(b), all of the functors \(C : \mathcal{M} \mathbf{a}n^{\mathbf{c}} \to \mathcal{M} \mathbf{a}n^{\mathbf{c}} \) in Example 3.24(a)–(h) (though not the functors \(C^\prime \)) have the property that a morphism \(f : X \to Y \) is interior if and only if \(C(f) : C(X) \to C(Y) \) maps \(C_0(X) \to C_0(Y) \), and \(f \) is b-normal if and only if \(C(f) \) maps \(C_k(X) \to \prod_{l=0}^k C_l(Y) \) for all \(k = 0, \ldots, \dim X \), where interior and b-normal are discrete properties. Applying this to the definition of \(C(f) \) in Definition 4.43 we easily deduce:

Proposition 4.46. For all of the 2-functors \(C \) in (4.56) (though not the 2-functors \(C^\prime \)), a 1-morphism \(f : X \to Y \) is interior (or b-normal) if and only if \(C(f) \) maps \(C_0(X) \to C_0(Y) \) (or \(C(f) \) maps \(C_k(X) \to \prod_{l=0}^k C_l(Y) \) for all \(k = 0, 1, \ldots, \) respectively).

The boundary \(\partial X \) and \(k \)-corners \(C_k(X) \) of \(X \) in \(mK \mathbf{u}r^{\mathbf{c}} \) depend, up to equivalence in \(mK \mathbf{u}r^{\mathbf{c}} \), only on \(X \) up to equivalence in \(mK \mathbf{u}r^{\mathbf{c}} \). In applications
m-Kuranishi spaces with corners X are usually only natural up to equivalence in \mathfrak{mKur}^c, so this is important for boundaries and corners to be well behaved.

Proposition 4.47. Let $f : X \to Y$ be an equivalence in \mathfrak{mKur}^c. Then f is simple by Proposition 4.36(c), and $C_k(f) : C_k(X) \to C_k(Y)$ for $k = 0, 1, \ldots$ and $\partial f : \partial X \to \partial Y$ are also equivalences in \mathfrak{mKur}^c.

Proof. As f is an equivalence there exist a 1-morphism $g : Y \to X$ and 2-morphisms $\eta : g \circ f \Rightarrow \text{id}_X$, $\zeta : f \circ g \Rightarrow \text{id}_Y$ in \mathfrak{mKur}^c, where g is also an equivalence, and so simple. For $k \geq 0$ we can apply the 2-functor $C_k : \mathfrak{mKur}^c_{\text{si}} \to \mathfrak{mKur}^c_{\text{si}}$ to f, g, η, ζ. The compositions of 2-morphisms

\[
C_k(g) \circ C_k(f) \Rightarrow C_k(\text{id}_X) \Rightarrow \text{id}_{C_k(X)},
\]

\[
C_k(f) \circ C_k(g) \Rightarrow C_k(\text{id}_Y) \Rightarrow \text{id}_{C_k(Y)},
\]

show $C_k(f)$ is an equivalence, so putting $k = 1$ shows ∂f is an equivalence.

Definition 4.48. As in Definition 4.29 we write \mathfrak{mKur}^c for the 2-category of m-Kuranishi spaces with corners associated to $\text{Man}^c = \text{Man}^c$. An object X in \mathfrak{mKur}^c is called an m-Kuranishi space with boundary if $\partial(X) = \emptyset$. Write \mathfrak{mKur}^b for the full 2-subcategory of m-Kuranishi spaces with boundary in \mathfrak{mKur}^c, and write $\mathfrak{mKur}^b_{\text{si}} \subseteq \mathfrak{mKur}^c_{\text{si}} \subseteq \mathfrak{mKur}^b$ for the 2-subcategories of \mathfrak{mKur}^b with simple and interior 1-morphisms.

If $V \in \text{Man}^c$ then $\partial(\partial V) = \emptyset$ if and only if $C_k(V) = \emptyset$ for all $k > 1$. (For any Man^c satisfying Assumption 3.22 surjectivity of $I_{k,l}$ in (f) implies that the same holds in Man^c). Using this we can show that $X \in \mathfrak{mKur}^c$ is an m-Kuranishi space with boundary if and only if $C_k(X) = \emptyset$ for all $k > 1$.

4.7 M-Kuranishi neighbourhoods on m-Kuranishi spaces

At the beginning of differential geometry, one defines manifolds X and smooth maps $f : X \to Y$ in terms of an atlas $\{(V_i, \psi_i) : i \in I\}$ of charts on X, and transition functions $\psi_{ij} = \psi_j^{-1} \circ \psi_i |_{\psi_i^{-1}(\text{Im} \psi_j)}$ between charts $(V_i, \psi_i), (V_j, \psi_j)$. However, one quickly comes to regard actually choosing an atlas on X or working explicitly with atlases as unnatural and inelegant, so we generally suppress them, working with ‘local coordinates’ on X if we really need to reduce things to \mathbb{R}^n.

We now wish to advocate a similar philosophy for working with m-Kuranishi spaces $X = (X, K)$, in which, like atlases, actually choosing or working explicitly with m-Kuranishi structures $K = (I, (V_i, E_i, s_i, \psi_i))_{i \in I}$, $\Phi_{ij}, i,j \in I, \Lambda_{ij}, i,j \in I$ is regarded as inelegant and to be avoided where possible, and X is understood to exist as a geometric space independently of any choices of $I, (V_i, E_i, s_i, \psi_i), \ldots$. Our analogue of ‘local coordinates’ will be ‘m-Kuranishi neighbourhoods on m-Kuranishi spaces’.

93
4.7.1 Defining m-Kuranishi neighbourhoods on m-Kuranishi spaces

Definition 4.49. Suppose \(X = (X, \mathcal{K}) \) is an m-Kuranishi space, where \(\mathcal{K} = \{(V_1, E_1, s_1, \psi_1), \ldots, (V_N, E_N, s_N, \psi_N)\} \). An m-Kuranishi neighbourhood on the m-Kuranishi space \(X \) is data \((V_0, E_0, s_0, \psi_0), \Phi_{ai}, i \in I, \Lambda_{aij}, i, j \in I, \) where \((V_0, E_0, s_0, \psi_0)\) is an m-Kuranishi neighbourhood on the topological space \(X \) in the sense of Definition 4.1 and \(\Phi_{ai} : (V_0, E_0, s_0, \psi_0) \rightarrow (V_i, E_i, s_i, \psi_i) \) is a coordinate change for each \(i \in I \) (over \(S = \Im \psi_0 \cap \Im \psi_i \), as usual) as in Definition 4.46 and \(\Lambda_{aij} : \Phi_j \circ \Phi_i \Rightarrow \Phi_{aij} \) is a 2-morphism (over \(S = \Im \psi_0 \cap \Im \psi_i \cap \Im \psi_j \), as usual) as in Definition 4.13 for all \(i, j \in I \), such that \(\Lambda_{aii} = \id_{\Phi_{ai}} \) for all \(i \in I \), and as in Definition 4.14(h) for all \(i, j, k \in I \) we have

\[
\Lambda_{aij} \circ (\id_{\Phi_{aj}} \ast \Lambda_{aij}) = \Lambda_{aij} \circ (\Lambda_{ijk} \ast \id_{\Phi_{ai}}) : \Phi_{jk} \circ \Phi_{ij} \circ \Phi_{ai} \Rightarrow \Phi_{ak}, \tag{4.57}
\]

where (4.57) holds over \(S = \Im \psi_0 \cap \Im \psi_i \cap \Im \psi_j \cap \Im \psi_k \) by our usual convention.

Here the subscript \('a'\) in \((V_0, E_0, s_0, \psi_0)\) is just a label used to distinguish m-Kuranishi neighbourhoods, generally not in \(I \). If we omit \(a \) we will write \('s'\) in place of \('a'\) in \(\Phi_{ai}, \Lambda_{aij}, \) giving \(\Phi_{si} : (V, E, s, \psi) \rightarrow (V_i, E_i, s_i, \psi_i) \) and \(\Lambda_{si} : \Phi_{ij} \circ \Phi_{si} \Rightarrow \Phi_{sj} \).

We will usually just say \((V_0, E_0, s_0, \psi_0)\) or \((V, E, s, \psi)\) is an m-Kuranishi neighbourhood on \(X \), leaving the data \(\Phi_{ai}, \Lambda_{aij} \) or \(\Phi_{si}, \Lambda_{si} \) implicit. We call such a \((V, E, s, \psi)\) a global m-Kuranishi neighbourhood on \(X \) if \(\Im \psi = X \).

Example 4.50. Let \(X = (X, \mathcal{K}) \) be as in Definition 4.49 and let \(a, i \in I \). Then \((V_0, E_0, s_0, \psi_0)\) is an m-Kuranishi neighbourhood on \(X \), with data \(\Phi_{ai}, i \in I, \Lambda_{aij}, i, j \in I \) as in \(\mathcal{K} \), where (4.57) follows from Definition 4.14(h) for \(X \). Thus, all the m-Kuranishi neighbourhoods in \(\mathcal{K} \) are m-Kuranishi neighbourhoods on \(X \).

Definition 4.51. Using the same notation, suppose \((V_0, E_0, s_0, \psi_0), \Phi_{ai}, i \in I, \Lambda_{aij}, i, j \in I \) and \((V_b, E_b, s_b, \psi_b), \Phi_{bi}, i \in I, \Lambda_{bij}, i, j \in I \) are m-Kuranishi neighbourhoods on \(X \), and \(S \subseteq \Im \psi_0 \cap \Im \psi_i \) is open. A coordinate change from \((V_0, E_0, s_0, \psi_0)\) to \((V_b, E_b, s_b, \psi_b)\), over \(S \) on the m-Kuranishi space \(X \) is data \(\Phi_{ab}, \Lambda_{abi}, i \in I, \) where \(\Phi_{ab} : (V_0, E_0, s_0, \psi_0) \rightarrow (V_b, E_b, s_b, \psi_b) \) is a coordinate change over \(S \) as in Definition 4.10 and \(\Lambda_{abi} : \Phi_{bi} \circ \Phi_{ab} \Rightarrow \Phi_{ai} \) is a 2-morphism over \(S \cap \Im \psi_i \) as in Definition 4.3 for each \(i \in I \), such that for \(i, j \in I \) we have

\[
\Lambda_{aij} \circ (\id_{\Phi_{aj}} \ast \Lambda_{aij}) = \Lambda_{aij} \circ (\Lambda_{ijk} \ast \id_{\Phi_{ai}}) : \Phi_{ij} \circ \Phi_{bi} \circ \Phi_{ab} \Rightarrow \Phi_{aij}, \tag{4.58}
\]

where (4.58) holds over \(S \cap \Im \psi_i \cap \Im \psi_j \).

We will usually just say \(\Phi_{ab} : (V_0, E_0, s_0, \psi_0) \rightarrow (V_b, E_b, s_b, \psi_b) \) is a coordinate change over \(S \) on \(X \), leaving the data \(\Lambda_{abi}, i \in I \) implicit. If we do not specify \(S \), we mean that \(S \) is as large as possible, that is, \(S = \Im \psi_0 \cap \Im \psi_b \).

Suppose \(\Phi_{ab} : (V_0, E_0, s_0, \psi_0) \rightarrow (V_b, E_b, s_b, \psi_b), \Lambda_{abi}, i \in I, \) and \(\Phi_{bc} : (V_b, E_b, s_b, \psi_b) \rightarrow (V_c, E_c, s_c, \psi_c) \). \(\Lambda_{bc}, \) and \(\Lambda_{abc} = \Lambda_{abi} \circ (\Lambda_{bc} \ast \id_{\Phi_{ab}}) : \Phi_{bc} \circ \Phi_{ab} \Rightarrow \Phi_{ai} \) for all \(i \in I \) is easy to show that \(\Phi_{ac} = \Phi_{bc} \circ \Phi_{ab}, \Lambda_{aci}, i \in I \) is a coordinate change from \((V_a, E_a, s_a, \psi_a)\) to \((V_c, E_c, s_c, \psi_c)\) over \(S \) on \(X \). We call this composition of coordinate changes.
Example 4.52. Let \(X = (X, \mathcal{K}) \) be as in Definition 4.49 and let \(a, b \in I \). Then \((V_a, E_a, s_a, \psi_a)\) and \((V_b, E_b, s_b, \psi_b)\) are m-Kuranishi neighbourhoods on \(X \) as in Example 4.50. The coordinate change \(\Phi_{ab} : (V_a, E_a, s_a, \psi_a) \to (V_b, E_b, s_b, \psi_b) \) in \(\mathcal{K} \) is a coordinate change over \(\Im \psi_a \cap \Im \psi_b \) on \(X \), with data \(\Lambda_{ab}, i,j \in I \) as in \(\mathcal{K} \).

Example 4.53. Let \(X, Y \) be m-Kuranishi spaces in \(m\text{Kur} \), and \((\mathcal{U}, D, r, \chi)\) and \((V, E, s, \psi)\) be m-Kuranishi neighbourhoods on \(X, Y \). Example 4.31 defined the product m-Kuranishi space \(X \times Y \). It is easy to construct a product m-Kuranishi neighbourhood \((U \times V, \pi_1^U(D) \oplus \pi_1^V(E), \pi_2^U(r) \oplus \pi_2^V(s), \chi \times \psi)\) on \(X \times Y \).

Definition 4.54. Let \(f : X \to Y \) be a 1-morphism of m-Kuranishi spaces, and use notation (4.6)–(4.7) for \(X, Y \), and (4.9) for \(f \). Suppose \((U_a, D_a, r_a, \chi_a), T_{ai}, i \in I \) is a m-Kuranishi neighbourhood on \(X \), and \((V_b, E_b, s_b, \psi_b), \Upsilon_{bj}, j \in J \) an m-Kuranishi neighbourhood on \(Y \), as in Definition 4.49. Let \(S \subseteq \Im \chi_a \cap f^{-1}(\Im \psi_b) \) be open. A 1-morphism from \((U_a, D_a, r_a, \chi_a)\) to \((V_b, E_b, s_b, \psi_b)\) over \((S, f)\) on the m-Kuranishi spaces \(X, Y \) is data \(f_{ab} : F_{ai}^b, j \in J \) where \(f_{ab} : (U_a, D_a, r_a, \chi_a) \to (V_b, E_b, s_b, \psi_b) \) is a 1-morphism of m-Kuranishi neighbourhoods over \((S, f)\) in the sense of Definition 4.2 and \(F_{ai}^b : \Upsilon_{bj} \to f_{ab} \) is a 2-morphism over \(S \cap \Im \chi_a \cap f^{-1}(\Im \psi_b) \) as in Definition 4.3 for all \(i \in I, j \in J \), such that for all \(i, i' \in I, j, j' \in J \) we have

\[
(F_{ai}^b)^{-1} \circ (F_{ai'}^b \ast \id_{T_{ai}}) = (F_{ai'}^b)^{-1} \circ (\id_{T_{ai'}} \ast K_{ai}) \colon (f_{i', j} \circ T_{i'}) \circ T_{ai} \Longrightarrow \Upsilon_{bj} \circ f_{ab},
\]

\[
F_{ai}^b \circ (\Lambda_{bjj'} \ast \id_{f_{ab}}) = (F_{i'}^j \ast \id_{T_{ai}}) \circ (\id_{T_{ai'}} \ast F_{ai}) \colon (\Upsilon_{jj'} \circ T_{bj}) \circ f_{ab} \Longrightarrow f_{ij'} \circ T_{ai}.
\] (4.59)

We will usually just say that \(f_{ab} : (U_a, D_a, r_a, \chi_a) \to (V_b, E_b, s_b, \psi_b) \) is a 1-morphism of m-Kuranishi neighbourhoods over \((S, f)\) on \(X, Y \), leaving the data \(F_{ai}^b, j \in J \) implicit.

Suppose \(g : Y \to Z \) is another 1-morphism of m-Kuranishi spaces, using notation (4.8) for \(Z \), and \((W_c, F_c, \iota_c, \omega_c)\) is an m-Kuranishi neighbourhood on \(Z \), and \(T \subseteq \Im \psi_b \cap g^{-1}(\Im \omega_c) \), \(S \subseteq \Im \chi_a \cap f^{-1}(T) \) are open, \(f_{ab} : (U_a, D_a, r_a, \chi_a) \to (V_b, E_b, s_b, \psi_b) \) is a 1-morphism of m-Kuranishi neighbourhoods over \((S, f)\) on \(X, Y \), and \(g_{bc} : (V_b, E_b, s_b, \psi_b) \to (W_c, F_c, \iota_c, \omega_c) \) is a 1-morphism of m-Kuranishi neighbourhoods over \((T, g)\) on \(Y, Z \).

Define \(h = g \circ f : X \to Z \), so that Definition 4.20 gives 2-morphisms

\[
\Theta_{ij}^g : g_{jk} \circ f_{ij} \Longrightarrow h_{ik}
\]

for all \(i \in I, j \in J \) and \(k \in K \). Set \(h_{ac} = g_{bc} \circ f_{ab} : (U_a, D_a, r_a, \chi_a) \to (W_c, F_c, \iota_c, \omega_c) \). Using the stack property Theorem 4.13 one can show that for all \(i \in I, k \in K \) there is a unique 2-morphism \(H_{ai}^{ck} \colon \Phi_{ak} \circ h_{ac} \Rightarrow h_{ik} \circ T_{ai} \) over \(S \cap \Im \chi_i \cap h^{-1}(\Im \omega_k) \), \(h \), such that for all \(j \in J \) we have

\[
H_{ai}^{ck} \mid_{S \cap \Im \chi_i \cap h^{-1}(\Im \psi_j) \cap h^{-1}(\Im \omega_k)} = (\Theta_{ij}^g \ast \id_{T_{ai}}) \circ (\id_{g_{jk}} \ast F_{ai}^b) \circ (G_{b}^{ck} \ast \id_{f_{ab}}).
\] (4.60)
It is then easy to prove that \(h_{ac} = g_{bc} \circ f_{ab} \), \(H^{ck}_{xi, i'j} \) is a 1-morphism from \((U_a, D_a, r_a, \chi_a) \) to \((W_c, F_c, t_c, \omega_c) \) over \((S, h)\) on \(X, Z \). We call this composition of 1-morphisms.

Example 4.55. Let \(X = (X, \mathcal{I}) \), \(Y = (Y, \mathcal{J}) \), \(f \) be as in Definition 4.54 and let \(a \in I \) and \(b \in J \). Then \((U_a, D_a, r_a, \chi_a) \) in \(\mathcal{I} \) and \((V_b, E_b, s_b, \psi_b) \) in \(\mathcal{J} \) are m-Kuranishi neighbourhoods on \(X, Y \) by Example 4.50. The 1-morphism \(f_{ab} : (U_a, D_a, r_a, \chi_a) \rightarrow (V_b, E_b, s_b, \psi_b) \) in \(f \) is a 1-morphism over \((\text{Im } \chi_a \cap f^{-1}(\psi_b), f)\), with extra data \(F^{ai}_{j'i}, i' \in I \), where for \(F^{ai}_{j'i} \) as in \(f \) we have

\[
F^{ai}_{j'i} = (F^{ai}_{j'i})^{-1} \odot F^{bj}_{ai} : \Upsilon_{bj} \circ f_{ab} = f_{ij} \circ T_{ai}.
\]

The next theorem can be proved using the stack property Theorem 4.13 by very similar methods to Propositions 4.19, 4.22, 4.25, 4.26 and 4.27 and so we leave the proof as an exercise for the reader.

Theorem 4.56. (a) Let \(X = (X, K) \) be an m-Kuranishi space, where \(K = \{ 1, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_i, \Lambda_i, \Lambda_{ij} \} \), and \((V_a, E_a, s_a, \psi_a) \) be m-Kuranishi neighbourhoods on \(X \), in the sense of Definition 4.49, and \(S \subseteq \text{Im } \psi_a \cap \text{Im } \psi_b \) be open. Then there exists a coordinate change \(\Phi_{ab} : (V_a, E_a, s_a, \psi_a) \rightarrow (V_b, E_b, s_b, \psi_b) \), \(\Lambda_{abi}, i' \in I \) over \(S \) on \(X \), in the sense of Definition 4.51. If \(\Phi_{ab}, \Phi_{ab} \) are two such coordinate changes, there is a unique 2-morphism \(\Xi_{ab} : \Phi_{ab} \Rightarrow \Phi_{ab} \) over \(S \) as in Definition 4.3 such that for all \(i \in I \) we have

\[
\Lambda_{abi} = \tilde{\Lambda}_{abi} \odot (\text{id}_{\Phi_{ab}} \odot \Xi_{ab}) : \Phi_{bi} \circ \Phi_{ab} \Rightarrow \Phi_{ai},
\]

which holds over \(S \cap \text{Im } \psi \) by our usual convention.

(b) Let \(f : X \rightarrow Y \) be a 1-morphism of m-Kuranishi spaces, and use notation 4.6, 4.7, 4.9. Let \((U_a, D_a, r_a, \chi_a) \) be m-Kuranishi neighbourhoods on \(X, Y \) respectively in the sense of Definition 4.49 and let \(S \subseteq \text{Im } \chi_a \cap f^{-1}(\text{Im } \psi_b) \) be open. Then there exists a 1-morphism \(f_{ab} : (U_a, D_a, r_a, \chi_a) \rightarrow (V_b, E_b, s_b, \psi_b) \) of m-Kuranishi neighbourhoods over \((S, f)\) on \(X, Y \), in the sense of Definition 4.54.

(c) Let \(f, g : X \rightarrow Y \) be 1-morphisms of m-Kuranishi spaces and \(\eta : f \Rightarrow g \) a 2-morphism, and use notation 4.6, 4.7, 4.9 and \(\eta = (\eta_{ij}, i \in I, j \in J) \). Suppose \((U_a, D_a, r_a, \chi_a), (V_b, E_b, s_b, \psi_b) \) are m-Kuranishi neighbourhoods on \(X, Y \), and \(S \subseteq \text{Im } \chi_a \cap f^{-1}(\text{Im } \psi_b) \) is open, and \(f_{ab} : (U_a, D_a, r_a, \chi_a) \rightarrow (V_b, E_b, s_b, \psi_b) \) are 1-morphisms over \((S, f), (S, g)\) respectively. Then there is a unique 2-morphism \(\eta_{ab} : f_{ab} \Rightarrow g_{ab} \) over \((S, f)\) as in Definition 4.3 such that the following commutes over \(S \cap \text{Im } \chi_i \cap f^{-1}(\text{Im } \psi_j) \) for all \(i \in I \) and \(j \in J \):

\[
\begin{align*}
\Upsilon_{bj} \circ f_{ab} &\xrightarrow{d_{\tau_{bij}} \circ \eta_{ab}} f_{ij} \circ T_{ai} \\
\| & \| \\
\Upsilon_{bj} \circ g_{ab} &\xrightarrow{g_{ij} \circ T_{ai}} \]
Theorem 4.56(a) The unique 2-morphisms in (c) are compatible with vertical and horizontal composition and identities. For example, if \(f, g, h : X \to Y \) are 1-morphisms in \(\text{mKur} \), and \(\eta : f \Rightarrow g, \zeta : g \Rightarrow h \) are 2-morphisms with \(\theta = \zeta \circ \eta : f \Rightarrow h \), and \((U_a, D_a, \tau_a, \chi_a)\), \((V_b, E_b, s_b, \psi_b)\) are m-Kuranishi neighbourhoods on \(X, Y \), and \(f_{ab} : g_{ab} : h_{ab} : (U_a, D_a, \tau_a, \chi_a) \to (V_b, E_b, s_b, \psi_b) \) are 1-morphisms over \((S, f), (S, g), (S, h)\), and \(\eta_{ab} : f_{ab} \Rightarrow g_{ab} : \zeta_{ab} : g_{ab} \Rightarrow h_{ab} \) come from \(\eta, \zeta, \theta \) as in (c), then \(\theta_{ab} = \zeta_{ab} \circ \eta_{ab} \).

Remark 4.57. Note that we make the (potentially confusing) distinction between \(\text{mKur} \) and \(\text{mKur} \) neighbourhoods on an \(m\)-Kuranishi space \(X = (X, K) \), which are as in Definition 4.51, and come equipped with implicit extra data \(\Lambda_{aij, i \in I} \), giving the compatibility with the \(m\)-Kuranishi structure \(K \) on \(X \).

We also distinguish between coordinate changes \(\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) between \(\text{mKur} \) neighbourhoods on a topological space \(X \), which are as in Definition 1.10 and for which there may be many choices or none, and coordinate changes \(\Phi_{ab} : (U_a, D_a, r_a, \chi_a) \to (V_b, E_b, s_b, \psi_b) \) between \(\text{mKur} \) neighbourhoods on an \(m\)-Kuranishi space \(X \), which are as in Definition 4.51 and come equipped with implicit extra data \(\Lambda_{ab, i \in I} \), always exist, and are unique up to unique 2-isomorphism.

Similarly, we distinguish between 1-morphisms \(f_{ij} : (U_i, D_i, r_i, \chi_i) \to (V_j, E_j, s_j, \psi_j) \) of \(\text{mKur} \) neighbourhoods over a continuous map of topological spaces \(f : X \to Y \), which are as in Definition 1.12 and for which there may be many choices or none, and 1-morphisms \(f_{ab} : (U_a, D_a, r_a, \chi_a) \to (V_b, E_b, s_b, \psi_b) \) of \(\text{mKur} \) neighbourhoods over a 1-morphism of \(m\)-Kuranishi spaces \(f : X \to Y \), which are as in Definition 4.51 and come equipped with implicit extra data \(\Lambda_{ab, i \in I} \), always exist, and are unique up to unique 2-isomorphism.

4.7.2 Constructing equivalent \(m\)-Kuranishi structures

We can use \(m\)-Kuranishi neighbourhoods on \(X = (X, K) \) to construct alternative \(m\)-Kuranishi structures \(K' \) on \(X \).

Theorem 4.58. Let \(X = (X, K) \) be an \(m\)-Kuranishi space, and \(\{(V_a, E_a, s_a, \psi_a) : a \in A\} \) a family of \(m\)-Kuranishi neighbourhoods on \(X \) with \(X = \bigcup_{a \in A} \text{Im} \psi_a \). For all \(a, b \in A \), let \(\Phi_{ab} : (V_a, E_a, s_a, \psi_a) \to (V_b, E_b, s_b, \psi_b) \) be a coordinate change over \(S = \text{Im} \psi_a \cap \text{Im} \psi_b \) on \(X \) given by Theorem 4.56(a), which is unique up to 2-isomorphism; when \(a = b \) we choose \(\Phi_{aa} = \text{id}_{(V_a, E_a, s_a, \psi_a)} \) and \(\Lambda_{aa} = \text{id}_{\Phi_{aa}} \) for \(i \in I \), which is allowed by Theorem 4.56(a).

For all \(a, b, c \in A \), both \(\Phi_{bc} \circ \Phi_{ab} \mid S \) and \(\Phi_{bc} \mid S \) are coordinate changes \((V_a, E_a, s_a, \psi_a) \to (V_c, E_c, s_c, \psi_c) \) over \(S = \text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c \) on \(X \), so Theorem 4.56(a) gives a unique 2-morphism \(\Lambda_{abc} : \Phi_{bc} \circ \Phi_{ab} \mid S \Rightarrow \Phi_{bc} \mid S \). Then \(K' = (A, (V_a, E_a, s_a, \psi_a)_{a \in A}, \Phi_{ab}, a, b \in A, \Lambda_{abc}, a, b, c \in A) \) is an \(m\)-Kuranishi structure on \(X \), and \(X' = (X, K') \) is canonically equivalent to \(X \) in \(\text{mKur} \), in the sense of Definition 4.7.
Proof. Write $\mathcal{K} = (I, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, i,j \in I, \Lambda_{ijk}, i,j,k \in I)$, and let \mathcal{K}' be as in the theorem. We claim that \mathcal{K}' is an m-Kuranishi structure on X. Definition 4.17(a)–(f) are immediate. For (g), if $a, b \in A$ then we have a 2-morphism

$$\Lambda_{aab} : \Phi_{ab} \circ \Phi_{aa} \Rightarrow \Phi_{ab},$$

with the defining property, from (4.61), that

$$\Lambda_{aai} \circ (\Lambda_{aab} \circ \id_{\Phi_{aa}}) = \Lambda_{ab} \circ (\id_{\Phi_{aa}} \circ \Lambda_{aab}) : \Phi_{bi} \circ \Phi_{ab} \Rightarrow \Phi_{ai}. \quad (4.63)$$

Here the left hand side is the 2-morphism $\tilde{\Lambda}_{ab}$ from Definition 4.51 for the composition $\Phi_{ab} = \Phi_{ab} \circ \Phi_{aa}$. Since by definition $\Phi_{aa} = \id_{(V_a, E_a, s_a, \psi_a)}$ and $\Lambda_{aai} = \id_{\Phi_{aa}}$, equation (4.63) is satisfied by $\Lambda_{aab} = \id_{\Phi_{aa}}$ for all $i \in I$, so by uniqueness in Theorem 4.56(a) we have $\Lambda_{aab} = \id_{\Phi_{aa}}$. Similarly $\Lambda_{abb} = \id_{\Phi_{ab}}$, proving Definition 4.14(h) for \mathcal{K}'. For (h), let $a, b, c, d \in A$ and $i \in I$, and consider the diagram of 2-morphisms

Here each small quadrilateral commutes by definition of Λ_{abc}. Thus the outer quadrilateral commutes. But the outer quadrilateral is ‘Φ_{di}’ on 1-morphisms and ‘$\id_{\Phi_{di}}$’ on 2-morphisms applied to (4.4) with a, b, c, d in place of i, j, k, l. As Φ_{di} is a coordinate change, this implies (4.4) commutes, restricted to the intersection of its domain with $\im \psi_i$. As this holds for all $i \in I$, we deduce Definition 4.14(h) for \mathcal{K}'. So X' is an m-Kuranishi space.

To show X', X are equivalent in \mathbf{mKur}, we must construct 1-morphisms $f : X' \to X, g : X \to X'$ and 2-morphisms $\eta : g \circ f \Rightarrow \id_X, \zeta : f \circ g \Rightarrow \id_X$. As in 4.9, define

$$f = (\id_X, \Psi_{ai, a \in A, i \in I}, (\Lambda_{aai})_{a \in A} (\Lambda_{aai'})_{a \in A}), \quad \eta = (\id_{\Psi_{ai}}, (\id_{\Phi_{aa}})_{a \in A}).$$

where the $\Lambda_{aai}, \Lambda_{aai'}$ are from Definitions 4.49. We can check using (4.57)–(4.61) that Definition 4.17(a)–(h) hold, so $f : X' \to X$ is a 1-morphism.

For g, as $\Lambda_{ai} : (V_a, E_a, s_a, \psi_a) \to (V_a, E_a, s_a, \psi_a)$ is a coordinate change, there exist a 1-morphism $\Psi_{ai} : (V_i, E_i, s_i, \psi_i) \to (V_a, E_a, s_a, \psi_a)$ and 2-morphisms $\xi_{ai} : \Psi_{ai} \circ \Phi_{ai} \Rightarrow \id_{(V_a, E_a, s_a, \psi_a)}$ and $\chi_{ai} : \Phi_{ai} \circ \Psi_{ai} \Rightarrow \id_{(V_a, E_a, s_a, \psi_a)}$. By Proposition 4.3 we can choose these to satisfy $\xi_{ai} \circ \id_{\Psi_{ai}} = \id_{\Psi_{ai}} \circ \xi_{ai}$ and $\chi_{ai} \circ \id_{\Phi_{ai}} = \id_{\Phi_{ai}} \circ \chi_{ai}$. Define

$$g = (\id_X, \Psi_{ai, i \in I, a \in A}, (M_{ai'})_{a \in A, i \in I}, (M_{ai'a'})_{a \in A, i \in I}).$$
where $M_{\psi a}, M_{i\alpha a'}$ are defined by the commutative diagrams

$$
\begin{align*}
\Psi_{a' a} \circ \Phi_{a' i} & \circ \Phi_{a a'} \circ \Psi_{a a'} \xrightarrow{\text{id}_{\psi a' a} \circ \Lambda_{a a', i} \circ \text{id}_{\psi a a'}} \Psi_{a' a} \circ \Phi_{a' i} \circ \Psi_{a a'} \xrightarrow{\text{id}} (V_a, E_{a, i}, s_i, \psi_a) \circ \Psi_{a a'} \\
\Psi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a' a} \circ \Psi_{a a'} \xrightarrow{\text{id} \circ \Lambda_{a a', i} \circ \text{id}_{\psi a a'}} \Psi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a' a} \circ \Psi_{a a'} \xrightarrow{\text{id}} (V_a, E_{a, a'}, s_{a'}, \psi_a).
\end{align*}
$$

Using the various identities we can show that $g : X' \to X$ is a 1-morphism.

Definition 4.20 defines the compositions $g \circ f, f \circ g$, and some 2-morphisms of m-Kuranishi neighbourhoods $g f_{a a'}$ and $g f_{i a'}$. For all $a, a' \in A$, there is a unique 2-morphism $\eta_{a a'} : (g \circ f)_{a a'} \Rightarrow (\text{id}_X)_{a a'} = \Phi_{a a'}$ of m-Kuranishi neighbourhoods over $\text{Im } \psi_a \cap \text{Im } \psi_{a'}$ such that for all $i \in I$, the following commutes:

$$
\begin{align*}
\Psi_{a a'} \circ \Phi_{a a'} \circ \Psi_{i a} \circ \Phi_{a' i} \circ \Psi_{i a} \xrightarrow{\Phi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a' i} \circ \Psi_{i a} \circ \Phi_{a' i} \circ \Psi_{i a} \circ \text{id} \circ \Lambda_{a a', i} \circ \text{id}_{\psi a a'}} \Psi_{a a'} \circ \Phi_{a a'} \circ \Psi_{i a} \circ \Phi_{a' i} \circ \Psi_{i a} \xrightarrow{\Phi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a' i} \circ \Psi_{i a} \circ \Phi_{a' i} \circ \Psi_{i a} \circ \text{id}} (V_a, E_{a', i}, s_i, \psi_a) \circ \Phi_{a a'}.
\end{align*}
$$

To prove this we show that the prescribed values for $i, i' \in I$ agree on the intersection $\text{Im } \psi_{a'} \cap \text{Im } \psi_{a'} \cap \text{Im } \psi_{i'} \cap \text{Im } \psi_{i'}$, and use the stack property Theorem 4.13 to prove there is a unique $\eta_{a a'}$ such that (4.64) commutes for all $i \in I$. Then we show that $\eta = (\eta_{a a', a', a''} : \lambda_{a a', a'} \Rightarrow \lambda_{a a', a''})$ is a 2-morphism $\eta : g \circ f \Rightarrow \text{id}_X$ in mKur.

Similarly, we construct a 2-morphism $\zeta = (\zeta_{i i', i, i' \in I}) : f \circ g \Rightarrow \text{id}_X$, where $\zeta_{i i'}$ fits into a commuting diagram for all $a \in A$

$$
\begin{align*}
\Phi_{a a'} \circ \Phi_{a a'} \circ \Psi_{i a} \circ \Phi_{a a'} \circ \Psi_{i a} \xrightarrow{\Phi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a a'} \circ \text{id} \circ \Lambda_{a a', i} \circ \text{id}_{\psi a a'}} \Phi_{a a'} \circ \Phi_{a a'} \circ \Psi_{i a} \circ \Phi_{a a'} \circ \Psi_{i a} \xrightarrow{\Phi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a a'} \circ \Phi_{a a'} \circ \text{id}} (V_a, E_{a, a'}, s_{a'}, \psi_a) \circ \Phi_{a a'}.
\end{align*}
$$

Thus X' and X are equivalent in mKur. The equivalence $f : X' \to X$ is actually independent of choices, so its quasi-inverse $g : X \to X'$ is canonical up to 2-isomorphism.

As the m-Kuranishi neighbourhoods (V_i, E_i, s_i, ψ_i) in the m-Kuranishi structure on X are m-Kuranishi neighbourhoods on X, we deduce:

Corollary 4.59. Let $X = (X, K)$ be an m-Kuranishi space with $K = (I, (V_i, E_i, s_i, \psi_i))$. Suppose $J \subseteq I$ with $\bigcup_{x \in J} \text{Im } \psi_j = X$. Then $K' = (J, (V_i, E_i, s_i, \psi_i))$ is an m-Kuranishi structure on X, and $X' = (X, K')$ is canonically equivalent to X in mKur.

Thus, adding or subtracting extra m-Kuranishi neighbourhoods to or from the m-Kuranishi structure of X leaves X unchanged up to equivalence.
4.7.3 M-Kuranishi neighbourhoods on boundaries and corners

Now suppose Man^c satisfies Assumption 3.22 so that as in 4.6 we have a 2-category mKur^c of m-Kuranishi spaces with corners X, which have boundaries ∂X and k-corners $C_k(X)$. We will show that m-Kuranishi neighbourhoods (V_a, E_a, s_a, ψ_a) on X lift to m-Kuranishi neighbourhoods on ∂X and $C_0(X)$.

Definition 4.60. Let $X = (X, K)$ be an m-Kuranishi space with corners in mKur^c with $K = (I, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, i, j \in I, \Lambda_{hij}, h, i, j \in I)$. Then for each $k \in \mathbb{N}$, Definition 4.39 defines an object $C_k(X) = (C_k(X), K_k)$ and a 1-morphism $\Pi_k : C_k(X) \to X$ in mKur^c, where

$$
K_k = \{ (k) \times I, (V_{k,i}, E_{k,i}, s_{k,i}, \psi_{k,i})_{i \in I}, \Phi_{k,i}, j \in I, \Lambda_{hij}(k,j)_{i \in I} \}, \\
\Pi_k = (\Pi_{k,i}, (k,i)_{i \in I}, \Pi_{k,i}^{j,j'}(k,i), i,j, i' \in I, \Pi_{k,i}^{j,j'}(k,i, i' \in I).
$$

Let (V_a, E_a, s_a, ψ_a), $\Phi_{ai}, i \in I$, $\Lambda_{aij}, i, j \in I$ be an m-Kuranishi neighbourhood on X, as in Definition 4.49. We will define a corresponding m-Kuranishi neighbourhood $(V_{k,a}, E_{k,a}, s_{k,a}, \psi_{k,a})$ to be the m-Kuranishi neighbourhood on $C_k(X)$ constructed from (V_a, E_a, s_a, ψ_a) in the same way that $(V_{i}, E_i, s_i, \psi_i)$ is constructed from (V_i, E_i, s_i, ψ_i) in Definition 4.39 except that $\psi_{k,a}$ is defined as we explain shortly. Also $\Phi_{k,a}$, $\Lambda_{k,a}(k,j)$ are constructed from Φ_{ai}, Λ_{aij} in exactly the same way that $\Phi_{k,i}$, $\Lambda_{k,i}(k,j)$ are constructed from Φ_{ij}, Λ_{hij} in Definition 4.39, though we postpone the proof of Definition 4.2. (e) for $\Phi_{k,a}(k,j)$.

To define $\psi_{k,a} : s_{k,a}^{-1} (0) \to C_k(X)$, let $v' \in s_{k,a}^{-1} (0) \subseteq V_a = C_k(V_a)$ with $\Pi_k v' = v \in s_a^{-1} (0) \subseteq V_a$, where $\Pi_k : C_k(V_a) \to V_a$. Then $x = \psi_a(v) \in X$, so there exists $i \in I$ with $x \in \text{Im} \psi_i$, and thus $v \in V_{ai} \cap s_a^{-1} (0)$, which implies that $v' \in \psi_{a,i}(k,i)(v') \in s_{k,a}(i,i) \subseteq \psi_{a,i}(k,i)$, and $\psi_{k,a} \circ \phi_{k,a}(k,j)(v') \in C_k(X)$. Define $\psi_{k,a}(v') = \psi_{k,i} \circ \phi_{k,a}(k,i)(v')$. If also $x \in \text{Im} \psi_j$ for $j \in I$ then the 1- and 2-morphisms

$$
\Phi_{k}(k,j)(k,j) : (V_{k,j}, E_{k,j}, s_{k,j}, \psi_{k,j}) \to (V_{k,j}, E_{k,j}, s_{k,j}, \psi_{k,j}) \\
\Lambda_{k,a}(k,a)(k,j) : \Phi_{k}(k,j)(k,j) \circ \Phi_{k}(k,a)(k,i) \to \Phi_{k}(k,a)(k,j)
$$

imply that

$$
\psi_{k,i} \circ \phi_{k,a}(k,i)(v') = \psi_{k,j} \circ \phi_{k,a}(k,j) \circ \phi_{k,a}(k,i)(v') = \psi_{k,i} \circ \phi_{k,a}(k,i)(v').
$$

Thus $\psi_{k,a}(v')$ is independent of the choice of $i \in I$ with $x \in \text{Im} \psi_i$, and is well defined. We show $\psi_{k,a}$ is a homeomorphism with its open image as in Definition 4.39. Therefore $(V_{k,a}, E_{k,a}, s_{k,a}, \psi_{k,a})$ is an m-Kuranishi neighbourhood
on \(C_k(X) \). Definition 4.2(e) for \(\Phi_{(k,a),(l,b)} \) follows from \(\psi_{(k,a)}(v') = \psi_{(k,a)}(v) \circ \phi_{(k,a)}(v') \) above. Hence \(\Phi_{(k,a),(l,b)} \), \(\Lambda_{(k,a),(l,b)} \), are 1- and 2-morphisms of m-Kuranishi neighbourhoods, as required. The condition (4.57) for the \(\Lambda_{(k,a),(l,b)} \) follows from (4.56) for the \(\Lambda_{(k,a)} \) in the same way that Definition 4.14(h) for the \(\Lambda_{(k,b)} \) is proved in Definition 4.39. This shows that \((V_{(k,a)}, E_{(k,a)}, \psi_{(k,a)}) \) with data \(\Phi_{(k,a),(l,b)}, \Lambda_{(k,a),(l,b)} \), \(i,j \in I \), is an m-Kuranishi neighbourhood on \(C_k(X) \), as in 4.6.

Very much like \(\Pi_{(i,j)} \) in Definition 4.39, we can show that that

\[
\Pi_{(k,a)} = (V_{(k,a)}, \Pi_k, \text{id}_{E_{(k,a)}}) : (V_{(k,a)}, E_{(k,a)}, \psi_{(k,a)}) \to (V_a, E_a, s_a, \psi_a)
\]

is a 1-morphism of m-Kuranishi neighbourhoods over \(\Pi_k : C_k(X) \to X \), in the sense of Definition 4.54.

Definition 4.61. Let \(f : X \to Y \) be a 1-morphism in \(\mathbf{mKur}^c \), with notation (4.6), (4.7), (4.9), suppose we are given m-Kuranishi neighbourhoods \((U_{(a,b)}, D_{(a,b)}, r_{(a,b)}, \chi_{(a,b)}) \), \(T_{(k,a)} \), \(i \in I \), \(K_{(k,a)} \), \((k',i) \in I \) on \(X \) and \((V_{(b,c)}, E_{(b,c)}, s_{(b,c)}, \psi_{(b,c)}) \) of m-Kuranishi neighbourhoods over \((\text{Im} \chi, \text{Im} \psi)\) on \(Y \), and let \(f_{ab} : F_{ab} \) be a 1-morphism \(f_{ab} : (U_{a,b}, D_{a,b}, r_{a,b}, \chi_{a,b}) \to (V_{b,c}, E_{b,c}, s_{b,c}, \psi_{b,c}) \) of m-Kuranishi neighbourhoods over \((\text{Im} \chi, \text{Im} \psi)\) on \(Y \), as in Definition 4.54 and Theorem 4.56(b), with \(f_{ab} = (U_{ab}, f_{ab}, f'_{ab}) \).

Let \(k, l \in \mathbb{N} \), so that Definition 4.60 gives m-Kuranishi neighbourhoods \((U_{(k,a)}, D_{(k,a)}, r_{(k,a)}, \chi_{(k,a)}) \), \(T_{(k,a)} \), \((k',i) \in I \), \(K_{(k,a)} \), \((k',i) \in I \) on \(C_k(X) \) and \((V_{(l,b)}, E_{(l,b)}, s_{(l,b)}, \psi_{(l,b)}) \), \(T_{(l,b)} \), \((l,j) \in J \), \(K_{(l,b)} \), \((l,j) \in J \) on \(C_l(Y) \). Then exactly as for (4.52) in Definition 4.43 from \(f_{ab} \) we define a 1-morphism of m-Kuranishi neighbourhoods

\[
f_{(k,a),(l,b)} = (U_{(k,a),(l,b)}, f_{(k,a),(l,b)}, \hat{f}_{(k,a),(l,b)}) : (U_{(k,a)}, D_{(k,a)}, r_{(k,a)}, \chi_{(k,a)}) \to (V_{(l,b)}, E_{(l,b)}, s_{(l,b)}, \psi_{(l,b)})
\]

over \(C(f) \). Then \(S = \text{Im} \chi_{(k,a)} \cap C(f) \), where

\[
U_{(k,a)} = C_k(U_{(a,b)}) \cap C(f_{(a,b)})^{-1}(C(l,b)) \subseteq U_{(k,a)} = C_k(U_{(a,b)}),
\]

\[
f_{(k,a),(l,b)} = C(f_{ab}) \cap U_{(k,a),(l,b)} = V_{(l,b)} = C(l,b),
\]

\[
\hat{f}_{(k,a),(l,b)} = \Pi^{(k,a)}_{(l,b)}(U_{(k,a),(l,b)} : D_{(k,a)} \cap U_{(k,a),(l,b)}) \to f_{(k,a),(l,b)}^*(E_{(l,b)}).
\]

We also define 2-morphisms \(F_{(k,a),(l,b)}^{(ab)} : Y_{(l,b)} \to f_{(k,a),(l,b)} \), \(T_{(k,a),(l,b)} \), \((k',i') \in I \) from the \(F_{ab}^{(ab)} \) as for \(F_{ab}^{(k)} \) in Definition 4.43. Then (4.59) for the \(F_{(k,a),(l,b)}^{(ab)} \) follows from (4.59) for the \(F_{ab}^{(ab)} \) by applying the corner functor. Hence \(f_{(k,a),(l,b)} : F_{(k,a),(l,b)}^{(ab)} \cap U_{(k,a),(l,b)} \cap T_{(k,a),(l,b)} \) is a 1-morphism of m-Kuranishi neighbourhoods \(f_{(k,a),(l,b)} : (U_{(k,a)}, D_{(k,a)}, r_{(k,a)}, \chi_{(k,a)}) \to (V_{(l,b)}, E_{(l,b)}, s_{(l,b)}, \psi_{(l,b)}) \) over \(C(f) \), where \(C(f) \) is the image of \(C(f_{ab}) \) on \(C(X), C(Y) \), as in Definition 4.54.

A special case of this construction is when \(X = Y \), \(f = \text{id}_X \), and \(k = l \), and \(f_{ab} : (U_{a,b}, D_{a,b}, r_{a,b}, \chi_{a,b}) \to (V_{b,c}, E_{b,c}, s_{b,c}, \psi_{b,c}) \) is a coordinate change of m-Kuranishi neighbourhoods on \(X \). Then \(f_{(k,a),(l,b)} : (U_{(k,a)}, D_{(k,a)}, r_{(k,a)}, \chi_{(k,a)}) \to (V_{(l,b)}, E_{(l,b)}, s_{(l,b)}, \psi_{(l,b)}) \) is a coordinate change on \(C_k(X) \).
4.7.4 A philosophical digression

We can now state our:

Philosophy for working with m-Kuranishi spaces. A good way to think about the ‘real’ geometric structure on m-Kuranishi spaces is as follows:

(i) Every m-Kuranishi space X has an underlying topological space X, and a large collection of ‘m-Kuranishi neighbourhoods’ (V_a, E_a, s_a, ψ_a) on X, which are m-Kuranishi neighbourhoods on X in the sense of §4.1, but with an additional compatibility with the m-Kuranishi structure on X.

We think of (V_a, E_a, s_a, ψ_a) as a choice of ‘local coordinates’ on X.

(ii) For any two m-Kuranishi neighbourhoods $(V_a, E_a, s_a, \psi_a), (V_b, E_b, s_b, \psi_b)$ on X, there is a coordinate change $\Phi_{ab} : (V_a, E_a, s_a, \psi_a) \to (V_b, E_b, s_b, \psi_b)$, natural up to canonical 2-isomorphism.

(iii) A 1-morphism of m-Kuranishi spaces $f : X \to Y$ has an underlying continuous map $f : X \to Y$. If $(U_a, D_a, r_a, \chi_a), (V_b, E_b, s_b, \psi_b)$ are m-Kuranishi neighbourhoods on X, Y, there is a 1-morphism $f_{ab} : (U_a, D_a, r_a, \chi_a) \to (V_b, E_b, s_b, \psi_b)$ over f, natural up to canonical 2-isomorphism.

(iv) The coordinate changes and 1-morphisms in (ii),(iii) behave in the obvious functorial ways under compositions and identities, up to canonical 2-isomorphisms.

(v) The family of m-Kuranishi neighbourhoods on X is closed under several natural constructions. For example:

(a) If (V, E, s, ψ) is an m-Kuranishi neighbourhood on X and $V' \subseteq V$ is open then $(V', E|\upharpoonright V', s|_{V'}|_{V' \cap s^{-1}(0)}, \psi|_{V' \cap s^{-1}(0)})$ is an m-Kuranishi neighbourhood on X.

(b) If (V, E, s, ψ) is an m-Kuranishi neighbourhood on X and $\pi : F \to V$ is a vector bundle then $(F, \pi^*(E) \oplus \pi^*(F), \pi^*(s) \oplus \text{id}_F, \psi \circ \pi|_{\cdots})$ is an m-Kuranishi neighbourhood on X.

(vi) The collection of all m-Kuranishi neighbourhoods (V_a, E_a, s_a, ψ_a) on X will usually be much larger than a particular atlas $\{(V_i, E_i, s_i, \psi_i) : i \in I\}$. There are so many m-Kuranishi neighbourhoods on X that we can often choose them to satisfy extra conditions. For example, in §10.4 we discuss m-Kuranishi neighbourhoods on X which are ‘minimal at x in X’.

We will be guided by this philosophy from Chapter 7 onwards, where we will usually frame our definitions and results in terms of m-Kuranishi neighbourhoods on $X = (X, \mathcal{K})$, rather than in terms of the particular m-Kuranishi neighbourhoods (V_i, E_i, s_i, ψ_i) in the m-Kuranishi structure \mathcal{K}, which we try not to use.
4.8 M-Kuranishi spaces and derived manifolds

We now take $\mathcal{M}an = \mathcal{M}an$, and work with the corresponding 2-category of m-Kuranishi spaces $\mathfrak{m}Kur$.

Derived Differential Geometry is the study of ‘derived smooth manifolds’, where ‘derived’ is in the sense of the Derived Algebraic Geometry of Lurie [74] and Toën–Vezzosi [106, 107]. There are several different models of Derived Differential Geometry in the literature, all closely related:

- Probably the first reference to Derived Differential Geometry is a short final paragraph in Lurie [74, §4.5], outlining how to define an ∞-category of ‘derived C^∞-schemes’, and an ∞-subcategory of ‘derived manifolds’.
- Lurie’s ideas were developed further by his student David Spivak [103], who defined an ∞-category $\mathcal{D}er\mathcal{M}an_{\text{Spi}}$ of ‘derived manifolds’. Spivak’s construction was rather complicated.
- Borisov and Noel [8] gave a simpler ∞-category $\mathcal{D}er\mathcal{M}an_{\text{BN}}$ of ‘derived manifolds’, with an ∞-category equivalence $\mathcal{D}er\mathcal{M}an_{\text{BN}} \simeq \mathcal{D}er\mathcal{M}an_{\text{Spi}}$.
- The author [57, 58, 61] defined a strict 2-category $\mathcal{D}er\mathcal{M}an$ of ‘d-manifolds’, and studied their differential geometry in detail.
- Borisov [7] relates the derived manifolds of [8, 103] with the d-manifolds of [57, 58, 61]. Borisov constructs a 2-functor

$$\Pi : \pi_1(\mathcal{D}er\mathcal{M}an_{\text{BN}}) \rightarrow \mathcal{D}er\mathcal{M}an$$

(4.65)

from the 2-category truncation $\pi_1(\mathcal{D}er\mathcal{M}an_{\text{BN}})$ of $\mathcal{D}er\mathcal{M}an_{\text{BN}}$. This 2-functor Π is not an equivalence of 2-categories, but it is fairly close to being an equivalence. Reducing to homotopy categories, the functor

$$\text{Ho}(\Pi) : \text{Ho}(\mathcal{D}er\mathcal{M}an_{\text{BN}}) \rightarrow \text{Ho}(\mathcal{D}er\mathcal{M}an)$$

(4.66)

is full but not faithful, and induces a 1-1 correspondence between isomorphism classes of objects.

- Wallbridge [108] defines a rather general ∞-category of ‘derived manifolds’, which we prefer to think of as ‘derived C^∞-schemes’, and then extends them to an Artin stack version, ‘derived smooth stacks’.

- Macpherson [76] states a universal property of an ‘∞-category of derived manifolds’, and argues that $\mathcal{D}er\mathcal{M}an_{\text{Spi}}$ and $\mathcal{D}er\mathcal{M}an_{\text{BN}}$ satisfy his universal property. This universal property explains the existence of Borisov’s 2-functor (4.65), and of (4.67) below.

The next theorem will be proved in [57]:

Theorem 4.62. There is an equivalence of 2-categories $\mathcal{D}er\mathcal{M}an \simeq \mathfrak{m}Kur$, where $\mathcal{D}er\mathcal{M}an$ is the strict 2-category of d-manifolds from [57, 58, 61], and $\mathfrak{m}Kur$ is as in §4.3 for $\mathcal{M}an = \mathcal{M}an$.

103
Combining with Borisov’s 2-functor \((4.65)\) gives a 2-functor

\[
\pi_1(\text{DerMan}_{\text{Spi}}) \simeq \pi_1(\text{DerMan}_{\text{BN}}) \longrightarrow m\text{Kur},
\]

which is close to being an equivalence.

Remark 4.63. (a) The author carefully designed the definitions of \(4.1\)–\(4.3\) using facts about d-manifolds from \([57, 58, 61]\), in order to make Theorem 4.62 hold.

(b) The definitions of m-Kuranishi spaces above, and of \((\mu\text{-})\)Kuranishi spaces in Chapters 5 and 6, are also very much inspired by Fukaya–Oh–Ohta–Ono’s Kuranishi spaces \([19–39]\) in Symplectic Geometry (which we call FOOO Kuranishi spaces), and by related structures such as McDuff–Wehrheim’s Kuranishi atlases \([77, 78, 80–83]\), all of which are geometric structures put on moduli spaces of \(J\)-holomorphic curves. From this we can draw an important conclusion:

Fukaya–Oh–Ohta–Ono’s Kuranishi spaces \([19–39]\), and similar geometric structures in Symplectic Geometry, are actually a prototype kind of derived orbifold.

This is not surprising, as FOOO Kuranishi spaces and derived schemes were invented to do more-or-less the same job, namely to be a geometric structure on moduli spaces which encodes the obstructions in deformation theory of objects.

(c) We now have two different approaches to derived manifolds:

(i) Spivak \([103]\), Borisov–Noel \([7, 8]\) and the author \([57, 58, 61]\) all define a derived manifold \(X = (X, \mathcal{O}_X)\) as a topological space \(X\) with a (homotopy) sheaf of derived \(\mathbb{C}\)-rings \(\mathcal{O}_X\). The differences between \([103, 7, 8]\), and \([57, 58, 61]\) are in the notions of sheaf and derived \(\mathbb{C}\)-ring used.

(ii) M-Kuranishi spaces \((X, \mathcal{K})\) above are a topological space \(X\) with an atlas \(\mathcal{K}\) of m-Kuranishi neighbourhoods \((V_i, E_i, s_i, \psi_i)_{i \in I}\), plus coordinate changes and 2-morphisms between them.

For comparison, here are two equivalent ways to define classical manifolds:

(i) A manifold \((X, \mathcal{O}_X)\) is a Hausdorff, second countable topological space \(X\) with a sheaf \(\mathcal{O}_X\) of \(\mathbb{R}\)-algebras or \(\mathbb{C}\)-rings, such that \((X, \mathcal{O}_X)\) is locally modelled on \((\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n})\), for \(\mathcal{O}_{\mathbb{R}^n}\) the sheaf of smooth functions \(\mathbb{R}^n \to \mathbb{R}\).

(ii) A manifold \((X, \mathcal{A})\) is a Hausdorff, second countable topological space \(X\) with an atlas \(\mathcal{A}\) of charts \((V_i, \psi_i)_{i \in I}\), where \(V_i \subseteq \mathbb{R}^n\) is open and \(\psi_i : V_i \to X\) is a homeomorphism with an open set \(\text{Im} \psi_i \subseteq X\), and charts \((V_i, \psi_i), (V_j, \psi_j)\) for \(i, j \in I\) are compatible (i.e. coordinate changes are smooth).

These two approaches (i) and (ii) to derived differential geometry are broadly equivalent, but each has advantages for different purposes. In approach (i), derived manifolds are embedded in a much larger \(\infty\)- or 2-category of derived
C^∞-schemes (the 2-category of d-spaces dSpa in $[57, 58, 61]$), which may be useful.

An advantage of approach (ii) is that we can replace the base category Man with a variation, such as manifolds with corners Man^c, and so define a 2-category \mathbf{mKur}^c, or whatever. We have done this already, by defining \mathbf{mKur} starting from a category $\dot{\text{Man}}$ of ‘manifolds’ satisfying some basic assumptions, leading to many different (2-)categories of ‘derived manifolds’, as in (4.37). This would be much more difficult to do in approach (i).
Chapter 5

\(\mu\)-Kuranishi spaces

Throughout this chapter we suppose we are given a category \(\mathbf{\hat{M}an}\) satisfying Assumptions 3.1–3.7 in \(\S3.1\). To each such \(\mathbf{\hat{M}an}\) we will associate a category \(\mu\mathbf{Kur}\) of \(\mu\)-Kuranishi spaces, a simplified version of the 2-category of \(m\)-Kuranishi spaces \(m\mathbf{Kur}\) from Chapter \(\S4\).

We will prove that \(\mu\mathbf{Kur}\) is equivalent to the homotopy category \(\text{Ho}(m\mathbf{Kur})\). Given this, the reader may wonder if there is any point in studying \(\mu\mathbf{Kur}\), as we could just consider \(\text{Ho}(m\mathbf{Kur})\) instead. Some reasons are that the definition of \(\mu\mathbf{Kur}\) is a lot simpler than those of \(m\mathbf{Kur}\) or \(\text{Ho}(m\mathbf{Kur})\), involving categories rather than 2-categories, and sheaves rather than stacks. Also, \(\mu\mathbf{Kur}\) has better geometrical properties than one would expect of \(\text{Ho}(m\mathbf{Kur})\): morphisms \(f : X \to Y\) in \(\mu\mathbf{Kur}\) form a sheaf on \(X\), when one would only expect morphisms \([f] : X \to Y\) in \(\text{Ho}(m\mathbf{Kur})\) to form a presheaf on \(X\).

Nonetheless, the 2-category structure in \(m\mathbf{Kur}\) contains important information, which is lost in \(\mu\mathbf{Kur}\), so that \(m\mathbf{Kur}\) is better than \(\mu\mathbf{Kur}\) for some purposes. In particular, the fibre products \(W = X \times_{g, Z, h} Y\) in \(m\mathbf{Kur}\) discussed in \(\S11.2\) are characterized by a universal property involving 2-morphisms, which makes no sense in \(\mu\mathbf{Kur}\). As in \(\S11.4\) the corresponding fibre products in \(\mu\mathbf{Kur}\) may not exist, or may exist but be the wrong answer for applications.

We begin in \(\S5.1\) by discussing linearity properties of 2-morphisms of \(m\)-Kuranishi neighbourhoods from \(\S4.1\). We can glue such 2-morphisms using a partition of unity. Because of this, we show in \(\S5.2\) that the homotopy category of the 2-category of \(m\)-Kuranishi neighbourhoods in \(\S4.1\) forms a sheaf rather than just a presheaf, which is what we need to make the definition of \(\mu\)-Kuranishi spaces work in \(\S5.3\) and in particular to define composition of morphisms of \(\mu\)-Kuranishi spaces.

For the orbifold analogue, Kuranishi neighbourhoods in \(\S6.1\) the results of \(\S5.1\) would be false, and therefore we will not define an orbifold version of \(\mu\)-Kuranishi spaces. The good properties of \(\text{Ho}(m\mathbf{Kur})\) mentioned above do not hold for \(\text{Ho}(\mathbf{Kur})\) in Chapter 5, in particular, morphisms \([f] : X \to Y\) in \(\text{Ho}(\mathbf{Kur})\) form a presheaf on \(X\), but generally not a sheaf.
5.1 Linearity properties of 2-morphisms of m-Kuranishi neighbourhoods

We explain some linearity properties of 2-morphisms of m-Kuranishi neighbourhoods. The set $\text{Hom}_S(\Phi_{ij}, \Phi'_{ij})$ of 2-morphisms $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ over (S, f) is a real affine space, and a real vector space when $\Phi_{ij} = \Phi'_{ij}$. We can also multiply 2-morphisms $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ by smooth functions on V_{ij}, and combine 2-morphisms $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ using a partition of unity.

Definition 5.1. Let $f : X \to Y$ be continuous, (V_i, E_i, s_i, ψ_i), (V_j, E_j, s_j, ψ_j) be m-Kuranishi neighbourhoods on X, Y, and $S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X$ be open, and $\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ be 1-morphisms over (S, f), with $\Phi_{ij} = (V_{ij}, \phi_{ij}, \phi_{ij})$ and $\Phi'_{ij} = (V'_{ij}, \phi'_{ij}, \phi'_{ij})$. Write

$$\text{Hom}_S(\Phi_{ij}, \Phi'_{ij}) = \{ \Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij} \text{ is a 2-morphism over } (S, f) \}. \quad (5.1)$$

We will show that $\text{Hom}_S(\Phi_{ij}, \Phi'_{ij})$ naturally has the structure of a real affine space, and $\text{Hom}_S(\Phi_{ij}, \Phi_{ij})$ the structure of a real vector space. Write

$$\text{Hom}(E_i|_{V_{ij}}, \mathcal{T}_{\phi_{ij}} V_j|_{V'_{ij}})_{\psi^{-1}_i(S)} \quad (5.2)$$

for the real vector space of germs at $\psi^{-1}_i(S) \subseteq V_{ij}$ of morphisms $E_i|_{V_{ij}} \to \mathcal{T}_{\phi_{ij}} V_j|_{V'_{ij}}$ in the sense of [3.3.4]. That is, an element of (5.3) is an equivalence class $[\hat{V}_{ij}, \hat{\lambda}_{ij}]$ of pairs $(\hat{V}_{ij}, \hat{\lambda}_{ij})$, where \hat{V}_{ij} is an open neighbourhood of $\psi^{-1}_i(S)$ in V_{ij} and $\hat{\lambda}_{ij} : E_i|_{\hat{V}_{ij}} \to \mathcal{T}_{\phi_{ij}} V_j|_{\hat{V}_{ij}}$ is a morphism, and pairs $(\hat{V}_{ij}, \hat{\lambda}_{ij}), (\hat{V}'_{ij}, \hat{\lambda}'_{ij})$ are equivalent if there exists an open neighbourhood V''_{ij} of $\psi^{-1}_i(S)$ in $V_{ij} \cap V'_{ij}$ with $\hat{\lambda}_{ij}|_{V''_{ij}} = \hat{\lambda}'_{ij}|_{V''_{ij}}$. Then by Definition 4.3 we have:

$$\text{Hom}_S(\Phi_{ij}, \Phi'_{ij}) \cong \{ [\hat{V}_{ij}, \hat{\lambda}_{ij}] \in \text{Hom}(E_i|_{V_{ij}}, \mathcal{T}_{\phi_{ij}} V_j|_{V'_{ij}})_{\psi^{-1}_i(S)} : \phi'_{ij} = \phi_{ij} + \hat{\lambda}_{ij} \circ s_i + O(s_i^3), \phi'_{ij} = \phi_{ij} + \phi_{ij}'(d s_j) \circ \hat{\lambda}_{ij} + O(s_i) \} \sim \{ [\hat{V}_i, \hat{\lambda}_i] \text{ if } \hat{\lambda}_{ij} - \hat{\lambda}_i = O(s_i) \}, \quad (5.3)$$

We claim that the equations on $\hat{\lambda}_{ij}$ in the numerator of (5.3) are linear in $[\hat{V}_{ij}, \hat{\lambda}_{ij}]$ if $\Phi'_{ij} = \Phi_{ij}$, and affine linear for general Φ'_{ij}. To prove this, noting that $\hat{\lambda}_{ij} = 0$ is a solution when $\Phi'_{ij} = \Phi_{ij}$, it is enough to show that if $[\hat{V}_{ij}, \hat{\lambda}_{ij}]$ and $[\hat{V}'_{ij}, \hat{\lambda}'_{ij}]$ satisfy the equations and $\alpha \in \mathbb{R}$ then $\alpha \cdot [\hat{V}_{ij}, \hat{\lambda}_{ij}] + (1 - \alpha)[\hat{V}'_{ij}, \hat{\lambda}'_{ij}]$ also satisfy the equations. For the first equation, as we have

$$\phi'_{ij} = \phi_{ij} + \hat{\lambda}_{ij} \circ s_i + O(s_i^3) \text{ and } \phi'_{ij} = \phi_{ij} + \hat{\lambda}'_{ij} \circ s_i + O(s_i^3), \quad (5.4)$$

so Theorem 3.17(m) with $k = 2$ gives

$$\phi'_{ij} = \phi_{ij} + [\alpha \cdot \hat{\lambda}_{ij} + (1 - \alpha) \cdot \hat{\lambda}'_{ij}] \circ s_i + O(s_i^3),$$
as we want. For the second equation \(\hat{\phi}'_{ij} = \hat{\phi}_{ij} + \phi_{ij}^*(ds_j) \circ \hat{\lambda}_{ij} + O(s_i) \), affine linearity is immediate from Definition 3.15(vi) and Theorem 3.17(b).

The equivalence relation \(\sim \) on the denominator of (5.3) is the quotient by a vector subspace of \(\text{Hom}(E_i|_{V_{ij}}, T_{\phi_{ij}} V_j|_{V_{ij}} \psi_{ij}^{-1}(S)) \) acting by translation. Hence \(\text{Hom}_S(\Phi_{ij}, \Phi'_{ij}) \) is the quotient of a real affine space (or a real vector space if \(\Phi_{ij} = \Phi_{ij}' \)) by a vector subspace acting by translations, and is a real affine space (or a real vector space if \(\Phi_{ij} = \Phi_{ij}' \)).

This proves the first part of the next result, the second is straightforward:

Proposition 5.2. Let \(f : X \to Y \) be continuous, \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)\) be \(m \)-Kuranishi neighbourhoods on \(X, Y \), and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X \) be open, and \(\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) be 1-morphisms over \((S, f)\). Then the set \(\text{Hom}_S(\Phi_{ij}, \Phi'_{ij}) \) of 2-morphisms \(\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij} \) over \((S, f)\) naturally has the structure of a real affine space, and \(\text{Hom}_S(\Phi_{ij}, \Phi'_{ij}) \) the structure of a real vector space.

These vector space and affine space structures are compatible with vertical and horizontal composition, identities, and inverses, in the obvious ways. Thus, the strict 2-categories \(\mathbf{mKN}, \mathbf{GmKN}, \mathbf{mKN}_S(X) \) of (4.1) have a real linear structure at the level of 2-morphisms.

In any 2-category \(\mathcal{C} \), if \(\Phi : A \to B \) is a 1-morphism in \(\mathcal{C} \) then the set \(\text{Hom}(\Phi, \Phi) \) of 2-morphisms \(\Lambda : \Phi \to \Phi \) is a monoid under vertical composition \(\circ \). For the 2-categories \(\mathbf{mKN}, \mathbf{GmKN}, \mathbf{mKN}_S(X) \) of (4.1) this monoid is a real vector space, and in particular an abelian group.

The next lemma holds as (5.2) is clearly a module over both \(C^\infty(V_i) \) and \(C^\infty(V_j)|_{\psi_{ij}^{-1}(S)} \), and the conditions in (5.3) for \(\Phi_{ij}' = \Phi_{ij} \) are \(C^\infty(V_i) \)-linear, by Theorem 3.17(b),(m), so the actions of \(C^\infty(V_i), C^\infty(V_j)|_{\psi_{ij}^{-1}(S)} \) on (5.2) descend to (5.3).

Lemma 5.3. Let \(f : X \to Y \) be continuous, \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)\) be \(m \)-Kuranishi neighbourhoods on \(X, Y \), and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X \) be open, and \(\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) be a 1-morphism over \((S, f)\). Then the vector space \(\text{Hom}_S(\Phi_{ij}, \Phi_{ij}'), \Phi_{ij} \) is naturally a module over \(C^\infty(V_i) \), and also over \(C^\infty(V_i)|_{\psi_{ij}^{-1}(S)} \), the \(\mathbb{R} \)-algebra of germs at \(\psi_i^{-1}(S) \) of smooth functions \(V_i \to \mathbb{R} \).

That is, if \(\Lambda : \Phi_{ij} \Rightarrow \Phi_{ij}' \) is a 2-morphism over \((S, f)\) then we can define another 2-morphism \(\alpha \cdot \Lambda : \Phi_{ij} \Rightarrow \Phi_{ij}' \) for any \(\alpha \in C^\infty(V_i) \), or more generally any \(\alpha \in C^\infty(V_i) \) for \(V_i \) an open neighbourhood of \(\psi_i^{-1}(S) \) in \(V_i \). Next we explain how to glue 2-morphisms \(\Lambda^a : \Phi_{ij} \Rightarrow \Phi_{ij}' \) using a partition of unity.

Definition 5.4. Let \(f : X \to Y \) be continuous, \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)\) be \(m \)-Kuranishi neighbourhoods on \(X, Y \), and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X \) be open, and \(\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) be 1-morphisms over \((S, f)\), with \(\Phi_{ij} = (V_{ij}, \phi_{ij}, \hat{\phi}_{ij}) \) and \(\Phi'_{ij} = (V'_{ij}, \phi'_{ij}, \hat{\phi}'_{ij}) \).

Suppose \(\{ T^a : a \in A \} \) is an open cover of \(S \), and \(\Lambda^a : \Phi_{ij} \Rightarrow \Phi_{ij}' \) is a 2-morphism over \((T^a, f)\). Choose representatives \((V^a, \hat{\lambda}^a)\) for \(\Lambda^a = [V^a, \hat{\lambda}^a] \)
for \(a \in A \), so that \(\hat{V}^a \) is an open neighbourhood of \(\psi_i^{-1}(T^a) \) in \(V_{ij} \cap V'_{ij} \). Set \(\hat{V}_{ij} = \bigcup_{a \in A} \hat{V}^a \), so that \(\hat{V}_{ij} \) is an open neighbourhood of \(\psi_i^{-1}(S) \) in \(V_{ij} \cap V'_{ij} \). Then \(\{ \hat{V}^a : a \in A \} \) is an open cover of \(\hat{V}_{ij} \). Choose a partition of unity \(\{ \eta^a : a \in A \} \) on \(\hat{V}_{ij} \) subordinate to \(\{ \hat{V}^a : a \in A \} \), as in (3.3.1(d)). Define a morphism on \(\hat{V}_{ij} \):

\[
\hat{\lambda}_{ij} : E_i \mid_{\hat{V}_{ij}} \rightarrow T_{\psi_i} V_j \mid_{\hat{V}_{ij}} \quad \text{by} \quad \hat{\lambda}_{ij} = \sum_{a \in A} \eta^a \cdot \hat{\lambda}^a.
\]

(5.5)

Here \(\hat{\lambda}^a \) is only defined on \(\hat{V}^a \subseteq \hat{V}_{ij} \), but as \(\text{supp}\ \eta^a \subseteq \hat{V}^a \), we can extend \(\eta^a \cdot \hat{\lambda}^a \) by zero on \(\hat{V}_{ij} \setminus \hat{V}^a \), and so make \(\eta^a \cdot \hat{\lambda}^a \) defined on all of \(\hat{V}_{ij} \). As \(\{ \eta^a : a \in A \} \) is locally finite, the sum \(\sum_{a \in A} \cdot \cdot \cdot \) in (5.5) is locally finite, and so is well defined as we are working with sheaves. Thus \(\hat{\lambda}_{ij} \) is well defined.

We now claim that \((\hat{V}_{ij}, \hat{\lambda}_{ij}) \) satisfies Definition 4.3 so that \(\Lambda_{ij} := \{ V_{ij}, \hat{\lambda}_{ij} \} : \Phi_{ij} \Rightarrow \Phi'_{ij} \) is a 2-morphism over \((S,f)\). To see this, note that as the conditions on \(\hat{\lambda}_{ij} \) in (5.3) are affine linear, combining a family of solutions using a partition of unity as in (5.5) gives another solution. Informally we write

\[
\Lambda_{ij} = \sum_{a \in A} \eta^a \cdot \Lambda^a, \quad \text{in 2-morphisms } \Phi_{ij} \Rightarrow \Phi'_{ij}.
\]

(5.6)

That is, we can combine 2-morphisms \(\Lambda^a : \Phi_{ij} \Rightarrow \Phi'_{ij} \) over \((T^a,f)\) for \(a \in A \) using a partition of unity, to get a 2-morphism over \((S,f)\) for \(S = \bigcup_{a \in A} T^a \).

5.2 The category of \(\mu \)-Kuranishi neighbourhoods

Recall from \([4.1,2]\) that the homotopy category \(\text{Ho}(\mathcal{C}) \) of a 2-category \(\mathcal{C} \) is the category whose objects are objects of \(\mathcal{C} \), and whose morphisms \(\{ f \} : X \rightarrow Y \) are 2-isomorphism classes \(\{ f \} \) of 1-morphisms \(f : X \rightarrow Y \) in \(\mathcal{C} \). In \([5.2,5.3]\) we define a simplified version of m-Kuranishi spaces, called \(\mu \)-Kuranishi spaces, in which we reduce from 2-categories to categories by taking homotopy categories.

Here is the analogue of Definitions \([4.1,4.6]\) and \([4.8]\)

Definition 5.5. Define the category of \(\mu \)-Kuranishi neighbourhoods to be the homotopy category of the 2-category of m-Kuranishi neighbourhoods from \([3.1]\).

In more detail:

(a) Let \(X \) be a topological space, and \(S \subseteq X \) be open. A \(\mu \)-Kuranishi neighbourhood \((V, E, s, \psi)\) on \(X \) (or over \(S \)) is just an m-Kuranishi neighbourhood on \(X \) (or over \(S \)), in the sense of Definition \([4.1]\).

(b) Let \(f : X \rightarrow Y \) be a continuous map, \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)\) be \(\mu \)-Kuranishi neighbourhoods (hence m-Kuranishi neighbourhoods) on \(X, Y \), and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \) be open. A morphism \(\{ \Phi_{ij} \} : (V_i, E_i, s_i, \psi_i) \rightarrow (V_j, E_j, s_j, \psi_j) \) of \(\mu \)-Kuranishi neighbourhoods over \((S,f)\) is an equivalence class \([\Phi_{ij}] \) of 1-morphisms \(\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, s_i, \psi_i) \rightarrow (V_j, E_j, s_j, \psi_j) \) of m-Kuranishi neighbourhoods over \((S,f)\), where 1-morphisms \(\Phi_{ij}, \Phi'_{ij} \) are equivalent (written \(\Phi_{ij} \approx_{S} \Phi'_{ij} \)) if there exists a 2-morphism \(\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij} \) of m-Kuranishi neighbourhoods over \((S,f)\).
When \(X = Y\) and \(f = \text{id}_X\) we call \([\Phi_{ij}]\) a morphism over \(S\). In this case, the identity morphism \(\text{id}_{(V_i, E_i, s_i, \psi_i)} : (V_i, E_i, s_i, \psi_i) \to (V_i, E_i, s_i, \psi_i)\) over \(S\) is \([\text{id}_{(V_i, E_i, s_i, \psi_i)}] = [\text{id}]\) as in \(4.1\).

If \(\Phi_{ij} = (V_{ij}, \phi_{ij}, \phi_{ij})\), we write \([\Phi_{ij}] = [V_{ij}, \phi_{ij}, \phi_{ij}]\).

(c) Let \(f : X \to Y, g : Y \to Z\) be continuous, \((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j), (V_k, E_k, s_k, \psi_k)\) be \(\mu\)-Kuranishi neighbourhoods on \(X, Y, Z\) respectively, and \(T \subseteq \text{Im} \psi_j \cap g^{-1}(\text{Im} \psi_k) \subseteq Y\) and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(T) \subseteq X\) be open. Suppose \([\Phi_{ij}] : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)\) is a morphism of \(\mu\)-Kuranishi neighbourhoods over \((S, f)\), and \([\Phi_{jk}] : (V_j, E_j, s_j, \psi_j) \to (V_k, E_k, s_k, \psi_k)\) a morphism of \(\mu\)-Kuranishi neighbourhoods over \((T, g)\).

Define the composition of morphisms to be

\[
[\Phi_{jk}] \circ [\Phi_{ij}] = [\Phi_{jk} \circ \Phi_{ij}] : (V_i, E_i, s_i, \psi_i) \to (V_k, E_k, s_k, \psi_k),
\]

as a morphism of \(\mu\)-Kuranishi neighbourhoods over \((S, g \circ f)\). Here we choose representatives \(\Phi_{ij}, \Phi_{jk}\) for the equivalence classes \([\Phi_{ij}], [\Phi_{jk}]\), and use the composition of 1-morphisms \(\Phi_{jk} \circ \Phi_{ij}\) from \(4.1\). Properties of 2-categories imply that \([\Phi_{jk} \circ \Phi_{ij}]\) is independent of the choice of \(\Phi_{ij}, \Phi_{jk}\).

Definition \(4.8\) defined a strict 2-category \(\mathbf{mKN}\) and 2-subcategories \(\mathbf{GmKN}\) and \(\mathbf{mKN}_S(X)\) for \(S \subseteq X\) open. In the same way, we define the category of \(\mu\)-Kuranishi neighbourhoods \(\mathbf{\mu KN}\), where:

- Objects of \(\mathbf{\mu KN}\) are triples \((X, S, (V, E, s, \psi))\), with \(X\) a topological space, \(S \subseteq X\) open, and \((V, E, s, \psi)\) a \(\mu\)-Kuranishi neighbourhood over \(S\).

- Morphisms \([f, [\Phi_{ij}]] : (X, S, (V_i, E_i, s_i, \psi_i)) \to (Y, T, (V_j, E_j, s_j, \psi_j))\) of \(\mathbf{\mu KN}\) are a pair of a continuous map \(f : X \to Y\) with \(S \subseteq f^{-1}(T) \subseteq X\) and a morphism \([\Phi_{ij}] : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)\) of \(\mu\)-Kuranishi neighbourhoods over \((S, f)\).

- Identities and composition are defined in the obvious way, using \(b\),\(c\).

Define the category of global \(\mu\)-Kuranishi neighbourhoods \(\mathbf{GmuKN}\) to be the full subcategory of \(\mathbf{\mu KN}\) with objects \((s^{-1}(0), s^{-1}(0), (V, E, s, \text{id}_{s^{-1}(0)})\) for which \(X = S = s^{-1}(0)\) and \(\psi = \text{id}_{s^{-1}(0)}\). We usually write objects of \(\mathbf{GmuKN}\) as \((V, E, s)\) rather than \((s^{-1}(0), s^{-1}(0), (V, E, s, \text{id}_{s^{-1}(0)})\), and we write morphisms of \(\mathbf{GmuKN}\) as \([f, [\Phi_{ij}]] : (V_i, E_i, s_i) \to (V_j, E_j, s_j)\) rather than as \((f, [\Phi_{ij}])\), since \(f = \phi_{ij}|_{s_i^{-1}(0)}\) is determined by \([\Phi_{ij}]\) as in Definition \(4.8\).

Let \(X\) be a topological space and \(S \subseteq X\) be open. Write \(\mathbf{\mu KN}_S(X)\) for the subcategory of \(\mathbf{\mu KN}\) with objects \((X, S, (V, E, s, \psi))\) for \(X\) as given and morphisms \((\text{id}_X, [\Phi_{ij}]) : (X, S, (V_i, E_i, s_i, \psi_i)) \to (X, S, (V_j, E_j, s_j, \psi_j))\) for \(f = \text{id}_X\). We call \(\mathbf{\mu KN}_S(X)\) the category of \(\mu\)-Kuranishi neighbourhoods over \(S \subseteq X\). We generally write objects of \(\mathbf{\mu KN}_S(X)\) as \((V, E, s, \psi)\), omitting \(X, S\), and morphisms of \(\mathbf{mKN}_S(X)\) as \([\Phi_{ij}]\), omitting \(\text{id}_X\).
Then we have equalities $\mu\KN = \Ho(\m\KN)$, $G\mu\KN = \Ho(\Gm\KN)$, $\mu\KN_S(X) = \Ho(\m\KN_S(X))$ with the homotopy categories of the strict 2-categories $\m\KN, G\m\KN, \mu\KN_S(X)$ of [4.1].

The accent ‘‘−’’ in $\mu\KN, G\mu\KN, \mu\KN_S(X)$ is because they are constructed using \Man. For particular \Man we modify the notation in the obvious way, e.g. if $\Man = \Man$ we write $\mu\KN, G\mu\KN, \mu\KN_S(X)$, and if $\Man = \Man^c$ we write $\mu\KN^c, G\mu\KN^c, \mu\KN_S^c(X)$.

If $f : X \to Y$ is continuous, (V_i, E_i, s_i, ψ_i), (V_J, E_j, s_j, ψ_j) are μ-Kuranishi neighbourhoods on X, Y, and $S \subseteq \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j) \subseteq X$ is open, write $\Hom_{S,f}((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$ for the set of morphisms $[\Phi_{ij}] : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ over (S, f).

If $X = Y$ and $f = \text{id}_X$, we write $\Hom_S((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$ in place of $\Hom_{S,f}((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$.

Remark 5.6. (a) In [4.1] for μ-Kuranishi neighbourhoods (V_i, E_i, s_i, ψ_i) over S, or 1-morphisms Φ_{ij} over (S, f), the open set $S \subseteq X$ appears only as a condition on (V_i, E_i, s_i, ψ_i) or Φ_{ij}, as we need $S \subseteq \text{Im } \psi_i$ or $S \subseteq \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j)$. Thus μ-Kuranishi neighbourhoods and their 1-morphisms make sense without knowing S. However, 2-morphisms $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ over (S, f) are equivalence classes under \approx_S depending on S, so do not make sense without specifying S. Similarly, μ-Kuranishi neighbourhoods (V_i, E_i, s_i, ψ_i) make sense without knowing S, but their morphisms $[\Phi_{ij}]$ are equivalence classes under \approx_S depending on S, so do not make sense without specifying S.

(b) If we define μ-Kuranishi neighbourhoods and their morphisms directly, rather than via μ-Kuranishi neighbourhoods and their 1- and 2-morphisms, the definitions and proofs can be simplified a bit. For example, the equivalence relation \approx_S in Definition 4.3 is not needed for the μ-Kuranishi case.

Here are the analogues of Definitions 4.10, 4.11 and Convention 4.12.

Definition 5.7. Let X be a topological space, and $S \subseteq X$ be open, and $[\Phi_{ij}] : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ be a morphism of μ-Kuranishi neighbourhoods on X over S. Then $[\Phi_{ij}]$ is a morphism in the category $\mu\KN_S(X)$ of Definition 5.5. We call $[\Phi_{ij}]$ a coordinate change over S if it is an isomorphism in $\mu\KN_S(X)$. This holds if and only if any representative Φ_{ij} is an equivalence in $\m\KN_S(X)$, that is, if and only if Φ_{ij} is a coordinate change of μ-Kuranishi neighbourhoods over S, as in Definition 4.10. Write

$$\text{Iso}_S((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \subseteq \Hom_S((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$$

for the subset of coordinate changes $[\Phi_{ij}]$ over S.

Definition 5.8. Let $T \subseteq S \subseteq X$ be open. Define the relation $\approx_T : \mu\KN_S(X) \to \mu\KN_T(X)$ to map objects (V_i, E_i, s_i, ψ_i) to exactly the same objects, and morphisms $[\Phi_{ij}]$ to $[\Phi_{ij}]|_T$, where $[\Phi_{ij}]|_T$ is the \approx_T-equivalence class of any representative Φ_{ij} of the \approx_S-equivalence class $[\Phi_{ij}]$. Then $\approx_T : \mu\KN_S(X) \to \mu\KN_T(X)$ is a morphism of μ-Kuranishi neighbourhoods on X over S, T. We call \approx_T a coordinate change over S, T. This holds if and only if any representative Φ_{ij} is an equivalence in $\m\KN_T(X)$.
Let $f: X \to Y$ be a continuous map of topological spaces, and $(V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)$ be μ-Kuranishi neighbourhoods on X, Y. For each open $S \subseteq \Im \psi_i \cap f^{-1}(\Im \psi_j)$, as in Definition 5.5 define a set
\[
\Hom_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))(S) = \Hom_{S,f}((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)),
\]
and for open $T \subseteq S \subseteq \Im \psi_i \cap f^{-1}(\Im \psi_j)$ as in Definition 5.8 define a map
\[
\rho_{ST} : \Hom_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))(S) \to \Hom_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))(T)
\]
by \(\rho_{ST} = |r \) in (5.7). Then \(\mathcal{H}om_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \) is a sheaf of sets on the open subset \(\text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \) in \(X \), as in Definition A.12.

When \(X = Y \) and \(f = \text{id}_X \) we write \(\mathcal{H}om((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \) instead of \(\mathcal{H}om_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \). Then coordinate changes \(\{ \Phi_{ij} \} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) also form a sheaf \(\mathcal{S}o((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \) on \(\text{Im} \psi_i \cap \text{Im} \psi_j \), a subsheaf of \(\mathcal{H}om((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \).

Proof. For the first part, we must show \(\mathcal{H}om((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \) satisfies the sheaf axioms Definition A.12 (i)–(v). Parts (i)–(iii), the presheaf axioms, are immediate. For (iv)–(v), let \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X \) be open, and \(\{ T^a : a \in A \} \) be an open cover of \(S \).

For (iv), suppose \(\{ \Phi_{ij}, \Phi_i^j \} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) are morphisms of \(\mu \)-Kuranishi neighbourhoods over \((S, f)\), and \(\Phi_{ij} \in T^a \) for all \(a \in A \). Choose representatives \(\Phi_{ij}, \Phi_i^j \) for \(\{ \Phi_{ij}, \Phi_i^j \} \), so that \(\Phi_{ij}, \Phi_i^j \) are 1-morphisms of \(\mu \)-Kuranishi neighbourhoods over \((S, f)\). Since \(\Phi_{ij} \in T^a \), there exists a 2-morphism \(\Lambda^a : \Phi_{ij} \Rightarrow \Phi_i^j \) of \(\mu \)-Kuranishi neighbourhoods over \((T^a, f)\) for all \(a \in A \). Then Definition 5.4 constructs a 2-morphism \(\Lambda_{ij} = \sum_{a \in A} \eta^a \cdot \Lambda^a : \Phi_{ij} \Rightarrow \Phi_i^j \) of \(\mu \)-Kuranishi neighbourhoods over \((S, f)\), using a partition of unity \(\{ \eta^a : a \in A \} \). So \(\Lambda_{ij} \) implies that \(\Phi_{ij} \in \mathcal{H}om((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \) in morphisms of \(\mu \)-Kuranishi neighbourhoods over \((S, f)\). Hence Definition A.12 (iv) holds.

For (v), suppose \(\{ \Phi_{ij}, \Phi_i^j \} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) are morphisms of \(\mu \)-Kuranishi neighbourhoods over \((T^a, f)\) for \(a \in A \), and \(\Phi_{ij} \in T^a \cap T^b \) for all \(a, b \in A \). Choose representatives \(\Phi_{ij} = (V_{ij}^a, \phi_i^{ab}, \phi_j^{ab}) \) for \(\mathcal{H}om((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j)) \) for \(a \in A \), so that \(\Phi_{ij} \) is a 1-morphism of \(\mu \)-Kuranishi neighbourhoods over \((T^a, f)\). Since \(\Phi_{ij} \in T^a \cap T^b \), there exists a 2-morphism \(\Lambda^{ab} : \Phi_{ij} \Rightarrow \Phi_i^j \) of \(\mu \)-Kuranishi neighbourhoods over \((T^a \cap T^b, f)\) for all \(a, b \in A \). Choose representatives \(\chi^{ab} \) for \(\Lambda^{ab} = [\chi^{ab}] : [V_{ij}^a, a] \to [V_{ij}^b, a] \) in \(A \), so that \(\chi_{ij}^{ab} = \chi^{ab} \) is a 1-morphism of \([V_{ij}^a, a] \to [V_{ij}^b, a] \). Define \(V_{ij} = \bigcup_{a \in A} V_{ij}^a \), so that \(V_{ij} \) is an open neighbourhood of \(\psi_i^{-1}(S) \) in \(V_i \). Then \(\{ V_{ij}^a : a \in A \} \) is an open cover of \(V_{ij} \). Choose a partition of unity \(\{ \eta^a : a \in A \} \) on \(V_{ij} \) subordinate to \(\{ V_{ij}^a : a \in A \} \), as in B.1.4. Now for all \(a, b, c \in A \), we have a 2-morphism \(\Lambda^{bc} = (\Lambda^{ab})^{-1} \otimes \Lambda^{ac} : \Phi_{ij} \Rightarrow \Phi_i^j \) of \(\mu \)-Kuranishi neighbourhoods over \((T^a \cap T^b \cap T^c, f)\). And \(\{ T^a \cap T^b \cap T^c : c \in A \} \) is an open cover of \((T^a \cap T^b, f)\). So by Definition 5.4 as in (5.6) we can form a 2-morphism

\[
\tilde{\Lambda}^{ab} = \sum_{c \in A} \eta^c \cdot (\Lambda^{bc})^{-1} \otimes \Lambda^{ac} : \Phi_{ij} \Rightarrow \Phi_i^j
\]

over \((T^a \cap T^b, f)\). We claim that these \(\tilde{\Lambda}^{ab} \) satisfy

\[
\tilde{\Lambda}^{bc} |_{T^a \cap T^c} = \tilde{\Lambda}^{ab} |_{T^a \cap T^c} = \tilde{\Lambda}^{ac} |_{T^a \cap T^c} \quad \text{for all} \ a, b, c \in A.
\]

(5.9)

To see this, note that \(\tilde{\Lambda}^{ab} = [\tilde{V}_{ij}^{ab}, \tilde{\lambda}_{ij}^{ab}] \) with \(\tilde{\lambda}_{ij}^{ab} = \sum_{c \in A} \eta^c \cdot (-\tilde{\lambda}_{ij}^{cd} + \tilde{\lambda}_{ij}^{bd}) + \sum_{d \in A} \eta^d \cdot (-\tilde{\lambda}_{ij}^{bd} + \tilde{\lambda}_{ij}^{ad}) \)

\[
= \sum_{d \in A} \eta^d \cdot (-\tilde{\lambda}_{ij}^{ad} + \tilde{\lambda}_{ij}^{cd}) = \tilde{\lambda}_{ij}^{ac}.
\]

113
Theorem 4.13 says $\mathbf{Hom}_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$ is a stack. Applying Definition A.17(v) to the 1-morphisms $\Phi_{ij}^a : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ over (T^a, f) and 2-morphisms $\hat{\Lambda}^{ab} : \Phi_{ij}^a \Rightarrow \Phi_{ij}^b$ over $(T^a \cap T^b, f)$ satisfying (5.9) shows that there exist a 1-morphism $\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ over (S, f) and 2-morphisms $\hat{\Lambda}^a : \Phi_{ij}^a \Rightarrow \Phi_{ij}$ over (T^a, f) for $a \in A$ satisfying $\hat{\Lambda}^a|_{T^a \cap T^b} = \hat{\Lambda}^{ab}|_{T^a \cap T^b}$ for all $a, b \in A$. Then $[\Phi_{ij}] : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ is a morphism of μ-Kuranishi neighbourhoods over (S, f), and $\hat{\Lambda}^a : \Phi_{ij}^a \Rightarrow \Phi_{ij}$ implies that $[\Phi_{ij}]|_{T^a} = [\Phi_{ij}^a]$ for all $a \in A$. Hence Definition A.12(v) holds, and $\mathbf{Hom}_f((V_i, E_i, s_i, \psi_i), (V_j, E_j, s_j, \psi_j))$ is a sheaf.

We call Theorem 5.10 the sheaf property. We will use it in §5.3 to construct compositions of morphisms of μ-Kuranishi spaces.

5.3 The category of μ-Kuranishi spaces

5.3.1 The definition of the category \mathbb{K}

We give the analogue of §4.3 for μ-Kuranishi spaces. This is much simpler, as we do not have to deal with 2-morphisms.

Definition 5.11. Let X be a Hausdorff, second countable topological space, and $n \in \mathbb{Z}$. A μ-Kuranishi structure K on X of virtual dimension n is data $K = \{I, (V_i, E_i, s_i, \psi_i)_{i \in I}, [\Phi_{ij}]_{i,j \in I}\}$, where:

(a) I is an indexing set.

(b) (V_i, E_i, s_i, ψ_i) is a μ-Kuranishi neighbourhood on X for each $i \in I$, with $\dim V_i - \text{rank } E_i = n$.

(c) $[\Phi_{ij}] = [V_{ij}, \phi_{ij}, \phi_{ij}] : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j)$ is a coordinate change for all $i, j \in I$ (as in Convention 5.9 defined on $S = \text{Im } \psi_i \cap \text{Im } \psi_j$).

(d) $\bigcup_{i \in I} \text{Im } \psi_i = X$.

(e) $[\Phi_{ii}] = [\text{id}_{(V_i, E_i, s_i, \psi_i)}]$ for all $i \in I$.

(f) $[\Phi_{jk}] \circ [\Phi_{ij}] = [\Phi_{ik}]$ for all $i, j, k \in I$ (as in Convention 5.9, this holds on $S = \text{Im } \psi_i \cap \text{Im } \psi_j \cap \text{Im } \psi_k$).

We call $X = (X, K)$ a μ-Kuranishi space, of virtual dimension $\text{vdim } X = n$. When we write $x \in X$, we mean that $x \in X$.

Example 5.12. Let V be a manifold (object in \mathbf{Man}), $E \to V$ a vector bundle, and $s : V \to E$ a smooth section, so that (V, E, s) is an object in $G\mathbb{K}$ from Definition 5.5. Set $X = s^{-1}(0)$, as a closed subset of V with the induced topology. Then X is Hausdorff and second countable, as V is. Define a μ-Kuranishi structure $K = \{(\emptyset), (V_0, E_0, s_0, \psi_0), \Phi_{00}\}$ on X with indexing set $I = \{0\}$, one μ-Kuranishi neighbourhood (V_0, E_0, s_0, ψ_0) with $V_0 = V$, $E_0 = E$, $s_0 = s$ and $\psi_0 = \text{id}_X$, and one coordinate change $\Phi_{00} = \text{id}_{(V_0, E_0, s_0, \psi_0)}$. Then $X = (X, K)$ is a μ-Kuranishi space, with $\text{vdim } X = \dim V - \text{rank } E$. We write $S_{V, E, s} = X$.

114
When we are discussing several \(\mu\)-Kuranishi spaces at once, we need notation to distinguish \(\mu\)-Kuranishi neighbourhoods and coordinate changes on the different spaces. As for \([4.5]–[4.8]\), one choice we will often use for \(\mu\)-Kuranishi spaces \(W, X, Y, Z\) is

\[
W = (W, \mathcal{H}), \quad \mathcal{H} = (H, (T_h, C_h, q_h, \phi_h)_{h \in H}),
\]

where \([5.11)–(5.13)\),

\[
X = (X, \mathcal{I}), \quad \mathcal{I} = \{I, (U_i, D_i, r_i, \chi_i)_{i \in I}, [T_{ij}] = [U_{ij}, \tau_{ij}, \hat{\tau}_{ij}, s_{ij}]_{i, j \in I}\},
\]

\[
Y = (Y, \mathcal{J}), \quad \mathcal{J} = \{J, (V_j, E_j, s_j, \psi_j)_{j \in J}, [Y_{jj'}] = [V_{jj'}, v_{jj'}, \hat{v}_{jj'}, \nu_{jj'}, \omega_{jj'}]_{j, j' \in J}\},
\]

\[
Z = (Z, \mathcal{K}), \quad \mathcal{K} = \{K, (W_k, F_k, t_k, \omega_k)_{k \in K}, \}
\]

\[
|\Phi_{kk'}| = [W_{kk'}, \phi_{kk'}, \hat{\phi}_{kk'}]_{k, k' \in K}.
\]

Definition 5.13. Let \(X = (X, \mathcal{I})\) and \(Y = (Y, \mathcal{J})\) be \(\mu\)-Kuranishi spaces, with notation \([5.11)–[5.12]\). A morphism \(f : X \rightarrow Y\) is \(f = (f, f_{ij})_{i \in I, j \in J}\), where \(f : X \rightarrow Y\) is a continuous map, and \([f_{ij}] = [U_{ij}, f_{ij}, \hat{f}_{ij}] : (U_i, D_i, r_i, \chi_i) \rightarrow (V_j, E_j, s_j, \psi_j)\) is a morphism of \(\mu\)-Kuranishi neighbourhoods over \(f\) for all \(i \in I, j \in J\) (defined over \(S = \text{Im} \chi_i \cap f^{-1}(\text{Im} \psi_j)\), by Convention \([5.9]\)), satisfying:

(a) If \(i, i' \in I\) and \(j \in J\) then in morphisms over \(f\) we have

\[
[f_{i'j}] \circ [T_{ii'}] = [f_{ij}],
\]

where \([5.14]\) holds over \(S = \text{Im} \chi_i \cap \text{Im} \chi_{i'} \cap f^{-1}(\text{Im} \psi_j)\) by Convention \([5.9]\) and each term in \([5.14]\) is implicitly restricted to \(S\). In particular, \([5.14]\) does not determine \(f_{ij}\), but only its restriction \([f_{ij}]|_S\).

(b) If \(i \in I\) and \(j, j' \in J\) then interpreted as for \([5.14]\), we have

\[
[T_{jj'}] \circ [f_{ij}] = [f_{ij'}].
\]

If \(x \in X\) (i.e. \(x \in X\)), we will write \(f(x) = f(x) \in Y\).

When \(Y = X\), so that \(J = I\), define \(\operatorname{id}_X = (\operatorname{id}_X, [T_{ij}]_{i, j \in I})\). Then Definition \([5.11)\) implies that (a),(b) hold, so \(\operatorname{id}_X : X \rightarrow X\) is a morphism of \(\mu\)-Kuranishi spaces, which we call the **identity morphism**.

In the next theorem, we use the sheaf property of morphisms of \(\mu\)-Kuranishi neighbourhoods in Theorem \([5.10]\) to construct compositions \(g \circ f : X \rightarrow Z\) of morphisms of \(\mu\)-Kuranishi spaces \(f : X \rightarrow Y, g : Y \rightarrow Z\), and hence show that \(\mu\)-Kuranishi spaces form a category \(\text{\(\mu\)Kur}\).

In \([4.3]\) we made arbitrary choices to define composition of 1-morphisms of \(m\)-Kuranishi spaces. For \(\mu\)-Kuranishi spaces, composition is canonical.

Theorem 5.14. (a) Let \(X = (X, \mathcal{I}), Y = (Y, \mathcal{J}), Z = (Z, \mathcal{K})\) be \(\mu\)-Kuranishi spaces with notation \([5.11)–[5.13]\), and \(f : X \rightarrow Y, g : Y \rightarrow Z\) be morphisms, where \(f = (f, f_{ij})_{i \in I, j \in J}, g = (g, g_{jk})_{j \in J, k \in K}\). Then there exists a unique
Composition of morphisms is associative, that is, if \(\phi : \mathcal{X} \to \mathcal{Y} \), \(\psi : \mathcal{Y} \to \mathcal{Z} \) are morphisms of \(\mu \)-Kuranishi spaces, and call \(\phi \circ \psi \) the composition of \(\phi \) and \(\psi \).

We write \(\phi \circ \psi = \psi \circ \phi \), so that \(\phi \circ \psi : \mathcal{X} \to \mathcal{Z} \) is a morphism of \(\mu \)-Kuranishi spaces and \(\phi \circ \psi \) is the composition of \(\phi \) and \(\psi \).

Proof. For (a), define \(h = g \circ f : X \to Z \). Let \(i \in I \) and \(k \in K \), and set \(S = \Im \chi_i \cap h^{-1}(\Im \omega_k) \), so that \(S \) is open in \(X \). We want to define a morphism \([h_{ik}] : (U_i, D_i, r_i, \chi_i) \to (W_k, F_k, t_k, \omega_k) \) of \(\mu \)-Kuranishi neighbourhoods over \((S, h)\). Equation (5.16) means that for each \(j \in J \) we must have

\[
[h_{ik}]_{\Im f^{-1}(\Im \psi_j)} = [g_{jk}] \circ [f_{ij}]_{\Im f^{-1}(\Im \psi_j)},
\]

(5.17)

As \(\{\Im \psi_j : j \in J\} \) is an open cover of \(Y \) and \(f \) is continuous, \(\{S \cap f^{-1}(\Im \psi_j) : j \in J\} \) is an open cover of \(S \). For all \(j, j' \in J \) we have

\[
[g_{jk}] \circ [f_{ij}]_{\Im f^{-1}(\Im \psi_j) \cap f^{-1}(\Im \psi_{j'})} = [g_{jk}] \circ [f_{ij'}]_{\Im f^{-1}(\Im \psi_j) \cap f^{-1}(\Im \psi_{j'})} = [g_{jk}] \circ [f_{ij'}]_{\Im f^{-1}(\Im \psi_j) \cap f^{-1}(\Im \psi_{j'})},
\]

(5.18)

using (5.14) for \(g \) in the first step, and (5.15) for \(f \) in the second.

Now the right-hand side of (5.17) prescribes values for a morphism over \(h \) on the sets of an open cover \(\{S \cap f^{-1}(\Im \psi_j) : j \in J\} \) of \(S \). Equation (5.18) shows that these values agree on overlaps \((S \cap f^{-1}(\Im \psi_j)) \cap (S \cap f^{-1}(\Im \psi_{j'})) \). Therefore the sheaf property Theorem 5.10 shows that there is a unique morphism \([h_{ik}] \) over \((S, h)\) satisfying (5.17) for all \(j \in J \).

We have now defined \(h = (h_{ik}) \). To show \(h : X \to Z \) is a morphism, we must verify Definition 5.13(a),(b). For (a), suppose \(i, i' \in I \), \(j, j' \in J \) and \(k, k' \in K \). Then we have

\[
[h_{ik}] \circ [T_{ij'}]_{\Im \chi_i \cap \Im \chi_j' \cap f^{-1}(\Im \psi_i) \cap h^{-1}(\Im \omega_k)} = [g_{jk}] \circ [f_{ij'}] \circ [T_{ij'}]_{\Im \chi_i \cap \Im \chi_j' \cap f^{-1}(\Im \psi_i) \cap h^{-1}(\Im \omega_k)},
\]

and

\[
[h_{ik}] \circ [f_{ij'}]_{\Im \chi_i \cap \Im \chi_j' \cap f^{-1}(\Im \psi_i) \cap h^{-1}(\Im \omega_k)} = [g_{jk}] \circ [f_{ij'}]_{\Im \chi_i \cap \Im \chi_j' \cap f^{-1}(\Im \psi_i) \cap h^{-1}(\Im \omega_k)},
\]

(5.19)

using (5.14) with \(i' \) in place of \(i \) in the first step, (5.15) for \(f \) in the second, and (5.17) in the third. This proves the restriction of (5.14) for \(h, i, i', j, k \) to \(\Im \chi_i \cap \Im \chi_j' \cap f^{-1}(\Im \psi_i) \cap h^{-1}(\Im \omega_k) \), for each \(j \in J \).

Since the \(\Im \chi_i \cap \Im \chi_j' \cap f^{-1}(\Im \psi_i) \cap h^{-1}(\Im \omega_k) \) for \(j \in J \) form an open cover of \(\Im \chi_i \cap \Im \chi_j' \cap h^{-1}(\Im \omega_k) \), Theorem 5.10 implies that (5.14) holds for
On objects, if $h : X \to Z$ is a morphism, proving part (a).

For (b), in notation \(5.10\)–\(5.13\), if $h \in H$, $i \in I$, and $j \in J$, we find that

$$[(g \circ f) \circ e)]_{h,k} = [g \circ (f \circ e)]_{h,k},$$

where the middle step makes sense without brackets by associativity of composition of morphisms of μ-Kuranishi neighbourhoods. Since $\text{Im} \varphi_h \cap e^{-1}(\text{Im} \chi_j) \cap (f \circ e)^{-1}(\text{Im} \psi_j)$ for all $i \in I$, $j \in J$ form an open cover of $\text{Im} \varphi_h \cap (g \circ f \circ e)^{-1}(\text{Im} \omega_k)$, Theorem \(5.10\) implies that $[(g \circ f) \circ e)]_{h,k} = [(g \circ (f \circ e)]_{h,k}$ over the correct domain $\text{Im} \varphi_h \cap (g \circ f \circ e)^{-1}(\text{Im} \omega_k)$, so that $(g \circ f) \circ e = g \circ (f \circ e)$, proving (b).

For (c), let $i \in I$ and $j \in J$. Then we have

$$[(f \circ \text{id}_X)_{i,j}] = [f_{i,j}] \circ [T_{i,j}] = [f_{i,j}] \circ [\text{id}_{(U_i,D_i,r_i,\lambda_i)}] = [f_{i,j}],$$

using \(5.16) and the definition of id_X in the first step, and Definition \(5.11(e)$ in the second. Thus $f \circ \text{id}_X = f$. We show that $\text{id}_Y \circ f = f$ in the same way. This completes the proof.

5.3.2 Examples of categories μ-Kur

Here are the analogues of Definition \(4.29$ and Example \(4.30$.

Definition 5.15. In Theorem \(5.14$ we write μ-Kur for the category of μ-Kuranishi spaces constructed from our chosen category Man satisfying Assumptions \(3.1$–\(3.7$ in \(3.1$). By Example \(3.8$ the following categories from Chapter 2 are possible choices for Man:

$$\text{Man, Man}^c, \text{Man}^{ac}, \text{Man}^{ac}, \text{Man}^{ac}.$$ \(5.19$)

We write the corresponding categories of μ-Kuranishi spaces as follows:

$$\mu\text{Kur, }\mu\text{Kur}^c, \mu\text{Kur}^{ac}, \mu\text{Kur}^{ac}, \mu\text{Kur}^{ac}.$$ \(5.20$)

Example 5.16. We will define a functor $F_{\mu\text{Kur}} : \text{Man} \to \mu\text{Kur}$. On objects, if $X \in \text{Man}$ define a μ-Kuranishi space $F_{\mu\text{Kur}}(X) = (X, K)$ with topological space X and μ-Kuranishi structure $K = \{(0), (V_0, E_0, s_0, \psi_0), [\Phi_{00}]\}$, with indexing set $I = \{0\}$, one μ-Kuranishi neighbourhood (V_0, E_0, s_0, ψ_0) with $V_0 = X$, $E_0 \to V_0$ the zero vector bundle, $s_0 = 0$, and $\psi_0 = \text{id}_X$, and one coordinate change $[\Phi_{00}] = [\text{id}_{(V_0, E_0, s_0, \psi_0)}]$.

On morphisms, if $f : X \to Y$ is a morphism in Man and $X = f_{\mu\text{Kur}}(X)$, $Y = f_{\mu\text{Kur}}(Y)$, define a morphism $f_{\mu\text{Kur}}(f) = f : X \to Y$ by $f = (f, [f_{00}])$.

117
where \([f_{00}] = [V_{00}, f_{00}, \hat{f}_{00}]\) with \(V_{00} = X, f_{00} = f, \text{ and } \hat{f}_{00}\) is the zero map on zero vector bundles.

It is now easy to check that \(F_{\mu \text{Kur}}^\text{Man}\) is a functor, which is full and faithful, and thus embeds \(\text{Man}\) as a full subcategory of \(\mu \text{Kur}\). So we can identify \(\text{Man}\) with its image in \(\mu \text{Kur}\). We say that a \(\mu\)-Kuranishi space \(X\) is a manifold if \(X \cong F_{\mu \text{Kur}}^\text{Man} X'\) in \(\mu \text{Kur}\), for some \(X' \in \text{Man}\).

Assumption 3.4 gives a full subcategory \(\text{Man} \subseteq \text{Man}^\text{\textast}\). Define a full and faithful functor \(F_{\mu \text{Kur}}^\text{Man} \rightarrow \mu \text{Kur}\) which is full and faithful, and thus embeds \(\text{Man}\) as a full subcategory of \(\mu \text{Kur}\). We say that a \(\mu\)-Kuranishi space \(X\) is a classical manifold if \(X \cong F_{\mu \text{Kur}}^\text{Man} X'\) in \(\mu \text{Kur}\), for some \(X' \in \text{Man}\).

In a similar way to Example 5.16, we can define a functor \(G_{\mu \text{KN}} \rightarrow \mu \text{Kur}\) which is an equivalence from the category \(G_{\mu \text{KN}}\) of global \(\mu\)-Kuranishi neighbourhoods in Definition 5.5 to the full subcategory of objects \((X, K)\) in \(\mu \text{Kur}\) for which \(K\) contains only one \(\mu\)-Kuranishi neighbourhood. It acts by \((V, E, s) \mapsto S_{V, E, s}\) on objects, where \(S_{V, E, s}\) as in Example 5.12.

Example 5.17. As in Example 4.31, if \(X, Y\) are \(\mu\)-Kuranishi spaces in \(\mu \text{Kur}\) with notation (5.11)–(5.12), we can define an explicit product \(X \times Y\) in \(\mu \text{Kur}\) with \(\text{vdim}(X \times Y) = \text{vdim} X + \text{vdim} Y\), such that \(X \times Y = (X \times Y, K)\) with

\[
K = \left\{ (I \times J, (W_{(i,j)}, F_{(i,j)}, t_{(i,j)}, \omega_{(i,j)}), (i,j) \in I \times J, (\Phi_{(i,j)}(i',j'), (i,j), (i',j') \in I \times J) \right\}
\]

for \((W_{(i,j)}, F_{(i,j)}, t_{(i,j)}, \omega_{(i,j)}), \Phi_{(i,j)}(i',j')\) as in Example 4.31. There are natural projection morphisms \(\pi_X : X \times Y \rightarrow X, \pi_Y : X \times Y \rightarrow Y\). These have the universal property of products in an ordinary category, that is, \(X \times Y\) is a fibre product \(X \times_X Y\) over the point (terminal object) \(\ast\) in \(\mu \text{Kur}\).

Products are commutative and associative up to canonical isomorphism. We can also define products and direct products of morphisms. That is, if \(f : W \rightarrow Y, g : X \rightarrow Y, h : X \rightarrow Z\) are morphisms in \(\mu \text{Kur}\) then we have a product morphism \(f \times h : W \times X \rightarrow Y \times Z\) and a direct product morphism \((g, h) : X \rightarrow Y \times Z\) in \(\mu \text{Kur}\), both easy to write down explicitly.

5.3.3 Comparing \(\mu\)-Kuranishi spaces from different \(\text{Man}\)

As in 4.4, following Definition 4.32 we easily prove:

Proposition 5.18. Suppose \(\text{Man}, \text{Man}^\text{\textast}\) are categories satisfying Assumptions 3.1 and 3.7, and \(\tilde{F}_{\text{Man}} : \text{Man} \rightarrow \text{Man}^\text{\textast}\) is a functor satisfying Condition 3.20. Then we can define a natural functor \(F_{\mu \text{Kur}}^\text{\textast} : \mu \text{Kur} \rightarrow \mu \text{Kur}^\text{\textast}\).

If \(\tilde{F}_{\text{Man}} : \text{Man} \rightarrow \text{Man}^\text{\textast}\) is an inclusion of subcategories \(\text{Man} \subseteq \text{Man}^\text{\textast}\) satisfying either Proposition 3.21(a) or (b), then \(F_{\mu \text{Kur}}^\text{\textast} : \mu \text{Kur} \rightarrow \mu \text{Kur}^\text{\textast}\) is also an inclusion of subcategories \(\mu \text{Kur} \subseteq \mu \text{Kur}^\text{\textast}\).

118
As for Figure 4.1, applying Proposition 5.18 to the parts of the diagram Figure 3.1 of functors \mathbf{M}_{Man} involving the categories (5.19) yields a diagram Figure 5.1 of functors $F_{\mu \mathbf{Kur}}$. Arrows ‘→’ are inclusions of subcategories.

\[
\begin{array}{cccc}
\mu \mathbf{Kur} & \overset{\mu \mathbf{Kur}^{\text{we}}}{\Downarrow} & \mu \mathbf{Kur} & \overset{\mu \mathbf{Kur}^{\text{ac}}}{\Downarrow} \\
\mu \mathbf{Kur}^{\text{gc}} & \overset{\mu \mathbf{Kur}^{\text{c}}}{\Downarrow} & \mu \mathbf{Kur}^{\text{ac}} & \overset{\mu \mathbf{Kur}^{\text{c}, \text{ac}}}{\Downarrow}
\end{array}
\]

Figure 5.1: Functors between categories of μ-Kuranishi spaces from Proposition 5.18. Arrows ‘→’ are inclusions of subcategories.

5.3.4 Discrete properties of morphisms in $\mu \mathbf{Kur}$

In §3.3.6 and §B.6 we defined when a property P of morphisms in \mathbf{M}_{Man} is discrete. Section 4.5 explained how to extend discrete properties of morphisms in \mathbf{M}_{Man} to corresponding properties of 1-morphisms in \mathbf{mKur}. We now do the same for $\mu \mathbf{Kur}$. Here are the analogues of Definition 4.35 and Proposition 4.36(b),(c), proved in the same way, and Definition 4.37.

Definition 5.19. Let P be a discrete property of morphisms in \mathbf{M}_{Man}. Suppose $f : X \to Y$ is a morphism in $\mu \mathbf{Kur}$. Use notation (5.11)–(5.12) for X, Y, and write $f = (f, [f_{ij}]_{i \in I, j \in J})$ as in Definition 5.13. We say that f is P if f_{ij} is P in the sense of Definition 4.33 for all $i \in I$ and $j \in J$. This is independent of the choice of representative f_{ij} in f by Proposition 4.34(b).

Proposition 5.20. Let P be a discrete property of morphisms in \mathbf{M}_{Man}. Then:

(a) Let $f : X \to Y$ and $g : Y \to Z$ be morphisms in $\mu \mathbf{Kur}$. If f and g are P then $g \circ f : X \to Z$ is P.

(b) Identity morphisms $\text{id}_X : X \to X$ in $\mu \mathbf{Kur}$ are P. Isomorphisms $f : X \to Y$ in $\mu \mathbf{Kur}$ are P.

Parts (a),(b) imply that we have a subcategory $\mu \mathbf{Kur}_P \subseteq \mu \mathbf{Kur}$ containing all objects in $\mu \mathbf{Kur}$, and all morphisms f in $\mu \mathbf{Kur}$ which are P.

Definition 5.21. (a) Taking $\mathbf{M}_{\text{Man}} = \mathbf{M}_{\text{Man}}^c$ from §2.1 gives the category of μ-Kuranishi spaces with corners $\mu \mathbf{Kur}^c$ from Definition 5.15. We write

$$
\mu \mathbf{Kur}^c_{\text{in}}, \mu \mathbf{Kur}^c_{\text{bn}}, \mu \mathbf{Kur}^c_{\text{st}}, \mu \mathbf{Kur}^c_{\text{st, in}}, \mu \mathbf{Kur}^c_{\text{st, bn}}, \mu \mathbf{Kur}^c_{\text{si}}
$$

for the subcategories of $\mu \mathbf{Kur}^c$ with morphisms which are interior, and b-normal, and strongly smooth, and strongly smooth-interior, and strongly smooth-b-normal, and simple, respectively. These properties of morphisms in $\mathbf{M}_{\text{Man}}^c$ are discrete.
by Example 3.19(a), so as in Definition 5.19 and Proposition 5.20 we have corresponding notions of interior, . . . , simple morphisms in \(\mu \text{Kur}^c \).

(b) Taking \(\text{Man} = \text{Man}^{bc} \) from 2.4.1 gives the category of \(\mu \)-Kuranishi spaces with \(g \)-corners \(\mu \text{Kur}^{gc} \) from Definition 5.15. We write

\[
\mu \text{Kur}_{\text{in}}^{gc}, \mu \text{Kur}_{\text{bn}}^{gc}, \mu \text{Kur}_{\text{si}}^{gc}
\]

for the subcategories of \(\mu \text{Kur}^{bc} \) with morphisms which are interior, and \(b \)-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^{bc} \) are discrete by Example 3.19(b), so we have corresponding notions in \(\mu \text{Kur}^{bc} \).

(c) Taking \(\text{Man} = \text{Man}^{ac} \) from 2.4.2 gives the category of \(\mu \)-Kuranishi spaces with \(a \)-corners \(\mu \text{Kur}^{ac} \) from Definition 5.15. We write

\[
\mu \text{Kur}_{\text{in}}^{ac}, \mu \text{Kur}_{\text{bn}}^{ac}, \mu \text{Kur}_{\text{si}}^{ac}, \mu \text{Kur}_{\text{st, in}}^{ac}, \mu \text{Kur}_{\text{st, bn}}^{ac}, \mu \text{Kur}_{\text{si}}^{ac}
\]

for the subcategories of \(\mu \text{Kur}^{ac} \) with morphisms which are interior, and \(b \)-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly a-smooth-b-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^{ac} \) are discrete by Example 3.19(c), so we have corresponding notions for morphisms in \(\mu \text{Kur}^{ac} \).

(d) Taking \(\text{Man} = \text{Man}^{c, ac} \) from 2.4.1 gives the category of \(\mu \)-Kuranishi spaces with corners and \(a \)-corners \(\mu \text{Kur}^{c, ac} \) from Definition 5.15. We write

\[
\mu \text{Kur}_{\text{in}}^{c, ac}, \mu \text{Kur}_{\text{bn}}^{c, ac}, \mu \text{Kur}_{\text{st}}^{c, ac}, \mu \text{Kur}_{\text{st, in}}^{c, ac}, \mu \text{Kur}_{\text{st, bn}}^{c, ac}, \mu \text{Kur}_{\text{si}}^{c, ac}
\]

for the subcategories of \(\mu \text{Kur}^{c, ac} \) with morphisms which are interior, and \(b \)-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly a-smooth-b-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^{c, ac} \) are discrete by Example 3.19(c), so we have corresponding notions for morphisms in \(\mu \text{Kur}^{c, ac} \).

Figure 5.1 gives inclusions between the categories in 5.20. Combining this with the inclusions between the subcategories in Definition 5.21 we get a diagram Figure 5.2 of inclusions of subcategories of \(\mu \)-Kuranishi spaces, as for Figure 4.2.

5.3.5 \(\mu \)-Kuranishi spaces and m-Kuranishi spaces

Next we relate \(\mu \)-Kuranishi spaces to m-Kuranishi spaces in 4.3.

Definition 5.22. We will define a functor \(F^{\mu \text{Kur}} : \text{Ho}(\mu \text{Kur}) \to \mu \text{Kur} \), where \(\text{Ho}(\mu \text{Kur}) \) is the homotopy category of the weak 2-category \(\mu \text{Kur} \) as in 4.2, that is, the category with objects \(X, Y \) objects of \(\mu \text{Kur} \), and morphisms \([f] : X \to Y \) are 2-isomorphism classes \([f]\) of 1-morphisms \(f : X \to Y \) in \(\mu \text{Kur} \).

Let \(X = (X, \mathcal{K}) \) be an object of \(\mu \text{Kur} \), with \(\mathcal{K} = (I, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_{ij, i,j \in I}, \Lambda_{ijk, i,j,k \in I}) \). Then \((V_i, E_i, s_i, \psi_i) \) is a \(\mu \)-Kuranishi neighbourhood on \(X \) for each \(i \in I \), and taking the \(\approx_{\text{S}} \)-equivalence class \([\Phi_{ij}] \) of \(\Phi_{ij} \) over \(S = \text{Im} \psi_i \cap \text{Im} \psi_j \) as in Definition 5.3(b) gives a coordinate change \([\Phi_{ij}] \) :
(\(V_i, E_i, s_i, \psi_i\)) \to (V_j, E_j, s_j, \psi_j)\) for \(i, j \in I\). Write \(K' = (f, (V_i, E_i, s_i, \psi_i)_{i \in I}, \{\Phi_{ij}\}_{i,j \in I})\) and \(X' = (X, K')\). Then Definition [5.11]\,(d)–(f) follow from Definition 4.14\,(e),(f),(d), so \(X'\) is a \(\mu\)-Kuranishi space. Define \(F_{m\Kur}^{\mu}(X) = X'\).

Next let \(f : X \to Y\) be a 1-morphism in \(m\Kur\), using notation [4.6], [4.7], (4.9) for \(X, Y, f\), and set \(X' = F_{m\Kur}^{\mu}(X)\) and \(Y' = F_{m\Kur}^{\mu}(Y)\). Taking the \(\simeq\)-equivalence class \([f_{ij}]\) of \(f_{ij}\) over \(S = \Im \chi_i \cap f^{-1}(\Im \psi_j)\) as in Definition 5.5\,(b) we find that

\[f' = (f, [f_{ij}]_{i \in I, j \in J} : X' \to Y')\,\quad (5.21)\]

is a morphism in \(\mu\Kur\), as Definition [5.13]\,(a),(b) for \(f'\) follow from Definition 4.17\,(c),(d) for \(f\). Define \(F_{m\Kur}^{\mu}(f) = f'\).

To show this is well-defined, let \(g : X \to Y\) be a 1-morphism and \(\eta : f \Rightarrow g\) a 2-morphism in \(m\Kur\), where \(g = (g, g_{ij}, i \in I, j \in J, G_{ij}^{ij}, i \in I, j \in J)\) and \(\eta = (\eta_{ij}, i \in I, j \in J)\). Then \(f = g : X \to Y\), and \(\eta_{ij} : f_{ij} \Rightarrow g_{ij}\) is a 2-morphism of \(m\)-Kuranishi neighbourhoods over \((S, f)\) for \(S = \Im \chi_i \cap f^{-1}(\Im \psi_j)\), so \([f_{ij}] = [g_{ij}]\) in morphisms of \(\mu\)-Kuranishi neighbourhoods over \((S, f)\). Therefore \(f'\) in (5.21) is independent of the choice of representative \(f\) for the morphism \([f] : X \to Y\) in \(\Ho(m\Kur)\), so \(F^{\mu}_{m\Kur}(f)\) is well defined.

Comparing Proposition 4.19 and Definition 4.20 with Theorem [5.14]\,(a) we see that \(F^{\mu}_{m\Kur}\) preserves composition of morphisms, and comparing Definitions 4.17 and 5.13 we see that \(F^{\mu}_{m\Kur}: \Ho(m\Kur) \to \mu\Kur\) is a functor.

The next theorem will be proved in [5.6].
Theorem 5.23. The functor \(F_{\mu_{\mathcal{Kur}}} : \text{Ho}(\mathcal{M}_{\Kur}) \to \mu_{\mathcal{Kur}} \) in Definition 5.22 is an equivalence of categories.

Section 4.8 related m-Kuranishi spaces to the derived manifolds of Spivak \cite{103}, Borisov–Noel \cite{7,8} and the author \cite{57,58,61}. Theorems 4.62 and 5.23 imply:

Corollary 5.24. There is an equivalence of categories \(\text{Ho}(\mathcal{M}_{\mathrm{dMan}}) \simeq \mu_{\mathcal{Kur}} \), where \(\mathcal{M}_{\mathrm{dMan}} \) is the strict 2-category of d-manifolds from \cite{57,58,61}, and \(\mu_{\mathcal{Kur}} \) is as above for \(\mathcal{M}_{\mathrm{Man}} = \mathcal{M}_{\mathrm{Man}} \).

Combining this with Borisov’s functor (4.66) gives a functor

\[\text{Ho}(\mathcal{D}_{\mathrm{Man}_{\text{sp}}}^{\text{Der}}) \simeq \text{Ho}(\mathcal{D}_{\text{Man}_{\text{BN}}^{\text{Der}}}) \to \mu_{\mathcal{Kur}} \],

which is close to being an equivalence (it is full but not faithful, and induces a 1-1 correspondence between isomorphism classes of objects).

5.4 \(\mu \)-Kuranishi spaces with corners.

Boundaries, \(k \)-corners, and the corner functor

We now change notation from \(\mathcal{M}_{\mathrm{Man}} \) in \[3.1 \text{–} 3.3 \] to \(\mathcal{M}_{\mathrm{Man}}^{\mathrm{c}} \), and from \(\mu_{\mathcal{Kur}} \) in \[5.3 \text{–} 5.5 \] to \(\mu_{\mathcal{Kur}}^{\mathrm{c}} \). Suppose throughout this section that \(\mathcal{M}_{\mathrm{Man}}^{\mathrm{c}} \) satisfies Assumption 3.22 in \[3.4.1 \]. Then \(\mathcal{M}_{\mathrm{Man}}^{\mathrm{c}} \) satisfies Assumptions 3.1–3.7 so 5.3 constructs a category \(\mu_{\mathcal{Kur}}^{\mathrm{c}} \) of \(\mu \)-Kuranishi spaces associated to \(\mathcal{M}_{\mathrm{Man}}^{\mathrm{c}} \). For instance, \(\mu_{\mathcal{Kur}}^{\mathrm{c}} \) could be \(\mu_{\mathcal{Kur}}^{\mathrm{c},\mathrm{sc}} \), \(\mu_{\mathcal{Kur}}^{\mathrm{sc}} \), \(\mu_{\mathcal{Kur}}^{\mathrm{ac}} \) or \(\mu_{\mathcal{Kur}}^{\mathrm{c},\mathrm{ac}} \) from Definition 5.15.

We will refer to objects of \(\mu_{\mathcal{Kur}}^{\mathrm{c}} \) as \(\mu \)-Kuranishi spaces with corners. We also write \(\mu_{\mathcal{Kur}}^{\mathrm{c},\mathrm{si}} \) for the subcategory of \(\mu_{\mathcal{Kur}}^{\mathrm{c}} \) with simple morphisms in the sense of 5.3.4, noting that simple is a discrete property of morphisms in \(\mathcal{M}_{\mathrm{Man}}^{\mathrm{c}} \) by Assumption 3.22(c).

In \[4.6 \] for each \(X \in \mathcal{M}_{\mathrm{Kur}}^{\mathrm{c}} \) we defined the \(k \)-corners \(C_k(X) \) in \(\mathcal{M}_{\mathrm{Kur}}^{\mathrm{c}} \), with \(\partial X = C_1(X) \). We constructed a 2-category \(\mathcal{M}_{\mathrm{Kur}}^{\mathrm{c}} \) from \(\mathcal{M}_{\mathrm{Kur}}^{\mathrm{c}} \) with objects \(\bigsqcup_{n \in \mathbb{Z}} X_n \) for \(X_n \in \mathcal{M}_{\mathrm{Kur}}^{\mathrm{c}} \) with \(\text{vdim}(X_n) = n \), and defined the corner 2-functor \(C : \mathcal{M}_{\mathrm{Kur}}^{\mathrm{c}} \to \mathcal{M}_{\mathcal{Kur}}^{\mathrm{c}} \).

We will now extend all this to \(\mu \)-Kuranishi spaces with corners. This is a simplification of \[4.1 \text{–} 4.3 \]. Here is the analogue of Definition 4.39:

Definition 5.25. Let \(X = (X,K) \) in \(\mu_{\mathcal{Kur}}^{\mathrm{c}} \) be a \(\mu \)-Kuranishi space with corners, and write \(\mathcal{K} = (I,(V_i,E_i,s_i,\psi_i)_{i \in I},[\Phi_{ij}]_{i,j \in I}) \) as in Definition 5.11.

Choose representatives \(\Phi_{ij} = (V_{ij},\phi_{ij},\hat{\phi}_{ij}) \) for \([\Phi_{ij}] \) for all \(i,j \in I \), so that \(\Phi_{ij} : (V_i,E_i,s_i,\psi_i) \to (V_j,E_j,s_j,\psi_j) \) is a 1-morphism of m-Kuranishi neighbourhoods. Since \([\Phi_{ij}] \circ [\Phi_{hi}] = [\Phi_{hj}] \) for \(h,i,j \in I \) by Definition 5.11(1), we can choose a 2-morphism \(\Lambda_{hij} : \Phi_{ij} \circ \Phi_{hi} \Rightarrow \Phi_{hj} \). We are now in the situation of the beginning of Definition 4.39 except that the \(\Lambda_{hij} \) need not satisfy Definition 4.14(g),(h). This will not matter to us.
Let \(k \in \mathbb{N} \). We will define a \(\mu \)-Kuranishi space with corners \(C_k(X) \) in \(\mu \Kur^c \) called the \(k \)-corners of \(X \), and a morphism \(\Pi_k : C_k(X) \to X \) in \(\mu \Kur^c \).

Explicitly we write \(C_k(X) = (C_k(X), K_k) \) with

\[
K_k = \left\{ \{k\} \times I, (V_{(k,j)}, E_{(k,j)}, s_{(k,j)}, \psi_{(k,j)}) \mid i \in I, [\Phi_{(k,i),(k,j)}, \hat{\Phi}_{(k,i),(k,j)}, \hat{\psi}_{(k,i),(k,j)}] \right\},
\]

where \(K_k \) has indexing set \(\{k\} \times I \), and as in Definition 5.13 we write

\[
\Pi_k = (\Pi_k, [\Pi_{(k,i,j)}, i,j \in I]),
\]

where

\[
\Pi_{(k,i,j)} = (V_{(k,i,j)}, \Pi_{(k,i,j)}, \hat{\Pi}_{(k,i,j)}), (V_{(k,i,j)}, E_{(k,i,j)}, s_{(k,i,j)}, \psi_{(k,i,j)}) \to (V_j, E_j, s_j, \psi_j).
\]

We follow Definition 4.39 closely. For all \(i,j \in I \), define \(\Phi_{(k,i),(k,j)} = (V_{(k,i),(k,j)}, \Phi_{(k,i),(k,j)}, \hat{\Phi}_{(k,i),(k,j)}, \hat{\psi}_{(k,i),(k,j)}) \) by (4.40)–(4.42), and \(\Pi_{(k,i,j)} \) by (4.43). Define the topological space \(C_k(X) \) by \(C_k(X) = \left[\prod_{i \in I} s_{(k,i)}^{-1}(0) \right] / \sim \) and the continuous maps \(\psi_{(k,i)} : s_{(k,i)}^{-1}(0) \to C_k(X), \Pi_k : C_k(X) \to X \) as in Definition 4.39. Here the proof that \(\sim \) is an equivalence relation involves the existence of the 2-morphism \(\Lambda_{ij} : \Phi_{ij} \circ \Phi_{hi} \Rightarrow \Phi_{hj} \) as above, but not Definition 4.14(g),(h).

The proofs in Definition 4.39 show that \(C_k(X) \) is Hausdorff and second countable, and \(\Pi_k : C_k(X) \to X \) is continuous and proper with finite fibres, and \((V_{(k,i)}, E_{(k,i)}, s_{(k,i)}, \psi_{(k,i)}) \) is an \(m \)-Kuranishi neighbourhood (hence a \(\mu \)-Kuranishi neighbourhood) on \(C_k(X) \) for \(i \in I \), and

\[
\Phi_{(k,i),(k,j)} : (V_{(k,i)}, E_{(k,i)}, s_{(k,i)}, \psi_{(k,i)}) \to (V_{(k,j)}, E_{(k,j)}, s_{(k,j)}, \psi_{(k,j)}),
\]

\[
\Pi_{(k,i,j)} : (V_{(k,i)}, E_{(k,i)}, s_{(k,i)}, \psi_{(k,i)}), s_{(k,j)}, \psi_{(k,j)}) \to (V_j, E_j, s_j, \psi_j),
\]

are 1-morphisms of \(m \)-Kuranishi neighbourhoods (over \(\Pi_k \)). Thus

\[
[\Phi_{(k,i),(k,j)}], [\Pi_{(k,i,j)}] \text{ are independent of the choice of representative } \Phi_{ij} \text{ for } [\Phi_{ij}], \text{ and so are well defined, note that if } \Phi'_{ij} \text{ is an alternative choice giving } \\
\Phi'_{(k,i),(k,j)} \Pi'_{(k,i,j)}, \text{ then there is a 2-morphism } \eta_{ij} = [V_{ij}, \eta_{ij}] : \Phi_{ij} \Rightarrow \Phi'_{ij}. \text{ As for } \\
\Lambda_{h(i,j), h(i,j)} \Pi_{h(i,j), (i,j)} \text{ and } \Pi'_{h(i,j), (i,j)} \text{ in Definition 4.39 we define 2-morphisms } \\
[C_k(V_{ij}), \Pi'_{(k,i,j)}], [\Phi_{(k,i),(k,j)}] \Rightarrow \Phi'_{ij} \Pi_{(k,i,j)},
\]

\[
[C_k(V_{ij}), \Pi'_{(k,i,j)}], [\Phi_{(k,i),(k,j)}] \Rightarrow \Phi'_{ij} \Pi_{(k,i,j)},
\]

so that \([\Phi_{(k,i),(k,j)}], [\Pi_{(k,i,j)}] = [\Phi'_{ij}, \Pi_{(k,i,j)}] \) and \([\Pi_{(k,i,j)}] = [\Pi'_{(k,i,j)}] \).

We have now defined all the data in \(C_k(X) \) and \(\Pi_k : C_k(X) \to X \). We can check that \(C_k(X) \) and \(\Pi_k \) satisfy the conditions of Definitions 5.11 and 5.13 with \(\text{vdim } C_k(X) = \text{vdim } X - k \), in the same way as in Definition 4.39, where for example to show that \([\Phi_{(k,i),(k,j)}] \circ [\Phi_{(k,h),(k,i)}] = [\Phi_{(k,h),(k,j)}] \) in Definition 5.11(f) for \(C_k(X) \) we construct a 2-morphism \(\Lambda_{(k,h)(k,i),(k,j)} : \Phi_{(k,i),(k,j)} \circ \Phi_{(k,h),(k,i)} \Rightarrow \Phi_{(k,h),(k,j)} \) from \(\Lambda_{kij} \) as in Definition 4.39.
This proves the analogue of Theorem 4.40.

Theorem 5.26. For each X in μKur^c and $k = 0, 1, \ldots$ we have defined the k-corners $C_k(X)$, an object in μKur^c with $\text{vdim} C_k(X) = \text{vdim} X - k$, and a morphism $\Pi_k : C_k(X) \to X$ in μKur^c, whose underlying continuous map $\Pi_k : C_k(X) \to X$ is proper with finite fibres. We also write $\partial X = C_1(X)$, called the **boundary** of X, and we write $i_X = \Pi_1 : \partial X \to X$.

Modifying Definition 4.15 we construct categories $\mu \text{Kur}^c_{\text{si}} \subseteq \mu \text{Kur}^c$ from $\mu \text{Kur}^c_{\text{si}} \subseteq \mu \text{Kur}^c$ in the obvious way, with objects $\bigsqcup_{n \in \mathbb{Z}} X_n$ for X_n in μKur^c with $\text{vdim} X_n = n$, where $\mu \text{Kur}^c_{\text{si}},\mu \text{Kur}^c$ embed as full subcategories of $\mu \text{Kur}^c_{\text{si}},\mu \text{Kur}^c$. For the examples of $\mu \text{Kur}^c_{\text{si}} \subseteq \mu \text{Kur}^c$ in Definitions 5.21, 5.25, we use the obvious notation for the corresponding categories $\mu \text{Kur}^c_{\text{si}} \subseteq \mu \text{Kur}^c$, so for instance we enlarge μKur^c associated to $\text{Man}^c = \text{Man}^c$ to μKur^c.

Then following Definition 4.43, but modifying it as in Definition 5.25, we define the corner functor $C : \mu \text{Kur}^c \to \mu \text{Kur}^c$. This is straightforward and involves no new ideas, so we leave it as an exercise for the reader. This proves the analogue of Theorem 4.44.

Theorem 5.27. We can define a functor $C : \mu \text{Kur}^c \to \mu \text{Kur}^c$ called the **corner functor**. It acts on objects X in μKur^c by $C(X) = \bigcap_{k=0}^{\infty} C_k(X)$. If $f : X \to Y$ is simple then $C(f) : C(X) \to C(Y)$ is simple and maps $C_k(X) \to C_k(Y)$ for $k = 0, 1, \ldots$. Thus $C|_{\mu \text{Kur}^c_{\text{si}}} \subseteq \mu \text{Kur}^c_{\text{si}}$ decomposes as $C|_{\mu \text{Kur}^c_{\text{si}}} = \bigcap_{k=0}^{\infty} C_k$, where $C_k : \mu \text{Kur}^c_{\text{si}} \to \mu \text{Kur}^c_{\text{si}}$ is a functor acting on objects by $X \mapsto C_k(X)$, for $C_k(X)$ as in Definition 5.25. We also write $\partial = C_1 : \mu \text{Kur}^c_{\text{si}} \to \mu \text{Kur}^c_{\text{si}}$, and call it the **boundary functor**.

If for some discrete property P of morphisms in Man^c the corner functor $C : \text{Man}^c \to \tilde{\text{Man}}^c$ maps to the subcategory Man^c_P of Man^c whose morphisms are P, then $C : \mu \text{Kur}^c \to \mu \text{Kur}^c$ maps to the subcategory μKur^c_P of μKur^c whose morphisms are P.

As for Example 4.45, applying Theorem 5.27 to the data Man^c, \ldots in Example 4.24(a)–(h) gives corner functors:

\[
\begin{align*}
C : \mu \text{Kur}^c & \to \mu \text{Kur}^c_{\text{in}} \subseteq \mu \text{Kur}^c, & C' : \mu \text{Kur}^c & \to \mu \text{Kur}^c \\
C : \mu \text{Kur}^c_{\text{st}} & \to \mu \text{Kur}^c_{\text{st,in}} \subseteq \mu \text{Kur}^c_{\text{st}}, & C' : \mu \text{Kur}^c_{\text{st}} & \to \mu \text{Kur}^c_{\text{st}} \\
C : \mu \text{Kur}^c_{\text{ac}} & \to \mu \text{Kur}^c_{\text{ac,in}} \subseteq \mu \text{Kur}^c_{\text{ac}}. & C' : \mu \text{Kur}^c_{\text{ac}} & \to \mu \text{Kur}^c_{\text{ac}} \\
C : \mu \text{Kur}^c_{\text{ac,in}} & \to \mu \text{Kur}^c_{\text{ac,st,in}} \subseteq \mu \text{Kur}^c_{\text{ac}, \text{st,in}}. & C' : \mu \text{Kur}^c_{\text{ac,in}} & \to \mu \text{Kur}^c_{\text{ac}, \text{st,in}} \\
C : \mu \text{Kur}^c_{\text{ac}, \text{st,in}} & \to \mu \text{Kur}^c_{\text{ac}, \text{st,in}} \subseteq \mu \text{Kur}^c_{\text{ac}, \text{st,in}}. & C' : \mu \text{Kur}^c_{\text{ac}, \text{st,in}} & \to \mu \text{Kur}^c_{\text{ac}, \text{st,in}} \\
C : \mu \text{Kur}^c_{\text{in}} & \to \mu \text{Kur}^c_{\text{in}} \subseteq \mu \text{Kur}^c_{\text{in}}. & C' : \mu \text{Kur}^c_{\text{in}} & \to \mu \text{Kur}^c_{\text{in}}.
\end{align*}
\]

As for Propositions 4.46 and 4.47 we prove:
Proposition 5.28. For all of the functors C in (5.22), (though not the functors C'), a morphism $f : X \to Y$ is interior (or b-normal) if and only if $C(f)$ maps $C_0(X) \to C_0(Y)$ (or $C(f)$ maps $C_k(X) \to \prod_{i=0}^k C_i(Y)$ for all $k = 0, 1, \ldots$).

Proposition 5.29. Let $f : X \to Y$ be an isomorphism in μKu^c. Then f is simple by Proposition (5.20)b, and $C_k(f) : C_k(X) \to C_k(Y)$ for $k = 0, 1, \ldots$ and $\partial f : \partial X \to \partial Y$ are also isomorphisms in μKu^c.

Here is the analogue of Definition 4.48.

Definition 5.30. As in Definition 5.15 we write μKu^c for the category of μ-Kuranishi spaces with corners associated to $\Man^c = \Man^c$. An object X in μKu^c is called a μ-Kuranishi space with boundary if $\partial(\partial X) = \emptyset$. Write μKu^b for the full subcategory of μ-Kuranishi spaces with boundary in μKu^c, and write $\muKu^b_1 \subseteq \muKu^b_{\text{int}} \subseteq \muKu^b$ for the subcategories of μKu^b with simple and interior morphisms. We can show that $X \in \muKu^c$ is a μ-Kuranishi space with boundary if and only if $C_k(X) = \emptyset$ for all $k > 1$.

5.5 μ-Kuranishi neighbourhoods on μ-Kuranishi spaces

We now give the ‘μ-Kuranishi’ analogue of the ideas of (4.17).

Definition 5.31. Suppose $X = (X, \mathcal{K})$ is a μ-Kuranishi space, where $\mathcal{K} = (I, (V, E_i, s_i, \psi_i)_{i \in I}, (\Phi_{ij})_{i, j \in I})$. A μ-Kuranishi neighbourhood on X is data (V_a, E_a, s_a, ψ_a) and $(\Phi_{ai})_{i \in I}$, where (V_a, E_a, s_a, ψ_a) is a μ-Kuranishi neighbourhood on the topological space X as in Definition 5.5(a), and $(\Phi_{ai}) : (V_a, E_a, s_a, \psi_a) \to (V_i, E_i, s_i, \psi_i)$ is a coordinate change for each $i \in I$ as in Definition 5.7 (over $S = \Im \psi_a \cap \Im \psi_i$, as usual), such that for all $i, j \in I$ we have

$$[\Phi_{ij}] \circ [\Phi_{ai}] = [\Phi_{aj}],$$

(5.23)

where (5.23) holds over $S = \Im \psi_a \cap \Im \psi_i \cap \Im \psi_j$ by Convention 5.9.

Here the subscript ‘a’ in (V_a, E_a, s_a, ψ_a) is just a label used to distinguish μ-Kuranishi neighbourhoods, generally not in I. If we omit a we will write ‘$*$’ in place of ‘a’ in $[\Phi_{ai}]$, giving $[\Phi_{ai}^*] : (V, E, s, \psi) \to (V_i, E_i, s_i, \psi_i)$.

We will usually just say (V_a, E_a, s_a, ψ_a) or (V, E, s, ψ) is a μ-Kuranishi neighbourhood on X, leaving the data $(\Phi_{ai})_{i \in I}$ or $[\Phi_{ai}^*]_{i \in I}$ implicit. We call such a (V, E, s, ψ) a global μ-Kuranishi neighbourhood on X if $\Im \psi = X$.

The next theorem can be proved using the sheaf property Theorem 5.10 by very similar methods to Theorem 5.14, noting that (5.24) and (5.25) imply that

$$[\Phi_{ab}]_{|\Im \psi_a \cap \Im \psi_b \cap \Im \psi_c} = [\Phi_{bc}]^{-1} \circ [\Phi_{ab}],$$

$$[f_{ab}]_{|\Im \psi_a \cap \Im \psi_b \cap \Im \psi_c = \{0\}} = [\Phi_{ij}]^{-1} \circ [f_{ij}] \circ [T_{ab}],$$

so we leave the proof as an exercise for the reader.
Theorem 5.32. (a) Let $X = (X, \mathcal{K})$ be a μ-Kuranishi space, where $\mathcal{K} = \{I, (V_I, E_I, s_i, \psi_i)_{i \in I}, (\Phi_{ij})_{i,j \in I}\}$, and $(V_a, E_a, s_a, \psi_a), (V_b, E_b, s_b, \psi_b)$ be μ-Kuranishi neighbourhoods on X, in the sense of Definition 5.31. Then there is a unique coordinate change $[\Phi_{ab}] : (V_a, E_a, s_a, \psi_a) \to (V_b, E_b, s_b, \psi_b)$ in the sense of Definition 5.7 such that for all $i \in I$ we have

$$[\Phi_{bi}] \circ [\Phi_{ab}] = [\Phi_{ai}],$$

(5.24)

which holds on $\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_i$ by Convention 5.9. We will call $[\Phi_{ab}]$ the coordinate change between the μ-Kuranishi neighbourhoods $(V_a, E_a, s_a, \psi_a), (V_b, E_b, s_b, \psi_b)$ on the μ-Kuranishi space X.

(b) Let $f : X \to Y$ be a morphism of μ-Kuranishi spaces, with notation (5.11)–(5.12), and let $(U_a, D_a, r_a, \chi_a), (V_b, E_b, s_b, \psi_b)$ be μ-Kuranishi neighbourhoods on X, Y respectively, in the sense of Definition 5.31. Then there is a unique morphism $[\Phi_{ab}] : (U_a, D_a, r_a, \chi_a) \to (V_b, E_b, s_b, \psi_b)$ of μ-Kuranishi neighbourhoods over f as in Definition 5.5(b), such that for all $i \in I$ and $j \in J$ we have

$$[\Phi_{bj}] \circ [f_{ab}] = [f_{ij}] \circ [T_{ai}].$$

(5.25)

We will call $[f_{ab}]$ the morphism of μ-Kuranishi neighbourhoods $(V_a, E_a, s_a, \psi_a), (V_b, E_b, s_b, \psi_b)$ over $f : X \to Y$.

Remark 5.33. Note that we make the (potentially confusing) distinction between μ-Kuranishi neighbourhoods (V_a, E_a, s_a, ψ_a) on a topological space X, as in Definition 5.32(a), and μ-Kuranishi neighbourhoods (V_a, E_a, s_a, ψ_a) on a μ-Kuranishi space $X = (X, \mathcal{K})$, which are as in Definition 5.31, and come equipped with the extra implicit data $[\Phi_{ai}]_{i \in I}$ giving the compatibility with the μ-Kuranishi structure \mathcal{K} on X. Similarly, we distinguish between coordinate changes of μ-Kuranishi neighbourhoods over X or X, and between morphisms of μ-Kuranishi neighbourhoods over $f : X \to Y$ or $f : X \to Y$.

Theorem 5.34. Let $X = (X, \mathcal{K})$ be a μ-Kuranishi space, and $\{(V_a, E_a, s_a, \psi_a) : a \in A\}$ a family of μ-Kuranishi neighbourhoods on X with $X = \bigcup_{a \in A} \text{Im} \psi_a$. For all $a, b \in A$, let $[\Phi_{ab}] : (V_a, E_a, s_a, \psi_a) \to (V_b, E_b, s_b, \psi_b)$ be the coordinate change from Theorem 5.32(a). Then $\mathcal{K}' = (A, (V_a, E_a, s_a, \psi_a)_{a \in A}, [\Phi_{ab}]_{a,b \in A})$ is a μ-Kuranishi structure on X, and $X' = (X, \mathcal{K}')$ is canonically isomorphic to X in μKur.

Proof. Write $\mathcal{K} = \{(I, (V_I, E_I, s_i, \psi_i)_{i \in I}, (\Phi_{ij})_{i,j \in I})\}$, and let \mathcal{K}' be as in the theorem. Definition 5.11(a)–(d) for \mathcal{K}' are immediate. For part (e), note that $[\Phi_{a0}] \circ \text{id}_{(V_a, E_a, s_a, \psi_a)} : (V_a, E_a, s_a, \psi_a) \to (V_a, E_a, s_a, \psi_a)$ both satisfy the conditions of Theorem 5.32(a) with $a = b$, so by uniqueness we have $[\Phi_{a0}] = \text{id}_{(V_a, E_a, s_a, \psi_a)}$. Similarly, for $a, b, c \in A$ we can show that $[\Phi_{bc}] \circ [\Phi_{ab}]$ and $[\Phi_{ac}]$ are coordinate changes $(V_a, E_a, s_a, \psi_a) \to (V_c, E_c, s_c, \psi_c)$ over $\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c$, satisfying the conditions of Theorem 5.32(a), so uniqueness gives $[\Phi_{bc}] \circ [\Phi_{ab}] = [\Phi_{ac}]$, proving (f). Hence \mathcal{K}' is a μ-Kuranishi structure.

To show X, X' are canonically isomorphic, note that each (V_a, E_a, s_a, ψ_a) comes equipped with implicit extra data $[\Phi_{ai}]_{i \in I}$. Define morphisms $f : X \to X'$.
and \(g : X' \to X \) by \(f = (\text{id}_X, [\Phi_{a_i}]_{a_i \in A, i \in I}) \) and \(g = (\text{id}_X, [\Phi_{a_i}]^{-1}_{i', a_i \in A}) \). It is easy to check that \(f, g \) are morphisms in \(\mu\text{Kur} \) with \(g \circ f = \text{id}_X \) and \(f \circ g = \text{id}_{X'} \). So \(f, g \) are canonical isomorphisms.

As the \(\mu\)-Kuranishi neighbourhoods \((V, E, s, \psi) \) in the \(\mu\)-Kuranishi structure on \(X \) are \(\mu\)-Kuranishi neighbourhoods on \(X \), we deduce:

Corollary 5.35. Let \(X = (X, \mathcal{K}) \) be a \(\mu\)-Kuranishi space with \(\mathcal{K} = (I, (V_i, E_i, s_i, \psi_i)) \). Suppose \(J \subseteq I \) with \(\bigcup_{i \in J} \text{Im} \psi_i = X \). Then \(\mathcal{K}' = (J, (V_i, E_i, s_i, \psi_i))_{i \in J}, (\Phi_{ij})_{i,j \in J} \) is a \(\mu\)-Kuranishi structure on \(X \), and \(X' = (X, \mathcal{K}') \) is canonically isomorphic to \(X \) in \(\mu\text{Kur} \).

Thus, adding or subtracting extra \(\mu\)-Kuranishi neighbourhoods to the \(\mu\)-Kuranishi structure of \(X \) leaves \(X \) unchanged up to canonical isomorphism.

As in \(\{4.7.3\} \) if \(\text{Man}^\infty \) satisfies Assumption \(\{3.22\} \) then we can lift \(\mu\)-Kuranishi neighbourhoods \((V, E, s, \psi) \) on \(X \) in \(\mu\text{Kur}^\text{e} \) to \(\mu\)-Kuranishi neighbourhoods \((V_{k,a}, E_{k,a}, s_{k,a}, \psi_{k,a}) \) on the \(k \)-corners \(C_k(X) \) from \(\{4.5\} \) and we can lift morphisms \([f_{ab}] : (U_a, D_a, r_a, \chi_a) \to (V_b, E_b, s_b, \psi_b) \) of \(\mu\)-Kuranishi neighbourhoods over \(f : X \to Y \) in \(\mu\text{Kur}^e \) to morphisms \([f_{k,b}] : (U_{k,a}, D_{k,a}, r_{k,a}, \chi_{k,a}) \to (V_{k,b}, E_{k,b}, s_{k,b}, \psi_{k,b}) \) over \(C(f) : C(X) \to C(Y) \). We leave the details to the reader. As in \(\{4.7.4\} \) we could now state our philosophy for working with \(\mu\)-Kuranishi spaces, but we will not.

5.6 Proof of Theorem 5.23

Use the notation of Definition \(\{5.22\} \). To show \(F_{m\text{Kur}} : \text{Ho}(m\text{Kur}) \to \mu\text{Kur} \) is an equivalence of categories, we have to prove three things: that \(F_{m\text{Kur}} \) is faithful (injective on morphisms), and full (surjective on morphisms), and surjective on isomorphism classes of objects.

The proofs of these will involve gluing together 2-morphisms of \(m\)-Kuranishi neighbourhoods using families of partitions of unity, so we begin by showing that partitions of unity with the properties we need exist.

5.6.1 A lemma on partitions of unity on \(X \) in \(m\text{Kur} \)

Let \(X = (X, \mathcal{I}) \) be a \(\mu\)-Kuranishi space, with \(\mathcal{I} = (I, (U_i, D_i, r_i, \chi_i))_{i \in I} \), \(T_{ij} = [U_{ij}, \tau_{ij}, \tau_{ij}^t]_{i,j \in I} \), as in \(\{5.11\} \). Then \(\{\text{Im} \chi_i : i \in I\} \) is an open cover of \(X \), with \(\chi_i : r_i^{-1}(0) \to \text{Im} \chi_i \) a homeomorphism for each \(i \in I \).

Roughly speaking, we want to define a smooth partition of unity \(\{\eta_i : i \in I\} \) on \(X \) subordinate to \(\{\text{Im} \chi_i : i \in I\} \), so that \(\eta_i : X \to \mathbb{R} \) is smooth with \(\eta_i(X) \subseteq [0,1] \) and \(\sum_{i \in I} \eta_i = 1 \). However, \(X \) is not a manifold, so naïvely \(\eta_i : X \to \mathbb{R} \) is not smooth does not make sense.

In fact we will not work with ‘smooth functions’ \(\eta_i \) on \(X \) directly, apart from in the proof of Lemma \(\{5.36\} \). Instead, for each \(i \in I \) we want a partition of unity \(\{\eta_{ij} : j \in I\} \) on \(U_i \) in the sense of \(\{3.3.1\}d \), such that \(\eta_{ij}|_{r_i^{-1}(0)} = \eta_j \circ \chi_i \) for each
Let \(X = (X, \mathcal{I}) \) be a \(\mu \)-Kuranishi space, with notation \((\ref{not6}) \) for \(\mathcal{I} \), and let \(T_{i,j} = (U_{ij}, \tau_{ij}, \tilde{\tau}_{ij}) \) represent \([T_{i,j}]\) for \(i, j \in I \), with \((U_{ij}, \tau_{ij}, \tilde{\tau}_{ij}) = (U_i, \text{id}_{U_i}, \text{id}_{D_i})\). Then for all \(i \in I \) we can choose a partition of unity \(\{\eta_{ij} : j \in I\} \) on \(U_i \) subordinate to the open cover \(\{U_{ij} : j \in I\} \) of \(U_i \), as in \(\text{(3.3.1)(d)} \) and \(\text{(B.1.3)} \) such that for all \(i, j, k \in I \) we have

\[
\eta_{ik}|U_{ij} = \eta_{ik} \circ \tau_{ij} + O(r_i) \quad \text{on } U_{ij} \subseteq U_i, \tag{5.26}
\]

in the sense of Definition \(\text{(3.15).1)} \).

Proof. We use notation and results on \(C^\infty \)-schemes and \(C^\infty \)-algebraic geometry from \(\text{[65]} \), in which \(C^\infty \)-schemes are written \(X = (X, \mathcal{O}_X) \) for \(X \) a topological space and \(\mathcal{O}_X \) a sheaf of \(C^\infty \)-rings on \(X \), satisfying certain conditions.

For each \(i \in I \), as in \(\text{(3.3.1)(c)} \) and \(\text{(B.1.3)} \) the manifold \(U_i \) in \(\mathbf{Man} \) naturally becomes an affine \(C^\infty \)-scheme \(\mathcal{U}_i \), and \(r_i^{-1}(0) \subseteq U_i \) becomes the closed \(C^\infty \)-subscheme \(\mathcal{I}_i^{-1}(0) \) in \(\mathcal{U}_i \) defined by \(r_i = 0 \). If \(i, j \in I \) and \((U_{ij}, \tau_{ij}, \tilde{\tau}_{ij})\) represents \(T_{i,j} \), then \(\tilde{\tau}_{ij}(r_{ij}|U_{ij}) = \tau_{ij}(r_j) = O(r_i^2) \) on \(U_{ij} \) by Definition \(\text{(4.2)(d)} \). This implies that \(\tilde{\tau}_{ij} : U_{ij} \to U_j \) restricts to an isomorphism of \(C^\infty \)-schemes

\[
\mathcal{I}_{ij}|U_{ij} = \bigcap_{k} \mathcal{I}_k^{-1}(0)
\xrightarrow{\mathcal{I}_{ij}|U_{ij} \cap \mathcal{I}_k^{-1}(0)} U_{ij} \cap \mathcal{I}_k^{-1}(0).
\tag{5.27}
\]

We now have a topological space \(X \), an open cover \(\{\text{Im } \chi_i : i \in I\} \) on \(X \), \(C^\infty \)-schemes \(\mathcal{I}_i^{-1}(0) \) with underlying topological spaces \(r_i^{-1}(0) \) and homeomorphisms \(\chi_i : r_i^{-1}(0) \to \text{Im } \chi_i \subseteq X \) for all \(i \in I \), and isomorphisms of \(C^\infty \)-schemes \(\mathcal{I}_{ij}^{-1}(0) \) lifting the homeomorphisms \(\chi_{ij}^{-1} \circ \chi_i : U_{ij} \cap r_i^{-1}(0) \to U_{ij} \cap r_j^{-1}(0) \) over double overlaps \(\text{Im } \chi_i \cap \text{Im } \chi_j \subseteq X \). From \(\mathcal{T}_{jk} \circ \mathcal{T}_{ij} = \mathcal{T}_{ik} \) in Definition \(\text{(5.11)(f)} \), we deduce that the isomorphisms \(\chi_{ij} \) have the obvious composition property \(\chi_{ik} \circ \chi_{kj} = \chi_{kj} \circ \chi_{ik} \) over triple overlaps \(\text{Im } \chi_i \cap \text{Im } \chi_j \cap \text{Im } \chi_k \subseteq X \).

Standard results on schemes (actually, just the fact that sheaves of \(C^\infty \)-rings on \(X \) form a stack on \(X \)) imply that \(X \) be made into a \(C^\infty \)-scheme \(\mathfrak{X} \), uniquely up to unique isomorphism, and the homeomorphisms \(\chi_i : r_i^{-1}(0) \to \text{Im } \chi_i \subseteq X \) upgraded to \(C^\infty \)-scheme morphisms \(\chi_i : \mathcal{I}^{-1}(0) \to \mathfrak{X} \) which are isomorphisms with open \(C^\infty \)-subschemes \(\text{Im } \chi_i \subseteq \mathfrak{X} \) for \(i \in I \), such that

\[
\chi_j \circ \mathcal{I}_{ij}|U_{ij} \cap \mathcal{I}_k^{-1}(0) = \chi_i|U_{ij} \cap \mathcal{I}_k^{-1}(0) \quad \text{for all } i, j \in I.
\tag{5.28}
\]
Since X is Hausdorff, second countable, and regular, as in Remark 4.15 Cor. 4.42 implies that X is an affine C^∞-scheme, and [65] Th. 4.40 says that O_X is finite, that is, there exists a locally finite partition of unity in O_X subordinate to any open cover of X. Thus we can choose a partition of unity \(\{ \eta_i : i \in I \} \) on X subordinate to $\{ \Im \chi_i : i \in I \}$.

Then for each $i \in I$, \(\{ \eta_{ij} \circ \chi_i : j \in J \} \) is a partition of unity on the C^∞-scheme $\Gamma_i^{-1}(0)$ subordinate to the open cover $\{ U_{ij} \cap \Gamma_i^{-1}(0) : j \in J \}$. From the proof of the existence of partitions of unity on C^∞-schemes in [65] 4.7, we see that a partition of unity on $\Gamma_i^{-1}(0) \subseteq U_i$ subordinate to $\{ U_{ij} \cap \Gamma_i^{-1}(0) : j \in J \}$ can be extended to a partition of unity on U_i subordinate to $\{ U_{ij} : j \in J \}$, which is equivalent to a partition of unity on U_i in the sense of 4.1.4.

Thus, for all $i \in I$ we can choose a partition of unity $\{ \eta_{ij} : j \in J \}$ on U_i subordinate to $\{ U_{ij} : j \in J \}$, such that $\eta_{ij}|_{\Gamma_i^{-1}(0)} = \eta_{ij} \circ \chi_i$ for all $i \in I$, in the sense of C^∞-schemes. If $i, j, k \in I$ then

\[
\eta_{ik}\llbracket U_{ij} \cap \Gamma_i^{-1}(0) \rrbracket = \eta_{jk} \circ \chi_i|_{U_{ij} \cap \Gamma_i^{-1}(0)} = \eta_{jk} \circ \chi_j|_{U_{ij} \cap \Gamma_j^{-1}(0)}.
\]

using (5.28). But $f|_{U_{ij} \cap \Gamma_i^{-1}(0)} = g|_{U_{ij} \cap \Gamma_j^{-1}(0)}$ for smooth $f, g : U_{ij} \to \mathbb{R}$ is equivalent to $f = g + O(\varepsilon_i)$ on U_{ij}, so equation (5.26) follows.

5.6.2 F_{μ}^{Kur} \text{in} $m\text{Kur}$ is faithful

Let $f, g : X \to Y$ be 1-morphisms in $m\text{Kur}$, so that $[f], [g] : X \to Y$ are morphisms in $\text{Ho}(m\text{Kur})$. Write X', Y', f', g' for the images of $X, Y, [f], [g]$ under $F_{\mu}^{\text{Kur}} \text{in } m\text{Kur}$. Suppose $f' = g'$. We must show that $[f] = [g]$, that is, that there exists a 2-morphism $\mu : f \Rightarrow g$ in $m\text{Kur}$.

Use notation (4.6), (4.7), (4.9) for X, Y, f, and write $g = (g, g_{ij}, i \in I, j \in J, G_{ij}^{i,j}, i, i', j \in J, G_{ij}^{i',j}, i, i' \in I, G_{ij}^{i,i'}, j \in J)$. Then $f' = g'$ means that $f = g$, and $[f_{ij}] = [g_{ij}]$ for all $i \in I, j \in J$ as morphisms $(U_{ij}, D_{ij}, r_{ij}, \chi_i) \to (V_j, E_j, s_j, \psi_j)$ of μ-Kuranishi neighbourhoods over (S, f) in the sense of (5.2) where $S = \Im \chi_i \cap f^{-1}(\Im \psi_j)$. Hence there exists a 2-morphism $\lambda_{ij} : f_{ij} \Rightarrow g_{ij}$ of m-Kuranishi neighbourhoods over (S, f) in the sense of (4.1).

We would like $\lambda = (\lambda_{ij}, i \in I, j \in J) : f \Rightarrow g$ to be a 2-morphism of m-Kuranishi spaces, but there is a problem: as the λ_{ij} are chosen arbitrarily, they have no compatibility with the $F_{ij}^{i,j}, F_{ij}^{i',j}, G_{ij}^{i,j}, G_{ij}^{i',j}$, so Definition 4.18(a),(b) may not hold for λ. We will define a modified version $\mu = (\mu_{ij}, i \in I, j \in J)$ of λ which does have the required compatibility.

For $i, i' \in I$ and $j, j' \in J$, define $\lambda_{ij}^{ij'}$ to be the horizontal composition of 2-morphisms over $S = \Im \chi_i \cap \Im \chi_{i'} \cap f^{-1}(\Im \psi_j \cap \Im \psi_{j'})$ and $f : X \to Y$

\[
f_{ij} = (F_{ij}^{i,j} \circ (\text{id} + F_{ij}^{i,j}))^{-1} \Rightarrow \tau_{ij} \circ g_{ij} \circ \theta_{ij} \circ \theta_{ij}^{-1} \Rightarrow \text{id} + \lambda_{ij}^{ij'} = G_{ij}^{i,j} \circ (\text{id} + G_{ij}^{i,j})^{-1} \Rightarrow g_{ij}, \tag{5.29}
\]

where the alternative expressions for the first and third 2-morphisms come from Definition 4.17(g).
Apply Lemma \([5.36]\) to \(X' = F_{\mu}^{\mathbf{Kur}}(X)\), using \((U_{i^\prime}, \tau_{i^\prime}, \tilde{\tau}_{i^\prime})\) to represent \(T_{i^\prime}\).

This gives a partition of unity \(\{\eta_{i^\prime} : i \in I\}\) on \(U_{i^\prime}\) subordinate to \(\{U_{i^\prime} : i \in I\}\) for each \(i \in I\), such that for all \(i, i^\prime, i^\prime^\prime \in I\) we have

\[
\eta_{i^\prime}|_{U_{i^\prime^\prime}} = \eta_{i^\prime^\prime} \circ \tau_{i^\prime^\prime} + O(r_i) \quad \text{on } U_{i^\prime^\prime} \subseteq U_i.
\]

Similarly, applying Lemma \([5.36]\) to \(Y' = F_{\mu}^{\mathbf{mKur}}(Y)\) gives a partition of unity \(\{\zeta_{j^\prime} : j \in J\}\) on \(V_{j^\prime}\) subordinate to \(\{V_{j^\prime} : j \in J\}\) for each \(j \in J\), such that for all \(j, j^\prime, j^\prime^\prime \in J\) we have

\[
\zeta_{j^\prime}|_{V_{j^\prime^\prime}} = \zeta_{j^\prime^\prime} \circ \tau_{j^\prime^\prime} + O(s_j) \quad \text{on } V_{j^\prime^\prime} \subseteq V_j.
\]

Now, using the notation of \([5.6]\) in Definition \([5.4]\) for \(i \in I\) and \(j \in J\) define a 2-morphism \(\mu_{ij} : f_{ij} \Rightarrow g_{ij}\) over \((S, f)\) with \(f_{ij} = (V_{ij}, f_{ij}, f_{ij})\) by

\[
\mu_{ij} = \sum_{i \in I} \sum_{j \in J} \eta_{ii} \cdot f_{ij}^* (\zeta_{jj}) \cdot \lambda_{ij}^j.
\]

We will show that \(\mu = (\mu_{ij, i \in I, j \in J}) : f \Rightarrow g\) is a 2-morphism in \(\mathbf{mKur}\). For \(i, i^\prime, i^\prime^\prime \in I\) and \(j, j^\prime, j^\prime^\prime \in J\) consider the diagram

\[
\begin{array}{cccc}
\mu_{ij} & \mu_{ij} & \mu_{ij} & \mu_{ij} \\
\downarrow \mu_{ij} & \downarrow \mu_{ij} & \downarrow \mu_{ij} & \downarrow \mu_{ij} \\
\mu_{ij} & \mu_{ij} & \mu_{ij} & \mu_{ij}
\end{array}
\]

where the first and fifth steps use \([5.30]\), and the third uses \([5.26]\), \([5.31]\), and the fact that \(\mu_{ij}\) in \([5.30]\) only depends on \(\eta_{ii}\) up to \(O(r_i)\). This proves Definition \([4.18]\) (a) for \(\mu\), and part (b) is similar. Hence \(\mu : f \Rightarrow g\) is a 2-morphism, so \([f] = [g]\) as morphisms in \(\text{Ho}(\mathbf{mKur})\), and \(F_{\mu}^{\mathbf{mKur}}\) is faithful, as we want.
5.6.3 $F_{m\text{Kur}}^{\mu}$ is full

Let X, Y be objects in $m\text{Kur}$, and write $X' = F_{m\text{Kur}}^{\mu}(X)$, $Y' = F_{m\text{Kur}}^{\mu}(Y)$. Suppose $f' : X' \to Y'$ is a morphism in μKur. We must show that there exists a 1-morphism $f : X \to Y$ in $m\text{Kur}$ with $F_{m\text{Kur}}^{\mu}(f) = f'$. Use notation (4.6)–(4.7) for X, Y, as in (5.3) write $f' = (f, \{f_{ij}\}_{i \in I, j \in J})$, and let $f_{ij} : (U_i, D_i, \tau_i, \chi_i) \to (V_j, E_j, s_j, \psi_j)$ be a 1-morphism of m-Kuranishi neighbourhoods representing $[f_{ij}]$ for all $i \in I$ and $j \in J$. Then Definition 5.13(a),(b) for f' imply that $[f_{ij}] \circ [T_{ij}] = [f_{ij}]$ and $[T_{ij}] \circ [f_{ij}] = [f_{ij}]$ for all $i, i \in I$ and $j, j \in J$, so that $[T_{ij}] \circ [f_{ij}] \circ [T_{ij}] = [f_{ij}]$. Hence we may choose 2-morphisms of m-Kuranishi neighbourhoods over f

$$\lambda_{ij}^{\beta} : T_{ij} \circ f_{ij} \circ T_{ij} \Rightarrow f_{ij}$$

for all $i, i \in I$ and $j, j \in J$. For $i, i', i \in I$ and $j, j', j \in J$, define 2-morphisms

$$F_{i}'^{(j)} : f_{ij} \circ T'_{ii'} \Rightarrow f_{ij}$$

and $f_{ij} \circ T_{ii'} \Rightarrow f_{ij}$ over (S, f) for $S = \text{Im} \chi_i \cap \text{Im} \chi_i' \cap \text{Im} \psi_j \cap \text{Im} \psi_j'$ and $F_{i,j}^{(j)} : \Upsilon_{jj'} \circ f_{ij} \Rightarrow f_{ij}'$ over (S, f) for $S = \text{Im} \chi_i \cap \text{Im} \chi_i' \cap f^{-1}(\text{Im} \psi_j \cap \text{Im} \psi_j')$ by the commutative diagrams

$$\begin{align*}
\lambda_{ij}^{\beta} : T_{ij} \circ f_{ij} \circ T_{ij} & \Rightarrow f_{ij} \\
\Upsilon_{jj'} \circ f_{ij} & \Rightarrow f_{ij}' \\
\Upsilon_{jj'} \circ f_{ij} & \Rightarrow f_{ij}'
\end{align*}$$

Apply Lemma 5.36 to X', using $T_{ij} = (U_{i'}, \tau_{i'}, \hat{\tau}_{i'})$ from X' to represent $[T_{ij}]$. This gives a partition of unity $\{\eta_{ii} : i \in I\}$ on U_i subordinate to $\{U_{i'} : i \in I\}$ for each $i \in I$ satisfying (5.26). Similarly, applying Lemma 5.36 to Y' gives a partition of unity $\{\zeta_{jj'} : j \in J\}$ on V_j subordinate to $\{V_{jj'} : j \in J\}$ for $j \in J$. As in (5.30), using the notation of (5.6) in Definition 5.4 for $i, i' \in I$ and $j, j' \in J$ define 2-morphisms $F_{i}'^{(j)} : f_{ij} \circ T_{ii'} \Rightarrow f_{ij}$ over (S, f) for $S = \text{Im} \chi_i \cap \text{Im} \chi_i' \cap f^{-1}(\text{Im} \psi_j)$, and $F_{i,j}'^{(j)} : \Upsilon_{jj'} \circ f_{ij} \Rightarrow f_{ij}'$ over (S, f) for $S = \text{Im} \chi_i \cap f^{-1}(\text{Im} \psi_j \cap \text{Im} \psi_j')$ by

$$\begin{align*}
F_{i}'^{(j)} & = \sum_{i \in I} \sum_{j \in J} \eta_{ii} \cdot f_{ij}'(\zeta_{jj'}) \cdot F_{i}'^{(j)}(i, j) \\
F_{i,j}'^{(j)} & = \sum_{i \in I} \sum_{j \in J} \eta_{ii} \cdot f_{ij}'(\zeta_{jj'}) \cdot F_{i,j}'^{(j)}(i, j, j').
\end{align*}$$

We now claim that $f = (f, f_{ij, \in I, j \in J,} F_{i}'^{(j)}, j \in J, i, i \in I, j, j' \in J)$ is a 1-morphism $f : X \to Y$ in $m\text{Kur}$. We must verify Definition 4.17(a)–(h).
Parts (a)–(d) are immediate. For (e), if \(i = i' \) then \(F_{i'j}^{i(j)} \) in (5.32) is \(\text{id}_{f_{i'j}} \), giving \(F_{i'j}^{i} = \text{id}_{f_{i'j}} \) in (5.33). Similarly \(F_{i'j}^{ij} = \text{id}_{f_{i'j}} \), proving Definition 4.17(e).

To prove part (f), let \(i \in I, j \in J \) and consider the diagram

\[
\begin{align*}
\begin{array}{ccc}
\xymatrix{ f_{i'j} \circ T_{i'i''} \circ T_{ii'} & \mathcal{F}_{i'j}^{ij} \circ T_{ii'} & f_{i'j} \circ T_{ii'} \\
\downarrow_{\lambda_{i'i''}^{ij}} & \downarrow_{\lambda_{i'i''}^{ij} + \text{id}} & \downarrow_{\lambda_{i'i''}^{ij}} \\
T_{j'j} \circ f_{j'i} \circ T_{i'i''} \circ T_{ii'} & T_{j'j} \circ f_{j'i} \circ T_{i'i''} & T_{j'j} \circ f_{j'i} \circ T_{ii'} \\
\uparrow_{\text{id} + K_{i'i''}} & \uparrow_{\text{id} + K_{i'i''}} & \uparrow_{\text{id} + K_{i'i''}} \\
\end{array}
\end{align*}
\]

(5.34)

Here the top, bottom and right quadrilaterals commute by (5.32), the central rectangle by Definition 4.14(h) for \(X \), and the left quadrilateral by compatibility of horizontal and vertical composition. Thus (5.34) commutes.

We now have

\[
\begin{align*}
F_{i'i''}^{ij} \circ (\text{id}_{f_{i'i''}} \ast K_{i'i''}) &= \left(\sum_{i \in I} \sum_{j \in J} \eta_{i} \cdot f_{ij}'(\xi_{jj}) \cdot F_{ij}^{i(j)} \right) \circ (\text{id}_{f_{i'i''}} \ast \text{id}_{T_{i'i''}}) \\
&= \sum_{i \in I} \sum_{j \in J} \eta_{i} \cdot f_{ij}'(\xi_{jj}) \cdot (F_{ij}^{i(j)} \circ T_{i'i''}) \\
&= \left(\sum_{i \in I} \sum_{j \in J} \eta_{i} \cdot f_{ij}'(\xi_{jj}) \cdot (F_{ij}^{i(j)} \circ T_{i'i''}) \ast (\text{id}_{f_{i'i''}} \ast \text{id}_{T_{i'i''}}) \right) \\
&= \left(\sum_{i \in I} \sum_{j \in J} \eta_{i} \cdot f_{ij}'(\xi_{jj}) \cdot (\text{id}_{f_{i'i''}} \ast \text{id}_{T_{i'i''}}) \right) \\
&= F_{i'i''}^{ij} \circ \left(\sum_{i \in I} \sum_{j \in J} \eta_{i} \cdot f_{ij}'(\xi_{jj}) \cdot (\text{id}_{f_{i'i''}}) \right) + O(r) \\
&= F_{i'i''}^{ij} \circ \left(\sum_{i \in I} \sum_{j \in J} \eta_{i} \cdot f_{ij}'(\xi_{jj}) \cdot (\text{id}_{f_{i'i''}}) \right) + O(r)
\end{align*}
\]

(5.35)

Here we use (5.33) in the first and seventh steps, and (5.34) in the third. In the fourth step, it may be surprising that one sum \(\sum_{i \in I} \sum_{j \in J} \) turns into two sums composed with \(\circ \). This is because \(\circ \) in Definition 4.14 is basically an operation of addition, not multiplication, so sums (5.4) are distributive over \(\circ \). In the fifth step we use (5.26) for the \(\eta_{i} \), and (5.33), and \(f_{ij}' \circ \tau_{i'} = f_{ij} + O(r) \), and the fact that \(F_{i'i''}^{ij} \) in (5.33) only depends on \(\eta_{i}, f_{ij}'(\xi_{jj}) \) up to \(O(r) \).

Equation (5.35) proves Definition 4.17(f) for \(f \). Parts (g),(h) are similar. Hence \(f : X \to Y \) is a 1-morphism in \(\mathbf{mKur} \). By construction \(F_{i'i''}^{ij}((f)) = f' \), so \(f_{i'i''}^{ij} \ast \mathbf{mKur} \) is full, as we have to prove.
5.6.4 \(F_{\mu \text{Kur}}^{m \text{Kur}} \) is surjective on isomorphism classes

Let \(X' = (X, \mathcal{K}') \) be a \(\mu \)-Kuranishi space, with \(\mathcal{K}' = (I, (V_i, E_i, s_i, \psi_i)_{i \in I}, [\Phi_{ij}]_{i,j \in I}) \). To show \(F_{\mu \text{Kur}}^{m \text{Kur}} \) is surjective on isomorphism classes, we must construct an object \(X \) in \(m \text{Kur} \) with \(F_{\mu \text{Kur}}^{m \text{Kur}}(X) \cong X' \) in \(\mu \text{Kur} \). Actually we will arrange that \(F_{\mu \text{Kur}}^{m \text{Kur}}(X) = X' \).

Then \((V_i, E_i, s_i, \psi_i)\) is an \(m \)-Kuranishi neighbourhood on \(X \) for \(i \in I \). Choose a representative \(\Phi_{ij} \) for \([\Phi_{ij}]\) for \(i, j \in I \), where as \([\Phi_{ij}] = [\id_i \cdot (V_i, E_i, s_i, \psi_i)]\) we take \(\Phi_{ii} = \id_i \cdot (V_i, E_i, s_i, \psi_i) \). As \([\Phi_{jk}] \circ [\Phi_{ij}] = [\Phi_{kj}]\) for \(i, j, k \in I \) by Definition 5.11(f) for \(X' \), there exists a 2-morphism of \(m \)-Kuranishi neighbourhoods

\[
\Phi_{jk} \circ \Phi_{ij} = \Phi_{ik}
\]

over \(S = \operatorname{Im} \psi_i \cap \operatorname{Im} \psi_j \cap \operatorname{Im} \psi_k \), where as \(\Phi_{ii}, \Phi_{ij} \) are identities we choose \(\Phi_{ii} = \id \) for \(i \in I \). Therefore \(\Phi_{ij} \circ \Phi_{ij} \Rightarrow \id_i \cdot (V_i, E_i, s_i, \psi_i) \). \(\Phi_{ij} \circ \Phi_{ij} \Rightarrow \id_i \cdot (V_i, E_i, s_i, \psi_i) \) imply that \(\Phi_{ij} \) is an equivalence in \(\text{KN}_S(X) \) for \(S = \operatorname{Im} \psi_i \cap \operatorname{Im} \psi_j \), and so a coordinate change over \(S \), for all \(i, j \in I \).

Let \(i, j, k \in I \). Then Lemma A.6 in the 2-category \(\text{KN}_S(X) \) and \(\Phi_{ii} \) an equivalence implies that there is a unique 2-morphism

\[
\Phi_{ijk} : \Phi_{jk} \circ \Phi_{ij} = \Phi_{ik}
\]

over \(S = \operatorname{Im} \psi_i \cap \operatorname{Im} \psi_j \cap \operatorname{Im} \psi_k \) making the following diagram commute:

\[
\begin{array}{ccc}
\Phi_{jik} \circ \Phi_{ij} \\
\Phi_{jik} \\
\Phi_{jik} \circ \Phi_{ij} \\
\Phi_{jik} \circ \Phi_{ij} = \Phi_{ik}
\end{array}
\]

Apply Lemma 5.36 to \(X' \), using \(\Phi_{ij} = (V_i, \phi_{ij}, \hat{\phi}_{ij}) \) to represent \([\Phi_{ij}]\). This gives a partition of unity \(\{\eta_{ji} : i \in I\} \) on \(V_i \) subordinate to \(\{V_i : i \in I\} \) for each \(i \in I \), satisfying (5.26). As in (5.30) and (5.33), using the notation of (5.6) in Definition 5.4 for all \(i, j, k \in I \) define a 2-morphism \(\Lambda_{ijk} : \Phi_{jk} \circ \Phi_{ij} \Rightarrow \Phi_{ik} \) over \(S = \operatorname{Im} \psi_i \cap \operatorname{Im} \psi_j \cap \operatorname{Im} \psi_k \) by

\[
\Lambda_{ijk} = \sum_{i \in I} \eta_{ji} \cdot \Phi_{ijk}^{ij}
\]

Define \(\mathcal{K} = \{I, (V_i, E_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, i,j \in I, \Lambda_{ijk}, i,j,k \in I\} \). We will show that \(X = (X, \mathcal{K}) \) is an \(m \)-Kuranishi space with \(F_{\mu \text{Kur}}^{m \text{Kur}}(X) = X' \). Definition 4.14(a)–(f) for \(\mathcal{K} \) are immediate. For (g), as \(\Phi_{ij} = \id \) for \(\Phi_{ij} \) equation (5.36) implies that \(\Phi_{ijk}^{ij} = \id \) for \(i, j, k \in I \), so (5.37) gives \(\Lambda_{ijk} = \id \), as we want.
To prove Definition (4.14 h) for K, let $i, j, k, l \in I$, and consider the diagram

\[
\begin{array}{c}
\Phi_{kl} \circ \Phi_{jk} \circ \Phi_{il} \\
\downarrow \text{id} + K_{ijk} \\
\Phi_{kj} \circ \Phi_{ij} \\
\downarrow \text{id} + K_{ijl} \\
\Phi_{il} \circ \Phi_{ij} \\
\end{array}
\quad \xrightarrow{K_{ijkl} + \text{id}}
\begin{array}{c}
\Phi_{jl} \circ \Phi_{ij} \\
\downarrow \text{id} + K_{ijl} \\
\Phi_{kl} \circ \Phi_{ij} \\
\downarrow \text{id} + K_{ijkl} \\
\Phi_{kl} \circ \Phi_{ij} \\
\end{array}
\quad \xrightarrow{K_{ijkl} + \text{id}}
\begin{array}{c}
\Phi_{ij} \\
\downarrow \text{id} - K_{ijl} \\
\Phi_{ij} \\
\end{array}
\]

(5.38)

over $S = \text{Im} \psi_i \cap \text{Im} \psi_j \cap \text{Im} \psi_k \cap \text{Im} \psi_l$. Here the top quadrilateral commutes by compatibility of horizontal and vertical composition, and the other four quadrilaterals commute by (5.36). Hence (5.38) commutes.

Applying Lemma 4.6 to the outer rectangle of (5.38) and using Φ_{ii} an equivalence shows that over $S = \text{Im} \psi_i \cap \text{Im} \psi_i \cap \text{Im} \psi_j \cap \text{Im} \psi_k \cap \text{Im} \psi_l$ we have

\[
K^{(i)}_{ikl} \circ (\text{id}_{\Phi_{kl}} \ast K^{(i)}_{ij}) = K^{(i)}_{ij} \circ (K^{(i)}_{jkl} \ast \text{id}_{\Phi_{ij}}) : \Phi_{kl} \circ \Phi_{jk} \circ \Phi_{ij} \Rightarrow \Phi_{il}. \tag{5.39}
\]

Now

\[
\begin{align*}
& \Lambda_{ijkl} \circ (\text{id}_{\Phi_{ij}} \ast \Lambda_{ij}) = \left(\sum_{i \in I} \eta_{ii} \cdot K^{(i)}_{ikl} \right) \circ \left(\sum_{i \in I} \eta_{ii} \cdot K^{(i)}_{ij} \right) \\
& = \sum_{i \in I} \eta_{ii} \cdot (K^{(i)}_{ikl} \circ (\text{id}_{\Phi_{kl}} \ast K^{(i)}_{ij})) = \sum_{i \in I} \eta_{ii} \cdot (K^{(i)}_{ij} \circ (K^{(i)}_{jkl} \ast \text{id}_{\Phi_{ij}})) \\
& = \left(\sum_{i \in I} \eta_{ii} \cdot K^{(i)}_{ij} \right) \circ \left(\sum_{i \in I} \eta_{ii} \cdot (K^{(i)}_{jkl} \ast \text{id}_{\Phi_{ij}}) \right) \\
& = \Lambda_{ij} \circ \left(\sum_{i \in I} \eta_{ij} \cdot K^{(i)}_{jkl} \ast \text{id}_{\Phi_{ij}} \right) \\
& = \Lambda_{ij} \circ \left(\sum_{i \in I} \eta_{ij} \cdot K^{(i)}_{jkl} \ast \text{id}_{\Phi_{ij}} \right) = \Lambda_{ij} \circ \left(\Lambda_{ijkl} \ast \text{id}_{\Phi_{ij}} \right).
\end{align*}
\]

(5.40)

Here we use (5.37) in the first and seventh steps, and (5.39) in the third. In the second and fourth steps we use the fact that sums (5.6) are distributive over \circ, as in the proof of (5.35). In the fifth step we use (5.37), and (5.26) for the η_{ii}, and the fact that Λ_{ijkl} in (5.37) only depends on η_{ii} up to $O(s_i)$.

Equation (5.40) proves Definition (4.14 h) for K. Hence $X = (X, K)$ is an m-Kuranishi space. By construction $F^{\mu \text{Kur}}_{m \text{Kur}}(X) = X'$. Therefore $F^{\mu \text{Kur}}_{m \text{Kur}}$ is surjective on isomorphism classes. This completes the proof of Theorem 5.23.
Chapter 6

Kuranishi spaces, and orbifolds

Throughout this chapter we suppose we are given a category $\mathcal{M}an$ satisfying Assumptions 3.1–3.7 in §3.1 (though defining the 2-category of orbifolds $\mathcal{O}rb$ in §6.6 only needs Assumptions 3.1–3.3). As in Chapter 4, we will usually refer to objects $X \in \mathcal{M}an$ as ‘manifolds’, and morphisms $f : X \to Y$ in $\mathcal{M}an$ as ‘smooth maps’. We will call objects X in $\mathcal{M}an \subseteq \mathcal{M}an$ ‘classical manifolds’, and call morphisms $f : X \to Y$ in $\mathcal{M}an \subseteq \mathcal{M}an$ ‘classical smooth maps’.

Classical orbifolds X are generalizations of classical manifolds which are locally modelled on \mathbb{R}^n/Γ for Γ a finite group acting linearly on \mathbb{R}^n. Kuranishi spaces are an orbifold version of m-Kuranishi spaces in Chapter 4, and as in §4.8 should be regarded as ‘derived orbifolds’. From the category $\mathcal{M}an$ we will construct a weak 2-category of ‘Kuranishi spaces’ $\mathcal{K}ur$, with a full and faithful embedding $\mathcal{M}Kur \hookrightarrow \mathcal{K}ur$ of $\mathcal{M}Kur$ from §4.3.

Sections 6.1–6.4 follow §4.1–§4.7 closely, but including extra finite groups Γ_i throughout. Section 6.5 discusses isotropy groups, and §6.6 relates orbifolds and Kuranishi spaces. The proof of Theorem 6.16 is deferred until §6.7.

6.1 The weak 2-category of Kuranishi neighbourhoods

The next seven definitions are the orbifold analogues of Definitions 4.1–4.6:

Definition 6.1. Let X be a topological space. A Kuranishi neighbourhood on X is a quintuple (V, E, Γ, s, ψ) such that:

(a) V is a manifold (object in $\mathcal{M}an$). We allow $V = \emptyset$.
(b) $\pi : E \to V$ is a vector bundle over V, called the obstruction bundle.
(c) Γ is a finite group with a smooth action on V (that is, an action by isomorphisms in $\mathcal{M}an$), and a compatible action on E preserving the vector bundle structure. We do not assume the Γ-actions are effective.
(d) $s : V \to E$ is a Γ-equivariant smooth section of E, called the Kuranishi section.
(e) ψ is a homeomorphism from $s^{-1}(0)/\Gamma$ to an open subset $\text{Im } \psi = \{ \psi(\gamma v) : v \in s^{-1}(0) \}$ in X, called the *footprint* of (V, E, Γ, s, ψ).

We will write $\tilde{\psi} : s^{-1}(0) \to \text{Im } \psi \subseteq X$ for the composition of ψ with the projection $s^{-1}(0) \to s^{-1}(0)/\Gamma$.

Definition 6.2. Let X, Y be topological spaces, $f : X \to Y$ a continuous map, $(V_i, E_i, \Gamma_i, s_i, \psi_i)$, $(V_j, E_j, \Gamma_j, s_j, \psi_j)$ be Kuranishi neighbourhoods on X, Y respectively, and $S \subseteq \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j) \subseteq X$ be an open set. A 1-morphism

$$\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}) : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j)$$

of Kuranishi neighbourhoods over (S, f) is a quadruple $(P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij})$ satisfying:

(a) P_{ij} is a manifold (object in Man), with commuting smooth actions of Γ_i, Γ_j (that is, with a smooth action of $\Gamma_i \times \Gamma_j$), with the Γ_i-action free.

(b) $\pi_{ij} : P_{ij} \to V_i$ is a smooth map (morphism in Man) which is Γ_i-equivariant, Γ_j-invariant, and étale (a local diffeomorphism). The image $V_{ij} := \pi_{ij}(P_{ij})$ is a Γ_i-invariant open neighbourhood of $\psi_i^{-1}(S)$ in V_i (that is, $V_{ij} \subseteq V_i$ is an open submanifold in Man), and the fibres $\pi_{ij}^{-1}(v)$ of π_{ij} for $v \in V_{ij}$ are Γ_j-orbits, so that $\pi_{ij} : P_{ij} \to V_{ij}$ is a principal Γ_j-bundle.

We do not require $\tilde{\psi}_i^{-1}(S) = V_{ij} \cap s_i^{-1}(0)$, only that $\tilde{\psi}_i^{-1}(S) \subseteq V_{ij} \cap s_i^{-1}(0)$.

(c) $\phi_{ij} : P_{ij} \to V_j$ is a Γ_j-invariant and Γ_j-equivariant smooth map, that is, $\phi_{ij}(\gamma \cdot p) = \phi_{ij}(p)$, $\phi_{ij}(\gamma_1 \cdot \gamma_2 \cdot p) = \gamma_1 \cdot \phi_{ij}(p)$ for all $\gamma_1 \in \Gamma_i, \gamma_2 \in \Gamma_j, p \in P_{ij}$.

(d) $\hat{\phi}_{ij} : \pi_{ij}^*(E_j) \to \phi_{ij}^*(E_j)$ is a Γ_i- and Γ_j-equivariant morphism of vector bundles on P_{ij}, where the Γ_i, Γ_j-actions are induced by the given Γ_i-action and the trivial Γ_j-action on E_j, and vice versa for E_j.

(e) $\hat{\phi}_{ij}(\pi_{ij}^*(s_i)) = \phi_{ij}(s_j) + O(\pi_{ij}^*(s_i)^2)$, as in Definition 3.15(i).

(f) $f \circ \tilde{\psi}_i \circ \pi_{ij} = \tilde{\psi}_j \circ \phi_{ij}$ on $\pi_{ij}^{-1}(s_i^{-1}(0)) \subseteq P_{ij}$.

If $X = Y$ and $f = \text{id}_X$ then we call Φ_{ij} a 1-morphism of Kuranishi neighbourhoods over S, or just a 1-morphism over S.

Definition 6.3. Let $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ be a Kuranishi neighbourhood on X, and $S \subseteq \text{Im } \psi_i$ be open. We will define the *identity 1-morphism*

$$\text{id}_{(V_i, E_i, \Gamma_i, s_i, \psi_i)} = (P_{ii}, \pi_{ii}, \phi_{ii}, \hat{\phi}_{ii}) : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_i, E_i, \Gamma_i, s_i, \psi_i). \quad (6.1)$$

Since P_{ii} must have two different actions of Γ_i, for clarity we write $\Gamma_i^1 = \Gamma_i^2 = \Gamma_i$, where Γ_i^1 and Γ_i^2 mean the copies of Γ_i acting on the domain and target of the 1-morphism in (6.1), respectively.

Define $P_{ii} = V_i \times \Gamma_i$, and let Γ_i^1 act on P_{ii} by $\gamma^1 : (v, \gamma) \mapsto (\gamma^1 \cdot v, \gamma(\gamma^1)^{-1})$ and Γ_i^2 act on P_{ii} by $\gamma^2 : (v, \gamma) \mapsto (v, \gamma \gamma)$. Define $\pi_{ii}, \phi_{ii} : P_{ii} \to V_i$ by $\pi_{ii} : (v, \gamma) \mapsto v$ and $\phi_{ii} : (v, \gamma) \mapsto \gamma \cdot v$. Then π_{ii} is Γ_i^1-equivariant and Γ_i^2-invariant, and is a Γ_i^2-principal bundle, and ϕ_{ii} is Γ_i^1-invariant and Γ_i^2-equivariant.

At $(v, \gamma) \in P_{ii}$, the morphism $\phi_{ii} : \pi_{ii}^*(E_i) \to \phi_{ii}^*(E_i)$ must map $E_i|_v \to E_i|_{\gamma \cdot v}$. We have such a map, the lift of the γ-action on V_i to E_i. So we define ϕ_{ii} on
Define a binary relation \(\sim \) in the sense of Definition 3.15(ii). We see from Theorem 3.17(c) that there exists an open neighbourhood \(\tilde{X}, \tilde{Y} \) of the \(\gamma \)-action on \(V_i, \) for each \(\gamma \in \Gamma. \) It is now easy to check that \((P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}) \) satisfies Definition 6.2(a)–(f), so (6.1) is a 1-morphism over \(S. \)

Definition 6.4. Suppose \(X, Y \) are topological spaces, \(f : X \to Y \) is a continuous map, \((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j) \) are Kuranishi neighbourhoods on \(X, Y \) respectively, \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X \) is open, and \(\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) are two 1-morphisms over \((S, f), \) with \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}) \) and \(\Phi'_{ij} = (P'_{ij}, \pi'_{ij}, \phi'_{ij}, \hat{\phi}'_{ij}). \)

Consider triples \((\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}) \) satisfying:

(a) \(\hat{P}_{ij} \) is a \(\Gamma_i \)- and \(\Gamma_j \)-invariant open neighbourhood of \(\pi^{-1}_{ij} (\overline{\gamma^{-1}_i}) \) in \(P_{ij}. \)

(b) \(\lambda_{ij} : \hat{P}_{ij} \to P'_{ij} \) is a \(\Gamma_i \)- and \(\Gamma_j \)-equivariant smooth map with \(\pi'_{ij} \circ \lambda_{ij} = \pi_{ij} \) on \(\hat{P}_{ij}. \) This implies that \(\lambda_{ij} \) is an isomorphism of principal \(\Gamma_j \)-bundles over \(\tilde{V}_{ij} := \pi_{ij} (\hat{P}_{ij}), \) so \(\lambda_{ij} \) is a diffeomorphism with \(\Gamma_i \)- and \(\Gamma_j \)-invariant open set \(\lambda_{ij} (\hat{P}_{ij}) \) in \(P'_{ij}. \)

(c) \(\hat{\lambda}_{ij} : \pi''_{ij}(E_i)|_{\hat{P}_{ij}} \to \mathcal{T}_{\phi_{ij}} V_j|_{\hat{P}_{ij}} \) is a morphism in the notation of Definition 3.15, which is \(\Gamma_i \)- and \(\Gamma_j \)-equivariant, and satisfies

\[
\phi'_{ij} \circ \lambda_{ij} = \phi_{ij}|_{\hat{P}_{ij}} + \hat{\lambda}_{ij} \circ \pi''_{ij} (s_i) + O(\pi''_{ij}(s_i)^2) \quad \text{and} \quad \lambda_{ij} (\hat{\phi}'_{ij}) = \phi_{ij}|_{\hat{P}_{ij}} + \phi''_{ij} (ds_i) \circ \hat{\lambda}_{ij} + O(\pi''_{ij}(s_i)) \quad \text{on} \quad \hat{P}_{ij},
\]

in the sense of Definition 3.15(iv),(vi),(vii).

Define a binary relation \(\sim \) on such triples by \((\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}) \sim (\hat{P}'_{ij}, \lambda'_{ij}, \hat{\lambda}'_{ij}) \) if there exists an open neighbourhood \(\hat{P}_{ij} \) of \(\pi^{-1}_{ij} (\overline{\gamma^{-1}_i}) \) in \(\hat{P}_{ij} \cap \hat{P}'_{ij} \) with

\[
\lambda_{ij}|_{\hat{P}_{ij}} = \lambda'_{ij}|_{\hat{P}_{ij}} \quad \text{and} \quad \hat{\lambda}_{ij}|_{\hat{P}_{ij}} = \hat{\lambda}'_{ij}|_{\hat{P}_{ij}} + O(\pi''_{ij}(s_i)) \quad \text{on} \quad \hat{P}_{ij},
\]

in the sense of Definition 3.15(iii). We see from Theorem 3.17(c) that \(\sim \) is an equivalence relation. We also write \(\sim_S \) in place of \(\sim \) if we want to emphasize the open set \(S \subseteq X. \)

Write \([\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}] \) for the \(\sim \)-equivalence class of \((\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}). \) We say that \([\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}] \) : \(\Phi_{ij} \Rightarrow \Phi'_{ij} \) is a 2-morphism of 1-morphisms of Kuranishi neighbourhoods on \(X \) over \((S, f), \) or just a 2-morphism over \((S, f). \) We often write \(\Lambda_{ij} = [\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}]. \)

If \(X = Y \) and \(f = \text{id}_X \) then we call \(\Lambda_{ij} \) a 2-morphism of Kuranishi neighbourhoods over \(S, \) or just a 2-morphism over \(S. \)

For a 1-morphism \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}), \) define the identity 2-morphism

\[
\text{id}_{\Phi_{ij}} = [P_{ij}, \text{id}_{P_{ij}}, 0] : \Phi_{ij} \Rightarrow \Phi_{ij}.
\]

137
Definition 6.5. Let X, Y, Z be topological spaces, $f : X \to Y$, $g : Y \to Z$ be continuous maps, $(V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j), (V_k, E_k, \Gamma_k, s_k, \psi_k)$ be Kuranishi neighbourhoods on X, Y, Z respectively, and $T \subseteq \text{Im } \psi_j \cap g^{-1}((\text{Im } \psi_k) \subseteq Y$ and $S \subseteq \text{Im } \psi_i \cap f^{-1}(T) \subseteq X$ be open. Suppose $\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}) : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j)$ is a 1-morphism of Kuranishi neighbourhoods over (S, f), and $\Phi_{jk} = (P_{jk}, \pi_{jk}, \phi_{jk}, \hat{\phi}_{jk}) : (V_j, E_j, \Gamma_j, s_j, \psi_j) \to (V_k, E_k, \Gamma_k, s_k, \psi_k)$ is a 1-morphism of Kuranishi neighbourhoods over (T, g).

Consider the diagram in Man:

Here as π_{jk} is étale one can show that the fibre product $P_{ij} \times_{V_j} P_{jk}$ exists in Man using Assumptions 3.3(c) and 3.3(b). We have shown the actions of various combinations of $\Gamma_i, \Gamma_j, \Gamma_k$ on each space. In fact $\Gamma_i \times \Gamma_j \times \Gamma_k$ acts on the whole diagram, with all maps equivariant, but we have omitted the trivial actions (for instance, Γ_j, Γ_k act trivially on V_i).

As Γ_j acts freely on P_{ij}, it also acts freely on $P_{ij} \times_{V_j} P_{jk}$. Using Assumption 3.3 and the facts that $P_{ij} \times_{V_j} P_{jk}$ is Hausdorff and Γ_j is finite, we can show that the quotient $P_{ik} := (P_{ij} \times_{V_j} P_{jk})/\Gamma_j$ exists in Man, with projection $\Pi : P_{ij} \times_{V_j} P_{jk} \to P_{ik}$. The commuting actions of Γ_i, Γ_k on $P_{ij} \times_{V_j} P_{jk}$ descend to commuting actions of Γ_i, Γ_k on P_{ik}, such that Π is Γ_i- and Γ_k-equivariant. As $\pi_{ij} \circ \pi_{P_{ik}} : P_{ij} \times_{V_j} P_{ik} \to V_i$ and $\phi_{ik} \circ \pi_{P_{ik}} : P_{ij} \times_{V_j} P_{ik} \to V_k$ are Γ_j-invariant, they factor through Π, so there are unique smooth maps $\pi_{ik} : P_{ik} \to V_i$ and $\phi_{ik} : P_{ik} \to V_k$ such that $\pi_{ij} \circ \pi_{P_{ik}} = \pi_{ik} \circ \Pi$ and $\phi_{ik} \circ \pi_{P_{ik}} = \phi_{ik} \circ \Pi$.

Consider the diagram of vector bundles on $P_{ij} \times_{V_j} P_{jk}$:

There is a unique morphism on the top line making the diagram commute. As ϕ_{ij}, ϕ_{jk} are Γ_j-equivariant, this is Γ_j-equivariant, so it is the pullback under Π^* of a unique morphism $\phi_{ik} : \pi_{ik}^*(E_i) \to \phi_{ik}^*(E_k)$, as shown. It is now easy to check that $(P_{ik}, \pi_{ik}, \phi_{ik}, \hat{\phi}_{ik})$ satisfies Definition 6.2(a)–(f), and is a 1-morphism $\Phi_{ik} = (P_{ik}, \pi_{ik}, \phi_{ik}, \hat{\phi}_{ik}) : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_k, E_k, \Gamma_k, s_k, \psi_k)$ over $(S, g \circ f)$. We write $\Phi_{ij} \circ \Phi_{jk} = \Phi_{ik}$, and call it the composition of 1-morphisms.

If we have three such 1-morphisms $\Phi_{ij}, \Phi_{jk}, \Phi_{kl}$, define

$$\lambda_{ijkl} : [P_{ij} \times_{V_j} (P_{jk} \times_{V_k} P_{kl})/\Gamma_k]/\Gamma_j \to [(P_{ij} \times_{V_j} P_{jk})/\Gamma_j] \times_{V_k} P_{kl}/\Gamma_k$$ (6.6)
to be the natural identification. Then we have a 2-isomorphism
\[
\alpha_{\Phi_{ij}, \Phi_{kl}, \Phi_{ij}, \Phi_{kl}} := \left[[P_{ij} \times V_j (P_{jk} \times V_k P_{kl})/\Gamma_k] \right]/\Gamma_j, \lambda_{ij, kl}, 0] :
\Phi_{kl} \circ \Phi_{jk} \circ \Phi_{ij} \Rightarrow \Phi_{kl} \circ (\Phi_{jk} \circ \Phi_{ij}).
\] (6.7)
That is, composition of 1-morphisms is associative up to canonical 2-isomorphism, as for weak 2-categories in \ref{A.2}.

For \(\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) as above, define
\[
\mu_{ij} : ((V_i \times \Gamma_i) \times_{V_j} P_{ij})/\Gamma_j \to P_{ij},
\nu_{ij} : (P_{ij} \times V_j (V_j \times \Gamma_j))//\Gamma_j \to P_{ij},
\]
to be the natural identifications. Then we have 2-isomorphisms
\[
\beta_{\Phi_{ij}} := \left[[(V_i \times \Gamma_i) \times_{V_j} P_{ij}]/\Gamma_j, \mu_{ij}, 0 \right] : \Phi_{ij} \circ \text{id}_{(V_i, E_i, \Gamma_i, s_i, \psi_i)} \Rightarrow \Phi_{ij},
\gamma_{\Phi_{ij}} := \left[[P_{ij} \times V_j (V_j \times \Gamma_j)]/\Gamma_j, \nu_{ij}, 0 \right] : \text{id}_{(V_i, E_i, \Gamma_j, s_j, \psi_j)} \circ \Phi_{ij} \Rightarrow \Phi_{ij},
\] (6.8)
so identity 1-morphisms behave as they should up to canonical 2-isomorphism, as for weak 2-categories in \ref{A.2}.

Definition 6.6. Let \(X, Y \) be topological spaces, \(f : X \to Y \) be continuous, \((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j) \) be Kuranishi neighbourhoods on \(X, Y \), \(S \subseteq \text{Im} \psi_i \cap f^{-1} \text{Im} \psi_j \subseteq X \) be open, and \(\Phi_{ij}, \Phi'_{ij}, \Phi''_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) be 1-morphisms over \((S, f)\) with \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\lambda}_{ij}) \), \(\Phi'_{ij} = (P'_{ij}, \pi'_{ij}, \phi'_{ij}, \hat{\lambda}'_{ij}) \), \(\Phi''_{ij} = (P''_{ij}, \pi''_{ij}, \phi''_{ij}, \hat{\lambda}''_{ij}) \). Suppose \(\Lambda_{ij} = [\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}] : \Phi_{ij} \Rightarrow \Phi'_{ij} \) and \(\Lambda_{ij}' = [\hat{P}_{ij}', \lambda_{ij}', \hat{\lambda}_{ij}] : \Phi''_{ij} \Rightarrow \Phi_{ij} \) are 2-morphisms over \((S, f)\). We will define the **vertical composition of 2-morphisms over \((S, f)\)**, written
\[
\lambda_{ij}' \circ \Lambda_{ij} = [\hat{P}_{ij}', \lambda_{ij}', \hat{\lambda}_{ij}] \circ [\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}] : \Phi_{ij} \Rightarrow \Phi''_{ij}.
\]
When \(X = Y \) and \(f = \text{id}_X \) we call it **vertical composition over \(S \)**.

Choose representatives \((\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}), (\hat{P}'_{ij}, \lambda_{ij}', \hat{\lambda}_{ij}') \) in the \(\sim \)-equivalence classes \([\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}], [\hat{P}'_{ij}, \lambda_{ij}', \hat{\lambda}_{ij}] \). Define \(\hat{P}'_{ij} = \lambda_{ij}'^{-1}(\hat{P}_{ij}) \subseteq \hat{P}_{ij} \subseteq P_{ij} \), and \(\lambda_{ij}' = \lambda_{ij} \circ \lambda_{ij} \circ \lambda_{ij} \). Consider the sheaf morphism on \(\hat{P}'_{ij} \):
\[
\pi'_{ij}(E_i)|_{\hat{P}'_{ij}} = \lambda_{ij}' \circ \pi'_{ij}(E_i)|_{\hat{P}'_{ij}} \xrightarrow{\lambda_{ij}'(\hat{\lambda}_{ij})} T\hat{\phi}', \lambda_{ij}, V_j|_{\hat{P}'_{ij}},
\]
using the notation of \ref{3.3.4} and \ref{3.17}. Since \(\phi'_{ij} \circ \lambda_{ij} \circ \lambda_{ij} = \phi_{ij} \circ \lambda_{ij} \circ \lambda_{ij} + O(\pi'_{ij}) \) by \ref{6.2}, Theorem \ref{3.17}(g) shows that there exists a morphism \(\hat{\lambda}_{ij}' : \pi'_{ij}(E_i)|_{\hat{P}'_{ij}} \to T\hat{\phi}', \lambda_{ij}, V_j|_{\hat{P}'_{ij}} \), unique up to \(O(\pi'_{ij}) \), with
\[
\hat{\lambda}_{ij}' = \lambda_{ij}'(\hat{\lambda}_{ij}') + O(\pi'_{ij}).
\] (6.9)
as in Definition \ref{3.15}(v). By averaging over the \(\Gamma_i \times \Gamma_j \)-action we can suppose \(\hat{\lambda}_{ij}' \) is \(\Gamma_i \)- and \(\Gamma_j \)-equivariant, as \(\hat{\lambda}_{ij}' \) is.
Define \(\hat{\lambda}'_i : \pi'_i(E_i)|_{\tilde{P}'_i} \to \mathcal{T}_{\tilde{O}_i} V_j|_{\tilde{P}'_i} \) by \(\hat{\lambda}'_i = \hat{\lambda}_i|_{\tilde{P}'_i} + \lambda'_i \). We can prove using Theorem 3.17 that \((\hat{P}'_i, \lambda'_i, \hat{\lambda}'_i) \) satisfies Definition 6.4(a)–(c) for \(\Phi_{ij} \), \(\Phi'^{ij} \), using (6.2) for \(\lambda_i \), \(\lambda'_i \) and (6.9) to prove (6.2) for \(\hat{\lambda}'_i \). Hence \(\Lambda''_i = [\hat{P}'_i, \lambda'_i, \hat{\lambda}'_i] : \Phi_{ij} \Rightarrow \Phi'_{ij} \) is a 2-morphism over \((S, f)\). It is independent of choices. We define \([\hat{P}'_i, \lambda'_i, \hat{\lambda}'_i] \circ [\hat{P}'_j, \lambda'_j, \hat{\lambda}'_j] = [\hat{P}'_j, \lambda'_j, \hat{\lambda}'_j] \circ [\hat{P}'_i, \lambda'_i, \hat{\lambda}'_i] \), or \(\Lambda'_ij \circ \Lambda_{ij} = \Lambda'_ij \).

Let \(\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij} \) be a 2-morphism over \((S, f)\), and choose a representative \((\hat{P}'_i, \lambda'_i, \hat{\lambda}'_i)\) for \(\Lambda_{ij} = [\hat{P}'_i, \lambda'_i, \hat{\lambda}'_i] \). Define \(\hat{P}'_j = \lambda_{ij}(\hat{P}'_i) \), so that \(\hat{P}'_j \subseteq \hat{P}'_i \) is open and \(\lambda'_i : \hat{P}'_i \to \hat{P}'_j \) is a diffeomorphism. Set \(\lambda'_i = \lambda_{ij}^{-1} : \hat{P}'_i \to \hat{P}'_j \subseteq \hat{P}'_j \). Then \(\hat{P}'_i \) is \(\Gamma_i \) and \(\Gamma_j \)-invariant, and \(\lambda'_i \) is \(\Gamma_i \) and \(\Gamma_j \)-equivariant.

Now \(\phi'_ij = \phi_{ij} \circ \lambda_{ij} + O(\pi'_ij(s_i)) \), so Theorem 3.17(g) gives \(\hat{\lambda}'_ij : \pi'_i(E_i)|_{\tilde{P}'_i} \to \mathcal{T}_{\tilde{O}_i} V_j|_{\tilde{P}'_i} \) unique up to \(O(\pi''_{ij}(s_i)) \), with \(\hat{\lambda}'_ij = -\lambda_{ij}^{-1}(\hat{\lambda}_{ij}) + O(\pi''_{ij}(s_i)) \), as in Definition 3.3.15(v). Since \(\lambda_{ij} \) is \(\Gamma_i \times \Gamma_j \)-equivariant, by averaging \(\hat{\lambda}'_ij \) over the \(\Gamma_i \times \Gamma_j \)-action we can suppose \(\lambda'_i \) is \(\Gamma_i \), \(\Gamma_j \)-equivariant. We can then show that \((\hat{P}'_i, \lambda'_i, \hat{\lambda}'_i)\) satisfies Definition 6.4(a)–(c), so that \(\Lambda'_ij = [\hat{P}'_i, \lambda'_i, \hat{\lambda}'_i] : \Phi_{ij} \Rightarrow \Phi'_{ij} \) is a 2-morphism over \((S, f)\). This \(\Lambda'_ij \) is a two-sided inverse \(\Lambda''_{ij} \) for \(\Lambda_{ij} \) under vertical composition. Thus, all 2-morphisms over \((S, f)\) are invertible under vertical composition, that is, they are 2-isomorphisms.

Definition 6.7. Let \(X, Y, Z \) be topological spaces, \(f : X \to Y, g : Y \to Z \) be continuous maps, \((V_i, E_i, \Gamma_i, \psi_i),(V_j, E_j, \Gamma_j, \psi_j),(V_k, E_k, \Gamma_k, \psi_k)\) be Kuranishi neighbourhoods on \(X, Y, Z \), and \(T \subseteq \text{Im} \psi_j \cap g^{-1}(\text{Im} \psi_k) \subseteq Y \) and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(T) \subseteq X \) be open. Suppose \(\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, \Gamma_i, \psi_i) \to (V_j, E_j, \Gamma_j, \psi_j) \) are 1-morphisms of Kuranishi neighbourhoods over \((S, f)\), and \(\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij} \) is a 2-morphism over \((S, f)\), and \(\Phi_{jk}, \Phi'_{jk} : (V_j, E_j, \Gamma_j, \psi_j) \to (V_k, E_k, \Gamma_k, \psi_k) \) are 1-morphisms of Kuranishi neighbourhoods over \((T, g)\), and \(\Lambda_{jk} : \Phi_{jk} \Rightarrow \Phi'_{jk} \) is a 2-morphism over \((T, g)\).

We will define the **horizontal composition of 2-morphisms**, written

\[
\Lambda_{jk} \ast \Lambda_{ij} : \Phi_{jk} \circ \Phi_{ij} \Rightarrow \Phi'_{jk} \circ \Phi'_{ij} \quad \text{over } (S, g \circ f).
\]

Use our usual notation for \(\Phi_{ij}, \ldots, \Lambda_{jk} \), and write \((P_{ik}, \pi_{ik}, \phi_{ik}, \hat{\phi}_{ik}) = \Phi_{jk} \circ \Phi_{ij}, (P'_{ik}, \pi'_{ik}, \phi'_{ik}, \hat{\phi}'_{ik}) = \Phi'_{jk} \circ \Phi'_{ij}, \) as in Definition 6.5. Choose representatives \((\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}), (P_{jk}, \lambda_{jk}, \hat{\lambda}_{jk})\) for \(\Lambda_{ij} = [\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}] \) and \(\Lambda_{jk} = [\hat{P}_{jk}, \lambda_{jk}, \hat{\lambda}_{jk}] \).

Then \(P_{ik} = (P_{ij} \times_{V_j} P_{jk})/\Gamma_j, \) and \(\hat{P}_{ij} \subseteq P_{ij}, \) \(\hat{P}_{jk} \subseteq P_{jk} \) are open and \(\Gamma_j \)-invariant, \(\hat{P}_{ij} \times \hat{P}_{jk} \) is open and \(\Gamma_k \)-invariant in \(P_{ij} \times_{V_j} P_{jk} \). Define \(\hat{P}_{ik} = (\hat{P}_{ij} \times_{V_j} \hat{P}_{jk})/\Gamma_j, \) as an open vertical subbundle of \(P_{ik} \). It is \(\Gamma_i \), \(\Gamma_k \)-invariant, as \(\hat{P}_{ij}, \hat{P}_{jk} \) are \(\Gamma_i \) and \(\Gamma_k \)-invariant, respectively.

The maps \(\lambda_{ij} : \hat{P}_{ij} \to \hat{P}_{ij} \), \(\lambda_{jk} : \hat{P}_{jk} \to \hat{P}_{jk} \) satisfy \(\phi_{ij} \circ \lambda_{ij} = \phi_{ij} \circ \hat{\lambda}_{ij} : \hat{P}_{ij} \to V_j \) and \(\pi'_{jk} \circ \lambda_{jk} = \pi_{jk} \circ \hat{\lambda}_{jk} : \hat{P}_{jk} \to V_j \). Hence by properties of fibre products they induce a unique smooth map \(\hat{\lambda}_{ik} : \hat{P}_{ij} \times_{\phi_{ij}, V_j, \pi_{jk}} \hat{P}_{jk} \to \hat{P}_{i} \times_{\phi'_{ij}, V_j, \pi'_{jk}} \hat{P}_{jk} \) with \(\pi_{i} \circ \hat{\lambda}_{ik} = \lambda_{ij} \circ \pi_{ij} \) and \(\pi'_{jk} \circ \hat{\lambda}_{ik} = \lambda_{jk} \circ \pi_{jk} \). As everything is \(\Gamma_j \)-equivariant,
\[\tilde{\lambda}_{ik} : \tilde{P}_{ik} = (\tilde{P}_{ij} \times_{V_j} \tilde{P}_{jk})/\Gamma_j \longrightarrow (P'_{ij} \times_{V_j} P'_{jk})/\Gamma_j = P'_{ik} \]
with \(\lambda_{ik} \circ \Pi = \Pi' \circ \tilde{\lambda}_{ik} \), for \(\Pi : \tilde{P}_{ij} \times_{V_j} \tilde{P}_{jk} \longrightarrow (\hat{P}_{ij} \times_{V_j} \hat{P}_{jk})/\Gamma_j \), \(\Pi' : P'_{ij} \times_{V_j} P'_{jk} \longrightarrow (P'_{ij} \times_{V_j} P'_{jk})/\Gamma_j \) the projections.

Define a morphism of sheaves on \(\tilde{P}_{ij} \times_{V_j} \tilde{P}_{jk} \)
\[\tilde{\lambda}_{ik} : \Pi^* \circ \pi_{\hat{P}_{ik}}^*(E_i) = (\pi_{ij} \circ \pi_{\hat{P}_{ij}})^*(E_i) \longrightarrow \Pi^*(T_{\phi_{ik}} V_k) \quad \text{by} \]
\[\hat{\lambda}_{ik} = (\Pi^\gamma)^{-1} \circ \hat{T}_{\phi_{jk}} \circ (T_{\pi_{jk}})^{-1} \circ \pi_{\hat{P}_{ik}}^* (\hat{\lambda}_{ij}) \]
\[+ (\Pi^\gamma)^{-1} \circ \pi_{\hat{P}_{ik}}^* (\tilde{\lambda}_{jk}) \circ \pi_{\hat{P}_{ij}}^* (\phi_{ij}), \]
where the morphisms are given in the diagram

Here \(T_{\pi_{jk}} : T_{\pi_{\hat{P}_{jk}}} \tilde{P}_{jk} \to T_{\pi_{\hat{P}_{jk}}} V_j \) and \(\Pi^\gamma : \Pi^*(T_{\phi_{ik}} V_k) \to T_{\phi_{ik}} \phi_{ik} V_k \) are invertible as \(\pi_{\hat{P}_{ik}}, \Pi \) are étale. As all the ingredients are \(\Gamma_j, \Gamma_j, \Gamma_k \)-invariant or equivariant, \(\tilde{\lambda}_{ik} \) is \(\Gamma_j \)-invariant, and so descends to \(\hat{\lambda}_{ik} = (\hat{P}_{ij} \times_{V_j} \hat{P}_{jk})/\Gamma_j \). That is, there is a unique morphism \(\tilde{\lambda}_{ik} : \pi_{\hat{P}_{ik}}^*(E_i)|_{\hat{P}_{ik}} \to T_{\phi_{ik}} V_k|_{\hat{P}_{ik}} \) of sheaves on \(\tilde{P}_{ik} \) with \(\Pi^*(\tilde{\lambda}_{ik}) = \hat{\lambda}_{ik} \).

One can now check that \((\hat{P}_{ik}, \tilde{\lambda}_{ik}, \hat{\lambda}_{ik}) \) satisfies Definition 6.8(a)–(c), where \(\hat{\lambda}_{ik} \) follows from adding the pullbacks to \(\hat{P}_{ij} \times_{V_j} \hat{P}_{jk} \) of \(\hat{\lambda}_{ij} \), \(\hat{\lambda}_{jk} \), so \(\Lambda_{ik} = [\hat{P}_{ik}, \tilde{\lambda}_{ik}, \hat{\lambda}_{ik}] \) is a 2-morphism as in (6.10), which is independent of choices of \((\hat{P}_{ij}, \tilde{\lambda}_{ij}, \hat{\lambda}_{ij}) \), \((\hat{P}_{jk}, \tilde{\lambda}_{jk}, \hat{\lambda}_{jk}) \). We define \(\Lambda_{ik} \circ \Lambda_{ij} = \Lambda_{ik} \) in (6.10).

We have now defined all the structures of a weak 2-category: objects (Kuranishi neighbourhoods), 1- and 2-morphisms, their three kinds of composition, two kinds of identities, and the coherence 2-isomorphisms (6.7), (6.8). The next theorem, the analogue of Theorem 4.7, has a long but straightforward proof using Theorem 3.17 at some points, and we leave it as an exercise.

Theorem 6.8. The structures in Definitions 6.1–6.7 satisfy the axioms of a weak 2-category in \(\Lambda^2 \).

Here are the analogues of Definition 4.8 and Corollary 4.9.

Definition 6.9. Write \(\mathbf{KN} \) for the weak 2-category of Kuranishi neighbourhoods defined using \(\mathbf{Man} \), where:

\[\Lambda^2 \]
• Objects of $\tilde{\mathbf{K}}N$ are triples $(X, S, (V, E, \Gamma, s, \psi))$, where X is a topological space, $S \subseteq X$ is open, and (V, E, Γ, s, ψ) is a Kuranishi neighbourhood over S, as in Definition 6.1.

• 1-morphisms $(f, \Phi_{ij}): (X, S, (V_i, E_i, \Gamma_i, s_i, \psi_i)) \to (Y, T, (V_j, E_j, \Gamma_j, s_j, \psi_j))$ of $\tilde{\mathbf{K}}N$ are a pair of a continuous map $f: X \to Y$ with $S \subseteq f^{-1}(T) \subseteq X$ and a 1-morphism $\Phi_{ij}: (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j)$ over (S, f), as in Definition 6.2.

• For 1-morphisms $(f, \Phi_{ij}), (f, \Phi'_{ij}): (X, S, (V_i, E_i, \Gamma_i, s_i, \psi_i)) \to (Y, T, (V_j, E_j, \Gamma_j, s_j, \psi_j))$ with the same continuous map $f: X \to Y$, a 2-morphism of $\tilde{\mathbf{K}}N$ is a 2-morphism $\Lambda_{ij}: \Phi_{ij} \Rightarrow \Phi'_{ij}$ over (S, f), as in Definition 6.4.

• Identities, the three kinds of composition of 1- and 2-morphisms, and the coherence 2-isomorphisms $\alpha_{g,f,c}, \beta_{f,j}, \gamma_{ij}$ are defined in the obvious way using Definitions 6.3 and 6.5–6.7.

Write $G\tilde{\mathbf{K}}N$ for the full 2-subcategory of $\tilde{\mathbf{K}}N$ with objects $(s^{-1}(0)/\Gamma, s^{-1}(0)/\Gamma, (V, E, \Gamma, s, \text{id}_{s^{-1}(0)}/\Gamma))$ for which $X = S = s^{-1}(0)/\Gamma$ and $\psi = \text{id}_{s^{-1}(0)}$. We call $G\tilde{\mathbf{K}}N$ the weak 2-category of global Kuranishi neighbourhoods. We usually write objects of $G\tilde{\mathbf{K}}N$ as (V, E, Γ, s) rather than $(s^{-1}(0)/\Gamma, s^{-1}(0)/\Gamma, (V, E, \Gamma, s, \text{id}_{s^{-1}(0)}/\Gamma))$. Similarly, we write 1-morphisms of $G\tilde{\mathbf{K}}N$ as $\Phi_{ij}: (V_i, E_i, \Gamma_i, s_i) \to (V_j, E_j, \Gamma_j, s_j)$ rather than as (f, Φ_{ij}), since f is determined by Φ_{ij} as in Definition 6.8, and we write 2-morphisms of $G\tilde{\mathbf{K}}N$ as $\Lambda_{ij}: \Phi_{ij} \Rightarrow \Phi'_{ij}$.

Let X be a topological space and $S \subseteq X$ be open. Write $K\mathbf{N}_S(X)$ for the 2-subcategory of $\tilde{\mathbf{K}}N$ with objects $(X, S, (V, E, \Gamma, s, \psi))$ for X, S as given, 1-morphisms $(\text{id}_X, \Phi_{ij}): (X, S, (V_i, E_i, \Gamma_i, s_i, \psi_i)) \to (X, S, (V_j, E_j, \Gamma_j, s_j, \psi_j))$ for $f = \text{id}_X$, and all 2-morphisms $\Lambda_{ij}: (\text{id}_X, \Phi_{ij}) \Rightarrow (\text{id}_X, \Phi'_{ij})$. We call $K\mathbf{N}_S(X)$ the weak 2-category of Kuranishi neighbourhoods over $S \subseteq X$.

We generally write objects of $K\mathbf{N}_S(X)$ as (V, E, Γ, s, ψ), omitting X, S, and 1-morphisms of $K\mathbf{N}_S(X)$ as Φ_{ij}, omitting id_X. That is, objects, 1- and 2-morphisms of $K\mathbf{N}_S(X)$ are just Kuranishi neighbourhoods over S and 1- and 2-morphisms over S as in Definitions 6.1, 6.2, and 6.4.

The accent ‘’ in $\mathbf{K}N, G\mathbf{K}N, K\mathbf{N}_S(X)$ is because they are constructed using $\mathbf{M}an$. For particular $\mathbf{M}an$ we modify the notation in the obvious way, e.g. if $\mathbf{M}an = \mathbf{M}an^c$ we write $K\mathbf{N}^c, G\mathbf{K}N^c, K\mathbf{N}^c_S(X)$.

If $f: X \to Y$ is continuous, $(V_i, E_i, \Gamma_i, s, \psi_i), (V_j, E_j, \Gamma_j, s, \psi_j)$ are Kuranishi neighbourhoods on X, Y, and $S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X$ is open, write $\text{Hom}_{S,f}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))$ for the groupoid with objects 1-morphisms $\Phi_{ij}: (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j)$ over (S, f), and morphisms 2-morphisms $\Lambda_{ij}: \Phi_{ij} \Rightarrow \Phi'_{ij}$ over (S, f).

If $X = Y$ and $f = \text{id}_X$, we write $\text{Hom}_S((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))$ in place of $\text{Hom}_{S,f}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))$.

Corollary 6.10. In Definition 6.9 $\mathbf{K}N, G\mathbf{K}N$ and $K\mathbf{N}_S(X)$ are weak 2-categories, and in fact $(2,1)$-categories, as all 2-morphisms are invertible.
Here are the analogues of Definitions 4.10, 4.11 and Convention 4.12.

Definition 6.11. Let X be a topological space, and $S \subseteq X$ be open, and $\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j)$ be a 1-morphism of Kuranishi neighbourhoods on X over S. Then Φ_{ij} is a 1-morphism in the 2-category $\text{KN}_S(X)$ of Definition 6.9. We call Φ_{ij} a coordinate change over S if it is an equivalence in $\text{KN}_S(X)$. Write

$$\text{Equ}_S((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \subseteq \text{Hom}_S((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))$$

for the subgroupoid with objects coordinate changes over S.

Here is Theorem 10.65(a)–(c) from [10.5.3] in volume II, which gives criteria for when a 1-morphism of Kuranishi neighbourhoods on X is a coordinate change when Man is Man^c, Man^{sc}, Man^{ac} or $\text{Man}^{c, ac}$.

Theorem 6.12. Working in a category Man which we specify in (a)–(c) below, let $\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \psi_{ij}) : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j)$ be a 1-morphism of Kuranishi neighbourhoods on a topological space X over an open subset $S \subseteq X$. Let $p \in \pi_{ij}^{-1}(\psi_i^{-1}(S)) \subseteq P_{ij}$, set $v_i = \pi_{ij}(p) \in V_i$ and $v_j = \phi_{ij}(p) \in V_j$, and consider the morphism of finite groups

$$\rho_p : \{(\gamma_i, \gamma_j) \in \Gamma_i \times \Gamma_j : (\gamma_i, \gamma_j) \cdot p = p\} \longrightarrow \{\gamma_j \in \Gamma_j : \gamma_j \cdot v_j = v_j\}, \quad (6.11)$$

Then:

(a) If $\text{Man} = \text{Man}^c$ then Φ_{ij} is a coordinate change over S if and only if for all $p \in \pi_{ij}^{-1}(\psi_i^{-1}(S))$, equation (6.11) is an isomorphism, and the following is exact:

$$0 \longrightarrow T_{v_i}V_i \xrightarrow{d_{ij} \cdot s_i \cdot (T_p \phi_{ij} \circ (T_p \pi_{ij}))^{-1}} E_i|_{v_i} \oplus T_{v_j}V_j \xrightarrow{-\phi_{ij}|_p \oplus d_{ij} s_j} E_j|_{v_j} \longrightarrow 0. \quad (6.12)$$

(b) If $\text{Man} = \text{Man}^{sc}$ then Φ_{ij} is a coordinate change over S if and only if ϕ_{ij} is simple near $\pi_{ij}^{-1}(\psi_i^{-1}(S))$, as in [2.1] and for all $p \in \pi_{ij}^{-1}(\psi_i^{-1}(S))$, equation (6.11) is an isomorphism and (6.12) is exact.

(c) If Man is one of Man^c, Man^{sc}, Man^{ac} or $\text{Man}^{c, ac}$ then Φ_{ij} is a coordinate change over S if and only if ϕ_{ij} is simple near $\pi_{ij}^{-1}(\psi_i^{-1}(S))$, and using b-tangent spaces from [2.3] for all $p \in \pi_{ij}^{-1}(\psi_i^{-1}(S))$, equation (6.11) is an isomorphism and the following is exact:

$$0 \longrightarrow bT_{v_i}V_i \xrightarrow{\lambda_{d_{ij} s_i} \cdot (T_p \phi_{ij} \circ (T_p \pi_{ij}))^{-1}} E_i|_{v_i} \oplus bT_{v_j}V_j \xrightarrow{-\phi_{ij}|_p \oplus b d_{ij} s_j} E_j|_{v_j} \longrightarrow 0.$$
Definition 6.13. Let $T \subseteq S \subseteq X$ be open. Define the restriction 2-functor $|T| : \hat{\text{KN}}_S(X) \to \hat{\text{KN}}_T(X)$ to map objects $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ to exactly the same objects, and 1-morphisms Φ_{ij} to exactly the same 1-morphisms but regarded as \sim_T-morphisms over T, and 2-morphisms Λ_{ij} over S to $\Lambda_{ij}|T$, where $\Lambda_{ij}|T$ is the \sim_T-equivalence class of any representative $(\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij})$ for the \sim_S-equivalence class Λ_{ij}. We take the 2-morphisms $F_{g,f}, F_X$ in Definition A.8 to be identities. Then $|T| : \hat{\text{KN}}_S(X) \to \hat{\text{KN}}_T(X)$ is a weak 2-functor of weak 2-categories as in \cite{A.3}
If $U \subseteq T \subseteq S \subseteq X$ are open then $|U \circ |T| = |U : \hat{\text{KN}}_S(X) \to \hat{\text{KN}}_U(X)$.

Now let $f : X \to Y$ be continuous, $(V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)$ be Kuranishi neighbourhoods on X,Y, and $T \subseteq S' \subseteq \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j) \subseteq X$ be open. Then as for $|T|$ on 1- and 2-morphisms above, we define a functor

$$|T| : \text{Hom}_{S,f}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \to \text{Hom}_{T,f}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)).$$

Convention 6.14. When we do not specify a domain S for a morphism, or coordinate change, of Kuranishi neighbourhoods, the domain should be as large as possible. For example, if we say that $\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j)$ is a 1-morphism (or a 1-morphism over $f : X \to Y$) without specifying S, we mean that $S = \text{Im } \psi_i \cap \text{Im } \psi_j$ (or $S = \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j)$).

Similarly, if we write a formula involving several 2-morphisms (possibly defined on different domains), without specifying the domain S, we make the convention that the domain where the formula holds should be as large as possible. That is, the domain S is taken to be the intersection of the domains of each 2-morphism in the formula, and we implicitly restrict each morphism in the formula to S as in Definition 6.13 so that it makes sense.

Remark 6.15. (i) Our coordinate changes in Definition 6.11 are closely related to coordinate changes between Kuranishi neighbourhoods in the theory of Fukaya, Oh, Ohta and Ono \cite{OhOhtaOno} \cite{FukayaOhOhtaOno}, as described in \S7.1. We explain the connection in \S7.2. One of the most important innovations in our theory is to introduce the notion of 2-morphism between coordinate changes.

(ii) Our 1-morphisms of Kuranishi neighbourhoods involve $V_i \xleftarrow{\pi_i} P_{ij} \xrightarrow{\phi_{ij}} V_j$ with π_i a Γ_i-equivariant principal Γ_j-bundle, and ϕ_{ij} Γ_j-invariant and Γ_i-equivariant. As in \cite{[FukayaOhOhtaOno]}, this is a known way of writing 1-morphisms of orbifolds $[V_i/\Gamma_i] \to [V_j/\Gamma_j]$, called Hilsum–Skandalis morphisms. So the data $P_{ij}, \pi_{ij}, \phi_{ij}$ in $\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij})$ is very natural from the orbifold point of view.

(iii) In the definition of 2-morphisms $\Lambda_{ij} = [\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}]$ in Definition 6.4, by restricting to arbitrarily small open neighbourhoods \hat{P}_{ij} of $\pi_{ij}^{-1}(\hat{\psi}_i^{-1}(S))$ in P_{ij} and then taking equivalence classes, we are in effect taking germs about $\hat{\psi}_i^{-1}(S)$ in V_i, or germs about $\pi_{ij}^{-1}(\hat{\psi}_i^{-1}(S))$ in P_{ij}.

Fukaya–Ono’s first definition of Kuranishi space \cite{FukayaOhOhtaOno} \cite{Ono} involved germs of Kuranishi neighbourhoods at points. We take germs at larger subsets $\hat{\psi}_i^{-1}(S)$ in 2-morphisms.
Here is the analogue of Theorem 4.13 proved in [6.7], which is very important in our theory. We will call Theorem 6.16 the stack property. We will use it in §6.2 to construct compositions of 1- and 2-morphisms of Kuranishi spaces.

Theorem 6.16. Let \(f : X \to Y \) be a continuous map of topological spaces, and \((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)\) be Kuranishi neighbourhoods on \(X, Y \). For each open \(S \subseteq \text{Im} \; \psi_i \cap f^{-1}(\text{Im} \; \psi_j) \subseteq X \), define a groupoid

\[
\text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))(S) = \text{Hom}_{S,f}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)),
\]

as in Definition 6.9 for all open \(T \subseteq S \subseteq \text{Im} \; \psi_i \cap f^{-1}(\text{Im} \; \psi_j) \) define a functor

\[
\rho ST : \text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))(S) \to \text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))(T)
\]

between groupoids by \(\rho ST = \eta \), as in Definition 6.13, and for all open \(U \subseteq T \subseteq S \subseteq \text{Im} \; \psi_i \cap f^{-1}(\text{Im} \; \psi_j) \) take the obvious isomorphism \(\eta_{STU} = \text{id}_{\rho ST} \) : \(\rho_{TU} \circ \rho_{ST} \Rightarrow \rho_{SU} \). Then \(\text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \) is a stack on the open subset \(\text{Im} \; \psi_i \cap f^{-1}(\text{Im} \; \psi_j) \) in \(X \), as in §6.2.

When \(X = Y, f = \text{id}_X \) we write \(\text{Hom}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \) rather than \(\text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \). Coordinate changes \(\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) also form a stack \(\text{Equ}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \) on \(\text{Im} \; \psi_i \cap \text{Im} \; \psi_j \), a substack of \(\text{Hom}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \).

6.2 The weak 2-category of Kuranishi spaces

6.2.1 The definition of the 2-category \(\dot{\text{Kur}} \)

We now define the weak 2-category of Kuranishi spaces \(\dot{\text{Kur}} \). We follow the definition of \(\text{mKur} \) in 4.3 closely, with the difference that \(\text{mKur} \) is a strict 2-category, but Kuranishi neighbourhoods in 6.1 are a weak 2-category. So we cannot omit brackets in compositions of 1-morphisms such as \(\Phi_{ij} \circ \Phi_{jk} \circ \Phi_{ij} \) in 4.4, we must write \((\Phi_{ij} \circ \Phi_{jk}) \circ \Phi_{ij} \) or \(\Phi_{ij} \circ (\Phi_{jk} \circ \Phi_{ij}) \) as in 6.13, and we have to insert extra coherence 2-morphisms \(\alpha_{\Phi_{ij}, \Phi_{jk}, \Phi_{ij}}, \beta_{\Phi_{ij}, \Phi_{jk}}, \gamma_{\Phi_{ij}} \) from 6.7–6.8 throughout.

For example, compare (4.14), (4.10), (4.11), and (4.12) above with (6.13), (6.19), (6.20), and (6.21) below, noting the extra \(\alpha_{\dot{\alpha}, \dot{\beta}, \dot{\gamma}} \), and compare Definitions 4.14 (g) and 6.17 (g), noting the extra \(\beta_{\dot{\alpha}, \dot{\gamma}} \).

Since every weak 2-category is equivalent as a weak 2-category to a strict 2-category, we can guarantee that any proof which works in strict 2-categories can be extended to a proof in weak 2-categories by including extra 2-morphisms \(\alpha_{\dot{\alpha}, \dot{\alpha}, \dot{\alpha}}, \beta_{\dot{\alpha}, \dot{\beta}} \), although diagrams such as (4.19) and (4.31) become rather more complicated. So we omit proofs in this section, referring to those in 4.4.

Here is the analogue of Definition 4.14.
Definition 6.17. Let X be a Hausdorff, second countable topological space, and $n \in \mathbb{Z}$. A Kuranishi structure \mathcal{K} on X of virtual dimension n is data $\mathcal{K} = (I, (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, i,j \in I, \Lambda_{ijk}, i,j,k \in I)$, where:

(a) I is an indexing set (not necessarily finite).
(b) $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ is a Kuranishi neighbourhood on X for each $i \in I$, with $\dim V_i = \text{rank } E_i = n$.
(c) $\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \tilde{\phi}_{ij}) : (V_i, E_i, \Gamma_i, s_i, \psi_i) \rightarrow (V_j, E_j, \Gamma_j, s_j, \psi_j)$ is a coordinate change for all $i,j \in I$ (as usual, defined over $S = \text{Im } \psi_i \cap \text{Im } \psi_j$).
(d) $\Lambda_{ijk} = [\tilde{\phi}_{ijk}, \lambda_{ijk}, \tilde{\lambda}_{ijk}] : \Phi_{jk} \circ \Phi_{ij} \Rightarrow \Phi_{ik}$ is a 2-morphism for all $i,j,k \in I$ (as usual, defined over $S = \text{Im } \psi_i \cap \text{Im } \psi_j \cap \text{Im } \psi_k$).

We call $X = (X, \mathcal{K})$ a Kuranishi space, of virtual dimension $\text{vdim } X = n$. When we write $x \in X$, we mean that $x \in X$.

Here is the analogue of Example 4.16.

Example 6.18. Let V be a manifold, $E \rightarrow V$ a vector bundle, Γ a finite group with a smooth action on V and a compatible action on E preserving the vector bundle structure, and $s : V \rightarrow E$ a Γ-equivariant smooth section, so that (V, E, Γ, s) is an object in \mathbf{GKN} from Definition 6.9. Set $X = s^{-1}(0)/\Gamma$, with the quotient topology induced from the closed subset $s^{-1}(0) \subseteq V$. Then X is Hausdorff and second countable, as V is and Γ is finite.

Define a Kuranishi structure $\mathcal{K} = \{(0), (V_0, E_0, \Gamma_0, 0, s_0, \psi_0), \Phi_{00}, \Lambda_{0000}\}$ on X with indexing set $I = \{0\}$, one Kuranishi neighbourhood $(V_0, E_0, \Gamma_0, 0, s_0, \psi_0)$ of $V_0 = V$, $E_0 = E$, $\Gamma_0 = \Gamma$, $s_0 = s$ and $\psi_0 = \text{id}_X$, one coordinate change $\Phi_{00} = \text{id}_{(V_0, E_0, \Gamma_0, 0, s_0, \psi_0)}$, and one 2-morphism $\Lambda_{0000} = \text{id}_{\mathcal{K}^{(0)}}$. Then $X = (X, \mathcal{K})$ is a Kuranishi space, with $\text{vdim } X = \dim V - \text{rank } E$. We write $S_{V, E, \Gamma, s} = X$.

We will need notation to distinguish Kuranishi neighbourhoods, coordinate changes, and 2-morphisms on different Kuranishi spaces. As for (4.15)–(4.18), we will often use the following notation for Kuranishi spaces W, X, Y, Z:

$$W = (W, \mathcal{H}), \quad \mathcal{H} = (H, (T_h, C_h, A_i, \eta_h, \varphi_h)_{h \in H}, \Sigma_{hh'} = (O_{hh'}, \pi_{hh'}, \sigma_{hh'}), \hat{\sigma}_{hh''} = [\hat{0}_{hh''}, \hat{\eta}_{hh''}, \hat{\sigma}_{hh''}], \hat{1}_{hh''} = \hat{0}_{hh''} \hat{\eta}_{hh''} \hat{\sigma}_{hh''}, (6.14)$$
Definition 6.19. Let \(\mathbf{X} = (X, \mathcal{I}) \) and \(\mathbf{Y} = (Y, \mathcal{J}) \) be Kuranishi spaces, with notation \((6.15) - (6.16)\). A 1-morphism of Kuranishi spaces \(f : \mathbf{X} \to \mathbf{Y} \) is data
\[
f = (f, f_{ij}, i, j \in J, f^{ij, j''}_{i', i''} \in \mathcal{I}, f^{ij, j''}_{i', i''} \in \mathcal{I}),
\]
satisfying the conditions:

(a) \(f : X \to Y \) is a continuous map.

(b) \(f_{ij} = (P_{ij}, \pi_{ij}, f_{ij}, \hat{f}_{ij}) : (U_{ij}, D_{ij}, B_{ij}, r_{ij}, \chi_{ij}) \to (V_{ij}, E_{ij}, \Gamma_{ij}, s_{ij}, \psi_{ij}) \) is a 1-morphism of Kuranishi neighbourhoods over \(f \) for all \(i \in I, j \in J \) (defined over \(S = \text{Im} \chi_{ij} \cap f^{-1}(\text{Im} \psi_{ij}) \), as usual).

(c) \(F^{ij}_{i', i''} = [\hat{F}^{ij}_{i', i''}, F^{ij, j''}_{i', i''} : f^{ij, j''}_{i', i''} \circ f_{i'} \Rightarrow f_{ij} \) is a 2-morphism over \(f \) for all \(i, i', i'' \in I \) and \(j \in J \) (defined over \(S = \text{Im} \chi_{ij} \cap \text{Im} \chi_{i'i} \cap f^{-1}(\text{Im} \psi_{ij}) \)).

(d) \(F^{ij, j''}_{i', i''} = [\hat{F}^{ij, j''}_{i', i''}, F^{ij, j'', j'''}_{i', i''} : f^{ij, j'', j'''}_{i', i''} \circ f_{ij} \Rightarrow f^{ij, j''}_{i', i''} \) is a 2-morphism over \(f \) for all \(i \in I \) and \(j, j' \in J \) (defined over \(S = \text{Im} \chi_{ij} \cap f^{-1}(\text{Im} \psi_{ij} \cap \text{Im} \psi_{j'}) \)).

(e) \(F^i_{i''} = \beta f_{ij} \) and \(F^i_{i''} = \gamma f_{ij} \) for all \(i, j \in J \), for \(\beta f_{ij}, \gamma f_{ij} \) as in \((6.8)\).

(f) The following commutes for all \(i, i', i'' \in I \) and \(j \in J \):
\[
\begin{align*}
& (f^{ij}_{i', i''} \circ T_{i''} \circ f_{i'} \circ T_{i'}^j) \circ T_{i''} \\
& \downarrow \alpha_{T_{i''}, T_{i'}, T_{i'}} \\
& f^{ij}_{i', i''} \circ T_{i''}^j \\
& \downarrow P^i_{i', i''} + \text{id}_{T_{i''}^j} \\
& f^{ij}_{i', i''} \circ T_{i''}^j \\
& f^{ij}_{i', i''} \\
& \downarrow f_{ii'} \\
& f^{ij}_{i', i''} \circ T_{i''}^j \\
& \downarrow f_{ii'} \\
& f^{ij}_{i', i''} \circ \gamma f_{ij} \\
& \downarrow f_{ii'} \\
& f^{ij}_{i', i''} \circ \gamma f_{ij} \\
\end{align*}
\]

(g) The following commutes for all \(i, j' \in I \) and \(j, j'' \in J \):
\[
\begin{align*}
& (\Upsilon_{ij'} \circ f_{ij'}) \circ T_{ij'} \\
& \downarrow \alpha_{T_{ij'}, T_{ij'}, T_{ij'}} \\
& f_{ij'} \circ T_{ij'} \\
& \downarrow P^{ij}_{ij'} \circ \text{id}_{T_{ij'}} \\
& f^{ij}_{i', i''} \circ T_{ij'} \\
& \downarrow f^{ij}_{i', i''} \circ \text{id}_{T_{ij'}} \\
& f^{ij}_{i', i''} \circ \gamma f_{ij} \\
& \downarrow f_{ii'} \\
& f^{ij}_{i', i''} \circ \gamma f_{ij} \\
\end{align*}
\]

(h) The following commutes for all \(i \in I \) and \(j, j', j'' \in J \):
\[
\begin{align*}
& (\Upsilon_{j'j''} \circ f_{ij}) \circ T_{ij} \\
& \downarrow \alpha_{T_{ij}, T_{ij}, T_{ij}} \\
& \Upsilon_{j'j''} \circ f_{ij} \\
& \downarrow \alpha_{T_{ij}, T_{ij}, T_{ij}} \\
& \Upsilon_{j'j''} \circ f_{ij} \\
& \downarrow \alpha_{T_{ij}, T_{ij}, T_{ij}} \\
& \Upsilon_{j'j''} \circ f_{ij} \\
& \downarrow \alpha_{T_{ij}, T_{ij}, T_{ij}} \\
& \Upsilon_{j'j''} \circ f_{ij} \\
& \downarrow \alpha_{T_{ij}, T_{ij}, T_{ij}} \\
& \Upsilon_{j'j''} \circ f_{ij} \\
\end{align*}
\]
If \(x \in X \) (i.e. \(x \in X \)), we will write \(f(x) = f(x) \in Y \).

When \(Y = X \), define the identity 1-morphism \(\text{id}_X : X \to X \) by

\[
\text{id}_X = (\text{id}_X, T_{ij}, i, j \in I, K_{ij}, j' \in I, K_{ij}^j, j' \in I).
\]

(6.22)

Then Definition 6.17(h) implies that (f)–(h) above hold.

Definition 6.20. Let \(X = (X, \mathcal{I}) \) and \(Y = (Y, \mathcal{J}) \) be Kuranishi spaces, with notation as in (6.15), and \(f, g : X \to Y \) be 1-morphisms. Suppose the continuous maps \(f, g : X \to Y \) in \(f, g \) satisfy \(f = g \). A 2-morphism of Kuranishi spaces \(\eta : f \Rightarrow g \) is data \(\eta = (\eta_{ij}, i \in I, j \in J) \), where \(\eta_{ij} = (P_{ij}, \eta_{ij}, \beta_{ij}) : f_{ij} \Rightarrow g_{ij} \) is a 2-morphism of Kuranishi neighbourhoods over \(f = g \) (defined over \(S = \text{Im} \chi_i \cap f^{-1}(\text{Im} \psi_j) \), as usual), satisfying the conditions:

(a) \(G^j_{i'} \circ (\eta_{i',j} \ast \text{id}_{T_{i'i'}}) = \eta_{ij} \circ F^j_{i'i'} : f_{i'i'} \circ T_{i'i'} \Rightarrow g_{ij} \) for all \(i, i' \in I, j \in J \).

(b) \(G^j_{i'} \circ (\text{id}_{T_{j'j}} \ast \eta_{ij}) = \eta_{ij} \circ F^j_{i'i'} : f_{i'j'} \circ T_{i'j'} \Rightarrow g_{ij} \) for all \(i, j, j' \in J \).

Note that by definition, 2-morphisms \(\eta : f \Rightarrow g \) only exist if \(f = g \).

If \(f = g \), the identity 2-morphism is \(\text{id}_f = (\text{id}_{f_{ij}}, i \in I, j \in J) : f \Rightarrow f \).

As for m-Kuranishi spaces in [4.3], given 1-morphisms of Kuranishi spaces \(f : X \to Y, g : Y \to Z \), we must use the stack property in Theorem 6.16 to define the composition \(g \circ f : X \to Z \), where \(g \circ f \) is only unique up to 2-isomorphism, so we must make an arbitrary choice.

Here is the analogue of Proposition 4.19. It is proved in the same way, but inserting extra 2-morphisms \(\alpha_*, \beta_*, \gamma_* \) as we are now working in a weak 2-category.

Proposition 6.21. (a) Let \(X = (X, \mathcal{I}), Y = (Y, \mathcal{J}), Z = (Z, \mathcal{K}) \) be Kuranishi spaces with notation (6.15), and \(f : X \to Y, g : Y \to Z \) be 1-morphisms, with \(f = (f, f_{ij}, F^j_{ii'}, F^j_{ij}) \), \(g = (g, g_{ij}, G^j_{i'i'', G^j_{ij}'}) \). Then there exists a 1-morphism \(h : X \to Z \) with \(h = (h, h_{ik}, H^k_{ii'}, H^k_{ij}) \), such that \(h = g \circ f : X \to Z \), and for all \(i \in I, j \in J, k \in K \) we have 2-morphisms over \(h \)

\[
\Theta_{ijk} : g_{jk} \circ f_{ij} \Rightarrow h_{ik} \tag{6.23}
\]

where as usual holds over \(S = \text{Im} \chi_i \cap f^{-1}(\text{Im} \psi_j) \cap h^{-1}(\text{Im} \omega_k) \), and for
all $i,i' \in I$, $j,j' \in J$, $k,k' \in K$ the following commute:

$$
\begin{align*}
\begin{array}{c}
(g_{j,k} \circ f_{ij}) \circ T_{i,i'} & \Rightarrow \Theta_{i,j,k} \circ T_{i,i'} \quad \Theta_{i,j,k} \circ T_{i,i'} \\
g_{j,k} \circ (f_{ij} \circ T_{i,i'}) & \Rightarrow g_{j,k} \circ f_{ij} \quad \Theta_{i,j,k} \\
\end{array}
\end{align*}
\tag{6.24}
$$

$$
\begin{align*}
\begin{array}{c}
(g_{j',k'} \circ T_{j,j'}) \circ f_{ij} & \Rightarrow g_{j',k'} \circ F_{j,j'} \quad \Theta_{j,j',k,k'} \\
\end{array}
\end{align*}
\tag{6.25}
$$

$$
\begin{align*}
\begin{array}{c}
(\Phi_{kk'} \circ g_{j,k}) \circ f_{ij} & \Rightarrow g_{j,k} \circ f_{ij} \quad \Theta_{i,j,k} \circ f_{ij} \\
\end{array}
\end{align*}
\tag{6.26}
$$

(b) If $\tilde{h} = (h, \tilde{h}_{ik}, \tilde{H}_{i,i'}, \tilde{H}_{i,i''})$, $\tilde{\Theta}_{ijk}$ are alternative choices for h, Θ_{ijk} in (a), then there is a unique 2-morphism of Kuranishi spaces $\eta = (\eta_{ik}) : h \Rightarrow \tilde{h}$ satisfying $n_{ik} \circ \Theta_{ijk} = \tilde{\Theta}_{ijk} : g_{j,k} \circ f_{ij} \Rightarrow \tilde{h}_{ik}$ for all $i \in I$, $j \in J$, $k \in K$.

(c) If $X = Y$ and $f = \text{id}_Y$ in (a), so that $I = J$, then a possible choice for h, Θ_{ijk} in (a) is $h = g$ and $\Theta_{ijk} = G^k_{ij}$.

Similarly, if $Z = Y$ and $g = \text{id}_Y$ in (a), so that $K = J$, then a possible choice for h, Θ_{ijk} in (a) is $h = f$ and $\Theta_{ijk} = F_{ij}^k$.

Here is the analogue of Definition 4.20

Definition 6.22. For all pairs of 1-morphisms of Kuranishi spaces $f : X \to Y$ and $g : Y \to Z$, use the Axiom of Global Choice (see Remark 4.21) to choose possible values of $h : X \to Z$ and Θ_{ijk} in Proposition 6.21(a), and write $g \circ f = h$, and for $i \in I$, $j \in J$, $k \in K$

$$
\Theta_{ijk}^g = \Theta_{ijk} : g_{jk} \circ f_{ij} \Rightarrow (g \circ f)_{ik}.
$$

We call $g \circ f$ the composition of 1-morphisms of Kuranishi spaces.

For general f, g we make these choices arbitrarily. However, if $X = Y$ and $f = \text{id}_X$ then we choose $g \circ \text{id}_X = g$ and $\Theta^g_{j,j,k} = G^k_{j,j}$, and if $Z = Y$ and $g = \text{id}_Y$ then we choose $\text{id}_Y \circ f = f$ and $\Theta^g_{i,j,j} = F^j_{ij}$. This is allowed by Proposition 6.21(c).

The definition of a weak 2-category in Appendix A includes 2-isomorphisms $\beta_f : f \circ \text{id}_X \Rightarrow f$ and $\gamma_f : \text{id}_Y \circ f \Rightarrow f$ in (A.10), since one does not require $f \circ \text{id}_X = f$ and $\text{id}_Y \circ f = f$ in a general weak 2-category. We define

$$
\beta_f = \text{id}_f : f \circ \text{id}_X \Rightarrow f, \quad \gamma_f = \text{id}_f : \text{id}_Y \circ f \Rightarrow f.
$$

(6.27)

Here is the analogue of Proposition 4.22. It is proved in the same way, but inserting extra 2-morphisms $\alpha_{g_{ijk},F_{ijk},\Theta_{ijk}}$ of Kuranishi neighbourhoods.
Proposition 6.23. Let \(e : W \to X \), \(f : X \to Y \), \(g : Y \to Z \) be 1-morphisms of Kuranishi spaces, and define composition of 1-morphisms as in Definition 6.14–6.17. Then using notation (6.15)–(6.16), there is a unique 2-morphism

\[
\alpha_{g,f,e} : (g \circ f) \circ e \implies g \circ (f \circ e)
\]

(6.28)
with the property that for all \(h \in H \), \(i \in I \), \(j \in J \) and \(k \in K \) we have

\[
(\alpha_{g,f,e})_{hk} \circ \Theta^{g \circ f \circ e}_{ijk} \circ (\Theta^{g \circ f \circ e}_{ijk} \ast \text{id}_{e_{ik}}) = \Theta^{g \circ f \circ e}_{ijk} \circ (\text{id}_{g_{jk}} \ast \Theta^{f,e}_{ijk}) \circ \alpha_{g,jk,f,i,ek}.
\]

(6.29)

Here are the analogues of Definitions 4.23 and 4.24.

Definition 6.24. Let \(f, g, h : X \to Y \) be 1-morphisms of Kuranishi spaces, using notation (6.15)–(6.16), and \(\eta = (\eta_{ij}) : f \Rightarrow g \), \(\zeta = (\zeta_{ij}) : g \Rightarrow h \) be 2-morphisms. Define the vertical composition of 2-morphisms \(\zeta \circ \eta : f \Rightarrow h \) by

\[
\zeta \circ \eta = (\zeta_{ij} \circ \eta_{ij}), \ i \in I, \ j \in J.
\]

(6.30)
To see that \(\zeta \circ \eta \) satisfies Definition 6.20(a),(b), for (a) note that for all \(i, i' \in I \) and \(j \in J \), by Definition 6.20(a) for \(\eta, \zeta \) we have

\[
H_{i''}^{ij} \circ ((\zeta_{i'j} \circ \eta_{i'j}) \ast \text{id}_{T_{i''j''}}) = H_{i''}^{ij} \circ (\zeta_{i'j} \ast \text{id}_{T_{i''j''}}) \circ (\eta_{i'j} \ast \text{id}_{T_{i''j''}}) = (\zeta_{ij} \circ \eta_{ij}) \circ F_{i''}^{ij},
\]

and Definition 6.20(b) for \(\zeta \circ \eta \) is proved in a similar way.

Clearly, vertical composition of 2-morphisms of Kuranishi spaces is associative, \((\theta \circ \zeta) \circ \eta = \theta \circ (\zeta \circ \eta) \), since vertical composition of 2-morphisms of Kuranishi neighbourhoods is associative.

If \(g = h \) and \(\zeta = \text{id}_g \) then \(\text{id}_g \circ \eta = (\text{id}_g \circ \eta_{ij}) = (\eta_{ij}) = \eta \), and similarly \(\zeta \circ \text{id}_g = \zeta \). Thus, all 2-morphisms of Kuranishi spaces are 2-isomorphisms.

Definition 6.25. Let \(e, f : X \to Y \) and \(g, h : Y \to Z \) be 1-morphisms of Kuranishi spaces, using notation (6.15)–(6.17), and \(\eta = (\eta_{ij}) : e \Rightarrow f \), \(\zeta = (\zeta_{jk}) : g \Rightarrow h \) be 2-morphisms. We claim there is a unique 2-morphism

\[
\theta = (\theta_{ik}) : g \circ e \Rightarrow h \circ f, \text{ such that for all } i \in I, \ j \in J, \ k \in K, \text{ we have }
\]

\[
\theta_{ik} \mid_{\text{Im } \chi_{i} \cap (\text{Im } \psi_{i}) \cap (g \circ e)^{-1} \cap (\text{Im } \omega_{ik})} = \Theta^{h,f}_{ijk} \circ (\zeta_{jk} \ast \eta_{ij}) \circ (\Theta^{g,e}_{ijk})^{-1}.
\]

(6.31)
To prove this, suppose \(j, j' \in J \), and consider the diagram of 2-morphisms over \(\operatorname{Im} \chi_i \cap e^{-1}(\operatorname{Im} \psi_j \cap \operatorname{Im} \psi_{j'}) \cap (g \circ e)^{-1}(\operatorname{Im} \omega_k) \):

\[
\begin{array}{ccccccc}
& g_{ij} \circ e_{ij} & \xrightarrow{\cdot} & h_{ij} \circ f_{ij} & \xrightarrow{\cdot} & \phi_{ij} f \\
\alpha \downarrow & \downarrow & & \downarrow & & \downarrow \\
(\theta_{ij})^{-1} & (g_j \circ e_{ij}) & \xrightarrow{(g_j \circ e_{ij})^{-1}} & (g_{ij} \circ e_{ij}) & \xrightarrow{(g_{ij} \circ e_{ij})^{-1}} & (\theta_{ij})^{-1} \\
\end{array}
\]

Here the left and right polygons commute by (6.25), the top and bottom rectangles commute by Definition 6.20(a),(b) for \(\zeta \), \(\eta \), and the central rectangle commutes by properties of weak 2-categories. Hence (6.32) commutes.

The two routes round the outside of (6.32) imply that the prescribed values (6.31) for \(\theta_{ik} \) agree on overlaps between open sets for \(j, j' \). As the \(\operatorname{Im} \chi_i \cap e^{-1}(\operatorname{Im} \psi_j \cap (g \circ e)^{-1}(\operatorname{Im} \omega_k) \) for \(j \in J \) form an open cover of the correct domain \(\operatorname{Im} \chi_i \cap (g \circ e)^{-1}(\operatorname{Im} \omega_k) \), by Theorem 6.16 and Definition A.17(iii),(iv), there is a unique 2-morphism \(\theta_{ik} : (g \circ e)_{ik} \Rightarrow (h \circ f)_{ik} \) satisfying (6.31) for all \(j \in J \).

To show \(\theta = (\theta_{ik}) : g \circ e \Rightarrow h \circ f \) is a 2-morphism, we must verify Definition 6.20(a),(b) for \(\theta \). We do this by first showing that (a),(b) hold on the intersections of their domains with \(e^{-1}(\operatorname{Im} \psi_j) \) for \(j \in J \) using (6.24), (6.26), (6.31), and Definition 6.20 for \(\eta, \zeta \), and then use Theorem 6.16 and Definition A.17(iii) to deduce that Definition 6.20(a),(b) for \(\theta \) hold on their whole domains. So \(\theta \) is a 2-morphism of Kuranishi spaces.

Define the horizontal composition of 2-morphisms \(\zeta \ast \eta : g \circ e \Rightarrow h \circ f \) to be \(\zeta \ast \eta = \theta \). By (6.31), for all \(i \in I \), \(j \in J \), \(k \in K \) we have

\[
(\zeta \ast \eta)_{ik} \circ \Theta_{ijk} = \phi_{ijk} f \circ (\zeta_{ij} \ast \eta_{ij}),
\]

and this characterizes \(\zeta \ast \eta \) uniquely.

We have now defined all the structures of a weak 2-category of Kuranishi spaces \(\mathbf{Kur} \), as in [A.2] objects \(X, Y \), 1-morphisms \(f, g : X \to Y \), 2-morphisms \(\eta : f \Rightarrow g \), identity 1- and 2-morphisms, composition of 1-morphisms, vertical and horizontal composition of 2-morphisms, 2-isomorphisms \(\alpha, \beta, \gamma \) in (6.28) for associativity of 1-morphisms, and \(\beta, \gamma \) in (6.27) for identity 1-morphisms. Following the proofs of Propositions 4.25, 4.26, 4.3, but including extra 2-morphisms \(\alpha, \beta, \gamma \), as in Theorem 4.28 we prove:

Theorem 6.26. The definitions and propositions above define a weak 2-category of Kuranishi spaces \(\mathbf{Kur} \).

Remark 6.27. (a) We proved in [6.1] that Kuranishi neighbourhoods over \(S \subseteq X \) form a weak 2-category \(\mathbf{KN}_S(X) \), and now we have shown that Kuranishi spaces also form a weak 2-category \(\mathbf{Kur} \). But morally, \(\mathbf{KN}_S(X) \) is closer to
being a strict 2-category. In \(\hat{\mathbf{K}} \mathbf{N}_{\mathcal{S}}(X) \) there is a natural notion of composition of 1-morphisms \(\Phi_{ij} \circ \Phi_{jk} \), but it just fails to be strictly associative, as the canonical isomorphism of fibre products \(\lambda_{ijkl} \) in (6.6) is not the identity. The analogue \(m\hat{\mathbf{K}} \mathbf{N}_{\mathcal{S}}(X) \) for m-Kuranishi spaces in (4.1) is a strict 2-category.

In \(\hat{\mathbf{K}} \mathbf{ur} \), there is no natural notion of composition of 1-morphisms \(g \circ f \), so as in Definition 6.22 we have to choose \(g \circ f \) using the Axiom of Global Choice, and composition of 1-morphisms in \(\hat{\mathbf{K}} \mathbf{ur} \) is far from being strictly associative.

(b) We can define a weak 2-functor \(\hat{\mathbf{G}} \mathbf{K} \mathbf{N} \to \hat{\mathbf{K}} \mathbf{ur} \) which is an equivalence from the 2-category \(\hat{\mathbf{G}} \mathbf{K} \mathbf{N} \) of global Kuranishi neighbourhoods in Definition 6.9 to the full 2-subcategory of objects \((X, \mathcal{K}) \) in \(\hat{\mathbf{K}} \mathbf{ur} \) for which \(\mathcal{K} \) contains only one Kuranishi neighbourhood. It acts by \((V, E, \Gamma, s) \mapsto S_{V,E,\Gamma,s} \) on objects, for \(S_{V,E,\Gamma,s} \) as in Example 6.18.

Here is the analogue of Examples 4.31 and 5.17.

Example 6.28. Let \(X = (X, I) \), \(Y = (Y, J) \) be Kuranishi spaces in \(\hat{\mathbf{K}} \mathbf{ur} \), with notation (6.15) [6.16]. Define the *product* to be \(X \times Y = (X \times Y, \mathcal{K}) \), where
\[
\mathcal{K} = \{ I \times J, (W_{(i,j)}, F_{(i,j)}, \Delta_{(i,j)}, t_{(i,j)}, \omega_{(i,j)}) \}_{(i,j) \in I \times J}, \Phi_{(i,j),(i',j')} : (\Delta_{(i,j)}, t_{(i,j)}, \omega_{(i,j)}) \to (\Delta_{(i',j')}, t_{(i',j')}, \omega_{(i',j')}) \}
\]

Here for all \((i,j) \in I \times J \) we set
\[
W_{(i,j)} = U_i \times V_j, \quad F_{(i,j)} = \pi_i^* U_i \oplus \pi_j^* V_j, \quad \Delta_{(i,j)} = \Delta_{U_i \times \Gamma_j}, \quad t_{(i,j)} = t_i^* \oplus t_j^* \quad \text{and} \quad \omega_{(i,j)} = \chi_i \times \psi_j : (r_i^{-1}(0) \times s_j^{-1}(0))/(B_i \times \Gamma_j) \to X \times Y.
\]

and \(M_{(i,j),(i',j')}(\varphi, \psi) = K_{\varphi \psi} \times \Lambda_{ij,j'} \) is defined as a product 2-morphism in the obvious way. Then \(X \times Y \) is a Kuranishi space, with \(\text{vdim}(X \times Y) = \text{vdim} X + \text{vdim} Y \). As in Example 4.31, we define explicit projection 1-morphisms
\[
\pi_X : X \times Y \to X \quad \text{and} \quad \pi_Y : X \times Y \to Y.
\]

Then \(X \times Y, \pi_X, \pi_Y \) have the universal property of products in a 2-category, as in [11.2] in volume II [11] Products are commutative and associative up to canonical equivalence. If \(f : W \to Y, g : X \to Y, h : X \to Z \) are 1-morphisms in \(\hat{\mathbf{K}} \mathbf{ur} \) then we have a *product 1-morphism* \(f \times h : W \times X \to Y \times Z \) and a *direct product 1-morphism* \((g, h) : X \to Y \times Z \) in \(\hat{\mathbf{K}} \mathbf{ur} \), both easy to write down explicitly.

6.2.2 Examples of 2-categories \(\hat{\mathbf{K}} \mathbf{ur} \), and 2-functors of them

Here is the analogue of Definition 4.29.

Definition 6.29. In Theorem 6.26 we write \(\hat{\mathbf{K}} \mathbf{ur} \) for the 2-category of Kuranishi spaces constructed from a category \(\text{Man} \) satisfying Assumptions 3.1 [3.7]

By Example 3.8 the following categories from Chapter 2 are possible choices for \(\text{Man} \):

- \(\text{Man}^{\text{we}}, \text{Man}^{\text{c}}, \text{Man}^{\text{ac}}, \text{Man}^{\text{wc}}, \text{Man}^{\text{wc}, \text{ac}}. \)

(6.34)
We write the corresponding 2-categories of Kuranishi spaces as follows:

\[
\text{Kur, Kur}^e, \text{Kur}^{ge}, \text{Kur}^{ac}, \text{Kur}^{e,ac}.
\]

(6.35)

Objects of \text{Kur}^e, \text{Kur}^{ge}, \text{Kur}^{ac}, \text{Kur}^{e,ac} will be called \textit{Kuranishi spaces with corners, and with g-corners, and with a-corners, and with corners and a-corners, respectively.}

In \S4.4 we showed that any functor \(F_{\text{Man}}^{\text{Man}} : \text{Man} \to \text{Man} \) satisfying Condition 3.20 induces a weak 2-functor \(F^{m\text{Kur}} : m\text{Kur} \to m\text{Kur} \), and under the hypotheses of Proposition 3.21 this is an inclusion of 2-subcategories. The same arguments work for Kuranishi spaces, proving:

Proposition 6.30. Suppose \(\text{Man, Man} \) are categories satisfying Assumptions 3.1–3.7, and \(F_{\text{Man}}^{\text{Man}} : \text{Man} \to \text{Man} \) is a functor satisfying Condition 3.20. Then we can define a natural weak 2-functor \(F_{\text{Kur}}^{\text{Kur}} : \text{Kur} \to \text{Kur} \).

If \(F_{\text{Man}}^{\text{Man}} : \text{Man} \hookrightarrow \text{Man} \) is an inclusion of subcategories \(\text{Man} \subseteq \text{Man} \) satisfying either Proposition 3.21(a) or (b), then \(F_{\text{Kur}}^{\text{Kur}} : \text{Kur} \hookrightarrow \text{Kur} \) is also an inclusion of 2-subcategories \(\text{Kur} \subseteq \text{Kur} \).

![Figure 6.1: 2-functors between 2-categories of Kuranishi spaces from Definition 6.29. Arrows ‘\(\hookrightarrow \)’ are inclusions of 2-subcategories.](image)

Applying Definition 4.32 to the parts of the diagram Figure 3.1 of functors \(F_{\text{Man}}^{\text{Man}} \) involving the categories (6.34) yields a diagram Figure 6.1 of 2-functors \(F_{\text{Kur}}^{\text{Kur}} \). Arrows ‘\(\hookrightarrow \)’ are inclusions of 2-subcategories.

6.2.3 Discrete properties of 1-morphisms in \(\text{Kur} \)

In \S3.3.6 and B.6 we defined when a property \(P \) of morphisms in \(\text{Man} \) is \textit{discrete}. Section 4.5 explained how to extend discrete properties of morphisms in \(\text{Man} \) to corresponding properties of 1-morphisms in \(m\text{Kur} \). We now do the same for \(\text{Kur} \). Here are the analogues of Definitions 4.33, 4.35, and 4.37 and Propositions 4.34 and 4.36, proved in a very similar way.

Definition 6.31. Let \(P \) be a discrete property of morphisms in \(\text{Man} \). Suppose \(f : X \to Y \) is a continuous map and \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}) : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) is a 1-morphism of Kuranishi neighbourhoods over \((S, f) \), for \(S \subseteq X \) open. We say that \(\Phi_{ij} \) is \(P \) if \(\phi_{ij} : P_{ij} \to V_j \) is \(P \) near \((\psi_i \circ \pi_{ij})^{-1}(S) \)
in P_{ij}. That is, there should exist an open submanifold $\iota: U \hookrightarrow P_{ij}$ with $(\psi_i \circ \pi_{ij})^{-1}(S) \subseteq U \subseteq P_{ij}$ such that $\phi_{ij} \circ \iota: U \rightarrow V_j$ has property P in Man.

Proposition 6.32. Let P be a discrete property of morphisms in Man. Then:

(a) Let $\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \rightarrow (V_j, E_j, \Gamma_j, s_j, \psi_j)$ be a 1-morphism of Kuranishi neighbourhoods over (S, f) for $f: X \rightarrow Y$ continuous and $S \subseteq X$ open. If Φ_{ij} is P and $T \subseteq S$ is open then $\Phi_{ij}|_T$ is P. If $\{T_a : a \in A\}$ is an open cover of S and $\Phi_{ij}|_{T_a}$ is P for all $a \in A$ then Φ_{ij} is P.

(b) Let $\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \rightarrow (V_j, E_j, \Gamma_j, s_j, \psi_j)$ be 1-morphisms over (S, f) and $\Lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ a 2-morphism. Then Φ_{ij} is P if and only if Φ'_{ij} is P.

(c) Let $f : X \rightarrow Y$, $g : Y \rightarrow Z$ be continuous, $T \subseteq Y$, $S \subseteq f^{-1}(T) \subseteq X$ be open, $\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \rightarrow (V_j, E_j, \Gamma_j, s_j, \psi_j)$ be a 1-morphism over (S, f), and $\Phi_{jk} : (V_j, E_j, \Gamma_j, s_j, \psi_j) \rightarrow (V_k, E_k, \Gamma_k, s_k, \psi_k)$ be a 1-morphism over (T, g), so that $\Phi_{jk} \circ \Phi_{ij}$ is a 1-morphism over $(S, f \circ g)$. If Φ_{ij}, Φ_{jk} are P then $\Phi_{jk} \circ \Phi_{ij}$ is P.

(d) Let $\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \rightarrow (V_j, E_j, \Gamma_j, s_j, \psi_j)$ be a coordinate change of Kuranishi neighbourhoods over $S \subseteq X$. Then Φ_{ij} is P.

Definition 6.33. Let P be a discrete property of morphisms in Man. Suppose $f : X \rightarrow Y$ is a 1-morphism in Kur, and use notation Kur^{1} for Kur, Kur^{2} for Kur, Kur^{3} for Kur, and Kur^{4} for Kur.

Proposition 6.34. Let P be a discrete property of morphisms in Man. Then:

(a) Let $f, g : X \rightarrow Y$ be 1-morphisms in Kur and $\eta : f \Rightarrow g$ a 2-morphism. Then f is P if and only if g is P.

(b) Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be 1-morphisms in Kur. If f and g are P then $g \circ f : X \rightarrow Z$ is P.

(c) Identity 1-morphisms $\text{id}_X : X \rightarrow X$ in Kur are P. Equivalences $f : X \rightarrow Y$ in Kur are P.

Parts (b), (c) imply that we have a 2-subcategory $\text{Kur}_P \subseteq \text{Kur}$ containing all objects in Kur, and all 1-morphisms f in Kur which are P, and all 2-morphisms $\eta : f \Rightarrow g$ in Kur between 1-morphisms f, g which are P.

Definition 6.35. (a) Taking $\text{Man} = \text{Man}^{\text{c}}$ from §2.1 gives the 2-category of Kuranishi spaces Kur^{c} from Definition 6.29. We write

$$\text{Kur}_P^{\text{in}}, \text{Kur}_P^{\text{bn}}, \text{Kur}_P^{\text{st}}, \text{Kur}_P^{\text{st, in}}, \text{Kur}_P^{\text{st, bm}}, \text{Kur}_P^{\text{ci}}$$

for the 2-subcategories of Kur^{c} with 1-morphisms which are interior, and b-normal, and strongly smooth, and strongly smooth-interior, and strongly smooth-b-normal, and simple, respectively. These properties of morphisms in Man^{c} are
discrete by Example 3.19(a), so as in Definition 6.33 and Proposition 6.34 we have corresponding notions of interior, ..., simple 1-morphisms in \(\text{Kur}^{\text{gc}} \).

(b) Taking \(\hat{\text{Man}} = \text{Man}^{\text{gc}} \) from \(\text{§2.4.1} \) gives the 2-category of Kuranishi spaces with g-corners \(\text{Kur}^{\text{gc}} \) from Definition 6.29. We write

\[
\text{Kur}_{\text{in}}^{\text{gc}}, \text{Kur}_{\text{bn}}^{\text{gc}}, \text{Kur}_{\text{si}}^{\text{gc}}
\]

for the 2-subcategories of \(\text{Kur}^{\text{gc}} \) with 1-morphisms which are interior, and \(b \)-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^{\text{gc}} \) are discrete by Example 3.19(b), so we have corresponding notions for 1-morphisms in \(\text{Kur}^{\text{gc}} \).

(c) Taking \(\hat{\text{Man}} = \text{Man}^{\text{ac}} \) from \(\text{§2.4.2} \) gives the 2-category of Kuranishi spaces with a-corners \(\text{Kur}^{\text{ac}} \) from Definition 6.29. We write

\[
\text{Kur}_{\text{in}}^{\text{ac}}, \text{Kur}_{\text{bn}}^{\text{ac}}, \text{Kur}_{\text{st}, \text{in}}^{\text{ac}}, \text{Kur}_{\text{st}, \text{bn}}^{\text{ac}}, \text{Kur}_{\text{si}}^{\text{ac}}
\]

for the 2-subcategories of \(\text{Kur}^{\text{ac}} \) with 1-morphisms which are interior, and \(b \)-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly a-smooth-b-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^{\text{ac}} \) are discrete by Example 3.19(c), so we have corresponding notions for 1-morphisms in \(\text{Kur}^{\text{ac}} \).

(d) Taking \(\hat{\text{Man}} = \text{Man}^{\text{c,ac}} \) from \(\text{§2.4.2} \) gives the 2-category of Kuranishi spaces with corners and a-corners \(\text{Kur}^{\text{c,ac}} \) from Definition 6.29. We write

\[
\text{Kur}_{\text{in}}^{\text{c,ac}}, \text{Kur}_{\text{bn}}^{\text{c,ac}}, \text{Kur}_{\text{st}, \text{in}}^{\text{c,ac}}, \text{Kur}_{\text{st}, \text{bn}}^{\text{c,ac}}, \text{Kur}_{\text{si}}^{\text{c,ac}}
\]

for the 2-subcategories of \(\text{Kur}^{\text{c,ac}} \) with 1-morphisms which are interior, and \(b \)-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly a-smooth-b-normal, and simple, respectively. These properties of morphisms in \(\text{Man}^{\text{c,ac}} \) are discrete by Example 3.19(c), so we have corresponding notions for 1-morphisms in \(\text{Kur}^{\text{c,ac}} \).

Figure 6.1 gives inclusions between the 2-categories in (6.35). Combining this with the inclusions between the 2-subcategories in Definition 6.35 we get a diagram Figure 6.2 of inclusions of 2-subcategories of Kuranishi spaces.

6.2.4 Kuranishi spaces and m-Kuranishi spaces

We relate m-Kuranishi spaces in Chapter 4 to Kuranishi spaces above.

Example 6.36. Let \(\text{mKur} \) and \(\text{Kur} \) be the weak 2-categories constructed in \(\text{§4.3} \) and above from the same category of ‘manifolds’ \(\hat{\text{Man}} \). We will define a full and faithful weak 2-functor \(\text{Kur}^{\text{mKur}} : \text{mKur} \to \text{Kur} \) as in \(\text{§A.3} \).

First we explain how to map m-Kuranishi neighbourhoods and their 1- and 2-morphisms to Kuranishi neighbourhoods and their 1- and 2-morphisms. An m-Kuranishi neighbourhood \((V_i, E_i, s_i, \psi_i) \) on \(X \) maps to the Kuranishi neighbourhood \((V_i, E_i, \{1\}, s_i, \psi_i) \) on \(X \), that is, to \((V_i, E_i, \Gamma_i, s_i, \psi_i) \) with group \(\Gamma_i = \{1\} \).
A 1-morphism \(\Phi_{ij} = (V_{ij}, \phi_{ij}, \hat{\phi}_{ij}) : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) of m-Kuranishi neighbourhoods over \((S, f)\) maps to the 1-morphism \(\hat{\Phi}_{ij} = (V_{ij}, \text{id}_{V_{ij}}, \phi_{ij}, \hat{\phi}_{ij}) : (V_i, E_i, \{1\}, s_i, \psi_i) \to (V_j, E_j, \{1\}, s_j, \psi_j) \) of Kuranishi neighbourhoods over \((S, f)\). That is, in \(\hat{\Phi}_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}) \), \(\pi_{ij} : P_{ij} \to V_{ij} \subseteq V_i \) must be a principal \(\Gamma_j \)-bundle, and \(P_{ij} = V_{ij} \) and \(\pi_{ij} = \text{id}_{V_{ij}} \).

Given 1-morphisms \(\Phi_{ij}, \Phi'_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) of m-Kuranishi neighbourhoods over \((S, f)\) and corresponding 1-morphisms \(\hat{\Phi}_{ij}, \hat{\Phi}'_{ij} : (V_i, E_i, \{1\}, s_i, \psi_i) \to (V_j, E_j, \{1\}, s_j, \psi_j) \) of Kuranishi neighbourhoods over \((S, f)\), a 2-morphism \([V_{ij}, \hat{\lambda}_{ij}] : \Phi_{ij} \Rightarrow \Phi'_{ij} \) of m-Kuranishi neighbourhoods maps to the 2-morphism \([V_{ij}, \hat{\lambda}_{ij}] : \hat{\Phi}_{ij} \Rightarrow \hat{\Phi}'_{ij} \) of Kuranishi neighbourhoods.

To define \(F_{\text{mKur}}(\cdot) \), we apply this process to all m-Kuranishi neighbourhoods, 1- and 2-morphisms in the structures on \(\text{mKur} \). On objects, let \(X = (X, \mathcal{K}) \) be an m-Kuranishi space, with \(\mathcal{K} = \{(I, (V_i, E_i, s_i, \psi_i))_{i \in I}, \Phi_{ij}, i, j \in I, \Lambda_{ijk}, i, j, k \in I\} \), where \(\Phi_{ij} = (V_{ij}, \phi_{ij}, \hat{\phi}_{ij}) \) and \(\Lambda_{ijk} = [V_{ijk}, \hat{\lambda}_{ijk}] \). Define \(\tilde{\mathcal{K}} = \{(I, (V_i, E_i, \{1\}, s_i, \psi_i))_{i \in I}, \Phi_{ij}, i, j \in I, \tilde{\Lambda}_{ijk}, i, j, k \in I\} \), where \(\Phi'_{ij} = (V_{ij}, \text{id}_{V_{ij}}, \phi_{ij}, \hat{\phi}_{ij}) \) and \(\tilde{\Lambda}_{ijk} = [V_{ijk}, \text{id}_{V_{ijk}}, \hat{\lambda}_{ijk}] \). Then \(\tilde{\mathcal{X}} = (X, \tilde{\mathcal{K}}) \) is a Kuranishi space, and we set \(F_{\text{mKur}}(X) = \tilde{\mathcal{X}} \).

Similarly we define 1- and 2-morphisms \(F_{\text{mKur}}(f), F_{\text{mKur}}(\eta) \) in \(\text{Kur} \) for all 1- and 2-morphisms \(f, \eta \) in \(\text{mKur} \).

Let \(f : X \to Y \) and \(g : Y \to Z \) be 1-morphisms in \(\text{mKur} \), and write \(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{f}, \tilde{g} \) for the images of \(X, Y, Z, f, g \) under \(F_{\text{mKur}} \). Then Definition 4.20 defines \(\tilde{g} \circ \tilde{f} : \tilde{X} \to \tilde{Z} \) in \(\text{mKur} \), and Definition 6.22 defines \(\tilde{g} \circ \tilde{f} : \tilde{X} \to \tilde{Z} \) in \(\text{Kur} \), both by making an arbitrary choice. As these choices may not be compatible, we need not have \(F_{\text{mKur}}(g \circ f) = \tilde{g} \circ \tilde{f} \). But \(F_{\text{Kur}}(g \circ f) \) is
6.3 Kuranishi spaces with corners.

Boundaries, k-corners, and the corner 2-functor

We now change notation from \mathbf{Man} in §3.1–§3.3 to \mathbf{Man}^c in §3.4 and from \mathbf{Kur} in §3.2 to \mathbf{Kur}^c. Suppose throughout this section that \mathbf{Man}^c satisfies Assumption 3.22 in §3.4.1. Then \mathbf{Man}^c satisfies Assumptions 3.1–3.7, so 6.2 constructs a 2-category \mathbf{Kur}^c of Kuranishi spaces associated to \mathbf{Man}^c. For instance, \mathbf{Kur}^c could be $\mathbf{Kur}^{ce}, \mathbf{Kur}^{ace}$, or \mathbf{Kur}^{ace} from Definition 6.29.

We will refer to objects of \mathbf{Kur}^c as Kuranishi spaces with corners. We also write \mathbf{Kur}^c_k for the 2-subcategory of \mathbf{Kur}^c with simple 1-morphisms in the sense of §6.3, noting that simple is a discrete property of morphisms in \mathbf{Man}^c by Assumption 3.22(c).

In §4.6 for each $X \in mKur^c$ we defined the k-corners $C_k(X)$ in $mKur^c$ for $k = 0, 1, \ldots$, with $\partial X = C_1(X)$. We constructed a 2-category $mKur^c$ from $mKur^c$ with objects $\coprod_{n \in \mathbb{Z}} X_n$ for $X_n \in mKur^c$ with vdim $X_n = n$, and defined the corner 2-functor $C : mKur^c \rightarrow mKur^c$.

We will now extend all this to Kuranishi spaces with corners. We have to work with the more complicated notions of Kuranishi neighbourhoods and their 1- and 2-morphisms from §6.1 rather than m-Kuranishi neighbourhoods from §4.1, but apart from this the definitions and proofs are essentially the same. Here is the analogue of Definition 4.39.

Definition 6.37. Let $X = (X, K)$ in \mathbf{Kur}^c be a Kuranishi space with corners with vdim $X = n$, and as in Definition 6.17 write $K = (I, (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij, i, j \in I}, \Lambda_{ij, h, i, j \in I})$ with $\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij})$ and $\Lambda_{ij} = [\hat{P}_{ij, h}, \lambda_{ij, h}, \hat{\lambda}_{ij, h}]$. Let $k \in \mathbb{N}$. We will define a Kuranishi space with corners $C_k(X)$ in \mathbf{Kur}^c called the k-corners of X, with vdim $C_k(X) = n - k$, and a 1-morphism $\Pi_k : C_k(X) \rightarrow X$ in \mathbf{Kur}^c.

In §6.3.1, it is easy to check that Φ_{ij} satisfies the conditions for a weak 2-functor, and that it is full and faithful, and so embeds $m\mathbf{Kur}$ as a full 2-subcategory of \mathbf{Kur}. It is an equivalence between $m\mathbf{Kur}$ and the full 2-subcategory of objects $X = (X, K)$ in \mathbf{Kur} with $\Gamma_i = \{1\}$ for all Kuranishi neighbourhoods $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ in K.

In §6.3.1, we defined the k-corners $C_k(X)$ in $m\mathbf{Kur}^c$ for $k = 0, 1, \ldots$, with $\partial X = C_1(X)$. We constructed a 2-category $m\mathbf{Kur}^c$ from $m\mathbf{Kur}^c$ with objects $\coprod_{n \in \mathbb{Z}} X_n$ for $X_n \in m\mathbf{Kur}^c$ with vdim $X_n = n$, and defined the corner 2-functor $C : m\mathbf{Kur}^c \rightarrow m\mathbf{Kur}^c$.
Explicitly we write \(C_k(X) = (C_k(X), K_k) \) with
\[
K_k = \{ \{ k \} \times I, (V_{k(i),i}, E_{k(i),i}, \Gamma_{k(i),i}, s_{k(i),i}, \psi_{k(i),i}) \}_{i \in I}, \Phi_{k(i),i}(k,j), \Lambda_{k,h}(k,i)(k,j) \}_{i,j \in I}
\]
with \(\Phi_{k(i),i}(k,j) = (P_{k(i),i}(k,j), \pi_{k(i),i}(k,j), \phi_{k(i),i}(k,j), \hat{\phi}_{k(i),i}(k,j)) \)
and \(\Lambda_{k,h}(k,i)(k,j) = [\hat{P}_{k,h}(k,i)(k,j), \lambda_{k,h}(k,i)(k,j), \hat{\lambda}_{k,h}(k,i)(k,j)] \),
where \(K_k \) has indexing set \(\{ k \} \times I \), and as in (6.18) we write
\[
\Pi_k = \{ \Pi_{k(i),i}(k,i,j), i,j \in I, \Pi_{(k,i)(k,i'), i' \in I}, \Pi_{(k,i)(k,i'), i' \in I}^{j', j'' \in I}, \Pi_{(k,i)(k,i'), i' \in I}^{j''} \}, \quad \Pi_{(k,i)(k,i'), i' \in I}^{j', j'' \in I}, \Pi_{(k,i)(k,i'), i' \in I}^{j''}
\]
where
\[
\Pi_{(k,i)(k,i')}^{j', j''} = [\hat{P}_{j'}(k,i')(k,i'', j''), \hat{P}_{j''}(k,i'', j'), \hat{P}_{j'}(k,i')(k,i'') : \hat{P}_{j''}(k,i'', j') \circ \Phi_{k(i),i}(k,i') \Rightarrow \Pi_{(k,i),j' \in I} \]
and
\[
\Pi_{(k,i)(k,i'), i' \in I}^{j''} = [\hat{P}_{j''}(k,i')(k,i'', j''), \hat{P}_{j''}(k,i'', j'') : \Phi_{j''} \circ \Pi_{(k,i),j' \in I} \Rightarrow \Pi_{(k,i'),i'' \in I}^{j''}
\]
As in Definition 4.39 for each \(i \in I \), define \(V_{k(i)} = C_k(V_i) \) to be the \(k \)-corners of \(V_i \) from Assumption 3.22(d). Define \(E_{k(i)} \to V_{k(i)} \) to be the pullback vector bundle \(\Pi_k^*(E_i) \), where \(\Pi_k : V_{k(i)} = C_k(V_i) \to V_i \) is as in Assumption 3.22(d), and let \(s_{k(i)} = \Pi_k^*(s_i) \) in \(K \times G(E_{k(i)}) \) be the pullback section. These are equivalent to \(E_{k(i)} = C_k(E_i), s_{k(i)} = C_k(s_i), \) where \(s_i : V_i \to E_i \) is simple. Note that
\[
dim V_{k(i)} - \text{rank } E_{k(i)} = \dim C_k(V_i) - \text{rank } E_i = \dim V_i - k - \text{rank } E_i = n - k,
\]
by Assumption 3.22(d), as required in Definition 6.17(b) for \(C_k(X) \).

Define a finite group \(\Gamma_{k(i)} = \Gamma_i \). As in Definition 6.11(c), \(\Gamma_i \) acts on \(V_i \) by diffeomorphisms in \(\text{Man}^c \), and we write these as \(\rho(\gamma) : V_i \to V_i \) for \(\gamma \in \Gamma_i \). Then \(\rho(\gamma) \) is simple by Definition 3.18(i) as smooth maps are discrete, so Assumption 3.22(i) gives morphisms \(C_k \circ \rho(\gamma) : V_{k(i)} = C_k(V_i) \to V_{k(i)} = C_k(V_i) \) for \(\gamma \in \Gamma_{k(i)} = \Gamma_i \), and these form a smooth action of \(\Gamma_{k(i)} \) on \(V_{k(i)} \). Similarly the \(\Gamma_i \)-action on \(E_i \) lifts to a \(\Gamma_{k(i)} \)-action on \(E_{k(i)} = C_k(E_i) \) preserving the vector bundle structure, and \(s_{k(i)} = C_k(s_i) : V_{k(i)} \to E_{k(i)} = \Gamma_{k(i)} \)-equivariant such as \(s_i : V_i \to E_i \) is \(\Gamma_i \)-equivariant. This defines the data \(V_{k(i)}, E_{k(i)}, \Gamma_{k(i)}, s_{k(i)}, \psi_{k(i)} \) in \(K_k \), and verifies Definition 6.17(a)–(d).

Let \(i, j \in I \). Since simple maps are a discrete property in \(\text{Man}^c \) by Assumption 3.22(c), Definition 6.31 and Proposition 6.32(d) imply that \(\phi_{ij} : P_{ij} \to V_j \) is simple near \((\psi_j \circ \pi_{ij})^{-1}(\text{Im } \psi_j) \subseteq P_{ij} \). Note too that \(\pi_{ij} : P_{ij} \to V_j \) is always simple, by Definition 3.18(i),(iv) and discreteness of simple maps, as \(\pi_{ij} \) is étale by Definition 6.2(b). Let \(P_{ij}^c \subseteq P_{ij} \) be the maximal open set on which \(\phi_{ij} \) is simple, so that \((\psi_j \circ \pi_{ij})^{-1}(\text{Im } \psi_j) \subseteq P_{ij}^c \). Write \(\pi_{ij}' \), \(\phi_{ij}' \) for the restrictions
of \(\pi_{ij}, \phi_{ij} \) to \(P'_{ij} \), so \(\pi'_{ij}, \phi'_{ij} \) are simple. Generalizing (4.40)–(4.43), define
\[
P_{(k,i)(k,j)} = \mathcal{C}_k(P'_{ij}),
\]
\[
\pi_{(k,i)(k,j)} = \mathcal{C}_k(\pi'_{ij}) : P_{(k,i)(k,j)} = \mathcal{C}_k(P'_{ij}) \to V_{(k,i)} = \mathcal{C}_k(V_i),
\]
\[
\phi_{(k,i)(k,j)} = \mathcal{C}_k(\phi'_{ij}) : P_{(k,i)(k,j)} = \mathcal{C}_k(P'_{ij}) \to V_{(k,j)} = \mathcal{C}_k(V_j),
\]
\[
\hat{\phi}_{(k,i)(k,j)} = \Pi_k^* \phi'_{ij} : \pi'_{(k,i)(k,j)}(E_{(k,i)}) = \mathcal{C}_k(\pi'_{ij}) \circ \Pi_k^*(E_i) = \Pi_k^* \circ \pi_{ij}^*(E_i)
\to \Pi_k^* \circ \phi'_{ij}^*(E_j) = \mathcal{C}_k(\phi'_{ij}) \circ \Pi_k^*(E_j) = \phi'_{(k,i)(k,j)}(E_{(k,j)}),
\]
\[
\mathcal{P}_{(k,i,j)} = \mathcal{C}_k(P'_{ij}).
\]
\[
\hat{\mathcal{P}}_{(k,i,j)} = \mathcal{P}_{(k,i,j)} \cap [\{P'_{hi} \times \phi'_{hi}, V_i, \pi_{ij} P'_{ij}/\Gamma_i\}] \cap \hat{\mathcal{L}}_{hij}(P'_{hi}).
\]

Let \(\lambda_{hij}', \hat{\lambda}_{hij} \) be the restrictions of \(\lambda_{hij} \), \(\hat{\lambda}_{hij} \) to \(\hat{\mathcal{P}}_{hij} \). Generalizing (4.44), define
\[
\hat{\mathcal{P}}_{(k,h)(k,j,i)} = \mathcal{C}_k(\hat{\mathcal{P}}'_{hij}) = \mathcal{C}_k(\hat{\mathcal{P}}_{hij}) \cap \pi_{hij}(\mathcal{P}_{hij}/\Gamma_i) \cap \hat{\mathcal{L}}_{hij}(P'_{hi}),
\]
where as \(\phi'_{ij}, \pi_{ij} \) are simple with \(\pi'_{ij} \) etale, the corner functor \(\mathcal{C}_k \) commutes with the fibre products and group quotients. Generalizing (4.45), define
\[
\lambda_{(h,k)(i,j)} = \mathcal{C}_k(\lambda_{h,i,j} \circ \Pi_k^*(E_h)) = \pi_{h,i,j}^* \circ \Pi_k^*(E_h) \circ \mathcal{C}_k(\lambda_{h,i,j} \circ \Pi_k^*(E_h)) \to \mathcal{T}_{\phi_{h,i,j}(k)} \circ \pi_{h,i,j}^*(E_h) \circ \mathcal{C}_k(\lambda_{h,i,j} \circ \Pi_k^*(E_h)) = \mathcal{T}_{\phi_{h,i,j}(k)}(V_{(k,i)}) \cap \mathcal{C}_k(\lambda_{h,i,j} \circ \Pi_k^*(E_h)) \circ \pi_{h,i,j}^*(E_h)
\]
We check \((\hat{\mathcal{P}}_{(k,h)(i,j,k)}, \lambda_{(h,k)(i,j)}, \hat{\lambda}_{(h,k)(i,j)}) \) satisfies Definition 6.4(a)–(c) (except for \(\pi_{hij}^{-1}(S) \subseteq \hat{\mathcal{P}}_{hij} \) in (a), as \(\psi_{k,i,j} \) is not yet defined) by applying \(\mathcal{C}_k \) to Definition 6.4(a)–(c) for \((\hat{\mathcal{P}}_{hij}, \lambda_{hij}, \hat{\lambda}_{hij}) \) and using Theorem 3.28 as in Definition 4.39.
Write \(\Lambda_{(k,h),(i,j)} \) for the equivalence class of \((\hat{P}_{(k,h),(i,j)}), (\lambda_{(k,h),(i,j)}), \hat{\lambda}_{(k,h),(i,j)}(k,j))\) as in Definition 6.4. Theorem 3.25 implies that equivalence \(\sim \) on triples \((\hat{P}_{(k,h),(i,j)}), (\lambda_{(k,h),(i,j)}), \hat{\lambda}_{(k,h),(i,j)}(k,j))\) lifts to \(\sim \) on triples \((\hat{P}_{(k,h),(i,j)}), (\lambda_{(k,h),(i,j)}), \hat{\lambda}_{(k,h),(i,j)}(k,j))\), so \(\Lambda_{(k,h),(i,j)} \) depends only on \(\Lambda_{hij} = [\hat{P}_{hij}, \lambda_{hij}, \hat{\lambda}_{hij}] \), and (once we define \(\Phi_{(k,i)}(X) \), \(\psi_{(k,i)}(X) \) and verify the \(\Phi_{(k,i)}(X) \) are 1-morphisms), we have a well defined 2-morphism of Kuranishi neighbourhoods

\[
\Lambda_{(k,h),(i,j)}(k,j) : \Phi_{(k,i)}(k,j) \circ \Phi_{(h,k)}(k,i) \Longrightarrow \Phi_{(k,h)}(k,j).
\]

We define the 2-morphisms \(\Pi^j_{(k,i)} \) in \(\Pi_k \) by generalizing the m-Kuranishi case in Definition 4.39 as for \(\Lambda_{(k,h),(i,j)}(k,j) \) above.

It remains to define the topological space \(\mathcal{C}_k(X) \) and the continuous maps \(\psi_{(k,i)} : s_{(k,j)}^{-1}(0) / \Gamma_{(k,i)} \rightarrow \mathcal{C}_k(X), \Pi_k : \mathcal{C}_k(X) \rightarrow X \). Define a binary relation \(\sim \) on \(\prod_{i \in I} s_{(k,i)}^{-1}(0) / \Gamma_{(k,i)} \) by \(v_1 \Gamma_{(k,i)} \equiv v_2 \Gamma_{(k,i)} \) if \(v_1 \in s_{(k,i)}^{-1}(0) \) and \(v_2 \in s_{(k,i)}^{-1}(0) \) for \(i, j \in I \) and there exists \(p_{ij} \in P_{(k,i)(k,j)} \) with \(\pi_{(k,j)}(p_{ij}) = v_i \) and \(\phi_{(k,i)(k,j)}(p_{ij}) = v_j \). We can prove that \(\sim \) is an equivalence relation on \(\prod_{i \in I} s_{(k,i)}^{-1}(0) / \Gamma_{(k,i)} \) by generalizing the proof in Definition 4.39 using Theorems 3.27–3.28, as in Definition 4.39 to show that \(v_1 \Gamma_{(k,h)} \equiv v_2 \Gamma_{(k,h)} \) and \(v_1 \Gamma_{(k,i)} \equiv v_2 \Gamma_{(k,j)} \) imply that \(v_1 \Gamma_{(k,h)} \equiv v_2 \Gamma_{(k,h)} \).

Generalizing (4.49), define \(\mathcal{C}_k(X) \) to be the topological space

\[
\mathcal{C}_k(X) = \left[\prod_{i \in I} s_{(k,i)}^{-1}(0) / \Gamma_{(k,i)} \right] / \sim,
\]

with the quotient topology. For each \(i \in I \) define \(\psi_{(k,i)} : s_{(k,i)}^{-1}(0) / \Gamma_{(k,i)} \rightarrow \mathcal{C}_k(X) \) by \(\psi_{(k,i)} : v_i \Gamma_{(k,i)} \mapsto [v_i \Gamma_{(k,i)}] \), where \([v_i \Gamma_{(k,i)}] \) is the \(\sim \)-equivalence class of \(v_i \Gamma_{(k,i)} \). Define \(\Pi_k : \mathcal{C}_k(X) \rightarrow X \) by \(\Pi_k([v_i \Gamma_{(k,i)}]) = \psi_i \circ \Pi_k(v_i) \) for \(i \in I \) and \(v_i \in s_{(k,i)}^{-1}(0) \), so that \(\Pi_k(v_i) \in \mathcal{C}_k(X) \). We can show as in Definition 4.39 that \(\mathcal{C}_k(X) \) is Hausdorff and second countable, and \(\Pi_k : \mathcal{C}_k(X) \rightarrow X \) is well defined, continuous and proper with finite fibres, and \((\{i\}, E, \Gamma_{(i)}, 0, \Gamma_{(i)}, s_{(i)}, \psi_{(i)}) \) is a Kuranishi neighbourhood on \(\mathcal{C}_k(X) \) for \(i \in I \).

For all of Definition 6.17 (a)–(h) for \(\mathcal{C}_k(X) \), either we have proved them above, or they follow from Definition 6.17 (a)–(h) for \(X \) by pulling back by \(\Pi_k \) and using Theorems 3.27, 3.28, as in Definition 4.39. Hence \(\mathcal{C}_k(X) \) is a Kuranishi space with corners in \(\text{Kur}^c \), with \(\text{vdim} \mathcal{C}_k(X) = n - k \). Similarly, for Definition 6.19 (a)–(h) for \(\Pi_k : \mathcal{C}_k(X) \rightarrow X \), either we have proved them above, or they follow from Definition 6.17 (a)–(h) for \(X \) using Theorems 3.27, 3.28, as in Definition 4.39, where we deduce Definition 6.19 (a)–(h) for \(\Pi_k \) from Definition 6.17 (a)–(h) for \(X \). Thus \(\Pi_k : \mathcal{C}_k(X) \rightarrow X \) is a 1-morphism in \(\text{Kur}^c \).

When \(k = 1 \) we also write \(\partial X = C_1(X) \) and call it the boundary of \(X \), and we write \(i_X : \partial X \rightarrow X \) in place of \(I_1 : C_1(X) \rightarrow X \).

This proves the analogue of Theorem 4.40.
Theorem 6.38. For each X in \mathbf{Kur}^c and $k = 0, 1, \ldots$ we have defined the k-corners $C_k(X)$, an object in \mathbf{Kur}^c with $\operatorname{vdim} C_k(X) = \operatorname{vdim} X - k$, and a 1-morphism $\Pi_k : C_k(X) \to X$ in \mathbf{Kur}^c, whose underlying continuous map $\Pi_k : C_k(X) \to X$ is proper with finite fibres. We also write $\partial X = C_1(X)$, called the boundary of X, and we write $i_X = \Pi_1 : \partial X \to X$.

Modifying Definition 4.42 we construct weak 2-categories $\check{\mathbf{Kur}}_{si}^c \subseteq \mathbf{Kur}^c$ from $\mathbf{Kur}_{si}^c \subseteq \mathbf{Kur}^c$ in the obvious way, with objects $\bigsqcup_{n \in \mathbb{N}} X_n$ for $X_n \in \mathbf{Kur}^c$ with $\operatorname{vdim} X_n = n$, where $\check{\mathbf{Kur}}_{si}^c, \mathbf{Kur}^c$ embed as full 2-subcategories of \mathbf{Kur}_{si}^c and \mathbf{Kur}^c. For the examples of $\mathbf{Kur}_{si}^c \subseteq \mathbf{Kur}^c$ in Definitions 6.29 and 6.35 we use the obvious notation for the corresponding 2-categories $\check{\mathbf{Kur}}_{si}^c \subseteq \mathbf{Kur}^c$, so for instance we enlarge \mathbf{Kur}^c associated to $\mathbf{Man}^c = \mathbf{Man}^c$ to \mathbf{Kur}^c.

Then following Definition 6.37 but modifying it as in Definition 6.39 we define the corner 2-functor $C : \mathbf{Kur}^c \to \check{\mathbf{Kur}}^c$. This is straightforward and involves no new ideas, so we leave it as an exercise for the reader. This proves the analogue of Theorem 4.44.

Theorem 6.39. We can define a weak 2-functor $C : \check{\mathbf{Kur}}^c \to \check{\mathbf{Kur}}^c$ called the corner 2-functor. It acts on objects X in \mathbf{Kur}^c by $C(X) = \bigsqcup_{n \in \mathbb{N}} C_k(X)$. If $f : X \to Y$ is simple then $C(f) : C(X) \to C(Y)$ is simple and maps $C_k(X) \to C_k(Y)$ for $k = 0, 1, \ldots$. Thus $C|_{\mathbf{Kur}_{si}^c}$ decomposes as $C|_{\mathbf{Kur}_{si}^c} = \bigsqcup_{n \in \mathbb{N}} C_k$, where $C_k : \mathbf{Kur}_{si}^c \to \check{\mathbf{Kur}}_{si}^c$ is a weak 2-functor acting on objects by $X \mapsto C_k(X)$, for $C_k(X)$ as in Definition 6.39. We also write $\partial = C_1 : \mathbf{Kur}_{si}^c \to \mathbf{Kur}_{si}^c$, and call it the boundary 2-functor.

If for some discrete property P of morphisms in \mathbf{Man}^c the corner functor $C : \mathbf{Man}^c \to \check{\mathbf{Man}}^c$ maps to the subcategory $\check{\mathbf{Man}}^c_P$ of $\check{\mathbf{Man}}^c$ whose morphisms are P, then $C : \mathbf{Kur}^c \to \check{\mathbf{Kur}}^c$ maps to the 2-subcategory $\check{\mathbf{Kur}}^c_P$ of $\check{\mathbf{Kur}}^c$ whose 1-morphisms are P.

As for Example 4.45 applying Theorem 6.39 to the data \mathbf{Man}^c, \ldots in Example 3.24(a)–(h) gives corner functors:

$\begin{align*}
C : \mathbf{Kur}^c &\to \mathbf{Kur}_{in}^c \subseteq \mathbf{Kur}^c, \\
C : \mathbf{Kur}_{st}^c &\to \mathbf{Kur}_{st,in}^c \subseteq \mathbf{Kur}_{st}^c, \\
C : \mathbf{Kur}_{ac}^c &\to \mathbf{Kur}_{ac}^c, \\
C : \mathbf{Kur}_{st}^c &\to \mathbf{Kur}_{ac,in}^c \subseteq \mathbf{Kur}_{st}^c, \\
C : \mathbf{Kur}_{ac}^c &\to \mathbf{Kur}_{ac,ac}^c, \\
C : \mathbf{Kur}_{st}^c &\to \mathbf{Kur}_{ac,in}^c \subseteq \mathbf{Kur}_{ac,ac}^c, \\
C : \mathbf{Kur}^c &\to \mathbf{Kur}_{ac,ac}^c \subseteq \mathbf{Kur}^c.
\end{align*}$

As for Propositions 4.46 and 4.47 we prove:
Proposition 6.40. For all of the 2-functors C in \mathcal{K}_Kur (though not the 2-functors C'), a 1-morphism $f : X \to Y$ is interior (or b-normal) if and only if $C(f)$ maps $C_0(X) \to C_0(Y)$ (or $C(f)$ maps $C_k(X) \to \coprod_{l=0}^k C_l(Y)$ for all $k=0,1,\ldots$, respectively).

Proposition 6.41. Let $f : X \to Y$ be an equivalence in \mathbf{Kur}^e. Then f is simple by Proposition 6.34, and $C_k(f) : C_k(X) \to C_k(Y)$ for $k=0,1,\ldots$ and $\partial f : \partial X \to \partial Y$ are also equivalences in \mathbf{Kur}^e.

6.4 Kuranishi neighbourhoods on Kuranishi spaces

In §1.7 we discussed ‘m-Kuranishi neighbourhoods on m-Kuranishi spaces’, and in §5.5 we explained the μ-Kuranishi analogue. Now we define ‘Kuranishi neighbourhoods on Kuranishi spaces’. We follow §1.7 closely, with the difference that m-Kuranishi neighbourhoods in §1.1 are a strict 2-category, but Kuranishi neighbourhoods in §6.1 are a weak 2-category. So we cannot omit brackets in compositions of 1-morphisms such as $(\Phi_{jk} \circ \Phi_{ij}) \circ \Phi_{ai}$ in (6.37), and we have to insert extra coherence 2-morphisms $\alpha_{s,s',s''}$ from (6.7)–(6.8) throughout.

Definition 6.42. Suppose $X = (X, \mathcal{K})$ is a Kuranishi space, where $\mathcal{K} = (I, (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij, i,j \in I}, \Lambda_{ijk, i,j,k \in I})$. A Kuranishi neighbourhood on the Kuranishi space X is data $(V_a, E_a, \Gamma_a, s_a, \psi_a)$, $\Phi_{ai, i \in I}$ and $\Lambda_{aij, i,j \in I}$ where $(V_a, E_a, \Gamma_a, s_a, \psi_a)$ is a Kuranishi neighbourhood on the topological space X in the sense of Definition 6.11 and $\Phi_{ai} : (V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_i, E_i, \Gamma_i, s_i, \psi_i)$ is a coordinate change for each $i \in I$ (over $S = \text{Im} \psi_a \cap \text{Im} \psi_i$, as usual) as in Definition 6.11 and $\Lambda_{aij} : \Phi_{ij} \circ \Phi_{ai} \Rightarrow \Phi_{aj}$ is a 2-morphism (over $S = \text{Im} \psi_i \cap \text{Im} \psi_j \cap \text{Im} \psi_a$, as usual) as in Definition 6.4 for all $i,j \in I$, such that $\Lambda_{aii} = \text{id}_{\Phi_{ai}}$ for all $i \in I$, and as in Definition 6.17(b), for all $i,j,k \in I$ we have

$$\Lambda_{aij} \circ (\text{id}_{\Phi_{ij}} \ast \Lambda_{aij}) \circ \alpha_{\Phi_{ik}, \Phi_{ij}, \Phi_{ai}} = \Lambda_{aii} \circ (\Lambda_{ijk} \ast \text{id}_{\Phi_{ai}}) : (\Phi_{jk} \circ \Phi_{ij}) \circ \Phi_{ai} \Rightarrow \Phi_{ak},$$

where (6.37) holds over $S = \text{Im} \psi_a \cap \text{Im} \psi_i \cap \text{Im} \psi_j \cap \text{Im} \psi_k$ by Convention 6.14.

Here the subscript ‘a’ in $(V_a, E_a, \Gamma_a, s_a, \psi_a)$ is just a label used to distinguish Kuranishi neighbourhoods, generally not in I. If we omit a we will write ‘i’ in place of ‘a’ in Φ_{ai}, Λ_{aij}, giving $\Phi_{ai} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_{ai}, E_{ai}, \Gamma_{ai}, s_{ai}, \psi_{ai})$ and $\Lambda_{aij} : \Phi_{ij} \circ \Phi_{ai} \Rightarrow \Phi_{aj}$.

We will usually just say $(V_a, E_a, \Gamma_a, s_a, \psi_a)$ or (V, E, Γ, s, ψ) is a Kuranishi neighbourhood on X, leaving the data Φ_{ai}, Λ_{aij} or Φ_{ai}, Λ_{aij} implicit. We call such a (V, E, Γ, s, ψ) a global Kuranishi neighbourhood on X if $\text{Im} \psi_i = X$.

Definition 6.43. Using the same notation, suppose $(V_a, E_a, \Gamma_a, s_a, \psi_a)$, $\Phi_{ai, i \in I}$, $\Lambda_{aij, i,j \in I}$ and $(V_b, E_b, \Gamma_b, s_b, \psi_b)$, $\Phi_{bi, i \in I}$, $\Lambda_{bij, i,j \in I}$ are Kuranishi neighbourhoods on X, and $S \subseteq \text{Im} \psi_a \cap \text{Im} \psi_b$ is open. A coordinate change from $(V_a, E_a, \Gamma_a, s_a, \psi_a)$ to $(V_b, E_b, \Gamma_b, s_b, \psi_b)$ over S on the Kuranishi space X is data Φ_{ab}, $\Lambda_{abi, i \in I}$, where $\Phi_{ab} : (V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b)$ is a coordinate change over S as in Definition 6.11 and $\Lambda_{abi} : \Phi_{bi} \circ \Phi_{ab} \Rightarrow \Phi_{ai}$ is a
2-morphism over \(S \cap \text{Im} \psi_i \) as in Definition 6.4, for each \(i \in I \), such that for all \(i, j \in I \) we have

\[
\Lambda_{a_{ij}} \circ (\text{id}_{\Phi_{ai}} \ast \Lambda_{a_{bi}}) \circ \alpha_{\Phi_{ij}, \Phi_{bi}, \Phi_{ab}} = \Lambda_{a_{bj}} \circ (\Lambda_{b_{ij}} \ast \text{id}_{\Phi_{bi}}) : \quad (\Phi_{ij} \circ \Phi_{bi}) \circ \Phi_{ab} \Longrightarrow \Phi_{aj}.
\]

(6.38)

where (6.35) holds over \(S \cap \text{Im} \psi_i \cap \text{Im} \psi_j \).

We will usually just say that \(\Phi_{ab} : (V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b) \) is a coordinate change over \(S \) on \(X \), leaving the data \(\Lambda_{a_{bi}}, i \in I \) implicit. If we do not specify \(S \), we mean that \(S \) is as large as possible, that is, \(S = \text{Im} \psi_a \cap \text{Im} \psi_b \).

Suppose \(\Phi_{ab} : (V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b) \), \(\Lambda_{a_{bi}}, i \in I \) and \(\Phi_{bc} : (V_c, E_c, \Gamma_c, s_c, \psi_c) \to (V_b, E_b, \Gamma_b, s_b, \psi_b) \), \(\Lambda_{bcd}, i, j \in I \) are such coordinate changes over \(S \subseteq \text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c \). Define \(\Phi_{ac} = \Phi_{bc} \circ \Phi_{ab} : (V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_c, E_c, \Gamma_c, s_c, \psi_c) \) and \(\Lambda_{aci} = \lambda_{a_{bi}} \circ (\Lambda_{bcd} \ast \text{id}_{\Phi_{ab}}) \circ \alpha_{\Phi_{ic}, \Phi_{ci}, \Phi_{ac}} : \Phi_{ic} \circ \Phi_{ac} \Rightarrow \Phi_{ai} \) for all \(i \in I \). It is easy to show that \(\Phi_{ac} = \Phi_{bc} \circ \Phi_{ab} \), \(\Lambda_{aci}, i \in I \) is a coordinate change from \((V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_c, E_c, \Gamma_c, s_c, \psi_c) \) over \((S, f) \) on \(X \) we call this composition of coordinate changes.

Definition 6.44. Let \(f : X \to Y \) be a 1-morphism of Kuranishi spaces, and use notation \((6.15) \quad \text{for } X, Y, \text{ and } (6.16) \quad \text{for } f \). Suppose \((U_a, D_a, B_a, r_a, \chi_a)\), \(T_{ai}, i \in I\), \(K_{ai'}, i, i' \in J\) is a Kuranishi neighbourhood on \(X \), and \((V_b, E_b, \Gamma_b, s_b, \psi_b)\), \(T_{bj}, j \in J\), \(\Lambda_{b_{jj'}}, j, j' \in J\) is a Kuranishi neighbourhood on \(Y \), as in Definition 6.4. Let \(S \subseteq \text{Im} \chi_a \cap f^{-1}(\text{Im} \psi_b) \) be open. A 1-morphism from \((U_a, D_a, B_a, r_a, \chi_a)\) to \((V_b, E_b, \Gamma_b, s_b, \psi_b)\) over \((S, f)\) on the Kuranishi spaces \(X, Y\) is data \(f_{ab}^{\beta}, f_{ai} : (U_a, D_a, B_a, r_a, \chi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b)\) is a 1-morphism of Kuranishi neighbourhoods over \((S, f)\) in the sense of Definition 6.2 and \(f_{aj}^{\beta} : \Upsilon_{aj} \circ f_{ab} \Rightarrow f_{ij} \circ T_{ai}\) is a 2-morphism over \(S \cap \text{Im} \chi_j \cap f^{-1}(\text{Im} \psi_j)\), \(f\) as in Definition 6.4, for all \(i, j \in J \), such that for all \(i, i' \in I, j, j' \in J \) we have

\[
(f_{ai}^{\beta})^{-1} \circ (f_{i'i'}^\ast \ast \text{id}_{T_{ai}}) = (F_{ai}^{\beta})^{-1} \circ (\text{id}_{f_{i'i'}} \ast K_{ai'i'}) \circ \alpha_{f_{ij}, T_{ai'}, T_{ai}} : \quad (f_{ij} \circ T_{ai'}) \circ T_{ai} \Longrightarrow T_{bj} \circ f_{ab},
\]

\[
F_{ai}^{\beta} \circ (\Lambda_{b_{jj'}} \ast \text{id}_{f_{ab}}) = (F_{ij}^{\beta}) \circ (\text{id}_{\Upsilon_{ij}} \ast \text{id}_{f_{ab}}) \circ \alpha_{\Upsilon_{ij}, T_{ai}} : \quad (\Upsilon_{ij} \circ T_{bj}) \circ f_{ab} \Longrightarrow f_{ij} \circ T_{ai}.
\]

We will usually just say that \(f_{ab} : (U_a, D_a, B_a, r_a, \chi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b) \) is a 1-morphism of Kuranishi neighbourhoods over \((S, f)\) on \(X, Y \), leaving the data \(F_{ai}^{\beta}, i, j \in J \) implicit.

Suppose \(g : Y \to Z \) is another 1-morphism of Kuranishi spaces, using notation \((6.17) \quad \text{for } Z, \) and \((W_c, F_c, \Delta_c, t_c, \omega_c)\) is a Kuranishi neighbourhood on \(Z \), and \(T \subseteq \text{Im} \psi_b \cap g^{-1}(\text{Im} \omega_c) \). \(S \subseteq \text{Im} \chi_a \cap f^{-1}(T) \) are open. \(f_{ab} : (U_a, D_a, B_a, r_a, \chi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b) \) is a 1-morphism of Kuranishi neighbourhoods over \((S, f)\) on \(X, Y \), and \(g_{bc} : (V_b, E_b, \Gamma_b, s_b, \psi_b) \to (W_c, F_c, \Delta_c, t_c, \omega_c)\) is a 1-morphism of Kuranishi neighbourhoods over \((T, g)\) on \(Y, Z \).

Define \(h = g \circ f : X \to Z \), so that Definition 6.22 gives 2-morphisms

\[
\Theta_{ijkl}^g : g_{jk} \circ f_{ij} \Longrightarrow h_{ik},
\]

163
for all $i \in I$, $j \in J$ and $k \in K$. Set $h_{ac} = g_{bc} \circ f_{ab} : (U_a, D_a, B_a, r_a, \chi_a) \rightarrow (W_c, F_c, \Delta_c, t_c, \omega_c)$. Using the stack property Theorem 6.16, we can show that for all i, $k \in K$ there is a unique 2-morphism $H_{ak}^{ij} : \Phi_{ik} \circ h_{ac} \Rightarrow h_{ik} \circ T_{ai}$ over $S \cap \operatorname{Im} \chi_i \cap h^{-1}(\operatorname{Im} \omega_k)$, h, such that for all $j \in J$ we have

$$H_{ak}^{ij} \vert_{S \cap \operatorname{Im} \chi_i \cap h^{-1}(\operatorname{Im} \omega_k)} = (\Theta_{bij} \circ \id_{\tau_{ai}}) \circ \alpha_{g_{bj}, f_{ai}}^{-1} \circ (G_{\Phi_{ik}} \circ \id_{f_{ai}}) \circ \alpha_{\Phi_{ik}, g_{bc}} \circ f_{ab}.$$

It is then easy to prove that $h_{ac} = g_{bc} \circ f_{ab}$, $H_{ai}^{j,k} \in K$ is a 1-morphism from $(U_a, D_a, B_a, r_a, \chi_a)$ to $(W_c, F_c, \Delta_c, t_c, \omega_c)$ over (S, h) on X, Z. We call this composition of 1-morphisms.

As for Theorem 4.56 the next theorem can be proved using the stack property Theorem 6.16 and we leave the proof as an exercise for the reader.

Theorem 6.45. (a) Let $X = (X, K)$ be a Kuranishi space, where $K = (I, (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, \Lambda_{jk})$, and $(V_a, E_a, \Gamma_a, s_a, \psi_a)$, $(V_b, E_b, \Gamma_b, s_b, \psi_b)$ be Kuranishi neighbourhoods on X, in the sense of Definition 6.42 and $S \subseteq \operatorname{Im} \psi_a \cap \operatorname{Im} \psi_b$ be open. Then there exists a coordinate change $\Phi_{ab} : (V_a, E_a, \Gamma_a, s_a, \psi_a)$ to $(V_b, E_b, \Gamma_b, s_b, \psi_b)$, $\Lambda_{ab} \in I$ over S on X, in the sense of Definition 6.43.

If Φ_{ab}, Φ_{ab} are two such coordinate changes, there is a unique 2-morphism $\Xi_{ab} : \Phi_{ab} \Rightarrow \Phi_{ab}$ over S as in Definition 6.44, such that for all $i \in I$ we have

$$\Lambda_{ab} = \tilde{\Lambda}_{ab} \circ (\id_{\Phi_{ai}} \circ \Xi_{ab}) : \Phi_{bi} \circ \Phi_{ab} \Rightarrow \Phi_{ai}, \quad (6.39)$$

which holds over $S \cap \operatorname{Im} \psi_i$ by our usual convention.

(b) Let $f : X \rightarrow Y$ be a 1-morphism of Kuranishi spaces, and use notation (6.15), (6.16), (6.18). Let $(U_a, D_a, B_a, r_a, \chi_a)$, $(V_b, E_b, \Gamma_b, s_b, \psi_b)$ be Kuranishi neighbourhoods on X, Y respectively in the sense of Definition 6.42 and let $S \subseteq \operatorname{Im} \chi_a \cap f^{-1}(\operatorname{Im} \psi_b)$ be open. Then there exists a 1-morphism $f_{ab} : (U_a, D_a, B_a, r_a, \chi_a)$ to $(V_b, E_b, \Gamma_b, s_b, \psi_b)$, $\Lambda_{ab} \in I$ over S on X, Y, in the sense of Definition 6.44.

(c) Let $f, g : X \rightarrow Y$ be 1-morphisms of Kuranishi spaces and $\eta : f \Rightarrow g$ a 2-morphism, and use notation (6.15), (6.16), (6.18) and $\eta = (\eta_{ij}, i \in I, j \in J)$. Suppose $(U_a, D_a, B_a, r_a, \chi_a)$, $(V_b, E_b, \Gamma_b, s_b, \psi_b)$ are Kuranishi neighbourhoods on X, Y, and $S \subseteq \operatorname{Im} \chi_a \cap f^{-1}(\operatorname{Im} \psi_b)$ is open, and $f_{ab}, g_{ab} : (U_a, D_a, B_a, r_a, \chi_a)$ to $(V_b, E_b, \Gamma_b, s_b, \psi_b)$ are 1-morphisms over (S, f), (S, g). Then there is a unique 2-morphism $\eta_{ab} : f_{ab} \Rightarrow g_{ab}$ over (S, f) as in Definition 6.44, such that the following commutes over $S \cap \operatorname{Im} \chi_i \cap f^{-1}(\operatorname{Im} \psi_j)$ for all $i \in I$ and $j \in J$:

$$\begin{array}{ccc}
\Phi_{bij} \circ f_{ab} & \Rightarrow & f_{ij} \circ T_{ai} \\
\| & & \\
\nu_{ab} \circ f_{ab} & \Rightarrow & f_{ij} \circ T_{ai} \\
\| & & \\
\eta_{ij} \circ \id_{\tau_{ai}} & \Rightarrow & \eta_{ij} \circ \id_{\tau_{ai}} \\
\| & & \\
\nu_{ab} \circ g_{ab} & \Rightarrow & g_{ij} \circ T_{ai}.
\end{array}$$

(d) The unique 2-morphisms in (c) are compatible with vertical and horizontal composition and identities. For example, if $f, g, h : X \rightarrow Y$ are 1-morphisms in
Here are the analogues of Theorem 6.48 and Corollary 6.49. They are proved in the same way, but extending from strict to weak 2-categories.

Theorem 6.47. Let $X = (X, \mathcal{K})$ be a Kuranishi space, and $\{ (V_a, E_a, \Gamma_a, s_a, \psi_a) : a \in A \}$ a family of Kuranishi neighbourhoods on X with $X = \bigcup_{a \in A} \text{Im } \psi_a$. For all $a, b, c \in A$, let $\Phi_{ac} : (V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b)$ be a coordinate change over $S = \text{Im } \psi_a \cap \text{Im } \psi_b$ on X given by Theorem 6.45(a), which is unique up to 2-isomorphism; when $a = b$ we choose $\Phi_{ab} = \text{id}_{V_a, E_a, \Gamma_a, s_a, \psi_a}$ and $\Lambda_{aai} = \beta_{\Phi_{ai}}$, for $i \in I$, which is allowed by Theorem 6.45(a).

For all $a, b, c \in A$, both $\Phi_{bc} \circ \Phi_{ab}|_\mathcal{S}$ and $\Phi_{ac}|_\mathcal{S}$ are coordinate changes $(V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_c, E_c, \Gamma_c, s_c, \psi_c)$ over $S = \text{Im } \psi_a \cap \text{Im } \psi_b \cap \text{Im } \psi_c$ on X, so Theorem 6.45(a) gives a unique 2-morphism $\Lambda_{abc} : \Phi_{bc} \circ \Phi_{ab}|_\mathcal{S} \Rightarrow \Phi_{ac}|_\mathcal{S}$. Then $K' = (A, \{ (V_a, E_a, \Gamma_a, s_a, \psi_a) : a \in A, \Phi_{ab}, a, b \in A, \Lambda_{abc}, a, b, c \in A \})$ is a Kuranishi structure on X, and $X' = (X, K')$ is canonically equivalent to X in \mathbf{Kur}.

Corollary 6.48. Let $X = (X, \mathcal{K})$ be a Kuranishi space with $\mathcal{K} = (I, \{ (V_i, E_i, \Gamma_i, s_i, \psi_i) : i \in I \})$. Suppose $J \subseteq I$ with $\bigcup_{j \in J} \text{Im } \psi_j = X$. Then $K' = (J, \{ (V_i, E_i, \Gamma_i, s_i, \psi_i) : i \in J, \Phi_{ij}, i, j \in J, \Lambda_{ijk}, i, j, k \in J \})$ is a Kuranishi structure on X, and $X' = (X, K')$ is canonically equivalent to X in \mathbf{Kur}.

As in 4.7.4, if Man^c satisfies Assumption 3.22 then we can lift Kuranishi neighbourhoods $(V_a, E_a, \Gamma_a, s_a, \psi_a)$ on X in \mathbf{Kur}^c to Kuranishi neighbourhoods $(V_{(k,a)}, E_{(k,a)}, \Gamma_{(k,a)}, s_{(k,a)}, \psi_{(k,a)})$ on $\text{C}_k(X)$ from 6.3 with $\Gamma_{(k,a)} = \Gamma_a$, and we can lift 1-morphisms $f_{ab} : (U_a, D_a, B_a, \tau_a, \chi_a) \to (U_b, D_b, B_b, \tau_b, \psi_b)$ of Kuranishi neighbourhoods over $f : X \to Y$ in \mathbf{Kur}^c to 1-morphisms $f_{(k,a)(l,b)} : (U_{(k,a)}, D_{(k,a)}, B_{(k,a)}, \tau_{(k,a)}, \chi_{(k,a)}) \to (U_{(l,b)}, E_{(l,b)}, \Gamma_{(l,b)}, s_{(l,b)}, \psi_{(l,b)})$ over $C(f) : C(X) \to C(Y)$. We leave the details to the reader. As in 4.7.4, we could now state our philosophy for working with Kuranishi spaces, but we will not.
6.5 Isotropy groups

Next we discuss *isotropy groups* of Kuranishi spaces (also called *orbifold groups*, or *stabilizer groups*). They are also studied for orbifolds, as in [§6.4](#).

Definition 6.49. Let \(X = (X, \mathcal{K})\) be a Kuranishi space, with \(\mathcal{K} = \{ I_i (V_i, E_i, \Gamma_i, s_i, \psi_i) \}_{i \in I}, \Phi_{ij}, i,j \in I, \Lambda_{ijk}, i,j,k \in I \}\), and let \(x \in X\). Choose an arbitrary \(i \in I\) with \(x \in \text{Im} \psi_i\), and choose \(v_i \in s_i^{-1}(0) \subseteq V_i\) with \(\psi_i(v_i) = x\). Define a finite group \(G_x\) called the *isotropy group of \(x\)* as a subgroup of \(\Gamma_i\), by

\[
G_x X = \{ \gamma \in \Gamma_i : \gamma \cdot v_i = v_i \} = \text{Stab}_{\Gamma_i}(v_i). \tag{6.40}
\]

We explain to what extent \(G_x X\) depends on the arbitrary choice of \(i, v_i\). Let \(j, v_j\) be alternative choices, giving another group \(G_x' X = \text{Stab}_{\Gamma_j}(v_j)\). Then we have a coordinate change \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \delta_{ij})\) in \(\mathcal{K}\). Consider the set

\[
S_x = \{ p \in P_{ij} : \pi_{ij}(p) = v_i, \ \phi_{ij}(p) = v_j \}. \tag{6.41}
\]

In Lemma 6.50 below we show that \(G_x X\) and \(G_x' X\) have natural, commuting, free, transitive actions on \(S_x\). Pick \(p \in S_x\). Define an isomorphism of finite groups \(I_x^G : G_x X \to G_x' X\) by \(I_x^G(\gamma) = \gamma'\) if \(\gamma \cdot p = (\gamma')^{-1} \cdot p\) in \(S_x\), using the free, transitive actions of \(G_x X, G_x' X\) on \(S_x\).

Suppose we instead picked \(\tilde{p} \in S_x\), yielding \(I_x^G : G_x X \to G_x'' X\). Since \(G_x'' X\) acts freely transitively on \(S_x\), there is a unique \(\delta \in G_x'' X\) with \(\delta \cdot p = \tilde{p}\). Then we see that \(I_x^G(\gamma) = \delta I_x''(\gamma)\delta^{-1}\) for all \(\gamma \in G_x'' X\).

If \(k, v_k\) is a third choice for \(i, v_i\), yielding a finite group \(G_x''' X = \text{Stab}_{\Gamma_k}(v_k)\), then as above by picking points \(p \in S_x\) we can define isomorphisms

\[
I_x^G : G_x X \to G_x' X, \quad I_x^G : G_x' X \to G_x'' X, \quad I_x^G : G_x'' X \to G_x''' X.
\]

We can show that \(I_x^G \circ I_x^G\) and \(I_x^G\) differ by the action of some canonical \(\delta \in G_x''' X\), as for \(I_x^G, I_x''^G\) above. That is, \(I_x^G \circ I_x^G\) is a possible choice for \(I_x^G\).

To summarize: \(G_x X\) is independent of the choice of \(i, v_i\) up to isomorphism, but not up to canonical isomorphism. There are isomorphisms \(I_x^G : G_x X \to G_x' X\) between any two choices for \(G_x X\), which are canonical up to conjugation by an element of \(G_x'' X\), and behave as expected under composition.

Lemma 6.50. In Definition 6.49 the subset \(S_x \subseteq P_{ij}\) in (6.41) is invariant under the commuting actions of \(G_x X \subseteq \Gamma_i\) and \(G_x' X \subseteq \Gamma_j\) on \(P_{ij}\) induced by the \(\Gamma_i, \Gamma_j\)-actions on \(P_{ij}\), and \(G_x X, G_x' X\) each act freely transitively on \(S_x\).

Proof. If \(\gamma \in G_x X\) and \(p \in S_x\) then \(\pi_{ij}(\gamma \cdot p) = \gamma \cdot \pi_{ij}(p) = \gamma \cdot v_i = v_i\) (as \(\pi_{ij}\) is \(\Gamma_i\)-equivariant and \(\gamma \in \text{Stab}_{\Gamma_i}(v_i)\), and \(\phi_{ij}(\gamma \cdot p) = \phi_{ij}(p) = v_j\) (as \(\phi_{ij}\) is \(\Gamma_i\)-invariant). Hence \(\gamma \cdot p \in S_x\), so \(S_x\) is \(G_x X\)-invariant. If \(\gamma' \in G_x' X\) and \(p \in S_x\) then \(\pi_{ij}(\gamma' \cdot p) = \pi_{ij}(p) = v_i\) (as \(\pi_{ij}\) is \(\Gamma_j\)-invariant), and \(\phi_{ij}(\gamma' \cdot p) = \gamma' \cdot \phi_{ij}(p) = \gamma' \cdot v_j = v_j\) (as \(\phi_{ij}\) is \(\Gamma_j\)-equivariant and \(\gamma' \in \text{Stab}_{\Gamma_j}(v_j)\)). Hence \(\gamma' \cdot p \in S_x\), so \(S_x\) is \(G_x' X\)-invariant. This proves the first part.
Next we prove that S_x is nonempty. As $\pi_{ij} : P_{ij} \to V_{ij} \subseteq V_i$ is a principal Γ_j-bundle and $v_i \in \bar{\psi}_{ij}^{-1}(S) \subseteq V_{ij}$, there exists $p \in P_{ij}$ with $\pi_{ij}(p) = v_i$. Then $\bar{\psi}_{ij} \circ \phi_{ij}(p) = \psi_i \circ \pi_{ij}(p) = \bar{\psi}_i(v_i) = x$, so $\phi_{ij}(p) \in \bar{\psi}_{ij}^{-1}(x)$. Since $\bar{\psi}_j : V_j/\Gamma_j \to \text{Im} \psi_j \subseteq X$ is a homeomorphism, $\bar{\psi}_{ij}^{-1}(x)$ is a Γ_j-orbit in V_j, which contains $\phi_{ij}(p)$ and v_j. Hence $v_j = \gamma_j \cdot \phi_{ij}(p)$ for some $\gamma_j \in \Gamma_j$. But then $\pi_{ij}(\gamma_j \cdot p) = \pi_{ij}(p) = v_i$ (as π_{ij} is Γ_j-invariant) and $\phi_{ij}(\gamma_j \cdot p) = \gamma_j \cdot \phi_{ij}(p) = v_j$ (as ϕ_{ij} is Γ_j-equivariant). Thus $\gamma_j \cdot p \in S_x$, and $S_x \neq \emptyset$.

Suppose $p, p' \in S_x$. Then $p, p' \in \pi_{ij}^{-1}(v_i)$, where Γ_j acts freely and transitively on $\pi_{ij}^{-1}(v_i)$ as $\pi_{ij} : P_{ij} \to V_{ij} \subseteq V_i$ is a principal Γ_j-bundle. Thus there exists a unique $\gamma' \in \Gamma_j$ with $\gamma' \cdot p = p'$. But then

$$\gamma' \cdot v_j = \gamma' \cdot \phi_{ij}(p) = \phi_{ij}(\gamma' \cdot p) = \phi_{ij}(p') = v_j,$$

as $\phi_{ij}(p) = \phi_{ij}(p') = v_j$ and ϕ_{ij} is Γ_j-equivariant. Hence $\gamma' \in \text{Stab}_{\Gamma_j}(v_j) = G'_x X$. Therefore $G'_x X$ acts freely and transitively on S_x.

Finally we show $G_x X$ acts freely transitively on S_x. As Φ_{ij} is a coordinate change over $S = \text{Im} \psi_i \cap \text{Im} \psi_j$, there exist a 1-morphism $\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}) : (V_j, E_j, \Gamma_j, s_j, \psi_j) \to (V_i, E_i, \Gamma_i, s_i, \psi_i)$ and 2-morphisms $\lambda_{ii} : \text{id}_{(V_i, E_i, \Gamma_i, s_i, \psi_i)} \Rightarrow \Phi_{ij} \circ \Phi_{ij}, M_{ij} : \text{id}_{(V_j, E_j, \Gamma_j, s_j, \psi_j)} \Rightarrow \Phi_{ij} \circ \Phi_{ij}$ over S. Choose representatives $(\hat{P}_{ii}, \lambda_{ii}, \hat{\lambda}_{ii})$ and $(\hat{P}_{ij}, \mu_{ij}, \hat{\mu}_{ij})$ for λ_{ii}, M_{ij}. Consider:

$$\lambda_{ii}|_{\{v_i\} \times \Gamma_i} : \{v_i\} \times \Gamma_i \xrightarrow{=} \{ (p, q) \in P_{ij} \times P_{ij} : \pi_{ij}(p) = v_i, \phi_{ij}(p) = \pi_{ii}(q) \} / \Gamma_i \cong \{ (p, q) \in P_{ij} \times P_{ij} : \pi_{ij}(p) = v_i, \phi_{ij}(p) = \pi_{ii}(q) = v_j \} / G_x X = \{ (p, q) \in S_x \times P_{ij} : \pi_{ij}(q) = v_j \} / G_x X.$$

(6.42)

Here both $\text{id}_{(V_i, E_i, \Gamma_i, s_i, \psi_i)}$ and $\Phi_{ij} \circ \Phi_{ij}$ include a principal Γ_i-bundle over an open neighbourhood of $\psi_i^{-1}(S)$ in V_i, and λ_{ii} is an isomorphism between them; the top line of (6.42) is this isomorphism restricted to the fibres over v_i. In the second line we use that $\phi_{ij}(p) = \pi_{ii}(q)$ lies in the Γ_j-orbit of v_j as $\pi_{ij}(p) = v_i$, and $\pi_{ij} : P_{ij} \to V_j$ is Γ_j-equivariant, and $G_x X = \text{Stab}_{\Gamma_j}(v_j)$. In the third line we use (6.41). Similarly we show that

$$\mu_{jj}|_{\{v_j\} \times \Gamma_j} : \{v_j\} \times \Gamma_j \xrightarrow{=} \{ (q, p) \in P_{ji} \times P_{ji} : \phi_{ij}(p) = v_j, \phi_{ji}(q) = \pi_{ij}(p) = v_i \} / \Gamma_i \cong \{ (q, p) \in P_{ji} \times P_{ji} : \phi_{ij}(p) = v_j, \phi_{ji}(q) = \pi_{ij}(p) = v_i \} / G_x X = \{ (p, q) \in S_x \times P_{ji} : \phi_{ij}(q) = v_i \} / G_x X.$$

(6.43)

Now the top line of (6.42) is equivariant under two commuting Γ_i-actions. On the left hand side these act by left and right Γ_i-multiplication on $\{v_i\} \times \Gamma_i$, so are free and transitive. On the right they act by Γ_i-multiplication on $P_{ij} \ni p$ and $P_{ji} \ni q$. Restricting the free Γ_i-action on P_{ij} to a free $G_x X$-action, this free $G_x X$-action descends to the second and third lines of (6.42), so we see that $G_x X$ acts freely on S_x.

Similarly, the top line of (6.43) has two transitive actions of Γ_j. The action on $P_{ji} \ni q$ descends to a transitive Γ_j-action on the second and third lines. Therefore $\Gamma_j \setminus (\phi_{ji}^{-1}(v_i) \times S_x) / G_x X \cong (\phi_{ji}^{-1}(v_i) / \Gamma_j) \times (S_x / G_x X)$ is a point, so $S_x / G_x X$ is a point, and $G_x X$ acts transitively on S_x.

\[\square\]
We discuss functoriality of the \(G_z X \) under 1- and 2-morphisms.

Definition 6.51. Let \(f : X \to Y \) be a 1-morphism of Kuranishi spaces, with notation \(^{6.15}, 6.16, 6.18\), and let \(x \in X \) with \(f(x) = y \) in \(Y \). Then Definition \(^{6.49}\) gives isotropy groups \(G_x X \), defined using \(i \in f \) and \(u_i \in U_i \) with \(\chi_i(u_i) = x_i \) and \(G_y Y \), defined using \(j \in f \) and \(v_j \in V_j \) with \(\psi_j(v_j) = y_i \). In \(f \) we have a 1-morphism \(f_{ij} = (\hat{P}_{ij}, \pi_{ij}, f_{ij}, \tilde{f}_{ij}) \) over \(f \). As in \(^{6.41}\), define

\[
S_{x,f} = \{ p \in P_{ij} : \pi_{ij}(p) = u_i, f_{ij}(p) = v_j \}.
\]

Following the first part of the proof of Lemma \(^{6.50}\) we find that \(S_{x,f} \) is invariant under the commuting actions of \(G_x X = \text{Stab}_{B_i}(u_i) \subseteq B_i \) and \(G_y Y = \text{Stab}_{F_j}(v_j) \subseteq F_j \) on \(P_{ij} \) induced by the \(B_i, F_j \)-actions on \(P_{ij} \). But this time, \(G_y Y \) acts freely transitively on \(S_{x,f} \), but \(G_x X \) need not act freely or transitively.

Pick \(p \in S_{x,f} \). As for \(f_{ij}^G \) in Definition \(^{6.49}\), define a group morphism \(G_x f : G_x X \to G_y Y \) by \(G_x f(\gamma) = \gamma' \) if \(\gamma \cdot p = (\gamma')^{-1} \cdot p \) in \(S_{x,f} \), using the actions of \(G_x X, G_y Y \) on \(S_{x,f} \) with \(G_y Y \) free and transitive.

If \(\tilde{p} \in S_{x,f} \) is an alternative choice for \(p \), yielding \(\tilde{G} : G_x X \to G_y Y \), there is a unique \(\delta \in G_y Y \) with \(\delta \cdot p = \tilde{p} \), and then \(\tilde{G} f(\gamma) = \delta(G_x f(\gamma))\delta^{-1} \) for all \(\gamma \in G_x X \). That is, the morphism \(G_x f : G_x X \to G_y Y \) is canonical up to conjugation by an element of \(G_y Y \).

Continuing with the same notation, suppose \(g : X \to Y \) is another 1-morphism and \(\eta : f \Rightarrow g \) a 2-morphism in \(\text{Kur} \). Then above we define \(G_x g \) by choosing an arbitrary point \(q \in S_{x,g} \), where

\[
S_{x,g} = \{ q \in Q_{ij} : \pi_{ij}(q) = u_i, \ g_{ij}(q) = v_j \},
\]

with \(g_{ij} = (Q_{ij}, \pi_{ij}, g_{ij}, \hat{g}_{ij}) \) in \(g \). In \(\eta \) we have \(\eta_{ij} = [\hat{P}_{ij}, \eta_{ij}, \hat{\eta}_{ij}] \) represented by \((\hat{P}_{ij}, \eta_{ij}, \hat{\eta}_{ij}) \), where \(\hat{P}_{ij} \subseteq P_{ij} \) and \(\eta_{ij} : \hat{P}_{ij} \to Q_{ij} \). From the definitions we find that \(S_{x,f} \subseteq \hat{P}_{ij} \), and \(\hat{S}_{S_{x,f}, g_{ij}} : S_{x,f} \to S_{x,g} \) is a bijection. Since \(G_y Y \) acts freely and transitively on \(S_{x,g} \), there is a unique element \(G_x \eta \in G_y Y \) with \(G_x \eta \cdot \eta_{ij}(p) = q \). One can now check that

\[
G_x g(\gamma) = (G_x \eta)(G_x f(\gamma))(G_x \eta)^{-1}
\]

for all \(\gamma \in G_x X \).

That is, \(G_x g \) is conjugate to \(G_x f \) under \(G_x \eta \in G_y Y \), the same indeterminacy as in the definition of \(G_x f \).

Suppose instead that \(g : Y \to Z \) is another 1-morphism of Kuranishi spaces and \(g(y) = z \in Z \). Then in a similar way we can show there is a canonical element \(G_x g \in G_x Z \) such that for all \(\gamma \in G_x X \) we have

\[
G_x (g \circ f)(\gamma) = (G_x g \circ f)(\gamma)(G_x g \circ f)^{-1}.
\]

That is, \(G_x g \circ f \) is conjugate to \(G_x f \circ G_x g \) under \(G_x g, f \in G_x Z \).

Since 2-morphisms \(\eta : f \Rightarrow g \) relate \(G_x f \) and \(G_x g \) by isomorphisms, if \(f : X \to Y \) is an equivalence in \(\text{Kur} \) then \(G_x f \) is an isomorphism for all \(x \in X \).
Remark 6.52. The definitions of $G_x X, G_x f$ above depend on arbitrary choices. We could use the Axiom of (Global) Choice as in Remark 4.21 to choose particular values for $G_x X, G_x f$ for all x, x, f. But this is not really necessary, we can just bear the non-uniqueness in mind when working with them. All the definitions we make using $G_x X, G_x f$ will be independent of the arbitrary choices in Definitions 6.49 and 6.51.

Definition 6.53. (a) We call a 1-morphism $f : X \to Y$ in \mathbb{K}_{Kur} representable if $G_x f : G_x X \to G_y Y$ is injective for all $x \in X$.

(b) Write $\mathbb{K}_{\text{Kur}}^{-G} \subset \mathbb{K}_{\text{Kur}}$ for the full 2-subcategory of X in \mathbb{K}_{Kur} with trivial isotropy groups, that is, with $G_x X = \{1\}$ for all $x \in X$.

In Example 6.36 we defined a weak 2-functor $F^{\text{Kur}}_{\text{mKur}} : \text{mKur} \to \text{Kur}$. If $X \in \text{mKur}$ and $X' = F^{\text{Kur}}_{\text{mKur}} (X)$ then X' has Kuranishi neighbourhoods $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ with $\Gamma_i = \{1\}$, so clearly $G_x X' = \{1\}$ for all $x \in X'$ as $G_x X \subseteq \Gamma_i$ for some $i \in I$, and thus $F^{\text{Kur}}_{\text{mKur}}$ maps $\text{mKur} \to \text{Kur}_{\text{tr}G}$, so we may write it as $F^{\text{Kur}}_{\text{mKur}} : \text{mKur} \to \text{Kur}_{\text{tr}G}$.

Theorem 6.54. The weak 2-functor $F^{\text{Kur}_{\text{tr}G}}_{\text{mKur}} : \text{mKur} \to \text{Kur}_{\text{tr}G}$ from Example 6.36 is an equivalence of 2-categories.

Proof. By construction, $F^{\text{Kur}}_{\text{mKur}}$ is an equivalence from mKur to the full 2-subcategory $\text{Kur}_{\text{tr}G} \subset \text{Kur}_{\text{tr}G} \subset \text{Kur}$ of Kuranishi spaces $X = (X, \mathcal{K})$ such that all Kuranishi neighbourhoods $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ in \mathcal{K} have $\Gamma_i = \{1\}$. Thus, to show that $F^{\text{Kur}}_{\text{mKur}} : \text{mKur} \to \text{Kur}_{\text{tr}G}$ is an equivalence, it is enough to prove that the inclusion $\text{Kur}_{\text{tr}G} \subset \text{Kur}_{\text{tr}G}$ is an equivalence. That is, if X is an object of $\text{Kur}_{\text{tr}G}$, we must find $X' \in \text{Kur}_{\text{tr}G}$ with $X' \cong X$ in $\text{Kur}_{\text{tr}G}$.

Write $X = (X, \mathcal{K})$ with $\mathcal{K} = \{I, (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij, i,j \in I}, \Lambda_{ijk, i,j,k \in I}\}$. Let $x \in X$. Then there exists $i \in I$ with $x \in \text{Im} \psi_i$. Pick $v \in s_i^{-1}(0) \subseteq V_i$ with $\psi_i(v) = x$. Then $\text{Stab}_{\Gamma_i}(v) \cong G_x X = \{1\}$, so Γ_i acts freely on V_i near v. Using Γ_i finite and V_i Hausdorff, we can choose an open neighbourhood W_x of v in V_i such that $W_x \cap (\gamma \cdot W_x) = \emptyset$ for all $1 \neq \gamma \in \Gamma_i$. Set $F_x = E_i|_{W_x}$, and $\Delta_x = \{1\}$, and $t_x = s_i|_{W_x}$. Define $\omega_x : t_x^{-1}(0) \to X$ to be the composition

$$t_x^{-1}(0) \xrightarrow{v \mapsto v \Gamma} s_i^{-1}(0)/\Gamma_i \xrightarrow{\psi_i} X.$$

(6.45)

Since $W_x \cap (\gamma \cdot W_x) = \emptyset$ for all $1 \neq \gamma \in \Gamma_i$, the first map in (6.45) is a homeomorphism with an open subset, and the second map ψ_i is too by Definition 6.1(e). Hence ω_x is a homeomorphism with an open subset $\text{Im} \omega_x \subset X$. Thus $(W_x, F_x, \Delta_x, \omega_x)$ is a Kuranishi neighbourhood on X, with $x \in \text{Im} \omega_x$.

Now define $Q_x = W_x \times \Gamma_i$, considered as an object in Man which is the disjoint union of $|\Gamma_i|$ copies of W_x. Let Γ_i act on Q_x by the trivial action on W_x and left action on Γ_i, and let $\Delta_x = \{1\}$ act trivially on Q_x. Define morphisms $\pi_{x,i} : W_x \times \Gamma_i \to W_x$ and $\nu_{x,i} : W_x \times \Gamma_i \to V_i$ such that $\pi_{x,i} : (v, \gamma) \mapsto v \in W_x$ and

\[\nu_{x,i} : \]
\[\pi_{x_i} : (v, \gamma) \mapsto \gamma \cdot v \in V_i \] on points. That is, \(\pi_{x_i} \) is the projection \(W_x \times \Gamma_i \to W_x \), and on \(W_x \times \{ \gamma \} \), \(v_{x_i} \) is the composition of the inclusion \(W_x \hookrightarrow V_i \) and the group action \(\gamma : v \mapsto \gamma \cdot v \). Define a vector bundle morphism \(\hat{\pi}_{x_i} : \pi_{x_i}^*(E) \to v_{x_i}^*(E_i) \) such that for each \(\gamma \in \Gamma_i \), \(\hat{\pi}_{x_i}|_{W_x \times \{ \gamma \}} \) is the action of \(\gamma \) on \(E_i \), restricted to a map \(\gamma : E_i|_{W_x} \to E_i|_{\gamma \cdot W_x} \).

It is now easy to check that \(\Upsilon_{x_i} := (Q_{x_i}, \pi_{x_i}, v_{x_i}, \hat{\pi}_{x_i}) \) is a 1-morphism of Kuranishi neighbourhoods \(\Upsilon_{x_i} : (W_x, F_x, \Delta_x, t_x, \omega_x) \to (V_i, E_i, \Gamma_i, s_i, \psi_i) \) over \(\text{Im} \omega_x \subseteq X \). Furthermore, \(\Upsilon_{x_i} := (Q_{x_i}, v_{x_i}, \pi_{x_i}, \hat{\pi}_{x_i}^{-1}) \) is a 1-morphism of Kuranishi neighbourhoods \(\Upsilon_{x_i} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (W_x, F_x, \Delta_x, t_x, \omega_x) \) over \(\text{Im} \omega_x \). There are obvious 2-morphisms \(\eta_{x_i} : \Upsilon_{x_i} \circ \Upsilon_{x_i} \Rightarrow \id_{(V_i, E_i, \Gamma_i, s_i, \psi_i)} \) and \(\zeta_{x_i} : \Upsilon_{x_i} \circ \Upsilon_{x_i} \Rightarrow \id_{(V_i, E_i, \Gamma_i, s_i, \psi_i)} \) over \(\text{Im} \omega_x \). Hence \(\Upsilon_{x_i} \) and \(\Upsilon_{x_i} \) are coordinate changes over \(\text{Im} \omega_x \).

Next we use the ideas of \[6.4 \] For each \(j \in I \) define a coordinate change \(\Phi_{x_j} := \Phi_{x_j} \circ \Upsilon_{x_i} : (W_x, F_x, \Delta_x, t_x, \omega_x) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) over \(\text{Im} \omega_x \cap \text{Im} \psi_j \subseteq X \), and for all \(j, k \in I \) define a 2-morphism \(\Lambda_{x_jk} : \Phi_{xjk} \circ \Phi_{xj} \Rightarrow \Phi_{xk} \) by the commutative diagram

\[
\begin{array}{c}
\Phi_{xjk} \circ \Phi_{xj} \\
\downarrow \Lambda_{xjk} \downarrow \Lambda_{xjk} \\
\Phi_{xjk} \circ (\Phi_{xj} \circ \Upsilon_{x_i}) \\
\xrightarrow{\alpha_{xjk}^{-1}} \Phi_{xjk} \circ \Phi_{xj} \circ \Upsilon_{x_i}
\end{array}
\]

Using Definition \[6.17 \] (h) for the \(\Lambda_{xjk} \) and properties of 2-categories we find that these \(\Phi_{xj} \), \(\Lambda_{xjk} \) satisfy \[6.37 \], so that \((W_x, F_x, \Delta_x, t_x, \omega_x) \), \(\Phi_{xj} \), \(\Lambda_{xjk} \) is a Kuranishi neighbourhood on the Kuranishi space \(X \), in the sense of Definition \[6.42 \].

Thus we have a family \((W_x, F_x, \Delta_x, t_x, \omega_x) \) for \(x \in X \) of Kuranishi neighbourhoods on \(X \) which cover \(X \). Hence Theorem \[6.47 \] constructs a Kuranishi space \(X' = (X, K') \) equivalent to \(X \) in \(\text{Kur} \), such that \(K' \) has Kuranishi neighbourhoods \((W_x, F_x, \Delta_x, t_x, \omega_x) \) for \(x \in X \). Since \(\Delta_x = \{ 1 \} \) for all \(x \), this \(X' \) lies in \(\text{Kur}_{\text{trG}} \subset \text{Kur}_{\text{trG}} \), which proves Theorem \[6.54 \].

6.6 Orbifolds and Kuranishi spaces

We have said that Kuranishi spaces are an orbifold version of m-Kuranishi spaces, and should be regarded as ‘derived orbifolds’, just as m-Kuranishi spaces are a kind of ‘derived manifold’, as in \[4.18 \]. We now explore the relationship between orbifolds and Kuranishi spaces in more detail. As we explain in \[6.6.1 \] there are many different definitions of orbifolds in the literature, most of which are known to be equivalent at the level of categories or 2-categories.

To relate orbifolds and Kuranishi spaces, we find it convenient to give our own, new definition of a 2-category of orbifolds \(\text{Orb}_{\text{Kur}} \) in \[6.6.2 \], which is basically the 2-subcategory \(\text{Orb}_{\text{Kur}} \subset \text{Kur} \) of Kuranishi spaces \(X \) all of whose Kuranishi neighbourhoods \((V_i, E_i, \Gamma_i, s_i, \psi_i) \) have \(E_i = s_i = 0 \), and then to show \(\text{Orb}_{\text{Kur}} \) is equivalent to the 2-categories of orbifolds defined by other authors.
6.6.1 Definitions of orbifolds in the literature

Orbifolds are generalizations of manifolds locally modelled on \mathbb{R}^n/G, for G a finite group acting linearly on \mathbb{R}^n. They were introduced by Satake [97], who called them ‘V-manifolds’. Later they were studied by Thurston [105, Ch. 13] who gave them the name ‘orbifold’.

As for Kuranishi spaces, defining orbifolds \mathcal{X}, \mathcal{Y} and smooth maps $f : \mathcal{X} \to \mathcal{Y}$ was initially problematic, and early definitions of ordinary categories of orbifolds had some bad differential-geometric behaviour (e.g. for some definitions, one cannot define pullbacks $f^*(\mathcal{E})$ of orbifold vector bundles $\mathcal{E} \to \mathcal{Y}$). It is now generally agreed that it is best to define orbifolds to be a 2-category. See Lerman [72] for a good overview of ways to define orbifolds.

There are three main definitions of ordinary categories of orbifolds:

(a) Satake [97] and Thurston [105] defined an orbifold \mathcal{X} to be a Hausdorff topological space \mathcal{X} with an atlas $\{(V_i, \Gamma_i, \psi_i) : i \in I\}$ of orbifold charts (V_i, Γ_i, ψ_i), where V_i is a manifold, Γ_i a finite group acting smoothly (and locally effectively) on V_i, and $\psi : V_i/\Gamma_i \to X$ a homeomorphism with an open set in X, and pairs of charts $(V_i, \Gamma_i, \phi_i), (V_j, \Gamma_j, \phi_j)$ satisfy compatibility conditions on their overlaps in X. Smooth maps $f : \mathcal{X} \to \mathcal{Y}$ between orbifolds are continuous maps $f : \mathcal{X} \to \mathcal{Y}$ of the underlying spaces, which lift locally to smooth maps on the charts, giving a category Orb_{ST}.

(b) Chen and Ruan [12, §4] defined orbifolds \mathcal{X} in a similar way to [97, 105], but using germs of orbifold charts (V_p, Γ_p, ψ_p) for $p \in \mathcal{X}$. Their morphisms $f : \mathcal{X} \to \mathcal{Y}$ are called good maps, giving a category Orb_{CR}.

(c) Moerdijk and Pronk [89, 90] defined a category of orbifolds Orb_{MP} as proper étale Lie groupoids in Man. Their definition of smooth map $f : \mathcal{X} \to \mathcal{Y}$, called strong maps [90, §5] is complicated: it is an equivalence class of diagrams $\mathcal{X} \xleftarrow{\phi} \mathcal{X}' \xrightarrow{\psi} \mathcal{Y}$, where \mathcal{X}' is a third orbifold, and ϕ, ψ are morphisms of groupoids with ϕ an equivalence (loosely, a diffeomorphism).

A book on orbifolds in the sense of [12, 89, 90] is Adem, Leida and Ruan [1]. There are four main definitions of 2-categories of orbifolds:

(i) Pronk [96] defines a strict 2-category LieGpd of Lie groupoids in Man as in (c), with the obvious 1-morphisms of groupoids, and localizes by a class of weak equivalences \mathcal{W} to get a weak 2-category $\text{Orb}_{\text{Pr}} = \text{LieGpd}[\mathcal{W}^{-1}]$.

(ii) Lerman [72, §3.3] defines a weak 2-category Orb_{Le} of Lie groupoids in Man as in (c), with a non-obvious notion of 1-morphism called ‘Hilsum–Skandalis morphisms’ involving ‘bibundles’, and does not need to localize.

Henriques and Metzler [44] also use Hilsum–Skandalis morphisms. We used Hilsum–Skandalis morphisms in our 1-morphisms of Kuranishi neighbourhoods in §6.1 as in Remark 6.15(ii).

(iii) Behrend and Xu [4, §2], Lerman [72, §4] and Metzler [88, §3.5] define a strict 2-category of orbifolds $\text{Orb}_{\text{ManSta}}$ as a class of Deligne–Mumford
stochastic on the site \((\text{Man}, J_{\text{Man}})\) of manifolds with Grothendieck topology \(J_{\text{Man}}\) coming from open covers.

(iv) The author \cite{65} defines a strict 2-category of orbifolds \(\text{Orb}_{C^{\infty}\text{Sta}}\) as a class of Deligne–Mumford stacks on the site \((C^{\infty}\text{Sch}, J_{C^{\infty}\text{Sch}})\) of \(C^{\infty}\)-schemes.

As in Behrend and Xu \cite{4}, §2.6], Lerman \cite{72], Pronk \cite{96], and the author \cite{65]. Th. 7.20], approaches (i)–(iv) give equivalent weak 2-categories \(\text{Orb}_{\text{Pr}}\), \(\text{Orb}_{\text{Le}}\), \(\text{Orb}_{\text{ManSta}}\), \(\text{Orb}_{C^{\infty}\text{Sta}}\). As they are equivalent, the differences between them are not of mathematical importance, but more a matter of convenience or taste. Properties of localization also imply that \(\text{Orb}_{\text{MP}} \simeq \text{Ho}(\text{Orb}_{\text{Pr}})\). Thus, all of (c) and (i)–(iv) are equivalent at the level of homotopy categories.

In \cite{6.6.2} we give a fifth definition of a weak 2-category of orbifolds, similar to (ii) above, which is a special case of our definition of Kuranishi spaces.

6.6.2 The weak 2-category of orbifolds \(\text{Orb}\)

In a similar way to (i)–(iv) in \cite{6.6.1} we now give a fifth definition of a weak 2-category of orbifolds, essentially as a full 2-subcategory \(\text{Orb}_{Kur} \subset \text{Kur}\), and we will show that \(\text{Orb}_{Kur}\) is equivalent to \(\text{Orb}_{\text{Pr}}, \text{Orb}_{\text{Le}}, \text{Orb}_{\text{ManSta}}, \text{Orb}_{C^{\infty}\text{Sta}}\) in \cite{6.6.1}i)–(iv). This provides a convenient way to relate orbifolds and Kuranishi spaces. Fukaya et al. \cite{30}, \cite{9} and McDuff \cite{78} also define (effective) orbifolds as special examples of their notions of Kuranishi space/Kuranishi atlas.

The basic idea is that orbifolds \(\mathcal{X}\) in \(\text{Orb}_{Kur}\) are just Kuranishi spaces \(\mathcal{X} = (X, K)\) with \(K = (I, (V_i, E_i, \Gamma_i, s_i, \psi_i))_{i \in I}\), \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \phi'_{ij})_{i,j \in I}\), \(\Lambda_{ijk} = [\tilde{P}_{ijk}, \lambda_{ijk}, \tilde{\lambda}_{ijk}]\), for which the obstruction bundles \(E_i \to V_i\) are zero for all \(i \in I\), so that the sections \(s_i\) are also zero. This allows us to simplify the notation a lot. Equations in \cite{6.6} involving error terms \(O(\pi_{ij}^2(s_i))\) or \(O(\pi_{ij}^2(s_i^2))\) become exact, as \(s_i = 0\).

As \(E_i, s_i\) are zero we can take ‘orbifold charts’ to be \((V_i, \Gamma_i, \psi_i)\). As \(\tilde{\phi}_{ij} = 0\) we can take coordinate changes to be \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij})\), and we can also take \(V_i = \pi_{ij}(P_{ij})\) to be equal to \(\tilde{\psi}_i^{-1}(S)\), rather than just an open neighbourhood of \(\tilde{\psi}_i^{-1}(S)\) in \(V_i\), since \(\tilde{\psi}_i^{-1}(S)\) is open in \(V_i\) when \(s_i = 0\). For 2-morphisms \(\Lambda_{ijk} = [\tilde{P}_{ijk}, \lambda_{ijk}, \tilde{\lambda}_{ijk}] : \Phi_{ij} \Rightarrow \Phi'_{ij}\) in \cite{6.6.1}, we have \(\tilde{\lambda}_{ij} = 0\), and we are forced to take \(\tilde{P}_{ij} = P_{ij}\), and the equivalence relation \(\sim\) in Definition \(\ref{6.4}\) becomes trivial, so we can take 2-morphisms to be just \(\lambda_{ij}\).

Section \(\ref{6.6.1}\) discussed only orbifolds modelled on classical manifolds, as almost all the literature on orbifolds concerns only these. However, we will construct a weak 2-category of ‘orbifolds’ \(\text{Orb}\) corresponding to any category of ‘manifolds’ \(\text{Man}\) satisfying Assumptions \(\ref{3.1} \ref{3.3}\). When \(\text{Man} = \text{Man}^\circ\) this gives a 2-category \(\text{Orb}_{Kur}^\circ\) equivalent to the 2-categories of orbifolds discussed in \cite{6.6.1}. When \(\text{Man} = \text{Man}^\circ\) we get a 2-category \(\text{Orb}^\circ\) of orbifolds with corners, and so on. From here until Proposition \(\ref{6.6.2}\) we fix a category \(\text{Man}\) satisfying Assumptions \(\ref{3.1} \ref{3.3}\). As usual we will call objects \(X \in \text{Man}\) ‘manifolds’, and morphisms \(f : X \to Y\) in \(\text{Man}\) ‘smooth maps’.
Definition 6.55. Let X be a topological space. An orbifold chart on X is a triple (V, Γ, ψ), where V is a manifold (object in Man), Γ is a finite group with a smooth action on V (that is, an action by isomorphisms in Man), and ψ is a homeomorphism from the topological space V/Γ to an open subset $\text{Im} \psi$ in X. We write $\psi : V \to X$ for the composition of ψ with the projection $V \to V/\Gamma$.

We call an orbifold chart (V, Γ, ψ) effective if the action of Γ on V is locally effective, that is, no nonempty open set $U \subseteq V$ is fixed by $1 \neq \gamma \in \Gamma$.

Definition 6.56. Let X, Y be topological spaces, $f : X \to Y$ a continuous map, $(V_i, \Gamma_i, \psi_i), (V_j, \Gamma_j, \psi_j)$ be orbifold charts on X, Y respectively, and $S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X$ be an open set. A 1-morphism $\Phi_{ij} : (V_i, \Gamma_i, \psi_i) \to (V_j, \Gamma_j, \psi_j)$ of orbifold charts over (S, f) is a triple $\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij})$ satisfying:

(a) P_{ij} is a manifold (object in Man), with commuting smooth actions of Γ_i, Γ_j (that is, with a smooth action of $\Gamma_i \times \Gamma_j$), with the Γ_j-action free.

(b) $\pi_{ij} : P_{ij} \to V_i$ is a smooth map (morphism in Man) which is Γ_i-equivariant, Γ_j-invariant, and étale (a local diffeomorphism), with $\pi_{ij}(P_{ij}) = \tilde{\psi}_i^{-1}(S)$. The fibres $\pi_{ij}^{-1}(v)$ of π_{ij} for $v \in \tilde{\psi}_i^{-1}(S)$ are Γ_j-orbits, so that $\phi_{ij} : P_{ij} \to \tilde{\psi}_i^{-1}(S)$ is a principal Γ_j-bundle, with $\tilde{\psi}_i^{-1}(S)$ an open submanifold of V_i.

(c) $\phi_{ij} : P_{ij} \to V_j$ is a Γ_j-invariant and Γ_j-equivariant smooth map, that is, $\phi_{ij}(\gamma_i \cdot p) = \phi_{ij}(p)$, $\phi_{ij}(\gamma_j \cdot p) = \gamma_j \cdot \phi_{ij}(p)$ for all $\gamma_i \in \Gamma_i, \gamma_j \in \Gamma_j, p \in P_{ij}$.

(d) $f \circ \phi_{ij} = \psi_j \circ \phi_{ij} : P_{ij} \to Y$.

If $X = Y$ and $f = \text{id}_X$ then we call Φ_{ij} a coordinate change over S if also:

(e) The Γ_i-action on P_{ij} is free, $\phi_{ij} : P_{ij} \to V_j$ is étale, and the fibres $\phi_{ij}^{-1}(v')$ of ϕ_{ij} for $v' \in \tilde{\psi}_i^{-1}(S)$ are Γ_i-orbits, so that $\phi_{ij} : P_{ij} \to \tilde{\psi}_i^{-1}(S)$ is a principal Γ_i-bundle, with $\tilde{\psi}_i^{-1}(S)$ an open submanifold of V_j.

Then Φ_{ij} is a ‘Hilsum–Skandalis morphism’, as in §6.6.1 If $(P_{ij}, \pi_{ij}, \phi_{ij}) : (V_i, \Gamma_i, \psi_i) \to (V_j, \Gamma_j, \psi_j)$ is a coordinate change over S, then $(P_{ij}, \pi_{ij}, \phi_{ij}) : (V_j, \Gamma_j, \psi_j) \to (V_i, \Gamma_i, \psi_i)$ is also a coordinate change over S.

If $S \subseteq \text{Im} \psi_i \subseteq X$ is open, we define the identity coordinate change over S

$$\text{id}_{(V_i, \Gamma_i, \psi_i)} : (V_i, \Gamma_i, \psi_i) \to (V_i, \Gamma_i, \psi_i),$$

where $\tilde{\psi}_i^{-1}(S) \subseteq V_i$ is an open submanifold, and $\pi_{ii}, \phi_{ii} : \tilde{\psi}_i^{-1}(S) \times \Gamma_i \to V_i$ map $\pi_{ii} : (v, \gamma) \mapsto v$ and $\phi_{ii} : (v, \gamma) \mapsto \gamma \cdot v$.

Definition 6.57. Let $\Phi_{ij}, \Phi'_{ij} : (V_i, \Gamma_i, \psi_i) \to (V_j, \Gamma_j, \psi_j)$ be 1-morphisms of orbifold charts over (S, f), where $\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij})$ and $\Phi'_{ij} = (P'_{ij}, \pi'_{ij}, \phi'_{ij})$. A 2-morphism $\lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}$ is a Γ_i- and Γ_j-equivariant diffeomorphism $\lambda_{ij} : P_{ij} \to P'_{ij}$ with $\pi'_{ij} \circ \lambda_{ij} = \pi_{ij}$ and $\phi'_{ij} \circ \lambda_{ij} = \phi_{ij}$. That is, 2-morphisms are just isomorphisms preserving all the structure, in the most obvious way.

The identity 2-morphism $\text{id}_{\Phi_{ij}} : \Phi_{ij} \Rightarrow \Phi_{ij}$ is $\text{id}_{P_{ij}} : P_{ij} \to P_{ij}$.
Definition 6.58. Let X, Y, Z be topological spaces, $f : X \to Y$, $g : Y \to Z$ be continuous maps, $(V_i, \Gamma_i, \psi_i), (V_j, \Gamma_j, \psi_j), (V_k, \Gamma_k, \psi_k)$ be orbifold charts on X, Y, Z respectively, and $T \subseteq \text{Im } \psi_j \cap g^{-1}(\text{Im } \psi_k) \subseteq Y$ and $S \subseteq \text{Im } \psi_i \cap f^{-1}(T) \subseteq X$ be open. Suppose $\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}) : (V_i, \Gamma_i, \psi_i) \to (V_j, \Gamma_j, \psi_j)$ is a 1-morphism of orbifold charts over (S, f), and $\Phi_{jk} = (P_{jk}, \pi_{jk}, \phi_{jk}) : (V_j, \Gamma_j, \psi_j) \to (V_k, \Gamma_k, \psi_k)$ is a 1-morphism of orbifold charts over (T, g).

Consider the diagram in \textbf{Man}:

\[
\begin{array}{ccc}
\Gamma_i \times \Gamma_j & \xrightarrow{\pi_{ij}} & P_{ij} \\
\downarrow & & \downarrow \\
V_j & \xrightarrow{\phi_{ij}} & V_k \\
\end{array}
\]

Here as π_{jk} is étale one can show that the fibre product $P_{ij} \times_{V_j} P_{jk}$ exists in \textbf{Man} using Assumptions 3.3 (c) and 3.3 (b). We have shown the actions of various combinations of Γ_i, Γ_j, Γ_k on each space. In fact $\Gamma_i \times \Gamma_j \times \Gamma_k$ acts on the whole diagram, with all maps equivariant, but we have omitted the trivial actions (for instance, Γ_j, Γ_k act trivially on V_i).

As Γ_j acts freely on P_{ij}, it also acts freely on $P_{ij} \times_{V_j} P_{jk}$. Using Assumption 3.3 and the facts that $P_{ij} \times_{V_j} P_{jk}$ is Hausdorff and Γ_j is finite, we can show that the quotient $P_{ik} := (P_{ij} \times_{V_j} P_{jk})/\Gamma_j$ exists in \textbf{Man}, with projection $\Pi : P_{ij} \times_{V_j} P_{jk} \to P_{ik}$. The commuting actions of Γ_i, Γ_k on $P_{ij} \times_{V_j} P_{jk}$ descend to commuting actions of Γ_i, Γ_k on P_{ik}, such that Π is Γ_i- and Γ_k-equivariant. As $\pi_{ij} \circ \pi_{jk} : P_{ij} \times_{V_j} P_{jk} \to V_i$ and $\phi_{jk} \circ \pi_{jk} : P_{ij} \times_{V_j} P_{jk} \to V_k$ act independently of Γ_j, they factor through Π, so there are unique smooth maps $\pi_{ik} : P_{ik} \to V_i$ and $\phi_{ik} : P_{ik} \to V_k$ such that $\pi_{ij} \circ \pi_{ik} = \pi_{ik} \circ \Pi$ and $\phi_{jk} \circ \pi_{ik} = \phi_{ik} \circ \Pi$.

It is now easy to check that $\Phi_{ik} = (P_{ik}, \pi_{ik}, \phi_{ik})$ satisfies Definition 6.56 (a) – (d), and is a 1-morphism $\Phi_{ik} : (V_i, \Gamma_i, \psi_i) \to (V_k, \Gamma_k, \psi_k)$ over $(S, g \circ f)$. We write $\Phi_{ik} \circ \Phi_{ij} = \Phi_{ij}$, and call it the composition of 1-morphisms.

If we have three such 1-morphisms $\Phi_{ij}, \Phi_{jk}, \Phi_{kl}$, define

\[
\alpha_{\Phi_{kl}, \Phi_{jk}, \Phi_{ij}} : \left[(P_{ij} \times_{V_i} (P_{jk} \times_{V_j} P_{kl})/\Gamma_k) \right] / \Gamma_j \to \left[(P_{ij} \times_{V_i} (P_{jk} \times_{V_j} P_{kl}))/\Gamma_k \right] / \Gamma_k
\]

to be the natural identification. Then $\alpha_{\Phi_{kl}, \Phi_{jk}, \Phi_{ij}}$ is a 2-isomorphism

\[
\alpha_{\Phi_{kl}, \Phi_{jk}, \Phi_{ij}} : (\Phi_{kl} \circ \Phi_{jk}) \circ \Phi_{ij} \xrightarrow{\sim} \Phi_{kl} \circ (\Phi_{jk} \circ \Phi_{ij})
\]

That is, composition of 1-morphisms is associative up to canonical 2-isomorphism, as for weak 2-categories in [A.2].

For $\Phi_{ij} : (V_i, \Gamma_i, \psi_i) \to (V_j, \Gamma_j, \psi_j)$ a morphism over (S, f) as above with $S \subseteq \text{Im } \psi_i \cap f^{-1}(\text{Im } \psi_j)$, and for $T \subseteq \text{Im } \psi_j \subseteq Y$ open with $S \subseteq f^{-1}(T)$, define

\[
\beta_{\Phi_{ij}} : (\tilde{\psi}_i^{-1}(S) \times \Gamma_i) \times_{V_i} P_{ij} / \Gamma_i \to P_{ij},
\]
\[
\gamma_{\Phi_{ij}} : (P_{ij} \times_{V_j} (\tilde{\psi}_j^{-1}(T) \times \Gamma_j))/\Gamma_j \to P_{ij},
\]

174
to be the natural identifications. Then we have 2-isomorphisms
\[\beta_{ij} : \Phi_{ij} \circ \text{id}(V_i, \Gamma_i, \psi_i) \Longrightarrow \Phi_{ij}, \]
\[\gamma_{ij} : \text{id}(V_j, \Gamma_j, \psi_j) \circ \Phi_{ij} \Longrightarrow \Phi_{ij}, \]
where \(\text{id}(V_i, \Gamma_i, \psi_i) \) and \(\text{id}(V_j, \Gamma_j, \psi_j) \) are the identities over \(S, T \), so identity 1-morphisms behave as they should up to canonical 2-isomorphism, as in \[\text{A.2.} \]

Definition 6.59. Let \(f : X \to Y \) be continuous, \((V_i, \Gamma_i, \psi_i), (V_j, \Gamma_j, \psi_j)\) be orbifold charts on \(X, Y \), and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \subseteq X \) be open. Suppose \(\Phi_{ij}, \Phi'_{ij}, \Phi''_{ij} : (V_i, \Gamma_i, \psi_i) \to (V_j, \Gamma_j, \psi_j) \) are 1-morphisms of orbifold charts over \((S, f)\) with \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}), \) \(\)etc., and \(\lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}, \lambda''_{ij} : \Phi''_{ij} \Rightarrow \Phi_{ij} \) are 2-morphisms. The vertical composition \(\lambda'_{ij} \circ \lambda_{ij} : \Phi_{ij} \Rightarrow \Phi''_{ij} \) is just the composition \(\lambda'_{ij} \circ \lambda_{ij} = \lambda''_{ij} \circ \lambda_{ij} : P_{ij} \Rightarrow P''_{ij} \) of morphisms in \(\text{Man} \).

Now let \(f : X \to Y \) and \(g : Y \to Z \) be continuous, \((V_i, \Gamma_i, \psi_i), (V_j, \Gamma_j, \psi_j), (V_k, \Gamma_k, \psi_k)\) be orbifold charts on \(X, Y, Z \), and \(T \subseteq \text{Im} \psi_i \cap g^{-1}(\text{Im} \psi_j) \subseteq Y \) and \(S \subseteq \text{Im} \psi_i \cap f^{-1}(T) \subseteq X \) be open. Suppose \(\Phi_{ij}, \Phi'_{ij}, \Phi''_{ij} : (V_i, \Gamma_i, \psi_i) \to (V_j, \Gamma_j, \psi_j) \) are 1-morphisms of orbifold charts over \((S, f)\), and \(\Phi_{jk}, \Phi'_{jk}, \Phi''_{jk} : (V_j, \Gamma_j, \psi_j) \to (V_k, \Gamma_k, \psi_k) \) are 1-morphisms of orbifold charts over \((T, g)\), with \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}), \) \(\)etc., and \(\lambda_{ij} : \Phi_{ij} \Rightarrow \Phi'_{ij}, \lambda_{jk} : \Phi_{jk} \Rightarrow \Phi'_{jk} \) are 2-morphisms.

Write \(\lambda_{jk} \times_{V_j} \lambda_{ij} : P_{ij} \times_{V_j} P_{jk} \to P'_{ij} \times_{V_j} P'_{jk} \) for the induced diffeomorphism of fibre products. It is \(\Gamma_j \)-equivariant, and so induces a unique diffeomorphism \(\lambda_{jk} \ast \lambda_{ij} : P_{ik} = (P_{ij} \times_{V_j} P_{jk})/\Gamma_j \to (P'_{ij} \times_{V_j} P'_{jk})/\Gamma_j = P''_{ik} \). Then \(\lambda_{jk} \ast \lambda_{ij} : \Phi_{jk} \circ \Phi_{ij} \Rightarrow \Phi'_{jk} \circ \Phi'_{ij} \) is a 2-morphism, horizontal composition.

As in Theorem 6.35, we have defined a weak 2-category, with objects orbifold charts. We can now follow \[\text{6.1} \] until Theorem 6.26, taking the \(E_i, s_i, \phi_{ijk}, \lambda_{ijk} \) to be zero throughout. This gives:

Theorem 6.60. To any category \(\text{Man} \) satisfying Assumptions \[3.1 \] \[3.3 \] we can associate a corresponding weak 2-category \(\text{Orb} \) of Kuranishi orbifolds, or just orbifolds. Objects of \(\text{Orb} \) are \(\text{x} = (X, \mathcal{O}) \) for \(X \) a Hausdorff, second countable topological space and \(\mathcal{O} = \{ I, (V_i, \Gamma_i, \psi_i) \in I, \Phi_{ij}, i, j \in I, \lambda_{ijk}, k \in I \} \) an orbifold structure on \(X \) of dimension \(n \in \mathbb{N} \), defined as in \[6.2 \] but using orbifold charts, coordinate changes and 2-morphisms as above.

Here is the analogue of Definition 4.29.

Definition 6.61. In Theorem 6.66 we write \(\hat{\text{Orb}} \) for the 2-category of orbifolds constructed from a category \(\text{Man} \) satisfying Assumptions \[3.1 \] \[3.3 \] By Example \[3.8 \] the following categories from Chapter 2 are possible choices for \(\text{Man} \):

\[
\text{Man}, \text{Man}^c, \text{Man}^e, \text{Man}^{ge}, \text{Man}^{ac}, \text{Man}^{c,ac}.
\]

We write the corresponding 2-categories of orbifolds as follows:

\[
\text{Orb}_{\text{Kur}}, \text{Orb}_{\text{we}}, \text{Orb}^c, \text{Orb}^{ge}, \text{Orb}^{ac}, \text{Orb}^{c,ac}.
\]

Here we use ‘\(\text{Orb}_{\text{Kur}} \)’ to distinguish it from the other (2-)categories of orbifolds discussed in \[6.6.1 \]
In a similar way to Example 4.30, it is easy to prove:

Proposition 6.62. There is a full, faithful weak 2-functor \(F_{\hat{\text{Orb}}} : \hat{\text{Man}} \to \hat{\text{Orb}} \) embedding \(\text{Man} \) as a full (2-)subcategory of \(\hat{\text{Orb}} \), which on objects maps \(F_{\hat{\text{Orb}}} : X \mapsto (X, \mathcal{O}) \), where \(\mathcal{O} = \{ \emptyset \} \cup \{ (V_0, \Gamma_0, \psi_0), \Phi_{00}, \Lambda_{000} \} \), with indexing set \(I = \{ 0 \} \), one orbifold chart \((V_0, \Gamma_0, \psi_0) \) with \(V_0 = X \), \(\Gamma_0 = \{ 1 \} \), and \(\psi_0 = \text{id}_X \), one coordinate change \(\Phi_{00} = \text{id}_{(V_0, \Gamma_0, \psi_0)} \), and one 2-morphism \(\Lambda_{000} = \text{id}_{\Phi_{00}} \).

We say that an orbifold \(\mathfrak{X} \) is a manifold if \(\mathfrak{X} \simeq F_{\hat{\text{Orb}}} \) in \(\hat{\text{Orb}} \) for some \(X \in \hat{\text{Man}} \).

In [6.5] for a Kuranishi space \(X \), we defined the isotropy group \(G_x \) for all \(x \in X \). In the same way, for an orbifold \(\mathfrak{X} \) we have isotropy groups \(G_x \mathfrak{X} \) for all \(x \in \mathfrak{X} \). We use these to give a criterion for when an orbifold is a manifold.

Proposition 6.63. An orbifold \(\mathfrak{X} \) in \(\hat{\text{Orb}} \) is a manifold, in the sense of Proposition 6.62, if and only if \(G_x \mathfrak{X} = \{ 1 \} \) for all \(x \in \mathfrak{X} \).

Proof. The ‘only if’ part is obvious. For the ‘if’ part, suppose \(\mathfrak{X} \in \hat{\text{Orb}} \) with \(G_x \mathfrak{X} = \{ 1 \} \) for all \(x \in \mathfrak{X} \). The proof of Theorem 6.54 in [6.5] implies that \(\mathfrak{X} \simeq \mathfrak{X}' \) in \(\hat{\text{Orb}} \) for \(\mathfrak{X}' = (X, \mathcal{O}') \) with \(\mathcal{O}' = \{ (I, (V_i, \Gamma_i, \psi_i))_{i \in I}, \Phi_{ij}, i,j \in I \} \) an orbifold structure on \(X \) with \(\Gamma_i = \{ 1 \} \) for all \(i \in I \).

Now \(X \) is a Hausdorff, second countable topological space, \(\{ \text{Im} \psi_i : i \in I \} \) is an open cover of \(X \), and \(\{ V_i : i \in I \} \) is a family of objects in \(\text{Man} \) with \(\psi_i : V_{i, \text{top}} = V_{i, \text{top}}/\{ 1 \} \to \text{Im} \psi_i \) a homeomorphism for \(i \in I \). Using Assumption 3.2(e), we replace the \(V_i \) by diffeomorphic objects in \(\text{Man} \) such that \(V_{i, \text{top}} = \text{Im} \psi_i \), and \(\psi_i : V_{i, \text{top}} \to \text{Im} \psi_i \) is the identity map for \(i \in I \).

For \(i,j \in I \), writing \(V_{ij} \leftarrow V_i \) and \(V_{ji} \leftarrow V_j \) for the open submanifolds with \(V_{ij, \text{top}} = V_{ji, \text{top}} = \text{Im} \psi_i \cap \text{Im} \psi_j \), using the coordinate change \(\Phi_{ij} \) with \(\Gamma_i = \Gamma_j = \{ 1 \} \) we can show there is a unique diffeomorphism \(\phi_{ij} : V_{ij} \to V_{ji} \) in \(\text{Man} \) with \(\phi_{ij, \text{top}} = \text{id}_{\text{Im} \psi_i \cap \text{Im} \psi_j} \). Therefore Assumption 3.3(b) makes \(X \) into an object in \(\text{Man} \), such that \(V_i \hookrightarrow X \) are open submanifolds for all \(i \in I \). It is then easy to see that \(\mathfrak{X}' \simeq F_{\hat{\text{Orb}}} \) in \(\hat{\text{Orb}} \), and the proposition follows. \(\square \)

Now let \(\text{Man} \) satisfy all of Assumptions 3.1, 3.7, not just Assumptions 3.1, 3.3, so that we have both a 2-category of orbifolds \(\text{Orb} \) above, and a 2-category of Kuranishi spaces \(\text{Kur} \) from [6.2]. In a similar way to Example 6.30 and Proposition 6.64, it is easy to prove:

Proposition 6.64. There is a full, faithful weak 2-functor \(F_{\text{Kur}} : \hat{\text{Orb}} \to \hat{\text{Kur}} \) embedding \(\text{Kur} \) as a full 2subcategory of \(\hat{\text{Kur}} \), which on objects maps \(F_{\text{Kur}} : (X, \mathcal{O}) \mapsto (X, \mathcal{K}), \) where for \(\mathcal{O} \) as above, \(\mathcal{K} = \{ (I, (V_i, \Gamma_i, \psi_i))_{i \in I}, (P_{ij}, \pi_{ij}, \phi_{ij}, 0)_{ij, i,j \in I}, [P_{ijk}, \lambda_{ijk}, 0]_{i,j,k \in I} \} \) is the Kuranishi structure obtained by taking all the obstruction bundle data \(E_i, s_i, \hat{\phi}_{ijk}, \hat{\lambda}_{ijk} \) to be zero.

We say that a Kuranishi space \(X \) is an orbifold if \(X \simeq F_{\text{Kur}} \) in \(\hat{\text{Orb}} \) for some \(X \in \hat{\text{Orb}} \).
Theorem \[10.52\] in \([10.4.4]\) gives a necessary and sufficient criterion for when a Kuranishi space \(X\) in \(\text{Kur}\) is an orbifold.

6.6.3 Relation to previous definitions of orbifolds

We relate \(\mathbb{Orb}_{\text{Kur}}\) to previous definitions of (2-)categories of orbifolds.

Theorem 6.65. The 2-category of Kuranishi orbifolds \(\mathbb{Orb}_{\text{Kur}}\) defined in Theorem 6.60 using \(\mathbb{Man} = \mathbb{Man} \) is equivalent to a weak 2-category to the 2-categories of orbifolds \(\mathbb{Orb}_{\text{Pr}}, \mathbb{Orb}_{\text{Le}}, \mathbb{Orb}_{\text{ManSta}}, \mathbb{Orb}_{\text{CSta}}\) in \([4, 65, 72, 88, 96]\) described in \([6.6.1]\). Also there is an equivalence of categories \(\text{Ho}(\mathbb{Orb}_{\text{Kur}}) \simeq \mathbb{Orb}_{\text{MP}}\), for \(\mathbb{Orb}_{\text{MP}}\) the category of orbifolds from Moerdijk and Pronk \([89, 90]\).

Proof. Use the notation of \([6.6.1]\). We will define a full and faithful weak 2-functor \(F:\mathbb{Orb}_{\text{Kur}} \to \mathbb{Orb}_{\text{Le}}\), which is an equivalence of 2-categories. Given an orbifold \(\mathcal{X} = (X, O)\) in our sense with \(O = (I, (V_i, \Gamma, \psi_i)_{i \in I}, \Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}), \lambda_{ijk}, i, j, k \in I)\), we define a natural proper etale Lie groupoid \(\mathcal{V} = \{U, V, s, t, m\}\) in \(\mathbb{Man}\) (that is, a groupoid- orbifold in the sense of \([89, 90, 96]\) and \([72, \S 3.3]\), as in \([6.6.1]\)(c),(i),(ii)) with \(U = \coprod_{i \in I} V_i\), and \(V = \coprod_{i, j \in I} P_{ij}\), and \(s, t : V \to U\) given by \(s = \coprod_{i, j} \pi_{ij}\) and \(t = \coprod_{i, j} \phi_{ij}\), where the data \(\lambda_{ijk}, i, j, k \in I\) gives the multiplication map \(m : V \times_U V \to V\). We define \(F_{\mathbb{Orb}_{\text{Kur}}}(\mathcal{X}) = \{U \Rightarrow U\}\).

By working through the definitions, it turns out that Lerman’s definitions of 1- and 2-morphisms in \(\mathbb{Orb}_{\text{Le}}\) in terms of ‘bibundles’, when applied to groupoids \(\{V \Rightarrow U\}\) of the form \(F_{\mathbb{Orb}_{\text{Kur}}}(\mathcal{X})\), reduce exactly to 1- and 2-morphisms in \(\mathbb{Orb}_{\text{Kur}}\) as above. Thus, the definition of \(F_{\mathbb{Orb}_{\text{Kur}}}\) on 1- and 2-morphisms, and that \(F_{\mathbb{Orb}_{\text{Kur}}}\) is full and faithful, are immediate. The rest of the weak 2-functor data and conditions are straightforward. To show \(F_{\mathbb{Orb}_{\text{Kur}}}\) is an equivalence, we need to show that every groupoid- orbifold \(\{V \Rightarrow U\}\) is equivalent in \(\mathbb{Orb}_{\text{Le}}\) to \(F_{\mathbb{Orb}_{\text{Kur}}}(\mathcal{X})\) for some \(\mathcal{X}\) in \(\mathbb{Orb}_{\text{Kur}}\). This can be done as in Moerdijk and Pronk \([89, \text{Proof of Th. 4.1}]\).

The discussion in \([6.6.1]\) now shows that our \(\mathbb{Orb}_{\text{Kur}}\) is equivalent as a weak 2-category to \(\mathbb{Orb}_{\text{Pr}}, \mathbb{Orb}_{\text{Le}}, \mathbb{Orb}_{\text{ManSta}}, \mathbb{Orb}_{\text{CSta}}\), and also that \(\text{Ho}(\mathbb{Orb}_{\text{Kur}}) \simeq \mathbb{Orb}_{\text{MP}}\) as categories.

Combining Proposition \([6.6.4]\) and Theorem \([6.6.5]\) shows that the 2-categories of orbifolds \(\mathbb{Orb}_{\text{Pr}}, \mathbb{Orb}_{\text{Le}}, \mathbb{Orb}_{\text{ManSta}}, \mathbb{Orb}_{\text{CSta}}\) in \([4, 65, 72, 88, 96]\) are equivalent to a full 2-subcategory of the 2-category of Kuranishi spaces \(\text{Kur}\). So (classical) orbifolds can be regarded as examples of Kuranishi spaces.

6.6.4 More about orbifolds, and orbifolds with corners

The material of \([6.2.2, 6.2.3, 6.3]\) for Kuranishi spaces (with corners) specializes easily to orbifolds (with corners). As in \([6.6.2]\) this is a simplification, obtained by setting \(E_i = s_i = 0\) in all Kuranishi neighbourhoods \((V, E, \Gamma, s, \psi)\). Here are some brief comments on this:

177
(a) As in Proposition 6.30, if Man, $\overset{\sim}{\mathsf{Man}}$ satisfy Assumptions 3.1–3.3 and $\overset{\sim}{\mathsf{Man}} \rightarrow \mathsf{Man}$ satisfies Condition 3.20, we can define a natural weak 2-functor $F_{\mathsf{Orb}} : \overset{\sim}{\mathsf{Orb}} \rightarrow \mathsf{Orb}$. As in Figure 6.1, we get a diagram of 2-functors between 2-categories of orbifolds.

(b) As in §6.2.3, if P is a discrete property of morphisms in Man, we can define when 1-morphisms in $\overset{\sim}{\mathsf{Man}}$ are P, and the analogue of Proposition 6.34 holds. In the orbifold case, the definition of discrete properties P of morphisms in Man is unnecessarily strong: we need only Definition 3.18(i)–(iv), not (v)–(viii), for a property P to lift nicely from Man to Orb. For example, submersions in $\mathsf{Man} = \mathsf{Man}^c$ satisfy (i)–(iv) but not (v)–(viii), and lift to a good notion of submersion in $\mathsf{Orb}^\mathsf{Kur}$. Thus we can define many interesting 2-subcategories of the 2-categories of orbifolds in (6.46), as in Figure 6.2 for Kuranishi spaces.

(c) Suppose $\overset{\sim}{\mathsf{Man}}$ satisfies Assumption 3.22 in §3.4.1. (Actually, in Assumption 3.22(b) it is enough for $\overset{\sim}{\mathsf{Man}}$ to satisfy Assumptions 3.1–3.3, not Assumptions 3.1–3.7.) Then as in §6.6.2 we have a 2-category Orb^c of orbifolds associated to $\overset{\sim}{\mathsf{Man}}^c$. For instance, Orb^c, $\mathsf{Orb}^c_{\mathsf{gc}}$, $\mathsf{Orb}^c_{\mathsf{ac}}$ or $\mathsf{Orb}^c_{\mathsf{ac}}$ from Definition 6.61. We will refer to objects of Orb^c as orbifolds with corners. We also write $\overset{\sim}{\mathsf{Orb}}^c$ for the 2-subcategory of Orb^c with simple 1-morphisms, in the sense of (b).

As in (6.3) for any x in $\overset{\sim}{\mathsf{Orb}}^c$ and $k = 0, \ldots, \dim x$ we can define the k-corners $C_k(x)$, an object in $\overset{\sim}{\mathsf{Orb}}^c$ with dim $C_k(x) = \dim x - k$, and a 1-morphism $\Pi_k : C_k(x) \rightarrow x$ in $\overset{\sim}{\mathsf{Orb}}^c$. We also write $\partial x = C_1(x)$, the boundary of x, and we write $i_x = \Pi_1 : \partial x \rightarrow x$.

We define a 2-category $\overset{\sim}{\mathsf{Orb}}^c_{\mathsf{ac}}$ from $\overset{\sim}{\mathsf{Orb}}^c$ with objects $\prod_{n=0}^{\infty} x_n$ for x_n in $\overset{\sim}{\mathsf{Orb}}^c$ with dim $x_n = n$, and the corner 2-functor $\overset{\sim}{\mathsf{C}} : \overset{\sim}{\mathsf{Orb}}^c_{\mathsf{ac}} \rightarrow \overset{\sim}{\mathsf{Orb}}^c$. The restriction $\overset{\sim}{\mathsf{C}}|_{\overset{\sim}{\mathsf{Orb}}^c_{\mathsf{si}}} = \prod_{n=0}^{\infty} C_n$, where $C_n : \overset{\sim}{\mathsf{Orb}}^c_{\mathsf{si}} \rightarrow \overset{\sim}{\mathsf{Orb}}^c_{\mathsf{si}}$ is a weak 2-functor acting on objects by $\overset{\sim}{\mathsf{X}} \mapsto C_k(\overset{\sim}{\mathsf{X}})$. Examples of such corner 2-functors are given by the analogue of (6.36).

![Figure 6.3: 2-functors between 2-categories of orbifolds from Definition 6.61. Arrows ‘→’ are inclusions of 2-subcategories.](image-url)
6.7 Proof of Theorems 4.13 and 6.16

Let \(f : X \to Y \) be a continuous map of topological spaces, and \((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)\) be Kuranishi neighbourhoods on \(X, Y \). We must show that \(\text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \) from Theorem 6.16 is a stack on \(\text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \), that is, that it satisfies Definition A.17(i)–(v). Parts (i),(ii) are immediate from the definition of restriction \(|\tau| \) in Definition 6.13. When \(\Gamma_i = \Gamma_j = \{1\} \) this will imply Theorem 4.13.

6.7.1 Definition A.17(iii) for \(\text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \)

For (iii), let \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j) \) be open, \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}) \) and \(\Phi'_{ij} = (P'_{ij}, \pi'_{ij}, \phi'_{ij}, \hat{\phi}'_{ij}) \) be 1-morphisms \((V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) over \((S, f) \), and \(\Lambda_{ij}, \Lambda'_{ij} : \Phi_{ij} \to \Phi'_{ij} \) be 2-morphisms over \((S, f) \). Suppose \(\{T^a : a \in A\} \) is an open cover of \(S \), such that \(\Lambda_{ij}|_{T^a} = \Lambda'_{ij}|_{T^a} \) for all \(a \in A \). Choose representatives \((\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}), (\hat{P}'_{ij}, \lambda'_{ij}, \hat{\lambda}'_{ij}) \) for \(\Lambda_{ij}, \Lambda'_{ij} \). Then \(\Lambda_{ij}|_{T^a} = \Lambda'_{ij}|_{T^a} \) means as in (6.3) that there exists an open neighbourhood \(\hat{P}_{ij}^a \) of \(\pi_{ij}^{-1}(\psi_i^{-1}(T^a)) \) in \(\hat{P}_{ij} \cap \hat{P}'_{ij} \) with

\[
\lambda_{ij}|_{\hat{P}_{ij}^a} = \lambda'_{ij}|_{\hat{P}_{ij}^a} \quad \text{and} \quad \hat{\lambda}_{ij}|_{\hat{P}_{ij}^a} = \hat{\lambda}'_{ij}|_{\hat{P}_{ij}^a} + O(\pi_{ij}^a(s_i)) \quad \text{on} \quad \hat{P}_{ij}^a. \tag{6.47}
\]

Set \(\tilde{P}_{ij} = \bigcup_{a \in A} \hat{P}_{ij}^a \) an open neighbourhood of \(\pi_{ij}^{-1}(\psi_i^{-1}(S)) \) in \(\hat{P}_{ij} \cap \hat{P}'_{ij} \). Then (6.47) for all \(a \in A \) implies (6.3) on \(\tilde{P}_{ij} \) by Theorem 3.17(a), so \(\Lambda_{ij} = \Lambda'_{ij} \). This proves Definition A.17(iii) for \(\text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \).

6.7.2 Definition A.17(iv) for \(\text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j)) \)

For (iv), suppose \(S, \Phi_{ij}, \Phi'_{ij} \) are as in 6.7.1 \(\{T^a : a \in A\} \) is an open cover of \(S \), and \(\Lambda^a_{ij} : \Phi_{ij}|_{T^a} \to \Phi'_{ij}|_{T^a} \) are 2-morphisms over \((T^a, f) \) for \(a \in A \) with \(\Lambda^a_{ij}|_{T^a \cap T^b} = \Lambda^b_{ij}|_{T^a \cap T^b} \) for all \(a, b \in A \). Choose representatives \((\hat{P}^a_{ij}, \lambda^a_{ij}, \hat{\lambda}^a_{ij}) \) for \(\Lambda^a_{ij} \) for \(a \in A \), and making \(\hat{P}^a_{ij} \) smaller if necessary, suppose that \(\hat{P}^a_{ij} \cap \pi_{ij}^{-1}(s_i^a(0)) = \pi_{ij}^{-1}(\psi_i^{-1}(T^a)) \). Then \(\Lambda^a_{ij}|_{T^a \cap T^b} = \Lambda^b_{ij}|_{T^a \cap T^b} \) means there exists an open neighbourhood \(\hat{P}^{ab}_{ij} \) of \(\pi_{ij}^{-1}(\psi_i^{-1}(T^a \cap T^b)) \) in \(\hat{P}^a_{ij} \cap \hat{P}^b_{ij} \) with

\[
\lambda^a_{ij}|_{\hat{P}^{ab}_{ij}} = \lambda^b_{ij}|_{\hat{P}^{ab}_{ij}} \quad \text{and} \quad \hat{\lambda}^a_{ij}|_{\hat{P}^{ab}_{ij}} = \hat{\lambda}^b_{ij}|_{\hat{P}^{ab}_{ij}} + O(\pi_{ij}^a(s_i)) \quad \text{on} \quad \hat{P}^{ab}_{ij}. \tag{6.48}
\]

Here the second equation of (6.48) holds on \(\hat{P}^a_{ij} \cap \hat{P}^b_{ij} \), as the \(O(\pi_{ij}^a(s_i)) \) condition is trivial away from \(\pi_{ij}^{-1}(\psi_i^{-1}(T^a \cap T^b)) \).

Choose a partition of unity \(\{\eta^a : a \in A\} \) on \(\bigcup_{a \in A} \hat{P}^a_{ij} \subseteq P_{ij} \) subordinate to the open cover \(\{\hat{P}^a_{ij} : a \in A\} \), as in (3.3.1(d)). By averaging the \(\eta^a \) over the \(\Gamma_i \times \Gamma_j \)-action on \(P_{ij} \), we suppose each \(\eta^a \) is \(\Gamma_i \)- and \(\Gamma_j \)-invariant. The open
support of \(\eta^a \) is \(\text{supp}^a \eta^a = \{ p \in \bigcup_{a' \in A} \hat{P}^a_{ij} : \eta^a(p) > 0 \} \), an open submanifold in \(\bigcup_{a' \in A} \hat{P}^a_{ij} \), and the support \(\text{supp} \eta^a = \text{supp}^a \eta^a \) of \(\eta^a \) is the closure of \(\text{supp}^a \eta^a \) in \(\bigcup_{a' \in A} \hat{P}^a_{ij} \). Consider the subset \(\hat{P}_{ij} \subseteq P_{ij} \) given by

\[
\hat{P}_{ij} = \{ p \in \bigcup_{a \in A} \hat{P}^a_{ij} : \text{ if } a, b \in A \text{ with } p \in \text{supp } \eta^a \cap \text{supp } \eta^b \text{ then } \lambda^a_{ij}(p) = \lambda^b_{ij}(p) \}. \tag{6.49}
\]

We claim that \(\hat{P}_{ij} \) is open in \(P_{ij} \), and so an object in \(\text{Man} \). To see this, note that \(\hat{P}_{ij} \) is the complement in the open set \(\bigcup_{a \in A} \hat{P}^a_{ij} \subseteq P_{ij} \) of the sets \(S^{a,b} \) for all \(a, b \in A \), where \(S^{a,b} = \{ p \in \text{supp } \eta^a \cap \text{supp } \eta^b : \lambda^a_{ij}(p) \neq \lambda^b_{ij}(p) \} \). Now \(\lambda^a_{ij}, \lambda^b_{ij} : \hat{P}^a_{ij} \cap \hat{P}^b_{ij} \to P^i_{ij} \) are smooth with \(\pi^a_{ij} \circ \lambda^a_{ij} = \pi^b_{ij} \circ \lambda^b_{ij} \), where \(\pi^a_{ij} : P^a_{ij} \to V_i \) is a principal \(\Gamma_i \)-bundle over \(V_i \subseteq V_i \). Thus the condition \(\lambda^a_{ij} \neq \lambda^b_{ij} \) is open and closed in \(\hat{P}^a_{ij} \cap \hat{P}^b_{ij} \), so \(S^{a,b} \) is open and closed in \(\text{supp } \eta^a \cap \text{supp } \eta^b \) and closed in \(\bigcup_{a \in A} \hat{P}^a_{ij} \). As \(\{ \eta^a : a \in A \} \) is locally finite, we see that \(\hat{P}_{ij} \) is open.

Next we claim that \(\hat{P}_{ij} \) contains \(\pi_{ij}^{-1}(\psi^{-1}(S)) \). Let \(p \in \pi_{ij}^{-1}(\psi^{-1}(S)) \). Then \(p \in \pi_{ij}^{-1}(\psi^{-1}(T^{a'})) \subseteq \hat{P}_{ij} \) for some \(a' \in A \) as \(\bigcup_{a \in A} T^a = S \), so \(p \in \hat{P}_{ij} \subseteq \bigcup_{a \in A} \hat{P}^a_{ij} \). If \(p \in \text{supp } \eta^a \cap \text{supp } \eta^b \) for \(a, b \in A \) then \(p \in \pi_{ij}^{-1}(\psi^{-1}(T^a \cap T^b)) \subseteq \hat{P}^{a,b}_{ij} \), and the first equation of (6.48) gives \(\lambda^a_{ij}(p) = \lambda^b_{ij}(p) \). Hence \(p \in \hat{P}_{ij} \), proving the claim.

Define \(\lambda_{ij} : \hat{P}_{ij} \to P^i_{ij} \) by

\[
\lambda_{ij}(p) = \lambda^a_{ij}(p) \quad \text{if } a \in A \text{ with } p \in \text{supp } \eta^a. \tag{6.50}
\]

This is well-defined by (6.49) as \(\hat{P}_{ij} \subseteq \bigcup_{a \in A} \text{supp } \eta^a \). As \(\hat{P}_{ij} \) is covered by the open sets \(\hat{P}^a_{ij} \cap \text{supp } \eta^a \) for \(a \in A \), and \(\lambda_{ij} = \lambda^a_{ij} \) on \(\hat{P}^a_{ij} \cap \text{supp } \eta^a \) with \(\lambda^a_{ij} \) smooth and étale, \(\lambda_{ij} \) is smooth and étale by Assumption 3.3(a).

Define a morphism \(\lambda_{ij} : \pi^a_{ij}(E_i) \mid_{\hat{P}_{ij}} \to T_{\phi_i}V_j \mid_{\hat{P}_{ij}} \) by

\[
\lambda_{ij} = \sum_{a \in A} \eta^a \mid_{\hat{P}_{ij}} \cdot \lambda^a_{ij},
\]

where \(\lambda^a_{ij} \) is only defined on \(\hat{P}_{ij} \cap \hat{P}^a_{ij} \), but \(\eta^a \cdot \lambda^a_{ij} \) is well-defined and smooth on \(\hat{P}_{ij} \), being zero outside \(\hat{P}^a_{ij} \).

For each \(a \in A \), define \(\hat{P}^a_{ij} = \{ p \in \hat{P}_{ij} \cap \hat{P}^a_{ij} : \lambda_{ij}(p) = \lambda^a_{ij}(p) \} \). As above this is open and closed in \(\hat{P}_{ij} \cap \hat{P}^a_{ij} \) and so open in \(\hat{P}_{ij} \cap P^a_{ij} \), and contains \(\pi_{ij}^{-1}(\psi^{-1}(T^a)) \), and by definition

\[
\lambda_{ij} \mid_{\hat{P}^a_{ij}} = \lambda^a_{ij} \mid_{\hat{P}^a_{ij}}. \tag{6.52}
\]

Using (6.51) in the first step, the second equation of (6.48) (which holds on \(\hat{P}^a_{ij} \cap \hat{P}^a_{ij} \)) in the second, and \(\sum_b A \eta^b = 1 \) in the fourth, we have

\[
\lambda_{ij} \mid_{\hat{P}^a_{ij}} = \sum_{b \in A} \eta^b \mid_{\hat{P}^a_{ij}} \cdot \lambda^b_{ij} = \sum_{b \in A} \eta^b \mid_{\hat{P}^a_{ij}} \cdot (\lambda^a_{ij} + O(\pi^a_{ij}(s_i))) = (\sum_{b \in A} \eta^b \mid_{\hat{P}^a_{ij}} \cdot \lambda^a_{ij}) \mid_{\hat{P}^a_{ij}} + O(\pi^a_{ij}(s_i)). \tag{6.53}
\]

\[\text{180} \]
We now claim that \((\tilde{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij})\) satisfies Definition 6.4 (a)–(c) over \(S\). The \(\Gamma_i, \Gamma_j\)-equivariance of \(\tilde{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}\) follows as the ingredients from which they are defined are \(\Gamma_i, \Gamma_j\)-equivariant. Equation (6.2) for \(\tilde{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}\) on \(\tilde{P}_{ij} \cap \tilde{P}_{ij}^a\) follows from (6.2) for \(\tilde{P}_{ij}^a, \lambda_{ij}^a, \hat{\lambda}_{ij}^a\), equation (6.53), and \(\lambda_{ij} = \lambda_{ij}^a\) on \(\tilde{P}_{ij}^a\), and the rest of (a)–(c) are already proved. Therefore \(\Lambda_{ij} := [\tilde{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}]\) is a 2-morphism \(\Phi_{ij} \Rightarrow \Phi_{ij}^a\) over \(S\). Equations (6.52)–(6.53) imply that \((\tilde{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}) \sim_{\Gamma_i, \Gamma_j} (\tilde{P}_{ij}^a, \lambda_{ij}^a, \hat{\lambda}_{ij}^a)\) in the sense of Definition 6.4, so \(\Lambda_{ij}^a|_{T^a} = \Lambda_{ij}^a\) for all \(a \in A\). This proves Definition A.17(iv) for \(\text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))\).

6.7.3 Definition A.17(v) for \(\text{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))\)

Let \(S \subseteq \text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j)\) be open, and \(\{T^a : a \in A\}\) be an open cover of \(S\), and \(\Phi_{ij}^a = (\tilde{P}_{ij}^a, \pi_{ij}^a, \phi_{ij}^a, \psi_{ij}^a) : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j)\) be a 1-morphism of Kuranishi neighbourhoods over \((T^a, f)\) for \(a \in A\), and \(\Lambda_{ij}^b : \Phi_{ij}^a|_{T^a \cap T^b} \Rightarrow \Phi_{ij}^b|_{T^a \cap T^b}\) a 2-morphism over \((T^a \cap T^b, f)\) for all \(a, b \in A\) such that \(\Lambda_{ij}^b \circ \Lambda_{ij}^c = \Lambda_{ij}^b\) \(\circ \Lambda_{ij}^c\) over \((T^a \cap T^b \cap T^c, f)\) for all \(a, b, c \in A\). Choose representatives \((\tilde{P}_{ij}^b, \lambda_{ij}^b, \hat{\lambda}_{ij}^b)\) for \(\Lambda_{ij}^b\) for all \(a, b \in A\), so that (6.2) gives

\[
\phi_{ij}^b \circ \lambda_{ij}^b = \phi_{ij}^a \circ \rho_{ij}^b + \hat{\lambda}_{ij}^b \circ (\pi_{ij}^a)^\ast (s_i) + O((\pi_{ij}^a)^\ast (s_i))^2 \quad \text{and}
\]

\[
(\lambda_{ij}^{ab})^\ast (\phi_{ij}^a) = (\phi_{ij}^b) \circ \rho_{ij}^b + (\phi_{ij}^a)^\ast (ds_j) \circ \hat{\lambda}_{ij}^b + O((\pi_{ij}^a)^\ast (s_i)) \quad \text{on } \tilde{P}_{ij}^b. \tag{6.54}
\]

Write \(V_{ij}^a = \pi_{ij}^a(\tilde{P}_{ij}^a)\), so that \(V_{ij}^a\) is an open neighbourhood of \(\tilde{\psi}_{ij}^{-1}(T^a)\) in \(V_i\) for \(a \in A\), and \(\pi_{ij}^a : P_{ij}^a \to V_{ij}^a\) is a principal \(\Gamma_j\)-bundle, and similarly write \(V_{ij}^b = \pi_{ij}^a(\tilde{P}_{ij}^b)\) for \(a, b \in A\). For simplicity, making \(P_{ij}^a, V_{ij}^a\) smaller if necessary, suppose that \(V_{ij}^0 \cap s_i^{-1}(0) = \tilde{\psi}_{ij}^{-1}(T^0)\).

From (6.1) \(\Lambda_{ij}^{bc} \circ \Lambda_{ij}^{ab} = \Lambda_{ij}^{ac}\) means we can choose an open neighbourhood \(\tilde{P}_{ij}^{abc}\) of \((\pi_{ij}^a)^{-1}(\tilde{\psi}_{ij}^{-1}(T^a \cap T^b \cap T^c))\) in \((\lambda_{ij}^{ab})^\ast (\tilde{P}_{ij}^c) \cap \tilde{P}_{ij}^{bc} \subseteq P_{ij}^a\), such that

\[
\lambda_{ij}^{bc} \circ \lambda_{ij}^{ab} |_{\tilde{P}_{ij}^{bc}} = \lambda_{ij}^{ac} |_{\tilde{P}_{ij}^{bc}} \quad \text{and}
\]

\[
\hat{\lambda}_{ij}^{ab} |_{\tilde{P}_{ij}^{bc}} + \lambda_{ij}^{bc} |_{\tilde{P}_{ij}^{bc}} (\hat{\lambda}_{ij}^{bc}) = \hat{\lambda}_{ij}^{bc} |_{\tilde{P}_{ij}^{bc}} + O((\pi_{ij}^a)^\ast (s_i)) \quad \text{on } \tilde{P}_{ij}^{abc}. \tag{6.55}
\]

Choose a partition of unity \(\{\eta^a : a \in A\}\) on \(\bigcup_{a \in A} V_{ij}^a \subseteq V_i\) subordinate to the open cover \(\{V_{ij}^a : a \in A\}\), as in (8.3.1)(d). As in (6.49), define

\[
V_{ij} = \{v \in \bigcup_{a \in A} V_{ij}^a : \text{if } a, b \in A \text{ with } v \in \text{supp } \eta^a \cap \text{supp } \eta^b \text{ then } v \in V_{ij}^{ab},
\]

and if \(a, b, c \in A\) with \(v \in \text{supp } \eta^a \cap \text{supp } \eta^b \cap \text{supp } \eta^c\)

then \(\lambda_{ij}^{bc} \circ \lambda_{ij}^{ab} = \lambda_{ij}^{ac}\) on \((\pi_{ij}^a)^{-1}(v))\). \tag{6.56}

As for the argument between (6.49) and (6.50), \(V_{ij}\) is an open neighbourhood of \(\tilde{\psi}_{ij}^{-1}(S)\) in \(V_i\), and is \(\Gamma_i\)-invariant as all the ingredients in (6.56) are.

181
Define \hat{P}_{ij}, initially as a topological space with the quotient topology, by

$$\hat{P}_{ij} = \left(\prod_{a \in A} (\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a) \right)/\sim,$$

where $(\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a) \subseteq P_{ij}^a$ is open, and \sim is the binary relation on $\prod_{a \in A} (\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a)$ given by $p^a \sim p^b$ if $p^a \in (\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a)$ and $p^b \in (\pi_{ij}^b)^{-1}(V_{ij} \cap \text{supp}^o \eta^b)$ for $a, b \in A$ with $\lambda_{ij}^{ab}(p^a)$. This is an equivalence relation by (6.56). Write $[p^a]$ for the \sim-equivalence class of p^a.

Define a map $\tilde{\pi}_{ij} : \hat{P}_{ij} \to V_{ij} \subseteq V_i$ by $\tilde{\pi}_{ij} : [p^a] \mapsto \pi_{ij}^a(p^a)$ for $p^a \in \pi_{ij}^a(V_{ij} \cap \text{supp}^o \eta^a)$. This is well-defined as if $[p^a] = [p^b]$ then $p^a \sim p^b$, so $p^b = \lambda_{ij}^{ab}(p^a)$, and $\pi_{ij}^b(p^b) = \pi_{ij}^a(p^a)$ as $\pi_{ij}^b \circ \lambda_{ij}^{ab} = \pi_{ij}^a$ by Definition 6.4(b). The $\Gamma_\iota \times \Gamma_\j$-actions on $(\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a)$ induce a $\Gamma_\iota \times \Gamma_\j$-action on $\tilde{\pi}_{ij}$, and $\tilde{\pi}_{ij}$ is Γ_ι-equivariant and Γ_\j-invariant.

Then $\pi_{ij} : \hat{P}_{ij} \to V_{ij}$ is continuous and is a topological principal Γ^a-bundle, as it is built by gluing the topological principal Γ^a-bundles $\pi_{ij}^a : (\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a) \to V_{ij} \cap \text{supp}^o \eta^a$ by the isomorphisms λ_{ij}^{ab} on overlaps $V_{ij} \cap \text{supp}^o \eta^a \cap \text{supp}^o \eta^b$, where the isomorphisms λ_{ij}^{ab} compose correctly by (6.56).

It follows that the natural morphisms $(\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a) \to \hat{P}_{ij}$ mapping $p^a \mapsto [p^a]$ for $a \in A$ are homeomorphisms with open subsets \hat{P}_{ij}^a of \hat{P}_{ij}, and that \hat{P}_{ij} is Hausdorff, and second countable, as $V_{ij} \in \text{Man}$, and by Assumption 3.2(b). Also the $(\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a)$ for $a \in A$ are objects in Man, and the gluing maps λ_{ij}^{ab} are diffeomorphisms between open submanifolds of $(\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a)$ and $(\pi_{ij}^b)^{-1}(V_{ij} \cap \text{supp}^o \eta^b)$. Therefore Assumptions 3.2(e) and 3.3(b) make \hat{P}_{ij} into an object in Man, with underlying topological space (6.57), such that the inclusion maps $(\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a) \to \hat{P}_{ij}$ are diffeomorphisms with open submanifolds \hat{P}_{ij}^a of \hat{P}_{ij} for $a \in A$, with $\{\hat{P}_{ij}^a : a \in A\}$ an open cover of \hat{P}_{ij}.

Furthermore, Assumption 3.3(a) now makes $\tilde{\pi}_{ij} : \hat{P}_{ij} \to V_{ij}$ into a morphism in Man, locally modelled on π_{ij}^a for $a \in A$ objects in Man, the topological $\Gamma_\iota \times \Gamma_\j$-action on $\tilde{\pi}_{ij}$ also lifts to a $\Gamma_\iota \times \Gamma_\j$-action by morphisms in Man, where the \hat{P}_{ij}^a are $\Gamma_\iota \times \Gamma_\j$-invariant. As π_{ij}^a is étale, $\tilde{\pi}_{ij}$ is étale, and as $\tilde{\pi}_{ij} : \hat{P}_{ij} \to V_{ij}$ is a Γ_ι-invariant topological principal Γ_\j-bundle, it is a Γ_ι-invariant principal Γ_\j-bundle in Man.

Define $\lambda_{ij}^{ab} : \hat{P}_{ij} \to P_{ij}^b$ in Man to be the composition of the isomorphism $\hat{P}_{ij}^{\sim} \cong (\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a)$ with the inclusion $(\pi_{ij}^a)^{-1}(V_{ij} \cap \text{supp}^o \eta^a) \hookrightarrow P_{ij}^b$. Then the definition of \sim for \hat{P}_{ij} in (6.57) implies that

$$\lambda_{ij}^{ab} \circ \lambda_{ij}^a|_{\hat{P}_{ij}^a \cap P_{ij}^b} = \lambda_{ij}^b|_{\hat{P}_{ij}^a \cap P_{ij}^b} : \hat{P}_{ij}^a \cap P_{ij}^b \longrightarrow P_{ij}^b$$

for $a, b \in A$, (6.58)

where $\lambda_{ij}^{ab} \circ \lambda_{ij}^a|_{\hat{P}_{ij}^a \cap P_{ij}^b} \subseteq P_{ij}^b$ by (6.56), so that $\lambda_{ij}^{ab} \circ \lambda_{ij}^a|_{\hat{P}_{ij}^a \cap P_{ij}^b}$ is well defined.

We have smooth maps $\phi_{ij} : P_{ij} \to V_j$ and morphisms $(\lambda_{ij}^a)^* \circ (\phi_{ij}^a) : \lambda_{ij}^a(E_i)|_{P_{ij}^a} \to \mathcal{T}_{\phi_{ij}^a \circ \lambda_{ij}^a} V_j$ for $a \in A$, such that for $a, b \in A$, applying $\circ \lambda_{ij}^b$ and
Theorem 3.17(c), (e) there exist a Γ_{ij}, and we replace ϕ^a_{ij} and Theorem 3.17(g) there exists $\pi^a_{ij}(s_i)$. Applying Theorem 3.17(i) to (6.62) shows we may choose a morphism $\hat{\mu}^a_{ij}$ over $\pi^a_{ij}(s_i)$. Now (6.59) implies that $\hat{\mu}^a_{ij} = (\lambda^a_{ij})^* \pi^a_{ij}(s_i)$, and a Γ_{ij}-equivariant, (6.63) also holds with $\hat{\mu}^a_{ij}$ replaced by $(\gamma_i, \gamma_j)^*(\hat{\mu}^a_{ij})$ for $(\gamma_i, \gamma_j) \in \Gamma_i \times \Gamma_j$. Averaging $(\gamma_i, \gamma_j)^*(\hat{\mu}^a_{ij})$ over $(\gamma_i, \gamma_j) \in \Gamma_i \times \Gamma_j$ and using Theorem 3.17(m), we see that we may take $\hat{\mu}^a_{ij}$ to be $\Gamma_i \times \Gamma_j$-equivariant.

Using the notation of Definition 3.15(v), and applying Theorem 3.17(g), we see that we can choose a morphism $\lambda^a_{ij} : \pi^a_{ij}(E_i) \to T_{\phi^a_{ij}}V_j |_{\phi^a_{ij} \cap \phi^a_{ij}}$ with

\[
\lambda^a_{ij} = \hat{\mu}^a_{ij} + \sum_{b \in A} \pi^a_{ij} \lambda^b_{ij} |_{\phi^a_{ij} \cap \phi^a_{ij}} \cdot (\hat{\mu}^b_{ij} - \mu^b_{ij} - (\lambda^a_{ij})^*(\lambda^b_{ij})) + O(\pi^a_{ij}(s_i))
\]

Here $(\lambda^a_{ij})^*(\lambda^b_{ij})$ in (6.64) is a morphism $\pi^a_{ij}(E_i) \to T_{\phi^a_{ij}}V_j |_{\phi^a_{ij} \cap \phi^a_{ij}}$, but by (6.63) and Theorem 3.17(g) there exists $(\lambda^a_{ij})^*(\lambda^b_{ij})' : \pi^a_{ij}(E_i) \to T_{\phi^a_{ij}}V_j |_{\phi^a_{ij} \cap \phi^a_{ij}}$, unique up to $O(\pi^a_{ij}(s_i))$, with $(\lambda^a_{ij})^*(\lambda^b_{ij})' = (\lambda^a_{ij})^*(\lambda^b_{ij}) + O(\pi^a_{ij}(s_i))$ as in Definition 3.15(v), and we replace $(\lambda^a_{ij})^*(\lambda^b_{ij})$ in (6.64) by $(\lambda^a_{ij})^*(\lambda^b_{ij})'$ to define λ^a_{ij}. By averaging λ^a_{ij} over the $\Gamma_i \times \Gamma_j$-action, we can suppose it is $\Gamma_i \times \Gamma_j$-equivariant.

Combining (6.59) with (6.63) for a, b and using Theorem 3.17(g) to go from ϕ^a_{ij} to ϕ^b_{ij}, we see that $\phi^a_{ij} = \phi^a_{ij} + (\hat{\mu}^a_{ij} - \mu^a_{ij} - (\lambda^a_{ij})^*(\lambda^b_{ij})) + O(\pi^a_{ij}(s_i))$ on $P_{ij} \cap \hat{\mu}^a_{ij}$.
Hence Theorem 3.17(a),(m) and local finiteness of \(\{ \pi^*_{ij}(\eta^b) : b \in A \} \) give

\[
\phi_{ij} = \phi_{ij} + \left(\sum_{a \in A} \pi^*_{ij}(\eta^b) \cdot \left(\mu_{ij}^a - \hat{\mu}_{ij}^a \right) \right) \circ \pi^*_{ij}(s_i) + O(\pi^*_{ij}(s_i)^2)
\]

on \(P_{ij} \). Combining this with (6.63), (6.64) and Theorem 3.17(m) shows that

\[
\phi_{ij}^a \circ \lambda^a_{ij}|_{P_{ij} \cap P_{ij}^a} = \phi_{ij}|_{P_{ij} \cap P_{ij}^a} + \hat{\lambda}_{ij}^a \circ \pi^*_{ij}(s_i) + O(\pi^*_{ij}(s_i)^2)
\]

on \(P_{ij} \cap P_{ij}^a \). (6.65)

For all \(a, b \in A \), on \(P_{ij} \cap P_{ij}^a \cap P_{ij}^b \) we have

\[
\hat{\lambda}_{ij}^b - \hat{\lambda}_{ij}^a = \hat{\mu}_{ij}^b - \hat{\mu}_{ij}^a + \sum_{c \in A} \pi^*_{ij}(\eta^c) \cdot \left(\hat{\mu}_{ij}^c - \hat{\mu}_{ij}^a \right) = \hat{\lambda}_{ij}^c \circ \pi^*_{ij}(s_i) + O(\pi^*_{ij}(s_i)^2)
\]

(6.66)

using (6.64) in the first step, (6.61) in the second, and \(\sum_c \eta^c = 1 \) in the third. By Theorem 3.17(f),(h) we choose \(\hat{\phi}_{ij}^c \circ \pi^*_{ij}(E_i)|_{P_{ij} \cap P_{ij}^a} = \phi_{ij}^c|_{P_{ij} \cap P_{ij}^a} \) with

\[
\hat{\phi}_{ij}^c = (\lambda^c_{ij})^*(\hat{\phi}_{ij}^a) - \phi_{ij}^c(d_{ij}) \circ \hat{\lambda}_{ij}^a + O(\pi^*_{ij}(s_i)),
\]

(6.67)

uniquely up to \(O(\pi^*_{ij}(s_i)) \). By averaging over the \(\Gamma_i \times \Gamma_j \)-action we can suppose \(\hat{\phi}_{ij}^c \) is \(\Gamma_i \times \Gamma_j \)-equivariant. Define a \(\Gamma_i \)- and \(\Gamma_j \)-equivariant morphism \(\hat{\phi}_{ij} : \pi^*_{ij}(E_i) \to \hat{\phi}_{ij}^c(E_j) \) on \(P_{ij} \) by

\[
\hat{\phi}_{ij} = \sum_{a \in A} \pi^*_{ij}(\eta^b) \cdot \hat{\phi}_{ij}^a.
\]

(6.68)

Then for each \(a \in A \), on \(P_{ij} \cap P_{ij}^a \) we have

\[
(\lambda^a_{ij})^*(\hat{\phi}_{ij}^a) = \sum_{b \in A} \pi^*_{ij}(\eta^b) \cdot \left[(\lambda^a_{ij})^*(\hat{\phi}_{ij}^a) \right] + O(\pi^*_{ij}(s_i))
\]

(6.69)

and \(\hat{\phi}_{ij}^a \circ \lambda^a_{ij} = \phi_{ij}^c|_{P_{ij}^a} + O(\pi^*_{ij}(s_i)^2) \) from (6.65) in the second, (6.67) in the third, and (6.68) and \(\{ \eta^b : b \in A \} \) a partition of unity in the fourth.

We have already proved \(\Phi_{ij} := (P_{ij}, \pi_{ij}, \phi_{ij}, \hat{\phi}_{ij}) \) satisfies Definition 6.2(a)–(d). Parts (e),(f) hold on \(P_{ij} \cap P_{ij}^a \leq P_{ij} \) by (6.65), (6.69) and Definition 6.2(e),(f) for \(\Phi_{ij}^a \), for each \(a \in A \), so they hold on \(\bigcup_{a \in A}(P_{ij} \cap P_{ij}^a) = P_{ij} \). Thus \(\Psi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) is a 1-morphism over \((S, f)\).
Equations (6.65) and (6.69) imply that $\Lambda_{ij}^a := [P_{ij} \cap \dot{P}_{ij}^a, \Lambda_{ij}^a|_{\cP_{ij} \cap \dot{P}_{ij}^a}]$ is a 2-morphism $\Phi_{ij}|_{T^a} \Rightarrow \Phi_{ij}^a$ over (T^a, f) for all $a \in A$. Equations (6.58) and (6.66) imply that $\Lambda_{ij}^{ab} := \Lambda_{ij}^a \circ \Lambda_{ij}^b \in \cP_{ij}$ for all $a, b \in A$. This proves Definition A.17(v), showing that $\textbf{Hom}_f((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))$ is a stack on $\text{Im} \psi_i \cap f^{-1}(\text{Im} \psi_j)$, and completes the first part of Theorem 6.16.

6.7.4 Equi(…) is a substack of $\textbf{Hom}(\cdots)$

Now we take $X = Y$ and $f = \text{id}_X$. In this subsection, we will by an abuse of notation treat the weak 2-category $\textbf{K}N_{X}(X)$ defined in [6.1] as if it were a strict 2-category. That is, we will pretend the 2-morphisms $\alpha_{\Phi_{ij}}, \beta_{\Phi_{ij}}, \gamma_{\Phi_{ij}}$ in (6.7) and (6.8) are identities or omit them, and we will omit brackets in compositions of 1-morphisms such as $\Phi_{kl} \circ \Phi_{jk} \circ \Phi_{ij}$. This is permissible as every weak 2-category can be strictified. We do it because otherwise diagrams such as Figure 6.4 would become too big.

Definition A.17(i)–(iv) for $\textbf{Eq}(V_i, E_i, \Gamma_i, s_i, \psi_i)$ are immediate from (i)–(iv) for $\textbf{Hom}(V_i, E_i, \Gamma_i, s_i, \psi_i)$ for all i, j. For (v), we must show that in the last part of the proof in 6.7.3, if the Φ_{ij}^a are coordinate changes over T^a (i.e. equivalences in $\textbf{K}N_{T^a}(X)$), then the Φ_{ij} we construct with $\Phi_{ij}^a : \Phi_{ij}|_{T^a} \Rightarrow \Phi_{ij}^a$ for $a \in A$ is a coordinate change over S.

Let $S, \{T^a : a \in A\}, \{\Phi_{ij}^a, \Lambda_{ij}^{ab} \}$ be as in 6.7.3, but with $X = Y$, $f = \text{id}_X$ and all the Φ_{ij}^a coordinate changes. Since Φ_{ij}^a is an equivalence in $\textbf{K}N_{T^a}(X)$, we may choose a coordinate change $\Phi_{ij}^a : (V_i, E_i, \Gamma_i, s_i, \psi_i) \rightarrow (V_j, E_j, \Gamma_j, s_j, \psi_j)$ and 2-morphisms $1^a : \Phi_{ij}^a \circ \Phi_{ij}^a \Rightarrow \text{id}_{(V_i, E_i, \Gamma_i, s_i, \psi_i)}$ and $K_{ij}^a : \Phi_{ij}^a \circ \Phi_{ij}^a \Rightarrow \text{id}_{(V_j, E_j, \Gamma_j, s_j, \psi_j)}$ for all $a \in A$. By Proposition A.3, we can suppose these satisfy

$$\text{id}_{\Phi_{ij}^a} \ast 1^a = 1^{a_1} \ast \text{id}_{\Phi_{ij}^a} \quad \text{and} \quad \text{id}_{\Phi_{ij}^a} \ast K_{ij}^a = 1^{a_1} \ast \text{id}_{\Phi_{ij}^a}. \quad (6.70)$$

Define 2-morphisms $M_{ij}^b : \Phi_{ij}|_{T^a \cap T^b} \Rightarrow \Phi_{ij}|_{T^a \cap T^b}$ over $T^a \cap T^b$ for all $a, b \in A$ to be the vertical composition

$$\text{id}_{\Phi_{ij}^a} \ast (K_{ij}^a)^{-1} \ast \text{id}_{\Phi_{ij}^a} \ast (\Lambda_{ij}^{ab})^{-1} \ast \text{id}_{\Phi_{ij}^a} \ast 1^a \ast \text{id}_{\Phi_{ij}^a} \ast K_{ij}^a \Rightarrow 1^a \ast \text{id}_{\Phi_{ij}^a} \ast \text{id}_{\Phi_{ij}^a} \Rightarrow 1^a \ast \text{id}_{\Phi_{ij}^a} \Rightarrow 1^a \ast \text{id}_{\Phi_{ij}^a} \ast K_{ij}^a \Rightarrow \Phi_{ij}^a \circ \Phi_{ij}^b \Rightarrow \Phi_{ij}^b \Rightarrow \Phi_{ij}|_{T^a \cap T^b}. \quad (6.71)$$

For $a, b, c \in A$, consider the diagram Figure 6.4 of 2-morphisms over $T^a \cap T^b \cap T^c$. The three outer quadrilaterals commute by the definition (6.71) of M_{ij}^b. Eight inner quadrilaterals commute by compatibility of horizontal and vertical composition, a 2-gon commutes by (6.70), and a triangle commutes as $\Lambda_{ij}^{bc} \circ \Lambda_{ij}^{ab} = \Lambda_{ij}^{ac}$. Hence Figure 6.4 commutes, which shows that $M_{ij}^{bc} \circ M_{ij}^{ab} = M_{ij}^{ac}$ over $T^a \cap T^b \cap T^c$ for all $a, b, c \in A$.

Thus by Definition A.17(v) for $\textbf{Hom}(V_i, E_i, \Gamma_i, s_i, \psi_i), (V_i, E_i, \Gamma_i, s_i, \psi_i)$, proved in 6.7.3 there exists a 1-morphism $\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \rightarrow (V_j, E_j, \Gamma_j, s_j, \psi_j)$ over S and 2-morphisms $M_{ij}^a : \Phi_{ij}|_{T^a} \Rightarrow \Phi_{ij}$ over T^a for $a \in A$, such that $M_{ij}^a|_{T^a \cap T^b} = M_{ij}^b \circ M_{ij}^a|_{T^a \cap T^b}$ over $T^a \cap T^b$ for all $a, b \in A$.

185
For each $a \in A$, define a 2-morphism $N^a_i : (\Phi_{ji} \circ \Phi_{ij})|_{T^a} \Rightarrow \id_{(V_i, E_i, \Gamma_i, s_i, \psi_i)}|_{T^a}$ by the vertical composition

$$(\Phi_{ji} \circ \Phi_{ij})|_{T^a} \xrightarrow{M^b_{ji} + \Lambda^b_{ij}} \Phi^b_{ij} \circ \Phi^b_{ji} \xrightarrow{N^a_i} \id_{(V_i, E_i, \Gamma_i, s_i, \psi_i)}|_{T^a}.$$

Then the following diagram commutes by \(6.70\), $\Lambda^b_{ij} = \Lambda^a_{ij} \circ \Lambda^a_{ji}$, $M^b_{ji} = M^a_{ji} \circ M^a_{ij}$, the definitions of M^b_{ji}, N^a_i in (6.71) and (6.72), and compatibility of horizontal and vertical composition:

Hence $N^a_i|_{T^a \cap T^b} = N^b_i|_{T^a \cap T^b}$ for all $a, b \in A$. Therefore by Definition A.17(iv) for $\text{Hom}(\langle V_i, E_i, \Gamma_i, s_i, \psi_i \rangle, \langle V_i, E_i, \Gamma_i, s_i, \psi_i \rangle)$, proved in 6.7.2, there is a unique 2-morphism $N_i : \Phi_{ji} \circ \Phi_{ij} \Rightarrow \id_{(V_i, E_i, \Gamma_i, s_i, \psi_i)}$ over S with $N_i|_{T^a} = N^a_i$ for all $a \in A$.

Figure 6.4: Proof that $M^b_{ji} \circ M^a_{ij} = M^a_{ji} \circ M^b_{ij}$.

186
Similarly we construct $O_j : \Phi_{ij} \circ \Phi_{ji} \Rightarrow \text{id}_{(V_j, E_j, \Gamma_j, s_j, \psi_j)}$. These Φ_{ji}, N_i, O_j show Φ_{ij} is an equivalence in $\hat{\mathbf{KN}}_S(X)$, and so a coordinate change. This gives Definition [A.17(v)] for $\mathbf{Equ}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))$, which is thus a substack of $\mathbf{Hom}((V_i, E_i, \Gamma_i, s_i, \psi_i), (V_j, E_j, \Gamma_j, s_j, \psi_j))$, completing the proof of Theorem 6.16.
Chapter 7

Relation to other Kuranishi-type spaces (To be rewritten.)

We now compare our Kuranishi spaces in Chapter 6 with Kuranishi-type spaces developed by other authors. In §7.1–§7.4 we discuss various definitions of Kuranishi space, and of good coordinate system, in the work of Fukaya, Oh, Ohta and Ono [19–39], McDuff and Wehrheim [77, 78, 80–83], and Dingyu Yang [110–112]. We use Yang’s work to connect our Kuranishi spaces with the polyfold theory of Hofer, Wysocki and Zehnder [46–53].

To improve compatibility with Chapter 6 we have made some small changes in notation compared to our sources, without changing the content. We hope the authors concerned will not mind this. Examples 7.2, 7.5, . . . explain the relationship between the material we explain, and the definitions of §6.1. Section 7.5 will prove that all the structures we discuss can be converted to Kuranishi spaces in the sense of §6.2. The proof of Theorem 7.26 is deferred until §7.6.

7.1 Fukaya–Oh–Ohta–Ono’s Kuranishi spaces

‘Kuranishi spaces’ are used in the work of Fukaya, Oh, Ohta and Ono [19–39] as the geometric structure on moduli spaces of J-holomorphic curves. Initially introduced by Fukaya and Ono [39, §5] in 1999, the definition has changed several times as their work has evolved.

This section explains their most recent definition of Kuranishi space, taken from [30, §4]. As in the rest of our book ‘Kuranishi neighbourhood’, ‘coordinate change’ and ‘Kuranishi space’ have a different meaning, we will use the terms ‘FOOO Kuranishi neighbourhood’, ‘FOOO coordinate change’ and ‘FOOO Kuranishi space’ below to refer to concepts from [30].

For the next definitions, let X be a compact, metrizable topological space.

Definition 7.1. A *FOOO Kuranishi neighbourhood* on X is a quintuple (V, E, Γ, s, ψ) such that:

(a) V is a classical manifold, or manifold with corners ($V \in \text{Man}$ or Man^c).
(b) \(E\) is a finite-dimensional real vector space.

(c) \(\Gamma\) is a finite group with a smooth, effective action on \(V\), and a linear representation on \(E\).

(d) \(s : V \to E\) is a \(\Gamma\)-equivariant smooth map.

(e) \(\psi\) is a homeomorphism from \(s^{-1}(0)/\Gamma\) to an open subset \(\text{Im}\, \psi\) in \(X\), where

\[
\text{Im}\, \psi = \left\{ \psi(x\Gamma) : x \in s^{-1}(0) \right\}
\]

is the image of \(\psi\), and is called the footprint of \((V, E, \Gamma, s, \psi)\).

We will write \(\tilde{\psi} : s^{-1}(0) \to \text{Im}\, \psi \subseteq X\) for the composition of \(\psi\) with the projection \(s^{-1}(0) \to s^{-1}(0)/\Gamma\).

Now let \(p \in X\). A \textit{FOOO Kuranishi neighbourhood of} \(p\) in \(X\) is a FOOO Kuranishi neighbourhood \((V_p, E_p, \Gamma_p, s_p, \psi_p)\) with a distinguished point \(o_p \in V_p\) such that \(o_p\) is fixed by \(\Gamma_p\), and \(s_p(o_p) = 0\), and \(\psi_p([o_p]) = p\). Then \(o_p\) is unique.

Example 7.2. For our Kuranishi neighbourhoods \((V', E', \Gamma', s', \psi')\) in Definition 6.1 \(\pi' : E' \to V'\) is a \(\Gamma'\)-equivariant vector bundle, and \(s' : V' \to E'\) a \(\Gamma'\)-equivariant smooth section. Also \(\Gamma'\) is not required to act effectively on \(V'\).

To make a FOOO Kuranishi neighbourhood \((V, E, \Gamma, s, \psi)\) into one of our Kuranishi neighbourhoods \((V', E', \Gamma', s', \psi')\), take \(V' = V\), \(\Gamma' = \Gamma\), \(s' = s\), \(\psi' = \psi\), let \(\pi' : E' \to V'\) be the trivial vector bundle \(\pi_V : V \times E \to V\) with fibre \(E\), and \(s' = (id, s) : V \to V \times E\). Thus, FOOO Kuranishi neighbourhoods correspond to special examples of our Kuranishi neighbourhoods \((V', E', \Gamma', s', \psi')\), in which \(\pi' : E' \to V'\) is a trivial vector bundle, and \(\Gamma'\) acts effectively on \(V'\).

By an abuse of notation, we will sometimes identify FOOO Kuranishi neighbourhoods with the corresponding Kuranishi neighbourhoods in [6.1]. That is, we will use \(E\) to denote both a vector space, and the corresponding trivial vector bundle over \(V\), and \(s\) to denote both a map, and a section of a trivial bundle.

Fukaya et al. [30] Def. 4.3(4) also make the same abuse of notation.

Definition 7.3. Let \((V_i, E_i, \Gamma_i, s_i, \psi_i)\), \((V_j, E_j, \Gamma_j, s_j, \psi_j)\) be FOOO Kuranishi neighbourhoods on \(X\). Suppose \(S \subseteq \text{Im}\, \psi_i \cap \text{Im}\, \psi_j \subseteq X\) is an open subset of the intersection of the footprints \(\text{Im}\, \psi_i, \text{Im}\, \psi_j \subseteq X\). We say a quadruple \(\Phi_{ij} = (V_{ij}, h_{ij}, \varphi_{ij}, \tilde{\varphi}_{ij})\) is a \textit{FOOO coordinate change from} \((V_i, E_i, \Gamma_i, s_i, \psi_i)\) to \((V_j, E_j, \Gamma_j, s_j, \psi_j)\) over \(S\) if:

(a) \(V_{ij}\) is a \(\Gamma_i\)-invariant open neighbourhood of \(\tilde{\psi}_i^{-1}(S)\) in \(V_i\).

(b) \(h_{ij} : \Gamma_i \to \Gamma_j\) is an injective group homomorphism.

(c) \(\varphi_{ij} : V_{ij} \to V_j\) is an \(h_{ij}\)-equivariant smooth embedding, such that the induced map \((\varphi_{ij})_* : V_{ij}/\Gamma_i \to V_j/\Gamma_j\) is injective.

(d) \(\tilde{\varphi}_{ij} : V_{ij} \times E_i \hookrightarrow V_j \times E_j\) is an \(h_{ij}\)-equivariant embedding of vector bundles over \(\varphi_{ij} : V_{ij} \hookrightarrow V_j\), viewing \(V_{ij} \times E_i \to V_{ij}\), \(V_j \times E_j \to V_j\) as trivial vector bundles.

(e) \(\varphi_{ij}(s_i|V_{ij}) = \varphi_{ij}^*(s_j)\), in sections of \(\varphi_{ij}^*(V_j \times E_j) \to V_{ij}\).

(f) \(\psi_i = \psi_j \circ (\varphi_{ij})_*\) on \(s_i^{-1}(0) \cap V_{ij}/\Gamma_i\).
(g) h_{ij} restricts to an isomorphism $\text{Stab}_{\gamma}(v) \to \text{Stab}_{\gamma}(\varphi_{ij}(v))$ for all v in V_{ij}, where $\text{Stab}_{\gamma}(v)$ is the stabilizer subgroup $\{ \gamma \in \Gamma : \gamma(v) = v \}$.

(h) For each $v \in s^{-1}_i(0) \cap V_{ij} \subseteq V_{ij} \subseteq V_i$ we have a commutative diagram

$$
\begin{array}{c}
0 \longrightarrow T_i V_i \\
\downarrow d_{s_i|v} \quad \downarrow \varphi_{ij|v} \\
E_i|_v \quad \longrightarrow \quad E_{ij}(v) V_j \\
\downarrow d_{s_j|\varphi_{ij|v}} \\
N_{ij}|_v \quad \longrightarrow \quad F_{ij}|_v \quad \longrightarrow \quad 0
\end{array}
$$

with exact rows, where $N_{ij} \to V_{ij}$ is the normal bundle of V_{ij} in V_j, and $F_{ij} = \varphi_{ij|v}^*(E_j)/\varphi_{ij}(E_i|_{V_{ij}})$ the quotient bundle. We require that the induced morphism $d_{\text{fibres}} s_j|_v$ in (7.1) should be an isomorphism.

Note that $d_{\text{fibres}} s_j|_v$ an isomorphism in (7.1) is equivalent to the following complex being exact:

$$
0 \longrightarrow T_i V_i \overset{d_{s_i|v} \oplus d_{\varphi_{ij|v}}}{\longrightarrow} E_i|_v \oplus T_{\varphi_{ij|v}} V_j \overset{\varphi_{ij|v} \oplus -d_{s_j|\varphi_{ij|v}}}{\longrightarrow} E_j|_{\varphi_{ij|v}} \longrightarrow 0. \tag{7.2}
$$

This should be compared to Theorem 6.12.

Now let $(V_p, E_p, \Gamma_p, s_p, \psi_p)$, $(V_q, E_q, \Gamma_q, s_q, \psi_q)$ be FOOO Kuranishi neighbourhoods of $p \in X$ and $q \in \text{Im} \psi_p \subseteq X$, respectively. We say a quadruple $\Phi_{pq} = (\varphi_{pq}, \varphi_{qp}, \tilde{\varphi}_{pq})$ is a FOOO coordinate change if it is a FOOO coordinate change from $(V_q, E_q, \Gamma_q, s_q, \psi_q)$ to $(V_p, E_p, \Gamma_p, s_p, \psi_p)$ over S_{qp}, where S_{qp} is any open neighbourhood of q in $\text{Im} \psi_q \cap \text{Im} \psi_p$.

Remark 7.4. (a) We have changed notation slightly compared to [30], to improve compatibility with the rest of the book. Fukaya et al. [30, §4] write Kuranishi neighbourhoods as (V, E, Γ, ψ, s) rather than (V, E, Γ, s, ψ). Also, they write coordinate changes as $\Phi_{pq} = (\tilde{\varphi}_{pq}, \varphi_{pq}, h_{pq})$, leaving V_{pq} implicit, rather than as $\Phi_{qp} = (\varphi_{qp}, h_{qp}, \tilde{\varphi}_{qp})$ as we do. Note that we have changed the order of p, q in the subscripts compared to [30].

Fukaya et al. do not require $\tilde{\varphi}_{ij} : V_{ij} \times E_i \hookrightarrow \varphi_{ij}^*(V_j \times E_j)$ to come from an injective linear map of vector spaces $E_i \hookrightarrow E_j$. As in [7.3] McDuff and Wehrheim do require this.

Fukaya et al. only impose Definition 7.3(h) for Kuranishi spaces ‘with a tangent bundle’ in the sense of [24, 30, 39]. As the author knows of no reason for considering Kuranishi spaces ‘without tangent bundles’, and the notation appears to be merely historical, we will include ‘with a tangent bundle’ in our definitions of FOOO coordinate changes and FOOO Kuranishi spaces.

(b) Manifolds with corners were discussed in Chapter 2. When we allow the V_i in Kuranishi neighbourhoods $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ to be manifolds with corners, it is important that the definition of embedding of manifolds with corners $\varphi_{ij} : V_{ij} \hookrightarrow V_j$ used in Definition 7.3(c) includes the condition that φ_{ij} be simple, in the sense of [2.1]. For comparison, in our theory of Kuranishi spaces with corners in [63] it is important that coordinate changes Φ_{ij} are simple in the sense of Definition 6.3(c) as follows from Proposition 6.32(d).
We relate FOOO coordinate changes to coordinate changes in \[6.1\].

Example 7.5. Let \(\Phi_{ij} = (V_{ij}, h_{ij}, \varphi_{ij}, \bar{\varphi}_{ij}) : (V_{ij}, E_{ij}, \Gamma_{ij}, s_{ij}, \psi_{ij}) \to (V_{ij}, E_{ij}, \Gamma_{ij}, s_{ij}, \psi_{ij}) \) be a FOOO coordinate change over \(S \), as in Definition 7.6. As in Example 7.2, we regard the FOOO Kuranishi neighbourhoods \((V_{ij}, E_{ij}, \Gamma_{ij}, s_{ij}, \psi_{ij}) \) as examples of Kuranishi neighbourhoods in the sense of \[6.1\].

Set \(P_{ij} = V_{ij} \times \Gamma_{ij} \). Let \(\Gamma_{ij} \) act on \(P_{ij} \) by \(\gamma_{ij} : (v, \gamma) \mapsto (\gamma \cdot v, \gamma h_{ij}(\gamma)^{-1}) \). Let \(\Gamma_{ij} \) act on \(P_{ij} \) by \(\gamma_{ij} : (v, \gamma) \mapsto (v, \gamma \gamma) \). Define \(\pi_{ij} : P_{ij} \to V_{ij} \) and \(\phi_{ij} : P_{ij} \to V_{ij} \) by \(\pi_{ij} : (v, \gamma) \mapsto v \) and \(\phi_{ij} : (v, \gamma) \mapsto \gamma \cdot \varphi_{ij}(v) \). Then \(\pi_{ij} \) is \(\Gamma_{ij} \)-equivariant and \(\Gamma_{ij} \)-invariant. Since \(\varphi_{ij} \) is \(h_{ij} \)-equivariant, \(\phi_{ij} \) is \(\Gamma_{ij} \)-invariant, and \(\Gamma_{ij} \)-equivariant.

We will define a vector bundle morphism \(\tilde{\phi}_{ij} : \pi_{ij}^* (E_{ij}) \to \phi_{ij}^* (E_{ij}) \). At \((v, \gamma) \in P_{ij}\), this \(\tilde{\phi}_{ij} \) must map \(E_{ij} | v \to E_{ij} | \varphi_{ij}(v) \). We define \(\tilde{\phi}_{ij} | (v, \gamma) \) to be the composition of \(\varphi_{ij} | v : E_{ij} | v \to E_{ij} | \varphi_{ij}(v) \) with \(\gamma : E_{ij} | \varphi_{ij}(v) \to E_{ij} | \varphi_{ij}(v) \) from the \(\Gamma_{ij} \)-action on \(E_{ij} \). That is, \(\tilde{\phi}_{ij} | (v, \gamma) = \gamma \cdot \varphi_{ij} \) for each \(\gamma \in \Gamma_{ij} \).

It is now easy to see that \(\Phi_{ij} = (P_{ij}, \pi_{ij}, \phi_{ij}, \tilde{\phi}_{ij}) : (V_{ij}, E_{ij}, \Gamma_{ij}, s_{ij}, \psi_{ij}) \to (V_{ij}, E_{ij}, \Gamma_{ij}, s_{ij}, \psi_{ij}) \) is a 1-morphism over \(S \), in the sense of \[6.1\]. Using (7.2), Theorem 6.12(a),(b) show that \(\Phi_{ij} \) is a coordinate change over \(S \), as in \[6.1\] noting that \(\varphi_{ij} \) is simple in the corners case as in Remark 7.4(b).

Definition 7.6. A FOOO Kuranishi structure \(K \) on \(X \) of virtual dimension \(n \in \mathbb{Z} \) in the sense of \[30, \S 4\], including the "with a tangent bundle" condition, assigns a FOOO Kuranishi neighbourhood \((V_p, E_p, \Gamma_p, s_p, \psi_p)\) for each \(p \in X \) and a FOOO coordinate change \(\Phi_{qp} = (V_{qp}, h_{qp}, \varphi_{qp}, \bar{\varphi}_{qp}) : (V_q, E_q, \Gamma_q, s_q, \psi_q) \to (V_p, E_p, \Gamma_p, s_p, \psi_p) \) for each \(q \in \text{Im } \psi_p \) such that the following holds:

(a) \(\dim V_p - \text{rank } E_p = n \) for all \(p \in X \).

(b) If \(q \in \text{Im } \psi_p, r \in \psi_q((V_q \cap s_q^{-1}(0)) \cap \Gamma_q) \), then for each connected component \((\varphi_{rq}^{-1}(V_{qp}) \cap V_{rp})^\alpha \) of \(h_{rq} \circ h_{pr} = \gamma_{rq}^\alpha \cdot h_{pr} \cdot (\gamma_{rq}^\alpha)^{-1} \), \(\varphi_{rq} \circ \varphi_{rq} = \gamma_{rq}^\alpha \cdot \varphi_{rp} \),

and

\[(7.3) \]

\[h_{rq} \circ \bar{\varphi}_{rq} = \gamma_{rq}^\alpha \cdot h_{rp} \cdot (\gamma_{rq}^\alpha)^{-1}, \]

where the second and third equations hold on \((\varphi_{rq}^{-1}(V_{qp}) \cap V_{rp})^\alpha \).

If the \(V_p \) for \(p \in X \) are classical manifolds, we call \(X = (X, K) \) a FOOO Kuranishi space, of virtual dimension \(n \in \mathbb{Z} \), written \(\text{vdim } X = n \). If the \(V_p \) are manifolds with corners, we call \(X \) a FOOO Kuranishi space with corners.

We prove in Theorem 7.29 below that a FOOO Kuranishi space \(X \) (with corners) can be made into a Kuranishi space \(X' \) (with corners) in the sense of \[6.2\]. We will show that the elements \(\gamma_{rq}^\alpha \in \Gamma_p \) in Definition 7.6(b) correspond in the setting of \[6.1\] to a 2-morphism \(\Lambda_{rq} : \Phi_{qp} \circ \bar{\Phi}_{rq} \Rightarrow \bar{\Phi}_{rp} \).

Example 7.7. (i) In the Fukaya–Oh–Ohta–Ono theory \[19, 39\], one often relates two FOOO coordinate changes in the following way. Let \(\Phi_{ij} = (V_{ij}, h_{ij}, \varphi_{ij}, \bar{\varphi}_{ij}) \),

191
\[h_{ij} = \gamma \cdot k_{ij} \cdot \gamma^{-1}, \quad \phi_{ij} = \gamma \cdot \phi'_{ij}, \quad \text{and} \quad \hat{\phi}_{ij} = \gamma \cdot \hat{\phi}'_{ij}, \quad (7.4) \]

where the second and third equations hold on \(\hat{V}_{ij} := V_{ij} \cap V_{ij}' \).

Let \(\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \rightarrow (V_j, E_j, \Gamma_j, s_j, \psi_j) \) be the 1-morphisms in the sense of Definition 7.6(b), corresponding to \(\Phi_{ij} \) in Example 7.5. Set \(\hat{P}_{ij} = \hat{V}_{ij} \times \Gamma_j \subseteq P_{ij} \). Define \(\lambda_{ij} : \hat{P}_{ij} = \hat{V}_{ij} \times \Gamma_j \rightarrow V_{ij}' \times \Gamma_j = P_{ij}' \) by \(\lambda_{ij} : (v, \gamma') \mapsto (v, \gamma' \gamma) \), and \(\hat{\lambda}_{ij} = 0 \). Then \((\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}) \) satisfies Definition 6.4(a)–(c), so we have defined a 2-morphism \(\Lambda_{ij} = [\hat{P}_{ij}, \lambda_{ij}, \hat{\lambda}_{ij}] : \Phi_{ij} \Rightarrow \Phi'_{ij} \), in the sense of Definition 6.1.

(i) This enables us to interpret Definition 7.6(b) in terms of a 2-morphism. In the situation of Definition 7.6(b), the composition of the FOOO coordinate changes \(\Phi_{rq}, \Phi_{qp} \), is the composition of the coordinate changes \(\Phi_{q} \circ \Phi_{p} = (\varphi_{rq}^{-1}(V_{qp}) \cap V_{pq}) = (\varphi_{rq}^{-1}(V_{qp}) \cap V_{pq}) \circ \varphi_{pq} \circ \varphi_{qp} \circ \varphi_{rq}^{-1}(V_{qp}), \Phi_{rq} \circ \varphi_{pq} \circ \varphi_{qp} \circ \varphi_{rq}^{-1}(V_{qp})) \). Thus, (7.3) relates \(\Phi_{qp} \circ \Phi_{rq} \) to \(\Phi_{rp} \) in the same way that (7.4) relates \(\Phi_{ij} \) to \(\Phi'_{ij} \), except for allowing \(\gamma_{rqp} \) to vary on different connected components. Hence, if \(\Phi_{rq}, \Phi_{qp}, \Phi_{rp} \) are the coordinate changes in the sense of Definition 6.1 associated to \(\Phi_{rq}, \Phi_{qp}, \Phi_{rp} \) in Example 7.5, then the method of (i) defines a 2-morphism \(\Lambda_{pq} : \Phi_{q} \circ \Phi_{r} \Rightarrow \Phi_{p} \) in the sense of Definition 6.1.

(ii) In the situation of Definition 7.6(b), suppose \(v \in (\varphi_{rq}^{-1}(V_{qp}) \cap V_{pq})^{\alpha} \) is generic. Then \(\text{Stab}_{\gamma_{rp}}(\varphi_{rp}(v)) = \{ 1 \} \) by Definition 7.3(a). Therefore the point \(\gamma_{rqp} \cdot \varphi_{rp}(v) \in \Phi_{pq} \circ \Phi_{qp} \circ \Phi_{rp} \) in \(V_p \) determines \(\gamma_{rqp} \) uniquely, provided it exists. Thus the 2-morphism \(\Lambda_{pq} : \Phi_{qp} \circ \Phi_{rp} \Rightarrow \Phi_{rp} \) in (ii) is also determined uniquely.

Definition 7.8. Let \(X \) be a FOOO Kuranishi space (possibly with corners). Then for each \(p \in X, q \in \text{Im } V_{pq} \) and \(v \in s_{p}^{-1}(0) \cap V_{pq} \), we have an exact sequence (7.2). Taking top exterior powers in (7.2) yields an isomorphism

\[(\det T_{pq} V_q) \otimes (\det E_p|_{\varphi_{qp}(v)}) \cong (\det E_q|_{v}) \otimes (T_{\varphi_{qp}(v)} V_p), \]

where \(\text{det } W \) means \(\Lambda^{\dim W} W \), or equivalently, a canonical isomorphism

\[(\det T^{*} V_{p}) \otimes (\text{det } E_{p}|_{\varphi_{pq}(v)}) \cong (\text{det } T^{*} V_{q} \otimes (\text{det } E_{q}|_{v})). \quad (7.5) \]

Defining the isomorphism (7.5) requires a suitable sign convention. Sign conventions are discussed in Fukaya et al. [24] §8.2 and McDuff and Wehrheim [82], §8.1. An orientation on \(X \) is a choice of orientations on the line bundles

\[\det T^{*} V_{p} \otimes \det E_{p}|_{s_{p}^{-1}(0)} \rightarrow s_{p}^{-1}(0) \]

for all \(p \in X \), compatible with the isomorphisms (7.5). In §10.7 in volume II, we will develop the analogue of these ideas for our (m- and \(\mu \))-Kuranishi spaces.
Definition 7.9. Let \mathbf{X} be a FOOO Kuranishi space (possibly with corners), and Y a classical manifold. A smooth map $f : \mathbf{X} \to Y$ is $f = (f_p : p \in X)$ where $f_p : V_p \to Y$ is a Γ_p-invariant smooth map for all $p \in X$ (that is, f_p factors via $V_p \to V_p/\Gamma_p \to Y$), and $f_p \circ \varphi_{pq} = f_q|_{V_{pq}} : V_{qp} \to Y$ for all $q \in \text{Im} \psi_p$. This induces a unique continuous map $f : X \to Y$ with $f_p|_{s_p^{-1}(0)} = f \circ \psi_p$ for all $p \in X$. We call f weakly submersive if each f_p is a submersion.

Suppose \mathbf{X}, \mathbf{X}' are FOOO Kuranishi spaces, Y is a classical manifold, and $f : \mathbf{X} \to Y$, $f' : \mathbf{X}' \to Y$ are weakly submersive. Then as in [24 §A1.2] one can define a ‘fibre product’ Kuranishi space $W = \mathbf{X} \times_Y \mathbf{X}'$, with topological space $W = \{(p,p') \in X \times X' : f(p) = f'(p')\}$, and FOOO Kuranishi neighbourhoods $(V_{p,p'}, E_{p,p'}, \Gamma_{p,p'}, s_{p,p'}, \psi_{p,p'})$ for $(p,p') \in W$, where $V_{p,p'} = V_p \times_{f_p, Y, f'_p} V'_p$, $E_{p,p'} = \pi^{-1}_{V_p}(E_p) \oplus \pi^{-1}_{V'_p}(E'_p)$, $\Gamma_{p,p'} = \Gamma_p \times \Gamma'_{p'}$, $s_{p,p'} = \pi^{-1}_{V_p}(s_p) \oplus \pi^{-1}_{V'_p}(s'_{p'})$, and $\psi_{p,p'} = \psi_p \circ (\pi V_p)_* \times \psi'_{p'} \circ (\pi V'_{p'})_*$. The weakly submersive condition ensures $V_{p,p'} = V_p \times_Y V'_p$ is well-defined.

Remark 7.10. (i) Note that Fukaya et al. [19–39] do not define morphisms between Kuranishi spaces, but only morphisms $f : \mathbf{X} \to Y$ from Kuranishi spaces \mathbf{X} to classical manifolds Y. Thus, Kuranishi spaces in [19–39] do not form a category.

Observe however that Fukaya [19, §3, §5] (see also [35, §4.2]) works with a forgetful morphism $\text{forget} : \mathcal{M}_{1,1}(\beta) \to \mathcal{M}_{1,0}(\beta)$, which is clearly intended to be some kind of morphism of Kuranishi spaces, without defining the concept.

(ii) The ‘fibre product’ $\mathbf{X} \times_Y \mathbf{X}'$ in Definition 7.9 is not a fibre product in the sense of category theory, characterized by a universal property, since Fukaya et al. in [19–39] do not have a category (or higher category) of FOOO Kuranishi spaces in which to state such a universal property. Their ‘fibre product’ is really just an ad hoc construction. Chapter 11 in volume II will study w-transverse 2-category fibre products in our 2-categories of (m-)Kuranishi spaces $\mathbf{mKur, Kur}$.

7.2 Fukaya–Oh–Ohta–Ono’s good coordinate systems

Good coordinate systems on Kuranishi spaces \mathbf{X} in the work of Fukaya, Oh, Ohta and Ono [19, 24, 26, 27, 30, 33, 35, 37, 39], see in chronological order [39, Def. 6.1], [24, Lem. A1.11], [26, §15], and [30, §5]. Of these, [30, 39] work with Kuranishi neighbourhoods $(\mathfrak{V}_i, E_i, \Gamma_i, s_i, \psi_i)$ where \mathfrak{V}_i is an orbifold (which we do not want to do), and [24, 26] with Kuranishi neighbourhoods $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ with V_i a manifold.
The definition we give below is a hybrid of those in \cite{24, 26, 30, 36}. Essentially our ‘FOOO weak good coordinate systems’ follow the definitions in \cite{24, 26}, and our ‘FOOO good coordinate systems’ include extra conditions adapted from \cite{30, 36}. We show in Theorem 7.31 below that given a FOOO weak good coordinate system on X, we can make X into a Kuranishi space \mathcal{X} in the sense of \cite{6, 2}.

Definition 7.11. Let X be a compact, metrizable topological space. A FOOO weak good coordinate system $\mathcal{G} = ((I, \prec), (V_i, E_i, \Gamma_i, s_i, \psi_i), i \in I, \Phi_{ij}, i \prec j \in I)$ on X of virtual dimension $n \in \mathbb{Z}$ consists of a finite indexing set I, a partial order \prec on I, FOOO Kuranishi neighbourhoods $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ for $i \in I$ with V_i a classical manifold, $\dim V_i - \text{rank} E_i = n$, and $X = \bigcup_{i \in I} \text{Im} \psi_i$, and FOOO coordinate changes $\Phi_{ij} = (V_{ij}, h_{ij}, \varphi_{ij}, \varphi_{ij})$ from $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ to $(V_j, E_j, \Gamma_j, s_j, \psi_j)$ over $S = \text{Im} \psi_i \cap \text{Im} \psi_j$ for all $i, j \in I$ with $i \prec j$ and $\text{Im} \psi_i \cap \text{Im} \psi_j \neq \emptyset$, satisfying the two conditions:

(a) If $i \not\prec j \in I$ with $\text{Im} \psi_i \cap \text{Im} \psi_j \neq \emptyset$ then either $i \prec j$ or $j \prec i$.

(b) If $i \not\prec j \prec k$ in I with $\text{Im} \psi_i \cap \text{Im} \psi_j \cap \text{Im} \psi_k \neq \emptyset$ then there exists $\gamma_{ijk} \in \Gamma_k$ such that as in \cite{3} we have

$$h_{ijk} \circ h_{ij} = \gamma_{ijk} \cdot h_{ik} \cdot \gamma_{ijk}^{-1}, \quad \varphi_{jk} \circ \varphi_{ij} = \gamma_{ijk} \cdot \varphi_{ik},$$

and $\varphi_{ij}^* (\varphi_{jk}) \circ \varphi_{ij} = \gamma_{ijk} \cdot \varphi_{ik}$, \hfill (7.6)

where the second and third equations hold on $V_{ij} \cap V_{ik} \cap \varphi_{ij}^{-1}(V_{jk})$. The γ_{ijk} are uniquely determined by \cite{3} as in Example 7.7(iii).

If instead the V_i for $i \in I$ are manifolds with corners, we call \mathcal{G} a FOOO good coordinate system with corners.

We call \mathcal{G} a FOOO good coordinate system on X (with corners) if it also satisfies the extra conditions:

(c) If $i \prec j$ in I, $\text{Im} \psi_i \cap \text{Im} \psi_j \neq \emptyset$ then $\psi_i ((V_{ij} \cap s_i^{-1}(0))/\Gamma_i) = \text{Im} \psi_i \cap \text{Im} \psi_j$.

(d) If $i \prec j$ in I and $\text{Im} \psi_i \cap \text{Im} \psi_j \neq \emptyset$ then $\text{inc} \times \varphi_{ij} : V_{ij} \to V_i \times V_j$ is proper, where $\text{inc} : V_{ij} \to V_i$ is the inclusion.

(e) If $i \prec j$, $i \prec k$ in I for $j \neq k$ and $\text{Im} \psi_i \cap \text{Im} \psi_j \neq \emptyset \neq \text{Im} \psi_i \cap \text{Im} \psi_k$, $V_j \cap V_k \neq \emptyset$, then $\text{Im} \psi_j \cap \text{Im} \psi_k \neq \emptyset$, and either $j \prec k$ and $V_j \cap V_k = \varphi_{ij}^{-1}(V_{jk})$, or $k \prec j$ and $V_j \cap V_k = \varphi_{ik}^{-1}(V_{jk})$.

(f) If $i \prec j$, $j \prec k$ in I for $i \neq j$ and $\text{Im} \psi_i \cap \text{Im} \psi_k \neq \emptyset \neq \text{Im} \psi_i \cap \text{Im} \psi_k$ and $v_i \in V_{ik}$, $v_j \in V_{jk}$, $\delta \in \Gamma_k$ with $\varphi_{jk}(v_j) = \delta \cdot \varphi_{ik}(v_i)$ in V_k, then $\text{Im} \psi_i \cap \text{Im} \psi_j \neq \emptyset$ and either $i \prec j$, $v_i \in V_{ij}$, and there exists $\gamma \in \Gamma_j$ with $h_{ijk}(\gamma) = \delta \gamma_{ijk}$ and $v_j = \gamma \cdot \varphi_{ij}(v_i)$; or $j \prec i$, $v_j \in V_{ji}$, and there exists $\gamma \in \Gamma_i$ with $h_{ijk}(\gamma) = \delta^{-1} \gamma_{ijk}$ and $v_i = \gamma \cdot \varphi_{ji}(v_j)$, for γ_{ijk}, γ_{ijk} as in (b).

As in \cite{36}, parts (c)–(f) are equivalent to:

(g) Define a symmetric, reflexive binary relation \sim on $\prod_{i \in I} V_i/\Gamma_i$ by $\Gamma_i v \sim \Gamma_j \varphi_{ij}(v_i)$ if $i \prec j$, $\text{Im} \psi_i \cap \text{Im} \psi_j \neq \emptyset$ and $v \in V_{ij}$. Then \sim is an equivalence relation, and $(\prod_{i \in I} V_i/\Gamma_i)/\sim$ with the quotient topology is Hausdorff.
Now let X, \mathcal{G} be as above (either weak or not), and Y be a classical manifold. As in Definition 7.12, a smooth map $(f_i, i \in I)$ from (X, \mathcal{G}) to Y is a Γ_i-invariant smooth map $f_i : V_i \to Y$ for $i \in I$, with $f_j \circ \varphi_{ij} = f_i|_{V_{ij}} : V_{ij} \to Y$ for all $i \prec j$ in I. This induces a unique continuous map $f : X \to Y$ with $f_i|_{\psi_i^{-1}(0)} = f \circ \psi_i$ for $i \in I$.

Using elementary topology, Fukaya, Oh, Ohta and Ono 30 prove:

Theorem 7.12. Suppose $\mathcal{G} = ((I, \prec), (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, i \prec j \text{ in } I)$ is a FOOO weak good coordinate system on X. Then we can construct a FOOO good coordinate system $\mathcal{G}' = ((I', \prec), (V'_i, E'_i, \Gamma'_i, s'_i, \psi'_i)_{i \in I}, \Phi'_{ij}, i \prec j \text{ in } I')$ on X, where $I' \subseteq I$, $V'_i \subseteq V_i$, $V'_{ij} \subseteq V_{ij}$ are open, $\Gamma'_i = \Gamma_i$, $\hat{\Gamma}'_{ij} = \hat{\Gamma}_{ij}$, and $E'_i, s'_i, \psi'_i, \varphi'_{ij}, \varphi'_{ij}$ are obtained from $E_i, s_i, \psi_i, \varphi_{ij}, \varphi'_{ij}$ by restricting from V'_i, V_{ij} to $V'_{ij} \cap V_{ij}$.

In fact Fukaya et al. 30 work at the level of orbifolds V_i/Γ_i, V_{ij}/Γ_j rather than manifolds with finite group actions, but their result easily implies Theorem 7.12. The next definition is based on Fukaya et al. 30 Def. 7.2, but using $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ for V_i a manifold, rather than $(\mathfrak{M}_i, \mathfrak{E}_i, \mathfrak{s}_i, \psi_i)$ for \mathcal{G}_i an orbifold.

Definition 7.13. Let $X = (X, \mathcal{K})$ be a FOOO Kuranishi space. A FOOO (weak) good coordinate system $\mathcal{G} = ((I, \prec), (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, i \prec j \text{ in } I)$ on the topological space X is called compatible with the FOOO Kuranishi structure \mathcal{K} on X if for each $i \in I$ and each $p \in \text{Im } \psi_i \subseteq X$ there exists a FOOO coordinate change Φ_{pi} from $(V_p, E_p, \Gamma_p, s_p, \psi_p)$ to $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ on an open neighbourhood S_p of p in $\text{Im } \psi_p \cap \text{Im } \psi_i$ (where $(V_p, E_p, \Gamma_p, s_p, \psi_p)$ comes from \mathcal{K} and $(V_i, E_i, \Gamma_i, s_i, \psi_i)$ from the good coordinate system) such that

(a) If $q \in \text{Im } \psi_p \cap \text{Im } \psi_i$ then there exists $\gamma_{qpi} \in \Gamma_i$ such that

$$h_{pi} \circ h_{qp} = \gamma_{qpi} \cdot h_{qi} \cdot \gamma_{qpi}^{-1}, \quad \varphi_{pi} \circ \varphi_{qp} = \gamma_{qpi} \cdot \varphi_{qi},$$

and

$$\varphi_{qp}^*(\hat{\varphi}_{pi}) \circ \hat{\varphi}_{qp} = \gamma_{qpi} \cdot \hat{\varphi}_{qi},$$

where the second and third equations hold on $\varphi_{qp}^{-1}(V_{pi}) \cap V_{qp} \cap V_{qi}$.

(b) If $i \prec j$ in I with $p \in \text{Im } \psi_i \cap \text{Im } \psi_j$ then there exists $\gamma_{p|ij} \in \Gamma_j$ such that

$$h_{ij} \circ h_{pi} = \gamma_{p|ij} \cdot h_{pj} \cdot \gamma_{p|ij}^{-1}, \quad \varphi_{ij} \circ \varphi_{pi} = \gamma_{p|ij} \cdot \varphi_{pj},$$

and

$$\varphi_{pi}^*(\hat{\varphi}_{ij}) \circ \hat{\varphi}_{pi} = \gamma_{p|ij} \cdot \hat{\varphi}_{pj},$$

where the second and third equations hold on $\varphi_{pi}^{-1}(V_{ij}) \cap V_{pi} \cap V_{pj}$.

Remark 7.14. For the programme of 19–39, one would like to show:

(i) Any (oriented) FOOO Kuranishi space X (perhaps also with a smooth map $f : X \to Y$ to a manifold Y) admits a compatible (oriented) FOOO good coordinate system $((I, \prec), (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, i \prec j \text{ in } I)$ (perhaps also with a smooth map $(f_i, i \in I)$ to Y).
(ii) Given a compact, metrizable topological space X with an oriented FOOO good coordinate system $((I, \sim), (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij}, i < j \text{ in } I)$ (perhaps with a smooth map $(f_i, i \in I)$ to a classical manifold Y), we can construct a virtual cycle for X (perhaps in the singular homology $H_*(Y; \mathbb{Q})$ or de Rham cohomology $H^*_dR(Y; \mathbb{R})$ of Y).

Producing such virtual cycles is, from the point of view of symplectic geometry, the sole reason for defining and studying Kuranishi spaces.

Statements (i), for various definitions of `Kuranishi space', `good coordinate system', and `compatible', can be found in [39, Lem. 6.3] (with short proof), [24, Lem. A1.11] (with no proof), and [30, §7] (with long proof). Constructions (ii), again for various definitions, can be found in [39, §6], [24, §A1.1], [27, §12] (using de Rham cohomology), and [30, §6] (with long proof).

7.3 McDuff–Wehrheim’s Kuranishi atlases

Next we discuss an approach to Kuranishi spaces developed by McDuff and Wehrheim [77, 78, 80–83]. Their main definition is that of a (weak) Kuranishi atlas on a topological space X. Here are [81] Def. 2.2.2 & 2.2.8.

Definition 7.15. An MW Kuranishi neighbourhood (V, E, Γ, s, ψ) on a topological space X is the same as a FOOO Kuranishi neighbourhood in Definition 7.1, with V a classical manifold, except that Γ need not act effectively on V.

As in Example 7.2, by an abuse of notation we will regard MW Kuranishi neighbourhoods as examples of our Kuranishi neighbourhoods in §6.1.

Definition 7.16. Suppose $(V_B, E_B, \Gamma_B, s_B, \psi_B), (V_C, E_C, \Gamma_C, s_C, \psi_C)$ are MW Kuranishi neighbourhoods on a topological space X, and $S \subseteq \Im \psi_B \cap \Im \psi_C \subseteq X$ is open. We say a quadruple $\Phi_{BC} = (\tilde{V}_B, \tilde{E}_B, \tilde{\psi}_B)$ is an MW coordinate change from $(V_B, E_B, \Gamma_B, s_B, \psi_B)$ to $(V_C, E_C, \Gamma_C, s_C, \psi_C)$ over S if:

(a) \tilde{V}_B is a Γ_C-invariant embedded submanifold of V_C containing $\psi_C^{-1}(S)$.

(b) $\rho_{BC} : \Gamma_C \to \Gamma_B$ is a surjective group morphism, with kernel $\Delta_{BC} \subseteq \Gamma_C$.

There should exist an isomorphism $\Gamma_C \cong \Gamma_B \times \Delta_{BC}$ identifying ρ_{BC} with the projection $\Gamma_B \times \Delta_{BC} \to \Gamma_B$.

(c) $\varpi_{BC} : \tilde{V}_B \to V_B$ is a ρ_{BC}-equivariant étale map, with image $V_B = \varpi_{BC}(\tilde{V}_B)$ a Γ_B-invariant open neighbourhood of $\psi_B^{-1}(S)$ in V_B, such that $\varpi_{BC} : \tilde{V}_B \to V_B$ is a principal Δ_{BC}-bundle.

(d) $\varphi_{BC} : \tilde{E}_B \to E_C$ is an injective Γ_C-equivariant linear map, where the Γ_C-action on E_B is induced from the Γ_B-action by ρ_{BC}, so in particular Δ_{BC} acts trivially on E_B.

(e) $\varphi_{BC} \circ s_B \circ \varpi_{BC} = s_C|_{\tilde{V}_B} : \tilde{V}_B \to E_C$.

(f) $\psi_B \circ (\varpi_{BC})_* = \psi_C$ on $(s_C^{-1}(0) \cap \tilde{V}_B)/\Gamma_C$.
(g) For each \(v \in \hat{V}_{BC} \) we have a commutative diagram

\[
\begin{array}{cccccccc}
0 & \longrightarrow & T_0 \hat{V}_{BC} & \xrightarrow{c} & T_v V_C & \longrightarrow & N_{BC}|_v & \longrightarrow & 0 \\
0 & \longrightarrow & E_B & \xrightarrow{d(\pi_{\hat{V}_{BC}(s_B)})|_v} & E_C/\hat{\varphi}_{BC}(E_B) & \longrightarrow & 0
\end{array}
\]

with exact rows, where \(N_{BC} \) is the normal bundle of \(\hat{V}_{BC} \) in \(V_C \). We require the induced morphism \(d_{\text{hure}} \circ c|_v \) in (7.8) to be an isomorphism.

We relate MW coordinate changes to coordinate changes in \([6.1]\).

Example 7.17. Let \(\Phi_{BC} = (\hat{V}_{BC}, \rho_{BC}, \varpi_{BC}, \hat{\varphi}_{BC}) : (V_B, E_B, \Gamma_B, s_B, \psi_B) \rightarrow (V_C, E_C, \Gamma_C, s_C, \psi_C) \) be an MW coordinate change over \(S \), as in Definition 7.16. Regard \((V_B, E_B, \Gamma_B, s_B, \psi_B) \) as Kuranishi neighbourhoods in the sense of [6.1] as in Example 7.2.

Set \(P_{BC} = V_B \times \Gamma_B \). Let \(\Gamma_B \) act on \(P_{BC} \) by \(\gamma_B : (v, \gamma) \mapsto (v, \gamma B \gamma) \). Let \(\Gamma_C \) act on \(P_{BC} \) by \(\gamma_C : (v, \gamma) \mapsto (\gamma C \cdot v, \gamma B \rho_{BC}(\gamma C)^{-1}) \). Define \(\pi_{BC} : P_{BC} \rightarrow V_B \) and \(\phi_{BC} : P_{BC} \rightarrow V_C \) by \(\pi_{BC} : (v, \gamma) \mapsto \gamma \cdot \varpi_{BC}(v) \) and \(\phi_{BC} : (v, \gamma) \mapsto v \). Then \(\pi_{BC} \) is \(\Gamma_B \)-equivariant and \(\Gamma_C \)-invariant, and \(\phi_{BC} \) is \(\Gamma_B \)-invariant and \(\Gamma_C \)-equivariant.

Define \(\hat{\phi}_{BC} : \pi_{BC}(V_B \times E_B) \rightarrow \phi_{BC}(V_C \times E_C) \), as a morphism of trivial vector bundles with fibres \(E_B, E_C \) on \(P_{BC} = V_B \times \Gamma_B \), by \(\hat{\phi}_{BC}(v_B \times \gamma) = \hat{\varphi}_{BC} \circ (\gamma^{-1} \cdot \cdot \cdot) \) for each \(\gamma \in \Gamma_B \). It is easy to see that \(\Phi_{BC} = (P_{BC}, \pi_{BC}, \phi_{BC}, \hat{\phi}_{BC}) : (V_B, E_B, \Gamma_B, s_B, \psi_B) \rightarrow (V_C, E_C, \Gamma_C, s_C, \psi_C) \) is a 1-morphism over \(S \), in the sense of [6.1]. Combining Definition 7.16(g) and Theorem 6.12(a) shows that \(\hat{\phi}_{BC} \) is a coordinate change over \(S \), in the sense of [6.1].

Definition 7.18. Let \(X \) be a compact, metrizable topological space. An MW weak Kuranishi atlas \(K = (A, I, (V_B, E_B, \Gamma_B, s_B, \psi_B)_{B \in I}, \Phi_{BC, B \in I, C \subseteq C}) \) on \(X \) of virtual dimension \(n \in \mathbb{Z} \), as in [81] Def. 2.3.1, consists of a finite indexing set \(A \), a set \(I \) of nonempty subsets of \(A \), MW Kuranishi neighbourhoods \((V_B, E_B, \Gamma_B, s_B, \psi_B)\) on \(X \) for all \(B \in I \) with \(\dim V_B - \text{rank } E_B = n \) and \(X = \bigcup_{B \in I} \text{Im } \psi_B \) and MW coordinate changes \(\Phi_{BC} = (V_B, \rho_{BC}, \varpi_{BC}, \hat{\varphi}_{BC}) \) from \((V_B, E_B, \Gamma_B, s_B, \psi_B)\) to \((V_C, E_C, \Gamma_C, s_C, \psi_C)\) on \(S = \text{Im } \psi_B \cap \text{Im } \psi_C \) for all \(B, C \in I \) with \(B \subseteq C \), satisfying the four conditions:

(a) We have \(\{a\} \in I \) for all \(a \in A \), and \(I = \{\emptyset \neq B \subseteq A : \bigcap_{a \in B} \text{Im } \psi(a) \neq \emptyset\} \).
 Also \(\text{Im } \psi_B = \bigcap_{a \in B} \text{Im } \psi(a) \) for all \(B \in I \).

(b) We have \(\Gamma_B = \prod_{a \in B} \Gamma_{\{a\}} \) for all \(B \in I \). If \(B, C \in I \) with \(B \subseteq C \) then \(\rho_{BC} : \Gamma_C \rightarrow \Gamma_B \) is the obvious projection \(\prod_{a \in C} \Gamma_{\{a\}} \mapsto \prod_{a \in B} \Gamma_{\{a\}} \), with kernel \(\Delta_{BC} \cong \prod_{a \in C \setminus B} \Gamma_{\{a\}} \).

(c) We have \(E_B = \prod_{a \in B} E_{\{a\}} \) for all \(B \in I \), with the obvious representation of \(\Gamma_B = \prod_{a \in B} \Gamma_{\{a\}} \). If \(B \subseteq C \in I \) then \(\hat{\varphi}_{BC} : E_B \rightarrow \prod_{a \in B} E_{\{a\}} \rightarrow E_C = \prod_{a \in C} E_{\{a\}} \) is the identity \(\text{Im } \psi_B \) for all \(a \in C \setminus B \).

197
(d) If $B, C, D \in I$ with $B \subsetneq C \subsetneq D$ then $\varpi_{BC} \circ \varpi_{CD} = \varpi_{BD}$ on $\tilde{V}_{BCD} := \tilde{V}_{BD} \cap \varpi_{CD}^{-1}(\tilde{V}_{BC})$. One can show using (b),(c) and Definition 7.16 that \tilde{V}_{BD} and $\varpi_{CD}^{-1}(\tilde{V}_{BC})$ are both open subsets in $s_D^1(\tilde{\varphi}_{BD}(E_B))$, which is a submanifold of V_D, so \tilde{V}_{BCD} is a submanifold of V_D.

We call $\mathcal{K} = (A, I, (V_B, E_B, \Gamma_B, s_B, \psi_B)_{B \in I}, \Phi_{BC}, B \subseteq C)$ an MW Kuranishi atlas on X, as in [81], if it also satisfies:

(e) If $B, C, D \in I$ with $B \subsetneq C \subsetneq D$ then $\varpi_{CD}^{-1}(\tilde{V}_{BC}) \subseteq \tilde{V}_{BD}$.

McDuff and Wehrheim also define orientations on MW weak Kuranishi atlases, in a very similar way to Definition 7.8.

Two MW weak Kuranishi atlases $\mathcal{K}, \mathcal{K}'$ on X are called directly commensurate if they are both contained in a third MW weak Kuranishi atlas \mathcal{K}''. They are called commensurate if there exist MW weak Kuranishi atlases $\mathcal{K} = K_0, K_1, \ldots, K_m = K'$ with K_{i-1}, K_i directly commensurate for $i = 1, \ldots, m$. This is an equivalence relation on MW weak Kuranishi atlases on X.

We show in Theorem 7.33 below that given an MW weak Kuranishi atlas on X, we can make X into a Kuranishi space \mathcal{X} in the sense of Chapter 6.

McDuff and Wehrheim argue that their concept of MW weak Kuranishi atlas is a more natural, or more basic, idea than a FOOO Kuranishi space, since in analytic moduli problems such as J-holomorphic curve moduli spaces, one has to construct an MW weak Kuranishi atlas (or something close to it) first, and then define the FOOO Kuranishi structure using this.

When one constructs an MW weak Kuranishi atlas \mathcal{K} on a moduli space of J-holomorphic curves $\overline{\mathcal{M}}$, the construction involves many arbitrary choices, but McDuff and Wehrheim expect different choices $\mathcal{K}, \mathcal{K}'$ to be commensurate. They prove this [82, Rem. 6.2.2] for their definition of MW weak Kuranishi atlases on moduli spaces of nonsingular genus zero Gromov–Witten curves in [82, §4.3].

We relate Definition 7.18(d) to 2-morphisms in §6.1.

Example 7.19. In the situation of Definition 7.18(d), let $\tilde{\Phi}_{BC}, \tilde{\Phi}_{BD}, \tilde{\Phi}_{CD}$ be the coordinate changes in the sense of §6.1, associated to the MW coordinate changes $\Phi_{BC}, \Phi_{BD}, \Phi_{CD}$ in Example 7.17. The composition coordinate change $\tilde{\Phi}_{CD} \circ \Phi_{BC} = (\tilde{P}_{BCD}, \pi_{BCD}, \tilde{\Phi}_{BCD}, \Phi_{BCD})$ from Definition 6.5 has

$$P_{BCD} = \left[(\tilde{V}_{BC} \times \Gamma_B) \times_{\Gamma_C} (\tilde{V}_{CD} \times \Gamma_C)\right]/\Gamma_C$$

$$\cong (\tilde{V}_{BC} \times_{\Gamma_C} \tilde{V}_{CD}) \times \Gamma_B \cong \varpi_{CD}^{-1}(\tilde{V}_{BC}) \times \Gamma_B.$$ \hspace{1cm} (7.9)

Define \tilde{P}_{BCD} to be the open subset of P_{BCD} identified with $\tilde{V}_{BCD} \times \Gamma_B$ by (7.9), and $\lambda_{BCD}: \tilde{P}_{BCD} \to P_{BD} = \tilde{V}_{BD} \times \Gamma_B$ to be the map identified by (7.9) with the inclusion $\tilde{V}_{BCD} \times \Gamma_B \hookrightarrow \tilde{V}_{BD} \times \Gamma_B$, and $\lambda_{BCD} = 0$. Then as in Example 7.7(i), we can show that $(\tilde{P}_{BCD}, \lambda_{BCD}, \lambda_{BCD})$ satisfies Definition 6.4(a)–(c), so we have defined a 2-morphism $\Lambda_{BCD} = [\tilde{P}_{BCD}, \lambda_{BCD}, \lambda_{BCD}]: \tilde{\Phi}_{CD} \circ \Phi_{BC} \Rightarrow \Phi_{BD}$ on $S_{BCD} = \text{Im} \psi_B \cap \text{Im} \psi_C \cap \text{Im} \psi_D$, in the sense of §6.1.
McDuff and Wehrheim prove [82, Th. B], [81, Th. A]:

Theorem 7.20. Let \(\mathcal{K} = (A, I, (V_B, E_B, \Gamma_B, s_B, \psi_B), \Phi_{BC, B \in I, B \subset C}) \) be an oriented MW weak Kuranishi atlas of dimension \(n \) on a compact, metrizable topological space \(X \). Then \(\mathcal{K} \) determines:

(a) A virtual moduli cycle \([X]_{\text{vmc}}\) in the cobordism group \(\Omega^{\text{SO}}_n \mathbb{Q} \) of compact, oriented, \(n \)-dimensional ‘\(\mathbb{Q} \)-weighted manifolds’ in the sense of [81, §A].

(b) A virtual fundamental class \([X]_{\text{vfc}}\) in \(\check{H}_n(X; \mathbb{Q}) \), where \(\check{H}_\ast(-; \mathbb{Q}) \) is Čech homology over \(\mathbb{Q} \).

Any two commensurate MW weak Kuranishi atlases \(\mathcal{K}, \mathcal{K}' \) on \(X \) yield the same virtual moduli cycle and virtual fundamental class.

If \(\mathcal{K} \) has trivial isotropy (that is, \(\Gamma_B = \{1\} \) for all \(B \in I \)) then we may instead take \([X]_{\text{vmc}} \in \Omega^{\text{SO}}_n \mathbb{Q} \), where \(\Omega^{\text{SO}}_\ast \) is the usual oriented cobordism group, and \([X]_{\text{vfc}} \in H^{\text{St}}_n(X; \mathbb{Z}) \), where \(H^{\text{St}}_\ast(-; \mathbb{Z}) \) is Steenrod homology over \(\mathbb{Z} \).

In part (a), the author expects that \(\Omega^{\text{SO}}_n \mathbb{Q} \cong \Omega^n \mathbb{Q} \otimes \mathbb{Z} \mathbb{Q} \), so that \(\Omega^{\text{SO}}_\ast \approx \mathbb{Q}[x_4, x_8, \ldots] \) by results of Thom.

Theorem 7.20 is McDuff and Wehrheim’s solution to the issues discussed in Remark 7.14. As an intermediate step in the proof of Theorem 7.20, they pass to a Kuranishi atlas with better properties (a ‘reduction’ of a ‘tame, metrizable’ Kuranishi atlas), which is similar to a FOOO good coordinate system.

7.4 Dingyu Yang’s Kuranishi structures, and polyfolds

As part of a project to define a truncation functor from polyfolds to Kuranishi spaces, Dingyu Yang [110–112] writes down his own theory of Kuranishi spaces:

Definition 7.21. Let \(X \) be a compact, metrizable topological space. A **DY Kuranishi structure** \(\mathcal{K} \) on \(X \) is a FOOO Kuranishi structure in the sense of Definition 7.6, satisfying the additional conditions [111, Def. 1.11]:

(a) the maximality condition, which is essentially Definition 7.11(e),(f), but replacing \(i \prec j \) by \(q \in \text{Im} \psi_p \).

(b) the topological matching condition, which is related to Definition 7.11(d), but replacing \(i \prec j \) by \(q \in \text{Im} \psi_p \).

There are a few other small differences — for instance, Yang does not require the vector bundles \(E_p \) in \((V_p, E_p, \Gamma_p, s_p, \psi_p)\) to be trivial.

We show in Theorem 7.35 below that given a DY Kuranishi structure \(\mathcal{K} \) on \(X \), we can make \(X \) into a Kuranishi space \(X \) in the sense of [6,2].

Yang also defines his own notion of DY good coordinate system [111, Def. 2.4], which is almost the same as a FOOO good coordinate system in §7.2.

One reason for these modifications is that it simplifies the passage from Kuranishi spaces to good coordinate systems, as in Remark 7.14(i): Yang shows...
Let $Zehnder \ [46–53]$. Here is a very brief introduction to this:

Fukaya, Oh, Ohta and Ono \ [19–39] to the polyfold theory of Hofer, Wysocki and
be independent of choices up to R-equivalence.

about existence of good coordinate systems, Yang proves \ [110, Th. 1.6.17], \ [111, Th. 2.10] that given any DY Kuranishi space K, one can construct a DY Kuranishi structure X on a moduli space $\mathcal{G}(\mathcal{I})$, an sc-Banach space V for $\mathcal{G}(\mathcal{I})$.

Yang emphasizes the idea, which he calls\choice independence, that when one constructs a (DY) Kuranishi structure K on a moduli space $\mathcal{G}(\mathcal{I})$, it should be independent of choices up to R-equivalence.

One major goal of Yang’s work is to relate the Kuranishi space theory of Fukaya, Oh, Ohta and Ono \ [19,39] to the polyfold theory of Hofer, Wysocki and Zehnder \ [46,53]. Here is a very brief introduction to this:

- An \textit{sc-Banach space} V is a sequence $V = (V_0 \supset V_1 \supset V_2 \supset \cdots)$, where the V_i are Banach spaces, the inclusions $V_{i+1} \hookrightarrow V_i$ are compact, bounded linear maps, and $V_\infty = \bigcap_{i \geq 0} V_i$ is dense in every V_i.

The \textit{tangent space} TV is $TV = (V_1 \oplus V_0 \oplus V_2 \oplus V_1 \oplus \cdots)$, an sc-Banach space. An \textit{open set} Q in V is an open set $Q \subset V_0$, and we write $Q_i = Q \cap V_i$ for $i \geq 0$. Its \textit{tangent space} is $TQ = Q_1 \oplus V_0$, as an open set in TV.

An example to bear in mind is if M is a compact manifold, $E \to M$ a smooth vector bundle, $\alpha \in (0,1)$, and $V_k = C^{k,\alpha}(E)$ for $k = 0,1, \ldots$.

- Let $V = (V_0 \supset V_1 \supset V_2 \supset \cdots)$, $W = (W_0 \supset W_1 \supset \cdots)$ be sc-Banach spaces and $Q \subseteq V$, $R \subseteq W$ be open. A map $f : Q \to R$ is called sc^0 if $f(Q_i) \subseteq R_i$ and $f|_{Q_i} : Q_i \to R_i$ is a continuous map of Banach manifolds for all $i \geq 0$.

An sc^0 map $f : Q \to R$ is called sc^1 if for each $q \in Q_i$ there exists a bounded linear map $Df_q : V_0 \to W_0$, such that $f|_{Q_i} : Q_i \to R_0$ is a C^1 map of Banach manifolds with $\nabla f_q|_{\mathcal{Q}_i} = Df_q|_{\mathcal{Q}_i} : V_i \to W_0$ for all $q \in Q_i$, and $Tf : TQ \to TR$ mapping $Tf : (q,v) \mapsto (f(q), Df_q(v))$ is an sc^0 map.

Definition 7.22. Let $\mathcal{K}, \mathcal{K}'$ be DY Kuranishi structures on a compact topological space X. An \textit{embedding} $\epsilon : \mathcal{K} \hookrightarrow \mathcal{K}'$ is a choice of FOOO coordinate change $\epsilon_p : (V_p, E_p, \Gamma_p, s_p, \psi_p) \to (V'_p, E'_p, \Gamma'_p, s'_p, \psi'_p)$ with domain V_p for all $p \in X$, commuting with the FOOO coordinate changes Φ_{qp}, Φ'_{qp} in $\mathcal{K}, \mathcal{K}'$ up to elements of Γ'_p. An embedding is a \textit{chart refinement} if the ϵ_p come from inclusions of Γ_p-invariant open sets $V_p \hookrightarrow V'_p$.

DY Kuranishi structures $\mathcal{K}, \mathcal{K}'$ on X are called R-equivalent (or \textit{equivalent}) if there is a diagram of DY Kuranishi structures on X

$$\begin{array}{c}
\mathcal{K} \\
\sim \quad \sim
\end{array} \quad \begin{array}{c}
\mathcal{K}_1 \\
\hookrightarrow
\end{array} \quad \begin{array}{c}
\mathcal{K}_2 \\
\hookrightarrow
\end{array} \quad \begin{array}{c}
\mathcal{K}_3 \\
\sim
\end{array} \quad \begin{array}{c}
\sim
\end{array} \quad \mathcal{K}',$$

where arrows \hookrightarrow are embeddings, and \sim are chart refinements. Using facts about existence of good coordinate systems, Yang proves \ [110 Th. 1.6.17, 111 §11.2] that R-equivalence is an equivalence relation on DY Kuranishi structures.

200
By induction on k, we call $f : \mathcal{Q} \to \mathcal{R}$ an sc^k map for $k = 2, 3, \ldots$ if f is sc^1 and $Tf : T\mathcal{Q} \to T\mathcal{R}$ is an sc^{k-1} map. We call $f : \mathcal{Q} \to \mathcal{R}$ sc-smooth, or sc^∞, if it is sc^k for all $k = 0, 1, \ldots$. This implies that $f|_{\mathcal{Q}_{i+k}} : \mathcal{Q}_{i+k} \to \mathcal{R}_i$ is a C^k-map of Banach manifolds for all $i, k \geq 0$.

- Let $\mathcal{V} = (\mathcal{V}_0 \supset \mathcal{V}_1 \supset \cdots)$ be an sc-Banach space and $\mathcal{Q} \subseteq \mathcal{V}$ be open. An sc^∞-retraction is an sc-smooth map $r : \mathcal{Q} \to \mathcal{V}$ with $r \circ r = r$. Set $\mathcal{O} = \text{Im} r \subset \mathcal{V}$. We call $(\mathcal{O}, \mathcal{V})$ a local sc-model.

If \mathcal{V} is finite-dimensional then \mathcal{O} is just a smooth manifold. But in infinite dimensions, new phenomena occur, and the tangent spaces $T_x \mathcal{O}$ can vary discontinuously with $x \in \mathcal{O}$. This is important for 'gluing'.

- An M-polyfold chart $(\mathcal{O}, \mathcal{V}, \psi)$ on a topological space Z is a local sc-model $(\mathcal{O}, \mathcal{V})$ and a homeomorphism $\psi : \mathcal{O} \to \text{Im} \psi$ with an open set $\text{Im} \psi \subset \mathcal{V}$.

- M-polyfold charts $(\mathcal{O}, \mathcal{V}, \psi), (\tilde{\mathcal{O}}, \tilde{\mathcal{V}}, \tilde{\psi})$ on Z are compatible if $\tilde{\psi}^{-1} \circ \psi \circ r : \mathcal{Q} \to \tilde{\mathcal{V}}$ and $\psi^{-1} \circ \tilde{\psi} \circ \tilde{r} : \mathcal{Q} \to \mathcal{V}$ are sc-smooth, where $\mathcal{Q} \subset \mathcal{V}, \tilde{\mathcal{Q}} \subset \tilde{\mathcal{V}}$ are open and $r : \mathcal{Q} \to \tilde{\mathcal{Q}}, \tilde{r} : \mathcal{Q} \to \mathcal{Q}$ are sc-smooth with $r \circ r = r, \tilde{r} \circ \tilde{r} = \tilde{r}$ and $\text{Im} r = \psi^{-1}(\text{Im} \tilde{\psi}) \subseteq \mathcal{O}, \text{Im} \tilde{r} = \tilde{\psi}^{-1}(\text{Im} \psi) \subseteq \tilde{\mathcal{O}}$.

- An M-polyfold is roughly a metrizable topological space Z with a maximal atlas of pairwise compatible M-polyfold charts.

- Polyfolds are the orbifold version of M-polyfolds, proper étale groupoids in M-polyfolds.

- A polyfold Fredholm structure \mathcal{P} on a metrizable topological space X writes X as the zeroes of an sc-Fredholm section $s : \mathcal{W} \to \mathcal{E}$ of a strong polyfold vector bundle $\mathcal{E} \to \mathcal{W}$ over a polyfold \mathcal{W}.

This is all rather complicated. The motivation for local sc-models $(\mathcal{O}, \mathcal{V})$ is that they can be used to describe functional-analytic problems involving 'gluing', 'bubbling', and 'neck-stretching', including moduli spaces of J-holomorphic curves with singularities of various kinds.

The polyfold programme \cite{46, 53} aims to show that moduli spaces of J-holomorphic curves in symplectic geometry may be given a polyfold Fredholm structure, and that compact spaces with oriented polyfold Fredholm structures have virtual chains and virtual classes. One can then use these virtual chains/classes to define big theories in symplectic geometry, such as Gromov–Witten invariants or Symplectic Field Theory. Constructing a polyfold Fredholm structure on a moduli space of J-holomorphic curves involves far fewer arbitrary choices than defining a Kuranishi structure. Fabert, Fish, Golovko and Wehrheim \cite{17} survey the polyfold programme.

Yang proves \cite{110} Th. 3.1.7 (see also \cite{112} §2.6).

Theorem 7.23. Suppose we are given a 'polyfold Fredholm structure' \mathcal{P} on a compact metrizable topological space X, that is, we write X as the zeroes of an sc-Fredholm section $s : \mathcal{W} \to \mathcal{E}$ of a strong polyfold vector bundle $\mathcal{E} \to \mathcal{W}$ over a polyfold \mathcal{W}, where s has constant Fredholm index $n \in \mathbb{Z}$. Then we can construct a DY Kuranishi structure \mathcal{K} on X, of virtual dimension n, which is independent of choices up to R-equivalence.

201
In the survey [112], Yang announces further results for which the proofs were not available at the time of writing. These include:

(a) Yang defines ‘R-equivalence’ of polyfold Fredholm structures on X [112, Def. 2.14], and claims [112, §2.8] that Theorem 7.23 extends to a 1-1 correspondence between R-equivalence classes of polyfold Fredholm structures on X, and R-equivalence classes of DY Kuranishi structures K on X.

(b) In [112, §2.4], Yang claims that R-equivalence extends as an equivalence relation to FOOO Kuranishi structures, and every R-equivalence class of FOOO Kuranishi structures contains a DY Kuranishi structure. Hence the 1-1 correspondence in (a) also extends to a 1-1 correspondence with R-equivalence classes of FOOO Kuranishi structures.

(c) Yang claims that virtual chains or virtual classes for polyfolds and for FOOO/DY Kuranishi spaces agree under (a), (b).

(d) Yang says [112, p. 26, p. 46] that in future work he will make spaces with DY Kuranishi structures into a category Kur_{DY}. These results would enable a clean translation between the polyfold and Kuranishi approaches to symplectic geometry. It seems likely that in (d) there will be an equivalence of categories $\text{Kur}_{DY} \simeq \text{Ho(Kur)}$, for Kur as in [62].

7.5 Relating our Kuranishi spaces to previous definitions

We now show that all of the Kuranishi-type structures discussed in §7.1–§7.3 can be made into a Kuranishi space X in our sense, uniquely up to equivalence in Kur or Kur^c. We do this by defining a notion of ‘fair coordinate system’ \mathcal{F} on a topological space X in §7.5.1 which is so general that it includes all of the structures of §7.1–§7.3 as special cases, and proving that given X, \mathcal{F}, we can construct a Kuranishi structure K on X uniquely up to equivalence.

In §7.5.1 we work over any category of ‘manifolds’ Man satisfying Assumptions 3.1–3.7, and then in §7.5.2–§7.5.5 we specialize to $\text{Man} = \text{Man}^c$, following our references [19–39, 77, 78, 80–83, 110–112].

Theorems 7.29, 7.31, 7.33, 7.35, and 7.36 below are important, as they show that the geometric structures on moduli spaces considered by Fukaya, Oh, Ohta and Ono [19–39], McDuff and Wehrheim [77, 78, 80–83], Yang [110–112], and Hofer, Wysocki and Zehnder [46–53], can all be transformed to Kuranishi spaces in our sense. Thus, large parts of the symplectic geometry literature can now be interpreted in our framework.

7.5.1 Fair coordinate systems and Kuranishi spaces

Our next definition is a kind of ‘least common denominator’ for the Kuranishi-type structures discussed in §7.1–§7.3. The name ‘fair coordinate system’ is intended to suggest something like the ‘good coordinate systems’ in §7.2 but not as strong. We work over a category Man satisfying the assumptions of §3.1
Definition 7.24. Let X be a Hausdorff, second countable topological space. A fair coordinate system \mathcal{F} on X, of virtual dimension $n \in \mathbb{Z}$, is data $\mathcal{F} = (A, (V_\alpha, E_\alpha, \Gamma_\alpha, s_\alpha, \psi_\alpha)_{\alpha \in A}, S_{ab}, \Phi_{ab}, a, b \in A, S_{abc}, \Lambda_{abc}, a, b, c \in A)$, where:

(a) A is an indexing set (not necessarily finite).

(b) $(V_\alpha, E_\alpha, \Gamma_\alpha, s_\alpha, \psi_\alpha)$ is a Kuranishi neighbourhood on X for each $\alpha \in A$, with $\dim V_\alpha = \text{rank } E_\alpha = n$, as in §6.1.

(c) $S_{ab} \subseteq \text{Im } \psi_a \cap \text{Im } \psi_b$ is an open set for all $a, b \in A$. (We can have $S_{ab} = \emptyset$.)

(d) $\Phi_{ab} = (P_{ab}, \pi_{ab}, \varphi_{ab}, \hat{\phi}_{ab}) : (V_\alpha, E_\alpha, \Gamma_\alpha, s_\alpha, \psi_\alpha) \to (V_\beta, E_\beta, \Gamma_\beta, s_\beta, \psi_\beta)$ is a coordinate change over S_{ab}, for all $a, b \in A$, as in §6.1.

(e) $S_{abc} \subseteq S_{ab} \cap S_{ac} \cap S_{bc} \subseteq \text{Im } \psi_a \cap \text{Im } \psi_b \cap \text{Im } \psi_c$ is an open set for all $a, b, c \in A$. (We can have $S_{abc} = \emptyset$.)

(f) $\Lambda_{abc} = \{ \hat{\rho}_{abc}, \lambda_{abc}, \hat{\lambda}_{abc} : \Phi_{bc} \circ \Phi_{ab} \Rightarrow \Phi_{ac} \}$ is a 2-morphism for all $a, b, c \in A$, defined over S_{abc}.

(g) $\bigcup_{\alpha \in A} \text{Im } \psi_\alpha = X$.

(h) $S_{aa} = \text{Im } \psi_a$ and $\Phi_{aa} = \text{id}_{(V_\alpha, E_\alpha, \Gamma_\alpha, s_\alpha, \psi_\alpha)}$ for all $\alpha \in A$.

(i) $S_{aab} = S_{ab} \cap S_{abc} \subseteq \text{Im } \psi_a \cap \text{Im } \psi_b \cap \text{Im } \psi_c$ is an open set for all $a, b, c \in A$. (We can have $S_{aab} = \emptyset$.)

(j) The following diagram of 2-morphisms over $S_{abc} \cap S_{ab} \cap S_{ac} \cap S_{bcd}$ commutes for all $a, b, c, d \in A$:

$$
\begin{array}{ccc}
\Phi_{cd} \circ \Phi_{bc} & \circ & \Phi_{ab} \\
\downarrow & \downarrow \Phi_{bd} \circ \Phi_{ab} & \downarrow \Phi_{bd} \circ \Phi_{ab} \\
\Phi_{cd} \circ (\Phi_{bc} \circ \Phi_{ab}) & \downarrow \text{id}_{\Phi_{cd}} \circ \Lambda_{abc} & \Phi_{cd} \circ \Phi_{ac} \\
\end{array}
$$

Also, either condition (k) or condition (k)' below hold, or both, where:

(k) Suppose $B \subseteq A$ is finite and nonempty, and $x \in \bigcap_{b \in B} \text{Im } \psi_b \subseteq X$. Then there exists $a \in A$ such that $x \in S_{ab}$ for all $b \in B$, and if $b, c \in B$ with $x \in S_{bc}$ then $x \in S_{abc}$.

(k)' Suppose $B \subseteq A$ is finite and nonempty, and $x \in \bigcap_{b \in B} \text{Im } \psi_b \subseteq X$. Then there exists $d \in A$ such that $x \in S_{bd}$ for all $b \in B$, and if $b, c \in B$ with $x \in S_{bc}$ then $x \in S_{bcd}$.

Here (k),(k)' are somewhat arbitrary. What we are trying to achieve by these conditions on the S_{ab}, S_{abc} is roughly that:

(A) If $x \in \text{Im } \psi_b \cap \text{Im } \psi_c$, one can map $(V_\beta, E_\beta, \Gamma_\beta, s_\beta, \psi_\beta) \to (V_\gamma, E_\gamma, \Gamma_\gamma, s_\gamma, \psi_\gamma)$ near x by a finite chain of coordinate changes Φ_{ij} and their (quasi)inverses Φ_{ji}^{-1} — for (k) by $\Phi_{ac} \circ \Phi_{ab}^{-1}$, and for (k)' by $\Phi_{cd}^{-1} \circ \Phi_{bd}$.

(B) Any two such chains of $\Phi_{ij}, \Phi_{ji}^{-1}$ near x are canonically 2-isomorphic near x using combinations of the 2-isomorphisms Λ_{ijk} and their inverses.
We chose \((k),(k)\)' as they hold in our examples, and there is a nice method to prove Theorem 7.26 using \((k)\) or \((k)\)'.

Example 7.25. Let \(X = (X,K)\) be a Kuranishi space in the sense of \([6.2]\) with \(K = (I,(V_i,E_i,\Gamma_i,s_i,\psi_i)_{i \in I}, \Phi_{ij}, i,j \in I, \Lambda_{ijk}, i,j,k \in I)\). Set \(S_{ij} = \text{Im } \psi_i \cap \text{Im } \psi_j \) for all \(i,j \in I\), and \(S_{ijk} = \text{Im } \psi_i \cap \text{Im } \psi_j \cap \text{Im } \psi_k \) for all \(i,j,k \in I\). Then \(\mathcal{F} = (I,(V_i,E_i,\Gamma_i,s_i,\psi_i)_{i \in I}, S_{ij}, \Phi_{ij}, i,j \in I, S_{ijk}, \Lambda_{ijk}, i,j,k \in I)\) is a fair coordinate system on \(X\). Here Definition 7.24(a)–(j) are immediate from Definition 6.17(a)–(h), and both of Definition 7.24(k),(k)' hold, where we can take \(a \in B\) arbitrary in \((k)\) and \(d \in B\) arbitrary in \((k)'\).

The next theorem will be proved in \([7.6]\). When we say \((V_a,E_a,\Gamma_a,s_a,\psi_a)\) 'may be given the structure of a Kuranishi neighbourhood on the Kuranishi space \(X\)', we mean that as in \([6.4]\) we can choose implicit extra data \(\Phi_{ai}, i \in I\), \(\Lambda_{aij}, i,j \in I\) relating \((V_a,E_a,\Gamma_a,s_a,\psi_a)\) to the Kuranishi structure \(K\) on \(X\), and similarly, by \('\Phi_{ab}\) may be given the structure of a coordinate change over \(S_{ab}\) on the Kuranishi space \(X\)', we mean that we can choose implicit extra data \(\Lambda_{abi}, i \in I\) relating \(\Phi_{ab}\) to \(K\).

Theorem 7.26. Suppose \(\mathcal{F} = (A,(V_a,E_a,\Gamma_a,s_a,\psi_a)_{a \in A}, S_{ab}, \Phi_{ab}, a,b \in A, S_{abc}, \Lambda_{abc, a,b,c \in A})\) is a fair coordinate system of virtual dimension \(n \in \mathbb{Z}\) on a Hausdorff, second countable topological space \(X\), in the sense of Definition 7.24 with \(\text{vdim } X = n\), such that \((V_a,E_a,\Gamma_a,s_a,\psi_a)\) may be given the structure of a Kuranishi neighbourhood on the Kuranishi space \(X\) in the sense of \([6.4]\) for all \(a \in A\), and \(\Phi_{ab} : (V_a,E_a,\Gamma_a,s_a,\psi_a) \rightarrow (V_b,E_b,\Gamma_b,s_b,\psi_b)\) may be given the structure of a coordinate change over \(S_{ab}\) on the Kuranishi space \(X\) in the sense of \([6.4]\) for all \(a,b \in A\), and \(\Lambda_{abc} : \Phi_{bc} \circ \Phi_{ab} = \Phi_{ac}\) is the unique 2-morphism over \(S_{abc}\) given by Theorem 6.45(a) for all \(a,b,c \in A\). This \(X\) is unique up to canonical equivalence in the 2-category \(\text{Kur}\), as in Definition A.7.

The next proposition follows easily from Corollary 6.48 and Theorem 7.26.

Proposition 7.27. Let \(\mathcal{F} = (A,(V_a,E_a,\Gamma_a,s_a,\psi_a)_{a \in A}, S_{ab}, \Phi_{ab}, a,b \in A, S_{abc}, \Lambda_{abc, a,b,c \in A})\) be a fair coordinate system on \(X\). Suppose \(\bar{A} \subseteq A\) with \(\bigcup_{a \in \bar{A}} \text{Im } \psi_a = X\), and in Definition 7.24(k),(k)', if \(B \subseteq \bar{A} \subseteq A\) then we can choose a \(\bar{A}\) in \((k)\) and \(d \in A\) in \((k)'\). Then \(\tilde{\mathcal{F}} = (\bar{A},(V_a,E_a,\Gamma_a,s_a,\psi_a)_{a \in \bar{A}}, S_{ab}, \Phi_{ab}, a,b \in \bar{A}, S_{abc}, \Lambda_{abc, a,b,c \in \bar{A}})\) is also a fair coordinate system on \(X\). Let \(X = (X,K)\) and \(\tilde{X} = (\tilde{X},\tilde{K})\) be the Kuranishi spaces constructed from \(\mathcal{F}, \tilde{\mathcal{F}}\) in Theorem 7.26. Then \(X, \tilde{X}\) are canonically equivalent in \(\text{Kur}\), as in Definition A.7.

7.5.2 Fukaya–Oh–Ohta–Ono’s Kuranishi spaces

Section 7.1 defined Fukaya–Oh–Ohta–Ono’s ‘FOOO Kuranishi spaces’ (working over \(\text{Man} = \text{Man}\)) and ‘FOOO Kuranishi spaces with corners’ (over \(\text{Man} = \text{Man}^c\)). We now relate these to our notion of Kuranishi spaces.
Example 7.28. Let \(X = (X, \mathcal{K}) \) be a FOOO Kuranishi space with vdim \(X = n \), in the sense of Definition 7.6. Then \(K \) gives a FOOO Kuranishi neighbourhood \((V_p, E_p, \Gamma_p, s_p, \psi_p) \) for each \(p \in X \), and for all \(p, q \in X \) with \(q \in \text{Im} \psi_p \) it gives a FOOO coordinate change \(\Phi_{qp} = (V_p, h_{qp}, \varphi_{qp}, \hat{\varphi}_{qp}) \) \(: (V_q, E_q, \Gamma_q, s_q, \psi_q) \rightarrow (V_p, E_p, \Gamma_p, s_p, \psi_p) \) defined on an open neighbourhood \(S_{qp} \) of \(q \) in \(\text{Im} \psi_q \cap \text{Im} \psi_p \), and for all \(p, q, r \in X \) with \(q \in \text{Im} \psi_p \) and \(r \in S_{qp} \), Definition 7.6(b) gives unique group elements \(\gamma_{rp}^\alpha \in \Gamma_p \), which relate \(\Phi_{qp} \circ \Phi_{rq} \) to \(\Phi_{rp} \), on \(S_{rq} \), \(:= S_{qp} \cap S_{rp} \cap S_{rq} \).

We will define a fair coordinate system \(\mathcal{F} \) on \(X \), over \(\text{Man} = \text{Man} \). Take the indexing set \(A \) to be \(A = X \), and for each \(p \in A \), let the Kuranishi neighbourhood \((V_p, E_p, \Gamma_p, s_p, \psi_p) \) be as in \(K \), regarded as a Kuranishi neighbourhood in the sense of \(\square \) as in Example 7.2. If \(p \neq q \in A \) with \(q \in \text{Im} \psi_p \), define \(S_{qp} \subseteq \text{Im} \psi_q \cap \text{Im} \psi_p \) to be the domain of the FOOO coordinate change \(\Phi_{qp} \), in \(K \). Define \(\Phi_{qp} : (V_p, E_q, \Gamma_q, s_q, \psi_q) \rightarrow (V_q, E_p, \Gamma_p, s_p, \psi_p) \) to be the coordinate change over \(S_{qp} \) in the sense of \(\square \) associated to the FOOO coordinate change \(\Phi_{qp} \) in Example 7.5. Define \(S_{pp} = \text{Im} \psi_p \) and \(\Phi_{pp} = \text{id}_{(V_p, E_p, \Gamma_p, s_p, \psi_p)} \) for all \(p \in A \). If \(p \neq q \in A \) and \(q \notin \text{Im} \psi_p \) define \(S_{qp} = \emptyset \) and \(\Phi_{qp} = (\emptyset, 0, 0, 0) \).

If \(p \neq q \neq r \in A \) with \(q \notin \text{Im} \psi_p \) or \(r \notin \text{Im} \psi_q \), define \(S_{qp} = \emptyset \) and \(\Lambda_{pq} = [0, 0, 0] \). Define \(S_{qp} = S_{qp} \cap S_{rp} \cap S_{rq} \) and \(\Lambda_{qp} = \beta_{\Phi_{qp}}, \Lambda_{pp} = \gamma_{pq}^\alpha \) for all \(p, q \in A \). This defines all the data in \(\mathcal{F} = (A, (V_p, E_p, \Gamma_p, s_p, \psi_p))_{p \in A}, \Phi_{pp}, \Phi_{pq}, \Phi_{rq}, \Lambda_{pq}, \Lambda_{qp}, \Lambda_{pp}, \) \(F \) satisfying Definition 7.24(a)–(k).

Parts (a)–(i) are immediate. For (j), if \(p \neq q \neq r \neq s \in X \) with \(q \in \text{Im} \psi_p \) and \(r \in S_{qp} \) and \(s \in S_{sr} \cap S_{qp} \) then Definition 7.6(b) gives elements \(\gamma_{sr}^\alpha, \gamma_{sr}^\beta, \gamma_{sr}^\psi \in \Gamma_p \) and \(\gamma_{sq}^\sigma \in \Gamma_q \) satisfying (7.3). Using (7.3) four times we see that

\[\gamma_{rp}^\alpha \gamma_{sr}^\beta = \Phi_{qp} \circ \Phi_{rq} \circ \Phi_{sr} = h_{qp} \gamma_{sr}^\beta \gamma_{qp}^\alpha, \quad (7.10) \]

where (7.10) holds on the domain

\[(\varphi_{pq}^{-1}(V_{pq} \cap V_{qr} \cap V_{rp})^\alpha) \cap (\varphi_{sq}^{-1}(V_{qp} \cap V_{sq} \cap V_{rp})^\alpha) \cap (\varphi_{sr}^{-1}(V_{qr} \cap V_{sr} \cap V_{pq})^\beta) \cap (\varphi_{sr}^{-1}(V_{qr} \cap V_{sr} \cap V_{pq})^\gamma). \quad (7.11) \]

If (7.11) is nonempty, the argument of Example 7.7(iii) implies that \(\gamma_{rp}^\alpha \gamma_{sr}^\beta = h_{qp}(\gamma_{sr}^\beta \gamma_{qp}^\alpha) \). This is the condition required to verify \(\Lambda_{sr} \circ (\Lambda_{qp} \circ \Phi_{rq}) \) \(= \Lambda_{rp} \circ \Phi_{rq} \circ (\Phi_{qp} \circ \Lambda_{pq}) \) \(\circ \alpha_{rq} \circ \Phi_{rq} \circ \Phi_{sr} \), on the component of \(S_{sr} \cap S_{rp} \cap S_{qr} \) corresponding to the connected components \(\alpha, \alpha', \alpha'', \alpha''' \).

This proves Definition 7.24(j) in this case. If \(p = q \) then (j) becomes

\[\Lambda_{sr} \circ (\gamma_{rq} \circ \text{id}_{\psi_{qr}}) = \gamma_{rq} \circ (\text{id}_{\psi_{qr}} \circ \Lambda_{sr}) \circ \alpha_{r} \circ \Phi_{rq} \circ \Phi_{sr}, \quad (7.12) \]

which holds trivially, and the cases \(q = r, r = s \) are similar. In the remaining cases one of \(S_{sr} \), \(S_{rp} \), \(S_{pq} \), \(S_{sp} \) is empty, so (j) is vacuous. Thus (j) holds.
For (k), suppose \(B \subseteq A \) is finite and nonempty, and \(x \in \bigcap_{p \in B} \text{Im} \psi_p \subseteq X \). Then \(x \in S_{xp} \) for all \(p \in B \), since \(S_{xp} \) is an open neighbourhood of \(x \) in \(\text{Im} \psi_x \cap \text{Im} \psi_p \), and \(x \in S_{xp} \) for all \(p, q \in B \) with \(x \in S_{qp} \), since \(S_{qp} = S_{qp} \cap S_{xp} \cap S_{xq} \) in this case and \(x \in S_{xp}, x \in S_{xq} \). Thus (k) holds with \(a = x \), and \(F \) is a fair coordinate system on \(X \), over \(\text{Man} = \text{Man}^c \).

If instead \(X \) is a FOOO Kuranishi space with corners, the same construction gives a fair coordinate system \(F \) on \(X \) over \(\text{Man} = \text{Man}^c \).

Combining Example 7.28 and Theorem 7.26 yields:

Theorem 7.29. Suppose \(X = (X, \mathcal{K}) \) is a FOOO Kuranishi space, as in Definition 7.6. Then we can construct a Kuranishi space \(X^{'}, (X', \mathcal{K}') \) over \(\text{Man} = \text{Man}^c \) in the sense of [6.2] with \(\text{vdim} X' = \text{vdim} X \), with the same topological space \(X \), and \(X' \) is unique up to canonical equivalence in \(\text{Kur} \).

If instead \(X \) is a FOOO Kuranishi space with corners, the same holds over \(\text{Man} = \text{Man}^c \), so that \(X' \) is unique up to canonical equivalence in \(\text{Kur} \).

One can also show that geometric data and constructions for FOOO Kuranishi spaces \(X \) such as orientations in Definition 7.8, smooth maps \(f : X \to Y \) to a manifold \(Y \) and ‘fibre products’ \(X \times_Y X' \) in Definition 7.9, and boundaries \(\partial X \) of FOOO Kuranishi spaces with corners \(X \) in [24] Def. A1.30, can be mapped to the corresponding notions in our theory.

7.5.3 Fukaya–Oh–Ohta–Ono’s (weak) good coordinate systems

Section 7.2 discussed Fukaya–Oh–Ohta–Ono’s ‘FOOO (weak) good coordinate systems (with corners)’. We relate these to our Kuranishi spaces.

Example 7.30. Let \(\mathcal{G} = (\langle I, \prec \rangle; (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}; \Phi_{ij, i<j}) \) be a FOOO weak good coordinate system of virtual dimension \(n \in \mathbb{Z} \) on a compact, metrizable topological space \(X \), in the sense of Definition 7.11.

We will define a fair coordinate system \(F \) on \(X \) over \(\text{Man} = \text{Man}^c \). Take the indexing set \(A \) to be \(I \), and the Kuranishi neighbourhoods \((V_i, E_i, \Gamma_i, s_i, \psi_i) \) for \(i \in I \) to be as given. If \(i \neq j \in I \) with \(i \prec j \), define \(S_{ij} = \text{Im} \psi_i \cap \text{Im} \psi_j \), and \(\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) to be the coordinate change over \(S_{ij} \) in the sense of [6.1] associated to the FOOO coordinate change \(\Phi_{ij} \) in Example 7.5. Define \(S_{ii} = \text{Im} \psi_i \) and \(\Phi_{ii} = \text{id}_{(V_i, E_i, \Gamma_i, s_i, \psi_i)} \) for all \(i \in I \). If \(i \neq j \in I \) and \(i \neq j, \) define \(S_{ij} = \emptyset \) and \(\Phi_{ij} = (\emptyset, \emptyset, \emptyset, \emptyset) \).

If \(i \neq j \neq k \in I \) with \(i \prec j \prec k \), set \(S_{ijk} = \text{Im} \psi_i \cap \text{Im} \psi_j \cap \text{Im} \psi_k \), and define \(\Lambda_{ijk} : \Phi_{ik} \circ \Phi_{ij} \Rightarrow \Phi_{jk} \) to be the 2-morphism over \(S_{ijk} \) defined in Example 7.7(ii) using the unique group element \(\gamma_{ijk} \in \Gamma_k \) in Definition 7.11(b). If \(i \neq j \neq k \in I \) with \(i \neq j \) or \(j \neq k \), define \(S_{ijk} = \emptyset \) and \(\Lambda_{ijk} = [\emptyset, \emptyset, \emptyset] \). Set \(S_{ii} = S_{ijk} = \text{Im} \psi_i \cap \text{Im} \psi_j \) and \(\Lambda_{ij} = \beta_{\Phi_{ij}}, \Lambda_{ij} = \gamma_{\Phi_{ij}} \) for all \(i, j \in I \). This defines all the data in \(F = (I, (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}; S_{ij}, \Phi_{ij, i,j \in I}, S_{ijk}, \Lambda_{ijk, i,j,k \in I}) \). We shall show \(F \) satisfies Definition 7.24(a)–(k).
Parts (a)–(i) are immediate. For (j), if \(i \neq j \neq k \neq l \) in \(I \) with \(i < j < k < l \) and \(\text{Im } \psi_i \cap \text{Im } \psi_j \cap \text{Im } \psi_k \cap \text{Im } \psi_l \neq \emptyset \) then the argument of (7.10) shows that \(\gamma_{ijkl} = b_{ijkl}(\gamma_{ijkl})^{\gamma_{ijkl}} \) and so \(\Lambda_{ijkl} \circ (\text{id}_{\phi_{ij}} \circ \Lambda_{ijkl}) \) is the \(\phi \)-equivariant \(\gamma \)-fold as we want. The cases \(i = j, j = k, k = l \) hold as for (7.12), and in the remaining cases one of \(\gamma_{ijkl}, \gamma_{ijl}, \gamma_{ikl}, \gamma_{jkl} \) is empty, so (j) is vacuous. Thus (j) holds.

For (k) or (k)', suppose \(\emptyset \neq B \subseteq I \) is finite and \(x \in \bigcap_{b \in B} \text{Im } \psi_b \). Then for all \(b \neq c \in B \) we have \(x \in \text{Im } \psi_b \cap \text{Im } \psi_c \neq \emptyset \), so \(b < c \) or \(c < b \) by Definition 7.11(a). Thus the partial order \(\prec \) restricted to \(B \) is a total order, and we may uniquely write \(B = \{b_1, b_2, \ldots, b_m\} \) with \(b_1 < b_2 < \cdots < b_m \). It is now easy to check that (k) holds with \(a = b_1 \), and also (k)' holds with \(d = b_m \). Therefore \(\mathcal{F} \) is a fair coordinate system on \(X \) over \(\text{Man} = \text{Man}^\circ \).

If instead \(\mathcal{G} \) is a FOOO weak good coordinate system with corners, the same construction gives a fair coordinate system \(\mathcal{F} \) on \(X \) over \(\text{Man} = \text{Man}^\circ \).

Combining Example 7.30 and Theorem 7.26 yields:

Theorem 7.31. Suppose \(X \) is a compact, metrizable topological space with a FOOO weak good coordinate system \(\mathcal{G} = ((I, \prec), (V_i, E_i, \Gamma_i, s_i, \psi_i)_{i \in I}, \Phi_{ij, i \prec j}) \) of virtual dimension \(n \in \mathbb{Z} \), in the sense of Definition 7.11. Then we can make \(X \) into a Kuranishi space \(X = (X, K) \) over \(\text{Man} = \text{Man}^\circ \) in the sense of §6.2 with \(\text{vdim } X = n \), and \(X \) is unique up to canonical equivalence in \(\text{Kur} \).

If instead \(\mathcal{G} \) is a FOOO weak good coordinate system with corners, the same holds over \(\text{Man} = \text{Man}^\circ \), so that \(X \) is an object in \(\text{Kur}^\circ \).

7.5.4 McDuff–Wehrheim’s (weak) Kuranishi atlases

Section 7.3 discussed McDuff–Wehrheim’s ‘MW (weak) Kuranishi atlases’, working over \(\text{Man} = \text{Man}^\circ \). We relate these to our Kuranishi spaces.

Example 7.32. Let \((A, I, (V_B, E_B, \Gamma_B, s_B, \psi_B)_{B \in I}, \Phi_{BC, B, CEI, B \subseteq C}) \) be an MW weak Kuranishi atlas of virtual dimension \(n \in \mathbb{Z} \) on a compact, metrizable topological space \(X \), in the sense of Definition 7.18.

We will define a fair coordinate system \(\mathcal{F} \) on \(X \) over \(\text{Man} = \text{Man}^\circ \). Take the indexing set to be \(I \), and the Kuranishi neighbourhoods \((V_B, E_B, \Gamma_B, s_B, \psi_B) \) for \(B \in I \) to be as given. If \(B, C \in I \) with \(B \subseteq C \), define \(S_{BC} = \text{Im } \psi_B \cap \text{Im } \psi_C \), and \(\Phi_{BC} : (V_B, E_B, \Gamma_B, s_B, \psi_B) \to (V_C, E_C, \Gamma_C, s_C, \psi_C) \) to be the coordinate change over \(S_{BC} \) in the sense of [6.1] associated to the MW coordinate change \(\Phi_{BC} \) in Example 7.17. Define \(S_{BB} = \text{Im } \psi_B \) and \(\Phi_{BB} = \text{id}_{(V_B, E_B, \Gamma_B, s_B, \psi_B)} \) for all \(B \in I \). If \(B \not\subseteq C \in I \), define \(S_{BC} = \emptyset \) and \(\Phi_{BC} = (\emptyset, \emptyset, \emptyset, \emptyset, \emptyset) \).

If \(B \not\subseteq C \subseteq D \in I \) then Definition 7.18(b)–(d) say essentially that \(\Phi_{CD} \circ \Phi_{BC} = \Phi_{BD} \) on the intersection of their domains. Example 7.19 defines a canonical 2-isomorphism \(\Lambda_{BCD} : \Phi_{CD} \circ \Phi_{BC} \Rightarrow \Phi_{BD} \) on \(S_{BCD} := \text{Im } \psi_B \cap \text{Im } \psi_C \cap \text{Im } \psi_D \).

If \(B \neq C \neq D \in I \) with \(B \not\subseteq C \) or \(C \not\subseteq D \), define \(S_{BCD} = \emptyset \) and \(\Lambda_{BCD} = [0, 0, 0] \). Set \(S_{BC} = S_{BCC} = S_{BC} \) and \(\Lambda_{BBC} = \beta_{\Phi_{BC}} \), \(\Lambda_{BCC} = \gamma_{\Phi_{BC}} \) for

207
all \(B, C \in I \). This defines all the data in \(\mathcal{F} = (I, (V_B, E_B, \Gamma_B, s_B, \psi_B), B \in I, S_{BC}, \hat{\Phi}_{BC}, B \in I, S_{BCD}, \Lambda_{BCD}, B, C, D \in I) \).

We will show \(\mathcal{F} \) satisfies Definition 7.24(a)–(j), (k). Parts (a)–(i) are immediate. For (j), if \(B \subseteq C \subseteq D \subseteq E \) in \(I \) then Definition 7.18(b)–(d) basically imply that

\[
\Phi_{DE} \circ (\Phi_{CD} \circ \Phi_{BC}) = \Phi_{BE} = (\Phi_{DE} \circ \Phi_{CD}) \circ \Phi_{BC}
\]

holds on the intersection of their domains, and from this we easily see that \(\Lambda_{BDE} \circ (\Lambda_{CDE} \ast \text{id}_{\hat{\Phi}_{BC}}) = \Lambda_{BDE} \circ (\text{id}_{\hat{\Phi}_{DE}} \ast \Lambda_{BCD}) \circ \alpha_{\hat{\Phi}_{BC}, \hat{\Phi}_{BC}, \hat{\Phi}_{BC}} \), as we want. The remaining cases follow as in Examples 7.28 and 7.30. Thus (j) holds.

For (k)'', suppose \(\emptyset \neq J \subseteq I \) is finite and \(x \in \bigcap_{B \in J} \text{Im} \psi_B \subseteq X \). Then Definition 7.18(a) says that \(D = \bigcup_{B \in J} B \) lies in \(I \), and \(x \in \bigcap_{B \in I} \text{Im} \psi_B \subseteq \text{Im} \psi_D \). For any \(B \in J \) we have \(B \subseteq D \), so \(S_{BD} = \text{Im} \psi_B \cap \text{Im} \psi_D \ni x \). If \(B, C \in J \) with \(x \in S_{BC} \) then \(B \subseteq C \), as otherwise \(S_{BC} = \emptyset \), so \(B \subseteq C \subseteq D \) and \(S_{BCD} = \text{Im} \psi_B \cap \text{Im} \psi_C \cap \text{Im} \psi_D \ni x \). Therefore (k)' holds with \(d = D \), and \(\mathcal{F} \) is a fair coordinate system on \(X \) over \(\text{Man} = \text{Man} \).

Theorem 7.33. Suppose \(X \) is a compact, metrizable topological space with an MW weak Kuranishi atlas \(\mathcal{K} \), of virtual dimension \(n \in \mathbb{Z} \), in the sense of Definition 7.18. Then we can make \(X \) into a Kuranishi space \(X' = (X, \mathcal{K}') \) over \(\text{Man} = \text{Man} \) in the sense of \(6.2 \) with \(\text{vdim} X' = n \), and \(X' \) is unique up to canonical equivalence in the 2-category \(\text{Kur} \). Commensurate MW weak Kuranishi atlases \(\mathcal{K}, \mathcal{K}' \) on \(X \) yield equivalent Kuranishi spaces \(X', X' \).

Proof. The first part is immediate from Example 7.32 and Theorem 7.26. For the second part, note that as in Definition 7.18 if \(\mathcal{K}, \mathcal{K}' \) are commensurate then they are linked by a diagram of MW weak Kuranishi atlases

\[
\begin{array}{c}
\mathcal{K} = \mathcal{K}_0 \\
\mathcal{K}_1 \\
\vdots \\
\mathcal{K}_{m-1} \\
\mathcal{K}_m = \mathcal{K}' \\
\end{array}
\]

(7.13)

where each arrow is an inclusion of MW weak Kuranishi atlases.

By Proposition 7.27, the construction of the first part applied to MW weak Kuranishi atlases \(\mathcal{K}, \mathcal{K}' \) with \(\mathcal{K} \subseteq \mathcal{K}' \) yields equivalent Kuranishi spaces, so (7.13) induces a corresponding diagram of equivalences in \(\text{Kur} \), and thus \(X', X' \) are equivalent in \(\text{Kur} \).

7.5.5 Dingyu Yang’s Kuranishi structures, and polyfolds

Section 7.3 discussed Dingyu Yang’s ‘DY Kuranishi structures’, working over \(\text{Man} = \text{Man} \). We relate these to our Kuranishi spaces.

Example 7.34. Using the notation of 7.4, let \(X \) be a compact, metrizable topological space, and \(\mathcal{K} \) a DY Kuranishi structure on \(X \) with \(\text{vdim}(X, \mathcal{K}) = n \), in the sense of Definition 7.21. Then exactly the same construction as in Example 7.28 yields a fair coordinate system \(\mathcal{F} \) on \(X \).
Theorem 7.35. Suppose X is a compact, metrizable topological space with a
DY Kuranishi structure \mathcal{K}, of virtual dimension $n \in \mathbb{Z}$, in the sense of Definition
7.21. Then we can construct a Kuranishi space $X' = (X, \mathcal{K}')$ over $\text{Man} = \text{Man}
\text{K}$ in the sense of §6.2, with vdim $X' = n$, with the same topological space X, and
X' is unique up to canonical equivalence in the 2-category Kur. R-equivalent
DY Kuranishi structures \mathcal{K}, $\tilde{\mathcal{K}}$ on X yield equivalent Kuranishi spaces X', \tilde{X}'.

Proof. The first part is immediate from Example 7.34 and Theorem 7.26. For
the second part, note that as in Definition 7.22, if $\mathcal{K}, \tilde{\mathcal{K}}$ are R-equivalent then
there is a diagram of embeddings of DY Kuranishi structures on X:

$$
\mathcal{K} \xrightarrow{\sim} \mathcal{K}_1 \xrightarrow{\sim} \mathcal{K}_2 \xrightarrow{\sim} \mathcal{K}_3 \xrightarrow{\sim} \tilde{\mathcal{K}}.
$$

(7.14)

If $\epsilon : \mathcal{K}_1 \to \mathcal{K}_2$ is an embedding of DY Kuranishi structures, then following
Example 7.25 we can define three fair coordinate systems $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_{12}$ on X, where
$\mathcal{F}_1, \mathcal{F}_2$ come from $\mathcal{K}_1, \mathcal{K}_2$, and \mathcal{F}_{12} contains the Kuranishi neighbourhoods
from \mathcal{K}_1 and \mathcal{K}_2, and the coordinate changes from $\mathcal{K}_1, \mathcal{K}_2$ and ϵ, so that \mathcal{F}_{12}
contains \mathcal{F}_1 and \mathcal{F}_2. Theorem 7.26 then gives Kuranishi structures $\mathcal{K}_1', \mathcal{K}_2', \mathcal{K}_{12}'$
on X. Since $\mathcal{F}_1 \subset \mathcal{F}_{12}, \mathcal{F}_2 \subset \mathcal{F}_{12}$, by Proposition 7.27 we have equivalences
$(X, \mathcal{K}_1') \to (X, \mathcal{K}_1''), (X, \mathcal{K}_2') \to (X, \mathcal{K}_2'')$ in Kur, and hence an equivalence
$(X, \mathcal{K}_1') \to (X, \mathcal{K}_2')$ in Kur. Therefore (7.14) induces a corresponding diagram of
equivalences in Kur, and thus X', \tilde{X}' are equivalent in Kur.

Combining Theorem 7.35 with Yang’s Theorem [110, Th. 3.1.7], we
relate Hofer–Wysocki–Zehnder’s polyfold theory [46, 53] to our Kuranishi spaces:

Theorem 7.36. Suppose we are given a ‘polyfold Fredholm structure’ \mathcal{P} on a
compact metrizable topological space X, that is, we write X as the zeroes of a
Fredholm section $s : \mathcal{V} \to \mathcal{E}$ of a strong polyfold vector bundle $\mathcal{E} \to \mathcal{V}$ over a
polyfold \mathcal{V}, where s has constant Fredholm index $n \in \mathbb{Z}$. Then we can make X
to a Kuranishi space $X = (X, \mathcal{K})$ in the sense of §6.2, with vdim $X = n$, and
X is unique up to canonical equivalence in the 2-category Kur.

7.6 Proof of Theorem 7.26

In this section, as in §6.7.4 we will by an abuse of notation treat the weak
2-category $\tilde{\text{KNS}}(\mathcal{X})$ defined in §6.1 as if it were a strict 2-category, omitting
2-morphisms $\alpha_{\Phi_{ij}, \Phi_{kl}}, \beta_{\Phi_{ij}}, \gamma_{\Phi_{ij}}$ in §6.7, and §6.8, and omitting brackets
in compositions of 1-morphisms $\Phi_{ik} \circ \Phi_{jk}$. We do this because otherwise
diagrams such as (7.17) $(7.23), (7.25), \ldots$ would become too big.

Let $\mathcal{F} = (A, (V_a, E_a, I_a, s_a, \psi_a)_{a \in A}, S_{ab}, \Phi_{ab}, a, b \in A), S_{abc}, \Lambda_{abc}, a, b, c \in A)$ be a fair coordinate system of virtual dimension $n \in \mathbb{Z}$ on a Hausdorff,
second countable topological space X, as in §7.5. Then \mathcal{F} satisfies either Definition
7.24 (k) or (k). We will suppose \mathcal{F} satisfies Definition 7.24 (k), and give the proof
in this case. The proof for (k)’ is very similar, but the order of composition of 1-
morphisms is reversed, and the order of horizontal composition of 2-morphisms
is reversed (though vertical composition stays the same), and the order of subscripts

209
a, b, c, \ldots is reversed, so Φ_{ab}, Λ_{abc} are replaced by Φ_{ba}, Λ_{cba}, and so on. We leave the details for case (k) to the interested reader.

Throughout the proof, we will use the following notation for multiple intersections of the open sets S_{ab} in X. For $a_1, \ldots, a_k \in A$, $k \geq 3$, write

$$\check{S}_{a_1 a_2 \cdots a_k} = \bigcap_{1 \leq i < j \leq k} S_{a_i a_j}. \eqno{7.15}$$

More generally, if we enclose a group of consecutive indices $a_1 a_2 \cdots a_m$ in brackets, as in $\check{S}_{a_1 \cdots a_{m-1}(a_m) a_{m+1} \cdots a_k}$, we omit from the intersection any $S_{a_i a_j}$ with both a_i, a_j belonging to the bracketed group. So, for example

$$\check{S}_{a_1 a_2 a_3} = S_{ab} \cap S_{ac}, \quad \check{S}_{(ab)(cd)} = S_{ac} \cap S_{ad} \cap S_{bc} \cap S_{bd},$$

$$\check{S}_{(a)(bc)(de)} = S_{ab} \cap S_{ac} \cap S_{ad} \cap S_{bd} \cap S_{be} \cap S_{cd} \cap S_{ce}. \eqno{7.16}$$

In Definition 7.24 the 2-morphisms Λ_{abc} are defined on open sets $S_{abc} \subseteq S_{ab} \cap S_{ac} \cap S_{bc} \subseteq \text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c$. We begin by showing that we can extend Λ_{abc} canonically to $\check{S}_{abc} = S_{ab} \cap S_{ac} \cap S_{bc}$.

Lemma 7.37. There exist unique 2-morphisms $\check{\Lambda}_{abc} : \Phi_{bc} \circ \Phi_{ab} \Rightarrow \Phi_{ac}$ defined over \check{S}_{abc} for all $a, b, c \in A$, such that $\check{\Lambda}_{abc} \mid_{S_{abc}} = \Lambda_{abc}$, and as in Definition 7.24 we have $\check{\Lambda}_{ab} \cap (\text{id}_{\Phi_{ab}} \circ \check{\Lambda}_{abc}) = \check{\Lambda}_{ab \cap \check{S}_{abc}} \cap (\Lambda_{bc} \circ \text{id}_{\Phi_{bc}}) : \Phi_{cd} \circ \Phi_{bc} \circ \Phi_{ab} \Rightarrow \Phi_{ad}$ over \check{S}_{abcd}, for all $a, b, c, d \in A$.

Proof. Fix $a, b, c \in A$. We will construct a 2-morphism $\check{\Lambda}_{abc} : \Phi_{bc} \circ \Phi_{ab} \Rightarrow \Phi_{ac}$ over \check{S}_{abc}. For each $d \in A$, define

$$\check{S}_{abc}^d = S_{dab} \cap S_{dca} \cap S_{dcb} \subseteq \check{S}_{abc}. \quad \eqno{7.17}$$

Then \check{S}_{abc}^d is open in \check{S}_{abc}. Definition 7.24(k) with $B = \{a, b, c\}$ implies that for each $x \in \check{S}_{abc}$, there exists $d \in A$ with $x \in \check{S}_{abc}^d$. Thus, $\{\check{S}_{abc}^d : d \in A\}$ is an open cover of \check{S}_{abc}.

Since Φ_{da} is an equivalence in the weak 2-category $\mathbf{KN}^{S_{abc}}(X)$ in Definition 6.9 as it is a coordinate change, Lemma A.6 implies that for each $d \in A$ there is a unique 2-morphism

$$\check{\Lambda}_{abc}^d : \Phi_{bc} \circ \Phi_{ab} \Rightarrow \Phi_{ac} \quad \text{over } \check{S}_{abc}^d,$$

such that

$$\check{\Lambda}_{abc}^d \ast \text{id}_{\Phi_{ab}} = \Lambda_{abc}^{-1} \ast \check{\Lambda}_{abc} \ast (\text{id}_{\Phi_{bc}} \ast \Lambda_{abc}). \quad \eqno{7.18}$$

For $d, e \in A$, we will show that $\check{\Lambda}_{abc}^d \mid_{\check{S}_{abc}^d \cap \check{S}_{abc}^e} = \check{\Lambda}_{abc}^e \mid_{\check{S}_{abc}^d \cap \check{S}_{abc}^e}$. Let $x \in \check{S}_{abc}^d \cap \check{S}_{abc}^e$. Then Definition 7.24(k) with $B = \{a, b, c, d, e\}$ gives $f \in A$ with $x \in S_{fab} \cap S_{fac} \cap S_{fbd} \cap S_{fda} \cap S_{fde} \cap S_{fbc} \cap S_{fca} \cap S_{fbd} \cap S_{fec} \cap S_{fcd} \cap S_{fca} \cap \check{S}_{abc}^d \cap \check{S}_{abc}^e$.
Consider the diagram of 2-morphisms on this intersection:

Here the outer two quadrilaterals commute by Equation (7.16), and the inner eight quadrilaterals commute by Definition 7.24(i). So Equation (7.17) commutes.

Thus, for each $x \in S^a_{abc} \cap S^a_{bcd}$, on an open neighbourhood of x we have $\tilde{\Lambda}_{abc} \ast \Phi_{fa} = \tilde{\Lambda}^c_{abc} \ast \Phi_{fa}$, so that on an open neighbourhood of x we have $\tilde{\Lambda}^d_{abc} = \tilde{\Lambda}^c_{abc}$ by Lemma A.6, Definition A.17(iii) and Theorem 6.16. Now apply that $\tilde{\Lambda}^c_{abc} = \tilde{\Lambda}^c_{abc}$ on $S^c_{abc} \cap S^c_{bcd}$. Since the S^d_{abc} for each $d \in A$ cover S_{abc}, Definition A.17(iii),(iv) and Theorem 6.16 show that there exists a unique 2-morphism $\Lambda_{abc} : \Phi_{fa} \Rightarrow \Phi_{fa}$ over S_{abc} such that

$$\tilde{\Lambda}_{abc}\mid_{S_{abc}} = \tilde{\Lambda}^d_{abc} \quad \text{for all } d \in A.$$

(7.18)

When $d = a$, we see from Equation (7.15), (7.16) and Definition 7.24(h),(i) that $S^a_{abc} = S_{abc}$ and $\tilde{\Lambda}_{abc} = \Lambda_{abc}$. Hence $\Lambda_{abc}\mid_{S_{abc}} = \Lambda_{abc}$, as we have to prove.

Suppose $a, b, c, d \in A$, and $x \in S_{abcd} = S_{abc} \cap S_{ade} \cap S_{bcd} \cap S_{abe} \cap S_{abe} \cap S_{acb} \cap S_{bcd}$. Define $B = \{a, b, c, d\}$ with $B = \{a, b, c, d\}$ gives $e \in A$ with $x \in S^e_{abc} \cap S^e_{abc} \cap S^e_{abc} \cap S^e_{abc}$ such that $\tilde{\Lambda}_{abc}\mid_{S_{abc}} = \tilde{\Lambda}^d_{abc}$ for all $d \in A$.

$$\tilde{\Lambda}_{abc}\mid_{S_{abc}} = \tilde{\Lambda}^d_{abc} \quad \text{for all } d \in A.$$

(7.18)

Using Equation (7.18) in the first, fourth and sixth steps, and Equation (7.16) in the second, third and fifth. Lemma A.6 now implies that $\Lambda_{abc} \ast (\Phi_{fa} \ast \Lambda_{abc}) = \Lambda_{abc} \ast (\tilde{\Lambda}_{abc} \ast \Phi_{fa})$ holds near x. Applying Definition A.17(iii) and Theorem 6.16, again shows it holds on the correct domain S_{abc}. This completes the lemma. □
Next, for all \(a, b \in A\) we have a coordinate change \(\Phi_{ab} : (V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b)\) over \(S_{ab} := \text{Im} \psi_a \cap \text{Im} \psi_b\). This is an equivalence in the 2-category \(\mathcal{K}\text{N}_{S_{ab}}(X)\) by Definition 6.11. Thus we may choose a quasi-inverse \(\tilde{\Phi}_{ba} : (V_b, E_b, \Gamma_b, s_b, \psi_b) \to (V_a, E_a, \Gamma_a, s_a, \psi_a)\), which is also a coordinate change over \(S_{ab}\), and 2-morphisms

\[
\eta_{ab} : \Phi_{ab} \circ \tilde{\Phi}_{ba} := \text{id}_{(V_a, E_a, \Gamma_a, s_a, \psi_a)}, \quad \zeta_{ab} : \tilde{\Phi}_{ba} \circ \Phi_{ab} := \text{id}_{(V_b, E_b, \Gamma_b, s_b, \psi_b)}.
\]

\[
(7.19)
\]

When \(a = b\), so that \(\Phi_{aa} = \text{id}_{(V_a, E_a, \Gamma_a, s_a, \psi_a)}\), we choose

\[
\tilde{\Phi}_{aa} = \text{id}_{(V_a, E_a, \Gamma_a, s_a, \psi_a)} \quad \text{and} \quad \eta_{aa} = \zeta_{aa} = \text{id}_{(V_a, E_a, \Gamma_a, s_a, \psi_a)}.
\]

\[
(7.20)
\]

Now fix \(a, b \in A\). For all \(c \in A\), we have \(\hat{S}_{c(ab)} = S_{ca} \cap S_{cb} \subseteq \text{Im} \psi_a \cap \text{Im} \psi_b\). From Definition \ref{7.24} with \(B = \{a, b\}\), we see that for each \(x \in \text{Im} \psi_a \cap \text{Im} \psi_b\) there exists \(c \in A\) with \(x \in \hat{S}_{c(ab)}\), so \(\{\hat{S}_{c(ab)} : c \in A\}\) is an open cover of \(\text{Im} \psi_a \cap \text{Im} \psi_b\). For each \(c \in A\), define a 1-morphism \(\Psi_{ab}^c : (V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b)\) over \(S_{c(ab)}\) by \(\Psi_{ab}^c = \Phi_{cb} \circ \Phi_{ac}\).

Lemma 7.38. For all \(a, b, c, d \in A\), there is a unique 2-morphism

\[
M_{ab}^c : \Psi_{ab}^c := \Psi_{ab}^d \quad \text{over } \hat{S}_{(cd)(ab)} = \hat{S}_{c(ab)} \cap \hat{S}_{d(ab)}.
\]

such that for all \(e \in A\), the following commutes on \(\hat{S}_{(cd)(ab)}\):

\[
\Phi_{cb} \circ \Phi_{ec} \quad \Phi_{ed} \quad \Phi_{db} \circ \Phi_{ed}
\]

\[
\eta_{ab} \quad \zeta_{ab} \quad \text{id}_{\Phi_{ab} \circ \Phi_{ed}}
\]

\[
(7.22)
\]

Proof. Equation (7.22) determines \(M_{ab}^c \circ \text{id}_{\Phi_{ab}}\) over \(\hat{S}_{(cd)(ab)}\), and so by Lemma \ref{A.6} determines \(M_{ab}^c\) over \(\hat{S}_{(cd)(ab)}\), as \(\Phi_{ab}\) is an equivalence. Write \(M_{ab}^c\) for the value for \(M_{ab}^c\) on \(\hat{S}_{(cd)(ab)}\) determined by (7.22). Observe that Definition \ref{7.24} with \(B = \{a, b, c, d\}\) implies that the \(\hat{S}_{(cd)(ab)}\) for \(e \in A\) form an open cover of \(\hat{S}_{(cd)(ab)}\).

Let \(e, f \in A\), and \(x \in \hat{S}_{(ef)(cd)(ab)} = \hat{S}_{(cd)(ab)} \cap \hat{S}_{(ef)(cd)(ab)}\). Applying Definition \ref{7.24} with \(B = \{a, b, c, d, e, f\}\) and this \(x\) gives \(g \in A\) such that all the 1-
and 2-morphisms in the following diagram are defined on $x \in \tilde{S}_{g(f)(cd)(ab)}$:

$$\begin{array}{c}
\Phi_{db} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge} \\
\Phi_{cb} \circ \Phi_{cd} \circ \Phi_{ge} \\
\Phi_{db} \circ \Phi_{ad} \circ \Phi_{ge} \\
\Phi_{cb} \circ \Phi_{cd} \circ \Phi_{ge}
\end{array}
\begin{array}{c}
\Phi_{db} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge} \\
\Phi_{cb} \circ \Phi_{cd} \circ \Phi_{ge} \\
\Phi_{db} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge} \\
\Phi_{cb} \circ \Phi_{cd} \circ \Phi_{ge}
\end{array}
\begin{array}{c}
\Psi_{db} \circ \Phi_{ge} \\
\Phi_{db} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge} \\
\Psi_{db} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge} \\
\Phi_{db} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge}
\end{array}
\begin{array}{c}
(M_{ab}^{cd})^{-1} \circ \Phi_{ge} \\
(M_{ab}^{cd})^{-1} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge} \\
(M_{ab}^{cd})^{-1} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge} \\
(M_{ab}^{cd})^{-1} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge}
\end{array}

(7.23)

Here for clarity we have omitted all ‘id...’ and ‘*id...’ terms. The two outer nine-gons commute by (7.22), eight small quadrilaterals commute by Lemma 7.39 and four small quadrilaterals commute by compatibility of horizontal and vertical composition. Thus (7.23) commutes, and $(M_{ab}^{cd})^{-1} \circ \Phi_{ge} = (M_{ab}^{cd})^{-1} \circ \Phi_{ad} \circ \Phi_{cd} \circ \Phi_{ge}$ near x, so $(M_{ab}^{cd})^{-1} = (M_{ab}^{cd})^{-1}$ near x by Lemma 6.16.

As this holds for all $x \in \tilde{S}_{e(c)(d)(ab)} \cap \tilde{S}_{f(c)(d)(ab)}$, Definition A.17(iii) and Theorem 6.16 show that $(M_{ab}^{cd})^{-1} = (M_{ab}^{cd})^{-1}$ on $\tilde{S}_{e(c)(d)(ab)} \cap \tilde{S}_{f(c)(d)(ab)}$. Since the $\tilde{S}_{e(c)(d)(ab)}$ for $e \in A$ cover $\tilde{S}_{(c)(d)(ab)}$, Definition A.17(iii), (iv) and Theorem 6.16 imply that there is a unique 2-morphism M_{ab}^{cd} as in (7.21) with $M_{ab}^{cd}|\tilde{S}_{e(c)(d)(ab)} = (M_{ab}^{cd})^{-1}$. But by definition of $(M_{ab}^{cd})^{-1}$ this holds if and only if (7.22) commutes. This completes the lemma.

\[\square\]

Lemma 7.39. For all $a, b, c, d, e \in A$, we have

$$M_{ab}^{cd} \circ M_{ab}^{cd} = M_{ab}^{ce} : \Psi_{ab} \implies \Psi_{ab}$$

over $\tilde{S}_{(c)(d)(ab)} = \tilde{S}_{(c)(d)(ab)} \cap \tilde{S}_{(c)(d)(ab)} \cap \tilde{S}_{(d)(c)(ab)}$.

\[\text{(7.24)}\]

Proof. Let $x \in \tilde{S}_{(c)(d)(ab)}$. Definition 7.24(k) with $B = \{a, b, c, d, e\}$ and this x gives $f \in A$ such that all the 1- and 2-morphisms in the following diagram are 231
defined on $x \in \hat{S}_{(cd)(ab)}$:}

\[
\begin{align*}
\Phi_{eb} \circ \Phi_{fc} & \xrightarrow{\Phi_{db} \circ \Phi_{fd}} \Phi_{eb} \circ \Phi_{fe} \\
\Phi_{db} \circ \Phi_{ad} \circ \Phi_{fc} & \xrightarrow{\Phi_{db} \circ \Phi_{ad} \circ \Phi_{fd}} \Phi_{eb} \circ \Phi_{fe} \\
\Phi_{db} \circ \Phi_{ac} \circ \Phi_{fd} & \xrightarrow{\Phi_{db} \circ \Phi_{ac} \circ \Phi_{fa}} \Phi_{eb} \circ \Phi_{fe}.
\end{align*}
\]

Here the two inner and the outer septagons commute by (7.22). Thus (7.25) commutes, and compatibility of horizontal and vertical composition gives

\[
(M_{ab}^{de} \odot M_{ab}^{cd}) \ast \text{id}_{\Phi_{fa}} = (M_{ab}^{de} \ast \text{id}_{\Phi_{fa}}) \odot (M_{ab}^{de} \ast \text{id}_{\Phi_{fa}}) = M_{ab}^{ce} \ast \text{id}_{\Phi_{fa}}
\]

near x, so (7.24) holds near x by Lemma A.6. As this is true for all $x \in \hat{S}_{(cd)(ab)}$, the lemma follows from Definition A.17 (iii) and Theorem 6.16.

By Lemmas 7.38 and 7.39, as $\{\hat{S}_{(ab)} : c \in A\}$ is an open cover of $\text{Im } \phi_a \cap \text{Im } \phi_b$, we may now apply Definition A.17 (v) and Theorem 6.16 (to show that for all $a, b \in A$, there exists a coordinate change $\Psi_{ab} : (V_a, E_a, \Gamma_a, s_a, \psi_a) \rightarrow (V_b, E_b, \Gamma_b, s_b, \psi_b)$ over $\text{Im } \phi_a \cap \text{Im } \phi_b$, and 2-morphisms $\epsilon_{ab} : \Psi_{ab} \Rightarrow \Psi_{ab}$ over $\hat{S}_{(ab)}$ for all $c \in A$, such that for all $c, d \in A$ we have

\[
\epsilon_{ab}^{d} \ast M_{ab}^{cd} = \epsilon_{ab}^{c} : \Psi_{ab}^{d} \Longrightarrow \Psi_{ab}^{c} \quad \text{over } \hat{S}_{(cd)(ab)} = \hat{S}_{(cd)(ab)}^{c} \cap \hat{S}_{(cd)(ab)}^{d}.
\]

Furthermore Ψ_{ab} is unique up to 2-isomorphism.

In the case when $a = b$, we have $\Psi_{aa} = \Phi_{aa} = \Phi_{aa} = \text{id}_{(V_a, E_a, \Gamma_a, s_a, \psi_a)}$ and $\hat{S}_{a(aa)} = \text{Im } \phi_a$, so $\epsilon_{aa}^{d} : \text{id}_{(V_a, E_a, \Gamma_a, s_a, \psi_a)} \Rightarrow \Psi_{aa}$ is a 2-morphism over $\text{Im } \phi_a$. As we can choose Ψ_{aa} freely in its 2-isomorphism class, we choose

\[
\Psi_{aa} = \text{id}_{(V_a, E_a, \Gamma_a, s_a, \psi_a)} \quad \text{and} \quad \epsilon_{aa}^{d} = \text{id}_{(V_a, E_a, \Gamma_a, s_a, \psi_a)}, \quad \text{for all } a \in A.
\]

Lemma 7.40. For all $a, b, c \in A$, there is a unique 2-morphism

\[
K_{abc} : \Psi_{bc} \circ \Psi_{ab} \Longrightarrow \Psi_{ac} \quad \text{over } \text{Im } \phi_a \cap \text{Im } \phi_b \cap \text{Im } \phi_c,
\]

such that for all $d \in A$, the following commutes over $\hat{S}_{d(abc)}$:

\[
\Phi_{dc} \circ \Phi_{ad} \circ \Phi_{db} \circ \Phi_{fd} \xrightarrow{\Phi_{dc} \circ \Phi_{ad} \circ \Phi_{fd} \circ \Phi_{fa}} \Phi_{dc} \circ \Phi_{fe} \xrightarrow{\epsilon_{dc}^{d} \ast \Phi_{dc} \circ \Phi_{fe}} \Psi_{dc} \circ \Psi_{ac} \xrightarrow{K_{abc}} \Psi_{ac}.
\]
Proof. Fix $a, b, c \in A$. If $x \in \text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c$, then Definition \[7.24\](k) with $B = \{a, b, c\}$ and this x gives $d \in A$ with $x \in \hat{S}_d(abc)$. Hence $\{\hat{S}_d(abc) : d \in A\}$ is an open cover of $\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c$.

For each $d \in A$, write K^d_{abc} for the 2-morphism over $\hat{S}_d(abc)$ determined by (7.28) with K_{abc} in place of K_{abc}. We have to show that there is a unique 2-morphism K_{abc} over $\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c$ with $K_{abc}|\hat{S}_d(abc) = K^d_{abc}$.

Let $d, e \in A$, and $x \in \hat{S}_{(de)(abc)} = \hat{S}_{d(abc)} \cap \hat{S}_{f(abc)}$. Consider the diagram of 1- and 2-morphisms Figure 7.1. We have omitted most terms $\ast \text{id} \ldots$ and $\text{id} \ast$ in the 2-morphisms for clarity. The two outer crescent shapes are the definitions of K_{abc}, K_{abc} in (7.28), composed with Φ_{fa}. The top and bottom triangles commute by (7.26). In the interior of the figure, the three polygons with sides involving $M_{abc}^d, M_{abc}^e, M_{abc}^f$ commute by (7.22). The remaining four polygons commute by Lemma \[7.37\] and compatibility of horizontal and vertical composition.

![Figure 7.1: Proof that $K^d_{abc} \ast \text{id}_{fa} = K_{abc} \ast \text{id}_{fa}$](image-url)

215
Thus Figure 7.1 commutes, which proves that $K_{d,abc} \circ \text{id}_{\Phi_{fa}} = K_{e,abc} \circ \text{id}_{\Phi_{fa}}$ on $\hat{S}_{f(d(e)c)(abc)}$. Lemma 6.16 now shows that $K_{d,abc} = K_{e,abc}$ on $\hat{S}_{f(d(e)c)(abc)}$.

As the $\hat{S}_{d(abc)}$ for $f \in A$ cover $\hat{S}_{d(abc)} \cap \hat{S}_{e(abc)}$, Definition A.17 (iii) and Theorems 6.16 imply that $K_{d,abc} = K_{e,abc}$ on $\hat{S}_{d(abc)} \cap \hat{S}_{e(abc)}$. Since $\{\hat{S}_{d(abc)} : d \in A\}$ is an open cover of $\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c$, Definition A.17 (iii), (iv) and Theorem 6.16 show that there exists a unique 2-morphism K_{abc} over $\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c$ such that $K_{abc} : \hat{S}_{d(abc)} = K_{d,abc}$. Thus (7.28) commutes for all $d \in A$, by definition of $K_{d,abc}$. This completes the proof.

Putting a, b, c, d in place of a, b, c, d in (7.20), (7.27), and similarly putting a, b, c, d in place of a, b, c, d and using $\epsilon_{d}^{a,b,c,d}$ identities, yields

$$K_{a,abc} = K_{a,abb} = \text{id}_{\Phi_{ab}}.$$

(7.29)

Lemma 7.41. For all $a, b, c, d, e, f \in A$ we have $K_{abcd} \circ (\text{id}_{\Phi_{ed}} \circ K_{abc}) = K_{abde} \circ (K_{bcd} \circ \text{id}_{\Phi_{ab}})$.

Proof. Let $x \in \text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c \cap \text{Im} \psi_d$. Definition 7.24 (k) with $B = \{a, b, c, d\}$ and this x gives $e \in A$ with $x \in \hat{S}_{e(abcd)}$. Consider the diagram

Here the outer quadrilaterals commute by (7.28), and the inner rectangle commutes by compatibility of horizontal and vertical multiplication. Thus (7.30) commutes, and the outer rectangles show that $K_{abcd} \circ (\text{id}_{\Phi_{ed}} \circ K_{abc}) = K_{abde} \circ (K_{bcd} \circ \text{id}_{\Phi_{ab}})$ holds over $\hat{S}_{e(abcd)}$. Since the $\hat{S}_{e(abcd)}$ for all $e \in A$ cover $\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c \cap \text{Im} \psi_d$, the lemma follows from Definition A.17 (iii) and Theorem 6.16.

The definition of the Ψ_{ab} after Lemma 7.39, Lemmas 7.40, 7.41, and equations (7.27) and (7.29), now imply that $\mathcal{K} = (A, \{V_a, E_a, \Gamma_a, S_a, \psi_a\}_{a \in A}, \Psi_{ab}, a, b \in A, K_{abc, \{a,b,c\} \in A})$ is a Kuranishi structure on X in the sense of Definition 6.2, so $X = (X, \mathcal{K})$ is a Kuranishi space with $\text{vdim} X = n$, as we have to prove.
To give \((V_a, E_a, \Gamma_a, s_a, \psi_a)\) the structure of a Kuranishi neighbourhood on the Kuranishi space \(X\) in the sense of (6.4) for \(a \in A\), note that as \((V_a, E_a, \Gamma_a, s_a, \psi_a)\) is already part of the Kuranishi structure \(K\), we can take \(\Psi_{ai}, i \in A\) and \(K_{aij}, i, j \in A\) to be the implicit extra data \(\Phi_{ai}, i.e.l\), in Definition 6.42.

To give \(\Phi_{ab} : (V_a, E_a, \Gamma_a, s_a, \psi_a) \to (V_b, E_b, \Gamma_b, s_b, \psi_b)\) the structure of a coordinate change over \(S_{ab}\) on the Kuranishi space \(X\) as in (6.4) for \(a, b \in A\), we need to specify implicit extra data \(\Lambda_{abi}, i \in A\) in place of \(\Lambda_{abi}, i \in A\) in Definition 6.43, where \(I_{abi} : \Psi_{bi} \circ \Phi_{ab} \Rightarrow \Psi_{ai}\) is a 2-morphism over \(S_{ab} \cap \text{Im} \psi_i\) for all \(i \in A\) satisfying (6.38) over \(S_{ab} \cap \text{Im} \psi_i \cap \text{Im} \psi_j\) for all \(i, j \in A\), which becomes

\[
K_{aij} \circ (\text{id}_{\Psi_{ij}} \ast I_{abi}) = I_{abj} \circ (K_{bji} \ast \text{id}_{\Psi_{ab}}) : \Psi_{ij} \circ \Psi_{bi} \circ \Phi_{ab} \Rightarrow \Psi_{aj}. \tag{7.31}
\]

Since \(\Phi_{aa} = \text{id}_{V_a}, E_a, \Gamma_a, s_a, \psi_a\) by (7.20) we have \(\Psi_{aa}^\circ = \Phi_{ab}\), so the definition of \(\Psi_{ab}\) gives a 2-morphism \(\epsilon_{ab}^\circ : \Phi_{ab} \Rightarrow \Psi_{ab}\) over \(S_{ab} \subseteq \text{Im} \psi_a \cap \text{Im} \psi_b\). Define \(I_{abi} = K_{abi} \circ (\text{id}_{\Psi_{ai}} \ast (\epsilon_{ab}^\circ)^{-1})\). Then (7.31) follows from vertically composing \(\text{id}_{\Psi_{ij}} \ast \Psi_{bi} \ast (\epsilon_{ab}^\circ)^{-1}\) with Lemma 7.41 with \(i, j\) in place of \(c, d\). This makes \(\Phi_{ab}\) into a coordinate change over \(S_{ab}\) on \(X\), as we want.

Now let \(a, b, c \in A\). To show that \(\Lambda_{abc} : \Phi_{bc} \circ \Phi_{ab} \Rightarrow \Phi_{ac}\) is the unique 2-morphism over \(S_{abc}\) given by Theorem 6.45(a), we must prove that as in (6.39), for all \(i \in A\), over \(S_{abc} \cap \text{Im} \psi_i\) we have

\[
I_{abi} \circ (\text{id}_{\Psi_{ci}} \ast I_{dbc}) = I_{aci} \circ (\text{id}_{\Psi_{ci}} \ast \Lambda_{abc}) : \Psi_{ci} \circ \Phi_{bc} \circ \Phi_{ab} \Rightarrow \Psi_{ai}. \tag{7.32}
\]

To prove (7.32), consider the diagram of 2-morphisms over \(S_{abc} \cap \text{Im} \psi_i\):

Here the bottom and rightmost triangles, and the leftmost quadrilateral, commute by definition of \(I_{abi}\). The lower central quadrilateral commutes by Lemma 7.41, the upper central quadrilateral by (7.28), with \(d = a\), the upper left triangle by (7.26), and the topmost triangle by (7.22) with \(b, c, b, a, a\) in place of \(a, b, c, d, e\), noting that of the seven morphisms in (7.22) four are identities in this case, so we omit them. Also we use \(\Lambda_{abc} \mid_{S_{abc}} = \Lambda_{abc}\) from Lemma 7.37. Thus (7.33) commutes, and the outer rectangle yields (7.32). Hence \(\Lambda_{abc} : \Phi_{bc} \circ \Phi_{ab} \Rightarrow \Phi_{ac}\).
is the unique 2-morphism over S_{abc} given by Theorem 6.45 (a). This completes the proof of the first part of Theorem 7.26.

It remains to show that $X = (X, \mathcal{K})$ is unique up to equivalence in \mathcal{K}_{Kur}. To prove this, we have to consider where in the proof above we made arbitrary choices, and show that if we made different choices yielding $X' = (X, \mathcal{K}')$, then X and X' are equivalent in \mathcal{K}_{Kur}. There are two places in the construction of X where we made arbitrary choices: firstly the choice after Lemma 7.37 of a quasi-inverse Φ_{ba} for Φ_{ab} and 2-morphisms η_{ab}, ζ_{ab} in (7.19) (though in fact the η_{ab} were never used in the definition of X), and secondly the choice after Lemma 7.39 of Ψ_{ab}, and 2-morphisms ϵ_{ab}^{c} satisfying (7.26).

For the first, if $\Phi_{ba}^{\prime}, \eta_{ab}^{\prime}, \zeta_{ab}^{\prime}$ are alternative choices for $\Phi_{ba}, \eta_{ab}, \zeta_{ab}$, for all $a, b, c \in A$, then there exist unique 2-morphisms $\alpha_{ab} : \Phi_{ba} \Rightarrow \Phi_{ba}^{\prime}$ such that
\[
\zeta_{ab} = \zeta_{ab}^{\prime} \circ (\alpha_{ab} * \text{id}_{\Phi_{ab}}) \quad \text{for all } a, b \in A,
\]
and $\alpha_{aa} = \text{id}_{\Phi_{ab}}$. Then one can check that for the second choice we can keep Ψ_{ab} unchanged and replace ϵ_{ab} by
\[
\epsilon_{ab}^{c} = \epsilon_{ab} \circ (\text{id}_{\Phi_{ab}} * (\alpha_{ac})^{-1}) \quad \text{for all } a, b, c \in A.
\]
Using (7.34)–(7.35) to compare (7.28) for $\Phi_{ba}, \eta_{ab}, \zeta_{ab}$, ϵ_{ab}^{c} and $\Phi_{ba}^{\prime}, \eta_{ab}^{\prime}, \zeta_{ab}^{\prime}, \epsilon_{ab}^{c}$, we find that the two occurrences of α_{da} and of α_{db} cancel, so K_{abc} is unchanged. Thus, the family of possible outcomes for Ψ_{ab}, K_{abc} and X are independent of the first choice of $\Phi_{ba}, \eta_{ab}, \zeta_{ab}$ for $a, b \in A$.

Next, regard the $\Phi_{ba}, \eta_{ab}, \zeta_{ab}$ as fixed, and let $\Psi_{ab}^{c}, \epsilon_{ab}^{c}$ be alternative possibilities for $\Psi_{ab}, \epsilon_{ab}^{c}$ in the second choice, and K_{abc}^{\prime} the corresponding 2-morphisms in Lemma 7.39. Then by Theorem 6.16 and the last part of Definition A.17(v), there are unique 2-morphisms $\beta_{ab} : \Psi_{ab} \Rightarrow \Psi_{ab}^{c}$ for all $a, b \in A$, such that
\[
\epsilon_{ab}^{c} = \beta_{ab} \circ \epsilon_{ab} \quad \text{for all } a, b, c \in A.
\]
Substituting (7.36) into (7.28) for $\Psi_{ab}^{c}, \epsilon_{ab}^{c}, K_{abc}^{\prime}$ and comparing with (7.28) for $\Psi_{ab}, \epsilon_{ab}^{c}, K_{abc}$, we see that
\[
K_{abc}^{\prime} = \beta_{ac} \circ K_{abc} \circ (\beta_{bc}^{-1} \ast \beta_{ab}^{-1}).
\]

Define 1-morphisms $f : X \to X', g : X' \to X$, in the notation of (6.18), by
\[
f = (\text{id}_{X}, \Psi_{ab}, a \in A, b \in A, (K_{ab})_{a,b}, a,a' \in A, (K_{abc})_{a,b,c}, a,a', a'' \in A, (\beta_{ab}^{-1} \ast \text{id}_{\Psi_{ab}})_{a,a', b,b'}),
\]
\[
g = (\text{id}_{X}, \Psi_{ab}, a \in A, b \in A, (K_{ab})_{a,b}, a,a' \in A, (K_{abc})_{a,b,c}, a,a', a'' \in A, (\beta_{ab}^{-1} \ast \text{id}_{\Psi_{ab}})_{a,a', b,b'}).
\]
One can check these satisfy Definition 6.19(a)–(h), and so are 1-morphisms of Kuranishi spaces. Definition 6.22 now gives a 1-morphism of Kuranishi spaces $g \circ f : X \to X$, and 2-morphisms of Kuranishi neighbourhoods for all $a, b, c \in A$
\[
\Theta_{abc}^{g \circ f} : \Psi_{bc} \circ \Psi_{ab} \Rightarrow (g \circ f)_{ac}.
\]
We claim that there is a unique 2-morphism \(\varrho = (\varrho_{ac, a, c} \in A) : g \circ f \Rightarrow \text{id}_X \) of Kuranishi spaces such that for all \(a, b, c \in A \) the following diagram of 2-morphisms of Kuranishi neighbourhoods over \(\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c \) commutes:

\[
\begin{array}{ccc}
\Psi_{bc} \circ \Psi_{ab} & \overset{\varrho_{ac, \text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c}}{\longrightarrow} & \Psi_{bc} \circ \Psi_{ab} \\
\varrho_{ab} & = & \varrho_{ac} \\
(g \circ f)_{ac} & \overset{(\varrho_{ac})^{-1} \circ \text{id}_X}{\longrightarrow} & (\varrho_{ac})^{-1} \circ \text{id}_X \\
\end{array}
\]

(7.37)

To prove this, note that (7.37) determines \(\varrho_{ac} \) on the open subset \(\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c \subseteq \text{Im} \psi_a \cap \text{Im} \psi_c \). Using (6.24)–(6.26) for the \(\Theta^{g,f}_{abc} \) and Lemma 7.41 for the \(K_{abc} \), we prove that these prescribed values for \(\varrho_{ac} \) agree on overlaps between \(\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c \) and \(\text{Im} \psi_a \cap \text{Im} \psi_{b'} \cap \text{Im} \psi_c \), for all \(b, b' \in A \). Thus, as the \(\text{Im} \psi_a \cap \text{Im} \psi_b \cap \text{Im} \psi_c \) for all \(b \in A \) form an open cover of the correct domain \(\text{Im} \psi_a \cap \text{Im} \psi_c \) for \(a, c \in A \), Theorem 6.16 and Definition A.17(iii),(iv) imply that there is a unique 2-morphism \(\varrho_{ac} : (g \circ f)_{ac} \Rightarrow (\text{id}_X)_{ac} \) such that (7.37) commutes for all \(b \in A \).

We can then check that \(\varrho = (\varrho_{ac, a, c} \in A) \) satisfies Definition 6.20(a),(b), by proving that they hold on the restriction of their domains with \(\text{Im} \psi_b \) for each \(b \in A \) using (7.37), (6.24)–(6.26) for the \(\Theta^{g,f}_{abc} \) and Lemma 7.41 for the \(K_{abc} \), and then using Theorem 6.16 and Definition A.17(iii) to deduce that Definition 6.20(a),(b) hold on the correct domains. Therefore \(\varrho : g \circ f \Rightarrow \text{id}_X \) is a 2-morphism of Kuranishi spaces. Similarly, exchanging \(X, X' \) we construct a 2-morphism \(\sigma : f \circ g \Rightarrow \text{id}_{X'} \). Hence \(f : X \to X' \) is an equivalence, and \(X, X' \) are equivalent in the 2-category \(\hat{\text{Kur}} \). This completes the proof of Theorem 7.26.
Chapter 8

(M-)Kuranishi spaces as stacks
Appendix A

Categories and 2-categories

We recall background material on categories, 2-categories, and sheaves and stacks on topological spaces. Some references are MacLane [75] for §A.1, and Borceux [6] §7, Kelly and Street [67], and Behrend et al. [3] App. B for §A.2–§A.4, and Bredon [10], Godement [40], and Hartshorne [43, §II.1] for §A.5.

A.1 Basics of category theory

Here are the basic definitions in category theory, as in MacLane [75, §I].

Definition A.1. A category \mathcal{C} consists of a class of objects $\text{Obj}(\mathcal{C})$, and for all $X,Y \in \text{Obj}(\mathcal{C})$ a set $\text{Hom}(X,Y)$ of morphisms f from X to Y, written $f : X \to Y$, and for all $X,Y \in \text{Obj}(\mathcal{C})$ a composition map $\circ : \text{Hom}(X,Y) \times \text{Hom}(Y,Z) \to \text{Hom}(X,Z)$, written $(f,g) \mapsto g \circ f$. Composition must be associative, that is, if $f : W \to X$, $g : X \to Y$ and $h : Y \to Z$ are morphisms in \mathcal{C} then $(h \circ g) \circ f = h \circ (g \circ f)$. For each $X \in \text{Obj}(\mathcal{C})$ there must exist an identity morphism $\text{id}_X : X \to X$ such that $f \circ \text{id}_X = f = \text{id}_Y \circ f$ for all $f : X \to Y$ in \mathcal{C}.

A morphism $f : X \to Y$ is an isomorphism if there exists $f^{-1} : Y \to X$ with $f^{-1} \circ f = \text{id}_X$ and $f \circ f^{-1} = \text{id}_Y$. A category \mathcal{C} is called a groupoid if every morphism is an isomorphism. In a groupoid \mathcal{C}, for each $X \in \text{Obj}(\mathcal{C})$ the set $\text{Hom}(X,X)$ of morphisms $f : X \to X$ form a group.

A category \mathcal{C} is small if $\text{Obj}(\mathcal{C})$ is a set, rather than a proper class. It is essentially small if the isomorphism classes $\text{Obj}(\mathcal{C})/\cong$ of objects in \mathcal{C} form a set, rather than a proper class.

If \mathcal{C} is a category, the opposite category \mathcal{C}^{op} is \mathcal{C} with the directions of all morphisms reversed. That is, we define $\text{Obj}(\mathcal{C}^{\text{op}}) = \text{Obj}(\mathcal{C})$, and for all $X,Y,Z \in \text{Obj}(\mathcal{C})$ we define $\text{Hom}_{\mathcal{C}^{\text{op}}}(X,Y) = \text{Hom}_{\mathcal{C}}(Y,X)$, and for $f : X \to Y$, $g : Y \to Z$ in \mathcal{C} we define $f \circ_{\mathcal{C}^{\text{op}}} g = g \circ_{\mathcal{C}} f$, and $\text{id}_{\mathcal{C}^{\text{op}}} X = \text{id}_{\mathcal{C}} X$.

Given categories \mathcal{C}, \mathcal{D}, the product category $\mathcal{C} \times \mathcal{D}$ has objects (W,X) in $\text{Obj}(\mathcal{C}) \times \text{Obj}(\mathcal{D})$ and morphisms $f \times g : (W,X) \to (Y,Z)$ when $f : W \to Y$ is a morphism in \mathcal{C} and $g : X \to Z$ is a morphism in \mathcal{D}, in the obvious way.

We call \mathcal{D} a subcategory of \mathcal{C} if $\text{Obj}(\mathcal{D}) \subseteq \text{Obj}(\mathcal{C})$, and $\text{Hom}_\mathcal{D}(X,Y) \subseteq \text{Hom}_\mathcal{C}(X,Y)$ for all $X,Y \in \text{Obj}(\mathcal{D})$, and compositions and identities in \mathcal{C}, \mathcal{D}
agree. We call D a full subcategory if also $\text{Hom}_D(X,Y) = \text{Hom}_C(X,Y)$ for all X,Y in $\text{Obj}(D)$.

Definition A.2. Let C, D be categories. A (covariant) functor $F : C \to D$ gives, for all objects X in C an object $F(X)$ in D, and for all morphisms $f : X \to Y$ in C a morphism $F(f) : F(X) \to F(Y)$ in D, such that $F(g \circ f) = F(g) \circ F(f)$ for all $f : X \to Y, g : Y \to Z$ in C, and $F(\text{id}_X) = \text{id}_{F(X)}$ for all $X \in \text{Obj}(C)$. A **contravariant functor** $F : C \to D$ is a covariant functor $F : C^{\text{op}} \to D$.

Functors compose in the obvious way. Each category C has an obvious identity functor $\text{id}_C : C \to C$ with $\text{id}_C(X) = X$ and $\text{id}_C(f) = f$ for all X,f. A functor $F : C \to D$ is called **full** if the maps $\text{Hom}_C(X,Y) \to \text{Hom}_D(F(X),F(Y))$, $f \mapsto F(f)$ are surjective for all $X,Y \in \text{Obj}(C)$, and **faithful** if the maps $\text{Hom}_C(X,Y) \to \text{Hom}_D(F(X),F(Y))$ are injective for all $X,Y \in \text{Obj}(C)$.

Let C, D be categories and $F,G : C \to D$ be functors. A **natural transformation** $\eta : F \Rightarrow G$ gives, for all objects X in C, a morphism $\eta(X) : F(X) \to G(X)$ in D such that if $f : X \to Y$ is a morphism in C then $\eta(Y) \circ F(f) = G(f) \circ \eta(X)$ as morphisms $F(X) \to G(Y)$ in D. We call η a natural isomorphism if $\eta(X)$ is an isomorphism for all $X \in \text{Obj}(C)$.

A functor $F : C \to D$ is called an equivalent if there exist a functor $G : D \to C$ and natural isomorphisms $\eta : G \circ F \Rightarrow \text{id}_C$ and $\zeta : F \circ G \Rightarrow \text{id}_D$. Then we call C,D equivalent categories.

It is a fundamental principle of category theory that equivalent categories C, D should be thought of as being `the same’, and naturally isomorphic functors $F,G : C \to D$ should be thought of as being `the same’. Note that equivalence of categories C, D is much weaker than strict isomorphism: isomorphism classes of objects in C are naturally in bijection with isomorphism classes of objects in D, but there need be no relation between the sizes of the isomorphism classes, so that C could have many more objects than D, for instance.

Definition A.3. Let C be a category, and $g : X \to Z$, $h : Y \to Z$ be morphisms in C. A **fibre product** of g,h in C is an object W and morphisms $e : W \to X$ and $f : W \to Y$ in C, such that $g \circ e = h \circ f$, with the universal property that if $e' : W' \to X$ and $f' : W' \to Y$ are morphisms in C with $g \circ e' = h \circ f'$ then there is a unique morphism $b : W' \to W$ with $e' = e \circ b$ and $f' = f \circ b$. Then we write $W = X \times_Y Z, h = \pi_Z, f = \pi_X$. The diagram

$$
\begin{array}{ccc}
W & \xrightarrow{e} & Y \\
\downarrow{f} & & \downarrow{h} \\
X & \xrightarrow{g} & Z
\end{array}
$$

is called a **Cartesian square**. Fibre products need not exist, but if they do exist they are unique up to canonical isomorphism in C.

A.2 **Strict and weak 2-categories**

Definition A.4. A **strict 2-category** C consists of a class of objects $\text{Obj}(C)$, for all $X,Y \in \text{Obj}(C)$ an essentially small category $\text{Hom}(X,Y)$, for all X,Y,Z
in \(\text{Obj}(\mathcal{C}) \), a functor \(\mu_{X,Y,Z} : \text{Hom}(X,Y) \times \text{Hom}(Y,Z) \to \text{Hom}(X,Z) \) called composition, and for all \(X \) in \(\text{Obj}(\mathcal{C}) \) an object \(\text{id}_X \) in \(\text{Hom}(X,X) \) called the identity 1-morphism. These must satisfy the associativity property, that
\[
\mu_{W,Y,Z} \circ (\mu_{W,X,Y} \times \text{id}_{\text{Hom}(Y,Z)}) = \mu_{W,X,Z} \circ (\text{id}_{\text{Hom}(W,X)} \times \mu_{X,Y,Z}) \quad (A.2)
\]
as functors \(\text{Hom}(W,X) \times \text{Hom}(X,Y) \times \text{Hom}(Y,Z) \to \text{Hom}(W,Z) \), and the identity property, that
\[
\mu_{X,X,Y}(\text{id}_X, -) = \mu_{X,Y,Y}(-, \text{id}_Y) = \text{id}_{\text{Hom}(X,Y)} \quad (A.3)
\]
as functors \(\text{Hom}(X,Y) \to \text{Hom}(X,Y) \).

Objects \(f \) of \(\text{Hom}(X,Y) \) are called 1-morphisms, written \(f : X \to Y \). For 1-morphisms \(f, g : X \to Y \), morphisms \(\eta \) in \(\text{Hom}_{\text{Hom}(X,Y)}(f, g) \) are called 2-morphisms, written \(\eta : f \Rightarrow g \). Thus, a 2-category has objects, \(X \), and two kinds of morphisms: 1-morphisms \(f : X \to Y \) between objects, and 2-morphisms \(\eta : f \Rightarrow g \) between 1-morphisms.

A weak 2-category, or bicategory, is like a strict 2-category, except that the equations of functors \((A.2), (A.3) \) are required to hold only up to specified natural isomorphisms. That is, a weak 2-category \(\mathcal{C} \) consists of data \(\text{Obj}(\mathcal{C}), \text{Hom}(X,Y), \mu_{X,Y,Z}, \text{id}_X \) as above, but in place of \((A.2), (A.3) \), a natural isomorphism of functors
\[
\alpha : \mu_{W,Y,Z} \circ (\mu_{W,X,Y} \times \text{id}_{\text{Hom}(Y,Z)}) \Rightarrow \mu_{W,X,Z} \circ (\text{id}_{\text{Hom}(W,X)} \times \mu_{X,Y,Z}), \quad (A.4)
\]
and in place of \((A.3), (A.4) \), natural isomorphisms
\[
\beta : \mu_{X,X,Y}(\text{id}_X, -) \Rightarrow \text{id}_{\text{Hom}(X,Y)}, \quad \gamma : \mu_{X,Y,Y}(-, \text{id}_Y) \Rightarrow \text{id}_{\text{Hom}(X,Y)} \quad (A.5)
\]
These \(\alpha, \beta, \gamma \) must satisfy identities which we give below in \((A.9), (A.12) \).

A strict 2-category \(\mathcal{C} \) can be regarded as an example of a weak 2-category, in which the natural isomorphisms \(\alpha, \beta, \gamma \) in \((A.4), (A.5) \) are the identities.

We now unpack Definition \(A.4 \) making it more explicit.

There are three kinds of composition in a 2-category, satisfying various associativity relations. If \(f : X \to Y \) and \(g : Y \to Z \) are 1-morphisms then \(\mu_{X,Y,Z}(f,g) \) is the composition of 1-morphisms, written \(g \circ f : X \to Z \). If \(f, g, h : X \to Y \) are 1-morphisms and \(\eta : f \Rightarrow g, \zeta : g \Rightarrow h \) are 2-morphisms then composition of \(\eta, \zeta \) in \(\text{Hom}(X,Y) \) gives the vertical composition of 2-morphisms, written \(\zeta \circ \eta : f \Rightarrow h \), as a diagram

\[
\begin{array}{c}
\text{Diagram 1}\n\end{array}
\]

Vertical composition is associative.

If \(f, \hat{f} : X \to Y \) and \(g, \hat{g} : Y \to Z \) are 1-morphisms and \(\eta : f \Rightarrow \hat{f}, \zeta : g \Rightarrow \hat{g} \) are 2-morphisms then \(\mu_{X,Y,Z}(\eta, \zeta) \) is the horizontal composition of 2-morphisms, written \(\zeta \circ \eta : g \circ f \Rightarrow \hat{g} \circ \hat{f} \), as a diagram

\[
\begin{array}{c}
\text{Diagram 2}\n\end{array}
\]
As $\mu_{X,Y,Z}$ is a functor, these satisfy compatibility of vertical and horizontal composition: given a diagram of 1- and 2-morphisms

As α is a natural isomorphism, given 1-morphisms $e, \hat{e} : W \to X$, $f, \hat{f} : X \to Y$, $g, \hat{g} : Y \to Z$ and 2-morphisms $\epsilon : e \Rightarrow \hat{e}, \eta : f \Rightarrow \hat{f}, \zeta : g \Rightarrow \hat{g}$ in \mathcal{C}, the following diagram of 2-morphisms must commute:

\[
\begin{array}{ccc}
(g \circ f) \circ e & \overset{\alpha_{g,f,e}}{\Rightarrow} & g \circ (f \circ e) \\
\downarrow (\zeta \circ \eta) \circ e & & \downarrow (\zeta \circ (\eta \circ e)) \\
(g \circ (f \circ e)) \circ d & \overset{\alpha_{g,f,e} \circ \alpha_{e,d}}{\Rightarrow} & g \circ ((f \circ e) \circ d) \\
(\hat{g} \circ (\hat{f} \circ e) \circ d & \overset{\alpha_{g,f,e} \circ \alpha_{e,d}}{\Rightarrow} & \hat{g} \circ ((\hat{f} \circ e) \circ d)).
\end{array}
\]
As \(\beta, \gamma \) are natural isomorphisms, if \(\eta : f \Rightarrow \hat{f} \) is a 2-morphism we must have

\[
\eta \circ \beta_f = \beta_{f'} \circ (\eta \ast \mathrm{id}_{\mathrm{id}_X}) : f \circ \mathrm{id}_X \Rightarrow \hat{f},
\]
\[
\eta \circ \gamma_f = \gamma_{f'} \circ (\mathrm{id}_{\mathrm{id}_Y} \ast \eta) : \mathrm{id}_Y \circ f \Rightarrow \hat{f}. \tag{A.11}
\]

The \(\beta_f, \gamma_f \) must satisfy the identity coherence axiom: if \(g : Y \to Z \) is another 1-morphism, then the following diagram of 2-morphisms must commute:

\[
\begin{array}{ccc}
(g \circ \mathrm{id}_Y) \circ f & \overset{\beta_{g \circ \mathrm{id}_Y} \circ f}{\Rightarrow} & g \circ f \\
\beta_{g \circ \mathrm{id}_Y} \circ f & \downarrow & \downarrow \beta_{g \circ \mathrm{id}_Y} \circ f \\
\end{array}
\]

\[
\begin{array}{ccc}
g \circ (\mathrm{id}_Y \circ f) & \overset{\gamma_{g \circ f}}{\Rightarrow} & g \circ f \\
g \circ (\mathrm{id}_Y \circ f) & \downarrow & \downarrow \gamma_{g \circ f} \\
\end{array} \tag{A.12}
\]

A 2-category \(\mathcal{C} \) is called a \((2, 1)\)-category if all 2-morphisms in \(\mathcal{C} \) are invertible under vertical composition.

A basic example of a strict 2-category is the 2-category of categories \(\mathbf{Cat} \), with objects small categories \(\mathcal{C} \), 1-morphisms functors \(F : \mathcal{C} \to \mathcal{D} \), and 2-morphisms natural transformations \(\eta : F \Rightarrow G \) for functors \(F, G : \mathcal{C} \to \mathcal{D} \). Orbifolds naturally form a 2-category (strict or weak, depending on the definition), and so do stacks in algebraic geometry.

In a 2-category \(\mathcal{C} \), there are three notions of when objects \(X, Y \) in \(\mathcal{C} \) are ‘the same’: equality \(X = Y \), and 1-isomorphism, that is we have 1-morphisms \(f : X \to Y \), \(g : Y \to X \) with \(g \circ f = \mathrm{id}_X \) and \(f \circ g = \mathrm{id}_Y \), and equivalence, that is, we have 1-morphisms \(f : X \to Y \), \(g : Y \to X \) and 2-isomorphisms \(\eta : g \circ f \Rightarrow \mathrm{id}_X \) and \(\zeta : f \circ g \Rightarrow \mathrm{id}_Y \). Usually equivalence is the correct notion. By [3, Prop. B.8], we can also choose \(\eta, \zeta \) to satisfy some extra identities:

Proposition A.5. Let \(\mathcal{C} \) be a weak 2-category, and \(f : X \to Y \) be an equivalence in \(\mathcal{C} \). Then there exist a 1-morphism \(g : Y \to X \) and 2-isomorphisms \(\eta : g \circ f \Rightarrow \mathrm{id}_X \) and \(\zeta : f \circ g \Rightarrow \mathrm{id}_Y \) with \(\zeta \ast \mathrm{id}_f = (\mathrm{id}_f \ast \eta) \circ \alpha_{f,g,f} \) as 2-isomorphisms \((g \circ f) \circ f = f, \) and \(\eta \ast \mathrm{id}_g = (\mathrm{id}_g \ast \zeta) \circ \alpha_{g,f,g} \) as 2-isomorphisms \((g \circ f) \circ g \Rightarrow g \).

The next elementary lemma about 2-categories is easy to prove.

Lemma A.6. Suppose \(f : X \to Y \) and \(g, h : Y \to Z \) are 1-morphisms in a (strict or weak) 2-category \(\mathcal{C} \), with \(f \) an equivalence. Then the map \(\eta \mapsto \eta \ast \mathrm{id}_f = \zeta \) induces a 1-1 correspondence between 2-morphisms \(\eta : g \Rightarrow h \) and 2-morphisms \(\zeta : g \circ f \Rightarrow h \circ f \) in \(\mathcal{C} \).

Definition A.7. Let \(\mathcal{C} \) be a 2-category. When we say that objects \(X, Y \) in \(\mathcal{C} \) are canonically equivalent, we mean that there is a nonempty distinguished class \(\mathcal{E} \) of equivalences \(f : X \to Y \) in \(\mathcal{C} \), and given any \(f, g \) in \(\mathcal{E} \) there is a 2-isomorphism \(\eta : f \Rightarrow g \). Often there is a distinguished choice of such \(\eta \).

When we say that an object \(X \) in \(\mathcal{C} \) is unique up to canonical equivalence, we mean that there is a nonempty class \(\mathcal{O} \) of distinguished choices \(X, X', X'', \ldots \) for \(X \), and given any \(X, X' \) in \(\mathcal{O} \) there is a nonempty distinguished class \(\mathcal{E}_{X,X'} \) of equivalences \(f : X \to X' \), and given any \(f, g \) in \(\mathcal{E}_{X,X'} \) there is a 2-isomorphism \(\eta : f \Rightarrow g \), such that \(\mathrm{id}_X : X \to X \) lies in \(\mathcal{E}_{X,X} \), and if \(f : X \to X' \) lies in \(\mathcal{E}_{X,X'} \), and \(f' : X' \to X'' \) in \(\mathcal{E}_{X',X''} \) then \(f' \circ f : X \to X'' \) lies in \(\mathcal{E}_{X,X''} \).
Commulative diagrams in 2-categories should in general only commute up to (specified) 2-isomorphisms, rather than strictly. A simple example of a commutative diagram in a 2-category \mathcal{C} is

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{g} & & \downarrow{h} \\
\downarrow{h} & & \downarrow{g} \\
Z & \xrightarrow{g} & Z,
\end{array}
$$

which means that X, Y, Z are objects of \mathcal{C}, $f : X \to Y$, $g : Y \to Z$ and $h : X \to Z$ are 1-morphisms in \mathcal{C}, and $\eta : g \circ f \Rightarrow h$ is a 2-isomorphism.

Let \mathcal{C} be a 2-category. The homotopy category $\text{Ho}(\mathcal{C})$ of \mathcal{C} is the category whose objects are objects of \mathcal{C}, and whose morphisms $[f] : X \to Y$ are 2-isomorphism classes $[f]$ of 1-morphisms $f : X \to Y$ in \mathcal{C}. The condition in Definition A.4 that $\text{Hom}(X, Y)$ is essentially small ensures that $\text{Hom}_{\text{Ho}(\mathcal{C})}(X, Y)$ is a set, rather than a proper class. Then equivalences in \mathcal{C} become isomorphisms in $\text{Ho}(\mathcal{C})$. 2-commutative diagrams in \mathcal{C} become commutative diagrams in $\text{Ho}(\mathcal{C})$, and so on.

A.3 2-functors, 2-natural transformations, modifications

Next we discuss 2-functors between 2-categories, following Borceux [6, §7.2, §7.5] and Behrend et al. [3, §B.4].

Definition A.8. Let \mathcal{C}, \mathcal{D} be strict 2-categories. A strict 2-functor $F : \mathcal{C} \to \mathcal{D}$ assigns an object $F(X)$ in \mathcal{D} for each object X in \mathcal{C}, a 1-morphism $F(f) : F(X) \to F(Y)$ in \mathcal{D} for each 1-morphism $f : X \to Y$ in \mathcal{C}, and a 2-morphism $F(\eta) : F(f) \Rightarrow F(g)$ in \mathcal{D} for each 2-morphism $\eta : f \Rightarrow g$ in \mathcal{C}, such that F preserves all the structures on \mathcal{C}, \mathcal{D}, that is,

\[
F(g \circ f) = F(g) \circ F(f), \quad F(\text{id}_X) = \text{id}_{F(X)}, \quad F(\zeta * \eta) = F(\zeta) * F(\eta), \quad (A.13)
\]

\[
F(\zeta \circ \eta) = F(\zeta) \circ F(\eta), \quad F(\text{id}_f) = \text{id}_{F(f)}. \quad (A.14)
\]

Now let \mathcal{C}, \mathcal{D} be weak 2-categories. Then strict 2-functors $F : \mathcal{C} \to \mathcal{D}$ are not well-behaved. To fix this, we need to relax (A.13) to hold only up to specified 2-isomorphisms. A weak 2-functor (or pseudofunctor) $F : \mathcal{C} \to \mathcal{D}$ assigns an object $F(X)$ in \mathcal{D} for each object X in \mathcal{C}, a 1-morphism $F(f) : F(X) \to F(Y)$ in \mathcal{D} for each 1-morphism $f : X \to Y$ in \mathcal{C}, a 2-morphism $F(\eta) : F(f) \Rightarrow F(g)$ in \mathcal{D} for each 2-morphism $\eta : f \Rightarrow g$ in \mathcal{C}, a 2-isomorphism $F_{g,f} : F(g) \circ F(f) \Rightarrow F(g \circ f)$ in \mathcal{D} for all 1-morphisms $f : X \to Y$, $g : Y \to Z$ in \mathcal{C}, and a 2-isomorphism $F_X : F(\text{id}_X) \Rightarrow \text{id}_{F(X)}$ in \mathcal{D} for all objects X in \mathcal{C}, such that (A.14) holds, and for all $e : W \to X$, $f : X \to Y$, $g : Y \to Z$ in \mathcal{C} the following diagram of 2-isomorphisms commutes in \mathcal{D}:

$$
\begin{array}{cccc}
(F(g) \circ F(f)) \circ F(e) & \xrightarrow{F_{g,f} \circ \text{id}_{F(e)}} & F(g \circ f) \circ F(e) & \xrightarrow{F_{g \circ f,e}} & F((g \circ f) \circ e) \\
\downarrow{\alpha_{F(g),F(f),F(e)}} & & \downarrow{F_{g,f,e}} & & \downarrow{F_{(g \circ f),e}} \\
F(g) \circ (F(f) \circ F(e)) & \xrightarrow{\text{id}_{F(g)} \circ F_{f,e}} & F(g) \circ F(f \circ e) & \xrightarrow{F_{g,f \circ e}} & F(g \circ (f \circ e))
\end{array}
$$

226
and for all 1-morphisms \(f : X \to Y \) in \(\mathcal{C} \), the following commute in \(\mathcal{D} \):

\[
\begin{align*}
F(f) \circ F(\text{id}_X) & \xrightarrow{\beta_{F(f),\text{id}_X}} F(f \circ \text{id}_X) \\
\text{id}_{F(f)} \circ F_X & \xrightarrow{\beta_{F(f),F}} F(\beta_{f}) \\
F(f) \circ \text{id}_F(X) & \xrightarrow{\beta_{F(f)}} F(f),
\end{align*}
\]

and if \(f, \hat{f} : X \to Y \) and \(g, \hat{g} : Y \to Z \) are 1-morphisms and \(\eta : f \Rightarrow \hat{f} \), \(\zeta : g \Rightarrow \hat{g} \)
are 2-morphisms in \(\mathcal{C} \) then the following commutes in \(\mathcal{D} \):

\[
\begin{align*}
F(g) \circ F(f) & \xrightarrow{F(\gamma_{f,g})} F(f \circ g) \\
\text{id}_{F(f)} \circ F(\eta) & \xrightarrow{\gamma_{f}} F(\eta) \\
F(\hat{g}) \circ F(\hat{f}) & \xrightarrow{\gamma_{\hat{f},\hat{g}}} F(\hat{g} \circ \hat{f}).
\end{align*}
\]

There are obvious notions of composition \(G \circ F \) of strict and weak 2-functors
\(F : \mathcal{C} \to \mathcal{D}, G : \mathcal{D} \to \mathcal{E} \), identity 2-functors \(\text{id}_\mathcal{C} \), and so on.

If \(\mathcal{C}, \mathcal{D} \) are strict 2-categories, then a strict 2-functor \(F : \mathcal{C} \to \mathcal{D} \) can be
made into a weak 2-functor by taking all \(F_{g,f}, F_X \) to be identity 2-morphisms.

Here is the 2-category analogue of natural transformations of functors:

Definition A.9. Let \(\mathcal{C}, \mathcal{D} \) be weak 2-categories and \(F, G : \mathcal{C} \to \mathcal{D} \) be weak
2-functors. A weak 2-natural transformation (or pseudo-natural transformation)
\(\Theta : F \Rightarrow G \) assigns a 1-morphism \(\Theta(X) : F(X) \to G(X) \) in \(\mathcal{D} \) for all objects
\(X \) in \(\mathcal{C} \) and a 2-isomorphism \(\Theta(f) : \Theta(Y) \circ F(f) \Rightarrow G(f) \circ \Theta(X) \) in \(\mathcal{D} \) for all
1-morphisms \(f : X \to Y \) in \(\mathcal{C} \), such that if \(\eta : f \Rightarrow g \) is a 2-morphism in \(\mathcal{C} \) then

\[
(G(\eta) \circ \text{id}_{\Theta(X)}) \circ \Theta(f) = \Theta(g) \circ (\text{id}_{\Theta(Y)} \circ F(\eta)) : \Theta(Y) \circ F(f) \Rightarrow G(g) \circ \Theta(X),
\]

and if \(f : X \to Y, g : Y \to Z \) are 1-morphisms in \(\mathcal{C} \) then the following diagram
of 2-isomorphisms commutes in \(\mathcal{D} \):

\[
\begin{align*}
(\Theta(Z) \circ F(g)) \circ F(f) & \xrightarrow{\alpha_{G(f),\Theta(g)}(X,Y)} \Theta(Z) \circ (F(g) \circ F(f)) \\
\Theta(g) \circ F(f) & \xrightarrow{\text{id}_{G(f)} \circ \Theta(g)} G(f) \circ \Theta(X) \\
\Theta(Z) \circ (G(g) \circ \Theta(f)) & \xrightarrow{\Theta(g) \circ \Theta(f)} G(g) \circ (G(f) \circ \Theta(X))
\end{align*}
\]

and if \(X \in \mathcal{C} \) then the following diagram of 2-isomorphisms commutes in \(\mathcal{D} \):

\[
\begin{align*}
\Theta(X) \circ F(\text{id}_X) & \xrightarrow{\Theta(\text{id}_X)} G(\text{id}_X) \circ \Theta(X) \\
\text{id}_{G(\text{id}_X)} \circ \Theta(X) & \xrightarrow{\text{id}_{G(\text{id}_X)} \circ \Theta(X)} G(\text{id}_X) \circ \Theta(X) \\
\Theta(X) \circ \text{id}_F(X) & \xrightarrow{\beta_{\Theta(X),\text{id}_F(X)}} \Theta(X).
\end{align*}
\]

227
Just as the ‘category of (small) categories’ is actually a (strict) 2-category, so the ‘category of (weak) 2-categories’ is actually a 3-category (which we will not define). The 3-morphisms in this 3-category, morphisms between weak 2-natural transformations, are called modifications.

Definition A.10. Let \mathcal{C}, \mathcal{D} be weak 2-categories, $F, G : \mathcal{C} \rightarrow \mathcal{D}$ be weak 2-functors, and $\Theta, \Phi : F \Rightarrow G$ be weak 2-natural transformations. A modification $\aleph : F \Rightarrow G$ assigns a 2-isomorphism $\aleph(X) : \Theta(X) \Rightarrow \Phi(X)$ in \mathcal{D} for all objects X in \mathcal{C}, such that for all 1-morphisms $f : X \rightarrow Y$ in \mathcal{C} we have

$$
(id_{G(f)} * \aleph(X)) * \Theta(f) = \Phi(f) * (\aleph(Y) * id_{F(f)}) : \Theta(Y) \circ F(f) \Longrightarrow \Phi(X) \circ G(Y).
$$

There are obvious notions of composition of modifications, identity modifications, and so on.

A weak 2-natural transformation $\Theta : F \Rightarrow G$ is called an equivalence of 2-functors if there exist a weak 2-natural transformation $\Phi : G \Rightarrow F$ and modifications $\aleph : \Phi \circ \Theta \Rightarrow id_F$ and $\beth : \Theta \circ \Phi \Rightarrow id_G$. Equivalence of 2-functors is a good notion of when weak 2-functors $F, G : \mathcal{C} \rightarrow \mathcal{D}$ are ‘the same’.

A weak 2-functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is called an equivalence of weak 2-categories if there exists a weak 2-functor $G : \mathcal{D} \rightarrow \mathcal{C}$ and equivalences of 2-functors $\Theta : G \circ F \Rightarrow id_\mathcal{C}$, $\Phi : F \circ G \Rightarrow id_\mathcal{D}$. Equivalence of weak 2-categories is a good notion of when weak 2-categories \mathcal{C}, \mathcal{D} are ‘the same’.

Here are some well-known facts about 2-categories:

(i) Every weak 2-category \mathcal{C} is equivalent as a weak 2-category to a strict 2-category \mathcal{C}', that is, weak 2-categories can always be strictified.

(ii) If \mathcal{C}, \mathcal{D} are strict 2-categories, and $F : \mathcal{C} \rightarrow \mathcal{D}$ is a weak 2-functor, it may not be true that F is equivalent to a strict 2-functor $F' : \mathcal{C} \rightarrow \mathcal{D}$ (though this does hold if $\mathcal{D} = \mathbf{Cat}$, the strict 2-category of categories). That is, weak 2-functors cannot necessarily be strictified.

Even if one is working with strict 2-categories, weak 2-functors are often the correct notion of functor between them.

(iii) A weak 2-functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of weak 2-categories, as in Definition A.10, if and only if for all objects X, Y in \mathcal{C}, the functor $F_{X,Y} : \text{Hom}_\mathcal{C}(X,Y) \rightarrow \text{Hom}_\mathcal{D}(F(X), F(Y))$ is an equivalence of categories, and the map induced by F from equivalence classes of objects in \mathcal{C} to equivalence classes of objects in \mathcal{D} is surjective (and hence a bijection).

A.4 Fibre products in 2-categories

Fibre products in ordinary categories were defined in Definition A.3. We now define fibre products in 2-categories, following Behrend et al. [3, Def. B.13].
Definition A.11. Let \(C \) be a strict 2-category and \(g : X \to Z \), \(h : Y \to Z \) be 1-morphisms in \(C \). A fibre product in \(C \) consists of an object \(W \), 1-morphisms \(e : W \to X \) and \(f : W \to Y \) and a 2-isomorphism \(\eta : g \circ e \Rightarrow h \circ f \) in \(C \), so that we have a 2-commutative diagram

\[
\begin{array}{ccc}
W & \xrightarrow{e} & X \\
\downarrow e & & \downarrow \eta \\
Y & \xrightarrow{f} & Z \\
\downarrow \eta & & \downarrow g \\
& & h
\end{array}
\]

with the following universal property: suppose \(e' : W' \to X \) and \(f' : W' \to Y \) are 1-morphisms and \(\eta' : g \circ e' \Rightarrow h \circ f' \) is a 2-isomorphism in \(C \). Then there should exist a 1-morphism \(b : W' \to W \) and 2-isomorphisms \(\zeta : e \circ b \Rightarrow e' \), \(\theta : f \circ b \Rightarrow f' \) such that the following diagram of 2-isomorphisms commutes:

\[
\begin{array}{ccc}
g \circ e \circ b & \xrightarrow{id_b \circ \eta} & h \circ f \circ b \\
\downarrow \eta & & \downarrow \eta' \\
g \circ e' & \xrightarrow{\eta'} & h \circ f'
\end{array}
\]

Furthermore, if \(\tilde{b}, \tilde{\zeta}, \tilde{\theta} \) are alternative choices of \(b, \zeta, \theta \) then there should exist a unique 2-isomorphism \(\epsilon : b \Rightarrow \tilde{b} \) with

\[
\zeta = \tilde{\zeta} \circ (id_e * \epsilon) \quad \text{and} \quad \theta = \tilde{\theta} \circ (id_f * \epsilon).
\]

We call such a fibre product diagram \((A.15)\) a 2-Cartesian square. We often write \(W = X \times_Z Y \) or \(W = X \times_{g,Z,h} Y \), and call \(W \) the fibre product.

If a fibre product \(X \times_Y Y \) in \(C \) exists then it is unique up to canonical equivalence in \(C \). If \(C \) is an ordinary category, that is, all 2-morphisms are identities \(id_f : f \Rightarrow f \), this definition of fibre products in \(C \) is equivalent to that in Definition \([A.3] \).

If instead \(C \) is a weak 2-category, we must replace \((A.16)\) by

\[
\begin{array}{ccc}
g \circ e \circ b & \xrightarrow{id_b \circ \eta} & (h \circ f) \circ b \\
\downarrow \alpha_{b,e,h} & & \downarrow \alpha_{b,f,h} \\
g \circ (e \circ b) & \xrightarrow{id_b \circ \zeta} & g \circ e' \\
\downarrow \eta & & \downarrow \eta' \\
& & h \circ f'
\end{array}
\]

Orbifolds, and stacks in algebraic geometry, form 2-categories, and Definition \([A.11] \) is the right way to define fibre products of orbifolds or stacks.

A.5 Sheaves on topological spaces

Next we discuss sheaves. These are a fundamental tool in Algebraic Geometry, as in Hartshorne [43, §II.1], for instance. Although Differential Geometers may not be familiar with sheaves, nonetheless they are everywhere in Differential Geometry, and one uses properties of sheaves all the time without noticing.
For something to be a sheaf on a space X just means that it is defined locally on X. For example, if X is a manifold then smooth functions $f : X \to \mathbb{R}$ form a sheaf \mathcal{O}_X of \mathbb{R}-algebras on X, since the condition that a function $f : X \to \mathbb{R}$ is smooth is a local condition near each $x \in X$. Some good references on sheaves are Bredon [10], Godement [40], and Hartshorne [43, §II.1].

Definition A.12. Let X be a topological space. A presheaf of sets \mathcal{E} on X consists of the data of a set $\mathcal{E}(S)$ for every open set $S \subseteq X$, and a map $\rho_{ST} : \mathcal{E}(S) \to \mathcal{E}(T)$ called the restriction map for every inclusion $T \subseteq S \subseteq X$ of open sets, satisfying the conditions that:

- (i) $\mathcal{E}(\emptyset) = *$ is a point.
- (ii) $\rho_{SS} = \text{id}_{\mathcal{E}(S)} : \mathcal{E}(S) \to \mathcal{E}(S)$ for all open $S \subseteq X$; and
- (iii) $\rho_{SU} = \rho_{TU} \circ \rho_{ST} : \mathcal{E}(S) \to \mathcal{E}(U)$ for all open $U \subseteq T \subseteq S \subseteq X$.

A presheaf of sets \mathcal{E} on X is called a sheaf if it also satisfies

- (iv) If $S \subseteq X$ is open, $\{T_a : a \in A\}$ is an open cover of S, and $s, t \in \mathcal{E}(S)$ have $\rho_{ST_a}(s) = \rho_{ST_a}(t)$ in $\mathcal{E}(T_a)$ for all $a \in A$, then $s = t$ in $\mathcal{E}(S)$; and
- (v) If $S \subseteq X$ is open, $\{T_a : a \in A\}$ is an open cover of S, and we are given elements $s_a \in \mathcal{E}(T_a)$ for all $a \in A$ such that $\rho_{T_a(T_a \cap T_b)}(s_a) = \rho_{T_b(T_a \cap T_b)}(s_b)$ in $\mathcal{E}(T_a \cap T_b)$ for all $a, b \in A$, then there exists $s \in \mathcal{E}(S)$ with $\rho_{ST_a}(s) = s_a$ for all $a \in A$. This s is unique by (iv).

Suppose \mathcal{E}, \mathcal{F} are presheaves or sheaves of sets on X. A morphism $\phi : \mathcal{E} \to \mathcal{F}$ consists of a map $\phi(S) : \mathcal{E}(S) \to \mathcal{F}(S)$ for all open $S \subseteq X$, such that the following diagram commutes for all open $T \subseteq S \subseteq X$

\[
\begin{array}{ccc}
\mathcal{E}(S) & \xrightarrow{\phi(S)} & \mathcal{F}(S) \\
\downarrow{\rho_{ST}} & & \downarrow{\rho'_{ST}} \\
\mathcal{E}(T) & \xrightarrow{\phi(T)} & \mathcal{F}(T),
\end{array}
\]

where ρ_{ST} is the restriction map for \mathcal{E}, and ρ'_{ST} the restriction map for \mathcal{F}.

We have defined sheaves of sets, but one can also define sheaves of abelian groups, rings, modules, . . . , by replacing sets by abelian groups, . . . , throughout.

If \mathcal{E} is a sheaf of sets, abelian groups, . . . on X then we write $\Gamma(\mathcal{E})$ for $\mathcal{E}(X)$, the global sections of \mathcal{E}, as a set, abelian group, . . .

Definition A.13. Let \mathcal{E} be a presheaf of sets on X. For each $x \in X$, the stalk \mathcal{E}_x is the direct limit of the sets $\mathcal{E}(U)$ for all $x \in U \subseteq X$, via the restriction maps ρ_{UY}. A morphism $\phi : \mathcal{E} \to \mathcal{F}$ induces morphisms $\phi_x : \mathcal{E}_x \to \mathcal{F}_x$ for all $x \in X$. If \mathcal{E}, \mathcal{F} are sheaves then ϕ is an isomorphism if and only if ϕ_x is an isomorphism for all $x \in X$.

230
Definition A.14. Let \mathcal{E} be a presheaf of sets on X. A sheafification of \mathcal{E} is a sheaf of sets $\hat{\mathcal{E}}$ on X and a morphism of presheaves $\pi: \mathcal{E} \to \hat{\mathcal{E}}$, such that whenever \mathcal{F} is a sheaf of sets on X and $\phi: \mathcal{E} \to \mathcal{F}$ is a morphism, there is a unique morphism $\hat{\phi}: \hat{\mathcal{E}} \to \mathcal{F}$ with $\hat{\phi} = \phi \circ \pi$. As in [13, Prop. II.1.2], a sheafification always exists, and is unique up to canonical isomorphism; one can be constructed explicitly using the stalks \mathcal{E}_x of \mathcal{E}.

Next we discuss pushforwards and pullbacks of sheaves by continuous maps.

Definition A.15. Let $f: X \to Y$ be a continuous map of topological spaces, and \mathcal{E} a sheaf of sets on X. Define the pushforward (direct image) sheaf $f_*(\mathcal{E})$ on Y by $(f_*(\mathcal{E}))(U) = \mathcal{E}(f^{-1}(U))$ for all open $U \subseteq Y$, with restriction maps $\rho^U_V = \rho_{f^{-1}(U)f^{-1}(V)}: (f_*(\mathcal{E}))(U) \to (f_*(\mathcal{E}))(V)$ for all open $V \subseteq U \subseteq Y$. Then $f_*(\mathcal{E})$ is a sheaf of sets on Y.

If $\phi: \mathcal{E} \to \mathcal{F}$ is a morphism of sheaves, we define a morphism $f_*(\phi): f_*(\mathcal{E}) \to f_*(\mathcal{F})$ of sheaves on Y by $(f_*(\phi))(u) = \phi(f^{-1}(U))$ for all open $U \subseteq Y$. For continuous maps $f: X \to Y, g: Y \to Z$ we have $(g \circ f)_* = g_* \circ f_*$.

Definition A.16. Let $f: X \to Y$ be a continuous map of topological spaces, and \mathcal{E} a sheaf of sets on X. Define a presheaf $\mathcal{P}f^{-1}(\mathcal{E})$ on X by $(\mathcal{P}f^{-1}(\mathcal{E}))(U) = \lim_{A \supseteq f(U)} \mathcal{E}(A)$ for open $A \subseteq X$, where the direct limit is taken over all open $A \subseteq Y$ containing $f(U)$, using the restriction maps ρ_{AB} in \mathcal{E}. For open $V \subseteq U \subseteq X$, define $\rho^U_V: (\mathcal{P}f^{-1}(\mathcal{E}))(U) \to (\mathcal{P}f^{-1}(\mathcal{E}))(V)$ as the direct limit of the morphisms ρ_{AB} in \mathcal{E} for $B \subseteq A \subseteq Y$ with $f(U) \subseteq A$ and $f(V) \subseteq B$. Then we define the pullback (inverse image) $f^{-1}(\mathcal{E})$ to be the sheafification of the presheaf $\mathcal{P}f^{-1}(\mathcal{E})$. It is unique up to canonical isomorphism.

If $\phi: \mathcal{E} \to \mathcal{F}$ is a morphism of sheaves on Y, one can define a pullback morphism $f^{-1}(\phi): f^{-1}(\mathcal{E}) \to f^{-1}(\mathcal{F})$ of sheaves on X. As in [43, Ex. II.1.18], pushforward f_* is right adjoint to f^{-1}. That is, there are natural bijections

$$\text{Hom}_X(f^{-1}(*), \mathcal{F}) \cong \text{Hom}_Y(\mathcal{E}, f_*(\mathcal{F})) \quad (A.18)$$

for all sheaves \mathcal{E} on Y and \mathcal{F} on X, with functorial properties.

A.6 Stacks on topological spaces

In [A.5] we explained sheaves on topological spaces. We will also need a 2-category analogue of sheaves, called stacks on a topological space.

Definition A.17. Let X be a topological space. A prestack (or prestack in groupoids, or 2-presheaf) \mathcal{E} on X, consists of the data of a groupoid $\mathcal{E}(S)$ for every open set $S \subseteq X$, and a functor $\rho_{ST}: \mathcal{E}(S) \to \mathcal{E}(T)$ called the restriction map for every inclusion $T \subseteq S \subseteq X$ of open sets, and a natural isomorphism of functors $\eta_{STU}: \rho_{TU} \circ \rho_{ST} \Rightarrow \rho_{SU}$ for all inclusions $U \subseteq T \subseteq S \subseteq X$ of open sets, satisfying the conditions that:

(i) $\rho_{SS} = \text{id}_{\mathcal{E}(S)}: \mathcal{E}(S) \to \mathcal{E}(S)$ for all open $S \subseteq X$, and $\eta_{SST} = \eta_{STT} = \text{id}_{\rho_{ST}}$ for all open $T \subseteq S \subseteq X$; and
(ii) $\eta_{\text{SU}V \circ (\text{id}_{\rho_{\text{TV}}} \circ \eta_{\text{ST}V})} = \eta_{\text{ST}V \circ (\eta_{\text{TV}} \circ \text{id}_{\rho_{\text{ST}}})} : \rho_{\text{UV}} \circ \rho_{\text{TV}} \circ \rho_{\text{ST}} \Rightarrow \rho_{\text{SV}}$

for all open $V \subseteq U \subseteq T \subseteq S \subseteq X$.

A prestack \mathcal{E} on X is called a stack (or stack in groupoids, or 2-sheaf) on X if whenever $S \subseteq X$ is open and $\{T_a : a \in A\}$ is an open cover of S, and we write $T_{ab} = T_a \cap T_b$ and $T_{abc} = T_a \cap T_b \cap T_c$ for $a, b, c \in A$, then:

(iii) If $\epsilon, \zeta : E \rightarrow F$ are morphisms in $\mathcal{E}(S)$ and $\rho_{\text{ST}_a}(\epsilon) = \rho_{\text{ST}_a}(\zeta) : \rho_{\text{ST}_a}(E) \rightarrow \rho_{\text{ST}_a}(F)$ in $\mathcal{E}(T_a)$ for all $a \in A$, then $\epsilon = \zeta$.

(iv) If E, F are objects of $\mathcal{E}(S)$ and $\epsilon_a : \rho_{\text{ST}_a}(E) \rightarrow \rho_{\text{ST}_a}(F)$ are morphisms in $\mathcal{E}(T_a)$ for all $a \in A$ with

$$
\eta_{\text{ST}_a T_{ab}}(F) \circ \rho_{\text{T}_a T_{ab}}(\epsilon_a) \circ \eta_{\text{ST}_a T_{ab}}(E)^{-1} = \eta_{\text{ST}_a T_{ab}}(F) \circ \rho_{\text{T}_a T_{ab}}(\epsilon_b) \circ \eta_{\text{ST}_a T_{ab}}(E)^{-1}
$$

in $\mathcal{E}(T_{ab})$ for all $a, b \in A$, then there exists $\epsilon : E \rightarrow F$ in $\mathcal{E}(S)$ (necessarily unique by (iii)) with $\rho_{\text{ST}_a}(\epsilon) = \epsilon_a$ for all $a \in A$.

(v) If $E_a \in \mathcal{E}(T_a)$ for $a \in A$ and $\epsilon_{ab} : \rho_{\text{T}_a T_{ab}}(E_a) \rightarrow \rho_{\text{T}_b T_{ab}}(E_b)$ are morphisms in $\mathcal{E}(T_{ab})$ for all $a, b \in A$ satisfying

$$
\eta_{\text{T}_a T_{bc}}(E_b) \circ \rho_{\text{ST}_b T_{abc}}(\epsilon_{bac}) \circ \eta_{\text{T}_b T_{abc}}(E_b)^{-1} = \eta_{\text{T}_a T_{bc}}(E_b) \circ \rho_{\text{ST}_b T_{abc}}(\epsilon_{abc}) \circ \eta_{\text{T}_b T_{abc}}(E_b)^{-1}
$$

for all $a, b, c \in A$, then there exist an object E in $\mathcal{E}(S)$ and morphisms $\zeta_a : E_a \rightarrow \rho_{\text{ST}_a}(E)$ for $a \in A$ such that for all $a, b \in A$ we have

$$
\eta_{\text{ST}_a T_{ab}}(E) \circ \rho_{\text{T}_a T_{ab}}(\zeta_a) = \eta_{\text{ST}_a T_{ab}}(E) \circ \rho_{\text{T}_b T_{ab}}(\zeta_b) \circ \epsilon_{ab}.
$$

If $\tilde{E}, \tilde{\zeta}_a$ are alternative choices then (iii),(iv) imply there is a unique isomorphism $\theta : E \rightarrow \tilde{E}$ in $\mathcal{E}(S)$ with $\rho_{\text{ST}_a}(\theta) = \tilde{\zeta}_a \circ \zeta_a^{-1}$ for all $a \in A$.

Remark A.18. (a) Actually the term ‘stack’ is used in Algebraic Geometry with a more general meaning, namely ‘stack on a site’, as in Olsson [93] for instance. Here a ‘site’ \mathcal{S} is a generalization of a topological space. When \mathcal{S} is the site of open subsets of a topological space X with the usual open covers, we recover Definition A.17. When \mathcal{S} is the site Sch_K of schemes over a field K with the étale or smooth topology, we obtain Deligne–Mumford or Artin K-stacks in Algebraic Geometry. There are several equivalent ways to define stacks; we have chosen the definition which most obviously generalizes sheaves in [A.5].

(b) In the examples of stacks on topological spaces that will be important to us, we will have $\rho_{\text{T}_U} \circ \rho_{\text{ST}} = \rho_{\text{SU}}$ and $\eta_{\text{ST}V} = \text{id}_{\rho_{\text{SU}}}$ for all open $U \subseteq T \subseteq S \subseteq X$. So (ii) is automatic, and all the $\eta_{-}(\cdots)$ terms in (iv),(v) can be omitted.
Appendix B

Differential geometry in \(\mathbf{\dot{M}}\text{an} \) and \(\mathbf{\dot{M}}\text{an}^c \)

Suppose for the whole of \(\text{§B.1–§B.6} \) that \(\mathbf{\dot{M}}\text{an} \) satisfies Assumptions \(\text{3.1–3.7} \) in \(\text{§3.1} \). Using the assumptions, we will define some notation and prove some results on differential geometry in \(\mathbf{\dot{M}}\text{an} \). This is standard material for classical manifolds \(\mathbf{M}\text{an} \), the main point is that it also works for any category \(\mathbf{\dot{M}}\text{an} \) satisfying Assumptions \(\text{3.1–3.7} \). In \(\text{§B.7} \) we explain how to compare differential geometry in two categories \(\mathbf{\dot{M}}\text{an}, \mathbf{\dot{M}}\text{an} \) satisfying Assumptions \(\text{3.1–3.7} \) related by a functor \(F : \mathbf{\dot{M}}\text{an} \to \mathbf{\dot{M}}\text{an} \). Sections \(\text{B.1–B.7} \) are summarized in \(\text{§3.3} \).

Section \(\text{B.8} \) explains how to extend \(\text{§B.1–§B.7} \) to a category of manifolds with corners \(\mathbf{\dot{M}}\text{an}^c \) satisfying Assumption \(\text{3.22} \) in \(\text{§3.4} \). It is summarized in \(\text{§3.4.3} \). Section \(\text{B.9} \) proves Theorem \(\text{3.17} \).

B.1 Functions on manifolds, and the structure sheaf

B.1.1 The \(\mathbb{R}\)-algebra \(C^\infty(X) \)

Definition B.1. For each \(X \in \mathbf{\dot{M}}\text{an} \), write \(C^\infty(X) \) for the set of morphisms \(a : X \to \mathbb{R} \) in \(\mathbf{\dot{M}}\text{an} \). Faithfulness of \(F^{\text{Top}}_{\mathbf{\dot{M}}\text{an}} \) in Assumption \(\text{3.2(a)} \) implies that we may identify \(C^\infty(X) \) with a subset of the set \(C^0(X_{\text{top}}) \) of continuous maps \(a_{\text{top}} : X_{\text{top}} \to \mathbb{R} \). We will show that \(C^\infty(X) \) has a natural commutative \(\mathbb{R}\)-algebra structure, a subalgebra of the obvious \(\mathbb{R}\)-algebra structure on \(C^0(X_{\text{top}}) \).

Given \(a, b \in C^\infty(X) \) and \(\lambda \in \mathbb{R} \) we define \(a + b, a \cdot b, \lambda \cdot a \in C^\infty(X) \) and the elements \(0, 1 \in C^\infty(X) \) by the following commutative diagrams in \(\mathbf{\dot{M}}\text{an} \):

\[
\begin{array}{ccc}
X & \xrightarrow{a+b} & \mathbb{R} \\
\downarrow{(a,b)} & & \downarrow{(x,y) \mapsto x+y} \\
\mathbb{R}^2 & \xrightarrow{x+y} & \mathbb{R} \\
\end{array}
\]

\[
\begin{array}{ccc}
X & \xrightarrow{a \cdot b} & \mathbb{R} \\
\downarrow{(a,b)} & & \downarrow{(x,y) \mapsto xy} \\
\mathbb{R}^2 & \xrightarrow{xy} & \mathbb{R} \\
\end{array}
\]

\[
\begin{array}{ccc}
X & \xrightarrow{\lambda \cdot a} & \mathbb{R} \\
\downarrow{\pi} & & \downarrow{z \mapsto \lambda z} \\
\mathbb{R} & \xrightarrow{\lambda} & \mathbb{R} \\
\end{array}
\]

\[
\begin{array}{ccc}
X & \xrightarrow{0} & \mathbb{R} \\
\downarrow{\pi} & & \downarrow{0} \\
\ast & \xrightarrow{0} & \ast \\
\end{array}
\]

\[
\begin{array}{ccc}
X & \xrightarrow{1} & \mathbb{R} \\
\downarrow{\pi} & & \downarrow{1} \\
\ast & \xrightarrow{1} & \ast \\
\end{array}
\]

233
Here \((x, y) \mapsto x + y\) and \((x, y) \mapsto xy\) mapping \(\mathbb{R}^2 \to \mathbb{R}\) are morphisms in \(\text{Man} \subseteq \text{Man}\), and similarly for \(x \mapsto \lambda x\) and \(0, 1 : * \to \mathbb{R}\). The map \(\pi : X \to *\) is as in Assumption 3.1(c).

One can now show that these operations make \(C^\infty(X)\) into a commutative \(\mathbb{R}\)-algebra by straightforward diagram-chasing. For example, to show that multiplication is associative, consider the commutative diagram:

\[
\begin{array}{ccc}
\mathbb{R}^3 & \xrightarrow{(a,b,c)} & \mathbb{R}^2 \\
| & | & | \\
\{a,b,c\} & \xrightarrow{(x,y,z) \mapsto (xy,z)} & \{a\} \xrightarrow{(ab,c)} \mathbb{R}^2 \\
| & | & | \\
\{x,y,z\} & \xrightarrow{(x,y) \mapsto xy} & \{x\} \xrightarrow{(ab,c)} \mathbb{R}^2 \\
| & | & | \\
\{x,y\} & \xrightarrow{(xy) \mapsto xy} & \{x\} \xrightarrow{(ab,c)} \mathbb{R}.
\end{array}
\]

If \(f : X \to Y\) is a morphism in \(\text{Man}\), define \(f^* : C^\infty(Y) \to C^\infty(X)\) by \(f^* : a \mapsto a \circ f\). Then \(f\) is an \(\mathbb{R}\)-algebra morphism. If \(g : Y \to Z\) is another morphism in \(\text{Man}\) then \((g \circ f)^* = f^* \circ g^* : C^\infty(Z) \to C^\infty(X)\).

B.1.2 Making \(C^\infty(X)\) into a \(C^\infty\)-ring

The subject of \(C^\infty\)-algebraic geometry treats differential-geometric problems using the machinery of algebraic geometry, including sheaves, schemes and stacks. Some references are the author [56] and Dubuc [13]. A key idea is \(C^\infty\)-rings, which are a generalization of \(\mathbb{R}\)-algebras with a richer algebraic structure, such that if \(X\) is a smooth manifold then \(C^\infty(X)\) is naturally a \(C^\infty\)-ring.

Definition B.2. A \(C^\infty\)-ring is a set \(\mathcal{C}\) together with operations

\[
\Phi_f : \mathcal{C}^n = \mathcal{C} \times \cdots \times \mathcal{C} \longrightarrow \mathcal{C}
\]

for all \(n \geq 0\) and smooth maps \(f : \mathbb{R}^n \to \mathbb{R}\), where by convention when \(n = 0\) we define \(\mathcal{C}^0\) to be the single point \(\{0\}\). These operations must satisfy the following relations: suppose \(m, n \geq 0\), and \(f_1 : \mathbb{R}^m \to \mathbb{R}\) for \(i = 1, \ldots, m\) and \(g : \mathbb{R}^n \to \mathbb{R}\) are smooth functions. Define a smooth function \(h : \mathbb{R}^n \to \mathbb{R}\) by

\[
h(x_1, \ldots, x_n) = g(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)),
\]

for all \((x_1, \ldots, x_n) \in \mathbb{R}^n\). Then for all \((c_1, \ldots, c_n) \in \mathcal{C}^n\) we have

\[
\Phi_h(c_1, \ldots, c_n) = \Phi_g(\Phi_{f_1}(c_1, \ldots, c_n), \ldots, \Phi_{f_m}(c_1, \ldots, c_n)).
\]

We also require that for all \(1 \leq j \leq n\), defining \(\pi_j : \mathbb{R}^n \to \mathbb{R}\) by \(\pi_j : (x_1, \ldots, x_n) \mapsto x_j\), we have \(\Phi_{\pi_j}(c_1, \ldots, c_n) = c_j\) for all \((c_1, \ldots, c_n) \in \mathcal{C}^n\).

Usually we refer to \(\mathcal{C}\) as the \(C^\infty\)-ring, leaving the operations \(\Phi_f\) implicit.

A morphism between \(C^\infty\)-rings \((\mathcal{C}, (\Phi_f)_{f : \mathbb{R}^n \to \mathbb{R}^m})\) and \((\mathcal{D}, (\Phi_f)_{f : \mathbb{R}^n \to \mathbb{R}^m})\) is a map \(\phi : \mathcal{C} \to \mathcal{D}\) such that \(\Phi_f(\phi(c_1), \ldots, \phi(c_n)) = \phi(\Phi_f(c_1), \ldots, c_n)\) for all smooth \(f : \mathbb{R}^n \to \mathbb{R}\) and \(c_1, \ldots, c_n \in \mathcal{C}\). We will write \(\text{C}^\infty\text{Rings}\) for the category of \(C^\infty\)-rings. As in [56] 2.2, every \(C^\infty\)-ring \(\mathcal{C}\) has the structure of a

234
commutative \mathbb{R}-algebra, in which addition and multiplication are the C^∞-ring operations Φ_f, Φ_g for $f, g : \mathbb{R}^2 \to \mathbb{R}$ mapping $f(x,y) = x + y$ and $g(x,y) = xy$.

A module M over a C^∞-ring \mathcal{C} is a module over \mathcal{C} as an \mathbb{R}-algebra.

As in \[13, 58, 65\], in C^∞-algebraic geometry one studies C^∞-schemes and C^∞-stacks, which are versions of schemes and stacks in Algebraic Geometry in which rings are replaced by C^∞-rings. C^∞-algebraic geometry has been used as the basis for Derived Differential Geometry, the study of ‘derived smooth manifolds’ and ‘derived smooth orbifolds’, by defining derived manifolds (or orbifolds) to be special examples of ‘derived C^∞-schemes’ or ‘derived Deligne–Mumford C^∞-stacks’. See Spivak [163], Borisov and Noel \[7, 8\] and the author \[57, 58, 61\] for different notions of derived manifolds and derived orbifolds.

Our Kuranishi spaces are an alternative approach to Derived Differential Geometry, and the 2-categories \mathbf{mKur}, \mathbf{Kur} of (m-)Kuranishi spaces defined in Chapters 4 and 6 using $\mathbf{Man} = \mathbf{Man}$ are equivalent to the 2-categories \mathbf{dMan}, \mathbf{dOrb} of ‘d-manifolds’ and ‘d-orbifolds’ defined in \[57, 58, 61\] using C^∞-algebraic geometry.

Definition B.3. Let $X \in \mathbf{Man}$, and $C^\infty(X)$ be as in \[B.1.1\]. Then we can give $C^\infty(X)$ the structure of a C^∞-ring, such that if $f : \mathbb{R}^n \to \mathbb{R}$ is smooth (and hence a morphism in \mathbf{Man}) and $a_1, \ldots, a_n \in C^\infty(X)$ then $\Phi_f(a_1, \ldots, a_n) \in C^\infty(X)$ is defined by the commutative diagram in \mathbf{Man}:

$$
\begin{array}{ccc}
X & \xrightarrow{\Phi_f(a_1, \ldots, a_n)} & \mathbb{R}^n \\
& \searrow & \downarrow f \\
& (a_1, \ldots, a_n) & \\
\end{array}
$$

The method of proof in \[B.1.1\] that $C^\infty(X)$ is an \mathbb{R}-algebra now also shows that $C^\infty(X)$ is a C^∞-ring. The associated \mathbb{R}-algebra structure is that in \[B.1.1\].

B.1.3 The structure sheaf \mathcal{O}_X

Definition B.4. Let $X \in \mathbf{Man}$. Then for each open $U' \subseteq X_{\text{top}}$ Assumption \[3.2\] (d) gives a unique open submanifold $i : U \hookrightarrow X$ with $i_{\text{top}}(U_{\text{top}}) = U'$. Set $\mathcal{O}_X(U') = C^\infty(U)$, where $C^\infty(U)$ is regarded either as an \mathbb{R}-algebra as in \[B.1.1\] or as a C^∞-ring as in \[B.1.2\].

For open $V' \subseteq U' \subseteq X_{\text{top}}$ we have open submanifolds $i : U \hookrightarrow X$, $j : V \hookrightarrow X$ with $\mathcal{O}_X(U') = C^\infty(U)$ and $\mathcal{O}_X(V') = C^\infty(V)$. Since $V_{\text{top}} \subseteq U_{\text{top}}$ Assumption \[3.2\] (d) gives a unique $k : V \to U$ in \mathbf{Man} with $i \circ k = j$. Define $\rho_{U'V'} : \mathcal{O}_X(U') \to \mathcal{O}_X(V')$ by $\rho_{U'V'} : a \mapsto a \circ k$, for $a : U \to \mathbb{R}$ in \mathbf{Man}.

It is now easy to check that $\rho_{U'V'}$ is a morphism of \mathbb{R}-algebras, and of C^∞-rings, and so the data $\mathcal{O}_X(U')$, $\rho_{U'V'}$ defines a sheaf of \mathbb{R}-algebras or C^∞-rings \mathcal{O}_X on X_{top}, as in Definition \[A.1.2\] (i)–(v), where the sheaf axiom (iv) follows from faithfulness in Assumption \[3.2\] (a), and (v) from Assumption \[3.3\] (a). We call \mathcal{O}_X the structure sheaf of X.

If $f : X \to Y$ is a morphism in \mathbf{Man}, then $(f_{\text{top}})_* (\mathcal{O}_X)$ and \mathcal{O}_Y are sheaves of \mathbb{R}-algebras or C^∞-rings on Y. Define a morphism $f_* : \mathcal{O}_Y \to (f_{\text{top}})_* (\mathcal{O}_X)$ of
sheaves of \(\mathbb{R} \)-algebras or \(C^\infty \)-rings on \(Y_{\text{top}} \) as follows. Let \(j : V \hookrightarrow Y \) be an open submanifold, and \(i : U \hookrightarrow X \) the open submanifold with \(U_{\text{top}} = f^{-1}_i(V_{\text{top}}) \subseteq X_{\text{top}} \), and \(f' : U \rightarrow V \) the unique morphism with \(j \circ f' = f \circ i : U \rightarrow Y \) from Assumption 3.2(d). Set

\[
f_t(V_{\text{top}}) = f'^{-1}_t : \mathcal{O}_Y(V_{\text{top}}) = C^\infty(V) \rightarrow C^\infty(U) = \mathcal{O}_X(U_{\text{top}})
= \mathcal{O}_X(f^{-1}_i(V_{\text{top}})) = (f_{\text{top}})_* (\mathcal{O}_X(V_{\text{top}})). \tag{B.1}
\]

These \(f_t(V_{\text{top}}) \) for all open \(j : V \hookrightarrow Y \) form a sheaf morphism \(f_t : \mathcal{O}_Y \rightarrow (f_{\text{top}})_* (\mathcal{O}_X) \). Let \(f^\sharp : f^{-1}_t (\mathcal{O}_Y) \rightarrow \mathcal{O}_X \) be the adjoint morphism of sheaves of \(\mathbb{R} \)-algebras or \(C^\infty \)-rings on \(X \) under (A.18). Then \((f_{\text{top}}, f^\sharp) : (X_{\text{top}}, \mathcal{O}_X) \rightarrow (Y_{\text{top}}, \mathcal{O}_Y)\) is a morphism of locally ringed spaces, or locally \(C^\infty \)-ringed spaces.

Now results in \cite{65} §4.8 give sufficient criteria for when a locally \(C^\infty \)-ringed space \((X, \mathcal{O}_X)\) is an affine \(C^\infty \)-scheme, and Assumptions 3.2(b) and 3.6 imply that these criteria hold. We then easily deduce:

Proposition B.5. (a) Let \(X \) be an object of \(\text{Man} \), so that \(X_{\text{top}} \) is a topological space and \(\mathcal{O}_X \) a sheaf of \(C^\infty \)-rings on \(X_{\text{top}} \). Then \((X_{\text{top}}, \mathcal{O}_X)\) is an affine \(C^\infty \)-scheme in the sense of \cite{13 56 65}.

(b) Let \(f : X \rightarrow Y \) be a morphism in \(\text{Man} \). Then \((f_{\text{top}}, f^\sharp) : (X_{\text{top}}, \mathcal{O}_X) \rightarrow (Y_{\text{top}}, \mathcal{O}_Y)\) is a morphism of affine \(C^\infty \)-schemes in the sense of \cite{13 56 65}.

(c) Combining (a), (b) we may define a functor \(F^{\text{C}^\infty\text{Sch}}_{\text{Man}} : \text{Man} \rightarrow \text{C}^\infty\text{Sch}^{\text{aff}} \) to the category of affine \(C^\infty \)-schemes, mapping \(X \mapsto (X_{\text{top}}, \mathcal{O}_X) \) on objects and \(f \mapsto (f_{\text{top}}, f^\sharp) \) on morphisms. This functor is faithful, but need not be full.

This will help us to relate the (m-)Kuranishi spaces of Chapters 4 and 6 to the d-manifolds and d-orbifolds of \cite{57 58 61}.

B.1.4 Partitions of unity

Definition B.6. Let \(X \in \text{Man} \). Then as in \cite{B.1.1} we have an \(\mathbb{R} \)-algebra \(C^\infty(X) \), which as in \cite{B.1.3} is the global sections \(C^\infty(X) = \mathcal{O}_X(X_{\text{top}}) \) of a sheaf of \(\mathbb{R} \)-algebras \(\mathcal{O}_X \) on \(X_{\text{top}} \). Hence by sheaf theory each \(\eta \in C^\infty(X) \) has a support \(\text{supp} \eta \subseteq X_{\text{top}} \), a closed subset of \(X_{\text{top}} \), such that \(X_{\text{top}} \setminus \text{supp} f \) is the largest open set \(U' \subseteq X_{\text{top}} \) with \(\eta_{|U'} = 0 \) in \(\mathcal{O}_X(U') \).

Consider formal sums \(\sum_{a \in A} \eta_a \) with \(\eta_a \in C^\infty(X) \) for all \(a \) in a possibly infinite indexing set \(A \). Such a sum is called **locally finite** if we can cover \(X_{\text{top}} \) by open \(U' \subseteq X_{\text{top}} \) such that \(U' \cap \text{supp} \eta_a = \emptyset \) for all but finitely many \(a \in A \).

By sheaf theory, for a locally finite sum \(\sum_{a \in A} \eta_a \) there is a unique \(\eta \in C^\infty(X) \) with \(\sum_{a \in A} \eta_a |_{U'} = \eta |_{U'} \) whenever \(U' \subseteq X_{\text{top}} \) is open with \(\eta_{|U'} = 0 \) for all but finitely many \(a \in A \), so that \(\sum_{a \in A} \eta_a |_{U'} \) makes sense. We write \(\sum_{a \in A} \eta_a = \eta \).

Let \(\{ U'_a : a \in A \} \) be an open cover of \(X_{\text{top}} \). A **partition of unity** \(\{ \eta_a : a \in A \} \) on \(X \) subordinate to \(\{ U'_a : a \in A \} \) is \(\eta_a \in C^\infty(X) \) with \(\text{supp} \eta_a \subseteq U'_a \) for all \(a \in A \), with \(\eta_{a, \text{top}}(x) > 0 \) in \(\mathbb{R} \) for all \(x \in X_{\text{top}} \), such that \(\sum_{a \in A} \eta_a \) is locally finite with \(\sum_{a \in A} \eta_a = 1 \) in \(C^\infty(X) \).
The next proposition can be proved following the standard method for constructing partitions of unity on smooth manifolds, as in Lang [70, §II.3] or Lee [71, Th. 2.23], or alternatively follows from Proposition B.3 and results on partitions of unity on \(C^\infty \)-schemes in [65, §4.7]. The important points are:

- By Assumption 3.2(b), \(X_{\text{top}} \) is Hausdorff, locally compact, and second countable, which is used in [70, Th. II.1] and [71, Th. 1.15].
- Let \(U' \subseteq X_{\text{top}} \) be open and \(x \in U' \). Assumption 3.6 gives \(a : X \to \mathbb{R} \) in \(\mathcal{M} \) with \(a_{\text{top}}(x) > 0 \) and \(a_{\text{top}}|_{X_{\text{top}} \setminus U'} \leq 0 \). Define \(b : \mathbb{R} \to \mathbb{R} \) by \(b(x) = e^{-1/x} \) for \(x > 0 \) and \(b(x) = 0 \) for \(x \leq 0 \). Then \(b \) is a morphism in \(\mathcal{M} \subseteq \mathcal{M} \) by Assumption 3.4, so \(b \circ a : X \to \mathbb{R} \) is a morphism in \(\mathcal{M} \). We have \((b \circ a)_{\text{top}}(x) > 0 \), and \((b \circ a)_{\text{top}}(x') \geq 0 \) for all \(x' \in X_{\text{top}} \), and \(\text{supp}(b \circ a) \subseteq U' \). Thus we can construct ‘bump functions’ on \(X \).

This and Proposition B.5 are the main places we use Assumption 3.6.

Proposition B.7. Let \(X \) be an object of \(\mathcal{M} \), and \(\{U'_a : a \in A\} \) be an open cover of \(X_{\text{top}} \). Then there exists a partition of unity \(\{\eta_a : a \in A\} \) on \(X \) subordinate to \(\{U'_a : a \in A\} \).

Therefore \(O_X \) is a fine sheaf, and hence a soft sheaf, as in Godement [40, §II.3.7] or Bredon [10, §II.9], and all \(O_X \)-modules \(\mathcal{E} \) are also fine and soft.

B.2 Vector bundles

B.2.1 Vector bundles and sections

Definition B.8. Let \(X \) be an object in \(\mathcal{M} \). A vector bundle \(E \to X \) of rank \(m \) is a morphism \(\pi : E \to X \) in \(\mathcal{M} \), such that for each \(x \in X_{\text{top}} \), the topological fibre \(E_{x,\text{top}} := \pi_{\text{top}}^{-1}(x) \subseteq E_{\text{top}} \) is given the structure of a real vector space of dimension \(m \), and \(X \) may be covered by open submanifolds \(U \to X \), such that if \(j : E_U \hookrightarrow E \) is the open submanifold corresponding to \(\pi_{\text{top}}^{-1}(U_{\text{top}}) \subseteq E_{\text{top}} \), and \(k : E_U \to U \) is unique with \(i \circ k = \pi \circ j : E_U \to X \) by Assumption 3.2(d), then there is an isomorphism \(l : U \times \mathbb{R}^m \to E_U \) in \(\mathcal{M} \) making the following diagram commute:

\[
\begin{array}{ccc}
U \times \mathbb{R}^m & \xrightarrow{l} & E_U \\
\downarrow \pi_U & & \downarrow j \\
U & \xrightarrow{k} & X
\end{array}
\]

and \(l_{\text{top}} \) identifies the vector space structure on \(\{x\} \times \mathbb{R}^m \cong \mathbb{R}^m \) with that on \(E_{x,\text{top}} \), for each \(x \in U'_{\text{top}} \).

The vector space structure on \(E_{x,\text{top}} \) may be encoded in morphisms \(\mu_+, \mu_-, z \) in \(\mathcal{M} \). Addition ‘+’ in \(E_{x,\text{top}} \) corresponds to a morphism \(\mu_+ : E \times_{\pi_X,\pi} E \to E \), where the fibre product exists in \(\mathcal{M} \), with \(\mu_+,(v, w) = v + w \) for all \(x \in X_{\text{top}} \) and \(v, w \in E_{x,\text{top}} \). Multiplication by real numbers ‘·’ corresponds
to a morphism $\mu : \mathbb{R} \times E \to E$, with $\mu_{\cdot \top}(\lambda, v) = \lambda \cdot v$ for all $\lambda \in \mathbb{R}, x \in X_{\top}$ and $v \in E_{x,\top}$. The zero element $0 \in E_{x,\top}$ comes from $0_E : X \to E$ with $0_{E,\top}(x) = 0 \in E_{x,\top}$ for all $x \in X_{\top}$.

A section of E is a morphism $s : X \to E$ in \Man with $\pi \circ s = \text{id}_X$. Write $\Gamma^\infty(E)$ for the set of sections of E. For $C^\infty(X)$ as in B.1.1, if $a \in C^\infty(X)$ and $s, t \in \Gamma^\infty(E)$, we define $a \cdot s, s + t \in \Gamma^\infty(E)$ by the commutative diagrams

$$
\begin{array}{c}
\begin{array}{ccc}
X & \xrightarrow{\mu} & E \\
\downarrow{(a,s)} & & \downarrow{a} \\
\mathbb{R} \times E & \xrightarrow{\mu} & E,
\end{array} \\
\begin{array}{ccc}
X & \xrightarrow{\pi} & \mathbb{R} \times E \\
\downarrow{(a,s)} & & \downarrow{a} \\
\mathbb{R} \times E & \xrightarrow{\phi} & E
\end{array}
\end{array}
$$

where the morphism u exists by the universal property of $E \times_X E$.

At each point $x \in X_{\top}$ we have

$$(a \cdot s)_{\top}(x) = a_{\top}(x) \cdot s_{\top}(x), \quad (s + t)_{\top}(x) = s_{\top}(x) + t_{\top}(x),$$

where on the right hand sides we use operations $\cdot, +$ in the \mathbb{R}-vector space $E_{x,\top}$. Thus for $a, b \in C^\infty(X)$ and $s, t, u \in \Gamma^\infty(E)$ we have

$$[a \cdot (b \cdot s)]_{\top} = [(a \cdot b) \cdot s]_{\top}, \quad [s + t + u]_{\top} = [s + t]_{\top} + [s + u]_{\top} + [t + u]_{\top}$$

in maps $X_{\top} \to E_{\top}$, by identities in $E_{x,\top}$ for each $x \in X_{\top}$.

Faithfulness in Assumption 3.2(a) implies the corresponding identities in \Man. Therefore $\Gamma^\infty(E)$ is a $C^\infty(X)$-module, and hence an \mathbb{R}-vector space. We will write $0_E : X \to E$ for the zero section, the element $0 \in \Gamma^\infty(E)$.

If $E, F \to X$ are vector bundles, a morphism of vector bundles $\theta : E \to F$ is a morphism $\theta : E \to F$ in \Man in a commutative diagram

$$
\begin{array}{ccc}
E & \xrightarrow{\theta} & F \\
\downarrow{\pi} & & \downarrow{\pi} \\
X & \xrightarrow{\pi} & \mathbb{R} \times E \\
\end{array}
$$

such that $\theta_{\top}|_{E_{x,\top}} : E_{x,\top} \to F_{x,\top}$ is a linear map for all $x \in X_{\top}$. We write $\text{Hom}(E, F)$ for the set of vector bundle morphisms $\theta : E \to F$. As for $\Gamma^\infty(E), \text{Hom}(E, F)$ is naturally a $C^\infty(X)$-module, and hence an \mathbb{R}-vector space.

If $\theta : E \to F$ is a vector bundle morphism and $s \in \Gamma^\infty(E)$ then $\theta \circ s \in \Gamma^\infty(F)$.

The usual operations on vector bundles and sections in differential geometry also work for vector bundles in \Man, so for instance if $E, F \to X$ are vector bundles we can define vector bundles $E^\ast \to X$, $E \oplus F \to X$, $E \otimes F \to X$, $\Lambda^k E \to X$, and so on, and if $f : X \to Y$ is a morphism in \Man and $G \to Y$ is a vector bundle we can define a pullback vector bundle $f^\ast(G) \to X$. To construct $E^\ast, E \oplus F, \ldots$ as objects of \Man, we build them using Assumptions 3.3(e) and 3.3(b) over an open cover $\{U_a : a \in A\}$ of X with $E, F \to X$ trivial over each U_a, by gluing together $U_a \times (\mathbb{R}^m)^\ast, U_a \times (\mathbb{R}^m \oplus \mathbb{R}^n), \ldots$ for all $a \in A$.

238
B.2.2 The sheaf of sections of a vector bundle

Definition B.9. Let X be an object in Man, and $E \to X$ be a vector bundle of rank r. Then for each open $U' \subseteq X$, Assumption 5.6 (d) gives an open submanifold $i : U \hookrightarrow X$ with $U_{\text{top}} = U'$. Let $E|_{U'} = i^*(E)$ as a vector bundle over U, and write $\mathcal{E}(U') = \Gamma^\infty(E|_{U})$, considered as a module over $\mathcal{O}_X(U') = C^\infty(U)$. For open $V' \subseteq U'$, we have open submanifolds $i : U \hookrightarrow X$, $j : V \hookrightarrow X$ with $\mathcal{O}_X(U') = C^\infty(U)$ and $\mathcal{O}_X(V') = C^\infty(V)$. Since $V_{\text{top}} \subseteq U_{\text{top}}$ Assumption 5.6 (d) gives a unique $k : V \to U$ in Man with $i \circ k = j : V \to X$. Define $\rho_{V'U'} : \mathcal{E}(U') \to \mathcal{E}(V')$ by $\rho_{V'U'} : s \mapsto k^*(s) = s|_V$. Then as for \mathcal{O}_X in B.1.3 this defines a sheaf \mathcal{E} of \mathcal{O}_X-modules on X_{top}, which is locally free of rank r.

For brevity, sheaves of \mathcal{O}_X-modules will just be called \mathcal{O}_X-modules.

As for vector bundles in algebraic geometry, working with vector bundles $E, F \to X$ is equivalent to working with the corresponding \mathcal{O}_X-modules \mathcal{E}, \mathcal{F}, and one can easily translate between the two languages. In particular:

- There is a 1-1 correspondence, up to canonical isomorphism, between vector bundles $E \to X$ of rank r and locally free \mathcal{O}_X-modules \mathcal{E} of rank r.
- If $E, F \to X$ are vector bundles, and \mathcal{E}, \mathcal{F} the corresponding \mathcal{O}_X-modules, there is a natural identification $\text{Hom}(E, F) \cong \text{Hom}_{\mathcal{O}_X\text{-mod}}(\mathcal{E}, \mathcal{F})$ between vector bundle morphisms $\theta : E \to F$ and \mathcal{O}_X-module morphisms $\Theta : \mathcal{E} \to \mathcal{F}$. These identifications preserve composition of morphisms.
- If $f : X \to Y$ is a morphism in Man and $E \to Y$ is a vector bundle, with \mathcal{E} the corresponding \mathcal{O}_Y-module, then the vector bundle $f^*(E) \to X$ corresponds to the \mathcal{O}_X-module $f^*_\text{top}(\mathcal{E}) \otimes_{f^*_\text{top}(\mathcal{O}_Y)} \mathcal{O}_X$, using the morphism $f^* : f^*_\text{top}(\mathcal{O}_Y) \to \mathcal{O}_X$ of sheaves of \mathcal{R}-algebras on X_{top} from B.1.3.

As in 65 §5, a module over a C^∞-ring is simply a module over the associated \mathcal{R}-algebra. So for sheaves of \mathcal{O}_X-modules, it makes no difference whether we consider \mathcal{O}_X in B.1.3 to be a sheaf of \mathcal{R}-algebras or a sheaf of C^∞-rings.

B.3 The cotangent sheaf, and connections

B.3.1 The cotangent sheaf T^*X

In B.1.2, B.1.3 we showed that if X is an object of Man then $(X_{\text{top}}, \mathcal{O}_X)$ is an affine \mathcal{C}-scheme in the sense of 5.5, 65. As in 65 §5.6, C^∞-schemes have a good notion of cotangent sheaf, which we will use as a substitute for the cotangent bundle T^*X of a classical manifold X. The next two definitions are taken from 65 §5.2 & §5.6.

Definition B.10. Suppose \mathcal{E} is a C^∞-ring, as in Definition B.2, and M a \mathcal{E}-module. A C^∞-derivation is an \mathcal{R}-linear map $d : \mathcal{E} \to M$ such that whenever $f : \mathcal{R}^n \to \mathcal{R}$ is a smooth map and $c_1, \ldots, c_n \in \mathcal{E}$, we have

$$d\Phi_f(c_1, \ldots, c_n) = \sum_{i=1}^n \Phi_{\frac{\partial f}{\partial x_i}} (c_1, \ldots, c_n) \cdot dc_i.$$

(2)
Note that d is not a morphism of \mathcal{C}-modules. We call such a pair M,d a cotangent module for \mathcal{C} if it has the universal property that for any C^∞-derivation $d' : \mathcal{C} \to M'$, there exists a unique morphism of \mathcal{C}-modules $\lambda : M \to M'$ with $d' = \lambda \circ d$.

There is a natural construction for a cotangent module: we take M to be the quotient of the free \mathcal{C}-module with basis of symbols dc for $c \in \mathcal{C}$ by the \mathcal{C}-submodule spanned by all expressions of the form $d\Phi(c_1, \ldots, c_n) - \sum_{i=1}^n \Phi(c_1, \ldots, c_{i-1}, \partial c_i, c_{i+1}, \ldots, c_n) \cdot dc_i$ for $f : \mathbb{R}^n \to \mathbb{R}$ smooth and $c_1, \ldots, c_n \in \mathcal{C}$. Thus cotangent modules exist, and are unique up to unique isomorphism. When we speak of ‘the’ cotangent module, we mean that constructed above. We write $d\varepsilon : \mathcal{C} \to \Omega_\varepsilon$ for the cotangent module of \mathcal{C}.

Let \mathcal{C}, \mathcal{D} be C^∞-rings with cotangent modules $\Omega_\varepsilon, d\varepsilon, \Omega_\delta, d\delta$, and $\phi : \mathcal{C} \to \mathcal{D}$ be a morphism of C^∞-rings. Then we may regard Ω_δ as a \mathcal{C}-module, and $d_\delta \circ \phi : \mathcal{C} \to \Omega_\delta$ as a C^∞-derivation. Thus by the universal property of Ω_ε, there exists a unique morphism of \mathcal{C}-modules $\Omega_\varepsilon \to \Omega_\delta$ with $d_\delta \circ \phi = \Omega_\phi \circ d\varepsilon$. If $\phi : \mathcal{C} \to \mathcal{D}$, $\psi : \mathcal{D} \to \mathcal{E}$ are morphisms of C^∞-rings then $\psi \circ \phi \circ d\varepsilon = \Omega_\psi \circ \Omega_\phi \circ d\varepsilon$.

Definition B.11. Let X be an object in Man, so that $(X_{\text{top}}, \mathcal{O}_X)$ is an affine C^∞-scheme as in [B.1.3]. Define $\mathcal{P}T^*X$ to associate to each open $U \subseteq X_{\text{top}}$ the cotangent module $\Omega_{\mathcal{O}_X(U)}$ of Definition [B.10], regarded as a module over the C^∞-ring $\mathcal{O}_X(U)$, and to each inclusion of open sets $V \subseteq U \subseteq X_{\text{top}}$ the morphism of $\mathcal{O}_X(U)$-modules $\Omega_{\mathcal{O}_X(U)} : \Omega_{\mathcal{O}_X(U)} \to \Omega_{\mathcal{O}_X(V)}$ associated to the morphism of C^∞-rings $\rho_{UV} : \mathcal{O}_X(U) \to \mathcal{O}_X(V)$. Then the following commutes:

$$
\begin{array}{c}
\mathcal{O}_X(U) \times \Omega_{\mathcal{O}_X(U)} \xrightarrow{\mu_{\mathcal{O}_X(U)}} \Omega_{\mathcal{O}_X(U)} \\
\rho_{UV} \times \Omega_{\mathcal{O}_X(U)} \xrightarrow{\mu_{\mathcal{O}_X(U)}} \Omega_{\mathcal{O}_X(U)} \\
\end{array}
$$

where $\mu_{\mathcal{O}_X(U)}, \mu_{\mathcal{O}_X(V)}$ are the module actions of $\mathcal{O}_X(U), \mathcal{O}_X(V)$ on $\Omega_{\mathcal{O}_X(U)}, \Omega_{\mathcal{O}_X(V)}$. Using this and functoriality of cotangent modules $\Omega_{\phi \circ \phi} = \Omega_\phi \circ \Omega_\phi$ in Definition [B.10] we see that $\mathcal{P}T^*X$ is a presheaf of \mathcal{O}_X-modules on X_{top}. Define the cotangent sheaf T^*X of X to be the sheafification of $\mathcal{P}T^*X$.

Define a morphism $Pd : \mathcal{O}_X \to \mathcal{P}T^*X$ of presheaves of \mathbb{R}-vector spaces by

$$
Pd(U) = d\omega_{\mathcal{O}_X(U)} : \mathcal{O}_X(U) \to \mathcal{P}T^*X(U) = \Omega_{\mathcal{O}_X(U)},
$$

and define the de Rham differential $d : \mathcal{O}_X \to T^*X$ to be the corresponding morphism of sheaves of \mathbb{R}-vector spaces on X_{top}. It satisfies (B.2) on each open $U \subseteq X_{\text{top}}$. Note that although \mathcal{O}_X, T^*X are \mathcal{O}_X-modules, d is not a morphism of \mathcal{O}_X-modules, as (B.2) is not compatible with \mathcal{O}_X-linearity.

Example B.12. (a) If $\text{Man} = \text{Man}$ and $X \in \text{Man}$ then T^*X is canonically isomorphic as an \mathcal{O}_X-module to the sheaf of sections of the usual cotangent bundle $T^*X \to X$, as in [B.2.2]. For general Man, if $X \in \text{Man} \subseteq \text{Man}$ then

240
as the definition of \mathcal{T}^*X happens entirely inside $\mathbf{Man} \subseteq \breve{\mathbf{Man}}$, again \mathcal{T}^*X is isomorphic to the sheaf of sections of \mathcal{T}^*X.

(b) If $\breve{\mathbf{Man}}$ is one of the following categories from Chapter 2

$$
\begin{align*}
\mathbf{Man}^c, \mathbf{Man}_{\text{in}}^c, \mathbf{Man}_{\text{st}}^c, \mathbf{Man}_{\text{st,in}}^c, \mathbf{Man}_{\text{we}}^c,
\end{align*}
$$

then as in [2.3] there are two notions of cotangent bundle T^*X, bT^*X of X in $\breve{\mathbf{Man}}$. It turns out that \mathcal{T}^*X is isomorphic to the sheaf of sections of T^*X.

(c) If $\breve{\mathbf{Man}}$ is one of the following categories from [2.4]

$$
\begin{align*}
\mathbf{Man}^{gc}, \mathbf{Man}_{\text{in}}^{gc}, \mathbf{Man}_{\text{st}}^{gc}, \mathbf{Man}_{\text{st,in}}^{gc}, \\
\mathbf{Man}_{\text{st,we}}^{ac}, \mathbf{Man}_{\text{st,we,in}}^{ac}, \mathbf{Man}_{\text{st,we,st}}^{ac}, \mathbf{Man}_{\text{st,we,st,in}}^{ac},
\end{align*}
$$

then the cotangent bundle T^*X of $X \in \breve{\mathbf{Man}}$ may not be defined, though the b-cotangent bundle bT^*X is. It turns out that \mathcal{T}^*X need not be isomorphic to the sheaf of sections of any vector bundle on X in these cases.

B.3.2 Connections on vector bundles

We can use cotangent sheaves in [B.3.1] to define a notion of connection.

Definition B.13. Let X be an object in $\breve{\mathbf{Man}}$, and $E \rightarrow X$ a vector bundle, and \mathcal{E} the \mathcal{O}_X-module of sections of E as in [B.2.2]. A connection ∇ on E is a morphism of sheaves of \mathbb{R}-vector spaces on X_{top}:

$$
\nabla : \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*X,
$$

such that if $U \subseteq X_{\text{top}}$ is open and $a \in \mathcal{O}_X(U)$, $e \in \mathcal{E}(U)$ then

$$
\nabla(a \cdot e) = a \cdot (\nabla e) + e \otimes (d(U)a) \quad \text{in} \quad (\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*X)(U), \quad (B.4)
$$

where $d : \mathcal{O}_X \rightarrow \mathcal{T}^*X$ is the de Rham differential from [B.3.1].

Note that although $\mathcal{E}, \mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*X$ are \mathcal{O}_X-modules, ∇ is not a morphism of \mathcal{O}_X-modules, as (B.4) is not $\mathcal{O}_X(U)$-linear.

Proposition B.14. Let $X \in \breve{\mathbf{Man}}$ and $E \rightarrow X$ be a vector bundle. Then:

(a) There exists a connection ∇ on E.

(b) If ∇, ∇' are connections on E then $\nabla' = \nabla + \Gamma$, for $\Gamma : E \rightarrow \mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*X$ an \mathcal{O}_X-module morphism on X_{top}.

(c) If ∇ is a connection on E and $\Gamma : \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*X$ is an \mathcal{O}_X-module morphism then $\nabla' = \nabla + \Gamma$ is a connection on E.

Proof. For (a), first suppose E is trivial, say $E = X \times \mathbb{R}^k \rightarrow X$. Then we can define a connection ∇ on E by

$$
\nabla(U) : (e_1, \ldots, e_k) \mapsto (d(U)e_1, \ldots, d(U)e_k)
$$
whenever $U \subseteq X_{\text{top}}$ is open and $e_1, \ldots, e_k \in \mathcal{O}_X(U)$, using the obvious identifications $\mathcal{E}(U) \cong \mathcal{O}_X(U)^k$ and $(\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*X)(U) \cong \mathcal{T}^*X(U)^k$.

In the general case, choose an open cover $\{U_a : a \in A\}$ of X by open submanifolds $U_a \hookrightarrow X$ such that $E|_{U_a} \rightarrow U_a$ is trivial for each $a \in A$. Then there exists a connection ∇_a on $E|_{U_a}$. As in [B.1.4], we can choose a partition of unity $\{\eta_a : a \in A\}$ on X subordinate to $\{U_a : a \in A\}$. It is now easy to check that $\nabla = \sum_{a \in A} \eta_a \cdot \nabla_a$ is a well defined connection on E.

For (b), define $\Gamma = \nabla' - \nabla : \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*X$, as a sheaf of morphisms of \mathbb{R}-vector spaces. If $U \subseteq X_{\text{top}}$ is open and $a \in \mathcal{O}_X(U)$, $e \in \mathcal{E}|_{U}$ then subtracting (B.4) for ∇, ∇' implies that $\Gamma(a \cdot e) = a \cdot (\Gamma e)$ in $(\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*X)(U)$, as the $e \otimes (d(U)a)$ terms cancel. Hence Γ is \mathcal{O}_X-linear, and a morphism of \mathcal{O}_X-modules. Part (c) follows by the same argument in reverse.

\begin{example}
If $\mathbf{Man} = \mathbf{Man}$ then connections ∇ on a vector bundle $E \rightarrow X$ in the sense of Definition [B.13] are in canonical 1-1 correspondence with the usual notion of connections on E in differential geometry, with (B.4) the usual Leibniz rule for connections. The same holds if \mathbf{Man} lies in [B.3].
\end{example}

B.4 Tangent sheaves

Let $f : X \rightarrow Y$ be a morphism in \mathbf{Man}, and $E \rightarrow X$ a vector bundle. To define 2-morphisms of m-Kuranishi neighbourhoods in Chapter [B.13] we will (roughly) need a notion of ‘vector bundle morphism $\Lambda : E \rightarrow f^*(TY)$’, where TY is the ‘tangent bundle’ of Y. For general categories \mathbf{Man}, there are two problems with this. Firstly, objects X in \mathbf{Man} may not have tangent vector bundles $TX \rightarrow X$. And secondly, there are examples such as $\mathbf{Man} = \mathbf{Man}^c$ in which tangent bundles do exist, but $f^*(TY)$ is the wrong thing for our purpose.

Our solution is to define ‘TX’, and ‘$f^*(TY)$’, and ‘$\text{Hom}(E, f^*(TY))$’ as sheaves on X, rather than as vector bundles:

(i) For each $X \in \mathbf{Man}$ we will define a sheaf TX of \mathcal{O}_X-modules on X_{top} called the \textit{tangent sheaf} of X. Sections of TX parametrize infinitesimal deformations of $\text{id}_X : X \rightarrow X$ as a morphism in \mathbf{Man}. If $\mathbf{Man} = \mathbf{Man}$ then TX is the sheaf of smooth sections of the usual tangent bundle TX.

(ii) For each morphism $f : X \rightarrow Y$ in \mathbf{Man} we will define a sheaf \mathcal{T}_fY of \mathcal{O}_X-modules on X_{top} called the \textit{tangent sheaf of f}. Sections of \mathcal{T}_fY parametrize infinitesimal deformations of $f : X \rightarrow Y$. If $\mathbf{Man} = \mathbf{Man}$ then \mathcal{T}_fY is the sheaf of smooth sections of $f^*(TY)$.

(iii) For each morphism $f : X \rightarrow Y$ in \mathbf{Man} and vector bundle $E \rightarrow X$ we define morphisms $E \rightarrow \mathcal{T}_fY$ as morphisms of sheaves of \mathcal{O}_X-modules.

In [B.3.1] we defined the cotangent sheaf \mathcal{T}^*X. In general TX and \mathcal{T}^*X are not dual to each other, though there is a natural pairing $TX \times \mathcal{T}^*X \rightarrow \mathcal{O}_X$. We define \mathcal{T}^*X using morphisms $X \rightarrow \mathbb{R}$ in \mathbf{Man}, and TX using morphisms $X \times \mathbb{R} \rightarrow X$ in \mathbf{Man}, so TX and \mathcal{T}^*X depend on different data in \mathbf{Man}.
B.4.1 Defining the f-vector fields just as a set $\Gamma(T_f Y)$

Definition B.16. Let $f : X \to Y$ be a morphism in Man. Consider commutative diagrams in Man of the form

$$
\begin{array}{c}
X \times \mathbb{R} & \xrightarrow{(id_X,0)} & X \\
\downarrow i & & \downarrow f \\
U & \xrightarrow{u} & Y,
\end{array}
$$

(B.5)

where $i : U \hookrightarrow X \times \mathbb{R}$ is an open submanifold with $X_{top} \times \{0\} \subseteq U_{top} \subseteq X_{top} \times \mathbb{R}$, and $f : X \to Y$ with $i \circ l = (id_X, 0)$ exists by Assumption (3.2.d), and $u : U \to Y$ is a morphism in Man with $u \circ l = f$. We also require that U_{top} can be written as a union of subsets $X_{top} \times (\epsilon, \epsilon)$ in $X_{top} \times \mathbb{R}$ for $X_{top} \subseteq X_{top}$ open and $\epsilon > 0$ (this condition will only be used in the proof of Proposition B.43). For brevity we write such a diagram as the pair (U, u).

Define a binary relation \approx on such pairs (U, u) by $(U, u) \approx (U', u')$ if for all $\tilde{x} \in X_{top}$ there exists an open submanifold $j : V \hookrightarrow X \times \mathbb{R}^2$ and a morphism $v : V \to Y$ satisfying

$$
\begin{align*}
(x, 0, 0) & \in V_{top}, \quad v_{top}(x, s, -s) = f_{top}(x) \quad \forall (x, s, -s) \in V_{top}, \\
v_{top}(x, s, 0) & = u_{top}(x, s) \quad \forall (x, s) \in U_{top} \text{ with } (x, s, 0) \in V_{top}, \\
v_{top}(x, 0, s') & = u'_{top}(x, s') \quad \forall (x, s') \in U'_{top} \text{ with } (x, 0, s') \in V_{top}.
\end{align*}
$$

We will show \approx is an equivalence relation. Suppose (U, u) is a pair, and let $j : V \hookrightarrow X \times \mathbb{R}^2$ be the open submanifold and $v : V \to Y$ the morphism with $V_{top} = \{(x, s, s') \in X_{top} \times \mathbb{R}^2 : (x, s+s') \in U_{top}\}$, $v_{top} : (x, s, s') \mapsto u_{top}(x, s+s')$.

Then (V, v) implies that $(U, u) \approx (U, u)$, so \approx is reflexive. By exchanging the two factors of \mathbb{R} in $X \times \mathbb{R}^2$ we see that $(U, u) \approx (U', u')$ for pairs $(U, u), (U', u')$ implies that $(U', u') \approx (U, u)$, so \approx is symmetric. Suppose $(U, u) \approx (U', u')$ and $(U', u'' \approx (U'', u''')$. Then for each $\tilde{x} \in X_{top}$ there exist (V, v) as above for $(U, u) \approx (U', u')$, and (V', v') for $(U', u') \approx (U'', u''')$. Apply Assumption (3.7.a) with $k = 3$ and $n = 1$ to obtain an open submanifold $k : W \hookrightarrow X \times \mathbb{R}^2$ and a morphism $w : W \to Y$ such that $(\tilde{x}, 0, 0, 0) \in W_{top}$, and $w_{top}(x, s, s', 0) = v_{top}(x, s, s')$ if $(x, s, s') \in V_{top}$ with $(x, s, s', 0)$ in W_{top}, and $w_{top}(x, 0, s', s'') = v'_{top}(x, s', s'')$ if $(x, s', s'') \in V'_{top}$ with $(x, 0, s', s'')$ in W_{top}, and $w_{top}(x, s, s', s'') = f_{top}(x)$ if $(x, s, s', s'') \in W_{top}$ with $s + s' + s'' = 0$.

Here we change variables in \mathbb{R}^3 from (s, s', s'') to $(y_1, y_2, y_3) = (s + s' + s'', s', s'')$ to apply Assumption (3.7.a), so that $w_{top}(x, s, s', s'') = f_{top}(x)$ when $s + s' + s'' = 0$ prescribes w_{top} when $y_1 = 0$, and $w_{top}(x, 0, s', s'') = v'_{top}(x, s', s'')$ prescribes w_{top} when $y_2 = 0$, and $w_{top}(x, s, s', 0) = v_{top}(x, s, s')$ prescribes w_{top} when $y_3 = 0$. Making W smaller, we suppose that $(x, s, s', 0) \in W_{top}$ implies that $(x, s, s') \in V_{top}$, and $(x, 0, s', s'') \in W_{top}$ implies that $(x, s, s') \in V_{top}$.

Let $j'' : V'' \hookrightarrow X \times \mathbb{R}^2$ be the open submanifold with

$$
V''_{top} = \{(x, s, s') \in X_{top} \times \mathbb{R}^2 : (x, s, 0, s'') \in W_{top}\}.
$$

243
Then Assumption 3.2(d) applied to \((\mathrm{id}_X \times \mathrm{id}_\mathbb{R} \times 0 \times \mathrm{id}_\mathbb{R}) \circ j'' : V'' \to X \times \mathbb{R}^3\) gives a morphism \(h : V'' \to W\) in \textbf{Man} with \(h_{\text{top}}(x,s,s') = (x,s,0,s')\). Define \(v'' = w \circ h : V'' \to Y\). Then such \((V'',v'')\) for all \(\tilde{x} \in X_{\text{top}}\) establish that \((U,u) \approx (U'',u'')\), since \((\tilde{x},0,0) \in V''_{\text{top}}\), and \(v''_{\text{top}}(x,s,0) = v_{\text{top}}(x,s,0) = v_{\text{top}}(x,s,s') = \hat{v}_{\text{top}}(x,0,s') = v_{\text{top}}(x,0,s')\). Thus \(\approx\) is transitive, and is an equivalence relation.

Write \([U,u]\) for the \(\approx\)-equivalence class of pairs \((U,u)\) as above. Write \(\Gamma(\mathcal{I}_fY)\) for the set of all such \(\approx\)-equivalence classes \([U,u]\). (In \textbf{B.4.5} we will define a sheaf of \(\mathcal{O}_X\)-modules \(\mathcal{I}_fY\) on \(X_{\text{top}}\) whose global sections are this set \(\Gamma(\mathcal{I}_fY)\), but for now \(\Gamma(\mathcal{I}_fY)\) is just our notation for the set of all \([U,u]\).)

When \(Y = X\) and \(f = \mathrm{id}_X\), we write \(\Gamma(\mathcal{T}X) = \Gamma(\mathcal{T}_{\text{top}}X)\).

Example B.17. Here is how to understand Definition \textbf{B.16} in the case that \textbf{Man} = \textbf{Man}. Then we can use tangent spaces and derivatives of maps. Consider a diagram \textbf{B.5} in \textbf{Man}. Write points in \(U \subseteq X \times \mathbb{R}\) as \((x,s)\) with \(x \in X\) and \(s \in \mathbb{R}\). Then for each \(x \in X\) with \(f(x) = y \in Y\) we have \(u(x,0) = y \in Y\) and \(\frac{\partial u}{\partial s}(x,0) \in T_yY = f^*(TY)|_x\). The map \(\tilde{u} : x \mapsto \frac{\partial u}{\partial s}(x,0)\) is a smooth section \(\tilde{u}\) of the vector bundle \(f^*(TY) \to X\).

Now let \((U,u),(U',u')\) be two such diagrams, and \(\tilde{u}, \tilde{u}' \in \Gamma^\infty(f^*(TY))\) the corresponding sections. Suppose \((U,u) \approx (U',u')\), and let \(\tilde{x} \in X\) with \(\tilde{y} = f(\tilde{x})\), so that there exist \(j : V \hookrightarrow X \times \mathbb{R}^2\) and \(v : V \to Y\) satisfying \textbf{B.6}. Considering points \((\tilde{x},s,s') \in V\) with \(v(\tilde{x},s,s') \in Y\), we have \(\frac{\partial v}{\partial s}(\tilde{x},0,0), \frac{\partial v}{\partial s'}(\tilde{x},0,0) \in T_{\tilde{y}}Y\). Differentiating \textbf{B.6} in \(s,s'\) at \((\tilde{x},0,0)\) yields

\[
\frac{\partial v}{\partial s}(\tilde{x},0,0) - \frac{\partial v}{\partial s'}(\tilde{x},0,0) = 0, \quad \frac{\partial \tilde{u}}{\partial s}(\tilde{x},0,0) = \frac{\partial \tilde{u}}{\partial s'}(\tilde{x},0,0) = \tilde{u}(\tilde{x})
\]

and

\[
\frac{\partial \tilde{u}}{\partial s'}(\tilde{x},0,0) = \frac{\partial \tilde{u}}{\partial s'}(\tilde{x},0,0) = \tilde{u}'(\tilde{x}),
\]

so that \(\tilde{u}(\tilde{x}) = \tilde{u}'(\tilde{x})\), for all \(\tilde{x} \in X\). Thus \((U,u) \approx (U',u')\) forces \(\tilde{u} = \tilde{u}'\) in \(\Gamma^\infty(f^*(TY))\). Conversely one can show that \(\tilde{u} = \tilde{u}'\) implies \((U,u) \approx (U',u')\). Also every \(\tilde{u} \in \Gamma^\infty(f^*(TY))\) comes from some \((U,u)\) in \textbf{B.5}. Hence \(\approx\)-equivalence classes \([U,u]\) are in 1-1 correspondence with \(\tilde{u} \in \Gamma^\infty(f^*(TY))\) by \([U,u] \mapsto \tilde{u}\). So we can identify \(\Gamma(\mathcal{T}_fY)\) with \(\Gamma^\infty(f^*(TY))\) when \textbf{Man} = \textbf{Man}.

B.4.2 Making \(\Gamma(\mathcal{T}_fY)\) into a \(C^\infty(X)\)-module

Section \textbf{B.1.1} discussed the \(\mathbb{R}\)-algebra \(C^\infty(X)\). We will give \(\Gamma(\mathcal{T}_fY)\) in \textbf{B.4.1} the structure of a \(C^\infty(X)\)-module.

Definition B.18. We continue in the situation of Definition \textbf{B.16}. To make \(\Gamma(\mathcal{T}_fY)\) into a \(C^\infty(X)\)-module we must define the product \(a \cdot \alpha\) in \(\Gamma(\mathcal{T}_fY)\) for all \(a \in C^\infty(X)\) and \(\alpha \in \Gamma(\mathcal{T}_fY)\), the sum \(\alpha + \beta\) in \(\Gamma(\mathcal{T}_fY)\) for all \(\alpha, \beta \in \Gamma(\mathcal{T}_fY)\), and the zero element \(0 \in \Gamma(\mathcal{T}_fY)\), and verify they satisfy

\[
\alpha + \beta = \beta + \alpha, \quad (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma),
\]

\[
0_X \cdot \alpha = 0, \quad 1_X \cdot \alpha = \alpha, \quad a \cdot (b \cdot \alpha) = (a \cdot b) \cdot \alpha, \quad (a + b) \cdot \alpha = (a \cdot \alpha) + (b \cdot \alpha), \quad a \cdot (\alpha + \beta) = (a \cdot \alpha) + (a \cdot \beta),
\]
for all \(a, b \in C^\infty(X) \) and \(\alpha, \beta, \gamma \in \Gamma(T_f Y) \), where \(0_X, 1_X \in C^\infty(X) \) are the morphisms \(0, 1 : X \to \mathbb{R} \).

To define \(\cdot \cdot \cdot \), let \(a \in C^\infty(X) \) and \(\alpha \in \Gamma(T_f Y) \), and let \((U, u)\) in \(\mathbf{B.5} \) represent \(\alpha = [U, u] \). Write \(\bar{i} : \tilde{U} \hookrightarrow X \times \mathbb{R} \) for the open submanifold with

\[
\tilde{U}_{\text{top}} = \{(x, s) \in X_{\text{top}} \times \mathbb{R} : (x, a_{\text{top}}(x)s) \in U_{\text{top}}\}.
\]

Form the commutative diagram in \(\mathbf{Man} \):

\[
\begin{array}{ccc}
X \times \mathbb{R} & \xrightarrow{(id_X, \beta)} & Y \\
\downarrow{id_X \times (a \cdot id_\mathbb{R})} & & \downarrow{id_Y}
\end{array}
\]

where morphisms labelled ‘\(* \)’ exist by Assumption \(\mathbf{B.2}(d) \), and \(id_X \times (a \cdot id_\mathbb{R}) \) maps \((x, s) \mapsto (x, a_{\text{top}}(x)s)\) on \(X_{\text{top}} \times \mathbb{R} \). Then \(\bar{i}, \bar{l}, \bar{u} \) are a diagram of type \(\mathbf{B.5} \). Define \(a \cdot \alpha = [\bar{U}, \bar{u}] \in \Gamma(T_f Y) \).

To show this is well defined, we must prove that if \((U', u')\) is another representative for \(\alpha \), so that \((U, u) \approx (U', u')\), and \((U', \bar{u}')\) is constructed from \((a, (U', u'))\) as in \(\mathbf{B.8} \), then \((\bar{U}, \bar{u}) \approx (\bar{U}', \bar{u}')\), so that \([\bar{U}, \bar{u}] = [\bar{U}', \bar{u}']\). We do this by combining the data \(j : V \hookrightarrow X \times \mathbb{R}^2, v : V \to Y \) satisfying \(\mathbf{B.6} \) showing that \((U, u) \approx (U', u')\) with \(\mathbf{B.8} \), now using \(id_X \times (a \cdot id_\mathbb{R}) \times (a \cdot id_\mathbb{R}) : X \times \mathbb{R}^2 \to X \times \mathbb{R}^2 \) in place of the left hand column of \(\mathbf{B.8} \), to construct \(\bar{j}, \bar{V}, \bar{v} \) showing that \((\bar{U}, \bar{u}) \approx (\bar{U}', \bar{u}')\). So \(a \cdot \alpha \) is well defined.

To define \(\alpha + \beta \), let \(\alpha, \beta \in \Gamma(T_f Y) \), and let \((U, u), (\bar{U}, \bar{u})\) in \(\mathbf{B.5} \) represent \(\alpha = [U, u] \) and \(\beta = [\bar{U}, \bar{u}] \). Assumption \(\mathbf{3.7}(a) \) with \(k = 2 \) and \(m_1 = m_2 = 1 \) applied to \((U_1, u_1) = (U, u) \) and \((U_2, u_2) = (\bar{U}, \bar{u}) \) gives an open \(j : V \hookrightarrow X \times \mathbb{R}^2 \) and \(v : V \to Y \) such that \(X_{\text{top}} \times \{(0, 0)\} \subseteq V_{\text{top}} \) and \(v_{\text{top}}(x, s, 0) = u_{\text{top}}(x, s) \) for all \((x, s)\) in \(U_{\text{top}} \) with \((x, s, 0)\) in \(V_{\text{top}} \) and \(v_{\text{top}}(x, 0, s) = \bar{u}_{\text{top}}(x, s) \) for all \((x, s)\) in \(\bar{U}_{\text{top}} \) with \((x, 0, s)\) in \(V_{\text{top}} \). Let \(\bar{i} : \tilde{U} \to X \times \mathbb{R} \) be the open submanifold with

\[
\bar{U}_{\text{top}} = \{(x, s) \in X_{\text{top}} \times \mathbb{R} : (x, s, s) \in V_{\text{top}} \subseteq X_{\text{top}} \times \mathbb{R}^2\}.
\]

Form the commutative diagram in \(\mathbf{Man} \):

\[
\begin{array}{ccc}
X \times \mathbb{R} & \xrightarrow{i} & \tilde{U} \\
\downarrow{id_X \times (a \cdot id_\mathbb{R})} & & \downarrow{u} \\
X \times \mathbb{R}^2 & \xrightarrow{j} & V \\
\end{array}
\]

where morphisms labelled ‘\(* \)’ exist by Assumption \(\mathbf{B.2}(d) \), and \(id_X \times (id_\mathbb{R}, id_\mathbb{R}) \) maps \((x, s) \mapsto (x, s, s)\) on \(X_{\text{top}} \times \mathbb{R} \). Then \(\bar{i}, \bar{l}, \bar{u} \) are a diagram of type \(\mathbf{B.5} \). Define \(\alpha + \beta = [\bar{U}, \bar{u}] \in \Gamma(T_f Y) \).

To show this is well defined, suppose \((U', u'), (\bar{U}', \bar{u}')\) are alternative representatives for \(\alpha, \beta \), so that \((U, u) \approx (U', u')\) and \((\bar{U}, \bar{u}) \approx (\bar{U}', \bar{u}')\), and use \((V', v')\) to construct \((\bar{U}', \bar{u}')\) from \((U', u'), (\bar{U}', \bar{u}')\) as above. We must prove that

\[
245
\]
\((\tilde{U}, \tilde{u}) \approx (U', \tilde{u}')\). Let \(\tilde{x} \in X_{\text{top}}\), and let \(j : V \hookrightarrow X \times \mathbb{R}^2\), \(v : V \rightarrow Y\) satisfy (B.6) for \((U, u) \approx (U', \tilde{u}')\), and \(\tilde{j} : \tilde{V} \hookrightarrow \tilde{X} \times \mathbb{R}^2\), \(\tilde{v} : \tilde{V} \rightarrow \tilde{Y}\) satisfy (B.6) for \((\tilde{U}, \tilde{u}) \approx (U', \tilde{u}')\). We will apply Assumption 3.7(a) five times to construct an open submanifold \(k : W \hookrightarrow X \times \mathbb{R}^4\) with \((\tilde{x}, 0, 0, 0, 0) \in W_{\text{top}}\) and a morphism \(w : W \rightarrow \tilde{Y}\), such that for all \(x \in X_{\text{top}}\) and \(q, r, s, t \in \mathbb{R}\) in the appropriate open sets we have

\[
\begin{align*}
\text{with (} \tilde{U}, \tilde{u}) \text{ in the appropriate open sets we have} \\
& w_{\text{top}}(x, q, 0, 0, 0) = u_{\text{top}}(x, q), \quad w_{\text{top}}(x, 0, r, 0, 0) = \tilde{u}_{\text{top}}(x, r), \\
& w_{\text{top}}(x, q, q, 0, 0) = \tilde{u}_{\text{top}}(x, q, q), \quad w_{\text{top}}(x, 0, 0, s, 0) = \tilde{u}_{\text{top}}(x, s), \\
& w_{\text{top}}(x, 0, 0, 0, t) = \tilde{u}_{\text{top}}(x, t), \quad w_{\text{top}}(x, 0, 0, s, s) = \tilde{u}_{\text{top}}(x, s, s), \\
& w_{\text{top}}(x, q, r, 0, 0) = \tilde{u}_{\text{top}}(x, q, r), \quad w_{\text{top}}(x, 0, 0, s, t) = \tilde{v}_{\text{top}}(x, s, t), \\
& w_{\text{top}}(x, q, 0, 0, 0) = \tilde{v}_{\text{top}}(x, q, s), \quad w_{\text{top}}(x, 0, r, 0, 0) = \tilde{v}_{\text{top}}(x, r, t), \\
& w_{\text{top}}(x, q, r, -q, -r) = f_{\text{top}}(x).
\end{align*}
\]

(B.9)

We do this in the following steps:

(a) Choose values of \(w_{\text{top}}(x, q, r, -q, t)\) to satisfy the second, fifth, tenth, and eleventh equations of \((B.9)\), using Assumption 3.7(a) with \(k = 2, n = 1\) and \(X \times \mathbb{R}\) with variables \((x, x') \in X'_{\text{top}} = X_{\text{top}} \times \mathbb{R}\) in place of \(X\), and variables \((x, q, r, -q, t) = (x, z_1, z_2 + x', -z_1, -x')\).

(b) Choose values of \(w_{\text{top}}(x, q, 0, s, t)\) to satisfy the first, fourth, fifth, sixth, eighth and ninth equations of \((B.9)\), using Assumption 3.7(a) with \(k = 2, n = 1\) and \(X \times \mathbb{R}\) with variables \((x, x') \in X'_{\text{top}} = X_{\text{top}} \times \mathbb{R}\) in place of \(X\), and variables \((x, q, 0, s, t) = (x, z_1, 0, x', z_2)\).

(c) Choose values of \(w_{\text{top}}(x, q, r, 0, t)\) to satisfy the first, second, third, fifth, seventh and tenth equations of \((B.9)\), and with \(w_{\text{top}}(x, q, 0, 0, t)\) as already determined in (b), using Assumption 3.7(a) with \(k = 3, n = 1\) and variables \((x, q, r, 0, t) = (x, z_1, z_2, 0, z_3)\).

(d) Choose values of \(w_{\text{top}}(x, q, r, s, t)\) to satisfy the first–fourth, seventh and ninth equations of \((B.9)\), and with \(w_{\text{top}}(x, q, r, -q, 0)\) as already determined in (a), using Assumption 3.7(a) with \(k = 3, n = 1\) and variables \((x, q, r, s, t) = (x, z_1 - z_3, z_2, z_3, 0)\).

(e) Choose values of \(w_{\text{top}}(x, q, r, s, t)\) agreeing with the choices made in (a)–(d), using Assumption 3.7(a) with \(k = 4, n = 1\) and variables \((x, q, r, s, t) = (x, z_1 - z_3, z_2, z_3, z_4)\).

Write \(\tilde{j} : \tilde{V} \hookrightarrow X \times \mathbb{R}^2\) for the open submanifold with

\[
\tilde{V}_{\text{top}} = \{(x, q, s) \in X_{\text{top}} \times \mathbb{R}^2 : (x, q, q, s, s) \in W_{\text{top}} \subseteq X_{\text{top}} \times \mathbb{R}^4\}.
\]

Form the commutative diagram in \(\text{Man}\):

\[
\begin{array}{ccc}
X \times \mathbb{R}^2 & \xrightarrow{j} & \tilde{V} \\
\downarrow \text{id}_X \times (\text{id}_x, \text{id}_x) \times (\text{id}_x, \text{id}_x) & & \downarrow \text{id}_{\tilde{V}} \\
X \times \mathbb{R}^4 & \xrightarrow{k} & W \\
\downarrow w & & \downarrow v \\
& & Y
\end{array}
\]

246
where the morphism ‘⋆’ exists by Assumption 3.2(d), and \(\text{id}_X \times (\text{id}_\mathbb{R}, \text{id}_\mathbb{R})\) maps \((x, q, s) \mapsto (x, q, q, s, s)\) on \(X_{\text{top}} \times \mathbb{R}^2\). Then \(\hat{\varphi} : \hat{V} \rightarrow X \times \mathbb{R}^2\) and \(\hat{v} : \hat{V} \rightarrow Y\) satisfy (B.6) for \((\hat{U}, \hat{u}) \approx (U', \hat{u}')\) at \(\hat{x} \in X_{\text{top}}\), for all \(\hat{x}\). Hence \([\hat{U}, \hat{u}] = [U', \hat{u}']\), and \(\alpha + \beta\) is well defined.

Define \(0 \in \Gamma(T_f Y)\) to be \(0 = [X \times \mathbb{R}, f \circ \pi_X]\), so that (B.5) becomes

\[
\begin{array}{ccc}
X \times \mathbb{R} & \xrightarrow{\text{id}_X, 0} & X \\
\downarrow{t} & & \downarrow{f \circ \pi_X} \\
X \times \mathbb{R} & \xrightarrow{f} & Y.
\end{array}
\]

This defines all the data \(\cdot, +, 0\) of the \(C^\infty(X)\)-module structure on \(\Gamma(T_f Y)\). It is now a long but straightforward calculation to show that the axioms (B.7) hold, and we leave this as an exercise for the reader.

B.4.3 Action of \(v \in \Gamma(T_f Y)\) as an \(f\)-derivation

If \(X\) is a classical manifold and \(\alpha \in \Gamma^\infty(TX)\) is a vector field then \(\alpha\) acts as a derivation \(\Delta_\alpha : C^\infty(X) \rightarrow C^\infty(X)\) (and in fact as a \(C^\infty\)-derivation, as in the author [65, §5.2]). We prove a relative version of this for Man.

Definition B.19. Let \(f : X \rightarrow Y\) be a morphism in Man, and \(\alpha \in \Gamma(T_f Y)\). We will define a map \(\Delta_\alpha : C^\infty(Y) \rightarrow C^\infty(X)\). Write \(\alpha = [U, u]\) for \((U, u)\) as in (B.5). Let \(a \in \Gamma^\infty(Y)\), so that \(a : Y \rightarrow \mathbb{R}\) and \(a \circ u : U \rightarrow \mathbb{R}\) are morphisms in Man. Apply Assumption 3.5 to \(f = a \circ u : U \rightarrow \mathbb{R}\). By (3.1)–(3.2), this gives a morphism \(g : U \rightarrow \mathbb{R}\) in Man such that

\[
g_{\text{top}}(x, t) = \begin{cases} t^{-1}[(a \circ u)_{\text{top}}(x, t) - (a \circ u)_{\text{top}}(x, 0)], & t \neq 0, \\ \frac{\partial}{\partial t}(a \circ u)_{\text{top}}(x, t), & t = 0, \end{cases} \tag{B.10}
\]

and this determines \(g\) uniquely, by faithfulness in Assumption 3.2(a). Now define \(\Delta_\alpha(a) = g \circ t : X \rightarrow \mathbb{R}\). Then \(\Delta_\alpha(a) \in C^\infty(X)\), and (B.10) gives

\[
\Delta_\alpha(a)_{\text{top}}(x) = \frac{\partial}{\partial t}(a \circ u)_{\text{top}}(x, t)|_{t = 0} \quad \text{for } x \in X_{\text{top}}. \tag{B.11}
\]

Let \((U', u')\) be an alternative representative for \(\alpha\), and write \(\Delta'_\alpha : C^\infty(Y) \rightarrow C^\infty(X)\) for the corresponding map. Then \((U, u) \approx (U', u')\), so by Definition B.16 for each \(\hat{x} \in X_{\text{top}}\) there exist open \(j : V \rightarrow X \times \mathbb{R}^2\) and \(v : V \rightarrow Y\) satisfying (B.6). Then

\[
\Delta_\alpha(a)_{\text{top}}(\hat{x}) = \frac{\partial}{\partial s'}(a \circ v)_{\text{top}}(\hat{x}, s)|_{s = 0} = \frac{\partial}{\partial s'}(a \circ v)_{\text{top}}(\hat{x}, s, 0)|_{s = 0} = \frac{\partial}{\partial s'}(a \circ u)_{\text{top}}(\hat{x}, s')|_{s' = 0} = \Delta'_\alpha(a)_{\text{top}}(\hat{x}),
\]

using (B.11) in the first and last steps, and differentiating (B.6) in \(s, s'\) at \(s = s' = 0\) for the second–fourth. Hence \(\Delta_\alpha = \Delta'_\alpha\), and \(\Delta_\alpha\) is well defined.

It is clear from (B.11) that \(\Delta_\alpha : C^\infty(Y) \rightarrow C^\infty(X)\) is an \(\mathbb{R}\)-linear map. We will show in Proposition B.20 that it is both a derivation of \(C^\infty(Y)\) as an \(\mathbb{R}\)-algebra, and a \(C^\infty\)-derivation of \(C^\infty(Y)\) as a \(C^\infty\)-ring.

247
The next proposition follows easily from (B.11), the product and chain rules for differentiation, and Definition \[\text{B.18} \]

Proposition B.20. Work in the situation of Definition \[\text{B.19} \] Then:

(a) Consider $f^*: C^\infty(Y) \to C^\infty(X)$ as a morphism of commutative \mathbb{R}-algebras as in \[\text{B.1.1} \]. Then the \mathbb{R}-linear map $\Delta_\alpha: C^\infty(Y) \to C^\infty(X)$ satisfies

$$
\Delta_\alpha(a \cdot b) = f^*(a) \cdot \Delta_\alpha(b) + f^*(b) \cdot \Delta_\alpha(a)
$$

for all $a, b \in C^\infty(Y)$.

That is, Δ_α is a **relative derivation** for $f^*: C^\infty(Y) \to C^\infty(X)$.

(b) Consider $f^*: C^\infty(Y) \to C^\infty(X)$ as a morphism of C^∞-rings as in \[\text{B.1.1} \] and write the C^∞-ring operations on $C^\infty(X), C^\infty(Y)$ as Φ_g, Ψ_g respectively for smooth $g: \mathbb{R}^n \to \mathbb{R}$. Then $\Delta_\alpha: C^\infty(Y) \to C^\infty(X)$ satisfies

$$
\Delta_\alpha(\Psi_g(a_1, \ldots, a_n)) = \sum_{i=1}^n f^*(\Psi_{\frac{\partial}{\partial x_i}} (a_1, \ldots, a_n)) \cdot \Delta_\alpha(a_i)
$$

(B.12)

for all $a_1, \ldots, a_n \in C^\infty(Y)$. That is, Δ_α is a **relative C^∞-derivation** for $f^*: C^\infty(Y) \to C^\infty(X)$.

(c) If $\alpha, \beta \in \Gamma(TY)$ then $\Delta_{\alpha + \beta}(a) = \Delta_\alpha(a) + \Delta_\beta(a)$ for all $a \in C^\infty(Y)$.

(d) If $a \in C^\infty(X)$ and $\alpha \in \Gamma(TY)$ then $\Delta_{\alpha \cdot a}(b) = a \cdot \Delta_\alpha(b)$ for all $b \in C^\infty(Y)$.

When $\mathcal{M} \to \mathcal{M}$, one can show that the map $\alpha \mapsto \Delta_\alpha$ is a 1-1 correspondence between elements of $\Gamma(T_f Y)$ and relative C^∞-derivations. But for general \mathcal{M}, it is not clear that $\alpha \mapsto \Delta_\alpha$ need be either injective or surjective.

B.4.4 Acting on modules $\Gamma(T_f Y)$ with morphisms in $\mathcal{M}f$

Suppose $f: X \to Y$ and $g: Y \to Z$ are morphisms in \mathcal{M}, and let $\mathcal{M}f \to \mathcal{M}g$ be a morphism in \mathcal{M}. We will define natural morphisms $\Gamma(Tg): \Gamma(T_f Y) \to \Gamma(T_g Z)$ and $f^*: \Gamma(T_g Z) \to \Gamma(T_f Z)$.

Definition B.21. Let $f: X \to Y$ and $g: Y \to Z$ be morphisms in \mathcal{M}. Sections \[\text{B.4.1} \] \[\text{B.4.2} \] define $C^\infty(X)$-modules $\Gamma(T_f Y)$ and $\Gamma(T_g Z)$. Define a map $\Gamma(Tg): \Gamma(T_f Y) \to \Gamma(T_g Z)$ by $\Gamma(Tg)([U, u]) = [U, g \circ u]$. It is easy to check using \[\text{B.4.1} \] \[\text{B.4.2} \] that if $(U, u) \approx (U', u')$ then $(U, g \circ u) \approx (U', g \circ u')$, so that $\Gamma(Tg)$ is well-defined, and that it is a $C^\infty(X)$-module morphism.
For \([U,u] \in \Gamma(T_gZ)\) defined by a pair \((U,u)\) in a diagram \([\text{B.5}]\) with \(Y,Z,g\) in place of \(X,Y,f\), form the commutative diagram in \(\text{Man}\):

\[
\begin{array}{ccc}
X \times \mathbb{R} & \xrightarrow{(\text{id}_X,0)} & X \\
\downarrow{f \times \text{id}_X} & & \downarrow{f} \\
Y \times \mathbb{R} & \xrightarrow{(\text{id}_Y,0)} & Y \\
\end{array}
\]

Here \(i' : U' \hookrightarrow X \times \mathbb{R}\) is open with

\[
U'_{\text{top}} = \{(x,t) \in X_{\text{top}} \times \mathbb{R} : (f_{\text{top}}(x),t) \in U_{\text{top}}\},
\]

and unique \(l',m'\) exist making \([\text{B.13}]\) commute by Assumption \([\text{B.2}]\)(d). Then \(U',i',l',m'\) in \([\text{B.13}]\) are a diagram \([\text{B.5}]\) for \(g \circ f\), so that \([U',u'] \in \Gamma(T_{g \circ f}Z)\). Define \(f^*([U,u]) = [U',u']\).

To show that \([U',u']\) is independent of the choice of representative \((U,u)\) for \([U,u]\), so that \(f^*\) is well defined, given another choice \((\tilde{U},\tilde{u})\) yielding \((\tilde{U}',\tilde{u}')\), as \((U,u) \approx (\tilde{U},\tilde{u})\) there exist \(V,v\) for each \(\tilde{y} \in Y_{\text{top}}\) satisfying \([\text{B.6}]\) at \(\tilde{y}\) over \(g : Y \to Z\). Then for \(\tilde{x} \in X_{\text{top}}\), with \(f_{\text{top}}(\tilde{x}) = \tilde{y}\), we define \(V',v'\) satisfying \([\text{B.6}]\) for \((U',u') \approx (\tilde{U}',\tilde{u}')\) at \(\tilde{x}\) over \(g \circ f : X \to Z\), by constructing \(V',v'\) from \(V,v\) in the same way that \([\text{B.13}]\) generalizes \([\text{B.5}]\).

Hence \([U',u'] = [\tilde{U}',\tilde{u}']\), and \(f^*([U,u])\) is well defined.

It is easy to check using \([\text{B.4.1}]\), \([\text{B.4.2}]\) that \(f^*(\alpha + \beta) = f^*(\alpha) + f^*(\beta)\) and \(f^*(a \cdot \alpha) = f^*(a) \cdot f^*(\alpha)\), for all \(\alpha \in C^\infty (Y)\) and \(a,\beta \in \Gamma(T_gZ)\). That is, \(f^* : \Gamma(T_gZ) \to \Gamma(T_{g \circ f}Z)\) is a module morphism relative to \(f^* : C^\infty (Y) \to C^\infty (X)\).

If \(e : W \to X\) is another morphism in \(\text{Man}\), we see that

\[
\begin{align*}
\Gamma(T) (g \circ f) &= \Gamma(T) g \circ \Gamma(T) f : \Gamma(T e X) \to \Gamma(T_{g \circ f} Z), \\
(f \circ e)^* &= e^* \circ f^* : \Gamma(T_g Z) \to \Gamma(T_{g \circ f} Z), \\
\end{align*}
\]

\[
\Gamma(T) g \circ e^* = e^* \circ \Gamma(T) f : \Gamma(T_f Y) \to \Gamma(T_{g \circ f} Z).
\]

Example B.22. If \(f : X \to Y\) is a morphism in \(\text{Man} \subseteq \tilde{\text{Man}}\), we have \(\Gamma(T_f Y) \iso C^\infty (f^*(TY))\) as in Example \([\text{B.17}]\). For morphisms \(f : X \to Y\), \(g : Y \to Z\) in \(\text{Man} \subseteq \tilde{\text{Man}}\), these isomorphisms identify

\[
\begin{align*}
\Gamma(T)_g : \Gamma(T_f Y) &\to \Gamma(T_{g \circ f} Z) \quad \leftrightarrow \quad f^* (T g) \circ \Gamma(T_f Y) \to \Gamma(T_{g \circ f} Z), \\
f^* : \Gamma(T_{g \circ f} Z) &\to \Gamma(T_f Y) \quad \leftrightarrow \quad f^* : \Gamma(T_g Z) \to \Gamma(T_f Y).
\end{align*}
\]

where \(T g : TY \to g^*(TZ)\) is the derivative of \(g\). This justifies the notation \(\Gamma(T g)\) and \(f^*\) in Definition \([\text{B.21}]\).

Lemma B.23. Suppose \(f : X \to Y\) and \(g : Y \to Z\) are morphisms in \(\text{Man}\), with \(g : Y \to Z\) an open submanifold. Then \(\Gamma(T) g : \Gamma(T_f Y) \to \Gamma(T_{g \circ f} Z)\) is an isomorphism of \(C^\infty (X)\)-modules.

249
Proof. We will define an inverse map \(I : \Gamma(\mathcal{T}_{g\circ f} Z) \to \Gamma(\mathcal{T}_f Y) \) for \(\Gamma(\mathcal{T}_g) \). Let \(\alpha \in \Gamma(\mathcal{T}_{g\circ f} Z) \), and pick a representative \((U, u)\) for \(\alpha = [U, u] \), in a diagram \([B.5]\).

Let \(i' : U' \hookrightarrow X \times \mathbb{R} \) be the open manifold with \(U'_{\text{top}} = \{ (x, t) \in X_{\text{top}} \times \mathbb{R} : u_{\text{top}}(x, t) \in Y_{\text{top}} \subseteq Z_{\text{top}} \} \).

Then \([B.5]\) extends to a commutative diagram

\[
\begin{array}{ccc}
X \times \mathbb{R} & \xrightarrow{(i, 0)} & X \\
\downarrow \, \quad \downarrow i' & & \downarrow f \\
U & \xrightarrow{j} & Y \\
\downarrow \, \quad \downarrow u' & & \downarrow g \\
Y' & \xrightarrow{j'} & Z, \quad \text{(B.15)}
\end{array}
\]

where \(j', l', u' \) exist by Assumption \([3.2(\text{d})]\) for the open submanifolds \(i : U \hookrightarrow X \times \mathbb{R}, \, j' : U' \hookrightarrow X \times \mathbb{R} \) and \(g : Y \to Z \) respectively. Then \(U', i', l', u' \) are a diagram \([B.5]\) for \(f : X \to Y \), so \([U', u'] \in \Gamma(\mathcal{T}_f Y) \). Define \(I(\alpha) = [U', u'] \).

A similar argument for \(V, v \) satisfying \([B.6]\) shows \(I(\alpha) \) is independent of the choice of \((U, u)\), and so is well defined. To see that \(\Gamma(\mathcal{T}_g) \circ I = \text{id} \), note that

\[
\Gamma(\mathcal{T}_g) \circ I(\alpha) = [U', g \circ u'] = [U', u \circ j'],
\]

and use \(V, v \) in \([B.6]\) with \(v_{\text{top}}(x, s, t) = u_{\text{top}}(x, s + t) \) to show that \((U, u) \approx (U', u \circ j') \), so that \(\Gamma(\mathcal{T}_g) \circ I(\alpha) = \Gamma(\mathcal{T}_g) \circ \text{id} = \alpha \). To see that \(I \circ \Gamma(\mathcal{T}_g) = \text{id} \), let \(\beta = [U', u'] \in \Gamma(\mathcal{T}_f Y) \), so that \(\Gamma(\mathcal{T}_g)(\beta) = [U', g \circ u'] \), and consider \([B.15]\) with \(U = U', \, i = i', \, l = l', \, u = g \circ u' \) to see that \(I \circ \Gamma(\mathcal{T}_g)(\beta) = [U', u'] = \beta \). Therefore \(\Gamma(\mathcal{T}_g) \) is a bijection, and so an isomorphism of \(C^\infty(X)\)-modules. \(\square \)

B.4.5 The sheaves of \(O_X \)-modules \(\mathcal{T}X \) and \(\mathcal{T}_f Y \)

Next we define a sheaf of \(O_X \)-modules \(\mathcal{T}_f Y \) on \(X_{\text{top}} \), with global sections \(\mathcal{T}_f Y(X_{\text{top}}) = \Gamma(\mathcal{T}_f Y) \). This justifies the notation \(\Gamma(\mathcal{T}_f Y) \) in \([B.4.4]\).

Definition B.24. Let \(f : X \to Y \) be a morphism in \(\text{Man} \). Section \([B.1.3]\) defines a sheaf of \(\mathbb{R} \)-algebras \(O_X \) on \(X_{\text{top}} \). For each open submanifold \(\chi : X' \to X \) in \(\text{Man} \), so that \(X'_{\text{top}} \subseteq X_{\text{top}} \) is an open set and \(f \circ \chi : X' \to Y \) a morphism in \(\text{Man} \), write \(\mathcal{T}_f Y(X'_{\text{top}}) = \Gamma(\mathcal{T}_{f \circ \chi} Y) \) from Definition \([B.16]\) considered as a module over \(O_X(X'_{\text{top}}) = C^\infty(X') \) as in Definition \([B.18]\).

Note that when \(\chi : X' \hookrightarrow X \) is \(\text{id}_X : X \to X \) we have \(\mathcal{T}_f Y(X_{\text{top}}) = \Gamma(\mathcal{T}_f Y) \).

For each commutative triangle of open submanifolds in \(\text{Man} \):

\[
\begin{array}{ccc}
X' & \xrightarrow{\xi} & X'' \\
\downarrow \chi & & \downarrow \chi' \\
X & & \end{array}
\]

using the notation of \([B.4.4]\) define a map

\[
\rho_{X',X''} = \xi^* : \mathcal{T}_f Y(X'_{\text{top}}) = \Gamma(\mathcal{T}_{f \circ \chi} Y) \to \mathcal{T}_f Y(X''_{\text{top}}) = \Gamma(\mathcal{T}_{f \circ \chi'^*} Y).
\]

250
From \(\text{B.4.4} \) \(\rho_{X'_{\text{top}}} \) intertwines the actions of \(\mathcal{O}_X(X'_{\text{top}}) = C^\infty(X') \) and \(\mathcal{O}_X(X_{\text{top}}) = C^\infty(X'_{\text{top}}) \) on \(T_fY(X'_{\text{top}}) \) via the morphism \(\rho_{X'_{\text{top}}} : \mathcal{O}_X(X'_{\text{top}}) \to \mathcal{O}_X(X_{\text{top}}) \) from \(\text{B.1.3} \).

Proposition B.25. In Definition \(\text{B.2.4} \) the data \(T_fY(X'_{\text{top}}) \) and \(\rho_{X'_{\text{top}}} : T_fY(X'_{\text{top}}) \to T_fY(X_{\text{top}}) \) for all open \(X_{\text{top}} \subseteq X'_{\text{top}} \subseteq X_{\text{top}} \) form a sheaf of \(\mathcal{O}_X \)-modules \(T_fY \) on \(X_{\text{top}} \), which we call the tangent sheaf of \(X \). When \(Y = X \), \(f = id_X \), we write \(TX = T_{id_X}X \), and call it the tangent sheaf of \(X \).

Proof. It is immediate from Definition \(\text{B.2.4} \) and \(\text{B.1.4} \) that \(T_fY \) is a presheaf of \(\mathcal{O}_X \)-modules, that is, it satisfies Definition \(\text{A.12} \) (iii). Let \(\chi' : X' \hookrightarrow X \) and \(\chi'' : X'' \hookrightarrow X \) for \(a \in A \) be open submanifolds with \(\bigcup_{a \in A} X_{a,\text{top}} = X'_{\text{top}} \), so that \(\{X_{a,\text{top}} : a \in A\} \) is an open cover of \(X'_{\text{top}} \subseteq X_{\text{top}} \). For each \(a \in A \), as \(X''_{a,\text{top}} \subseteq X'_{\text{top}} \subseteq X_{\text{top}} \), Assumption \(\text{3.2} \) (d) implies that there is a unique open submanifold \(\xi_a : X_a \to X' \) with \(\xi_a = \chi' \circ \xi_a \), as in \(\text{B.16} \).

For (iv), suppose \(\alpha_1, \alpha_2 \in T_fY(X'_{\text{top}}) = \Gamma(T_{f\circ \chi' Y}) \) with \(\rho\chi''_{\text{top}} \alpha_1 = \rho\chi''_{\text{top}} \alpha_2 \) for all \(a \in A \), so that \(\xi_a^*(\alpha_1) = \xi_a^*(\alpha_2) \) in \(\Gamma(T_{f\circ \chi' Y}) \). Write \(\alpha_c = [U_c, u_c] \) for \(c = 1, 2 \), where \(U_c, u_c \) live in a commutative diagram \(\text{B.5} \):

```
\begin{align*}
\begin{array}{c}
X' \\
\uparrow \quad \downarrow f_{\chi'} \\
U_c \\
\uparrow a_c \\
X'' \times \mathbb{R} \\
\end{array}
\end{align*}
```

From the definition of \(\xi_a^*(\alpha_c) \) in \(\text{B.4.4} \), we see that if we define \(h_{ac} : U_{ac} \to U_c \) to be the open submanifold with \(U_{ac,\text{top}} = U_{ac,\text{top}} \cap (X''_{a,\text{top}} \times \mathbb{R}) \subseteq X''_{a,\text{top}} \times \mathbb{R} \), then \(\xi_a^*(\alpha_c) = [U_{ac, u_c}, h_{ac} \circ \alpha_c] \). Hence \([U_{a1}, u_1], h_{a1} = [U_{a2}, u_2] \) as a sheaf \(\text{B.16} \) for each \(\bar{x} \in X_{a,\text{top}} \) there exist \(j : V \hookrightarrow X'' \) and \(v : V \to Y \) satisfying \(\text{B.6} \) and \(\xi_a \circ j : V \hookrightarrow X' \) and \(v : V \to Y \) satisfying \(\text{B.6} \) for \((U, u_1) \approx (U_2, u_2) \) at \(\bar{x} \in X'_{\text{top}} \). As this holds for all \(\bar{x} \in X_{a,\text{top}} \) and \(\bigcup_{a \in A} X_{a,\text{top}} = X'_{\text{top}} \), we see that \(\alpha_1 \approx [U_1, u_1] = [U_2, u_2] = \alpha_2 \). Hence \(T_fY \) satisfies Definition \(\text{A.12} \) (iv).

For (v), suppose that \(\alpha_a \in T_fY(X''_{a,\text{top}}) = \Gamma(T_{f \circ \chi_a Y}) \) for all \(a \in A \) with \(\rho\chi''_{\text{top}} \circ \chi_{\text{top}}(\alpha_a) = \rho\chi''_{\text{top}} \circ \chi_{\text{top}}(\alpha_b) \) for all \(a, b \in A \). \(\text{B.17} \)

Write \(\alpha_a = [U_a, u_a] \) for \(a \in A \), where \(U_a, u_a \) live in a diagram \(\text{B.5} \):

```
\begin{align*}
\begin{array}{c}
X'' \\
\uparrow \quad \downarrow f_{\chi''} \\
U_a \\
\uparrow a_a \\
X' \times \mathbb{R} \\
\end{array}
\end{align*}
```

Let \(S_A \) be the set of all finite, nonempty subsets \(B \subseteq A \). For each \(B \in S_A \) write \(\chi''_B : X''_B \to X' \) for the open submanifold with \(X''_{B,\text{top}} = \bigcap_{b \in B} X''_{a,\text{top}} \). When \(B = \{a\} \) we have \(X''_a = X''_B \), \(\chi''_a = \chi''_B \). If \(C \subseteq B \) lie in \(S_A \) then there is a unique \(\xi_{BC} : X''_B \hookrightarrow X''_C \) with \(\chi''_B = \chi''_C \circ \xi_{BC} \) by Assumption \(\text{3.2} \) (d).

For each \(B \in S_A \), we will choose an open submanifold \(\kappa_B : W_B \hookrightarrow X''_B \times \prod_{b \in B} \mathbb{R} \) and a morphism \(\psi_B : W_B \to Y \) in \(\text{Man} \) with the properties:

\(251 \)
(a) \(X''_{B,\text{top}} \times \{0,\ldots,0\} \subseteq W_{B,\text{top}} \) for all \(B \in S_A \).

(b) For \(a \in A \) we have \(W_{(a)} = U_a \rightarrow X''_a \times \mathbb{R} = X''_{S_A} \times \mathbb{R} \) and \(w_{(a)} = u_a \).

(c) If \(C \subseteq B \) lie in \(S_A \) and \((x, (s_a)_{a \in C}) \subseteq W_{B,\text{top}} \) then \((x, (s_a)_{a \in C}) \) lies in \(W_{C,\text{top}} \) with \(w_{C,\text{top}}(x, (s_a)_{a \in C}) = w_{B,\text{top}}(x, (s_a)_{a \in B \setminus C}) \).

We do this by induction on \(|B| \). For the first step, \(W_B, w_B \) are determined by (b) when \(|B| = 1 \), and (a) holds by definition of \(U_a, u_a \). For the inductive step, suppose that \(m \geq 1 \) and we have chosen \(W_B, w_B \) for all \(B \in S_A \) with \(|B| \leq m \), such that (a), (c) hold whenever \(|B| \leq m \). Let \(B \in S_A \) with \(|B| = m + 1 \), and write \(B = \{a_1, \ldots, a_{m+1}\} \). Apply Assumption 3.7(a) with \(k = m + 1 \), \(n = 1 \), and \(X''_B \) in place of \(X''_a \), taking \(f_i : U_i \rightarrow Y \) to be the restriction of \(w_{B \setminus \{a_i\}} : W_{B \setminus \{a_i\}} \rightarrow Y \) to the intersection of \(W_{B \setminus \{a_i\}} \) with \(X''_B \times \mathbb{R}^m \).

The compatibility condition between \(f_i, f_j \) in Assumption 3.7(a) follows from (c) above for \(B \setminus \{a_i, a_j\} \subseteq B \setminus \{a_i\} \) and \(B \setminus \{a_i, a_j\} \subseteq B \setminus \{a_j\} \). Therefore Assumption 3.7(a) gives \(W_B, w_B \) satisfying (a), and (c) when \(C \subsetneq B \) with \(|C| = m \). Then (c) for \(|C| < m \) follows by taking \(C \subseteq B \setminus \{a_i\} \subseteq B \). Hence by induction we can choose \(W_B, w_B \) satisfying (a)–(c) for all \(B \in S_A \).

Now apply Proposition 3.7 to choose a partition of unity \(\{\eta_a : a \in A\} \) on \(X' \) subordinate to the open cover \(\{X''_{a,\text{top}} : a \in A\} \). Choose an open submanifold \(i : U \rightarrow X' \times \mathbb{R} \) such that \(X''_{\text{top}} \times \{0\} \subseteq U_{\text{top}} \) and if \((x, s) \in U_{\text{top}} \) and \(B = \{a \in A : x \in \text{supp} \eta_{a,\text{top}}\} \) then \((x, (\eta_{a,\text{top}}(x)s)_{a \in B}) \in W_{B,\text{top}} \). By (a) above and local finiteness of \(\{\eta_a : a \in A\} \), this holds for any small enough open neighbourhood of \(X''_{\text{top}} \times \{0\} \) in \(X' \times \mathbb{R} \).

We claim that there is a unique morphism \(u : U \rightarrow Y \) in \(\text{Man} \) such that for all \((x, s) \in U_{\text{top}} \) with \(B = \{a \in A : x \in \text{supp} \eta_{a,\text{top}}\} \) in \(S_A \) we have

\[
u_{\text{top}}(x, s) = w_{B,\text{top}}(x, (\eta_{a,\text{top}}(x)s)_{a \in B}).
\]

(B.18)

To see this, note that as \(\eta_a \) for \(a \in B \) and \(w_B \) are morphisms in \(\text{Man} \), for each \(B \in S_A \), equation (B.18) is the underlying continuous map of a morphism in \(\text{Man} \) from an open submanifold of \(U \) to \(Y \). Part (c) above implies that these continuous maps for \(C \subseteq B \) agree on the overlap of their domains. If a point lies in the domain of the functions for \(B, B' \in S_A \) then it lies in the domain for \(B \cap B' \subseteq B \) by (c), and considering \(B \cap B' \subseteq B \cap B' \subseteq B' \) we see that the continuous maps for \(B, B' \) agree on the overlap of their domains. Hence by Assumption 3.3(a) there is a unique \(u : U \rightarrow Y \) satisfying (B.18).

Now put \(a = [U, u] \in \mathcal{T} Y(X''_{\text{top}}) = \Gamma(\mathcal{T}_{\text{top}} Y) \). Fix \(a \in A \), and let \(\bar{x} \in X''_{a,\text{top}} \). Set \(B = \{b \in A : \bar{x} \in \text{supp} \eta_{b,\text{top}}\} \). Choose an open neighbourhood \(R \rightarrow X''_a \) of \(\bar{x} \) in \(X''_a \) such that \(R_{\text{top}} \subseteq X''_{a,\text{top}} \) for all \(b \in B \), and \(R_{\text{top}} \cap \text{supp} \eta_{c,\text{top}} = \emptyset \) for all \(c \in A \setminus B \). This is possible as \(\text{supp} \eta_{b,\text{top}} \) is contained in \(X''_{b,\text{top}} \) and closed in
When \(b \), with the definitions of addition and multiplication by functions in \(\Gamma(T_Xf) \) and \(\text{interior} \) this reduces to the sheaf of smooth sections of the b-tangent bundle \(f^{\ast} \text{top} \) in Example 3.8(ii), one can show that \(\rho_X \) is canonically isomorphic to the sheaf of smooth sections of \(f^{\ast} \text{top} \) being a presheaf of \(O_X \)-modules as above.

Here the second step follows from comparing the definition \(\text{(B.21)} \) of \(\alpha = [U, u] \) with the definitions of addition and multiplication by functions in \(\Gamma(T_{f^{\ast}TY}) \) in \(\text{(B.42)} \), the fifth uses \(\text{(B.17)} \), the eighth holds as \(\sum_{b \in B} \eta_b = 1 \) on \(R \) since \(\{ \eta_a : a \in A \} \) is a partition of unity with \(R_{\text{top}} \cap \supp \eta_{c, \text{top}} = \emptyset \) for all \(c \in A \setminus B \), and the other steps come from \(T f \) being a presheaf of \(O_X \)-modules as above.

Since \(X_{a, \text{top}}^{\ast} \) is covered by such open subsets \(R_{\text{top}} \subseteq X_{a, \text{top}}^{\ast} \), equation \(\text{(B.19)} \) and Definition \(\text{A.12(v)} \) for \(T f Y \) (proved above) imply that \(\rho_{X_{a, \text{top}}^{\ast}} X_{a, \text{top}}^{\ast} (\alpha) = \alpha_a \) for all \(a \in A \). Therefore \(T f Y \) satisfies Definition \(\text{A.12(v)} \), and is a sheaf.

Here are some examples:

Example B.26. (a) When \(\text{Man} = \text{Man}^{\ast} \), we have \(\Gamma(T f Y) \cong \Gamma^\infty(f^{\ast}(TY)) \) as in Example 3.3.17, and one can show that \(T f Y \) is canonically isomorphic to the sheaf of smooth sections of the vector bundle \(f^{\ast}(TY) \to X \), so that \(T X \) is canonically isomorphic to the sheaf of smooth sections of \(TX \to X \).

(b) When \(\text{Man} \) is one of the categories of manifolds with corners from Chapter 2

\[
\text{Man}^{\ast}_{\text{st}}, \text{Man}^{\ast}_{\text{st, in}}, \text{Man}^{\ast}_{\text{c}}, \text{Man}^{\ast}_{\text{c, in}}, \text{Man}^{\ast}_{\text{c, st}}, \text{Man}^{\ast}_{\text{c, st, in}}, \text{Man}^{\ast}_{\text{c, ac}}, \text{Man}^{\ast}_{\text{c, ac, in}}, \text{Man}^{\ast}_{\text{c, ac, st, in}},
\]

as in Example 3.8(ii), one can show that \(T f Y \) is the sheaf of smooth sections of the vector bundle \(f^{\ast}(bTY) \to X \), so that \(T X \) is canonically isomorphic to the sheaf of smooth sections of the b-tangent bundle \(bTX \to X \).

(c) When \(\text{Man} \) is one of the categories of manifolds with corners from Chapter 2

\[
\text{Man}^{\ast}, \text{Man}^{\ast}_{\text{st}}, \text{Man}^{\ast}_{\text{c}}, \text{Man}^{\ast}_{\text{c, st}}, \text{Man}^{\ast}_{\text{c, st, in}}, \text{Man}^{\ast}_{\text{c, ac}}, \text{Man}^{\ast}_{\text{c, ac, in}}, \text{Man}^{\ast}_{\text{c, ac, st, in}},
\]

as in Example 3.8(ii), it turns out that \(T f Y \) is the sheaf of sections of the vector bundle of mixed rank \(C(f) \) of \(bTC(Y) \) on \(C_0(X) \) and the identification \(X \cong C_0(X) \) from \(\text{3.2.2} \). If \(f \) is interior this reduces to \(f^{\ast}(bTY) \to X \) as in (b).

(d) When \(\text{Man} = \text{Man}^{\ast}_{\text{we}} \) from \(\text{3.1.2} \) as in Example 3.8(ii), and \(f : X \to Y \) in \(\text{Man}^{\ast}_{\text{we}} \) is weakly smooth but not smooth, in general \(T f Y \) is not even locally the sheaf of sections of a vector bundle on \(X \).

253
B.4.6 Acting on sheaves $\mathcal{T}_f Y$ with morphisms in \textbf{Man}

We now lift the material of [B.4.4] from global sections $\Gamma(\mathcal{T}_f Y)$ to sheaves $\mathcal{T}_f Y$.

Definition B.27. Let $f : X \to Y$ and $g : Y \to Z$ be morphisms in \textbf{Man}. Define a morphism $\mathcal{T}g : \mathcal{T}_f Y \to \mathcal{T}_{gf} Z$ of sheaves of \mathcal{O}_X-modules on X_{top} by, for each open submanifold $\chi' : X' \hookrightarrow X$ in \textbf{Man},

$$\mathcal{T}g(X'_{\text{top}}) = \Gamma(\mathcal{T}g) : \mathcal{T}_f Y(X'_{\text{top}}) = \Gamma(\mathcal{T}_{f \circ g} Y) \to \mathcal{T}_{gf} Z(X'_{\text{top}}) = \Gamma(\mathcal{T}_{g \circ f \chi'} Z).$$

Using (B.14) we see that $\mathcal{T}g$ is a sheaf morphism.

On Y_{top}, we have $\mathcal{T}_g Z$, a sheaf of \mathcal{O}_Y-modules, and $(f_{\text{top}})_*(\mathcal{T}_{gf} Z)$, a sheaf of $(f_{\text{top}})_*(\mathcal{O}_X)$-modules. As in [B.1.3] we have a morphism $f_1 : \mathcal{O}_Y \to (f_{\text{top}})_*(\mathcal{O}_X)$ of sheaves of \mathbb{R}-algebras or C^∞-rings on Y_{top}. We will define a sheaf morphism $f_2 : \mathcal{T}_g Z \to (f_{\text{top}})_*(\mathcal{T}_{gf} Z)$ on Y_{top} which is a module morphism under f_1.

Let $\xi' : Y' \hookrightarrow Y$ be an open submanifold in \textbf{Man}, and let $\chi' : X' \hookrightarrow X$ be the open submanifold with $X'_{\text{top}} = f_{\text{top}}^{-1}(Y'_{\text{top}}) \subseteq X_{\text{top}}$. Then Assumption 3.2(d) gives a unique $f' : X' \to Y'$ with $\xi' \circ f' = f \circ \chi'$. Define

$$f_2(Y'_{\text{top}}) = f'^* : \mathcal{T}_g Z(Y'_{\text{top}}) = \Gamma(\mathcal{T}_{gf} Z) \to (f_{\text{top}})_*(\mathcal{T}_{gf} Z)(Y'_{\text{top}}) = \mathcal{T}_{gf} Z(X'_{\text{top}}) = \Gamma(\mathcal{T}_{gf \circ f'} Z) = \Gamma(\mathcal{T}_{g} \circ f' Z).$$

Using (B.14) we can prove that f_2 is a sheaf morphism. The module morphism property for f_2 follows from the corresponding property for f'^*.

Let $f^2 : f_{\text{top}}^{-1}(\mathcal{T}_g Z) \to \mathcal{T}_{gf} Z$ on X_{top} be adjoint to $f_2 : \mathcal{T}_g Z \to (f_{\text{top}})_*(\mathcal{T}_{gf} Z)$ under (A.13). Then $f_{\text{top}}^{-1}(\mathcal{T}_g Z)$ is an $f_{\text{top}}^{-1}(\mathcal{O}_Y)$-module, and $\mathcal{T}_{gf} Z$ an \mathcal{O}_X-module, and f^2 is a module morphism under $f^2 : f_{\text{top}}^{-1}(\mathcal{O}_Y) \to \mathcal{O}_X$.

If $e : W \to X$ is another morphism in \textbf{Man}, using (B.14) we can prove that

$$\mathcal{T}(g \circ f) = \mathcal{T}_g \circ \mathcal{T}f : \mathcal{T}_e X \to \mathcal{T}_{gf \circ e} Z,$$

$$(f \circ e)_\circ = (f_{\text{top}})_*(e_{\text{top}}) \circ f_2 : \mathcal{T}_g Z \to ((f \circ e)_{\text{top}})_*(\mathcal{T}_{gf \circ e} Z),$$

$$(e_{\text{top}})_*(\mathcal{T}g) \circ e_\circ = e_{\text{top}} \circ \mathcal{T}g : \mathcal{T}_f Y \to (e_{\text{top}})_*(\mathcal{T}_{gf \circ e} Z).$$

Using the adjoint property for f_2, f^2 above, the last two equations imply that

$$(f \circ e)^0 = e^0 \circ e^{-1}_\circ(f^0) : (f \circ e)_{\text{top}}^{-1}((\mathcal{T}_g Z) \to \mathcal{T}_{gf \circ e} Z),$$

$$\mathcal{T}g \circ e^0 = e^0 \circ e^{-1}_\circ(\mathcal{T}g) : e^{-1}_\circ(\mathcal{T}_f Y) \to \mathcal{T}_{gf \circ e} Z.$$
B.4.7 A pairing $\mu_X : \mathcal{T}X \times \mathcal{T}^*X \to \mathcal{O}_X$

Let $X \in \text{Man}$. In [B.3.1] we defined the cotangent sheaf \mathcal{T}^*X, and in [B.4.5] the tangent sheaf $\mathcal{T}X$, both \mathcal{O}_X-modules on X_{top}. Note that in general neither is dual to the other. For example, when $\text{Man} = \text{Man}^c$, as in Example [B.12] (b) \mathcal{T}^*X is the sheaf of sections of the cotangent bundle $\mathcal{T}^*X \to X$, and as in Example [B.26] (b),(c) $\mathcal{T}X$ is the sheaf of sections of the b-tangent bundle $^b\mathcal{T}^X \to X$, but $^b\mathcal{T}^X, \mathcal{T}^X$ are not dual vector bundles if $\partial X \neq \emptyset$. We defined \mathcal{T}^*X using morphisms $X \to \mathbb{R}$ in Man, and $\mathcal{T}X$ using morphisms $X \times \mathbb{R} \to X$ in Man, so $\mathcal{T}X$ and \mathcal{T}^*X depend on different data in Man.

We will define an \mathcal{O}_X-bilinear sheaf pairing $\mu_X : \mathcal{T}X \times \mathcal{T}^*X \to \mathcal{O}_X$ on X_{top}, thought of as the pairing between vector fields and 1-forms on X. More generally, if $f : X \to Y$ is a morphism in Man we will define bilinear pairings $\mu_f : (f_{\text{top}})_*(T_j Y) \times \mathcal{T}^*Y \to (f_{\text{top}})_*(\mathcal{O}_X)$ on Y_{top}, and $\mu_f : T_j^f Y \times f_{\text{top}}^{-1}(\mathcal{T}^*Y) \to \mathcal{O}_X$ on X_{top}.

Definition B.29. Let $f : X \to Y$ be a morphism in Man. Suppose $j : V \hookrightarrow Y$ is an open submanifold in Man, and let $i : U \hookrightarrow X$ be the open submanifold with $U_{\text{top}} = f^{-1}_{\text{top}}(V_{\text{top}}) \subseteq X_{\text{top}}$. Then Assumption 3.2(d) gives a unique morphism $f' : U \to V$ with $j \circ f' = f \circ i : U \to Y$.

From [B.1.3] [B.3.1] and [B.4.3] we have

\[
\begin{align*}
(f_{\text{top}})_*(\mathcal{O}_X)(V_{\text{top}}) &= \mathcal{O}_X(U_{\text{top}}) \cong C^\infty(U), \quad \mathcal{P}\mathcal{T}^*Y(V_{\text{top}}) = \Omega_{\mathcal{C}^\infty(V)}, \\
(f_{\text{top}})_*(T_j Y)(V_{\text{top}}) &= T_j Y(U_{\text{top}}) = \Gamma(T_{f\alpha} Y) = \Gamma(T_{j\beta} Y) \cong \Gamma(T_{f'} V),
\end{align*}
\]

where for the last part $\Gamma(T_j) : \Gamma(T_f V) \to \Gamma(T_{j\alpha} Y)$ is an isomorphism by Lemma [B.2.3] Identify $(f_{\text{top}})_*(T_j Y)(V_{\text{top}}) = \Gamma(T_{f'} V)$ as in [B.20].

If $\alpha \in (f_{\text{top}})_*(T_j Y)(V_{\text{top}})$ then [B.4.3] defines a relative \mathcal{C}^∞-derivation $\Delta_\alpha : C^\infty(V) \to C^\infty(U)$ over $f' : U \hookrightarrow V$, satisfying [B.12]. Regard $C^\infty(V)$ as a module over $C^\infty(U)$ using $f'^* : C^\infty(V) \to C^\infty(U)$. Then [B.12] implies that Δ_α is a \mathcal{C}^∞-derivation as in [B.2], so the universal property of $\Omega_{\mathcal{C}^\infty(V)}$ in Definition [B.10] gives a unique $\mathcal{C}^\infty(V)$-module morphism $\Gamma_\alpha : \Omega_{\mathcal{C}^\infty(V)} \to C^\infty(U)$ with $\Delta_\alpha = \Gamma_\alpha \circ d\mathcal{C}^\infty(V)$.

Define

\[
\mathcal{P} \mu_f(V_{\text{top}}) : (f_{\text{top}})_*(T_j Y)(V_{\text{top}}) \times \mathcal{P}\mathcal{T}^*Y(V_{\text{top}}) \to (f_{\text{top}})_*(\mathcal{O}_X)(V_{\text{top}}), \quad \mathcal{P} \mu_f(U_{\text{top}}) : (\alpha, \beta) \mapsto \Gamma_\alpha(\beta).
\]

Then $\mathcal{P} \mu_f(U_{\text{top}})$ is linear over $(f_{\text{top}})_*(\mathcal{O}_X)(V_{\text{top}}) = C^\infty(U)$ in α, since Δ_α is $\mathcal{C}^\infty(U)$-linear in α by Proposition [B.20] (c),(d), and linear over $\mathcal{O}_Y(V_{\text{top}}) = C^\infty(V)$ in β, via $f_2(V_{\text{top}})$ in [B.1].

It is easy to check that these maps $\mathcal{P} \mu_f(U_{\text{top}})$ are compatible with restriction morphisms $\rho_{U_{\text{top}}}$ for all open $W_{\text{top}} \subseteq V_{\text{top}} \subseteq Y_{\text{top}}$. Thus, they define a bilinear pairing of presheaves $\mathcal{P} \mu_f : (f_{\text{top}})_*(T_j Y) \times \mathcal{P}\mathcal{T}^*Y \to (f_{\text{top}})_*(\mathcal{O}_X)$. So passing to the sheafification yields a bilinear pairing of sheaves

\[
\mu_f : (f_{\text{top}})_*(T_j Y) \times \mathcal{T}^*Y \to (f_{\text{top}})_*(\mathcal{O}_X).
\]

255
Using the adjoint property of \((f_{\text{top}})_*\) and \(f_{\text{top}}^{-1}\) as in (A.18), we can show that \(\mu_f\) corresponds to a unique pairing

\[
\mu^f : T_f Y \times f_{\text{top}}^{-1}(T^*Y) \rightarrow O_X.
\]

Here \(\mu^f(\alpha, \beta)\) is \(O_X\)-linear in \(\alpha\), but \(f_{\text{top}}^{-1}(O_Y)\)-linear in \(\beta\), using \(f^!: f_{\text{top}}^{-1}(O_Y) \rightarrow O_X\) from \([B.1.3]\). To make \(\mu^f\) \(O_X\)-bilinear, we extend it to

\[
\mu^f : T_f Y \times (f_{\text{top}}^{-1}(T^*Y) \otimes f_{\text{top}}^{-1}(O_Y)) \rightarrow O_X,
\]

or equivalently, to a morphism of \(O_X\)-modules

\[
\mu^f : T_f Y \otimes_{O_X} f_{\text{top}}^{-1}(T^*Y) \otimes_{f_{\text{top}}^{-1}(O_Y)} O_X \rightarrow O_X. \quad (B.21)
\]

When \(X = Y\) and \(f = \text{id}_X\), both \(\mu^f, \mu_f\) become an \(O_X\)-bilinear pairing

\[
\mu_X : \mathcal{T}X \times \mathcal{T}^*X \rightarrow O_X.
\]

B.4.8 Morphisms \(E \rightarrow \mathcal{T}_Y, \mathcal{T}_f Y \rightarrow F\) for vector bundles

\(E, F \rightarrow X\)

Definition B.30. Let \(f : X \rightarrow Y\) be a morphism in \(\hat{\text{Man}}\), and \(E, F \rightarrow X\) be vector bundles on \(X\). Then \([B.2.2]\) defines the \(O_X\)-modules \(E, F\) of sections of \(E, F\), and \([B.4.5]\) defines the \(O_X\)-module \(\mathcal{T}_Y\). Define a *morphism* \(\theta : E \rightarrow \mathcal{T}_Y\) to be an \(O_X\)-module morphism \(\theta : \mathcal{E} \rightarrow \mathcal{T}_Y\), and a *morphism* \(\phi : \mathcal{T}_f Y \rightarrow F\) to be an \(O_X\)-module morphism \(\phi : \mathcal{T}_f Y \rightarrow \mathcal{F}\). That is, in our notation we will not distinguish between the vector bundle morphisms \(E, F\) and their sheaves of sections \(\mathcal{E}, \mathcal{F}\).

By *composition* of such morphisms with each other, with morphisms of vector bundles, and with the \(O_X\)-module morphisms in \([B.4.6]\) we mean composition of \(O_X\)-module morphisms, but identifying vector bundle morphisms \(\text{Hom}(E, F)\) with \(O_X\)-module morphisms \(\text{Hom}_{O_X\text{-mod}}(\mathcal{E}, \mathcal{F})\) as in \([B.2.2]\). For example:

(a) If \(\theta : E \rightarrow \mathcal{T}_Y\) and \(\phi : \mathcal{T}_f Y \rightarrow F\) are as above then \(\phi \circ \theta : E \rightarrow F\) is the honest vector bundle morphism corresponding to \(\phi \circ \theta : \mathcal{E} \rightarrow \mathcal{F}\).

(b) If \(\theta : E \rightarrow \mathcal{T}_Y\) is as above and \(\lambda : D \rightarrow E\) is a vector bundle morphism as above we get a morphism \(\theta \circ \lambda : D \rightarrow \mathcal{T}_Y\).

(c) If \(\theta : E \rightarrow \mathcal{T}_f Y\) is as above, \(g : Y \rightarrow Z\) is a morphism in \(\hat{\text{Man}}\), and \(\mathcal{T}_g : \mathcal{T}_f Y \rightarrow \mathcal{T}_{gf} Z\) is as in \([B.4.6]\) we get a morphism \(\mathcal{T}g \circ \theta : E \rightarrow \mathcal{T}_{gf} Z\).

Example B.31. When \(\hat{\text{Man}} = \text{Man}\), morphisms \(\theta : E \rightarrow \mathcal{T}_f Y, \phi : \mathcal{T}_f Y \rightarrow F\) above are in natural 1-1 correspondence with vector bundle morphisms \(\theta' : E \rightarrow f^*(TY), \phi' : f^*(TY) \rightarrow F\) in the usual sense of differential geometry.

In Definition \([B.16]\) we wrote elements \(\alpha\) of \(\Gamma(\mathcal{T}_f Y)\) in terms of diagrams \([B.5]\) in \(\text{Man}\). We will now show that any morphism \(\theta : E \rightarrow \mathcal{T}_f Y\) may be written in terms of a similar diagram.

256
Definition B.32. Let $f : X \to Y$ be a morphism in \mathbf{Man}, and $\pi : E \to X$ be a vector bundle. Generalizing (B.5), consider commutative diagrams in \mathbf{Man}:

$$
\begin{array}{ccc}
E & \xleftarrow{0_E} & X \\
\downarrow{j} & & \downarrow{f} \\
V & \xrightarrow{v} & Y \\
\end{array}
$$

where $0_E : X \to E$ is the zero section morphism as in (B.2.1) and $j : V \hookrightarrow E$ is an open submanifold with $0_{E,\text{top}}(X_{\text{top}}) \subseteq V_{\text{top}} \subseteq E_{\text{top}}$, and unique $l : X \to V$ with $j \circ l = 0_E$ exists by Assumption (3.2)(d), and $v : V \to Y$ is a morphism in \mathbf{Man} with $v \circ l = f$. For brevity we write such a diagram as the pair (V,v).

Given such a pair (V,v) we will define a morphism $\theta_{V,v} : E \to \mathcal{T}_f Y$, in the sense of Definition (B.30). Write E for the \mathcal{O}_X-module of sections of E. Let $\chi' : X' \hookrightarrow X$ be an open submanifold in \mathbf{Man}, and set $E' = \chi'^{\ast}(E) = E|_{X'}$, so that $k : E' \hookrightarrow E$ is open in \mathbf{Man}. We must define a $C^\infty(X')$-module morphism

$$
\theta_{V,v}(X'_{\text{top}}) : \mathcal{E}(X'_{\text{top}}) = \Gamma^\infty(E') \longrightarrow \mathcal{T}_f Y(X'_{\text{top}}) = \Gamma(\mathcal{T}_f \chi'^{\ast}Y).
$$

Suppose $e' \in \Gamma^\infty(E')$, so that $e' : X' \to E'$ with $\pi_{E'} \circ e' = \text{id}_{X'}$. Then there is a unique morphism $e'^{\ast} : X' \times \mathbb{R} \to E'$ in \mathbf{Man} with $e'^{\ast}(x,t) = t \cdot e'(t)(x) \in E'_t$ for all $x \in X'_t$, and $t \in \mathbb{R}$, where $t \cdot e'^{\ast}(x)$ multiplies $e'(x)$ in the vector space $E'_t \subseteq E_{\text{top}}$ by $t \in \mathbb{R}$. Let $i' : U' \hookrightarrow X' \times \mathbb{R}$ be the open submanifold with $U'_{\text{top}} = e'_t(U_{\text{top}})$. Consider the commutative diagram in \mathbf{Man}:

$$
\begin{array}{ccc}
X' \times \mathbb{R} & \xrightarrow{(id_{X'},0)} & X' \\
\downarrow{e'} & & \downarrow{f} \\
\mathcal{E}(X'_{\text{top}}) & = & \mathcal{T}_f Y(X'_{\text{top}}) \\
\end{array}
$$

where morphisms $\ast \ast$ are open submanifolds, and morphisms \ast exist by Assumption (B.2)(d). Then $U', i', l', u' = v \circ m'$ are a diagram (B.5) for $f \circ \chi' : X' \to Y$, so $[U', u']\in \Gamma(\mathcal{T}_f \chi'^{\ast}Y)$ by Definition (B.16). Define $\theta_{V,v}(X'_{\text{top}})(e') = [U', u']$.

It is now straightforward to show using (B.4.2) and (B.4.5) that $\theta_{V,v}(X'_{\text{top}})$ is a $C^\infty(X')$-module morphism, and that the maps $\theta_{V,v}(X'_{\text{top}}), \theta_{V,v}(X''_{\text{top}})$ for open $X''_{\text{top}} \subseteq X''_{\text{top}} \subseteq X_{\text{top}}$ are compatible with restriction morphisms $\rho_{X'_{\text{top}},X''_{\text{top}}}$, so that $\theta_{V,v} : E \to \mathcal{T}_f Y$ is an \mathcal{O}_X-module morphism.

Proposition B.33. Let $f : X \to Y$ be a morphism in \mathbf{Man}, and $\pi : E \to X$ be a vector bundle. Then every morphism $\theta : E \to \mathcal{T}_f Y$ in Definition (B.30) is of the form $\theta = \theta_{V,v}$ in Definition (B.32) for some diagram (B.22).

Proof. Let X,Y,f,E,θ be as in the proposition. Write r for the rank of E and \mathcal{E} for the \mathcal{O}_X-module of sections of E, so that $\theta : E \to \mathcal{T}_f Y$ is an \mathcal{O}_X-module morphism. Choose an open cover $\{\chi_a : X_a \hookrightarrow X\}$ such that $E_a := E|_{X_a} = \chi_a^{\ast}(E)$
is a trivial vector bundle over X'_a for each $a \in A$, and choose an isomorphism $\psi_a : E_a \to X'_a \times \mathbb{R}^r$ with the trivial vector bundle $X'_a \times \mathbb{R}^r \to X'_a$. Write e_1^a, \ldots, e_r^a for the basis of sections of E_a identified by ψ_a with the canonical basis of sections of $X'_a \times \mathbb{R}^r$. Then $e_k \in \mathcal{E}(X'_a, \text{top}) = \Gamma^{\infty}(E|_{X'_a}^1)$, so $\theta(X'_a, \text{top}) (e_k) \in \mathcal{T}_f Y(X'_a, \text{top}) = \Gamma(T_f \chi_a Y)$. Choose a representative (U^k_a, u^k_a) for $\theta(X'_a, \text{top}) (e_k) = [U^k_a, u^k_a] \in \Gamma(T_f \chi_a Y)$ for all $a \in A$ and $k = 1, \ldots, r$, as in B.4.1 so that U^k_a, u^k_a fit into a commutative diagram B.5:

![Diagram](image)

Apply Assumption 3.7(a) to construct a commutative diagram

$$E|_{X'_a} \cong X'_a \times \mathbb{R}^r$$

such that $j_a : V_a \hookrightarrow X'_a \times \mathbb{R}^r$ is open, and if $(x, (0, \ldots, 0, s_k, 0, \ldots, 0)) \in V_{a, \text{top}}$ with s_k the k^{th} coordinate in \mathbb{R}^r then $(x, s_k) \in U^k_a$ and $u^k_a(x, s_k) = v_{a, \text{top}}(x, (0, \ldots, 0, s_k, 0, \ldots, 0))$. Actually we apply Assumption 3.7(a) 2$^r - r - 1$ times to choose $v_{a, \text{top}}(x, (s_1, \ldots, s_r))$ with subsets of the s_1, \ldots, s_r zero.

The next part of the proof follows that of part (v) of the sheaf property of $T_f Y$ in Proposition 3.25. Let S_A be the set of all finite, nonempty subsets $B \subseteq A$. For each $B \in S_A$ write $\chi_B : X'_B \to X$ for the open submanifold with $X'_B, \text{top} \subseteq \bigcap_{a \in B} X'_{a, \text{top}}$. When $B = \{a\}$ we have $X'_{\{a\}} = X'_a$, $\chi_{\{a\}} = \chi_a$. If $C \subseteq B$ lie in S_A then there is a unique $\xi_{BC} : X'_B \hookrightarrow X'_C$ with $\chi_B = \chi_C \circ \xi_{BC}$ by Assumption 3.2(d).

By the same proof as in the proof of Proposition 3.25 using induction on $|B|$ and Assumption 3.7(a), for each $B \in S_A$ we choose an open submanifold $k_B : W_B \hookrightarrow \bigoplus_{a \in B} E|_{X'_a} \cong X'_B \times \prod_{a \in B} \mathbb{R}^r$ and a morphism $w_B : W_B \to Y$ with:

(a) $X'_B, \text{top} \times \{(0, \ldots, 0)\} \subseteq W_B, \text{top}$ for all $B \in S_A$.

(b) For $a \in A$ we have $W_{\{a\}} = V_a \hookrightarrow E|_{X'_a} \cong X'_a \times \mathbb{R}^r$ and $w_{\{a\}} = v_a$.

(c) If $C \subseteq B$ lie in S_A and $(x, (s_a)_{a \in C}) \in W_{B, \text{top}}$ then $(x, (s_a)_{a \in C})$ lies in $W_{C, \text{top}}$ with $w_{C, \text{top}}(x, (s_a)_{a \in C}) = w_{B, \text{top}}(x, (s_a)_{a \in C}) \subseteq \bigoplus_{a \in B \setminus C} \mathbb{R}^r$.

Now apply Proposition B.7 to choose a partition of unity $\{\eta_a : a \in A\}$ on X' subordinate to the open cover $\{X'_a, \text{top} : a \in A\}$. Choose an open submanifold $j : V \to E$ such that $0_{E, \text{top}}(X_{\text{top}}) \subseteq V_{\text{top}}$ and if $e \in V_{\text{top}} \subseteq E_{\text{top}}$ with $\pi_{\text{top}}(e) = x \in X_{\text{top}}$ and $B = \{a \in A : x \in \text{supp } \eta_a\}$ then $(x, (\eta_a(x) \pi_{\text{top}} \circ \psi_a)(e))_{a \in B} \in W_{B, \text{top}}$. By (a) above and local finiteness of $\{\eta_a : a \in A\}$, this holds for any small enough open neighbourhood of $0_{E, \text{top}}(X_{\text{top}})$ in E.

258
As for the construction of \(u : U \to Y \) satisfying \((B.18)\) in the proof of Proposition \(B.2.2\), there is a unique morphism \(v : V \to Y \) such that for all \(e \in V_{\text{top}} \) with \(\pi_{\text{top}}(e) = x \in X_{\text{top}} \) and \(B = \{ a \in A : x \in \text{supp } \eta_a \text{top} \} \) we have

\[
v_{\text{top}}(e) = w_{B,\text{top}}(x, (\eta_{a,\text{top}}(x) \cdot \pi_R \circ \Psi_{a,\text{top}}(e))_{a \in B}). \tag{B.23}
\]

Then \(j : V \hookrightarrow E \) and \(v : V \to Y \) fit into a diagram \((B.22)\), and so give a morphism \(\theta_{V,v} : E \to \mathcal{T}_f Y \) by Definition \(B.32\). We will show that \(\theta_{V,v} = \theta \).

Let \(\tilde{x} \in X_{\text{top}} \), and set \(B = \{ b \in A : \tilde{x} \in \text{supp } \eta_b \text{top} \} \) in \(S_A \). Choose an open neighbourhood \(R \hookrightarrow X \) of \(\tilde{x} \) in \(X \) such that \(R_{\text{top}} \subseteq X_{b,\text{top}} \) for all \(b \in B \), and \(R_{\text{top}} \cap \text{supp } \eta_c \text{top} = \emptyset \) for all \(c \in A \setminus B \). This is possible as \(\text{supp } \eta_b \text{top} \) is contained in \(X_{b,\text{top}} \) and closed in \(X_{\text{top}} \), and \(\{ \eta_a : a \in A \} \) is locally finite. Let \(e \in \Gamma^\infty(E|_R) \). Then

\[
\theta_{V,v}(R_{\text{top}})(e) = \sum_{a \in B} \eta_a|_R \cdot \theta_{V_a,v_a}(R_{\text{top}})(\Psi_a|_R(e)) = \sum_{a \in B} \eta_a|_R \cdot \theta(R_{\text{top}})(e)
\]

\[
= 1 \cdot \theta(R_{\text{top}})(e) = \theta(R_{\text{top}})(e). \tag{B.24}
\]

Here the first step follows from comparing the definition of \(\theta_{V,v} \), equation \((B.23)\), part (b) above, and the definitions of addition and multiplication by functions in \(\Gamma(\mathcal{T}_f|_R Y) \) in \(B.4.2\). The second holds by definition of \((V_a,v_a)\) above in terms of \((U^k_a, \psi^k_a)\), where \(\theta(X_{a,\text{top}}')(e_a) = [U^k_a, \psi^k_a] \), and \(e_1, \ldots, e_r \) are mapped by \(\Psi_a \) to the canonical basis of sections of \(X_a' \times \mathbb{R}^r \to X_a' \). The third holds as \(\sum_{b \in B} \eta_b \) is 1 on \(R \) since \(\{ \eta_b : a \in A \} \) is a partition of unity with \(R_{\text{top}} \cap \text{supp } \eta_c \text{top} = \emptyset \) for all \(c \in A \setminus B \).

Equation \((B.24)\) shows that for any \(\tilde{x} \in X_{\text{top}} \) and any sufficiently small open neighbourhood \(R_{\text{top}} \) of \(\tilde{x} \) in \(X_{\text{top}} \) we have \(\theta_{V,v}(R_{\text{top}}) = \theta(R_{\text{top}}) : \mathcal{O}(R_{\text{top}}) \to \mathcal{T}_f Y(R_{\text{top}}) \). Since \(\theta_{V,v}, \theta \) are sheaf morphisms, this implies that \(\theta_{V,v} = \theta \).

\[\Box\]

B.4.9 Notation for ‘pullbacks’ \(f^* \) by morphisms \(f : X \to Y \)

We will use the following notation for ‘pullbacks’ \(f^* \) by morphisms \(f : X \to Y \).

Definition B.34. Let \(f : X \to Y \) be a morphism in \(\text{Man} \), and \(E \to Y \) be a vector bundle on \(Y \), and \(\mathcal{E} \) the \(\mathcal{O}_Y \)-module of sections of \(E \) from \(B.2.2\). Then we can form the sheaf pullback \(f^\#_{\text{top}}(\mathcal{E}) \) as in \(B.2.1\) which is a sheaf of modules over \(f_{\text{top}}^{-1}(\mathcal{O}_Y) \) on \(X_{\text{top}} \). In \(B.1.3\) we defined a morphism \(f^2 : f_{\text{top}}^{-1}(\mathcal{O}_Y) \to \mathcal{O}_X \) of sheaves of \(\mathbb{R} \)-algebras or \(C^* \)-rings on \(X_{\text{top}} \). Thus we may form the \(\mathcal{O}_X \)-module \(f_{\text{top}}^{-1}(\mathcal{E}) \otimes_{f_{\text{top}}^{-1}(\mathcal{O}_Y)} \mathcal{O}_X \) using \(f^2 \).

We can also form the pullback vector bundle \(f^*(E) \to X \) as in \(B.2.1\). The corresponding \(\mathcal{O}_X \)-module is canonically isomorphic to \(f_{\text{top}}^{-1}(\mathcal{E}) \otimes_{f_{\text{top}}^{-1}(\mathcal{O}_Y)} \mathcal{O}_X \), and we will identify it with \(f_{\text{top}}^{-1}(\mathcal{E}) \otimes_{f_{\text{top}}^{-1}(\mathcal{O}_Y)} \mathcal{O}_X \), and write it \(f^*(\mathcal{E}) \).

Let \(F \to Y \) be another vector bundle, and \(\theta : \mathcal{E} \to F \) a vector bundle morphism, and \(\tilde{\theta} : \mathcal{E} \to \mathcal{F} \) the corresponding \(\mathcal{O}_Y \)-module morphism. Then we
may form the \mathcal{O}_X-module morphism

$$f^*(\hat{\vartheta}) := f_*^{-1}(\hat{\vartheta}) \otimes \text{id}_{\mathcal{O}_X} : f^*(\mathcal{E}) = f_*^{-1}(\mathcal{E}) \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X \longrightarrow f^*(\mathcal{F}) = f_*^{-1}(\mathcal{F}) \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X.$$

This is the \mathcal{O}_X-module morphism corresponding to the vector bundle morphism $f^*(\vartheta) : f^*(E) \rightarrow f^*(F)$ on X, as in $[\text{B.2.2}]$

Now let $g : Y \rightarrow Z$ be another morphism in $\hat{\text{Man}}$, so we have an \mathcal{O}_Y-module $T_g Z$ and an \mathcal{O}_X-module $T_{g \circ f} Z$. We will often treat $T_{g \circ f} Z$ as if it were the pullback $f^*(T_g Z)$. This is an abuse of notation: for f^* as in $[\text{B.4.6}]$ and using $f^* : f_*^{-1}(\mathcal{O}_Y) \rightarrow \mathcal{O}_X$, we have an \mathcal{O}_X-module morphism

$$f^* \otimes \text{id}_{\mathcal{O}_X} : f_*^{-1}(T_g Z) \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X \longrightarrow T_{g \circ f} Z \otimes_{\mathcal{O}_X} \mathcal{O}_X = T_{g \circ f} Z. \quad (\text{B.25})$$

It would be more consistent to write $f^*(T_g Z) = f_*^{-1}(T_g Z) \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X$ (though we will not), but then $f^*(T_g Z)$ and $T_{g \circ f} Z$ would be different, as $[\text{B.25}]$ need not be an isomorphism for general $\hat{\text{Man}}$.

Suppose E, \mathcal{E} are as above, and $\vartheta : E \rightarrow T_g Z$ is a morphism (that is, $\vartheta : \mathcal{E} \rightarrow T_g Z$ is an \mathcal{O}_Y-module morphism). Define a morphism $f^* (\vartheta) : f^*(E) \rightarrow T_{g \circ f} Z$ by the commutative diagram of \mathcal{O}_X-modules

$$
\begin{array}{ccc}
\mathcal{T}_f Y \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X & \xrightarrow{\mathcal{T}_f Y \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X} & \mathcal{T}_{g \circ f} Z \otimes_{\mathcal{O}_X} \mathcal{O}_X \\
\otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X & & \otimes_{\mathcal{O}_X} \mathcal{O}_X \\
\end{array}
$$

Note that if $\phi : T_g Z \rightarrow \mathcal{F}$ is a morphism, we cannot define a pullback $f^*(\phi) : T_{g \circ f} Z \rightarrow f^*(\mathcal{F})$, because the morphism $[\text{B.25}]$ goes the wrong way.

Definition B.35. Let $f : X \rightarrow Y$ be a morphism in $\hat{\text{Man}}$, and $F \rightarrow Y$ be a vector bundle, and $t \in \Gamma^\infty(F)$. Suppose ∇ is a connection on F, as in $[\text{B.3.3]}$

Writing \mathcal{F} for the \mathcal{O}_Y-module corresponding to F, we have $t \in \Gamma(\mathcal{F})$, so that $\nabla t \in \Gamma(\mathcal{F} \otimes_{\mathcal{O}_Y} T^* Y)$. Define a morphism $f^*(\nabla t) : \mathcal{T}_f Y \rightarrow f^*(\mathcal{F})$, in the sense of $[\text{B.4.5}]$, by the commutative diagram of \mathcal{O}_X-modules

$$
\begin{array}{ccc}
\mathcal{T}_f Y \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X & \xrightarrow{\text{id} \otimes \mu^f_+} & \mathcal{T}_f Y \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X \\
\otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X & & \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X \\
\end{array}
$$

where μ^f_+ is as in $[\text{B.21}]$, and $f_*^{-1}(\mathcal{F}) \otimes_{f_*^{-1}(\mathcal{O}_V)} \mathcal{O}_X$ is the \mathcal{O}_X-module corresponding to $f^*(\mathcal{F}) \rightarrow X$, as in Definition $[\text{B.33}]$.
B.5 The $O(s)$ and $O(s^2)$ notation

When $X \in \mathbf{Man}$, and $E \to X$ is a vector bundle, and $s \in \Gamma^\infty(E)$, we now define several related uses of the notation ‘$O(s)$’ and ‘$O(s^2)$’. This will be important in defining the (2-)categories of (m- and μ-)Kuranishi neighbourhoods in Chapters 4–6.

Definition B.36. Let X be an object in \mathbf{Man}, and $E \to X$ be a vector bundle, and $s \in \Gamma^\infty(E)$ be a section. Then:

(i) If $F \to X$ is a vector bundle and $t_1, t_2 \in \Gamma^\infty(F)$, we write $t_2 = t_1 + O(s)$ if there exists a morphism $\alpha : E \to F$ such that $t_2 = t_1 + \alpha \circ s$ in $\Gamma^\infty(F)$.

Similarly, we write $t_2 = t_1 + O(s^2)$ if there exists $\beta : E \otimes E \to F$ such that $t_2 = t_1 + \beta \circ (s \otimes s)$ in $\Gamma^\infty(F)$. This implies that $t_2 = t_1 + O(s)$.

We can also apply this $O(s), O(s^2)$ notation to morphisms of vector bundles $\theta_1, \theta_2 : F \to G$, by regarding θ_1, θ_2 as sections of $F^* \otimes G$.

(ii) If $F \to X$ is a vector bundle, $f : X \to Y$ is a morphism in \mathbf{Man}, and $\Lambda_1, \Lambda_2 : F \to \mathcal{T}_f Y$ are morphisms as in \ref{B.4.8}, we write $\Lambda_2 = \Lambda_1 + O(s)$ if there exist open submanifolds $i : U \hookrightarrow X$ and $j : V \hookrightarrow E$ with $s_{\top}^{-1}(0) \subseteq U_{\top}$ and $0_{E,\top}(U_{\top}), s_{\top}(U_{\top}) \subseteq V_{\top}$, so that we have a commutative diagram in \mathbf{Man}:

$$
\begin{array}{ccc}
U & \overset{k_1}{\longrightarrow} & V \\
\downarrow^j & & \downarrow^j \\
X & \overset{\pi}{\longrightarrow} & X,
\end{array}
$$

where the morphisms k_1, k_2 exist by Assumption \ref{B.3.2}d). Also there should exist a morphism $\mathcal{M} : \pi^*(F)|_V \to \mathcal{T}_{f \circ \pi}|_V$ with $k_1^*(\mathcal{M}) = \Lambda_1|_U$ and $k_2^*(\mathcal{M}) = \Lambda_2|_U$ in morphisms $F|_U \to \mathcal{T}_f Y|_U$, where

$$
k_a^*(\mathcal{M}) : k_a^* \circ \pi^*(F) = F|_U \longrightarrow \mathcal{T}_{f \circ \pi}|_U
$$

for $a = 1, 2$ are as in \ref{B.4.8}.

(iii) If $f, g : X \to Y$ are morphisms in \mathbf{Man}, we write $g = f + O(s)$ if there is a diagram \ref{B.28} as in (ii) with $s_{\top}^{-1}(0) \subseteq U_{\top}$, and a morphism $\nu : V \to Y$ in \mathbf{Man} with $\nu \circ k_1 = f|_U$ and $\nu \circ k_2 = g|_U$ in morphisms $U \to Y$ in \mathbf{Man}.

(iv) Let $f, g : X \to Y$ with $g = f + O(s)$ be as in (iii), and $F \to X, G \to Y$ be vector bundles, and $\theta_1 : F \to f^*(G), \theta_2 : F \to g^*(G)$ be morphisms. We wish to compare θ_1, θ_2, though they map to different vector bundles.

We write $\theta_2 = \theta_1 + O(s)$ if there is a diagram \ref{B.28} with $s_{\top}^{-1}(0) \subseteq U_{\top}$ and a morphism $\nu : V \to Y$ with $\nu \circ k_1 = f|_U$ and $\nu \circ k_2 = g|_U$ as in (iii), and a morphism $\phi : \pi^*(F)|_V \to \nu^*(G)$ with $k_1^*(\phi) = \theta_1|_U$ and $k_2^*(\phi) = \theta_2|_U$, where $k_1^*(\phi), k_2^*(\phi)$ are as in \ref{B.2.1}.

261
(v) Let \(f, g : X \to Y \) with \(g = f + O(s) \) be as in (iii), and \(F \to X \) be a vector bundle, and \(\Lambda_1 : F \to \mathcal{T}_fY, \Lambda_2 : F \to \mathcal{T}_gY \) be morphisms, as in \([B.4.8]\). We wish to compare \(\Lambda_1, \Lambda_2 \), though they map to different sheaves.

We write \(\Lambda_2 = \Lambda_1 + O(s) \) if there is a diagram \([B.28]\) with \(s_{\text{top}}^{-1}(0) \subseteq U_{\text{top}} \) and a morphism \(v : V \to Y \) with \(\circ k_1 = f|_U \) and \(\circ k_2 = g|_U \) as in (iii), and a morphism \(M : \pi^*(F)|_V \to \mathcal{T}_vY \) with \(k_1^*(M) = \Lambda_1|_U \) and \(k_2^*(M) = \Lambda_2|_U \), where \(k_1^*(M), k_2^*(M) \) are as in \([B.4.8]\).

(vi) Suppose \(f : X \to Y \) is a morphism in \(\text{Man} \), and \(F \to X, G \to Y \) are vector bundles, and \(t \in \Gamma^\infty(G) \) with \(f^*(t) = O(s) \) in the sense of (i), and \(\Lambda : F \to \mathcal{T}_fY \) is a morphism, as in \([B.4.8]\) and \(\theta : F \to f^*(G) \) is a vector bundle morphism, as in \([B.2.1]\). We write \(\theta = f^*(dt) \circ \Lambda + O(s) \) if whenever \(\nabla \) is a connection on \(G \) we have \(\theta = f^*(\nabla t) \circ \Lambda + O(s) \) in the sense of (i), where \(f^*(\nabla t) : \mathcal{T}_fY \to f^*(G) \) is as in \([B.4.9]\), so that \(f^*(\nabla t) \circ \Lambda : F \to f^*(G) \) is a vector bundle morphism as in \([B.4.8]\).

Note that there exists a connection \(\nabla \) on \(G \) by Proposition \([B.14]\ a). If \(\nabla_1, \nabla_2 \) are two such connections then \(\nabla = \nabla_1 + \nabla_2 \) for \(\Gamma : G \to G \otimes_{\mathcal{O}_Y} \mathcal{T}^*Y \) an \(\mathcal{O}_Y \)-module morphism, by Proposition \([B.14]\ b). Then

\[
f^*(\nabla t) \circ \Lambda = f^*(\nabla t) \circ \Lambda + [f_{\text{top}}^{-1}(\Gamma) \circ \Lambda] \cdot f^*(t),
\]

where \(f_{\text{top}}^{-1}(\Gamma) \circ \Lambda \in \Gamma^\infty(F^* \otimes f^*(G) \otimes f^*(G^*)) \) is a natural section. Thus \(f^*(\nabla t) \circ \Lambda = f^*(\nabla t) \circ \Lambda + O(s) \), since \(t = O(s) \). Hence the condition \(\theta = f^*(\nabla t) \circ \Lambda + O(s) \) is independent of the choice of connection \(\nabla \) on \(G \).

Note also that the \(f^*(dt) \)'s in \(\theta = f^*(dt) \circ \Lambda + O(s) \) is just notation, intended to suggest this independence of the choice of \(\nabla \).

(vii) Let \(f, g : X \to Y \) with \(g = f + O(s) \) be as in (iii), and \(\Lambda : E \to \mathcal{T}_fY \) be a morphism in the sense of \([B.4.8]\). We write \(g = f + \Lambda \circ s + O(s^2) \) if there exists a commutative diagram in \(\text{Man} \)

\[
\begin{array}{ccc}
U & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \circ g \\
X & \xleftarrow{i} & V \\
\end{array}
\quad \text{(B.29)}
\]

with \(s_{\text{top}}^{-1}(0) \subseteq U_{\text{top}} \), where morphisms \(i, j \) are open submanifolds, and morphisms \(k_1, k_2 \) exist by Assumption \([3.2]\ d), and \(\Lambda|_U = \theta_{V,Y} \) as a morphism \(E|_U \to \mathcal{T}_fY|_U \), in the notation of \([B.4.8]\).

Theorem \([3.17]\) proved in \([B.9]\) gives a long list of properties of the \(O(s) \), \(O(s^2) \) notation that we need for our theories of \((m-\) and \(\mu-\))Kuranishi spaces.

Remark B.37. (a) When \(\text{Man} = \text{Man} \), and to some extent for general \(\text{Man} \), we can interpret the \(O(s) \) and \(O(s^2) \) conditions in Definition \([B.36]\) in terms of
C^∞-algebraic geometry, as in [B.1.2] and [56, 65]. As in Proposition B.5 we can make $X \in \mathbf{Man}$ into a C^∞-scheme $\Lambda = (X_{\text{top}}, O_X)$. Given a vector bundle $E \to X$ and $s \in \Gamma^c(E)$, we have closed C^∞-subsheaves $S_1 \subseteq S_2 \subseteq \Lambda$, where S_1 is defined by $s = 0$, and S_2 by $s \otimes s = 0$.

The rough idea is that an equation on X holds up to $O(s)$ if when translated into C^∞-scheme language, the restriction of the equation to $S_1 \subseteq \Lambda$ holds exactly, and it holds up to $O(s^2)$ if its restriction to $S_2 \subseteq \Lambda$ holds exactly. For example, $t_2 = t_1 + O(s) \iff t_2|_{S_1} = t_1|_{S_1}$, and $t_2 = t_1 + O(s^2) \iff t_2|_{S_2} = t_1|_{S_2}$ in Definition B.36(i), for general \mathbf{Man}.

Also morphisms $f, g : X \to Y$ in \mathbf{Man} translate to C^∞-scheme morphisms $\tilde{f}, \tilde{g} : \tilde{X} \to \tilde{Y}$. Then $g = f + O(s)$ implies that $g|_{S_1} = \tilde{f}|_{\tilde{S}_1}$ for general \mathbf{Man}, and when $\mathbf{Man} = \mathbf{Man}$ the two are equivalent. If we think of the $O(s), O(s^2)$ conditions as restriction to S_1, S_2 then much of Theorem 3.17 becomes obvious.

(b) In Definition B.36(i), we could instead have defined $t_2 = t_1 + O(s)$ in the style of (i), using a diagram [B.28]. One can prove using Assumption 3.5 that this would give an equivalent notion of when $t_2 = t_1 + O(s)$, and we implicitly show this in the second part of the proof of Theorem 3.17(f) in [B.9].

(c) We explain Definition B.36(vii). We have $\Lambda \circ s \in \Gamma(T_f Y)$, where as in §B.4.1 elements of $\Gamma(T_f Y)$ are defined using infinitesimal deformations of f amongst morphisms $X \to Y$ in \mathbf{Man}. The equation ‘$g = f + \Lambda \circ s + O(s^2)$’ means that $g = f + O(s)$, so that g is a small deformation of f near $s_{\text{top}}^{-1}(0) \subseteq X_{\text{top}}$, and to leading order near $s_{\text{top}}^{-1}(0)$ is the infinitesimal deformation $\Lambda \circ s$ of f.

We could have generalized Definition B.36(vii) to define ‘$g = f + v + O(s^2)$’ for any $v \in \Gamma(T_f Y)$ with $v = O(s)$. It is not important that $v = \Lambda \circ s$ for some $\Lambda : E \to T_f Y$, but we will only use the case $v = \Lambda \circ s$.

B.6 Discrete properties of morphisms in \mathbf{Man}

Here is a condition for classes of morphisms in \mathbf{Man} to lift nicely to classes of (1-)morphisms in $\mathbf{mKur}, \mathbf{Kur}$, \mathbf{Kur} in Chapters 4–6.

Definition B.38. Let P be a property of morphisms in \mathbf{Man}, so that for any morphism $f : X \to Y$ in \mathbf{Man}, either f is P, or f is not P. For example, if \mathbf{Man} is \mathbf{Man} then P could be interior, or b-normal.

We call P a **discrete** property of morphisms in \mathbf{Man} if:

(i) All diffeomorphisms $f : X \to Y$ in \mathbf{Man} are P.

(ii) All open submanifolds $i : U \hookrightarrow X$ in \mathbf{Man} are P.

(iii) If $f : X \to Y$ and $g : Y \to Z$ in \mathbf{Man} are P then $g \circ f : X \to Z$ is P.

(iv) For a morphism $f : X \to Y$ in \mathbf{Man} to be P is a **local property** on X, in the sense that if we can cover X by open submanifolds $i : U \hookrightarrow X$ such that $f \circ i : U \to Y$ is P, then f is P.

Some notation: if $f : X \to Y$ in \mathbf{Man} and $S \subseteq X_{\text{top}}$, then we say that f is P near S if there exists an open submanifold $i : U \hookrightarrow X$ such that
\(S \subseteq U_{\text{top}} \subseteq X_{\text{top}} \) and \(f \circ i : U \to Y \) is \(P \). This is a well behaved notion as \(P \) is a local property, e.g. \(f \) is \(P \) if and only if \(f \) is \(P \) near each \(x \in X_{\text{top}} \).

(v) All morphisms in \(\mathbf{Man} \subseteq \check{\mathbf{\hat{M}an}} \) are \(P \).

(vi) Suppose \(E \to X \) is a vector bundle in \(\check{\mathbf{\hat{M}an}} \), and \(s \in \Gamma^\infty(E) \), so that \(s_{\text{top}}^{-1}(0) \subseteq X_{\text{top}} \), and \(f,g : X \to Y \) are morphisms in \(\check{\mathbf{\hat{M}an}} \) with \(g = f + O(s) \) in the sense of Definition B.36(iii). Then \(f \) is \(P \) near \(s_{\text{top}}^{-1}(0) \) if and only if \(g \) is \(P \) near \(s_{\text{top}}^{-1}(0) \).

(viii) Suppose we are given a diagram in \(\check{\mathbf{\hat{M}an}} \):

\[
\begin{array}{ccc}
U' & \xrightarrow{f} & U \\
\downarrow{i'} & & \downarrow{i} \\
V' & \xrightarrow{g'} & V
\end{array}
\]

where \(i,i',j,j' \) are open submanifolds in \(\check{\mathbf{\hat{M}an}} \), and \(f \circ i' = j \circ f' : U' \to Y \), \(g \circ j' = i \circ g' : V' \to X \), and we are given points \(x \in U'_{\text{top}} \subseteq U_{\text{top}} \subseteq X_{\text{top}} \) and \(y \in V'_{\text{top}} \subseteq V_{\text{top}} \subseteq Y_{\text{top}} \) such that \(f_{\text{top}}(x) = y \) and \(g_{\text{top}}(y) = x \). Suppose too that there are vector bundles \(E \to U' \) and \(F \to V' \) and sections \(s \in \Gamma^\infty(E) \), \(t \in \Gamma^\infty(F) \) with \(s(x) = t(y) = 0 \), such that \(g \circ f' = i \circ i' + O(s) \) on \(U' \) and \(f \circ g' = j \circ j' + O(t) \) on \(V' \) in the sense of Definition B.36(iii). Then \(f,f' \) are \(P \) near \(x \), and \(g,g' \) are \(P \) near \(y \).

Example B.39. (a) When \(\check{\mathbf{\hat{M}an}} \) is \(\mathbf{Man}^c \) from §2.1 the following properties of morphisms in \(\mathbf{Man}^c \) are discrete: interior, b-normal, strongly smooth, simple.

(b) When \(\check{\mathbf{\hat{M}an}} \) is \(\mathbf{Man}^{gc} \) from §2.4.1 the following properties of morphisms in \(\mathbf{Man}^{gc} \) are discrete: interior, b-normal, simple.

(c) When \(\check{\mathbf{\hat{M}an}} \) is \(\mathbf{Man}^{ac} \) or \(\mathbf{Man}^{c,ac} \) from §2.4.2 the following properties of morphisms in \(\mathbf{Man} \) are discrete: interior, b-normal, strongly a-smooth, simple.

B.7 Comparing different categories \(\check{\mathbf{\hat{M}an}} \)

To each category \(\check{\mathbf{\hat{M}an}} \) satisfying Assumptions 3.1–3.7 in Chapters 4–6 we will associate (2-)categories \(\mathbf{mKur}, \mu\mathbf{Kur}, \mathbf{Kur} \) of (\(m \)- and \(\mu \)-)Kuranishi spaces. As in §3.2 there are many examples of such \(\mathbf{Man} \), such as \(\mathbf{Man} = \mathbf{Man} \) or \(\mathbf{Man}^c \), and many functors between them, such as the inclusion \(\mathbf{Man} \hookrightarrow \mathbf{Man}^c \).

Here is an important condition on functors between such categories \(\check{\mathbf{\hat{M}an}} \):
Condition B.40. Let $\Man, \tilde{\Man}$ satisfy Assumptions 3.1–3.7 and $F_{\Man}^{\tilde{\Man}} : \Man \to \tilde{\Man}$ be a functor in the commutative diagram

$$
\begin{array}{ccc}
\Man & \xrightarrow{\subset} & \tilde{\Man} \\
\downarrow F_{\Man}^{\tilde{\Man}} & & \downarrow F_{\Man}^{\tilde{\Man}} \\
\Top & \xrightarrow{\subset} & \Top
\end{array}
$$

where the functors $F_{\Man}^{\tilde{\Man}}$, $F_{\tilde{\Man}}^{\Man}$ are as in Assumption 3.2 and the inclusions $\Man \hookrightarrow \tilde{\Man}, \tilde{\Man}$ as in Assumption 3.4. We require $F_{\Man}^{\tilde{\Man}}$ to take products, disjoint unions, and open submanifolds in \Man to products, disjoint unions, and open submanifolds in $\tilde{\Man}$, and to preserve dimensions.

Note that $F_{\Man}^{\tilde{\Man}}$ must be faithful (injective on morphisms), as $F_{\Man}^{\tilde{\Man}}$ is.

Figure B.1 on page I-47 gives a diagram of functors from Chapter 2 satisfying Condition B.40. In Chapters 4–6, when Condition B.40 holds, we will define natural (2)-functors

$$
F_{\mkur}^{\mu\tilde{\kur}} : \mkur \to \mu\tilde{\kur}, \ F_{\mu\kur}^{\mu\tilde{\kur}} : \mu\kur \to \mu\tilde{\kur}, \ F^{\kur}_{\tilde{\kur}} : \kur \to \tilde{\kur}
$$

between the (2-)categories $\mkur, \mu\kur, \kur$ and $\mu\tilde{\kur}, \mu\tilde{\kur}, \tilde{\kur}$ associated to \Man and $\tilde{\Man}$. To do this, we must relate the material of $\Sect B.1–\Sect B.5$ on differential geometry and the $O(s), O(s^2)$ notation in \Man and in $\tilde{\Man}$.

Definition B.41. Let Condition B.40 hold. We will use accents ‘$\mathring{}$’ and ‘$\mathring{\mathring{}}$’ to denote objects associated to \Man and $\tilde{\Man}$, respectively. When something is independent of \Man or $\tilde{\Man}$ we omit the accent, so for instance we write X_{top} for the underlying topological space of $X \in \Man$.

Let \tilde{X} be an object in $\tilde{\Man}$, and set $\mathring{\tilde{X}} = F_{\Man}^{\tilde{\Man}}(\tilde{X})$. Then all the material of $\Sect B.1.1–\Sect B.5$ on \tilde{X} in \Man maps to corresponding material on $\mathring{\tilde{X}}$ in $\tilde{\Man}$ in a straightforward way. Where relevant we use $F_{\Man}^{\tilde{\Man}}$ to denote the functors transforming structures on $\mathring{\tilde{X}}$ to structures on \tilde{X}. In more detail:

(a) The commutative \mathcal{R}-algebra $C^\infty(\tilde{X})$ in $\Sect B.1.1$ is the set of morphisms $a : \tilde{X} \to \mathbb{R}$ in $\tilde{\Man}$. Applying $F_{\Man}^{\tilde{\Man}}$ gives a map

$$
F_{\Man}^{\tilde{\Man}} : C^\infty(\tilde{X}) \to C^\infty(\mathring{\tilde{X}}).
$$

(b) Section B.1.3 defines the structure sheaves \mathcal{O}_X on X_{top} for $X \in \Man$, and $\mathcal{O}_{\mathring{X}}$ on $\mathring{X}_{\text{top}}$ for $\mathring{X} \in \tilde{\Man}$. There is a natural morphism $F_{\Man}^{\tilde{\Man}} : \mathcal{O}_X \to \mathcal{O}_{\mathring{X}}$ of sheaves of \mathcal{R}-algebras or C^∞-rings on X_{top}, such that if $i : \mathring{U} \hookrightarrow \mathring{\tilde{X}}$ is an open submanifold in $\tilde{\Man}$ then

$$
F_{\Man}^{\tilde{\Man}}(U_{\text{top}}) : \mathcal{O}_X(U_{\text{top}}) = C^\infty(\mathring{U}) \longrightarrow \mathcal{O}_{\mathring{X}}(U_{\text{top}}) = C^\infty(\mathring{\mathring{U}})
$$
is the morphism \((B.31)\) for \(U\).

(c) In \((B.1.3)\) \((B.2.2)\) \(F^{\text{Man}}\) takes partitions of unity, vector bundles, sections, and \(\mathcal{O}_X\)-modules of sections of vector bundles in \(\text{Man}\), to their analogues in \(\text{Man}\), in the obvious way.

(d) In \((B.3.1)\) we define the cotangent sheaf \(\mathcal{T}^*\hat{X}\) as the sheafification of \(\mathcal{P}\mathcal{T}^*\hat{X}\), where if \(i : U \hookrightarrow X\) is open in \(\text{Man}\) then \(\mathcal{P}\mathcal{T}^*\hat{X}(U_{\text{top}}) = \Omega_{\mathcal{C}^\infty(U)}\).

Since \(F^{\text{Man}} : \mathcal{C}^\infty(U) \to \mathcal{C}^\infty(\hat{U})\) in (a) is a \(\mathcal{C}^\infty\)-ring morphism, Definition \((B.10)\) gives a module morphism

\[
\mathcal{P}F^{\text{Man}}_{\text{Man}}(U_{\text{top}}) := \Omega_{F^{\text{Man}}_{\text{Man}}} : \mathcal{P}\mathcal{T}^*\hat{X}(U_{\text{top}}) = \Omega_{\mathcal{C}^\infty(U)} \to \mathcal{P}\mathcal{T}^*\hat{X}(U_{\text{top}}) = \Omega_{\mathcal{C}^\infty(\hat{U})}.
\]

These define a morphism \(\mathcal{P}F^{\text{Man}}_{\text{Man}} : \mathcal{P}\mathcal{T}^*\hat{X} \to \mathcal{P}\mathcal{T}^*\hat{X}\) of presheaves on \(X_{\text{top}}\). Sheafifying gives a morphism \(F^{\text{Man}}_{\text{Man}} : \mathcal{T}^*\hat{X} \to \mathcal{T}^*\hat{X}\) of sheaves on \(X_{\text{top}}\), which is a module morphism under \(F^{\text{Man}}_{\text{Man}} : \mathcal{O}_X \to \mathcal{O}_{\hat{X}}\) from (b).

(e) Let \(\hat{E} \to \hat{X}\) be a vector bundle, and \(\hat{E}\) the \(\mathcal{O}_X\)-module of sections of \(\hat{E}\) from \((B.2.2)\) and \(\nabla : \hat{E} \to \hat{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*\hat{X}\) be a connection on \(\hat{E}\), as in \((B.3.2)\).

Then one can show there is a unique connection \(\nabla\) on \(\hat{E}\) such that the following diagram of morphisms on sheaves on \(X_{\text{top}}\) commutes:

\[
\begin{array}{c}
\hat{E} \\
\downarrow_{F^{\text{Man}}_{\text{Man}} \text{ from (c)}}
\end{array}
\xrightarrow{\nabla}
\begin{array}{c}
\hat{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*\hat{X} \\
\downarrow_{F^{\text{Man}}_{\text{Man}} \text{ from (b),(c),(d)}}
\end{array}
\xrightarrow{\nabla}
\begin{array}{c}
\hat{E} \otimes_{\mathcal{O}_X} \mathcal{T}^*\hat{X}.
\end{array}
\]

(f) Let \(\hat{f} : \hat{X} \to \hat{Y}\) be a morphism in \(\text{Man}\), and \(\check{f} : \check{X} \to \check{Y}\) its image in \(\text{Man}\) under \(F^{\text{Man}}_{\text{Man}}\). Then \((B.4.1)\) \((B.4.2)\) define a \(\mathcal{C}^\infty(\hat{X})\)-module \(\Gamma(\mathcal{T}\check{f}\check{Y})\). There is an obvious map

\[
F^{\text{Man}}_{\text{Man}} : \Gamma(\mathcal{T}\check{f}\check{Y}) \longrightarrow \Gamma(\mathcal{T}\hat{f}\hat{Y}), \quad F^{\text{Man}}_{\text{Man}} : [\hat{U}, \hat{u}] \longmapsto [\check{U}, \check{u}], \quad (B.32)
\]

To see this is well defined, note that in Definition \((B.16)\) if \((\hat{U}, \hat{u}) \approx (\hat{U}', \hat{u}')\) in \(\text{Man}\) then \((\check{U}, \check{u}) \approx (\check{U}', \check{u}')\) in \(\text{Man}\), as \(j, \check{V}, \check{v}\) in \(\text{Man}\) satisfying \((B.6)\) map to \(j, \check{V}, \check{v}\) in \(\text{Man}\) satisfying \((B.6)\), so \([\hat{U}, \hat{u}]\) in \((B.32)\) depends only on the equivalence class \([\check{U}, \check{u}]\).

Equation \((B.32)\) is a module morphism under \((B.31)\).

(g) Section \((B.4.5)\) defines the sheaves of \(\mathcal{O}_X\)-modules \(\mathcal{T}\hat{X}\) and \(\mathcal{T}\check{Y}\). Using \((B.32)\) we define sheaf morphisms \(F^{\text{Man}}_{\text{Man}} : \mathcal{T}\check{X} \to \mathcal{T}\hat{X}\) and \(F^{\text{Man}}_{\text{Man}} : \mathcal{T}\check{Y} \to \mathcal{T}\hat{Y}\) which are module morphisms over \(F^{\text{Man}}_{\text{Man}} : \mathcal{O}_X \to \mathcal{O}_{\hat{X}}\) from (b).

(h) In \((B.4.6)\) \((B.4.9)\) \(F^{\text{Man}}_{\text{Man}}\) is compatible with the definitions and operations in the obvious way.
In \(F^{\Man}_{\Man} \) maps all the \(O(\hat{s}) \) and \(O(\hat{s}^2) \) conditions in \(\tilde{\Man} \) from Definition \(B.36 \) to the corresponding \(O(\hat{s}) \) and \(O(\hat{s}^2) \) conditions in \(\Man \), in the obvious way.

Remark B.42. The definitions of \(B.1 \)–\(B.5 \) have been carefully designed so that material in \(\Man \) all transforms functorially to \(\tilde{\Man} \) under \(F^{\tilde{\Man}}_{\Man} \) without problems, as in Definition \(B.41 \). It would have been easy, and more obvious, to write down definitions which lack this functorial behaviour.

Here is an example of this. Let \(\tilde{f} : \tilde{X} \to \tilde{Y} \) be a morphism in \(\tilde{\Man} \). In \(B.4.3 \) we discussed relative \((C^\infty-) \)-derivations \(\tilde{\Delta} : C^\infty(\tilde{Y}) \to C^\infty(\tilde{X}) \). These are a natural notion of vector field over \(\tilde{f} \), and we could have defined \(\Gamma(\tilde{T}_{\tilde{f}}\tilde{Y}) \) in \(B.4.1 \) as a \(C^\infty(\tilde{X}) \)-module of such derivations. However, in the diagram

\[
\begin{array}{ccc}
C^\infty(\tilde{Y}) & \xrightarrow{\Delta} & C^\infty(\tilde{X}) \\
\downarrow F^{\tilde{\Man}}_{\Man} & & \downarrow F^{\tilde{\Man}}_{\Man} \\
C^\infty(Y) & \xrightarrow{\tilde{\Delta}} & C^\infty(X)
\end{array}
\]

it is unclear whether a relative \((C^\infty-) \)-derivation \(\tilde{\Delta} \) must exist, or if it is unique. So defining \(\tilde{T}_{\tilde{f}}\tilde{Y} \) using \((C^\infty-) \)-derivations would not be functorial under \(F^{\tilde{\Man}}_{\Man} \).

For an inclusion of subcategories \(\Man \subseteq \tilde{\Man} \) we can say more:

Proposition B.43. Suppose \(F^{\tilde{\Man}}_{\Man} : \Man \hookrightarrow \tilde{\Man} \) is an inclusion of subcategories satisfying Condition \(B.40 \) and either:

\((a) \) All objects of \(\tilde{\Man} \) are objects of \(\Man \), and all morphisms \(f : X \to \R \) in \(\tilde{\Man} \) are morphisms in \(\Man \), and for a morphism \(f : X \to Y \) in \(\Man \) to lie in \(\tilde{\Man} \) is a discrete condition, as in Definition \(B.38 \) or

\((b) \) \(\Man \) is a full subcategory of \(\tilde{\Man} \) closed under isomorphisms in \(\tilde{\Man} \).

Then all the material of \(B.1 \)–\(B.5 \) for \(\Man \) is exactly the same if computed in \(\Man \) or \(\tilde{\Man} \), and all the morphisms \(F^{\tilde{\Man}}_{\Man} \) in Definition \(B.41 \) are the identity maps. For example, if \(f : X \to Y \) lies in \(\Man \subseteq \tilde{\Man} \) then the relative tangent sheaves \((T_f Y)_{\Man}, (T_f Y)_{\tilde{\Man}} \) on \(X_{\text{top}} \) from \(B.4 \) computed in \(\Man \) and \(\tilde{\Man} \) are not just canonically isomorphic, but actually the same sheaf.

Proof. Suppose we start with an object \(X \) in \(\tilde{\Man} \), or a morphism \(f : X \to Y \) in \(\Man \), and then construct differential-geometric data in \(B.1 \)–\(B.5 \) such as \(C^\infty(X), O_X, T^*X, TX \) or \(T_f Y \), either in \(\Man \), or in \(\tilde{\Man} \). The point of the proof is that when we do this in \(\tilde{\Man} \), the constructions only ever involve objects and morphisms in \(\Man \subseteq \tilde{\Man} \), so that the data \(C^\infty(X), O_X, \ldots, T_f Y \) are the same when computed in \(\Man \) or \(\tilde{\Man} \).

Mostly this is straightforward to check, and we leave this to the reader. For example, for \(X \in \Man \) the \(C^\infty \)-rings \(C^\infty(X)_{\Man}, C^\infty(X)_{\tilde{\Man}} \) are the sets
of morphisms \(f : X \to \mathbb{R} \) in \(\mathfrak{Man} \) and in \(\acute{\mathfrak{Man}} \). In case (a) these coincide by assumption, and in case (b) they coincide as \(\mathfrak{Man} \subseteq \mathfrak{Man} \) is full. Then \(\mathcal{O}_X, T^*X \) are the same in \(\mathfrak{Man} \) and \(\mathfrak{Man} \) as they are constructed from \(C^\infty \)-rings \(C^\infty(U) \) for open \(i : U \hookrightarrow X \), which are the same in \(\mathfrak{Man} \) and \(\mathfrak{Man} \).

We explain one subtle point concerning \(T_fY \). Let \(f : X \to Y \) be a morphism in \(\mathfrak{Man} \), and consider the definition of \(\Gamma(T_fY) \) in Definition \(\ref{def:corner-functor} \) in \(\mathfrak{Man} \) and \(\mathfrak{Man} \). In case (a), for a diagram \(\ref{eq:corners-diff} \) in \(\mathfrak{Man} \), it is clear that the data \(X, Y, X \times \mathbb{R}, f, i, (id_X, 0) \) lie in \(\mathfrak{Man} \subseteq \mathfrak{Man} \), but it is not obvious that \(u : U \to Y \) lies in \(\mathfrak{Man} \). However, we can prove this using Definition \(\ref{def:corner-functor} \).

Taking \(E = U \times \mathbb{R} \to U \) to be the trivial line bundle and defining \(s \in \Gamma^\infty(E) \) by \(s(x,t) = ((x,t),t) \), we see from \(\ref{eq:corners-diff} \) that \(u = f \circ \pi_X + O(s) \) in morphisms \(U \to Y \) in \(\mathfrak{Man} \). But \(f \circ \pi_X \) lies in \(\mathfrak{Man} \), so \(u \) lies in \(\mathfrak{Man} \) near \(X \times \{0\} \) in \(U \) by Definition \(\ref{def:corner-functor\},\text{\textit{vii}} \). Then using Definition \(\ref{def:corner-functor\},\text{\textit{i}}\text{–\textit{iv}},\text{\textit{vi}} \) and the assumption in Definition \(\ref{def:corner-functor} \) that \(U \) can be written as a union of subsets \(X \times \{\epsilon, \epsilon'\} \) in \(X \times \mathbb{R} \) for \(\epsilon' < \epsilon \) open and \(\epsilon > 0 \), we can deduce that \(u : U \to Y \) lies in \(\mathfrak{Man} \), so \(\ref{eq:corners-diff} \) is a diagram in \(\mathfrak{Man} \subseteq \mathfrak{Man} \). Similarly, for \(j : V \hookrightarrow X \times \mathbb{R}^2 \), \(v : V \to Y \) in \(\mathfrak{Man} \) satisfying \(\ref{eq:corners-diff} \) used to define the equivalence relation \(\approx \) on pairs \((U,u)\), making \(V \) smaller we can suppose that \(V \times \{\epsilon, \epsilon'\} \) for \(\epsilon' < \epsilon \) open and \(\epsilon > 0 \), we can deduce that \(u : U \to Y \) lies in \(\mathfrak{Man} \), so \(\Gamma(T_fY) \) in \(\mathfrak{Man} \subseteq \mathfrak{Man} \).

B.8 Differential geometry in \(\mathfrak{Man}^c \)

Suppose \(\mathfrak{Man}^c \) satisfies Assumption \(\ref{assumption:local-diff} \) in \(\ref{def:local-diff} \). Then \(\mathfrak{Man}^c \) satisfies Assumptions \(\ref{assumption:local-diff} \)–\(\ref{assumption:local-diff} \) so \(\mathfrak{Man}^c \) applies in \(\mathfrak{Man}^c \). Section \(\ref{sec:B.8} \) introduces new material for the corners case, such as morphisms \(I_X^c : \Pi_{k,c}^{-}(T_X) \to \mathcal{T}C_k(X) \) analogous to those in \(\ref{def:corner-functor} \). Section \(\ref{sec:B.8.2} \) compares differential geometry in two categories \(\mathfrak{Man}^c, \mathfrak{Man} \), as in \(\ref{sec:B.7} \).

B.8.1 Action of the corner functor on tangent sheaves

In \(\mathfrak{M} \) for an \(m \)-Kuranishi space with corners \(X \) in \(m\mathfrak{Kur}^c \) we define the boundary \(\partial X \) and \(k \)-corners \(C_k(\partial X) \), and we define the corner 2-functor \(C : m\mathfrak{Kur}^c \to m\mathfrak{Kur}^c \). To do this, for a manifold with corners \(X \) in \(\mathfrak{Man}^c \) with \(k \)-corner morphism \(\Pi_k : C_k(X) \to X \) as in Assumption \(\ref{assumption:local-diff} \), we must lift differential geometry on \(X \) to differential geometry on \(C_k(X) \).

Much of this follows by applying pullbacks in \(\ref{sec:B.1} \) to \(\Pi_k \). But we need one extra structure relating (relative) tangent sheaves on \(X \) and \(C_k(X) \).

Definition B.44. Suppose \(f : X \to Y \) is a morphism in \(\mathfrak{Man}^c \), so that \(C(f) : C(X) \to C(Y) \) and \(\Pi : C(X) \to X \) are morphisms in \(\mathfrak{Man}^c \). Then \(\ref{def:corner-functor} \) defines the relative tangent sheaves \(T_fY \) on \(X \) and \(T_{C(f)}C(Y) \) on \(C(X) \) extending from \(\mathfrak{Man}^c \) to \(\mathfrak{Man}^c \) in the obvious way.

We will define a morphism of sheaves on \(C(X) \):

\[
I_f^r : \Pi_{\top}^{-1}(T_fY) \to T_{C(f)}C(Y),
\]

(\ref{eq:corner-functor})
which is a module morphism under $\Pi^c : \Pi_{\text{top}}^{-1}(\mathcal{O}_X) \to \mathcal{O}_{C(X)}$ from §B.1.3, where $\Pi_{\text{top}}^{-1}(\mathcal{T}_fY), \mathcal{T}_{C(f)}C(Y)$ are modules over $\Pi_{\text{top}}^{-1}(\mathcal{O}_X), \mathcal{O}_{C(X)}$ respectively, as in §B.4.5. This does not follow from our previous constructions for $C(f), \Pi$, it is a new feature for manifolds with corners Man^c.

First we define an \mathbb{R}-linear map

$$
\Gamma(I_{f,\circ}) : \Gamma(\mathcal{T}_fY) \longrightarrow \Gamma(\mathcal{T}_{C(f)}C(Y)). \tag{B.34}
$$

Recall from §B.4.1 that $\Gamma(\mathcal{T}_fY)$ is the set of \approx-equivalence classes $[U, u]$ of diagrams (B.5) in Man^c, where \approx is defined using $j : V \hookrightarrow X \times \mathbb{R}^2$, $v : V \to Y$ in Man^c satisfying (B.6). We have canonical isomorphisms

$$
C(X \times \mathbb{R}) \cong C(X) \times C(\mathbb{R}) = C(X) \times C_0(\mathbb{R}) \cong C(X) \times \mathbb{R}, \tag{B.35}
$$

where the first step comes from Assumption 3.22(h), the second from Assumption 3.22(e), and the third from $\Pi_0 : C_0(\mathbb{R}) \to \mathbb{R}$ an isomorphism in Assumption 3.22(d). Applying the corner functor $C : \mathsf{Man}^c \to \mathsf{Man}^c$ to (B.5) and making the identification (B.35) gives a commutative diagram in Man^c

$$
\begin{array}{ccc}
C(X) \times \mathbb{R} & \xleftarrow{\text{id}_{C(X)}, \partial} & C(X) \\
\downarrow{C(l)} & & \downarrow{C(f)} \\
C(U) & \xleftarrow{\circ} & C(Y),
\end{array}
$$

which is a diagram (B.5) for $C(f)$. Hence $[C(U), C(u)] \in \Gamma(\mathcal{T}_{C(f)}C(Y))$. Similarly, applying C to $j : V \hookrightarrow X \times \mathbb{R}^2$, $v : V \to Y$ satisfying (B.6) shows that if $(U, u) \approx (U', u')$ then $(C(U), C(u)) \approx (C(U'), C(u'))$, so the \approx-equivalence class $[C(U), C(u)]$ depends only on $[U, u]$. Define $\Gamma(I_{f,\circ})$ in (B.34) by

$$
\Gamma(I_{f,\circ}) : [U, u] \mapsto [C(U), C(u)].
$$

Now $\Gamma(\mathcal{T}_fY)$ is a module over $C^\infty(X)$ as in §B.4.2 and $\Gamma(\mathcal{T}_{C(f)}C(Y))$ a module over $C^\infty(C(X))$, and §B.1.1 defines a morphism $\Pi^c : C^\infty(X) \to C^\infty(C(X))$. If $a \in C^\infty(X)$, so that $a : X \to \mathbb{R}$ is a morphism in Man^c, then Assumption 3.22(g) implies that

$$
\Pi^c(a) = a \circ \Pi = \Pi_0 \circ C(u) : C(X) \longrightarrow \mathbb{R} \quad \text{in } \mathsf{Man}^c,
$$

where $\Pi_0 : C_0(\mathbb{R}) \xrightarrow{\approx} \mathbb{R}$ is used in the identification (B.35). Using this we can easily show that (B.34) is a module morphism under $\Pi^c : C^\infty(X) \to C^\infty(C(X))$.

Suppose $f : X \to Y$ and $g : Y \to Z$ are morphisms in Man^c. Then §B.4.4 defines morphisms $\Gamma(\mathcal{T}_g) : \Gamma(\mathcal{T}_fY) \to \Gamma(\mathcal{T}_{g_0}Z)$ and $f^* : \Gamma(\mathcal{T}_gZ) \to \Gamma(\mathcal{T}_{g_0}Z)$, and similarly for $\Gamma(\mathcal{T}\Pi), \Gamma(\mathcal{T}\mathcal{C}(g))$ and $\Pi^c, C(f)^c$. By applying the corner
functor C to the definitions we see that the following diagrams commute:

$$
\begin{align*}
\Gamma(\mathcal{T}_f Y) &\xrightarrow{\Gamma(i_{f,o})} \Gamma(\mathcal{T}_C(f) C(Y)) \\
\Pi^* &\xrightarrow{\Gamma(\mathcal{T}_f) C(Y)} \\
\Gamma(\mathcal{T}_{\Pi \circ f} Y) &\xrightarrow{\Gamma(i_{\Pi \circ f,o})} \Gamma(\mathcal{T}_C(f) C(Y))
\end{align*}
\tag{B.36}
$$

$$
\begin{align*}
\Gamma(\mathcal{T}_Y) &\xrightarrow{\Gamma(i_{f,o})} \Gamma(\mathcal{T}_C(f) C(Y)) \\
\Gamma(\mathcal{T}_f) C(Y) &\xrightarrow{\Gamma(i_{\Pi \circ f,o})} \Gamma(\mathcal{T}_C(f) C(Y))
\end{align*}
\tag{B.37}
$$

$$
\begin{align*}
\Gamma(\mathcal{T}_g Z) &\xrightarrow{\Gamma(i_{f,o})} \Gamma(\mathcal{T}_C(f) C(Z)) \\
\Gamma(\mathcal{T}_g) C(Z) &\xrightarrow{\Gamma(i_{\Pi \circ f,o})} \Gamma(\mathcal{T}_C(f) C(Z))
\end{align*}
\tag{B.38}
$$

Let $i : X' \hookrightarrow X$ be an open submanifold in Man^c, so that $C(i) : C(X') \hookrightarrow C(X)$ is an open submanifold in Man^c by Assumption $3.22(j)$. Define

$$I_{f,o}(X'_{top}) = \Gamma(I_{f,o,i}) : (\mathcal{T}_f Y)(X'_{top}) = \Gamma(\mathcal{T}_f Y)$$

$$= (\Pi_{top})_* (\mathcal{T}_C(f) C(Y))(X'_{top}) = \mathcal{T}_C(f) C(Y)(\Pi_j^{-1}(X'_{top})) = \mathcal{T}_C(f) C(Y)(C(X')) \xrightarrow{(B.39)} \Gamma(\mathcal{T}_C(f)(C(Y))(X'_{top}))$$

We claim that these $I_{f,i}(X'_{top}) : (\mathcal{T}_f Y)(X'_{top}) \to (\Pi_{top})_* (\mathcal{T}_C(f) C(Y))(X'_{top})$ for all open $X_{top} \subseteq X_{top}$ define a sheaf morphism

$$I_{f,o} : \mathcal{T}_f Y \to (\Pi_{top})_* (\mathcal{T}_C(f) C(Y))$$

on X_{top}, as in [A.5]. To prove this let $X''_{top} \subseteq X'_{top} \subseteq X_{top}$ be open, corresponding to open submanifolds $i : X' \hookrightarrow X$, $j : X'' \hookrightarrow X'$, and use (B.38) with $j, f \circ i$ in place of f, g to show that $I_{f,o}(X''_{top}) = \rho_{X''_{top}} \circ I_{f,o}(X'_{top})$. Here $\mathcal{T}_f Y, (\Pi_{top})_* (\mathcal{T}_C(f) C(Y))$ are modules over $\mathcal{O}_X, (\Pi_{top})_* (\mathcal{O}_X)$, as in $[B.34]$. Suppose $I_{f,o}$ is a module morphism under $\Pi^* : C(X) \to C(X)$, then we see that $I_{f,o}$ is a module morphism under Π^*. Write $I_{f,o}^j$ in $[B.33]$ for the sheaf morphism on $C(X)_{\text{top}}$ adjoint to $I_{f,o}$ under (A.18). Since $I_{f,o}$ is a module morphism under $\Pi_{top}^S : C_X \to (\Pi_{top})_* (\mathcal{O}_C(X))$, and $\Pi^X : \Pi_{top}^S (\mathcal{O}_X) \to \mathcal{O}_C(X)$ is adjoint to Π^j under (A.18) as in $[B.1.3]$, we see that $\mathcal{T}_f Y$ is a module morphism under Π^*.

If f is simple, so that $C(f) : C(X) \to C(Y)$ maps $C_k(X) \to C_k(Y)$ for $k \geq 0$ by Assumption $3.22(j)$, then $I_{f,o}^j$ restricts to $I_{f,o}^j : \Pi_{top}^{-1}(\mathcal{T}_f Y) \to \mathcal{T}_C(f) C(Y)$ for each k. When $f = \text{id}_X$, which is simple, with $\mathcal{T}_X = \mathcal{T}_{\text{id}_X} X$, we write $I_{f,o}^j$ as $\mathcal{T}_X : \Pi_{top}^{-1}(\mathcal{T}_X) \to \mathcal{T}_C(f) C(Y)$.

Suppose $f : X \to Y$ and $g : Y \to Z$ are morphisms in Man^c. Then by using (B.36) for all open subsets $X_{top} \subseteq X_{top}, Y_{top} \subseteq Y_{top}$, we can show that
the following diagrams of sheaves on \(X_{\text{top}} \) and \(Y_{\text{top}} \) commute:

\[
\begin{align*}
\tau_{fY} Y & \quad \tau_{fY} C(Y) \\
\Pi_Y & \quad \tau_{\Pi_Y} \\
(\Pi_{\text{top}})_* (T_{fY}) & \quad (\Pi_{\text{top}})_* (\tau_{\Pi_Y}) \\
\end{align*}
\]

\[
\begin{align*}
\tau_{gZ} Z & \quad \tau_{gZ} C(Z) \\
\Pi_Z & \quad \tau_{\Pi_Z} \\
(\Pi_{\text{top}})_* (T_{gZ}) & \quad (\Pi_{\text{top}})_* (\tau_{\Pi_Z}) \\
\end{align*}
\]

where \(f, \tau \) are as in \(\text{B.4.6} \). Then using the adjoint property of \(I_{f,o} \) and \(I_{\tau} \), \(f^* \) we deduce that the following diagrams of sheaves on \(C(X)_{\text{top}} \) commute:

\[
\begin{align*}
\Pi_{\text{top}}^{-1} (T_{fY}) & \quad \Pi_{\text{top}}^{-1} (T_{fY}) C(Y) \\
\Pi_{\text{top}}^{-1} (T_{fY}) & \quad \Pi_{\text{top}}^{-1} (T_{fY}) C(Y) \\
\Pi_{\text{top}}^{-1} (T_{gZ}) & \quad \Pi_{\text{top}}^{-1} (T_{gZ}) C(Z) = \tau_{\Pi_{\text{top}}} (\tau_{\Pi_{\text{top}}}) C(Z) \\
\Pi_{\text{top}}^{-1} (T_{gZ}) & \quad \Pi_{\text{top}}^{-1} (T_{gZ}) C(Z) = \tau_{\Pi_{\text{top}}} (\tau_{\Pi_{\text{top}}}) C(Z) \\
\end{align*}
\]

\[
\begin{align*}
\tau_{fY} Y & \quad \tau_{fY} C(Y) \\
\Pi_Y & \quad \tau_{\Pi_Y} \\
(\Pi_{\text{top}})_* (T_{fY}) & \quad (\Pi_{\text{top}})_* (\tau_{\Pi_Y}) \\
\end{align*}
\]

\[
\begin{align*}
\tau_{gZ} Z & \quad \tau_{gZ} C(Z) \\
\Pi_Z & \quad \tau_{\Pi_Z} \\
(\Pi_{\text{top}})_* (T_{gZ}) & \quad (\Pi_{\text{top}})_* (\tau_{\Pi_Z}) \\
\end{align*}
\]

\[
\begin{align*}
\Pi_{\text{top}}^{-1} (T_{fY}) & \quad \Pi_{\text{top}}^{-1} (T_{fY}) C(Y) \\
\Pi_{\text{top}}^{-1} (T_{fY}) & \quad \Pi_{\text{top}}^{-1} (T_{fY}) C(Y) \\
\Pi_{\text{top}}^{-1} (T_{gZ}) & \quad \Pi_{\text{top}}^{-1} (T_{gZ}) C(Z) = \tau_{\Pi_{\text{top}}} (\tau_{\Pi_{\text{top}}}) C(Z) \\
\Pi_{\text{top}}^{-1} (T_{gZ}) & \quad \Pi_{\text{top}}^{-1} (T_{gZ}) C(Z) = \tau_{\Pi_{\text{top}}} (\tau_{\Pi_{\text{top}}}) C(Z) \\
\end{align*}
\]

We use these \(I_1 \) to pull back morphisms \(E \to T_f \) by \(\Pi : C(X) \to X \).

Definition B.45. Let \(f : X \to Y \) be a morphism in \(\text{Man}^c \), and \(E \to X \) be a vector bundle on \(X \), and \(\theta : E \to T_f Y \) be a morphism on \(X \) in the sense of \(\text{B.4.8} \) so that \(\theta : E \to T_f Y \) is an \(\mathcal{O}_X \)-module morphism, where \(\mathcal{E} \) is the \(\mathcal{O}_X \)-module of sections of \(E \) as in \(\text{B.2.2} \).

Then we have a morphism \(C(f) : C(X) \to C(Y) \) in \(\text{Man}^c \), and pulling back by \(\Pi : C(X) \to X \) gives a vector bundle \(\Pi^* (E) \to C(X) \). Define a morphism
\[\Pi^\circ \theta : \Pi^* (E) \rightarrow T_{C(f)} C(Y) \] on \(C(X) \) by the commutative diagram

\[
\begin{array}{ccc}
\Pi^* (E) & \xrightarrow{\Pi^* (\theta)} & \Pi_{\top}^{-1} (E) \otimes_{\Pi_{\top}^{-1} (\mathcal{O}_X)} \mathcal{O}_C (X) \\
T_{C(f)} C(Y) & \xrightarrow{\Pi_{\top}^{-1} (\theta) \otimes \text{id}_{\mathcal{O}_C (X)}} & T_{C(f)} C(Y) \otimes_{\mathcal{O}_C (X)} \mathcal{O}_C (X),
\end{array}
\]

where \(\Pi^* (E) \) is the \(\mathcal{O}_C (X) \)-module of sections of \(\Pi^* (E) \rightarrow \mathcal{O}_C (X) \), and the bottom morphism in \(\text{(B.43)} \) is formed using the morphism \(\Pi^{\circ} : \Pi^{-1} (\mathcal{O}_X) \rightarrow \mathcal{O}_C (X) \) from \(\text{(B.1.3)} \) and is well defined as \(I_1^{\circ} \) is a module morphism over \(\Pi^* \).

In Definition \(\text{B.32} \), given a diagram \(\text{(B.22)} \) involving \(v : V \rightarrow Y \) for open \(V \subseteq E \) with \(0 \cdot E_{\text{top}} (X_{\text{top}}) \subseteq V_{\text{top}} \subseteq E_{\text{top}} \), we defined a morphism \(\theta_{V,v} : E \rightarrow T_f Y \), and Proposition \(\text{B.33} \) showed that every morphism \(\theta : E \rightarrow T_f Y \) is of the form \(\theta = \theta_{V,v} \) for some diagram \(\text{(B.22)} \). We can use this to interpret \(\Pi^\circ \theta \): applying \(C : \mathcal{M} \rightarrow \mathcal{M}^c \) to \(\text{(B.22)} \) gives a diagram \(\text{(B.22)} \) for \(C(f) : C(X) \rightarrow C(Y) \) and \(\Pi^* (E) \rightarrow \mathcal{O}_C (X) \) in place of \(f,E \). Hence \(\theta_{C(V),C(v)} \) is a morphism \(\Pi^* (E) \rightarrow T_{C(f)} C(Y) \), and it is easy to see that

\[
\Pi^\circ (\theta_{V,v}) = \theta_{C(V),C(v)}.
\]

We think of \(\Pi^\circ (\theta) \) as a kind of pullback of \(\theta \) by \(\Pi : C(X) \rightarrow X \).

We write the restriction \(\Pi^\circ (\theta)|_{\mathcal{C}_k (X)} \) for \(k = 0,1, \ldots \) as \(\Pi^\circ_k (\theta) \). Thus if \(f : X \rightarrow Y \) is simple, so that \(\mathcal{C}(f) \) maps \(\mathcal{C}_k (X) \rightarrow \mathcal{C}_k (Y) \) by Assumption \(\text{B.22} \), we have morphisms \(\Pi_k^\circ (\theta) : \Pi_k^* (E) \rightarrow T_{\mathcal{C}(f)} \mathcal{C}_k (Y) \) for \(k = 0,1, \ldots \).

Example B.46. Take \(\mathcal{M}^c = \mathcal{M} \), and let \(f : X \rightarrow Y \) be an interior map in \(\mathcal{M} \), and \(E \rightarrow X \) be a vector bundle. Then \(T_f Y \) is the sheaf of sections of \(f^* (bTY) \rightarrow X \), as in Example \(\text{B.26} \), so morphisms \(\theta : E \rightarrow T_f Y \) correspond to vector bundle morphisms \(\theta : E \rightarrow f^* (bTY) \) on \(X \). Then \(\Pi^\circ (\theta) \) corresponds to the composition of vector bundle morphisms on \(C(X) \):

\[
\Pi^* (E) \xrightarrow{\Pi^* (\theta)} \Pi^* (f^* (bTY)) \rightarrow C(f)^* (bTY) \rightarrow C(f)^* (bTY),
\]

where \(I_{\pi}^\circ : \Pi^* (bTY) \rightarrow bTC(Y) \) is as in \(\text{(2.13)} \).

Here are some properties of the morphisms \(\Pi^\circ (\theta) \):

Theorem B.47. (a) Let \(f : X \rightarrow Y \) be a morphism in \(\mathcal{M} \), and \(E \rightarrow X \) be a vector bundle, and \(\theta : E \rightarrow T_f Y \) be a morphism, in the sense of \(\text{B.4.8} \). Then the following diagram of sheaves on \(C(X)_{\top} \) commutes:

\[
\begin{array}{ccc}
\Pi^* (E) & \xrightarrow{\Pi^* (\theta)} & T_{C(f)} C(Y) \\
\downarrow \Pi^* (\theta) & \Pi^* (\theta) & \downarrow \tau \Pi \\
T_{f\circ \Pi} Y & \rightarrow & T_{\Pi \circ C(f)} Y,
\end{array}
\]
where $\mathcal{T} \Pi$ and $\Pi^*(\theta)$ are defined in [B.4.6] and [B.4.9].

(b) Let $f : X \to Y$ be a morphism in \mathbf{Man}^c, $D,E \to X$ be vector bundles, $\lambda : D \to E$ a vector bundle morphism, and $\theta : E \to \mathcal{T}_f Y$ a morphism. Then

$$
\Pi^*(\theta \circ \lambda) = \Pi^*(\theta) \circ \Pi^*(\lambda) : \Pi^*(D) \to \mathcal{T}_{C(f)} C(Y).
$$

(c) Let $f : X \to Y$, $g : Y \to Z$ be morphisms in \mathbf{Man}^c, and $E \to X$ be a vector bundle, and $\theta : E \to \mathcal{T}_f Y$ be a morphism. Then the following diagram of sheaves on $C(X)_{\top}$ commutes:

\[
\begin{array}{ccc}
\Pi^*(\mathcal{T}_{g \circ \theta}) & \xrightarrow{\Pi^*(\theta) \otimes \Pi^*(\lambda)} & \Pi^*(\mathcal{T}_f) C(Y) \\
\Pi^*(\lambda) & \xrightarrow{\Pi^*(\lambda) \otimes \Pi^*(\theta)} & \Pi^*(\mathcal{T}_f) C(Y) \\
\mathcal{T}_{C(f)} C(Y) & \xrightarrow{\Pi^*(\theta) \otimes \Pi^*(\lambda)} & \Pi^*(\mathcal{T}_f) C(Y) \\
\end{array}
\]

(d) Let $f : X \to Y$, $g : Y \to Z$ be morphisms in \mathbf{Man}^c, and $F \to Y$ be a vector bundle, and $\phi : F \to \mathcal{T}_g Z$ be a morphism. Then

$$
C(f)^*(\Pi^*(\phi)) = \Pi^*(f^*(\phi)) : C(f)^* \circ \Pi^*(F) = \Pi^* \circ f^*(F)
$$

$$
\to \mathcal{T}_{C(g) \circ C(f)} C(Z) = \mathcal{T}_{C(g) \circ C(f)} C(Z).
$$

Proof. Part (a) can be proved by combining equations [B.26], [B.40] and [B.43].

Part (b) follows from the commutative diagram

\[
\begin{array}{ccc}
\Pi^*(\mathcal{E}) & \xrightarrow{\Pi^*(\mathcal{T}_{g \circ \theta}) \otimes \Pi^*(\theta)} & \Pi^*(\mathcal{T}_f) C(Y) \\
\Pi^*(\lambda) & \xrightarrow{\Pi^*(\lambda) \otimes \Pi^*(\theta)} & \Pi^*(\mathcal{T}_f) C(Y) \\
\mathcal{T}_{C(f)} C(Y) & \xrightarrow{\Pi^*(\theta) \otimes \Pi^*(\lambda)} & \Pi^*(\mathcal{T}_f) C(Y) \\
\end{array}
\]

which combines equation [B.43] for θ and for $\theta \circ \lambda$.

Part (c) follows from the commutative diagram

\[
\begin{array}{ccc}
\Pi^*(\mathcal{T}_{g \circ \theta}) \otimes \Pi^*(\theta) \otimes \Pi^*(\lambda) & \xleftarrow{\Pi^*(\lambda) \otimes \Pi^*(\theta)} & \Pi^*(\mathcal{T}_f) C(Y) \\
\Pi^*(\lambda) \otimes \Pi^*(\theta) & \xleftarrow{\Pi^*(\lambda) \otimes \Pi^*(\theta)} & \Pi^*(\mathcal{T}_f) C(Y) \\
\mathcal{T}_{C(f)} C(Y) \otimes \mathcal{O}_{C(X)} & \xleftarrow{\Pi^*(\theta) \otimes \Pi^*(\lambda)} & \Pi^*(\mathcal{T}_f) C(Y) \\
\end{array}
\]

273
which combines \((B.43)\) for \(\theta\) and \(Tg \circ \theta\), and \((B.41)\) in the bottom square.

Part (d) follows from the commutative diagram

\[
\begin{array}{c}
\begin{array}{c}
C(f)^\ast (\Pi^\circ (\phi)) = \Pi^\circ (f^\ast (\phi)) \\
\downarrow \quad \downarrow \\
C(f)^\ast (\Pi^\circ (\phi)) = \Pi^\circ (f^\ast (\phi)) \\
\end{array}
\quad \begin{array}{c}
\Pi^{-1}_{\text{top}} \circ f^{-1}_{\text{top}}(F) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \\
\Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\end{array}
\quad \begin{array}{c}
\Pi^{-1}_{\text{top}} \circ f^{-1}_{\text{top}}(F) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \\
\Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\end{array}
\end{array}
\quad \begin{array}{c}
\Pi^{-1}_{\text{top}} \circ f^{-1}_{\text{top}}(F) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \\
\Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\end{array}
\quad \begin{array}{c}
\Pi^{-1}_{\text{top}} \circ f^{-1}_{\text{top}}(F) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \otimes \Pi^{-1}_{\text{top}}(S) \\
\Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \otimes \Pi^{-1}_{\text{top}}(\phi) \\
\end{array}
\end{array}
\]

which combines \((B.43)\) for \(\phi\) and \(f^\ast (\phi)\), and \((B.26)\) for \(f^\ast (\phi)\) and \(C(f)^\ast (\Pi^\circ (\phi))\) in the right and left triangles, and \((B.42)\) in the bottom square.

We show that all the \(O(s)\) and \(O(s^2)\) notation of Definition \((B.36)\)–(vii) on \(X\) pulls back under \(\Pi : C(X) \to X\) to the corresponding \(O(\Pi(s))\) and \(O(\Pi(s^2))\) notation on \(C(X)\), using \(\Pi^s\) to pull back morphisms \(\Lambda : E \to T_Y\).

Theorem B.48. Let \(X\) be an object in \(\text{Man}^c\), and \(E \to X\) be a vector bundle, and \(s \in \Gamma^\infty(E)\) be a section. Then:

(i) Suppose \(F \to X\) is a vector bundle and \(t_1, t_2 \in \Gamma^\infty(F)\) with \(t_2 = t_1 + O(s)\) \((or \, t_2 = t_1 + O(s^2))\) on \(X\) as in Definition \((B.36)\) (ii). Then \(\Pi^\ast (t_2) = \Pi^\ast (t_1) + O(\Pi^\ast (s))\) on \(C(X)\).

(ii) Suppose \(F \to X\) is a vector bundle, \(f : X \to Y\) is a morphism in \(\text{Man}^c\), and \(A_1, A_2 : F \to T_Y\) are morphisms with \(A_2 = A_1 + O(s)\) on \(X\) as in Definition \((B.36)\) (ii). Then Definition \((B.45)\) gives morphisms \(I^\circ (\Lambda_1), I^\circ (\Lambda_2) : \Pi^\ast (F) \to T_{C(f)}(C(Y))\) on \(C(X)\), which satisfy \(I^\circ (\Lambda_2) = I^\circ (\Lambda_1) + O(\Pi^\ast (s))\) on \(C(X)\).

(iii) Suppose \(f, g : X \to Y\) are morphisms in \(\text{Man}^c\) with \(g = f + O(s)\) on \(X\) as in Definition \((B.36)\) (iii). Then \(C(g) = C(f) + O(\Pi^\ast (s))\) on \(C(X)\).

(iv) Suppose \(f, g : X \to Y\) with \(g = f + O(s)\) are in (iii), and \(F \to X, G \to Y\) are vector bundles, and \(\theta_1 : F \to f^\ast (G), \theta_2 : F \to g^\ast (G)\) are morphisms with \(\theta_2 = \theta_1 + O(s)\) on \(X\) as in Definition \((B.36)\) (iv). Then \(\Pi^\ast (\theta_2) = \Pi^\ast (\theta_1) + O(\Pi^\ast (s))\) on \(C(X)\).

(v) Suppose \(f, g : X \to Y\) with \(g = f + O(s)\) are in (iii), and \(F \to X\) is a vector bundle, and \(A_1 : F \to T_Y, A_2 : F \to T_Y\) are morphisms with \(A_2 = A_1 + O(s)\) on \(X\) as in Definition \((B.36)\) (v). Then \(C(g) = C(f) + O(\Pi^\ast (s))\) on \(C(X)\) by (iii), and Definition \((B.45)\) gives morphisms \(I^\circ (\Lambda_1) : \Pi^\ast (F) \to T_{C(f)}(C(Y)), I^\circ (\Lambda_2) : \Pi^\ast (F) \to T_{C(f)}(C(Y)), \) which satisfy \(I^\circ (\Lambda_2) = I^\circ (\Lambda_1) + O(\Pi^\ast (s))\) on \(C(X)\).

274
(vi) Suppose \(f : X \to Y \) is a morphism in \(\text{Man}^c \), and \(F \to X, G \to Y \) are vector bundles, and \(t \in \Gamma^\infty(G) \) with \(f^*(t) = O(s) \), and \(\Lambda : F \to T_f Y \) is a morphism, and \(\theta : F \to f^*(G) \) is a vector bundle morphism with \(\theta = f^*(dt) \circ \Lambda + O(s^2) \) on \(X \) as in Definition B.36(vi). Then \(\Pi^* (\theta) = C(f) (\Pi^* (t)) \circ \Pi^* (\Lambda) + O(\Pi^* (s)) \) on \(C(X) \).

(vii) Suppose \(f, g : X \to Y \) with \(g = f + O(s) \) are in (iii), and \(\Lambda : E \to T_f Y \) is a morphism with \(g = f + \Lambda \circ s + O(s^2) \) on \(X \) as in Definition B.36(vii). Then \(C(g) = C(f) + \Pi^* (\Lambda) \circ \Pi^* (s) + O(\Pi^* (s)^2) \) on \(C(X) \).

Proof. Part (i) is immediate on applying \(\Pi^* \) to Definition B.36(i).

For (ii), Definition B.36(ii) gives a diagram B.28 with \(s_{\text{top}}(0) \in U_{\text{top}} \) and \(M : \pi^*(F)|_V \to \mathcal{T}_{f_{\text{top}}} \) with \(k_1^*(M) = \Lambda_1|_U \) and \(k_2^*(M) = \Lambda_2|_U \). Applying the corner functor \(C \) to B.28 gives a diagram B.28 for \(\Pi^* (F) \) and \(C(f) : C(X) \to C(Y) \), with \(\Pi^* (s) \subseteq C(U) \). We have

\[
\Pi^* (M) : C(\pi)^* \circ \Pi^* (F)|_{C(V)} \to T_{C(f)} C(\pi)|_{C(Y)}
\]

and \(k_1^*(M) = \Lambda_1|_U \), \(k_2^*(M) = \Lambda_2|_U \) and Theorem B.47(d) imply that

\[
C(k_1)^* \circ \Pi^* (M) = \Pi^* (\Lambda_1)|_{C(U)} \quad \text{and} \quad C(k_2)^* \circ \Pi^* (M) = \Pi^* (\Lambda_2)|_{C(U)}.
\]

Thus Definition B.36(ii) implies that \(\Pi^* (\Lambda_2) = \Pi^* (\Lambda_1) + O(\Pi^* (s)) \).

Parts (iii),(iv) are immediate on applying the corner functor \(C \) to Definition B.36(iii),(iv). Part (v) follows by a very similar argument to (ii).

For (vi), choose a connection \(\nabla \) on \(G \to Y \), so that \(\theta = f^*(\nabla t) \circ \Lambda + O(s) \) as in Definition B.36(i),(vi). Consider the diagram of sheaves on \(C(X) \):

\[
\begin{align*}
\Pi^* (F) = \Pi_{\text{top}}^{-1} (F) & \quad \Pi_{\text{top}}^{-1} (T_f Y) \quad \Pi_{\text{top}}^{-1} (\mathcal{T}_{f_{\text{top}}} Y) \quad (f \circ \Pi^*) (G) = \Pi_{\text{top}}^{-1} (f^* (G)) \\
\otimes_{\Pi_{\text{top}}^{-1} (\Omega_X)} \mathcal{C}(X) & \otimes_{\Pi_{\text{top}}^{-1} (\Omega_X)} \mathcal{C}(X) \otimes_{\Pi_{\text{top}}^{-1} (\Omega_X)} \mathcal{C}(X) \otimes_{\Pi_{\text{top}}^{-1} (\Omega_X)} \mathcal{C}(X)
\end{align*}
\]

Here the top left triangle commutes by Theorem B.47(a), and the bottom left by B.26. We can show using the ideas of B.3, B.4 that there is a natural pullback connection \(\nabla^t = \Pi^* (\nabla) \) on \(\Pi^* (G) \to \mathcal{C}(Y) \) such that the top right triangle of B.45 commutes, for any \(t \in \Gamma^\infty(G) \).
We can prove from the definition of μ' in [B.4.7] that the following commutes, as $\Pi : C(X) \to X$, $f : X \to Y$ are morphisms in \mathfrak{Man}^c:

\[
\begin{array}{c}
\Pi_{\text{top}}^{-1}(T_f Y) \times \Pi_{\text{top}}^{-1} \circ f_{\text{top}}^{-1}(T^*Y) \\
\downarrow \Pi_{\text{top}}^{-1}(\mu') \\
T_{f \circ \Pi} \times (f \circ \Pi)_{\text{top}}^{-1}(T^*Y) \\
\end{array}
\]

Then comparing (B.27) for $(f \circ \Pi)^*(\nabla t)$ with the pullback of (B.27) for $f^*(\nabla t)$ by Π_{top}^{-1}, and using (B.46), we find the bottom right triangle in (B.45) commutes. Therefore (B.45) commutes, so that

\[
C(f)^*(\nabla^\Pi \Pi^*(t)) \circ \Pi^\circ(\Lambda) = \Pi_{\text{top}}^{-1}(f^*(\nabla t)) \otimes \text{id}_{O_{C(X)}} \circ \Pi_{\text{top}}^{-1}(\Lambda) \otimes \text{id}_{O_{C(X)}} = \Pi^*(f^*(\nabla t) \circ \Lambda).
\]

Since $\theta = f^*(\nabla t) \circ \Lambda + O(s)$ we have $\Pi^\circ(\theta) = \Pi^\circ(f^*(\nabla t) \circ \Lambda) + O(\Pi^\circ(s))$ by part (i), so $\Pi^\circ(\theta) = C(f)^*(\nabla^\Pi \Pi^*(t)) \circ \Pi^\circ(\Lambda) + O(\Pi^\circ(s))$, proving part (vi).

For (vii), Definition B.36(vii) gives a diagram (B.29) for $C(f)^*(\nabla^\Pi \Pi^*(t)) \circ \Pi^\circ(\Lambda) = C(f)^*(\nabla^\Pi \Pi^*(t)) \circ C(g) : C(X) \to C(Y)$, with $\Pi^\circ(s)_{\text{top}}^{-1}(0) \subseteq C(U)_{\text{top}}$, and (B.44) yields

\[
\Pi^\circ(\Lambda)|_{C(U)} = \Pi^\circ(\theta_{V,v}) = \theta_{C(V,C(v)}.
\]

Thus Definition B.36(vii) gives $C(g) = C(f) + \Pi^\circ(\Lambda) \circ \Pi^\circ(s) + O(\Pi^\circ(s)^2)$.

B.8.2 Comparing different categories \mathfrak{Man}^c

Condition B.40 in [B.7] gave a way to compare two categories \mathcal{Man}, $\mathcal{M}an$ satisfying Assumptions 3.1–3.7. Here is the corners analogue. Figure B.2 on page 276 gives a diagram of functors from Chapter 2, satisfying Condition B.49.

Condition B.49. Let \mathcal{Man}^c, $\mathcal{M}an^c$ satisfy Assumption 3.22 and $F_{\mathcal{Man}^c}^{\mathcal{Man}^c} : \mathcal{Man}^c \to \mathcal{Man}^c$ be a functor in the commutative diagram, as in (B.30):

![Diagram](image)

We also require:

(i) $F_{\mathcal{Man}^c}^{\mathcal{Man}^c}$ should take products, disjoint unions, open submanifolds, and simple maps in \mathcal{Man}^c to products, disjoint unions, open submanifolds, and simple maps in \mathcal{Man}^c, and preserve dimensions.

(ii) There are canonical isomorphisms $F_{\mathcal{Man}^c}^{\mathcal{Man}^c}(C_k(X)) \simeq C_k(F_{\mathcal{Man}^c}^{\mathcal{Man}^c}(X))$ for all X in \mathcal{Man}^c and $k \geq 0$, so $k = 1$ gives $F_{\mathcal{Man}^c}^{\mathcal{Man}^c}(\partial X) \simeq \partial(F_{\mathcal{Man}^c}^{\mathcal{Man}^c}(X))$. 276
These isomorphisms commute with the projections \(\Pi : C_k(X) \to X \) and \(I_{k,t} : C_k(C_t(X)) \to C_{k+1}(X) \) in \(\text{Man}_c^e \) and \(\tilde{\text{Man}}_c^e \), and induce a natural isomorphism \(F_{\text{Man}_c^e}^\pi \circ C \Rightarrow C \circ F_{\tilde{\text{Man}}_c^e}^\pi \) of functors \(\text{Man}_c^e \to \tilde{\text{Man}}_c^e \).

Remark B.50. Condition \[\text{B.49}\] implies that \(F_{\text{Man}_c^e}^\pi : \text{Man}_c^e \to \tilde{\text{Man}}_c^e \) satisfies Condition \[\text{B.40}\]. Thus \(\Pi_{\text{B.7}} \) applies, so that all the material of \[\text{B.1}\]–\[\text{B.5}\] in \(\text{Man}_c^e \) maps functorially to its analogue in \(\tilde{\text{Man}}_c^e \).

Because \(F_{\text{Man}_c^e}^\pi \) is compatible with the corner functors for \(\text{Man}_c^e, \tilde{\text{Man}}_c^e \) by Condition \[\text{B.49}\](ii), these functorial maps from geometry in \(\text{Man}_c^e \) to geometry in \(\text{Man}_c^e \) are also compatible with the material of \[\text{B.8.1}\]. In more detail:

(a) Use the notation of Definition \[\text{B.41}\], so that accents ‘\(\acute{\cdot} \)’ and ‘\(\ddot{\cdot} \)’ denote objects associated to \(\text{Man}_c^e \) and \(\tilde{\text{Man}}_c^e \), respectively.

Suppose \(\bar{f} : \tilde{X} \to \tilde{Y} \) is a morphism in \(\tilde{\text{Man}}_c^e \), so that \(C(\bar{f}) : C(\tilde{X}) \to C(\tilde{Y}) \) and \(\Pi : C(\tilde{X}) \to \tilde{X} \) are morphisms in \(\tilde{\text{Man}}_c^e \). We have relative tangent sheaves \(T_{\bar{f}}Y \) on \(X_{\text{top}} \) and \(T_{C(\bar{f})}C(Y) \) on \(C(X)_{\text{top}} \), defined using differential geometry in \(\text{Man}_c^e \), and Definition \[\text{B.44}\] defines a morphism \(I_{\bar{f}}^j : \Pi_{\text{top}}(T_{\bar{f}}Y) \to T_{C(\bar{f})}C(Y) \) of sheaves on \(C(X)_{\text{top}} \).

Write \(\bar{f} : \tilde{X} \to \tilde{Y} \) for the image of \(\bar{f} : X \to Y \) in \(\tilde{\text{Man}}_c^e \). Then we have sheaves \(T_{\bar{f}}Y \) on \(X_{\text{top}} \) and \(T_{C(\bar{f})}C(Y) \) on \(C(X)_{\text{top}} \) and a morphism \(I_{\bar{f}}^j : \Pi_{\text{top}}(T_{\bar{f}}Y) \to T_{C(\bar{f})}C(Y) \), defined using differential geometry in \(\text{Man}_c^e \).

Definition \[\text{B.41}\](g) gives sheaf morphisms \(F_{\text{Man}_c^e}^\pi : T_{\bar{f}}Y \to T_{\bar{f}}Y \) and \(F_{\tilde{\text{Man}}_c^e}^\pi : T_{C(\bar{f})}C(Y) \to T_{C(\bar{f})}C(Y) \). Applying \(F_{\text{Man}_c^e}^\pi \) throughout Definition \[\text{B.44}\] and using Condition \[\text{B.49}\](ii), we see the following commutes:

\[
\begin{array}{ccc}
\Pi_{\text{top}}^{-1}(T_{\bar{f}}Y) & \xrightarrow{I_{\bar{f}}^j} & T_{C(\bar{f})}C(Y) \\
\Pi_{\text{top}}^{-1}(T_{\bar{f}}Y) & \xrightarrow{I_{\bar{f}}^j} & T_{C(\bar{f})}C(Y)
\end{array}
\]

(b) In a similar way to (a), if \(\bar{\theta} : \tilde{X} \to \tilde{Y} \) is a morphism in \(\tilde{\text{Man}}_c^e \), and \(\bar{E} : \tilde{X} \to \tilde{Y} \) is a vector bundle on \(\tilde{X} \), and \(\bar{\theta} : \tilde{E} \to \tilde{T}_{\bar{f}}Y \) is a morphism, then the following diagram of sheaves on \(C(X)_{\text{top}} \) commutes:

\[
\begin{array}{ccc}
\Pi^+((\bar{E})) & \xrightarrow{\Pi^+((\bar{\theta}))} & T_{C(\bar{f})}C(Y) \\
\Pi^+((\bar{E})) & \xrightarrow{\Pi^+((\bar{\theta}))} & T_{C(\bar{f})}C(Y)
\end{array}
\]
B.9 Proof of Theorem 3.17

We now prove Theorem 3.17(a)–(v). Though the theorem refers to the informal Definition 3.15, which summarizes Definition B.36, we use the precise notions from Definition B.36. Throughout this section, let X be an object in Man, and $\pi : E \to X$ be a vector bundle, and $s \in \Gamma^\infty(E)$ be a section.

Proof of Theorem 3.17(a), parts (i),(vi)

Let $F \to X$ be a vector bundle, $t_1,t_2 \in \Gamma^\infty(F)$, and $\{X_a : a \in A\}$ be a family of open submanifolds in X with $s^{-1}(0) \subseteq \bigcup_{a \in A} X_{a,\text{top}} \subseteq X_{\text{top}}$, with $t_2|_{X_a} = t_1|_{X_a} + O(s)$ on X_a for $a \in A$. We will show that $t_2 = t_1 + O(s)$ on X.

Set $X_{\infty} = X \setminus s^{-1}(0)$, so that $\{X_a : a \in A\} \uplus \{X_{\infty}\}$ is an open cover of X. Choose a subordinate partition of unity $\{\eta_a : a \in A\} \uplus \{\eta_{\infty}\}$ on X, as in (B.13). As $t_2|_{X_a} = t_1|_{X_a} + O(s)$ there exists $\alpha_a : F|_{X_a} \to F|_{X_a}$ such that $t_2|_{X_a} = t_1|_{X_a} + \alpha_a \circ s|_{X_a}$ in $\Gamma^\infty(F|_{X_a})$ for $a \in A$, by Definition B.36(i). Since $s \neq 0$ on $X_{\infty} = X \setminus s^{-1}(0)$ there exists $\epsilon \in \Gamma^\infty(F|_{X_{\infty}})$ with $\epsilon \cdot (s|_{X_a}) = 1$.

Define $\alpha : E \to F$ on X by $\alpha = \sum_{a \in A} \eta_a \cdot \alpha_a + \eta_{\infty} \cdot (t_2 - t_1) \otimes \epsilon$. It is easy to check that $t_2 = t_1 + \alpha \circ s$, so $t_2 = t_1 + O(s)$ on X. Thus the 'O(s)' condition in Definition B.36(ii) is local on $s^{-1}(0)$, as we have to prove.

The same method shows the 'O(s^2)' condition in Definition B.36(i) is local on $s^{-1}(0)$. Also Definition B.36(vi) is local on $s^{-1}(0)$, as it is defined using (i).

Proof of Theorem 3.17(a), part (ii)

Let $F \to X$ be a vector bundle, $f : X \to Y$ be a morphism in Man, and $\Lambda_1, \Lambda_2 : F \to \mathcal{T}_f Y$ be morphisms. Suppose $\{X_a : a \in A\}$ is a family of open submanifolds in X with $s^{-1}(0) \subseteq \bigcup_{a \in A} X_{a,\text{top}} \subseteq X_{\text{top}}$, with $\Lambda_2|_{X_a} = \Lambda_1|_{X_a} + O(s)$ on X_a for $a \in A$. We will show that $\Lambda_2 = \Lambda_1 + O(s)$ on X.

As $\Lambda_2|_{X_a} = \Lambda_1|_{X_a} + O(s)$, by Definition B.36(ii), for each $a \in A$ there exists a commutative diagram (B.28) in Man, with $s^{-1}(0) \cap X_{a,\text{top}} \subseteq U_{a,\text{top}} \subseteq X_{a,\text{top}}$:

\[
\begin{array}{ccc}
U_a & \xrightarrow{\pi} & V_a \\
\downarrow k_{1,a} & & \downarrow k_{2,a} \\
X_a & \xrightarrow{0_{E|_{X_a}}} & E \\
\end{array}
\]

where morphisms ‘\to’ are open submanifolds, and there is a morphism $\mathfrak{m}_a : \pi^*(F)|_{V_a} \to \mathcal{T}_{f|_{V_a}} Y|_{V_a}$ with $k_{1,a}(\mathfrak{m}_a) = \Lambda_1|_{U_a}$ and $k_{2,a}(\mathfrak{m}_a) = \Lambda_2|_{U_a}$.

Let $U \to X$ and $V \to E$ be the open submanifolds with $U_{\text{top}} = \bigcup_{a \in A} U_{a,\text{top}}$ and $V_{\text{top}} = \bigcup_{a \in A} V_{a,\text{top}}$. Then $s^{-1}(0) \subseteq U_{\text{top}}$, since $s^{-1}(0) \cap X_{a,\text{top}} \subseteq U_{a,\text{top}}$ for $a \in A$ and $s^{-1}(0) \subseteq \bigcup_{a \in A} X_{a,\text{top}}$. By taking the union of (B.28) for $a \in A$, we see that U,V fit into a commutative diagram (B.28), including morphisms $k_1,k_2 : U \to V$ with $k_{1,i}|_{U_a} = k_{i,a}$ for $i = 1,2$ and $a \in A$. 278
Now \(\{V_a : a \in A \} \) is an open cover of \(V \). Choose a subordinate partition of unity \(\{ \eta_a : a \in A \} \) on \(V \). Define a morphism \(M : \pi^*(F)|_V \to T_{f_0 \circ Y}|_V \) on \(V \) by \(M = \sum_{a \in A} \eta_a \cdot M_a \). Here \(\eta_a \cdot M_a \) is initially defined only on \(V_a \subseteq V \), but extends smoothly by zero to all of \(V \) as \(\supp(\eta_a) \subseteq V_a \). For \(i = 1, 2 \) we have

\[
k^*_i(M) = k^*_i \left(\sum_{a \in A} \eta_a \cdot M_a \right) = \sum_{a \in A} k^*_i(\eta_a) \cdot k^*_i(M_a) = \sum_{a \in A} k^*_i(\eta_a) \cdot \Lambda_i|_{U_a} = \Lambda_i,
\]

using \(k^*_i(M_a) = \Lambda_i|_{U_a} \) in the second step and \(\sum_a \eta_a = 1 \) in the third. Thus \((B.28) \) and \(M \) imply that \(\Lambda_1 + O(s) \) on \(X \), by Definition \((B.36) \) ii).

Proof of Theorem (B.17) (a), parts (iii),(iv),(v),(vii)

Let \(f, g : X \to Y \) be morphisms in \(\text{Man} \), and \(\{X_a : a \in A\} \) be a family of open submanifolds in \(X \) with \(s_{top}^{-1}(0) \subseteq \bigcup_{a \in A} X_{a, \text{top}} \), such that \(g|_{X_a} = f|_{X_a} + O(s) \) on \(X_a \) for \(a \in A \). We will show that \(g = f + O(s) \) on \(X \).

By replacing each \(X_a \) by a subcover \(\{X_{ab} : b \in B_a\} \) of \(X_a \) with \(E|_{X_{ab}} \) trivial, we can suppose that \(E|_{X_a} \) is trivial for all \(a \in A \), and choose a trivialization \(E|_{X_a} \cong X_a \times \mathbb{R}^r \), where \(r = \text{rank } E \).

Since \(g|_{X_a} = f|_{X_a} + O(s) \) on \(X_a \), by Definition \((B.36) \) iii) there exist a commutative diagram \((B.47) \) and a morphism \(v_a : V_a \to Y \) in \(\text{Man} \) with \(v_a \circ k_{1,a} = f|_{U_a} \) and \(v_a \circ k_{2,a} = f|_{U_a} \) in morphisms \(U_a \to Y \), for all \(a \in A \).

The next part of the proof follows that of Propositions \((B.23) \) and \((B.33) \) Let \(S_A \) be the set of all finite, nonempty subsets \(B \subseteq A \). For each \(B \in S_A \) write \(X_B \hookrightarrow X \) for the open submanifold with \(X_{B, \text{top}} = \bigcap_{a \in B} X_{a, \text{top}} \). Let \(X' \hookrightarrow X \) be the open submanifold with \(X' = \bigcup_{a \in A} X_{a, \text{top}} \).

As in the proof of Proposition \((B.33) \) using induction on \(|B| \) and Assumption \((B.7) \) a), for each \(B \in S_A \) we choose an open submanifold \(k_B : W_B \hookrightarrow \bigoplus_{b \in B} E|_{X_b} \cong X_B \times \prod_{b \in B} \mathbb{R}^r \) and a morphism \(v_B : W_B \to Y \) such that:

1. \(s_{top}^{-1}(0) \times \{(0, \ldots, 0)\} \subseteq W_{B, \text{top}} \) for all \(B \in S_A \).
2. For \(a \in A \) we have \(W_{\{a\}} = V_a \hookrightarrow E|_{X_a} \cong X_a \times \mathbb{R}^r \) and \(v_{\{a\}} = v_a \).
3. If \(x \in X_{B, \text{top}} \) and \(t_b \in \mathbb{R} \) for \(b \in B \) with \(\sum_{b \in B} t_b = 1 \) and \((x, (t_b \cdot s_{top}(x))_{b \in B}) \in W_{B, \text{top}} \) then \(v_{B, top}(x, (t_b \cdot s_{top}(x))_{b \in B}) = g_{B, top}(x) \).
4. If \(C \subseteq B \) lie in \(S_A \) and \((x, (e_a)_{a \in C}) \in W_{B, \text{top}} \), then \((x, (e_a)_{a \in C}) \) lies in \(W_{C, \text{top}} \) with \(v_{C, top}(x, (e_a)_{a \in C}) = v_{B, top}(x, (e_a)_{a \in C}) \).

Here to prove part (c), which does not occur in the proof of Proposition \((B.33) \) we use \(v_{\{a\}} \circ k_{2,a} = g|_{U_a} \) for \(k_{2,a} \) as in \((B.47) \) in the first step when \(B = \{a\} \), and Assumption \((B.7) \) b) in the inductive step.

Now apply Proposition \((B.7) \) to choose a partition of unity \(\{\eta_a : a \in A\} \) on \(X' \) subordinate to the open cover \(\{X_{a, \text{top}} : a \in A\} \). Choose an open submanifold \(j : V \hookrightarrow E \) such that \(0_{E, \text{top}}(s_{top}^{-1}(0)) \subseteq V_0 \) and if \(e \in V_0 \subseteq E_0 \) with \(\pi_0(e) = x \in X_{top} \) and \(B = \{a \in A : x \in \supp(\eta_a)\} \) then \((x, (\eta_a \circ \pi_0(e))_{a \in B}) \in W_{B, \text{top}} \).

By (a) above and local finiteness of \(\{\eta_a : a \in A\} \), this holds for any small enough open neighbourhood of \(0_{E, \text{top}}(s_{top}^{-1}(0)) \) in \(E \).
As in the proof of Proposition [B.33] there is a unique morphism \(v : V \to Y \) in \(\text{Man} \) such that for all \(e \in V_{\text{top}} \) with \(\pi_{\text{top}}(e) = x \in X_{\text{top}} \) and \(B = \{ a \in A : x \in \text{supp } \eta_a \} \) we have

\[
v_{\text{top}}(e) = v_{B, \text{top}}(x, (\eta_a, \text{top}(x) \cdot e)_{a \in B}). \tag{B.48}
\]

Let \(U \hookrightarrow X \) be the open submanifold with \(U_{\text{top}} = 0^{-1}_{E, \text{top}}(V_{\text{top}}) \cap s^{-1}_{\text{top}}(V_{\text{top}}) \). Then \(s^{-1}_{\text{top}}(0) \subseteq U_{\text{top}} \), as \(0_{E, \text{top}}(s^{-1}_{\text{top}}(0)) \subseteq V_{\text{top}} \). Then by Assumption [B.32] (d) there are morphisms \(k_1, k_2 \) making a commutative diagram \((B.28) \). For \(x \in U_{\text{top}} \) with \(B = \{ a \in A : x \in \text{supp } \eta_a \} \) we have

\[
(v \circ k_1)_{\text{top}}(x) = v_{\text{top}} \circ 0_{E, \text{top}}(x) = v_{B, \text{top}}(x, (\eta_a, \text{top}(x) \cdot 0)_{a \in B})
\]

\[
= v_{B, \text{top}}(x, (0)_{a \in B}) = v_{(b), \text{top}}(x, 0) = v_{b, \text{top}}(0_{E, \text{top}}(x)) = (f|U)_{\text{top}}(x),
\]

\[
(v \circ k_2)_{\text{top}}(x) = v_{\text{top}} \circ s_{\text{top}}(x) = v_{B, \text{top}}(x, (\eta_a, \text{top}(x) \cdot s_{\text{top}}(x))_{a \in B}) = (g|U)_{\text{top}}(x),
\]

where for both equations we use \((B.28) \) and \((B.48) \), for the first we pick \(b \in B \) and use (b),(d) above with \(C = \{ b \} \) and \(v_b \circ k_{1,b} = f|U_a \), and for the second we use (c) above. As this holds for all \(x \in U_{\text{top}} \) we have \(v \circ k_1 = f|U \) and \(v \circ k_2 = g|U \). Thus \(g = f + O(s) \) on \(X \) by Definition [B.36] (iii). Hence the ‘(O(s))’ condition in Definition [B.36] (iii) is local on \(s^{-1}_{\text{top}}(0) \subseteq X_{\text{top}} \).

We prove locality of parts (iv),(v),(vii) by extensions of the proof above. For (iv),(v) we start with \(\{ X_a \to X : a \in A \} \) covering \(s^{-1}_{\text{top}}(0) \) in \(X \), a diagram \((B.47) \) and a morphism \(v_a : V_a \to Y \) in \(\text{Man} \) with \(v_a \circ k_{1,a} = f|U_a \) and \(v_a \circ k_{2,a} = g|U_a \) for all \(a \in A \), as above, together with morphisms \(\phi_a : \pi^*(F)|V_a \to v_a^*(G) \) with \(k_i^*(\phi) = \theta_i|U_a \) for \(a \in A \) and \(i = 1, 2 \) in case (iv), and morphisms \(M_a : \pi^*(F)|V_a \to \tau_{\text{top}}Y \) with \(k_i^*(M) = \Lambda_i|U_a \) for \(a \in A \) and \(i = 1, 2 \) in case (v).

Then we construct \(V, v, U, k_1, k_2 \) in a diagram \((B.28) \) from the data \(X_a, U_a, V_a, v_a \) for \(a \in A \) by an inductive argument as above. At the same time we construct a morphism \(\phi : \pi^*(F)|V \to v^*(G) \) with \(k_i^*(\phi) = \theta_i|U \) for \(i = 1, 2 \) in case (iv), and a morphism \(M : \pi^*(F)|V \to \tau_{\text{top}}Y \) with \(k_i^*(M) = \Lambda_i|U \) for \(i = 1, 2 \) in case (v). We do this by gluing together the \(\phi_a \) (or the \(M_a \)) to make \(\phi \) (or \(M \)) using the partition of unity \(\{ \eta_a : a \in A \} \), in a very similar way to the construction of \(v \) above. Therefore (iv),(v) are local on \(s^{-1}_{\text{top}}(0) \subseteq X_{\text{top}} \).

To prove locality of (vii), given \(\Lambda : E \to \tau_{\text{top}}Y \) and \(\{ X_a \to X : a \in A \} \) with \(g|X_a = f|X_a + \Lambda \circ s|X_a + O(s^2) \) on \(X_a \) for \(a \in A \), we follow the proof of (iii) above constructing \(V, v, U \) with \(s^{-1}_{\text{top}}(0) \subseteq U_{\text{top}} \) exactly, except that at the beginning we choose \(v_a : V_a \to Y \) with \(\Lambda|U_a = \theta_{1,a,v_a} \), in the notation of \((B.48) \) which is possible by Definition [B.36] (vii). The last part of the proof of Proposition [B.33] then shows that \(\Lambda|U = \theta_{v,v} \), so \(g = f + \Lambda \circ s + O(s^2) \) on \(X \) by Definition [B.36] (vii), and (vii) is local on \(s^{-1}_{\text{top}}(0) \subseteq X_{\text{top}} \).

Proof of Theorem [B.17](b)

We will need the following lemma:

Lemma B.51. In Definition [B.36] (iv),(v), the condition is independent of the choice of diagram \((B.28) \) and morphism \(v : V \to Y \) satisfying (iii). That is, if (iv),(v) hold for one choice of \((B.28) \), then they hold for all possible choices.
Proof. Let Definition B.36(iv) hold for U, V, k_1, k_2 as in B.28 with $s_{\text{top}}^{-1}(0) \subseteq U_{\text{top}} \subseteq X_{\text{top}}$ and $v : V \rightarrow Y$ with $v \circ k_1 = f|_U$, $v \circ k_2 = g|_U$ and $\phi : \pi^*(F)|_V \rightarrow v^*(G)$ with $k_1^*(\phi) = \theta_1|_U$ and $k_2^*(\phi) = \theta_2|_U$. Suppose that we are given an alternative diagram B.28 involving U, V, k_1, k_2 with $s_{\text{top}}^{-1}(0) \subseteq U_{\text{top}} \subseteq X_{\text{top}}$ and a morphism $\tilde{v} : \tilde{V} \rightarrow Y$ with $\tilde{v} \circ k_1 = f|_U$, $\tilde{v} \circ k_2 = g|_U$, as in (iii). We must construct a morphism $\phi : \pi^*(F)|_{\tilde{V}} \rightarrow \tilde{v}^*(G)$ with $k_1^*(\phi) = \theta_1|_{\tilde{V}}$ and $k_2^*(\phi) = \theta_2|_{\tilde{V}}$, so that (iv) also holds for the alternative choices B.28 and \tilde{v}.

If we can prove such ϕ exist near any point $e \in V_{\text{top}}$, then by taking an open cover of V on which choices of ϕ exist, and combining them with a partition of unity, we see that such ϕ exists globally on V. The conditions on ϕ are only nontrivial near points $e = 0_{E, \text{top}}(x') = s_{\text{top}}(x')$ in V_{top} for $x' \in s_{\text{top}}^{-1}(0) \subseteq X_{\text{top}}$. We restrict to the preimages $U', V', \tilde{V}', \ldots$ in U, V, \tilde{V}, \ldots of an open neighbourhood X' of x' in X with $E|_{X'}$ trivial, so that we may identify $E|_{X'} \cong X' \times \mathbb{R}^n$, and regard $s|_{X'}$ as a morphism $s' : X' \rightarrow \mathbb{R}^n$.

Then we have open $V', V' \rightarrow X' \times \mathbb{R}^n$ with $s_{\text{top}}^{-1}(0) \times \{0\} \subseteq V', \tilde{V}'$, and morphisms $v' : V' \rightarrow Y$, $\tilde{v}' : \tilde{V}' \rightarrow Y$ with $v'(x, 0) = f_0(x)$, $\tilde{v}'(x, s_{\text{top}}(x)) = g_0(x)$, $v'(x, 0) = f_0(x)$ and $\tilde{v}'(x, s_{\text{top}}(x)) = g_0(x)$, for all $x \in X_{\text{top}}$ with the left hand sides defined. Assumption 3.7(b) now shows that there exist open $W' \rightarrow X' \times \mathbb{R}^n \times \mathbb{R}^m$ with $s_{\text{top}}^{-1}(0) \times \{0\} \subseteq W'$, and a morphism $w' : W' \rightarrow Y$ with $w_0(x, z, 0) = v'(x, z)$ and $w_0(x, 0, z) = v'(x, z)$ and $w_0(x, s_{\text{top}}(x), (1-t) \cdot s_{\text{top}}(x)) = g_0(x)$ for all $x \in X_{\text{top}}$, $z \in \mathbb{R}^n$ and $t \in \mathbb{R}$ for which both sides are defined.

We now choose a morphism $\psi : \pi^*(F) |_{\tilde{V}'} \rightarrow w|^*(G)$ with $\psi|_{(x, z)} = \phi|_{(x, z)}$ for all $(x, z) \in V_{\text{top}}$, and $(x, z, 0) \in W_{\text{top}}$, and $\psi|_{(x, t \cdot s_{\text{top}}(x), (1-t) \cdot s_{\text{top}}(x))} = \theta_2|_{\tilde{V}'}$ for all $x \in X_{\text{top}}$ and $t \in \mathbb{R}$ with $(x, t \cdot s_{\text{top}}(x), (1-t) \cdot s_{\text{top}}(x)) \in W_{\text{top}}$. These two conditions are consistent at points $(x, s_{\text{top}}(x), 0)$ as $k_1^*(\phi) = \theta_2|_{\tilde{V}'}$. They prescribe ψ on cleanly-intersecting submanifolds of W', so making W' smaller if necessary, we can use Assumption 3.7(a) to show such ψ exists.

Let $\tilde{V}'' = E|_{X'} \cong X' \times \mathbb{R}^n$ be the open submanifold with $\tilde{V}_{\text{top}} = \{ (x, z) : (x, 0, z) \in W_{\text{top}} \}$ and $(x, z) \in \tilde{V}_{\text{top}}$, and $\tilde{U}'' \rightarrow X'$ the open submanifold with $\tilde{U}_{\text{top}} = \{ x \in \tilde{U}_{\text{top}} : (x, 0) \in \tilde{V}_{\text{top}} \}$ and $(x, s_{\text{top}}(x)) \in \tilde{V}_{\text{top}}$. Let $\tilde{t} : \tilde{V}' \rightarrow W'$ be the morphism with $\tilde{t}(x, z) = (x, 0, z)$ from Assumption 3.2(d). Define $\phi'' : \pi^*(F)|_{\tilde{V}''} \rightarrow \tilde{t}^*(\pi^*(F))$ by $\phi'' = \tilde{t} \circ \phi|_{\tilde{V}'}$. Then $x' \in \tilde{U}_{\text{top}}$ and $e = 0_{E, \text{top}}(x') \in \tilde{V}_{\text{top}}$, and $\tilde{k}_1|_{\tilde{t}^*(\phi'')} = \theta_1|_{\tilde{V}''}$ and $\tilde{k}_2|_{\tilde{t}^*(\phi'')} = \theta_2|_{\tilde{V}''}$. Hence ϕ' satisfying the required conditions near e in V_{top} as required.

This proves the lemma for case (iv). The proof for (v) is similar, noting that we can use Assumption 3.7(a) and Proposition B.33 to show that morphisms $M : \pi^*(F)|_V \rightarrow \mathcal{T}_e Y$ have the required extension properties at the point in the proof where we choose ϕ.

It is now more-or-less immediate from the definitions that the conditions of Definition B.36(i), (ii), (iv)–(vi) are $C^\infty(X)$-linear. Here for (iv),(v) we must fix a diagram B.28 and morphism $v : V \rightarrow Y$ satisfying (iii), and use these for all the different $O(s)$ conditions to be combined. This is possible by Lemma B.51.

\[\Box\]
For example, in (iv) suppose we have morphisms \(\theta_1, \theta'_1 : F \to f^*(G) \) and \(\theta_2, \theta'_2 : F \to g^*(G) \) with \(\theta_2 = \theta_1 + O(s) \) and \(\theta'_2 = \theta'_1 + O(s) \). Fix \(\text{B.28} \) and \(v : V \to Y \) as above, so that (iv) gives \(\phi, \phi' : \pi^*(F)|_V \to v^*(G) \) with \(k^*_1(\phi) = \theta_1|_U \) and \(k^*_1(\phi') = \theta'_1|_U \) for \(i = 1, 2 \). Then for \(a, b \in C^\infty(X) \), considering

\[
\pi^*_V(a) \cdot \phi + \pi^*_V(b) \cdot \phi' : \pi^*(F)|_V \longrightarrow v^*(G)
\]

we see that \(a \theta_2 + b \theta'_2 = a \theta_1 + b \theta'_1 + O(s) \), so (iv) is \(C^\infty(X) \)-linear.

Proof of Theorem 3.17(c)

It is clear from the definitions that the \(O(s), O(s^2) \) conditions in Definition 3.36 are equivalence relations. For (ii),(iii), reflexivity \(\Lambda_1 = \Lambda_1 + O(s) \), \(f = f + O(s) \) is easy (take \(U = X, V = E, M = 0, v = f \circ \pi \)), and symmetry \(\Lambda_2 = \Lambda_1 + O(s) \Rightarrow \Lambda_1 = \Lambda_2 + O(s), g = f + O(s) \Rightarrow f = g + O(s) \) is also easy (apply the involution of \(E \) mapping \((x, e) \) \(\rightarrow (x, s_{\top}(x) - e) \) on points to \(V, M, v \)). It remains to prove transitivity for (ii),(iii).

For (ii), let \(F \to X \) be a vector bundle, \(f : X \to Y \) a morphism, and \(\Lambda_1, \Lambda_2, \Lambda_3 : F \to \mathcal{T}_1 Y \) morphisms with \(\Lambda_2 = \Lambda_1 + O(s) \) and \(\Lambda_3 = \Lambda_2 + O(s) \). Then by Definition 3.36(ii) there exist a diagram \(\text{B.28} \) including \(U, V, k_1, k_2 \) with \(s_{\top}(0) \subseteq U_{\top} \) and a morphism \(M : \pi^*(F)|_V \to \mathcal{T}_f_{\top} Y|_V \) with \(k_1^*(M) = \Lambda_1|_U \) and \(k_2^*(M) = \Lambda_2|_U \). Also, there exist \(\text{B.28} \) including \(\tilde{V}, \tilde{U} \), \(k_1, k_2 \) with \(s_{\top}^{-1}(0) \subseteq \tilde{U}_{\top} \) and a morphism \(\tilde{M} : \pi^*(F)|_{\tilde{V}} \to \mathcal{T}_f_{\top} Y|_{\tilde{V}} \) with \(\tilde{k}_1^*(\tilde{M}) = \Lambda_2|_{\tilde{V}} \) and \(\tilde{k}_2^*(\tilde{M}) = \Lambda_3|_{\tilde{V}} \). Then taking \(\tilde{U} = U \cap \tilde{U}, \tilde{V} = V \cap \tilde{V}, \tilde{k}_i = k_i|_{\tilde{V}} = \tilde{k}_i|_{\tilde{V}} \) for \(i = 1, 2 \), \(\tilde{M} = M|_{\tilde{U}} + \tilde{M}|_{\tilde{V}} - \pi^*(\Lambda_2)|_{\tilde{V}} \) we find that \(k_1^*(\tilde{M}) = \Lambda_1|_{\tilde{V}} \) and \(\tilde{k}_2^*(\tilde{M}) = \Lambda_3|_{\tilde{V}} \), so \(\Lambda_3 = \Lambda_2 + O(s) \), and (ii) is an equivalence relation.

For (iii), suppose \(f, g, h : X \to Y \) are morphisms in \(\mathcal{M} \) with \(g = f + O(s) \) and \(h = g + O(s) \). Then there exist a diagram \(\text{B.28} \) including \(U, V, k_1, k_2 \) with \(s_{\top}(0) \subseteq U_{\top} \) and a morphism \(v : V \to Y \) with \(v \circ k_1 = f|_U \) and \(v \circ k_2 = g|_U \). Also, there exist a diagram \(\text{B.28} \) including \(\tilde{U}, \tilde{V}, \tilde{k}_1, \tilde{k}_2 \) with \(s_{\top}^{-1}(0) \subseteq \tilde{U}_{\top} \) and a morphism \(\tilde{v} : \tilde{V} \to Y \) with \(\tilde{v} \circ \tilde{k}_1 = g|_{\tilde{U}} \) and \(\tilde{v} \circ \tilde{k}_2 = h|_{\tilde{U}} \).

We will prove that \(h = f + O(s) \). By Theorem 3.17(a), proved above, it is enough to show that \(h = f + O(s) \) near each point \(x' \) of \(s_{\top}(0) \subseteq X_{\top} \). We restrict to the preimages \(U', V', \tilde{U}', \tilde{V}' \ldots \) in \(U, V, \tilde{U}, \tilde{V}, \ldots \), of an open neighbourhood \(X' \) of \(x' \) in \(X \) with \(E|_X \) trivial, so that we may identify \(E|_X \cong X' \times \mathbb{R}^n \), and regard \(s|_X \) as a morphism \(s' : X' \to \mathbb{R}^n \).

Then we have open \(V', \tilde{V}' \subseteq X' \times \mathbb{R}^n \) with \(s_{\top}(0) \times \{0\} \subseteq V' \cap \tilde{V}' \) and morphisms \(v' : V' \to Y, \tilde{v}' : \tilde{V}' \to Y \) with \(v'_0(x, 0) = f_{\top}(x), v'_s(x, s_{\top}(x)) = g_{\top}(x), \tilde{v}'_{\top}(x, 0) = g_{\top}(x) \) and \(\tilde{v}'_{\top}(x, s_{\top}(x)) = h_{\top}(x), \) for all \(x \in X_{\top} \) with the left hand sides defined. Assumption 3.7(a) now gives open \(W' \subseteq X' \times \mathbb{R}^n \) with \(s_{\top}(0) \times \{0\} \subseteq W' \cap \tilde{W}' \) and a morphism \(w' : W' \to Y \) with

\[
w'_{\top}(x, z, 0) = v'_{\top}(x, z + s'_{\top}(x)) \quad \text{and} \quad w'_{\top}(x, 0, z) = \tilde{v}'_{\top}(x, z)
\]

for all \(x \in X_{\top}, z \in \mathbb{R}^n \) for which both sides are defined. Here the \(z + s'_{\top}(x) \) means both equations prescribe \(w'_{\top}(x, 0, 0) = g_{\top}(x) \), so they are consistent.

\[282\]
Now define $\tilde{V} \hookrightarrow E|_{X'} \cong X' \times \mathbb{R}^n$ to be the open submanifold with $\tilde{V}_{\text{top}} = \{(x, z) : (x, z - s_{\text{top}}^{-1}(x), z) \in W_{\text{top}}'\}$, and $\tilde{U} \hookrightarrow X'$ to be the open submanifold with $\tilde{U}_{\text{top}} = \{x : (x, 0) \in \tilde{V}_{\text{top}}\}$ and $x, s_{\text{top}}(x) \in \tilde{V}_{\text{top}}$, and $k_1, k_2 : \tilde{U} \to \tilde{V}$, $\tilde{v} : \tilde{V} \to Y$ to be the morphisms with $\tilde{k}_1 \circ \tilde{V}_{\text{top}} = (x, 0)$, $\tilde{k}_2 \circ \tilde{V}_{\text{top}} = (x, \tilde{s}_{\text{top}}(x))$, and $\tilde{v}_{\text{top}}(x, z) = \tilde{w}(x, z - s_{\text{top}}(x), z)$. Then

\[\tilde{v}_{\text{top}} \circ \tilde{k}_1(x, 0) = \tilde{v}_{\text{top}}(x, 0) = w'(x, -\tilde{s}_{\text{top}}(x), 0) = \tilde{v}_{\text{top}}(x, 0) = f_{\text{top}}(x),\]

\[\tilde{v}_{\text{top}} \circ \tilde{k}_2(x, \tilde{s}_{\text{top}}(x)) = \tilde{v}_{\text{top}}(x, \tilde{s}_{\text{top}}(x)) = \tilde{w}_{\text{top}}(x, 0, \tilde{s}_{\text{top}}(x)) = \tilde{v}_{\text{top}}(x, \tilde{s}_{\text{top}}(x)) = h_{\text{top}}(x),\]

so $\tilde{v} \circ \tilde{k}_1 = f|_{\tilde{V}}$ and $\tilde{v} \circ \tilde{k}_2 = h|_{\tilde{V}}$, and $h = f + O(s)$ on X'. Hence $h = f + O(s)$ on X by Theorem 3.17(a), and (iii) is an equivalence relation.

Proof of Theorem 3.17(d)

This is a straightforward combination of the proofs that (i),(ii) are equivalence relations and (iii) is an equivalence relation in the proof of Theorem 3.17(c) above, and we leave it as an exercise.

Proof of Theorem 3.17(e), non Γ-equivariant case

As in the theorem, let $X_a \hookrightarrow X$ for $a \in A$ be open submanifolds with $s_{\text{top}}^{-1}(0) \subseteq \bigcup_{a \in A} X_{a,\text{top}}$. Write $X_{ab} \hookrightarrow X$ for the open submanifold with $X_{ab,\text{top}} = X_{a,\text{top}} \cap X_{b,\text{top}}$ for $a, b \in A$. Suppose we are given morphisms $f_a : X_a \to Y$ in Man for all $a \in A$ with $f_a|_{X_{ab}} = f_b|_{X_{ab}} + O(s)$ on X_{ab} for all $a, b \in A$. We must construct an open submanifold $X' \hookrightarrow X$ with $s_{\text{top}}^{-1}(0) \subseteq X'_{\text{top}}$ and a morphism $g : X' \to Y$ such that $g|_{X \cap X_{a}} = f_a|_{X \cap X_{a}} + O(s)$ for all $a \in A$.

Since $f_a|_{X_{ab}} = f_b|_{X_{ab}} + O(s)$ on X_{ab}, by Definition 3.36(iii) there exists a diagram (3.28) including $U_{ab}, V_{ab}, k_{1, ab}, k_{2, ab}$ with $s_{\text{top}}^{-1}(0) \subseteq X_{ab,\text{top}} \subseteq X_{ab,\text{top}}$ and a morphism $v_{ab} : V_{ab} \to Y$ with $v_{ab} \circ k_{1, ab} = f_a|_{V_{ab}}$ and $v_{ab} \circ k_{2, ab} = f_b|_{V_{ab}}$, for all $a, b \in A$. Making V_{ab} smaller, we can suppose that $v_{\text{top}}(x) \in V_{ab,\text{top}}$ if and only if $x \in U_{ab,\text{top}}$, and $s_{\text{top}}(x) \in V_{ab,\text{top}}$ if and only if $x \in U_{ab,\text{top}}$.

We will divide the proof into three steps:

(A) $A = \{1, 2\}$.

(B) $A = \mathbb{N}$ and $\{X_a : a \in A\}$ is locally finite, i.e. each $x \in X_{a,\text{top}}$ has an open neighbourhood intersecting only finitely many $X_{a,\text{top}}$.

(C) The general case.

We use the notation above in each step.

Step (A). Suppose $A = \{1, 2\}$. Let $\tilde{X} \hookrightarrow X$ be the open submanifold with $\tilde{X}_{\text{top}} = X_{1,\text{top}} \cup X_{2,\text{top}}$. Then $s_{\text{top}}^{-1}(0) \subseteq \bigcup_{a \in \{1, 2\}} X_{a,\text{top}} = X_{\text{top}}$. Choose a partition of unity $\{\eta_1, \eta_2\}$ on \tilde{X} subordinate to the open cover $\{X_1, X_2\}$. Let
$X' \hookrightarrow X$ be the open submanifold with

$$X'_{\text{top}} = (X_{1,\text{top}} \setminus \supp \eta_2) \amalg (X_{2,\text{top}} \setminus \supp \eta_1) \amalg \{x \in \supp \eta_1 \cap \supp \eta_2 : (x, \eta_{2,\text{top}}(x) \cdot s_{\text{top}}(x)) \in V_{12,\text{top}}\}.$$

Then $s_{\text{top}}^{-1}(0) \subseteq X'_{\text{top}}$. By Assumption 3.3 (a) there is a unique $g : X' \to Y$ with

$$g_{\text{top}}(x) = \begin{cases} f_{1,\text{top}}(x), & x \in X_{1,\text{top}} \setminus \supp \eta_2, \\ f_{2,\text{top}}(x), & x \in X_{2,\text{top}} \setminus \supp \eta_1, \\ v_{12,\text{top}}(x, \eta_{2,\text{top}}(x) \cdot s_{\text{top}}(x)), & x \in X'_{\text{top}} \cap U_{12,\text{top}}. \end{cases}$$

This holds as the three possibilities for g are smooth maps on open subsets of X' covering X', which agree on the overlaps, since $v_{12,\text{top}}(x, 0) = f_{1,\text{top}}(x)$ and $v_{12,\text{top}}(x, s_{\text{top}}(x)) = f_{2,\text{top}}(x)$.

To show that $g|_{X' \cap X_1} = f_{1}|_{X' \cap X_1} + O(s)$, define $V_1 \hookrightarrow E$, $U_1 \hookrightarrow X$ to be the open submanifolds and $v_1 : V_1 \to Y$, $k_{1,1}, k_{2,1} : U_1 \to V_1$ the morphisms with

$$V_{1,\text{top}} = \pi_{\text{top}}^{-1}(X_{1,\text{top}} \setminus \supp \eta_2) \amalg \{ (x, e) \in \pi_{\text{top}}^{-1}(\supp \eta_2 \cap U_{12,\text{top}}) : (x, \eta_{2,\text{top}}(x) \cdot e) \in V_{12,\text{top}} \},$$

$$U_{1,\text{top}} = \{ x \in X'_{\text{top}} \cap X_{1,\text{top}} : (x, 0) \in V_{1,\text{top}} \text{ and } (x, s_{\text{top}}(x)) \in V_{1,\text{top}} \},$$

$$v_{1,\text{top}}(x, e) = \begin{cases} f_{1,\text{top}}(x), & x \in X_{1,\text{top}} \setminus \supp \eta_2, \\ v_{12,\text{top}}(x, \eta_{2,\text{top}}(x) \cdot e), & (x, e) \in V_{1,\text{top}} \cap \pi_{\text{top}}^{-1}(U_{12,\text{top}}), \end{cases}$$

$$k_{1,1}(x) = (x, 0), \quad k_{2,1}(x) = (x, s_{\text{top}}(x)).$$

Again, the two possibilities for v_1 are smooth on an open cover of V_1, which agree on the overlap, since $v_{12,\text{top}}(x, 0) = f_{1,\text{top}}(x)$.

Step (B). Suppose $A = \mathbb{N}$ and $\{X_a : a \in \mathbb{N}\}$ is locally finite. By induction on $m = 1, 2, \ldots$ we will construct an open submanifold $X'_m \hookrightarrow X$ and a morphism $g_m : X'_m \to Y$ satisfying:

(i) $s_{\text{top}}^{-1}(0) \cap \left(\bigcup_{a=1}^{m} X_a \right) = s_{\text{top}}^{-1}(0) \cap X'_{m,\text{top}}$.

(ii) $g_m|_{X_a \cap X_m} = f_a|_{X_a \cap X_m} + O(s)$ for $a = 1, \ldots, m$.

(iii) If $m > 1$ and $x \in X_{\text{top}} \setminus X_m$ then $x \in X'_{m-1,\text{top}}$ if and only if $x \in X'_{m,\text{top}}$, and then $g_{m-1,\text{top}}(x) = g_m|_{\text{top}}(x)$.

For the first step $m = 1$ we put $X'_1 = X_1$ and $g_1 = f_1$, and (i)–(iii) hold trivially. For the inductive step, suppose $m \geq 1$ and we have constructed $X'_1, g_1, \ldots, X'_m, g_m$ satisfying (i)–(iii). For each $a = 1, \ldots, m$ we have

$$g_m|_{X'_a \cap X_m} = f_a|_{X'_a \cap X_m} + O(s)$$

$$= f_{m+1}|_{X'_a \cap X_m} + O(s),$$

and we have

$$g_m|_{X'_a \cap X_{m+1}} = f_a|_{X'_a \cap X_{m+1}} + O(s)$$

$$= f_{m+1}|_{X'_a \cap X_{m+1}} + O(s).$$

284
using (ii) for \(g_m \) in the first step, and \(f_{a|X_{a(x+1)}} = f_{m+1|X_{a(x+1)}} + O(s) \) and Theorem 3.17(c) in the second. Now (i) implies that

\[
s_{\text{top}}^{-1}(0) \cap (X'_m \cap X_{m+1})_{\text{top}} \subseteq \bigcup_{a=1}^{m}(X'_a \cap X_a \cap X_{m+1})_{\text{top}}.
\]

Hence (B.49) and Theorem 3.17(a) imply that \(g_m|X'_m \cap X_{m+1} = f_a|X'_m \cap X_{m+1} + O(s) \) on \(X'_m \cap X_{m+1} \).

We now apply step (A) to combine \(g_m : X'_m \to Y \) and \(f_{m+1} : X_{m+1} \to Y \). This yields an open \(X'_{m+1} \hookrightarrow X \) and a morphism \(g_{m+1} : X'_{m+1} \to Y \) with

\[
g_{m+1}|X'_{m+1} \cap X'_m = g_m|X'_m \cap X_{m+1} + O(s), \tag{B.50}
\]

\[
g_{m+1}|X'_{m+1} \cap X_{m+1} = f_{m+1}|X_{m+1} \cap X_{m+1} + O(s). \tag{B.51}
\]

Parts (i), (iii) for \(X'_{m+1}, g_{m+1} \) are immediate from the construction. For (ii), the case \(a = m + 1 \) for \(g_{m+1} \) is (B.51). For \(a = 1, \ldots, m \) we have

\[
g_m|X'_m \cap X_a = g_m|X'_m \cap X_a + O(s) = f_{a|X'_m} + O(s), \tag{B.50}
\]

using (B.50), part (ii) for \(g_m \), and Theorem 3.17(c) (proved above). Part (i) gives

\[
s_{\text{top}}^{-1}(0) \cap (X'_m \cap X_a)_{\text{top}} = s_{\text{top}}^{-1}(0) \cap (X'_m \cap X_a)_{\text{top}},
\]

so Theorem 3.17(a) gives \(g_m|X'_m \cap X_a = g_m|X'_m \cap X_a + O(s) \), proving (ii) for \(g_{m+1} \). This completes the inductive step, so by induction we can choose \(X'_m, g_m \) satisfying (i)–(iii) for all \(m = 1, 2, \ldots \).

We now claim that there are a unique open submanifold \(X' \hookrightarrow X \) and morphism \(g : X' \to Y \) with the property that \(x \in X_{\text{top}} \) lies in \(X_{\text{top}} \) if and only if \(x \in X'_m \) for all \(m \gg 0 \) sufficiently large, and then \(g_{\text{top}}(x) = g_{m, \text{top}}(x) \) for all \(m \gg 0 \) sufficiently large. To see this, write \(X_{\text{top}}' \) for the set of \(x \in X_{\text{top}} \) satisfying this condition. Fix \(\tilde{x} \in X_{\text{top}} \). Then local finiteness of \(\{ x_a : a \in \mathbb{N} \} \) means that \(\tilde{x} \) has an open neighbourhood \(U \hookrightarrow X \) in \(X \) such that \(U \cap X_{\text{top}} = \emptyset \) for all \(m \gg N \), for some \(N \gg 0 \).

Part (iii) implies that if \(m \geq N \) and \(x \in U_{\text{top}} \) then \(x \in X'_m \) if and only if \(x \in X'_{m+1} \). Thus \(U_{\text{top}} \cap X'_{N+1, \text{top}} = U_{\text{top}} \cap X'_{N, \text{top}} = \cdots \), so that \(U_{\text{top}} \cap X'_{N+1, \text{top}} = U_{\text{top}} \cap X'_{N, \text{top}} \) which is open. Hence we can cover \(X_{\text{top}} \) by open \(U_{\text{top}} \subseteq X_{\text{top}} \) with \(U_{\text{top}} \cap X'_{N, \text{top}} \) open, so \(X'_{\text{top}} \) is open in \(X_{\text{top}} \), and the open submanifold \(X' \hookrightarrow X \) is well defined.

For \(\tilde{x}, U, N \) as above, part (iii) also gives \(g_{m, \text{top}}(x) = g_{m+1, \text{top}}(x) \) for any \(x \in U_{\text{top}} \cap X'_{\text{top}} \) and \(m \geq N \), so \(g_{N, \text{top}}(x) = g_{N+1, \text{top}}(x) = g_{N+2, \text{top}}(x) = \cdots \). Hence there is a unique map \(g_{\text{top}} : X'_{\text{top}} \to Y_{\text{top}} \) with \(g_{\text{top}}(x) = g_{m, \text{top}}(x) \) for all \(m \gg 0 \) sufficiently large, where in \(U \) we have \(g_{\text{top}}|U_{\text{top}} \cap X'_{\text{top}} = g_{N, \text{top}}|U_{\text{top}} \cap X'_{\text{top}} \).

As \(g_{\text{top}}|U \cap X' : U \cap X' \to Y \) is a morphism in \(\text{Man} \), and we can cover \(X'_{\text{top}} \) by such open \((U \cap X')_{\text{top}} \). Assumption 3.3(a) implies that there is a unique morphism \(g : X' \to Y \) in \(\text{Man} \) with the prescribed \(g_{\text{top}} \).

Let \(a \in \mathbb{N} \). Then as above we can cover \(X' \cap X_a \) by open \(U \hookrightarrow X' \cap X_a \) such that \(U_{\text{top}} \subseteq X'_{m, \text{top}} \) and \(g|U = g_{m}|U \) for \(m \gg 0 \), so that \(m \gg a \). Then
\(g|_U = g_m|_U = f_a|_U + O(s) \) by (ii), so Theorem 3.17(a) implies that \(g|_{X' \cap X_a} = f_a|_{X' \cap X_a} + O(s) \), as we want. This completes step (B).

Step (C). Consider the general case, with \(\{X_a \hookrightarrow X : a \in A\} \) any open cover of \(X \). Since \(X_{\text{top}} \) is Hausdorff, locally compact, and second countable by Assumption 3.2(b), it is also paracompact (i.e. every open cover has a locally finite refinement), and Lindelöf (i.e. every open cover has a countable subcover).

So by paracompactness we can choose an open cover \(\{X_b \hookrightarrow X : b \in B\} \) of \(X \) which is locally finite, such that for all \(b \in B \) there exists \(a_b \in A \) with \(X_{b,\text{top}} \subseteq X_{a_b,\text{top}} \subseteq X_{\text{top}} \). And by the Lindelöf property we can choose a countable subset \(C \subseteq B \) such that \(\{X_c \hookrightarrow X : c \in C\} \) is still an open cover of \(X \). Thus (adding extra empty \(\hat{X}_c \) if \(C \) is finite) we can take \(C = \mathbb{N} \).

For each \(c,d \in \mathbb{N} \) we have \(f_c|_{X_{c,d}} = f_d|_{X_{c,d}} + O(s) \) since \(f_a|_{X_{c,d}} = f_d|_{X_{c,d}} + O(s) \). Apply step (B) to \(\{X_c \hookrightarrow X : c \in \mathbb{N}\} \) and the \(f_c : X_c \rightarrow Y \). This gives an open submanifold \(X' \hookrightarrow X \) with \(s^{-1}_{\text{top}}(0) \subseteq X' \) and a morphism \(g : X' \rightarrow Y \) such that \(g|_{X' \cap X_c} = f_c|_{X' \cap X_c} + O(s) \) for all \(c \in \mathbb{N} \). Let \(a \in A \) and \(c \in \mathbb{N} \). Then

\[
g|_{X' \cap X_c} = f_a|_{X' \cap X_c} + O(s) = f_a|_{X' \cap X_c} + O(s) = f_a|_{X' \cap X_c} + O(s),
\]

using \(f_{ac}|_{X_{ac}} = f_a|_{X_{ac}} + O(s) \) and Theorem 3.17(c) (proved above). As this holds for all \(c \in \mathbb{N} \) and the \(X_c, c \in \mathbb{N} \) cover \(s^{-1}_{\text{top}}(0) \), Theorem 3.17(a) implies that \(g|_{X' \cap X_a} = f_a|_{X' \cap X_a} + O(s) \), as we want. This proves the first part of Theorem 3.17(e), without \(\Gamma \)-invariance/equivariance.

Proof of Theorem 3.17(e), the \(\Gamma \)-equivariant case

For the second part, we must show that if the initial data \(X,Y, X_a \hookrightarrow X, f_a : X_a \rightarrow Y \) is invariant/equivariant under a finite group \(\Gamma \), then we can choose \(X', g \) to be invariant/equivariant under \(\Gamma \). To do this we must go through the whole proof above checking that each step can be done \(\Gamma \)-equivariantly. Most of this is easy or automatic – for example, when we choose the partition of \(X \) we can average \(f_{ac} \) to be invariant/equivariant under \(\Gamma \). To do this we must go through the whole proof above checking that each step can be done \(\Gamma \)-equivariantly. Most of this is easy or automatic – for example, when we choose the partition of \(X \) we can average \(f_{ac} \) to be invariant/equivariant under \(\Gamma \). To do this we must go through the whole proof above checking that each step can be done \(\Gamma \)-equivariantly. Most of this is easy or automatic – for example, when we choose the partition of \(X \) we can average \(f_{ac} \) to be invariant/equivariant under \(\Gamma \).

Suppose as above we have \(X,Y, X_a \hookrightarrow X \) for \(a \in A \), and morphisms \(f_a : X_a \rightarrow Y \) with \(f_a|_{X_a} = f_a|_{X_\text{top}} + O(s) \), and \(\Gamma \) acts on \(X,Y \) preserving the \(X_a \), and the \(f_a \) are \(\Gamma \)-equivariant. Then by Definition 3.36(iii) there is a diagram [B.28] including \(U_{ab}, V_{ab}, k_{1,ab}, k_{2,ab} \) with \(s^{-1}_{\text{top}}(0) \cap X_{ab,\text{top}} \subseteq U_{ab,\text{top}} \subseteq X_{ab,\text{top}} \) and a morphism \(v_{ab} : V_{ab} \rightarrow Y \) with \(v_{ab} \circ k_{1,ab} = f_a|_{U_{ab}} \) and \(v_{ab} \circ k_{2,ab} = f_a|_{U_{ab}} \), and these \(U_{ab}, V_{ab}, v_{ab} \) were used in the proof of step (A).

We can choose \(U_{ab} \hookrightarrow X \) and \(V_{ab} \hookrightarrow E \) to be \(\Gamma \)-invariant by replacing them by \(\bigcap_{\gamma \in \Gamma} \gamma^{-1}(U_{ab}) \) and \(\bigcap_{\gamma \in \Gamma} \gamma^{-1}(V_{ab}) \), and then \(k_{1,ab}, k_{2,ab} \) are automatically \(\Gamma \)-equivariant. However, \(v_{ab} : V_{ab} \rightarrow Y \) need not be \(\Gamma \)-equivariant.

We will show using Assumption 3.37(c) that given some choice of \(U_{ab}, V_{ab}, k_{1,ab}, k_{2,ab}, v_{ab} \) that may not be \(\Gamma \)-invariant/equivariant, we can construct alternative choices \(U_{ab}', V_{ab}', k_{1,ab}', k_{2,ab}', v_{ab}' \) which are \(\Gamma \)-invariant/equivariant.
First consider the case in which $E|_{X_{ab}}$ is trivial, with a Γ-equivariant trivialization $E|_{X_{ab}} \cong X_{ab} \times \mathbb{R}^n$, in which Γ acts linearly on the left on \mathbb{R}^n. Write $(\mathbb{R}^n)^{[\Gamma]}$ as $\bigoplus_{\gamma \in \Gamma} \mathbb{R}^n$, and elements of $(\mathbb{R}^n)^{[\Gamma]}$ as $(z_\gamma)_{\gamma \in \Gamma}$ for $z_\gamma \in \mathbb{R}^n$. Let Γ act linearly on $(\mathbb{R}^n)^{[\Gamma]}$, such that $\delta \in \Gamma$ acts in the given way on each copy of \mathbb{R}^n, but also δ permutes the indexing set Γ by right multiplication, so that

$$\delta : (z_\gamma)_{\gamma \in \Gamma} \longmapsto (\delta \cdot z_{\gamma \delta})_{\gamma \in \Gamma},$$

which gives a left action of Γ on $(\mathbb{R}^n)^{[\Gamma]}$.

We will use Assumption 3.7(c) to choose a Γ-invariant open submanifold $W_{ab,}\hookrightarrow X_{ab} \times \bigoplus_{\gamma \in \Gamma} \mathbb{R}^n$ and a Γ-equivariant morphism $w_{ab} : W_{ab} \to Y$ such that

(i) $(s_{top}^{-1}(0) \cap X_{ab,}\top) \times \{0\}_{\gamma \in \Gamma} \subseteq W_{ab,}\top$.

(ii) if $(x, z) \in V_{ab,}\top$ and $\delta \in \Gamma$ with $(x, (\delta \cdot z)_\delta)$ $\Pi (0)_{\gamma \in \Gamma \setminus \{\delta\}} \in W_{ab,}\top$ then

$$w_{ab,}\top(x, (\delta \cdot z)_\delta) \Pi (0)_{\gamma \in \Gamma \setminus \{\delta\}} = \delta \cdot w_{ab,}\top(x, z).$$

(iii) If $x \in X_{ab,}\top$ and $t_\gamma \in \mathbb{R}$ for $\gamma \in \Gamma$ with $\sum_{\gamma \in \Gamma} t_\gamma = 1$ and $(x, (\gamma \cdot s_{top}(x))_{\gamma \in \Gamma}) \in W_{ab,}\top$ then

$$w_{ab,}\top(x, (\gamma \cdot s_{top}(x))_{\gamma \in \Gamma}) = f_{b,}\top(x).$$

In fact we have to apply Assumption 3.7(c) finitely many times to choose $w_{ab,}\top(x, (z_\gamma)_{\gamma \in B} \Pi (0)_{\gamma \in \Gamma \setminus \{\delta\}})$ for all subsets $\emptyset \neq B \subseteq \Gamma$, by induction on increasing $|B| = 1, 2, \ldots, |\Gamma|$, following the proof of Proposition 3.25 closely. When $B = \{\delta\}$ the values of $w_{ab,}\top$ are given by (ii). The condition that w_{ab} be Γ-equivariant means that the values of $w_{ab,}\top$ for $B \subseteq \Gamma$ determine the values for $B \delta$ for all $\delta \in \Gamma$, so we choose values of $w_{ab,}\top$ for one set B in each Γ-orbit of subsets $B' \subseteq \Gamma$. The values of $w_{ab,}\top$ for B must be chosen equivariant under $\text{Stab}_{\Gamma}(B) = \{\delta \in \Gamma : B \delta = B\}$, which is allowed by Assumption 3.7(c).

Condition (iii) above comes from Assumption 3.7(b).

Now define $V_{ab}^\prime : W_{ab} \hookrightarrow E$, $U_{ab}^\prime \hookrightarrow X$ to be the open submanifolds and $\nu_{ab} : V_{ab}^\prime \to Y$, $k_{1,ab}^\prime, k_{2,ab}^\prime : U_{ab}^\prime \to V_{ab}$ the morphisms defined on points by

$$V_{ab,}\top = \{(x, z) \in (E|_{X_{ab}})_{\top} : (x, \left(\frac{1}{\gamma} \right) \gamma \in \Gamma) \in W_{ab,}\top\},$$

$$U_{ab,}\top = \{x \in X_{ab,}\top : (x, 0) \in V_{ab,}\top, \text{ and } (x, s_{top}(x)) \in V_{ab,}\top\},$$

$$\nu_{ab,}\top(x, z) = w_{ab,}\top(x, \left(\frac{1}{\gamma} \right) \gamma \in \Gamma),$$

$$k_{1,ab,}\top(x) = (x, 0), \text{ and } k_{2,ab,}\top(x) = (x, s_{top}(x)).$$

Then we have $s_{top}^{-1}(0) \cap X_{ab,}\top \subseteq U_{ab,}\top \subseteq X_{ab,}\top$ and $\nu_{ab} \circ k_{1,ab}^\prime = f_{b,}\top|_{U_{ab}^\prime}$ and $\nu_{ab} \circ k_{2,ab}^\prime = f_{b,}\top|_{U_{ab}^\prime}$, as required to show that $f_{a|X_{ab}} = f_{b|X_{ab}} + O(s)$. Furthermore, as W_{ab} is Γ-invariant and w_{ab} is Γ-equivariant, we see that $U_{ab}^\prime, V_{ab}^\prime$ are Γ-invariant and $\nu_{ab}^\prime, k_{1,ab}^\prime, k_{2,ab}^\prime$ are Γ-equivariant, as we want.

Proof of Theorem 3.17(f)

Let $f, g : X \to Y$ be morphisms in Man with $g = f + O(s)$, and $F \to X, G \to Y$ be vector bundles, and $\theta_1 : F \to f^*(G)$ be a morphism. We must show that
there exists a morphism \(\theta_2 : F \to g^*(G) \) with \(\theta_2 = \theta_1 + O(s) \) as in Definition \ref{B.36}(iv), and that such \(\theta_2 \) are unique up to \(O(s) \) as in Definition \ref{B.36}(i).

First suppose \(G \to Y \) is trivial, and choose a trivialization \(G \cong Y \times \mathbb{R}^k \). Then \(f^*(G) \) and \(g^*(G) \) have induced trivializations \(f^*(G) \cong X \times \mathbb{R}^k \cong g^*(G) \), giving an isomorphism \(f^*(G) \cong g^*(G) \). Let \(\theta_2 : F \to g^*(G) \) be the morphism identified with \(\theta_1 : F \to f^*(G) \) by \(f^*(G) \cong g^*(G) \). We claim that \(\theta_2 = \theta_1 + O(s) \). To see this, let \(\text{(B.28)} \) and \(v : V \to Y \) be as in Definition \ref{B.36}(iii) for \(g = f + O(s) \), and let \(\phi : \pi^*(F)|_V \to \pi^*(G) \) be the morphism identified with \(\pi^*(\theta_1)|_V : \pi^*(F)|_V \to (f \circ \pi^*(G))|_V \) by the isomorphisms \(\pi^*(G) \cong V \times \mathbb{R}^k \times (f \circ \pi^*(G))|_V \). Then \(k_1^*(\phi) = \theta_1|_U \) and \(k_2^*(\phi) = \theta_2|_U \), so \(\theta_2 = \theta_1 + O(s) \) by Definition \ref{B.36}(iv).

Now suppose we have morphisms \(\theta_2, \theta_2 : F \to g^*(G) \) with \(\theta_2 = \theta_1 + O(s) \) and \(\bar{\theta}_2 = \bar{\theta}_1 + O(s) \) as in Definition \ref{B.36}(iv). We must show that \(\theta_2 = \theta_1 + O(s) \) as in Definition \ref{B.36}(i). By Theorem \ref{B.1.4} it is enough to prove this locally near each \(x \in s_{\text{top}}^{-1}(0) \). So choose a small open neighbourhood \(X' \) of \(x \). By Lemma \ref{B.4.1} we can use the same diagram \(\text{(B.28)} \) involving \(U, V, k_1, k_3 \) and morphism \(v : V \to Y \) for verifying the conditions \(\bar{\theta}_2|_{X'} = \theta_1|_{X'} + O(s) \) and \(\bar{\theta}_2|_{X'} = \theta_1|_{X'} + O(s) \). Thus by Definition \ref{B.36}(iv) there exist morphisms \(\phi, \bar{\phi} : \pi^*(F)|_V \to v^*(G) \) with \(k_1^*(\phi) = \theta_1|_U \) and \(k_2^*(\phi) = \bar{\theta}_2|_U \) and \(k_3^*(\phi) = \bar{\theta}_2|_U \).

Making \(X', U', V' \) smaller we can suppose \(E|_{X'}, F|_{X'}, f^*(G)|_{X'}, g^*(G)|_{X'}, v^*(G) \) are trivial, and choose isomorphisms \(E|_{X'} \cong X' \times \mathbb{R}^n, F|_{X'} \cong X' \times \mathbb{R}^n, f^*(G)|_{X'} \cong X' \times \mathbb{R}^n \cong g^*(G)|_{X'}, v^*(G) \cong V \times \mathbb{R}^n \) which are compatible with \(k_1^*(v^*(G)) = f^*(G)|_U, k_2^*(v^*(G)) = g^*(G)|_U \) for \(U \subseteq X' \). Then we can interpret \(s_{|X'} : x \mapsto (s_1, \ldots, s_n) : X' \to \mathbb{R}^n \) in \(\text{Man} \), and \(\bar{\theta}_2|_{X' \times X'}, \bar{\theta}_2|_{X' \times X'} \) as \(\theta_2|_{X' \times X'}, \bar{\theta}_2|_{X' \times X'}, \) or \(\phi, \bar{\phi} : V \to (\mathbb{R}^*)^n \otimes \mathbb{R}^n \).

We then have \(V \to E|_{X'} \cong X' \times \mathbb{R}^n \) open, so writing points of \(V_{\text{top}} \) as \((x, z) \) for \(x \in X'_{\text{top}} \) and \(z = (z_1, \ldots, z_n) \in \mathbb{R}^n \), for all \(x \in U_{\text{top}} \subseteq X'_{\text{top}} \) we have

\[
\phi_{\text{top}}(x, 0) = \theta_1(x), \quad \phi_{\text{top}}(x, s_{\text{top}}(x)) = \theta_2(x),
\]

\[
\bar{\phi}_{\text{top}}(x, 0) = \theta_1(x), \quad \bar{\phi}_{\text{top}}(x, s_{\text{top}}(x)) = \bar{\theta}_2(x).
\] (B.52)

Applying Assumption \ref{B.3.5} to \(\bar{\phi} - \phi : V \to (\mathbb{R}^*)^n \otimes \mathbb{R}^n \), we see that there exist morphisms \(g_1, \ldots, g_n : V \to (\mathbb{R}^*)^n \otimes \mathbb{R}^n \) with

\[
\bar{\phi}_{\text{top}}(x, z) - \phi_{\text{top}}(x, z) = \sum_{i=1}^n z_i \cdot g_i(x, z).
\] (B.53)
Define a vector bundle morphism \(\alpha : E|_U \to F^*|_U \otimes g^*(G)|_U \) on points by
\[
\alpha|_x : (e_1, \ldots, e_n) = \sum_{i=1}^n e_i \cdot g_{i, top}(x, s_{top}(x)),
\]
for \(x \in U_{top} \subseteq X_{top} \) and \((e_1, \ldots, e_n) \in E|_x \cong \mathbb{R}^n \), using the chosen trivializations. Then Theorem 3.17(a) implies that \(\tilde{\theta}_2 = \theta_2 + O(s) \) on \(U \) as in Definition B.36(1). As \(x \in U_{top} \) and we can find such \(U \) for any \(x \in \mathfrak{s}^{-1}_{top}(0) \), Theorem 3.17(a) implies that \(\tilde{\theta}_2 = \theta_2 + O(s) \), as we have to prove.

Proof of Theorem B.17(g)

Let \(f, g : X \to Y \) be morphisms with \(g = f + O(s) \), and \(F \to X \) be a vector bundle, and \(\Lambda_1 : F \to T_Y \) be a morphism. We want to construct a morphism \(\Lambda_2 : F \to T_Y \) with \(\Lambda_2 = \Lambda_1 + O(s) \) as in Definition B.36(v), and show that such \(\Lambda_2 \) are unique up to \(O(s) \) as in Definition B.36(ii).

As \(g = f + O(s) \), by Definition B.36(iii) there is a commutative diagram (B.28) involving \(U, V, k_1, k_2 \) and a morphism \(v : V \to Y \) with \(v \circ k_1 = f|_U \) and \(v \circ k_2 = g|_U \). By Proposition B.33 there exists a diagram (B.22)

\[
\begin{array}{c}
F \\
\downarrow \phi \\
W \\
\downarrow \psi \\
Y,
\end{array}
\]

such that \(\Lambda_1 = \theta_{W,W} \). Let \(x \in \mathfrak{s}^{-1}_{top}(0) \subseteq U_{top} \subseteq X_{top} \), and choose an open neighbourhood \(X' \subseteq U \) of \(x \) in \(U \) such that \(E|_{X'}, F|_{X'} \) are trivial, and choose trivializations \(E|_{X'} \cong X' \times \mathbb{R}^n, F|_{X'} \cong X' \times \mathbb{R}^n \).

We now use Assumption 3.7(a) with \(k = 2 \) to construct open \(Z \hookrightarrow X' \times \mathbb{R}^n \times \mathbb{R}^n \) with \(Z_{top} \) and a morphism \(z : Z \to Y \) such that \(z_{top}(x', e, 0) = v_{top}(x', e) \) and \(z_{top}(x', 0, f) = w_{top}(x', f) \) for all \(x' \in Z_{top}, e \in \mathbb{R}^n \) and \(f \in \mathbb{R}^n \) for which both sides are defined. (Here to get \(\mathbb{R}^n \oplus \mathbb{R}^n \) rather than \(\mathbb{R}^n \oplus \mathbb{R}^n \), as in Assumption 3.7(a), we replace both \(n, r \) by \(\max(n, r) \) and add an extra trivial factor of \(\mathbb{R}^{n-r} \) to \(E|_{X'} \) or \(F|_{X'} \).

Let \(V' \hookrightarrow V \) and \(U' \hookrightarrow X' \) be the open submanifolds and \(k_1', k_2' : U' \to V' \) the morphisms with
\[
\begin{align*}
V'_{top} &= \{(x', e) : (x', e, 0) \in Z_{top}, (x', e) \in V_{top}\}, \\
U'_{top} &= \{x' : (x', 0) \in V'_{top}, (x', s_{top}(x')) \in V'_{top}\}, \\
k_{1, top}(x') &= (x', 0), \\
k_{2, top}(x') &= (x', s_{top}(x')).
\end{align*}
\]

Then \(x \in U'_{top} \). Define \(M : \pi^*(F)|_{V'} \to T_Y|_{V'} \) by \(M = \theta_{Z,Z} \), in the notation of Definition B.32. Then \(z_{top}(x', 0, f) = w_{top}(x', f) \) with \(\Lambda_1 = \theta_{W,W} \) and \(k_{1, top}(x') = (x', 0) \) imply that \(k_{1, top}'(M) = \Lambda_{1, top}' \). Define \(\Lambda_2' : F|_{U'} \to T_Y|_{U'} \) by \(\Lambda_2' = k_{2, top}'(M) \). Then Definition B.36(v) says that \(\Lambda_2' = \Lambda_1|_{U'} + O(s) \) on \(U' \).

This shows that we can construct \(\Lambda_2 : F \to T_Y \) with \(\Lambda_2 = \Lambda_1 + O(s) \) locally near each \(x \) in \(\mathfrak{s}^{-1}_{top}(0) \). The proof can now be completed in a similar way to part (f).
Proof of Theorem 3.17(h)

Let \(X, E, s, f, Y, F, G, t, \Lambda \) be as in Definition B.36(vi). By Proposition B.14(a) we may choose a connection \(\nabla \) on \(G \). Then \(\theta = f^*(\nabla t) \circ \Lambda : F \to f^*(G) \) is a vector bundle morphism as in [B.4.8] with \(\theta = f^*(dt) \circ \Lambda + O(s) \), so such \(\theta \) exist as we want. Uniqueness of \(\theta \) up to \(O(s) \) in the sense of Definition B.36(i) is immediate from Definition B.36(vi) and Theorem 3.17(a).

Proof of Theorem 3.17(i)

Suppose \(f, g : X \to Y \) are morphisms with \(g = f + O(s) \). Then by Definition B.36(iii) there exists a diagram (B.28) involving \(U, V, k_1, k_2 \) with \(s^{-1}(0) \subseteq U \subseteq X \) and a morphism \(v : V \to Y \) with \(v \circ k_1 = f|_U \) and \(v \circ k_2 = g|_U \). Then Definition B.32 gives \(\theta_{V, v} : E|_U \to T_fY|_U \) with \(g = f + \theta_{V, v} \circ s + O(s^2) \) on \(U \).

Let \(W \to X \) be the open submanifold with \(W_{\top} = X_{\top} \setminus s^{-1}(0) \). Then \(\{U, W\} \) is an open cover of \(X \). Choose a subordinate partition of unity \(\{\eta_U, \eta_W\} \) as in B.1.4, and define \(\Lambda = \eta_U \cdot \theta_{V, v} : E \to T_fY \). Then \(g = f + \Lambda \circ s + O(s^2) \) on \(X \), since near \(s^{-1}(0) \) in \(X_{\top} \) we have \(\Lambda = \theta_{V, v} \) with \(g = f + \theta_{V, v} \circ s + O(s^2) \), and the condition is local near \(s^{-1}(0) \) by Theorem 3.17(a).

Proof of Theorem 3.17(j)

Let \(f, g : X \to Y \) be morphisms in \(\operatorname{Man} \) with \(g = f + O(s) \), and \(\Lambda, \tilde{\Lambda} : E \to T_fY \) be morphisms with \(g = f + \Lambda s + O(s^2) \) as in Definition B.36(vii) and \(\tilde{\Lambda} = \Lambda + O(s) \) as in Definition B.36(ii). We must prove that \(g = f + \tilde{\Lambda} s + O(s^2) \).

So fix \(x \in s^{-1}(0) \), and let \(\tilde{X} \) be a small open neighbourhood of \(x \) in \(X \) on which \(\tilde{E} = E|_{\tilde{X}} \) is trivial, and identify \(\tilde{E} \cong \tilde{X} \times \mathbb{R}^n \). Write points of \(E_{\top} \) as \((x, z)\) for \(x \in \tilde{X}_{\top} \) and \(z \in \mathbb{R}^n \), and regard \(\tilde{s} = s|_{\tilde{X}} \) as a morphism \(\tilde{s} : \tilde{X} \to \mathbb{R}^n \).

By Definition B.36(vii) there is a commutative diagram

\[
\begin{array}{ccc}
U^1 & \xrightarrow{f} & V^1 \\
\downarrow k_1 & & \downarrow k_2 \\
\tilde{X} & \xrightarrow{\text{id}_{\tilde{X}} \times 0} & \tilde{E} = \tilde{X} \times \mathbb{R}^n \\
\downarrow \text{id}_{\tilde{X}} \times \tilde{s} & & \downarrow \text{id}_{\tilde{X}} \times \tilde{s} \\
X & \xrightarrow{g} & U^1
\end{array}
\]

(B.54)

with \(s_{\top}(0) \subseteq U_{\top} \) and \(\Lambda|_{U^1} = \theta_{V, v, 1} \), with morphisms \(\sim \to \) open submanifolds.

By Definition B.36(iii) there is a commutative diagram

\[
\begin{array}{ccc}
U^2 & \xrightarrow{k_1^2} & V^2 \\
\downarrow \text{id}_{\tilde{X}} \times 0 & & \downarrow \text{id}_{\tilde{X}} \times 0 \\
\tilde{E} = \tilde{X} \times \mathbb{R}^n & \xrightarrow{\tilde{s}} & \tilde{E} = \tilde{X} \times \mathbb{R}^n \\
\downarrow \text{id}_{\tilde{X}} \times \tilde{s} & & \downarrow \text{id}_{\tilde{X}} \times \tilde{s} \\
X & \xrightarrow{g} & U^2
\end{array}
\]

with \(s_{\top}(0) \subseteq U_{\top} \) and a morphism \(\tilde{M} : \tilde{s}^*(\tilde{E})|_{U^2} \to T_f\circ \tilde{Y}|_{U^2} \) with \(k_1^2 \circ \tilde{M} = \Lambda|_{U^2} \) and \(k_2^2 \circ \tilde{M} = \tilde{\Lambda}|_{U^2} \).

290
By Proposition \[\text{[B.33]}\] there exists a diagram

\[
\begin{array}{c}
\pi^*(\mathcal{E})|_{V^2} = V^2 \times \mathbb{R}^n \\
\xymatrix{ 0 \ar[r] & V^2 \ar[d] & W^1 \ar[l] \ar[d] \\
 & Y, & f \circ \phi'
}
\end{array}
\]

with \(M = \theta_{V^1, w_1} \). Define \(V^3, V^4 \subset \mathcal{E} = \tilde{X} \times \mathbb{R}^n \) to be the open submanifolds and \(v^3 : V^3 \to Y, \ v^4 : V^4 \to Y \) the morphisms with

\[
\begin{align*}
V^3_{\text{top}} &= \{(x, z) \in \tilde{X}_{\text{top}} \times \mathbb{R}^n : (x, 0, z) \in W^1_{\text{top}} \}, \\
V^4_{\text{top}} &= \{(x, z) \in \tilde{X}_{\text{top}} \times \mathbb{R}^n : (x, s_{\text{top}}(x), z) \in W^1_{\text{top}} \}, \\
v^3_{\text{top}}(x, z) &= w^1_{\text{top}}(x, 0, z), \quad v^4_{\text{top}}(x, z) = w^1_{\text{top}}(x, s_{\text{top}}(x), z).
\end{align*}
\]

Then \(k^3_1(M) = \Lambda|_{U^2} \) and \(k^2_2(M) = \Lambda|_{U^2} \) give \(\Lambda|_{U^2} = \theta_{V^1, v^1}|_{U^2} \) and \(\Lambda|_{U^2} = \theta_{V^1, v^4}|_{U^2} \). Let \(U^3 \hookrightarrow \tilde{X} \) be the open submanifold with \(U^3 = U^1_{\text{top}} \cap U^2_{\text{top}} \). Then \(\theta_{V^1, v^1}|_{U^3} = \Lambda|_{U^3} = \theta_{V^1, v^3}|_{U^3} \). Therefore, extending Definition \[\text{[B.16]}\] and making \(X \) smaller if necessary, we can find an open submanifold \(W^2 \hookrightarrow \tilde{X} \times \mathbb{R}^n \times \mathbb{R}^n \)

\[
\begin{align*}
\text{with } U^3_{\text{top}} \times \{(0, 0)\} &\subseteq W^2_{\text{top}} \text{ and a morphism } w^2 : W^2 \to Y \text{ with } \\
w^2_{\text{top}}(x, z_1, 0) &= v^1_{\text{top}}(x, z_1), \\
w^2_{\text{top}}(x, 0, z_2) &= v^3_{\text{top}}(x, z_2), \\
\text{and } w^2_{\text{top}}(x, z_1, -z_1) &= f_{\text{top}}(x). \quad (B.57)
\end{align*}
\]

When \(n = 1 \) the existence of \(W^2, w^2 \) follows from \(\theta_{V^1, v^1}|_{U^3} = \theta_{V^1, v^3}|_{U^3} \) and Definition \[\text{[B.16]}\] where \(w^2_{\text{top}}(x, z_1, -z_1) = f_{\text{top}}(x) \) in \[\text{[B.57]}\] corresponds to \(v_{\text{top}}(x, s, -s) = f_{\text{top}}(x) \) in \[\text{[B.6]}\]. For \(n > 1 \), we split \(\theta_{V^1, v^1}|_{U^3}, \theta_{V^1, v^3}|_{U^3} \) into \(n \) components in \(\Gamma(\mathcal{F}Y|_{U^3}) \), each of which admits an extension to \(W^1 \hookrightarrow \tilde{X} \times \mathbb{R}^n \times \mathbb{R}^n \), \(w^i_1 : W^1_i \to Y \) as in \[\text{[B.57]}\] for \(i = 1, \ldots, n \), and then we use Assumption \[\text{[3.7(a)]}\] repeatedly to construct \(W^2, w^2 \) in a similar way to the proof in Definition \[\text{[B.18]}\]

choosing \(w_{\text{top}} \) to satisfy \[\text{[B.9]}\].

Next we apply Assumption \[\text{[3.7(a)]}\] with \(k = 3 \) to choose open \(Z \hookrightarrow \tilde{X} \times (\mathbb{R}^n)^3 \)

\[
\begin{align*}
\varepsilon_{\text{top}}(0) \times \{(0, 0, 0)\} &\subseteq Z_{\text{top}} \text{ and a morphism } z : Z \to Y \text{ with } \\
z_{\text{top}}(x, z_1, z_2, 0) &= f_{\text{top}}(x), \\
z_{\text{top}}(x, z_1, 0, z_3) &= w^1_{\text{top}}(x, z_1, z_3), \\
\text{and } z_{\text{top}}(x, 0, z_2, z_3) &= w^2_{\text{top}}(x, z_2, z_3 - z_2).
\end{align*}
\]

(B.58)

Here pairs of equations in \[\text{[B.54]}\]–\[\text{[B.57]}\] give the same values on intersections

\[
z_{\text{top}}(x, z_1, 0, 0) = f_{\text{top}}(x), \quad z_{\text{top}}(x, 0, z_2) = f_{\text{top}}(x), \quad z_{\text{top}}(x, 0, 0, z_3) = v^3_{\text{top}}(x, z_3),
\]

by \[\text{[B.54]}\]–\[\text{[B.57]}\], so Assumption \[\text{[3.7(a)]}\] applies.

Define \(U^4 \hookrightarrow X, \ V^5 \hookrightarrow X \times \mathbb{R}^n, \ W^3 \hookrightarrow X \times \mathbb{R}^n \times \mathbb{R}^n \) to be the open
submanifolds and \(v^5 : V^5 \to Y, w^3 : W^3 \to Y\) the morphisms with

\[
U_{top}^4 = \{x \in X_{top} : (x, s_{top}(x), 0, 0) \in Z_{top}, (x, 0, s_{top}(x), s_{top}(x)) \in Z_{top}\},
\]
\[
V_{top}^5 = \{(x, z_1) \in X_{top} \times \mathbb{R}^n : (x, s_{top}(x) - z_1, z_1, z_1) \in Z_{top}\},
\]
\[
W_{top}^3 = \{(x, z_1, z_2) \in X_{top} \times \mathbb{R}^n : (x, s_{top}(x) - z_1, z_1, z_1 + z_2) \in Z_{top}\},
\]
\[
v_{top}^5(x, z_1) = z_{top}(x, s_{top}(x) - z_1, z_1, z_1),
\]
\[
w_{top}^3(x, z_1, z_2) = z_{top}(x, s_{top}(x) - z_1, z_1, z_1 + z_2).
\]

Then \(s_{top}(0) \subseteq U_{top}^4\). From (B.56), (B.58) and (B.59) we see that

\[
w_{top}^3(x, z_1) = v_{top}^5(x, z_1), \quad w_{top}^3(x, 0, z_2) = v_{top}^4(x, z_2), \quad w_{top}^3(x, z_1, -z_1) = f_{top}(x).
\]

Hence combining Definitions B.16, B.32 shows that \(\theta_{V^5, v^5} = \theta_{V^4, v^4}|_{U^4}\). Now

\[
v_{top}^5(x, \delta_{top}(x)) = z_{top}(x, 0, \delta_{top}(x), \delta_{top}(x)) = w_{top}^2(x, \delta_{top}(x), 0) = v_{top}^1(x, \delta_{top}(x)) = g_{top}(x)
\]

for \(x \in U_{top}^4\) by (B.54), (B.57), (B.58), and (B.59). Thus Definition B.36(vii) with \(U^4, V^5, v^5\) in (B.29) shows that \(g|_{U^4} = f|_{U^4} - \theta_{V^5, v^5} \circ s + O(s^2)\). But from above \(\tilde{\Lambda}|_{U^2} = \theta_{V^4, v^4}\) and \(\tilde{\Lambda}|_{U^4} = \theta_{V^5, v^5}|_{U^4}\). Therefore \(g|_{U^4} = f|_{U^4} - \tilde{\Lambda}|_{U^4} \circ s + O(s^2)\) on \(U^4\). Since \(\tilde{\Lambda} \in U_{top}^4\) and this holds for all \(x \in s^{-1}(0)\), Theorem 3.17(a) implies that \(g = f - \tilde{\Lambda} \circ s + O(s^2)\) on \(X\), proving part (j).

Proof of Theorem 3.17(k)

Let \(f, g : X \to Y\) be morphisms in \(\mathsf{Man}\) with \(g = f + O(s)\), and \(\Lambda : E \to T_f Y\) be a morphism with \(g = f + \Lambda \circ s + O(s^2)\). Theorem 3.17(g) gives \(\bar{\Lambda} : F \to T_f Y\) with \(\bar{\Lambda} = \Lambda + O(s)\) as in Definition B.36(v), where \(\bar{\Lambda}\) is unique up to \(O(s)\). We must show that \(f = g + (-\bar{\Lambda}) \circ s + O(s^2)\).

By Definition B.36(vii) there is a commutative diagram (B.29) involving \(U, V, k_1, k_2, v\), with \(s_{top}(0) \subseteq U_{top}\) and \(\Lambda|_U = \theta_{V, v}\). Define \(V', V'' \to E\) to be the open submanifolds and \(v' : V' \to Y, v'' : V'' \to Y\) the morphisms with

\[
V_{top}' = \{(x, e) \in E_{top} : (x, s_{top}(x) + e) \in V_{top}\},
\]
\[
V_{top}'' = \{(x, e) \in E_{top} : (x, s_{top}(x) - e) \in V_{top}\},
\]
\[
v_{top}'(x, e) = v_{top}(x, s_{top}(x) + e), \quad v_{top}''(x, e) = v_{top}(x, s_{top}(x) - e).
\]

Then (B.29) implies that \(\theta_{E, top}(U_{top}) \subseteq V_{top}', V_{top}''\) and \(v_{top}'(x, 0) = v_{top}''(x, 0) = g_{top}(x)\) for \(x \in U_{top}\). Hence Definition B.32 defines morphisms

\[
\theta_{V', v'} : E|_{U} \to T_g Y|_{U}, \quad \theta_{V'', v''} : E|_{U} \to T_g Y|_{U}.
\]

Since (B.60) gives \(v_{top}'(x, e) = v_{top}(x, -e)\) for all \((x, e) \in V_{top}'\) we see from (B.4.2) that \(\theta_{V', v'} = -\theta_{V'', v''}\). For \(x \in U_{top}\) we have \(v_{top}''(x, s_{top}(x)) = v_{top}(x, 0) = g_{top}(x)\).
Writing $\pi : V \to X$ for the projection we have a vector bundle $\pi^*(E) \to V$. Write points of $\pi^*(E)$ as (x, e_1, e_2) where $\pi_{\text{top}} : \pi^*(E)_{\text{top}} \to V_{\text{top}}$ maps $(x, e_1, e_2) \mapsto (x, e_1)$. Define $W \hookrightarrow \pi^*(E)$ to be the open sub manifold and $w : W \to Y$ the morphism with

$$W_{\text{top}} = \{(x, e_1, e_2) \in \pi^*(E)_{\text{top}} : (x, e_1 + e_2) \in V_{\text{top}}\},$$

$$w_{\text{top}}(x, e_1, e_2) = v_{\text{top}}(x, e_1 + e_2).$$

Since $0_{\pi^*(E)_{\text{top}}}(V_{\text{top}}) \subseteq W_{\text{top}}$ with $w_{\text{top}}(x, e_1, 0) = v_{\text{top}}(x, e_1)$ for $(x, e_1) \in V_{\text{top}}$.

Definition 3.32 defines a morphism $\theta_{V, w^s} : \pi^*(E) \to \mathcal{F}_Y$. As $k_1(x) = (x, 0)$ and $w_{\text{top}}(x, e_1, e_2) = v_{\text{top}}(x, e)$ we have $k_1^s(\theta_{V, w^s}) = \theta_{V, w^s}$. Since $k_2(x) = (x, s_{\text{top}}(x))$ and $w_{\text{top}}(x, s_{\text{top}}(x), e) = v_{\text{top}}(x, e)$ we have $k_2^s(\theta_{V, w^s}) = \theta_{V, w^s}$. Thus $\theta_{V_{\text{top}}, w^s} = \theta_{V_{\text{top}}, w^s}$. Hence $w_{\text{top}} = v_{\text{top}}(x, e_1 + e_2)$.

We now have morphisms $\Lambda_{[U], \theta_{V_{\text{top}}}} : E_{[U]} \to \mathcal{T}_Y$ and $\Lambda_{[U], \theta_{V_{\text{top}}}} : E_{[U]} \to \mathcal{T}_Y$ with $\Lambda_{[U]} = \theta_{V_{\text{top}}, w^s}$ and $\Lambda_{[U]} = \theta_{V_{\text{top}}, w^s} + O(s)$ as in Definition 3.36(v). Thus uniqueness up to $O(s)$ in Theorem 3.17(g) shows that $\Lambda_{[U]} = \theta_{V_{\text{top}}, w^s}$ as in Definition 3.36(ii). Also $\theta_{V_{\text{top}}, w^s} = -\theta_{V_{\text{top}}, w^s}$, so $\theta_{V_{\text{top}}, w^s} = -\Lambda_{[U]} + O(s)$, and $f_{[U]} = g_{[U]} + \theta_{V_{\text{top}}, w^s} \circ s + O(s^2)$. Therefore Theorem 3.17(i) shows that $f_{[U]} = g_{[U]} + (-\Lambda_{[U]}) \circ s + O(s^2)$. Since $s_{\text{top}}(0) \subseteq U_{\text{top}}$, Theorem 3.17(a) now yields $f = g + (-\Lambda) \circ s + O(s^2)$, as we have to prove.

Proof of Theorem 3.17(i)

Let $f, g, h : X \to Y$ be morphisms in \mathbf{Man} with $g = f + O(s)$, $h = g + O(s)$ and $\Lambda_1 : E \to \mathcal{T}_Y$, $\Lambda_2 : E \to \mathcal{T}_Y$ be morphisms with $g = f + \Lambda_1 \circ s + O(s^2)$ and $h = g + \Lambda_2 \circ s + O(s^2)$. Theorem 3.17(g) gives $\Lambda_2 : E \to \mathcal{T}_Y$ with $\Lambda_2 = \Lambda_2 + O(s)$ as in Definition 3.36(v), unique up to $O(s)$. We must show that $h = f + (\Lambda_1 + \Lambda_2) \circ s + O(s^2)$.

Suppose first that $E \to X$ is trivial, and identify $E \cong X \times \mathbb{R}^n$. Write points of E_{top} as (x, z) for $x \in X_{\text{top}}$ and $z \in \mathbb{R}^n$, and regard s as a morphism $X \to \mathbb{R}^n$. By Definition 3.36(vii) there are commutative diagrams

![Diagram](B.61)

![Diagram](B.62)
with \(s_{\text{top}}^{-1}(0) \subseteq U_{\text{top}}^1 \cap U_{\text{top}}^2 \) and \(\Lambda_1|_{U_{\text{top}}} = \theta_{V^1,v^1}, \Lambda_2|_{U_{\text{top}}} = \theta_{V^2,v^2} \).

Apply Assumption B.37(a) with \(k = 2 \) to choose open \(W^1 \hookrightarrow X \times \mathbb{R}^n \times \mathbb{R}^n \) with \(s_{\text{top}}^{-1}(0) \times \{0,0\} \subseteq W^1 \) and a morphism \(w^1 : W^1 \to Y \) with

\[
w_{\text{top}}^1(x, z_1, 0) = v_{\text{top}}^1(x, z_1 + s_{\text{top}}(x)), \quad w_{\text{top}}^1(x, 0, z_2) = v_{\text{top}}^2(x, z_2). \tag{B.63}\]

Both equations have \(w_{\text{top}}^1(x, 0, 0) = g_{\text{top}}(x) \) by B.61, B.62, so Assumption 3.7(a) applies. Define open submanifolds \(U_{\text{top}}^3 \hookrightarrow X \times V^3 \times V^5 \hookrightarrow X \times \mathbb{R}^n \times \mathbb{R}^n \), \(W_{\text{top}}^2 \hookrightarrow X \times \mathbb{R}^n \times \mathbb{R}^n \) and morphisms \(v^3 : V^3 \to Y, v^4 : V^4 \to Y, v^5 : V^5 \to Y, w^2 : W^2 \to Y, k^3_1 : U_{\text{top}}^3 \to V^3 \) with

\[
\begin{align*}
U_{\text{top}}^3 &= \{ x \in U_{\text{top}}^1 \cap U_{\text{top}}^2 : (x, 0, 0), (x, -s_{\text{top}}(x), 0), (x, 0, s_{\text{top}}(x)) \in W_{\text{top}}^1 \}, \\
V_{\text{top}}^3 &= \{ (x, z) \in X_{\text{top}} \times \mathbb{R}^n : (x, -s_{\text{top}}(x), z) \in W_{\text{top}}^1 \}, \\
V_{\text{top}}^4 &= \{ (x, z) \in X_{\text{top}} \times \mathbb{R}^n : (x, z - s_{\text{top}}(x), z) \in W_{\text{top}}^1 \}, \\
V_{\text{top}}^5 &= \{ (x, z) \in X_{\text{top}} \times \mathbb{R}^n : (x, z - s_{\text{top}}(x), 0) \in W_{\text{top}}^1 \}, \\
W_{\text{top}}^2 &= \{ (x, z_1, z_2) \in X_{\text{top}} \times \mathbb{R}^n \times \mathbb{R}^n : (x, z_1 - s_{\text{top}}(x), z_2) \in W_{\text{top}}^1 \}, \\
v_{\text{top}}^3(x, z) &= w_{\text{top}}^1(x, -s_{\text{top}}(x), z), \\
v_{\text{top}}^4(x, z) &= w_{\text{top}}^1(x, z - s_{\text{top}}(x), z), \\
v_{\text{top}}^5(x, z) &= w_{\text{top}}^1(x, z - s_{\text{top}}(x), 0), \\
k_{\text{top}}^3(x, z_1, z_2) &= w_{\text{top}}^1(x, z_1 - s_{\text{top}}(x), z_2), \\
k_{\text{top}}^3(x, 0, z_2) &= w_{\text{top}}^1(x, 0, z_2).
\end{align*}
\]

Then (B.61)–(B.64) imply that

\[
v_{\text{top}}^3(x, 0, s_{\text{top}}(x)) = v_{\text{top}}^2(x, 0, s_{\text{top}}(x)) = h_{\text{top}}(x)
\]

by B.62–B.64. Thus \(h|_{U_{\text{top}}}^3 = f|_{U_{\text{top}}}^3 + \theta_{V^1,v^1} \circ s + O(s^2) \) by Definition B.36(vii).

Consider \(W^2 \) as an open set in the vector bundle \(\pi : E \to X \) acting on points by \(\pi_{\text{top}} : (x, z_1, z_2) \mapsto (z, z_1) \). Then we have a morphism \(\theta_{W^2,w^2} : \pi^*(E)|_{V^3} \to T_Y \). Since \(k_{\text{top}}^3(x, z) = \) \(v_{\text{top}}^3(x, z) \) we have \(k_{\text{top}}^3(\theta_{W^2,w^2}) = \theta_{V^1,v^1}|_{U_{\text{top}}}^3 \), and as \(k_{\text{top}}^3(x, s_{\text{top}}(x)) \) with \(w_{\text{top}}^1(x, s_{\text{top}}(x), z_2) = v_{\text{top}}^3(x, z_2) \) we have \(k_{\text{top}}^3(\theta_{W^2,w^2}) = \theta_{V^2,v^2}|_{U_{\text{top}}}^3 \). Therefore \(\theta_{V^2,v^2} = \theta_{V^2,v^2}|_{U_{\text{top}}}^3 + O(s) \) by Definition B.36(ii).

We now have \(\tilde{\Lambda}_2|_{U_{\text{top}}}^3, \theta_{V^1,v^1} : E|_{U_{\text{top}}}^3 \to T_Y|_{U_{\text{top}}}^3 \) and \(\tilde{\Lambda}_2|_{U_{\text{top}}}^3, \theta_{V^2,v^2} : E|_{U_{\text{top}}}^3 \to T_Y|_{U_{\text{top}}}^3 \) with \(\tilde{\Lambda}_2|_{U_{\text{top}}}^3 = \theta_{V^2,v^2}|_{U_{\text{top}}}^3 \) and \(\tilde{\Lambda}_2|_{U_{\text{top}}}^3 = \Lambda_1|_{U_{\text{top}}}^3 + O(s) \), \(\theta_{V^1,v^1} = \theta_{V^1,v^1}|_{U_{\text{top}}}^3 \) and \(\theta_{V^2,v^2} = \theta_{V^2,v^2}|_{U_{\text{top}}}^3 + \tilde{\Lambda}_2|_{U_{\text{top}}}^3 + O(s) \). But \(h|_{U_{\text{top}}}^3 = f|_{U_{\text{top}}}^3 + \theta_{V^1,v^1} \circ s + O(s^2) \), so Theorem 3.17.1 shows that \(h|_{U_{\text{top}}}^3 = \)
Proof of Theorem 3.17(m)

Let \(f, g : X \to Y \) be morphisms with \(g = f + O(s) \), and \(\Lambda_1, \ldots, \Lambda_k : E \to \mathcal{T}_f Y \) be morphisms with \(g = f + \Lambda_1 \circ s + O(s^2) \) for \(a = 1, \ldots, k \), and \(\alpha_1, \ldots, \alpha_k \in C^\infty(X) \) with \(\alpha_1 + \cdots + \alpha_k = 1 \). We must show that \(g = f + (\alpha_1 \Lambda_1 + \cdots + \alpha_k \Lambda_k) \circ s + O(s^2) \).

Suppose first that \(E \to X \) is trivial, and identify \(E \cong X \times \mathbb{R}^n \). Write points of \(E_{\text{top}} \) as \((x, z)\) for \(x \in X_{\text{top}} \) and \(z \in \mathbb{R}^n \), and regard \(s \) as a morphism \(X \to \mathbb{R}^n \).

By Definition B.36(vii), for \(i = 1, \ldots, k \) there are commutative diagrams

\[
\begin{array}{c}
\xymatrix{ U^i \ar[r]^f \ar[d]_{\text{id}_X \times 0} & Y \ar[d]^g \\
X \ar[r]^{k_i} & V^i \ar[u]_{v_i} }
\end{array}
\]

with \(s_{\text{top}}^{-1}(0) \subseteq U^i_{\text{top}} \) and \(\Lambda_i|_{U^i} = \theta_{v_i^*, v_i} \) for \(i = 1, \ldots, k \).

Apply Assumption 3.7(b) to choose an open submanifold \(W \hookrightarrow X \times (\mathbb{R}^n)^k \) and a morphism \(w : W \to Y \) satisfying:

(i) \(s_{\text{top}}^{-1}(0) \times \{(0, \ldots, 0)\} \subseteq W_{\text{top}} \subseteq X_{\text{top}} \times (\mathbb{R}^n)^k \).

(ii) if \((x, (0, \ldots, 0, z_i, 0, \ldots, 0)) \in W_{\text{top}} \) with \(z_i \) in the \(i \)th copy of \(\mathbb{R}^n \) for \(i = 1, \ldots, k \) then \((x, z_i) \in V_{\text{top}}^i \) and \(v_i^* \circ w(x, z_i) = w(x, (0, \ldots, 0, z_i, 0, \ldots, 0)) \).

(iii) if \(x \in X_{\text{top}} \) and \(t_1, \ldots, t_k \in \mathbb{R} \) with \(\sum_{i=1}^k t_i = 1 \) and \((x, (t_1 \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x))) \in W_{\text{top}} \) then \(w(x, (t_1 \cdot s_{\text{top}}(x), \ldots, t_k \cdot s_{\text{top}}(x))) = g_{\text{top}}(x) \).

Actually we use Assumption 3.7(b) inductively 2\(k - 1 \) times to choose \(w_{\text{top}}(x, (z_1, \ldots, z_k)) \) with subsets of the \(z_1, \ldots, z_k \) zero, as for (a)–(d) in the proof of Theorem 3.17(a)(iii),(iv),(v),(vii) above.

Define open submanifolds \(U'' \hookrightarrow X \), \(V'' \hookrightarrow E = X \times \mathbb{R}^n \) and morphisms \(v' : V' \to Y \), \(k_1', k_2' : U'' \to V' \) with

\[
\begin{aligned}
U_{\text{top}}' &= \{x, (z_1, \ldots, z_k) \in X_{\text{top}} \times \mathbb{R}^n : (x, (\alpha_{1,\text{top}}(x)z_1, \ldots, \alpha_{k,\text{top}}(x)z_k) \in W_{\text{top}} \}, \\
U_{\text{top}}'' &= \{x \in X_{\text{top}} : (x, 0) \in V_{\text{top}}' \} \ni (s_{\text{top}}(x)) \in V_{\text{top}}', \\
v'_{\text{top}}(x, z) &= w_{\text{top}}(x, (\alpha_{1,\text{top}}(x)z_1, \ldots, \alpha_{k,\text{top}}(x)z_k)), \\
k_1'_{\text{top}}(x) &= (x, 0) \text{ and } k_2'_{\text{top}}(x) = (x, s_{\text{top}}(x)).
\end{aligned}
\]

Then \(v'_{\text{top}}(x, 0) = w_{\text{top}}(x, (0, \ldots, 0)) = v_{\text{top}}(x, 0) = f_{\text{top}}(x) \) for all \(x \in U_{\text{top}}'' \) by B.65–(B.66) and (ii), so Definition B.32 gives \(\theta_{v', v''} : E|_{U''} \to \mathcal{T}_f Y|_{U''} \). Also

\[
v_{\text{top}}'(x, s_{\text{top}}(x)) = w_{\text{top}}(x, (\alpha_{1,\text{top}}(x) \cdot s_{\text{top}}(x), \ldots, \alpha_{k,\text{top}}(x) \cdot s_{\text{top}}(x))) = g_{\text{top}}(x)
\]

295
for all \(x \in U'_{\text{top}} \), by (B.66). (iii) and \(\sum_{i=1}^{k} \alpha_i = 1 \), so \(g|_{U'} = f|_{U'} + \theta_{V',v'} \circ \kappa + O(s^2) \) by Definition (B.36)(vii). But comparing the definitions of \(W, w \) in (i)–(iii) above and the \(C^{\infty}(X) \)-module structure on \(\Gamma(T_fY) \) in (B.34.2) we see that

\[
\theta_{V',v'} = \sum_{i=1}^{k} \alpha_i \cdot \theta_{V_i',v_i'}|_{U'} = \sum_{i=1}^{k} \alpha_i \cdot \Lambda_i|_{U'}.
\]

Hence \(g|_{U'} = f|_{U'} + (\alpha_1 \cdot \Lambda_1 + \cdots + \alpha_k \cdot \Lambda_k)|_{U'} \circ s + O(s^2) \), so that \(g = f + (\alpha_1 \cdot \Lambda_1 + \cdots + \alpha_k \cdot \Lambda_k) \circ s + O(s^2) \) by Theorem 3.17(a), as \(s_{\text{top}}^{-1}(0) \subseteq U'_{\text{top}} \).

This proves Theorem 3.17(n) when \(E \to X \) is trivial. But \(g = f + (\alpha_1 \cdot \Lambda_1 + \cdots + \alpha_k \cdot \Lambda_k) \circ s + O(s^2) \) is a local condition by Theorem 3.17(a), so by restricting to an open cover of subsets of \(X \) on which \(E \) is trivial, part (n) follows.

Proofs of Theorem 3.17(n)–(v)

Theorem 3.17(n)–(v) all deal with pullbacks or pushforwards of the \(O(s), O(s^2) \) conditions in Definition (B.36) along a morphism \(f : X \to Y \) or \(g : Y \to Z \). Most of the proofs are pretty straightforward: we take a commutative diagram (etc.) that demonstrates the initial \(O(s) \) or \(O(s^2) \) condition, and pull back by \(f \) or compose with \(g \), to get the commutative diagram (etc.) that demonstrates the final \(O(s) \) or \(O(s^2) \) condition. The most complex proof is for the second part of (p), so we explain this here, and leave the others as an exercise for the reader.

Suppose that \(f : X \to Y \) and \(g, h : Y \to Z \) are morphisms in \(\text{Man} \), and \(F \to Y \) is a vector bundle, and \(t \in \Gamma^\infty(F) \), and \(\theta : E \to f^*(F) \) is a morphism with \(\theta \circ s = f^*(t) + O(s^2) \), and \(\Lambda : F \to \mathcal{T}_gZ \) is a morphism with \(h = g + \Lambda \circ t + O(t^2) \).

We must show that \(h \circ f = g \circ f + [f^*(\Lambda) \circ \theta] \circ s + O(s^2) \).

As \(\theta \circ s = f^*(t) + O(s^2) \), by Definition (B.36) there exists \(\beta : E \otimes E \to f^*(F) \) such that \(\theta \circ s = f^*(t) + \beta \circ (s \otimes s) \) in \(\Gamma^\infty(f^*(F)) \). Since \(h = g + \Lambda \circ t + O(t^2) \), by Definition (B.36)(vii) there exists a commutative diagram in \(\text{Man} \)

\[
\begin{array}{ccc}
U & \xrightarrow{\varphi} & Z \\
\downarrow{g} & & \downarrow{h} \\
Y & \xrightarrow{\kappa} & U \\
\end{array}
\]

with \(t^{-1}_{\text{top}}(0) \subseteq U_{\text{top}} \), and \(\Lambda|_{U} = \theta_{V,W} \).

Define open submanifolds \(U' \hookrightarrow X, V' \hookrightarrow E \) and morphisms \(\nu' : V' \to Z, k'_1, k'_2 : U' \to V' \) with

\[
\begin{align*}
V'_{\text{top}} &= \{ (x, e) \in E_{\text{top}} : (f_{\text{top}}(x), \theta_{\text{top}}|_x(e) - \beta_{\text{top}}|_x(s_{\text{top}}(x) \otimes e)) \in V_{\text{top}} \}, \\
U'_{\text{top}} &= \{ x \in X_{\text{top}} : (x, 0) \in V'_{\text{top}}, (x, s_{\text{top}}(x)) \in V'_{\text{top}} \}, \\
v'_{\text{top}}(x, e) &= \nu_{\text{top}}(f_{\text{top}}(x), \theta_{\text{top}}|_x(e) - \beta_{\text{top}}|_x(s_{\text{top}}(x) \otimes e)), \\
k'_{1,\text{top}}(x) &= (x, 0) \quad \text{and} \quad k'_{2,\text{top}}(x) = (x, s_{\text{top}}(x)).
\end{align*}
\]

(B.67)
Then $s_{\text{top}}^{-1}(0) \subseteq U'_{\text{top}}$, as $f_{\text{top}}(s_{\text{top}}^{-1}(0)) \subseteq t_{\text{top}}^{-1}(0)$, and for $x \in U'_{\text{top}}$ we have

$$v'_{\text{top}}(x,0) = v_{\text{top}}(f_{\text{top}}(x),0) = g_{\text{top}} \circ f_{\text{top}}(x) = (g \circ f)_{\text{top}}(x)$$

by (B.67)–(B.68), so Definition B.32 gives $\theta_{V',v'} : E|_{U'} \to T_{g \circ f} Y|_{U'}$. Also

$$v'_{\text{top}}(x,s_{\text{top}}(x)) = v_{\text{top}}(f_{\text{top}}(x),\theta_{\text{top}}|_{x}(s_{\text{top}}(x)) - \beta_{\text{top}}|_{x}(s_{\text{top}}(x) \otimes s_{\text{top}}(x)))$$

for $x \in U'_{\text{top}}$ by (B.67) and $\theta \circ s = f^*(t) + \beta \circ (s \otimes s)$, so $h \circ f|_{U'} = g \circ f|_{U'} + \theta_{V',v'} \circ s + O(s^2)$ by Definition B.36(vii).

Now from the definition of pullbacks $f^*(\theta)$ in §B.4.9 we deduce that

$$\theta_{V',v'} = f^*(\theta_{V,v}) \circ (\theta - \beta \cdot (s \otimes -))|_{U'} \circ f^*(\Lambda) \circ \theta|_{U'} - f^*(\Lambda) \circ [\beta \cdot (s \otimes -)]|_{U'},$$

as $\Lambda|_{U} = \theta_{V,v}$. Since the final term is linear in s we have $f^*(\Lambda) \circ \theta|_{U'} = \theta_{V',v'} + O(s^2)$. So $h \circ f|_{U'} = g \circ f|_{U'} + \theta_{V',v'} \circ s + O(s^2)$ and Theorem 3.17(j) imply that $h \circ f|_{U'} = g \circ f|_{U'} + f^*(\Lambda) \circ \theta|_{U'} \circ s + O(s^2)$, and then Theorem 3.17(a) and $s_{\text{top}}^{-1}(0) \subseteq U'_{\text{top}}$ give $h \circ f = g \circ f + f^*(\Lambda) \circ \theta \circ s + O(s^2)$. This proves the second part of Theorem 3.17(p).
References for volume I

Glossary of notation, all volumes

Page references are in the form volume-page number. So, for example, II-57 means page 57 of volume II.

\(\Gamma(E) \): global sections of a sheaf \(E \), I-230

\(\Gamma^\infty(E) \): vector space of smooth sections of a vector bundle \(E \), I-10, I-238

\(\Omega_x : K_{0x} \to N_{0x} \otimes i_x^*(K_X) \) isomorphism of canonical line bundles on boundary of an (m- or \(\mu \))-Kuranishi space \(X \), II-67, II-76

\(\Theta_{V,E,T,s,\psi} : (\det T^*V \otimes \det E)|_{s^{-1}(0)} \to \psi^{-1}(K_X) \) isomorphism of line bundles from a Kuranishi neighbourhood \((V,E,\Gamma,s,\psi)\) on a Kuranishi space \(X \), II-75

\(\Theta_{V,E,s,\psi} : (\det T^*V \otimes \det E)|_{s^{-1}(0)} \to \psi^{-1}(K_X) \) isomorphism of line bundles from an m-Kuranishi neighbourhood \((V,E,s,\psi)\) on an m-Kuranishi space \(X \), II-62

\(\Upsilon_{X,Y,Z} : K_W \to e^*(K_X) \otimes f^*(K_Y) \otimes (g \circ e)^*(K_Z)^* \) isomorphism of canonical bundles on \(w \)-transverse fibre product of (m-)Kuranishi spaces, II-96

\(\alpha_{g,f,e} : (g \circ f) \circ e \Rightarrow g \circ (f \circ e) \) coherence 2-morphism in weak 2-category, I-224

\(\beta_f : f \circ \text{id}_X \Rightarrow f \) coherence 2-morphism in weak 2-category, I-224

\(\delta^g_{w,h} : T_wZ \to O_wW \) connecting morphism in \(w \)-transverse fibre product of (m-)Kuranishi spaces, II-92, II-116

\(\gamma_f : \text{id}_Y \circ f \Rightarrow f \) coherence 2-morphism in weak 2-category, I-224

\(\gamma_f : N_{0x} \to (\partial f)^*(N_{0y}) \) isomorphism of normal line bundles of manifolds with corners, II-11

\(\nabla \): connection on vector bundle \(E \to X \) in \(\mathcal{M}an \), I-38, I-241

\(C(X) \): corners \(\bigsqcup_{k=0}^{\dim X} C_k(X) \) of a manifold with corners \(X \), I-8

\(C(X) \): corners \(\bigsqcup_{k=0}^{\infty} C_k(X) \) of an (m or \(\mu \))-Kuranishi space \(X \), I-91, I-124
\(\mathcal{C} : \text{Kur}^c \to \hat{\text{Kur}}^c \) corner 2-functor on Kuranishi spaces, \(\text{II-161} \)
\(\mathcal{C} : \text{Man}^c \to \hat{\text{Man}}^c \) corner functor on manifolds with corners, \(\text{I-9} \)
\(\mathcal{C} : \text{mKur}^c \to \hat{\text{mKur}}^c \) corner 2-functor on m-Kuranishi spaces, \(\text{I-91} \)
\(\mathcal{C} : \mu\text{Kur}^c \to \mu\hat{\text{Kur}}^c \) corner functor on \(\mu \)-Kuranishi spaces, \(\text{I-124} \)
\(\mathcal{C} : \hat{\text{Orb}}^c \to \hat{\text{Orb}}^c \) corner 2-functor on orbifolds with corners, \(\text{I-178} \)
\(C^\infty(X) \) \(\mathbb{R} \)-algebra of smooth functions \(X \to \mathbb{R} \) for a manifold \(X \), \(\text{I-10} \) \(\text{I-233} \)
\(\mathcal{C}_k(X) \) \(k \)-corners of an \(\text{m-} \text{or} \mu \)-Kuranishi space \(X \), \(\text{I-81} \) \(\text{I-123} \) \(\text{I-157} \)
\(\mathcal{C}_k(X) \) \(k \)-corners of an orbifold with corners \(X \), \(\text{I-178} \)
\(\mathcal{C}_k^\text{op} \) opposite category of category \(\mathcal{C} \), \(\text{I-221} \)
\(\mathcal{C}^\infty\text{Rings} \) category of \(\mathcal{C}^\infty \)-rings, \(\text{I-234} \)
\(\mathcal{C}^\infty\text{Sch}^{\text{aff}} \) category of affine \(\mathcal{C}^\infty \)-schemes, \(\text{I-37} \) \(\text{I-236} \)
\(d : \hat{\text{Kur}}^c_{\text{si}} \to \hat{\text{Kur}}^c_{\text{si}} \) boundary 2-functor on Kuranishi spaces, \(\text{II-161} \)
\(d : \text{Man}^c_{\text{si}} \to \text{Man}^c_{\text{si}} \) boundary functor on manifolds with corners, \(\text{I-9} \)
\(d : \text{mKur}^c_{\text{si}} \to \text{mKur}^c_{\text{si}} \) boundary 2-functor on m-Kuranishi spaces, \(\text{I-91} \)
\(d : \mu\text{Kur}^c_{\text{si}} \to \mu\text{Kur}^c_{\text{si}} \) boundary functor on \(\mu \)-Kuranishi spaces, \(\text{I-124} \)

\(\text{DerMan}_{\text{BN}} \) Borisov and Noel’s \(\infty \)-category of derived manifolds, \(\text{I-103} \)
\(\text{DerMan}_{\text{Spi}} \) Spivak’s \(\infty \)-category of derived manifolds, \(\text{I-109} \)
\(\text{det}(E^*) \) determinant of a complex of vector spaces or vector bundles, \(\text{II-52} \)
\(df : TX \to f^*(TY) \) derivative of a smooth map \(f : X \to Y \), \(\text{II-11} \)
\(bdf : bTX \to f^*(bTY) \) b-derivative of a smooth map \(f : X \to Y \) of manifolds with corners, \(\text{I-12} \)

306
dMan 2-category of d-manifolds, a kind of derived manifold, [I-103]
∂X boundary of an (m- or µ-)Kuranishi space X, [I-86, I-124, I-160, I-161]
∂X boundary of an orbifold with corners X, [I-178]

$f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}$ underlying continuous map of morphism $f : X \to Y$ in $\mathcal{M}an$, [I-31]

GKN 2-category of global Kuranishi neighbourhoods over $\mathcal{M}an$, [I-142]
GKN 2-category of global Kuranishi neighbourhoods over $\mathcal{M}an$, [I-142]

GKNc 2-category of global Kuranishi neighbourhoods over manifolds with corners $\mathcal{M}an^c$, [I-142]

GmKN category of global m-Kuranishi neighbourhoods over $\mathcal{M}an$, [I-111]
GmKN category of global m-Kuranishi neighbourhoods over $\mathcal{M}an$, [I-111]

GmKNc category of global m-Kuranishi neighbourhoods over manifolds with corners $\mathcal{M}an^c$, [I-111]

G$^\mu$KN category of global μ-Kuranishi neighbourhoods over $\mathcal{M}an$, [I-111]
G$^\mu$KN category of global μ-Kuranishi neighbourhoods over $\mathcal{M}an$, [I-111]

G$^\mu$KNc category of global μ-Kuranishi neighbourhoods over manifolds with corners $\mathcal{M}an^c$, [I-111]

$G_xf : G_xX \to G_yY$ morphism of isotropy groups from 1-morphism $f : X \to Y$ in $\mathcal{K}ur$, [I-168]

G_xX isotropy group of a Kuranishi space X at a point $x \in X$, [I-166]

G_xX isotropy group of an orbifold X at a point $x \in X$, [I-176]

$\text{Ho} (\mathcal{C})$ homotopy category of 2-category \mathcal{C}, [I-226]

$I_f^1 : \Pi_{\text{top}}^{-1}(T_Y) \to T_{\text{C}(f)}(Y)$ morphism of tangent sheaves in $\mathcal{M}an^c$, [I-269]

$I_X^1 : \Pi_k^{b}(bTX) \to bT(C_k(X))$ natural morphism of b-tangent bundles over a manifold with corners X, [I-12]

$i_X : \partial X \to X$ natural (1-)morphism of boundary of an (m- or μ-)Kuranishi space X, [I-86, I-124, I-160]

$I_X : bTX \to TX$ natural morphism of (b-)tangent bundles of a manifold with corners X, [I-11]

$K_f : f^*(K_Y) \to K_X$ isomorphism of canonical bundles from étale (1-)morphism of (m- or μ-)Kuranishi spaces $f : X \to Y$, [II-65]
2-category of Kuranishi neighbourhoods over manifolds Man, I-142

2-category of Kuranishi neighbourhoods over Man^c, I-142

2-category of Kuranishi neighbourhoods over manifolds with corners Man^c, I-142

2-category of Kuranishi neighbourhoods over $S \subseteq X$ in Man, I-142

2-category of Kuranishi neighbourhoods over $S \subseteq X$ in Man^c, I-142

2-category of Kuranishi spaces over classical manifolds Man, I-153

2-category of Kuranishi spaces over Man^c, I-153

2-category of Kuranishi spaces over $S \subseteq X$ in Man, I-153

2-category of Kuranishi spaces over $S \subseteq X$ in Man^c, I-153

2-category of Kuranishi spaces with a-corners, I-153

2-category of Kuranishi spaces with corners, I-153

2-category of Kuranishi spaces with corners over Man^c of mixed dimension, I-161

2-category of Kuranishi spaces with corners over Man^c of mixed dimension, and 1-morphisms which are P, I-161

2-category of Kuranishi spaces with corners, and b-normal 1-morphisms, I-154

2-category of Kuranishi spaces with corners, and interior 1-morphisms, I-154

2-category of Kuranishi spaces with corners, and simple 1-morphisms, I-154

2-category of Kuranishi spaces with corners over Man^c of mixed dimension, and simple 1-morphisms, I-161

2-category of Kuranishi spaces with corners, and strongly smooth 1-morphisms, I-154

2-category of Kuranishi spaces with corners, and strongly smooth b-normal 1-morphisms, I-154

2-category of Kuranishi spaces with corners, and strongly smooth interior 1-morphisms, I-154
Kur\textsubscript{we} 2-category of Kuranishi spaces with corners and weakly smooth 1-
morphisms, \[I-153\]

Kurc 2-category of Kuranishi spaces with corners associated to \(\tilde{\text{Man}}\), \[I-157\]

Kur\textsubscript{si} 2-category of Kuranishi spaces with corners associated to \(\tilde{\text{Man}}\), and simple 1-morphisms, \[I-157\]

Kur\textsubscript{ac} 2-category of Kuranishi spaces with corners and a-corners, \[I-153\]

Kur\textsubscript{bn} 2-category of Kuranishi spaces with corners and a-corners, and b-normal 1-
morphisms, \[I-155\]

Kur\textsubscript{in} 2-category of Kuranishi spaces with corners and a-corners, and interior 1-
morphisms, \[I-155\]

Kur\textsubscript{si} 2-category of Kuranishi spaces with corners and a-corners, and simple 1-
morphisms, \[I-155\]

Kur\textsubscript{st} 2-category of Kuranishi spaces with corners and a-corners, and strongly 1-
morphisms, \[I-155\]

Kur\textsubscript{st, bn} 2-category of Kuranishi spaces with corners and a-corners, and strongly 1-
morphisms, \[I-155\]

Kur\textsubscript{st, in} 2-category of Kuranishi spaces with corners and a-corners, and strongly 1-
morphisms, \[I-155\]

Kur\textsubscript{g} 2-category of Kuranishi spaces with g-corners, \[I-155\]

Kur\textsubscript{g, bn} 2-category of Kuranishi spaces with g-corners, and b-normal 1-morph-
isms, \[I-155\]

Kur\textsubscript{g, in} 2-category of Kuranishi spaces with g-corners, and interior 1-morph-
isms, \[I-155\]

Kurac 2-category of Kuranishi spaces with corners and a-corners, and simple 1-
morphisms, \[I-155\]

\(K_X\) canonical bundle of a ‘manifold’ \(X\) in \(\text{Man}\), \[II-10\]

\(K_X\) canonical bundle of an (m- or \(\mu\)-)Kuranishi space \(X\), \[II-62, II-74\]

\(bK_X\) b-canonical bundle of an (m- or \(\mu\)-)Kuranishi space with corners \(X\), \[II-66\]

\(\text{Man}\) category of classical manifolds, \[I-7\]

\(\tilde{\text{Man}}\) category of ‘manifolds’ satisfying Assumptions 3.1–3.7, \[I-31\]

\(\tilde{\text{Man}}\) another category of ‘manifolds’ satisfying Assumptions 3.1–3.7, \[I-46\]

\(\text{Man}^\text{ac}\) category of manifolds with a-corners, \[I-18\]
\[\text{Man}^{ac}_{bn} \] category of manifolds with a-corners and b-normal maps, I-18

\[\text{Man}^{ac}_{in} \] category of manifolds with a-corners and interior maps, I-18

\[\text{Man}^{ac}_{st} \] category of manifolds with a-corners and strongly a-smooth maps, I-18

\[\text{Man}^{ac}_{st, bn} \] category of manifolds with a-corners and strongly a-smooth b-normal maps, I-18

\[\text{Man}^{ac}_{st, in} \] category of manifolds with a-corners and strongly a-smooth interior maps, I-18

\[\text{Man}^b \] category of manifolds with boundary, I-7

\[\text{Man}^b_{in} \] category of manifolds with boundary and interior maps, I-7

\[\text{Man}^b_{si} \] category of manifolds with boundary and simple maps, I-7

\[\text{Man}^c \] category of manifolds with corners, I-5

\[\tilde{\text{Man}}^c \] category of ‘manifolds with corners’ of mixed dimension, I-5

\[\dot{\text{Man}}^c \] category of ‘manifolds with corners’ satisfying Assumption 3.22, I-47

\[\breve{\text{Man}}^c \] category of ‘manifolds with corners’ of mixed dimension, I-48

\[\breve{\text{Man}}^c_{bn} \] category of manifolds with corners and b-normal maps, I-5

\[\breve{\text{Man}}^c_{in} \] category of manifolds with corners and interior maps, I-5

\[\breve{\text{Man}}^c_{si} \] category of manifolds with corners and simple maps, I-5

\[\breve{\text{Man}}^c_{st} \] category of manifolds with corners and strongly smooth maps, I-5

\[\breve{\text{Man}}^c_{st, bn} \] category of manifolds with corners and strongly smooth b-normal maps, I-5

\[\breve{\text{Man}}^c_{st, in} \] category of manifolds with corners and strongly smooth interior maps, I-5

\[\breve{\text{Man}}^c_{we} \] category of manifolds with corners and weakly smooth maps, I-5

\[\breve{\text{Man}}^{ac} \] category of manifolds with corners and a-corners, I-18
(category of manifolds with corners and a-corners, and b-normal maps, \[\text{Man}^{\text{c,ac}, \text{bn}}\], I-19)
\(\text{Man}^{\text{c,ac}, \text{in}}\) category of manifolds with corners and a-corners, and interior maps, I-18
\(\text{Man}^{\text{c,ac}, \text{si}}\) category of manifolds with corners and a-corners, and simple maps, I-19
\(\text{Man}^{\text{c,ac}, \text{st}, \text{bn}}\) category of manifolds with corners and a-corners, and strongly a-smooth b-normal maps, I-19
\(\text{Man}^{\text{c,ac}, \text{st}, \text{in}}\) category of manifolds with corners and a-corners, and strongly a-smooth interior maps, I-19
\(\text{Man}^{\text{g, ac}}\) category of manifolds with g-corners, I-16
\(\text{mKN}\) category of \(m\)-Kuranishi neighbourhoods over manifolds \(\text{Man}\), I-59
\(\text{mKN}^{\text{p}}\) category of \(m\)-Kuranishi neighbourhoods over \(\hat{\text{Man}}\), I-58
\(\text{mKN}^{\text{c}}\) category of \(m\)-Kuranishi neighbourhoods over manifolds with corners \(\text{Man}^{\text{c}}\), I-59
\(\text{mKN}_{\text{s}}(X)\) 2-category of \(m\)-Kuranishi neighbourhoods over \(S \subseteq X\) in \(\text{Man}\), I-59
\(\text{mKN}_{\text{s}}^{\text{p}}(X)\) 2-category of \(m\)-Kuranishi neighbourhoods over \(S \subseteq X\) in \(\text{Man}^{\text{c}}\), I-59
\(\text{mKur}\) category of \(m\)-Kuranishi spaces over classical manifolds \(\text{Man}\), I-72
\(\text{mKur}^{\text{p}}\) category of \(m\)-Kuranishi spaces over \(\hat{\text{Man}}\), I-72
\(\text{mKur}^{\text{p}}\) 2-category of \(m\)-Kuranishi spaces over \(\hat{\text{Man}}\), and 1-morphisms with discrete property \(P\), I-78
\(\text{mKur}^{\text{ac}}\) 2-category of \(m\)-Kuranishi spaces with a-corners, I-72
\(\text{mKur}^{\text{ac}, \text{bn}}\) 2-category of \(m\)-Kuranishi spaces with a-corners, and b-normal 1-morphisms, I-79
\(\text{mKur}^{\text{ac}, \text{in}}\) 2-category of \(m\)-Kuranishi spaces with a-corners, and interior 1-morphisms, I-79
\(\mathfrak{M}_{\text{Kur}}^{ac} \) 2-category of \(m \)-Kuranishi spaces with a-corners, and simple 1-morphisms, I-79

\(\mathfrak{M}_{\text{Kur}}^{ac} \) 2-category of \(m \)-Kuranishi spaces with a-corners, and strongly a-smooth 1-morphisms, I-79

\(\mathfrak{M}_{\text{Kur}}^{st, bn} \) 2-category of \(m \)-Kuranishi spaces with a-corners, and strongly a-smooth b-normal 1-morphisms, I-79

\(\mathfrak{M}_{\text{Kur}}^{st, bn} \) 2-category of \(m \)-Kuranishi spaces with a-corners, and strongly a-smooth interior 1-morphisms, I-79

\(\mathfrak{M}_{\text{Kur}}^{b} \) 2-category of \(m \)-Kuranishi spaces with boundary, I-93

\(\mathfrak{M}_{\text{Kur}}^{b} \) 2-category of \(m \)-Kuranishi spaces with boundary, and interior 1-morphisms, I-93

\(\mathfrak{M}_{\text{Kur}}^{b} \) 2-category of \(m \)-Kuranishi spaces with boundary, and simple 1-morphisms, I-93

\(\mathfrak{M}_{\text{Kur}}^{c} \) 2-category of \(m \)-Kuranishi spaces with corners, I-72

\(\mathfrak{M}_{\text{Kur}}^{c} \) 2-category of \(m \)-Kuranishi spaces with corners over \(\hat{\text{Man}}^c \) of mixed dimension, I-87

\(\mathfrak{M}_{\text{Kur}}^{c} \) 2-category of \(m \)-Kuranishi spaces with corners over \(\hat{\text{Man}}^c \) of mixed dimension, and 1-morphisms which are \(P \), I-91

\(\mathfrak{M}_{\text{Kur}}^{bn} \) 2-category of \(m \)-Kuranishi spaces with corners, and b-normal 1-morphisms, I-78

\(\mathfrak{M}_{\text{Kur}}^{bn} \) 2-category of \(m \)-Kuranishi spaces with corners, and interior 1-morphisms, I-78

\(\mathfrak{M}_{\text{Kur}}^{bn} \) 2-category of \(m \)-Kuranishi spaces with corners, and simple 1-morphisms, I-78

\(\mathfrak{M}_{\text{Kur}}^{c} \) 2-category of \(m \)-Kuranishi spaces with corners over \(\hat{\text{Man}}^c \) of mixed dimension, and simple 1-morphisms, I-87

\(\mathfrak{M}_{\text{Kur}}^{st, bn} \) 2-category of \(m \)-Kuranishi spaces with corners, and strongly smooth b-normal 1-morphisms, I-78

\(\mathfrak{M}_{\text{Kur}}^{st, bn} \) 2-category of \(m \)-Kuranishi spaces with corners, and strongly smooth interior 1-morphisms, I-78

\(\mathfrak{M}_{\text{Kur}}^{st, we} \) 2-category of \(m \)-Kuranishi spaces with corners and weakly smooth 1-morphisms, I-72

312
\(\mathcal{mKur}^c \) 2-category of \(m \)-Kuranishi spaces with corners associated to \(\text{Man}^c \), \[I-81\]

\(\mathcal{mKur}^{c,ac} \) 2-category of \(m \)-Kuranishi spaces with corners and \(a \)-corners, \[I-72\]

\(\mathcal{mKur}^{c,ac}_{bn} \) 2-category of \(m \)-Kuranishi spaces with corners and \(a \)-corners, and \(b \)-normal 1-morphisms, \[I-79\]

\(\mathcal{mKur}^{c,ac}_{in} \) 2-category of \(m \)-Kuranishi spaces with corners and \(a \)-corners, and interior 1-morphisms, \[I-79\]

\(\mathcal{mKur}^{c,ac}_{si} \) 2-category of \(m \)-Kuranishi spaces with corners and \(a \)-corners, and simple 1-morphisms, \[I-79\]

\(\mathcal{mKur}^{c,ac}_{st} \) 2-category of \(m \)-Kuranishi spaces with corners and \(a \)-corners, and strongly \(a \)-smooth 1-morphisms, \[I-79\]

\(\mathcal{mKur}^{c,ac}_{st,bn} \) 2-category of \(m \)-Kuranishi spaces with corners and \(a \)-corners, and strongly \(a \)-smooth \(b \)-normal 1-morphisms, \[I-79\]

\(\mathcal{mKur}^{c,ac}_{st,in} \) 2-category of \(m \)-Kuranishi spaces with corners and \(a \)-corners, and strongly \(a \)-smooth interior 1-morphisms, \[I-79\]

\(\mathcal{mKur}^{c,ac}_{si} \) 2-category of \(m \)-Kuranishi spaces associated to \(\text{Man}^c \), and simple 1-morphisms, \[I-81\]

\(\mathcal{mKur}^{ac} \) 2-category of \(m \)-Kuranishi spaces with \(g \)-corners, \[I-72\]

\(\mathcal{mKur}^{ac}_{bn} \) 2-category of \(m \)-Kuranishi spaces with \(g \)-corners, and \(b \)-normal 1-morphisms, \[I-79\]

\(\mathcal{mKur}^{ac}_{in} \) 2-category of \(m \)-Kuranishi spaces with \(g \)-corners, and interior 1-morphisms, \[I-79\]

\(\mathcal{mKur}^{ac}_{si} \) 2-category of \(m \)-Kuranishi spaces with \(g \)-corners, and simple 1-morphisms, \[I-79\]

\(\mu \mathcal{KN} \) category of \(\mu \)-Kuranishi neighbourhoods over manifolds \(\text{Man} \), \[I-111\]

\(\mu \mathcal{KN} \) category of \(\mu \)-Kuranishi neighbourhoods over \(\text{Man} \), \[I-110\]

\(\mu \mathcal{KN}^c \) category of \(\mu \)-Kuranishi neighbourhoods over manifolds with corners \(\text{Man}^c \), \[I-111\]

\(\mu \mathcal{KN}^c_S(X) \) category of \(\mu \)-Kuranishi neighbourhoods over \(S \subseteq X \) in \(\text{Man}^c \), \[I-111\]

\(\mu \mathcal{KN}^c_S(X) \) category of \(\mu \)-Kuranishi neighbourhoods over \(S \subseteq X \) in \(\text{Man}^c \), \[I-110\]

\(\mu \mathcal{KN}^c_S(X) \) category of \(\mu \)-Kuranishi neighbourhoods over \(S \subseteq X \) in \(\text{Man}^c \), \[I-111\]

\(\mu \mathcal{Kur} \) category of \(\mu \)-Kuranishi spaces over classical manifolds \(\text{Man} \), \[I-117\]

\(\mu \mathcal{Kur} \) category of \(\mu \)-Kuranishi spaces over \(\text{Man} \), \[I-116\]
\(\mu \text{Kur}_P\) category of \(\mu\)-Kuranishi spaces over \(\hat{\text{Man}}\), and morphisms with discrete property \(P\), [I-119]

\(\mu \text{Kur}^{ac}\) category of \(\mu\)-Kuranishi spaces with a-corners, [I-117]

\(\mu \text{Kur}^{ac}_{bn}\) category of \(\mu\)-Kuranishi spaces with a-corners, and b-normal morphisms, [I-120]

\(\mu \text{Kur}^{ac}_{in}\) category of \(\mu\)-Kuranishi spaces with a-corners, and interior morphisms, [I-120]

\(\mu \text{Kur}^{ac}_{si}\) category of \(\mu\)-Kuranishi spaces with a-corners, and simple morphisms, [I-120]

\(\mu \text{Kur}^{ac}_{st, bn}\) category of \(\mu\)-Kuranishi spaces with a-corners, and strongly a-smooth b-normal morphisms, [I-120]

\(\mu \text{Kur}^{ac}_{st, in}\) category of \(\mu\)-Kuranishi spaces with a-corners, and strongly a-smooth interior morphisms, [I-120]

\(\mu \text{Kur}^{b}\) category of \(\mu\)-Kuranishi spaces with boundary, [I-125]

\(\mu \text{Kur}^{b}_{in}\) category of \(\mu\)-Kuranishi spaces with boundary, and interior morphisms, [I-125]

\(\mu \text{Kur}^{b}_{si}\) category of \(\mu\)-Kuranishi spaces with boundary, and simple morphisms, [I-125]

\(\mu \text{Kur}^{c}\) category of \(\mu\)-Kuranishi spaces with corners, [I-117]

\(\mu \text{Kur}^{c}_{bn}\) category of \(\mu\)-Kuranishi spaces with corners, and b-normal morphisms, [I-119]

\(\mu \text{Kur}^{c}_{in}\) category of \(\mu\)-Kuranishi spaces with corners, and interior morphisms, [I-119]

\(\mu \text{Kur}^{c}_{si}\) category of \(\mu\)-Kuranishi spaces with corners, and simple morphisms, [I-119]

\(\mu \text{Kur}^{c}_{si, bn}\) category of \(\mu\)-Kuranishi spaces with corners, and simple morphisms, [I-124]

\(\mu \text{Kur}^{c}_{si, in}\) category of \(\mu\)-Kuranishi spaces with corners, and simple morphisms, [I-124]
\(\mu \text{Kur}_{st}^c \) category of \(\mu \)-Kuranishi spaces with corners, and strongly smooth morphisms, I-119

\(\mu \text{Kur}_{st, bn}^c \) category of \(\mu \)-Kuranishi spaces with corners, and strongly smooth b-normal morphisms, I-119

\(\mu \text{Kur}_{st, in}^c \) category of \(\mu \)-Kuranishi spaces with corners, and strongly smooth interior morphisms, I-119

\(\mu \text{Kur}_{we}^c \) category of \(\mu \)-Kuranishi spaces with corners and weakly smooth morphisms, I-117

\(\mu \dot{\text{Kur}}^c \) category of \(\mu \)-Kuranishi spaces with corners associated to \(\dot{\text{Man}}^c \), I-122

\(\mu \text{Kur}_{si}^c \) category of \(\mu \)-Kuranishi spaces with corners and simple morphisms, I-122

\(\mu \text{Kur}_{st}^{c, ac} \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and strongly a-smooth morphisms, I-120

\(\mu \text{Kur}_{st, bn}^{c, ac} \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and strongly a-smooth b-normal morphisms, I-120

\(\mu \text{Kur}_{st, in}^{c, ac} \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and strongly a-smooth interior morphisms, I-120

\(\mu \text{Kur}_{si}^{c, ac} \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and simple morphisms, I-120

\(\mu \text{Kur}_{ac}^c \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, I-117

\(\mu \text{Kur}_{ac, bn}^c \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and b-normal morphisms, I-120

\(\mu \text{Kur}_{ac, in}^c \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and interior morphisms, I-120

\(\mu \text{Kur}_{ac, si}^c \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and simple morphisms, I-120

\(\mu \text{Kur}_{ac, st}^c \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and strongly a-smooth morphisms, I-120

\(\mu \text{Kur}_{ac, st, bn}^c \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and strongly a-smooth b-normal morphisms, I-120

\(\mu \text{Kur}_{ac, st, in}^c \) category of \(\mu \)-Kuranishi spaces with corners and a-corners, and strongly a-smooth interior morphisms, I-120

\(\dot{\text{M}}_x f : \dot{\text{M}}_x X \to \dot{\text{M}}_y Y \) monoid morphism for morphism \(f : X \to Y \) in \(\text{Man}_{in}^c \), I-14

\(\dot{\text{M}}_x X \) monoid at a point \(x \) in a manifold with corners \(X \), I-14
normal bundle of k-corners $C_k(X)$ in a manifold with corners X, \[N_{C_k}(X) \]

b-normal bundle of k-corners $C_k(X)$ in a manifold with corners X, \[bN_{C_k}(X) \]

normal line bundle of boundary ∂X in a manifold with corners X, \[N_{\partial X} \]

stratum normal map for manifolds with corners X, \[\tilde{N}_X f : \tilde{N}_x X \to \tilde{N}_y Y \]

stratum b-normal map for morphism $f : X \to Y$ in $\Man_{b\text{-in}}$, \[b\tilde{N}_X f : b\tilde{N}_x X \to b\tilde{N}_y Y \]

stratum normal space at x in a manifold with corners X, \[\tilde{N}_x X \]

stratum b-normal space at x in a manifold with corners X, \[b\tilde{N}_x X \]

Chen–Ruan’s category of orbifolds, \[\Orb_{\text{CR}} \]

2-category of orbifolds as stacks on site $\C^\infty\text{Sch}$, \[\Orb_{\text{Sta}}^\infty \]

2-category of orbifolds as examples of Kuranishi spaces, \[\Orb_{\text{Kur}} \]

Lerman’s 2-category of orbifolds, \[\Orb_{\text{Le}} \]

2-category of orbifolds as stacks on site \Man, \[\Orb_{\text{ManSta}} \]

Moerdijk–Pronk’s category of orbifolds, \[\Orb_{\text{MP}} \]

Pronk’s 2-category of orbifolds, \[\Orb_{\text{Pr}} \]

Satake–Thurston’s category of orbifolds, \[\Orb_{\text{ST}} \]

2-category of Kuranishi orbifolds associated to \Man, \[\tilde{\Orb} \]

2-category of orbifolds with a-corners, \[\Orb^{\text{ac}} \]

2-category of orbifolds with corners associated to \Man, \[\Orb^c \]

2-category of orbifolds with corners and a-corners, \[\Orb^{c,\text{ac}} \]

2-category of orbifolds with corners associated to \Man, and simple 1-morphisms, \[\tilde{\Orb}_{\text{g}}^c \]

2-category of orbifolds with corners, and weakly smooth 1-morphisms, \[\Orb_{\text{we}}^{c} \]

2-category of orbifolds with corners, \[\Orb_{\text{we}}^{c} \]

2-category of effective orbifolds with 1-morphisms surjective on isotropy groups, \[\Orb_{\text{sur}}^{\text{eff}} \]

2-category of orbifolds with g-corners, \[\Orb_{\text{g}}^{c} \]

structure sheaf of object X in \Man, \[\mathcal{O}_X \]
\(O_\times f : O_{\times}X \to O_{\times}Y \) obstruction map of (m- or \(\mu \)-)Kuranishi spaces, \(\text{II-22} \)

\(bO_\times f : bO_{\times}X \to bO_{\times}Y \) \(b \)-obstruction map of (m- or \(\mu \)-)Kuranishi spaces with corners, \(\text{II-19} \)

\(\tilde{O}_\times f : \tilde{O}_{\times}X \to \tilde{O}_{\times}Y \) stratum obstruction map of (m- or \(\mu \)-)Kuranishi spaces with corners, \(\text{II-19} \)

\(O_x X \) obstruction space at \(x \) of an (m- or \(\mu \)-)Kuranishi space \(X \), \(\text{II-16, II-21} \)

\(O_x^* X \) coobstruction space at \(x \) of an (m- or \(\mu \)-)Kuranishi space \(X \), \(\text{II-16, II-21} \)

\(bO_x X \) \(b \)-obstruction space at \(x \) of an (m- or \(\mu \)-)Kuranishi space with corners \(X \), \(\text{II-19} \)

\(\tilde{O}_x X \) stratum obstruction space at \(x \) of an (m- or \(\mu \)-)Kuranishi space with corners \(X \), \(\text{II-19} \)

\(\Phi_{ij} : (V_i, E_i, \Gamma_i, s_i, \psi_i) \to (V_j, E_j, \Gamma_j, s_j, \psi_j) \) 1-morphism or coordinate change of Kuranishi neighbourhoods, \(\text{I-136} \)

\(\Phi_{ij} : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) 1-morphism or coordinate change of m-Kuranishi neighbourhoods, \(\text{I-55} \)

\([\Phi_{ij}] : (V_i, E_i, s_i, \psi_i) \to (V_j, E_j, s_j, \psi_j) \) morphism or coordinate change of \(\mu \)-Kuranishi neighbourhoods, \(\text{I-109} \)

\(Q_\times f : Q_{\times}X \to Q_{\times}Y \) quasi-tangent map of morphism \(f : X \to Y \) in \(\textbf{Man} \), \(\text{II-13} \)

\(Q_x X \) quasi-tangent space at \(x \) of ‘manifold’ \(X \) in \(\textbf{Man} \), \(\text{II-13} \)

\(Q_x^* X \) quasi-tangent space at \(x \) of an (m- or \(\mu \)-)Kuranishi space \(X \), \(\text{II-24, II-28} \)

\(S^l(X) \) depth \(l \) stratum of a manifold with corners \(X \), \(\text{I-6} \)

\(Tf : TX \to TY \) derivative of a smooth map \(f : X \to Y \), \(\text{I-11} \)

\(bTf : bTX \to bTY \) \(b \)-derivative of an interior map \(f : X \to Y \) of manifolds with corners, \(\text{I-12} \)

\(T_{fY} \) tangent sheaf of morphism \(f : X \to Y \) in \(\textbf{Man} \), \(\text{I-38, I-251} \)

\(Tg : T_{fY} \to T_{gZ} \) morphism of tangent sheaves for \(f : X \to Y \), \(g : Y \to Z \) in \(\textbf{Man} \), \(\text{I-38, I-254} \)

\(\text{Top} \) category of topological spaces, \(\text{I-31} \)
TX tangent bundle of a manifold X, [I-11]

T^*X cotangent bundle of a manifold X, [I-11]

$\mathcal{T}X$ tangent sheaf of ‘manifold’ X in $\tilde{\text{Man}}$, [I-38] [I-251]

\mathcal{T}^*X cotangent sheaf of ‘manifold’ X in $\tilde{\text{Man}}$, [I-37] [I-240]

bTX b-tangent bundle of a manifold with corners X, [I-11]

bT^*X b-cotangent bundle of a manifold X, [I-11]

$T_xf : T_xX \to T_yY$ tangent map of morphism $f : X \to Y$ in $\tilde{\text{Man}}$, [II-4]

$bT_xf : bT_xX \to bT_yY$ b-tangent map of interior map $f : X \to Y$ in Man°, [I-12]

$\tilde{T}_xf : \tilde{T}_xX \to \tilde{T}_yY$ stratum tangent map of morphism $f : X \to Y$ of manifolds with corners, [II-4]

$T_xf : T_xX \to T_yY$ tangent map of (m- or μ-)Kuranishi spaces, [II-17] [II-21] [II-22]

$bT_xf : bT_xX \to bT_yY$ b-tangent map of (m- or μ-)Kuranishi spaces with corners, [II-19]

$\tilde{T}_xf : \tilde{T}_xX \to \tilde{T}_yY$ stratum tangent map of (m- or μ-)Kuranishi spaces with corners, [II-19]

T_xX tangent space at x of ‘manifold’ X in $\tilde{\text{Man}}$, [II-4]

T^*_xX cotangent space at x of ‘manifold’ X in $\tilde{\text{Man}}$, [II-4]

bT_xX b-tangent space at x of a manifold with corners X, [I-11]

\tilde{T}_xX stratum tangent space at x of a manifold with corners X, [II-4]

T_xX tangent space at x of an (m- or μ-)Kuranishi space X, [II-16] [II-21]

T^*_xX cotangent space at x of an (m- or μ-)Kuranishi space X, [II-16] [II-21]

bT_xX b-tangent space at x of an (m- or μ-)Kuranishi space with corners X, [II-19]

\tilde{T}_xX stratum tangent space at x of an (m- or μ-)Kuranishi space with corners X, [II-19]

(V,E,Γ,s) object in 2-category of global Kuranishi neighbourhoods $G\tilde{\text{KN}}$, [I-142]

(V,E,Γ,s,ψ) Kuranishi neighbourhood on topological space, [I-135]

(V,E,s,ψ) object in (2-)category of global m- or μ-Kuranishi neighbourhoods $G\text{mKN}$ or $G\mu\tilde{\text{KN}}$, [I-58] [I-110]

(V,E,s,ψ) m- or μ-Kuranishi neighbourhood on topological space, [I-55] [I-109]

X° interior of a manifold with corners X, [I-6]

X_{top} underlying topological space of object X in $\tilde{\text{Man}}$, [I-31]

318
Index to all volumes

Page references are in the form volume-page number.

(2, 1)-category, I-59, II-142, I-225
2-Cartesian square, I-74, I-229, II-90
2-category, I-223, I-229
 1-isomorphism in, I-225
 1-morphism, I-223
 2-functor, I-226, I-228
 weak 2-natural transformation, I-227
 2-morphism, I-223
 horizontal composition, I-224
 vertical composition, I-223
 canonical equivalence of objects, I-225
 discrete, I-35
 equivalence in, I-225
 canonical, I-97
 equivalence of, I-103, I-228
 fibre product in, I-228, I-229, II-75, II-102
 homotopy category, I-103, I-109
 strict, I-223
 weak, I-67, I-72, I-223
2-functor, I-103, I-226, I-228
 equivalence of, I-228
 strict, I-226
 weak, I-75, I-76, I-87, I-226
 weak 2-natural transformation, I-227
 modification, I-228
2-sheaf, I-2

adjoint functor, I-231
Axiom of Choice, I-67, I-68, I-149
 I-152, I-169, II-23
Axiom of Global Choice, I-67, I-68
 I-149, I-152, I-169, II-23

C^∞-algebraic geometry, I-36, I-128
 I-129, I-233, I-235
C^∞-ring, I-36, I-128
 C^∞-derivation, I-239, I-248
 definition, I-234
 derived, I-104
 module over, I-235
C^∞-scheme, I-128, I-129, I-235, II-5
 affine, I-37, I-236
 derived, I-103, I-105
C^∞-stack, I-235
Cartesian square, I-19, I-27, I-222
category, I-221, I-222
 coproduct, I-31
 definition, I-221
 equivalence of, I-122, I-222
 essentially small, I-221
 fibre product, I-31, I-222
 functor, see functor
 groupoid, I-221
 initial object, I-31
 opposite category, I-224
 product category, I-221
 small, I-221
 subcategory, I-221
 full, I-222
terminal object, I-31, I-74, I-94

class, in Set Theory, I-67, I-221, I-226

classical manifold, I-32, I-33
connecting morphism, II-27, II-59
contact homology, II-iv
coorientation, I-28, I-10
opposite, I-28, II-10
corner functor, I-8, I-10, I-17, I-19
I-48
cotangent sheaf, I-239, I-242

d-manifold, I-103, I-122
Derived Algebraic Geometry, I-vii
I-103, I-vi
Derived Differential Geometry, I-vii
I-103, I-105, I-viii

derived manifold, I-viii, I-103

derived orbifold, I-vi, I-viii, I-vi, I-viii

determinant, I-51, I-61

discrete property of morphisms in Man, I-44, I-45, I-77, I-80
I-119, I-120, I-153, I-355
I-263, I-264, I-3-3, I-13
I-79, I-87

d-fibre product, I-31, I-222
in a 2-category, I-228, I-229, I-122
III-78, III-162

transverse, I-19, I-27, I-78, I-87

d-fine sheaf, I-37, I-129

FOOO Kuranishi space, I-v, I-1, I-1
I-71, I-104, I-144, I-172, I-v

Fukaya category, I-iv, I-v, I-x, I-iv

functor, I-222

adjoint, I-239

contravariant, I-222
equivalence, I-222
faithful, I-222
full, I-222
natural isomorphism, I-222
natural transformation, I-12, I-222, II-5
II-20
global Kuranishi neighbourhood, I-142

w-transverse fibre product, II-109, II-114

global m-Kuranishi neighbourhood, I-55

submersion, II-88
transverse fibre product, II-88
II-109

w-submersion, II-88
w-transverse fibre product, II-88
II-88, II-134, II-138

Gromov–Witten invariant, I-vi, I-1

I-vi

groupoid, I-59, I-221

Hadamard’s Lemma, I-33
Hilsum–Skandalis morphism, I-144
I-171, I-173

∞-category, I-68, I-103, I-104

isotropy group, I-166, I-170, II-21, II-23, II-74, II-117, II-119

J-holomorphic curves
moduli space of, I-iv, I-vi, II-iv

Kuranishi atlas, by McDuff–Wehrheim, I-104, I-172
Kuranishi moduli problem, I-3
Kuranishi neighbourhood, I-135, I-145

1-morphism, I-136
2-category of, I-141
2-morphism, I-137

320
coordinate change, I-2, I-143, II-142
definition, I-135
footprint, I-136
global, I-142
w-transverse fibre product, I-109, I-113
Kuranishi section, I-135
minimal, II-37, II-42
obstruction bundle, I-135
on Kuranishi space, I-162–I-165
stack property of, I-145, I-148
Kuranishi space, I-135, I-187
1-morphism, I-147
étale, II-48–II-50
representable, I-169
2-category of, I-151
2-morphism, I-148
and m-Kuranishi spaces, I-155
Kuranishi space with a-corners, I-153
and orbifolds, I-176–I-177
canonical bundle, II-74–II-77
coboundary, II-21
coorientation, I-75
opposite, II-76
cotangent space, II-21
definition, I-146
discrete property of 1-morphisms, I-153, I-155
equivalence, I-165
étale 1-morphism, I-48, I-50
II-75
FOOO, see FOOO Kuranishi space
is an orbifold, I-176, II-42
II-14, II-115
isotropy group, I-166–I-170
II-21, II-23, II-48, II-115
definition, I-166
trivial, I-169
k-corner functor, I-161
Kuranishi neighbourhood on, I-162, I-165
1-morphism, I-163
coordinate change, I-162
II-169
definition, I-162
global, I-162
locally orientable, II-74, II-77
obstruction space, II-1–II-3
II-77
definition, II-21, II-23
orientation, II-74, II-77
II-75
opposite, II-75
product, I-152
orientation, II-77
quasi-tangent space, II-28
submersion, I-1, I-2, II-108, II-127
tangent space, I-1, II-3, II-77
II-1
transverse fibre product, II-37
II-127
virtual dimension, I-2, II-146
w-submersion, II-108, II-127
w-transverse fibre product, II-1
II-2
II-108, II-127
Kuranishi space with a-corners, I-153
b-normal 1-morphism, I-155
interior 1-morphism, I-155
simple 1-morphism, I-155
strongly a-smooth 1-morphism, I-155
Kuranishi space with corners, I-153
I-157, I-162, II-120, II-123
II-125, II-127
b-normal 1-morphism, I-154, I-162
boundary orientation on, II-77
boundary 2-functor, I-161
equivalence, I-162
interior 1-morphism, I-154
k-corners $C_k(X)$, I-157, I-161
s-submersion, II-120, II-123
II-125, II-127

321
s-transverse fibre product, II-120–II-123
sb-transverse fibre product, II-120–II-123
sc-transverse fibre product, II-125–II-127
simple 1-morphism, I-154
strongly smooth 1-morphism, I-154
t-transverse fibre product, II-120–II-123
ws-submersion, II-120–II-123
ws-transverse fibre product, II-120–II-123
wsh-transverse fibre product, II-125–II-127
wsc-transverse fibre product, II-125–II-127
wt-transverse fibre product, II-120–II-123
Kuranishi space with corners and
a-corners, I-153–I-155
b-normal 1-morphism, I-155
interior 1-morphism, I-155
simple 1-morphism, I-155
strongly a-smooth 1-morphism, I-155
Kuranishi space with g-corners, II-129
b-fibration, II-128–II-129
b-normal 1-morphism, I-155
b-transverse fibre product, II-123–II-125
c-fibration, II-123–II-125
c-transverse fibre product, II-123–II-125
interior 1-morphism, I-155
simple 1-morphism, I-155
wb-fibration, II-123–II-125
wb-transverse fibre product, II-123–II-125
wc-fibration, II-123–II-125
wc-transverse fibre product, II-123–II-125
Kuranishi structure, I-146

Lagrangian Floer cohomology, I-iv, II-v, II-ix
M-cohomology, I-vii, I-v, I-ix, II-vii, II-ix
and virtual cocycles, I-viii, I-ix
M-homology, I-vii, I-v, I-ix, II-vii, II-ix
and virtual cycles, I-viii, I-ix, II-viii
m-Kuranishi neighbourhood, I-54
1-morphism, I-55
2-category of, I-58
2-morphism, I-56
with a partition of unity,
I-106, I-108–I-109, I-113
linearity properties of, I-107–I-109
coordinate change, I-2, I-59–I-61
definition, I-55
footprint, I-55
global, I-55
submersion, II-88
transverse fibre product, II-88
w-submersion, II-88
w-transverse fibre product, II-88
Kuranishi section, I-55
minimal, II-29–II-37
obstruction bundle, I-55
on m-Kuranishi space, I-58
102
stack property of, I-60, I-61
I-64, I-68, I-95, I-96, I-99
strict isomorphism, II-30
m-Kuranishi space, I-54, I-105
1-morphism, I-155
étale, II-42, II-47, II-65
2-category of, I-61
II-73
2-morphism, I-63
and Kuranishi spaces, I-155
157
and μ-Kuranishi spaces, I-120
 I-122
 canonical bundle, II-62 II-74 II-76
 coobstruction space, II-16
 coorientation, II-66
 opposite, II-66
 corner 2-functor, I-87 II-93 I-161 II-162
 cotangent space, II-16
 definition, I-61
 discrete property of 1-morphisms, I-77 II-80 II-91
 equivalence, I-97 II-99 II-18 II-65
 étale 1-morphism, II-42 II-47
 fibre product, II-74
 is a classical manifold, II-74 II-75
 is a manifold, I-73 II-37 II-91
 k-corner functor, I-91
 m-Kuranishi neighbourhood on, I-93 II-102
 1-morphism of, I-95
 coordinate change, I-94
 definition, I-94
 global, I-94
 obstruction space, I-1 II-3 II-77
 orientation, I-66 II-74 II-96
 opposite, I-66
 oriented, II-66
 product, II-74 II-93 II-94
 quasi-tangent space, II-23 II-27
 submersion, I-1 II-2 II-87 II-106
 tangent space, II-1 II-3 II-77
 definition, II-15 II-20
 transverse fibre product, II-1 II-2 II-87 II-106
 virtual dimension, I-2 II-61
 w-submersion, II-87 II-106
 w-transverse fibre product, II-1 II-138 II-156
 orientation on, II-96 II-97
 m-Kuranishi space with a-corners, II-72 II-79
 b-normal 1-morphism, II-79
 interior 1-morphism, II-79
 simple 1-morphism, II-79
 strongly a-smooth 1-morphism, II-79
 m-Kuranishi space with boundary, II-93
 boundary, II-86
 orientation on, II-87 II-89 II-100
 b-normal 1-morphism, II-87 II-92
 k-corners $C_k(X)$, II-81 II-87
 m-Kuranishi neighbourhoods on, II-100 II-101
 boundaries and corners of, II-100 II-101
 of mixed dimension, II-87 II-100 II-102 II-105 II-106
 s-transverse fibre product, II-105 II-106
 sb-transverse fibre product, II-105 II-106
 sc-transverse fibre product, II-105 II-106
 simple 1-morphism, II-79
 strongly smooth 1-morphism, II-79
 t-transverse fibre product, II-100 II-102 II-105 II-106
 ws-submersion, II-100 II-102 II-105 II-106
ws-transverse fibre product, II-100–II-102
wsh-transverse fibre product, II-105–II-106
wsc-transverse fibre product, II-105–II-106
wt-transverse fibre product, II-100–II-102
m-Kuranishi space with corners and a-corners, I-72–I-79
interior 1-morphism, I-79
simple 1-morphism, I-79
strongly a-smooth 1-morphism, I-79
m-Kuranishi space with g-corners, I-72–I-79, II-102–II-104
b-fibration, II-102–II-104
b-normal 1-morphism, I-79
b-transverse fibre product, II-102–II-104
c-fibration, II-102–II-104
interior 1-morphism, I-79
simple 1-morphism, I-79
strongly a-smooth 1-morphism, I-79
manifold with boundary, I-3, II-29, II-47, II-53
manifold with corners, I-3, II-29, II-47
m-Kuranishi structure, I-61
manifold classical, I-32–I-33
manifold with a-corners, I-17–I-19
a-diffeomorphism, I-18
a-smooth map, I-18
b-normal map, I-18
b-tangent bundle, I-19
corner functor, I-19
interior map, I-18
simple map, I-18
strongly a-smooth map, I-18
manifold with analytic corners, see manifold with a-corners
atlas, I-5
b-cotangent bundle, I-11
b-map, I-6
b-normal map, I-5
b-tangent bundle, I-10–I-14, I-17
boundary, I-3–I-10, I-29, I-48
definition, I-7
b-tangent functor, I-3, I-10–I-14
b-cotangent bundle, I-11
b-tangent bundle, I-10–I-14
b-vector field, I-11
b-normal map, I-4, I-5
b-tangent bundle, I-10–I-14
b-normal map, I-4, I-5
b-tangent bundle, I-10–I-14
cotangent bundle, I-11
cotangent sheaf, I-239–I-242
definition, I-5
differential geometry in Man\(^{c}\), I-268–I-278, II-10–II-12
interior \(X^{\circ}\), I-6
interior map, I-4, I-5
k-corner functor, I-9, I-49
k-corners \(C_{k}(X)\), I-6–I-10
local boundary component, I-6
local \(k\)-corner component, I-6
manifold with faces, I-5–I-36
orientation, I-27–I-29, II-9–II-13
definition, I-28, II-10
opposite, I-28, II-10
orientation convention, II-28, I-13
quasi-tangent space, I-13–II-13
s-submersion, I-21–I-23, II-84–II-85, II-100–II-125
s-transverse fibre product, I-21–I-23, II-84–II-85, II-100–II-125
sb-transverse fibre product, I-20
transverse fibre product, I-25
I-27
I-80
I-87
I-104
II-126

sc-transverse fibre product, I-25
transverse fibre product, I-25
I-27
I-80
I-87
I-104
II-126

simple map, I-5
I-18
smooth map, I-4
I-5
strongly smooth map, I-4
I-5
I-21
I-23

submersion, I-19
I-27
I-78
I-87

t-transverse fibre product, I-23
I-27
I-84
I-85
I-100
I-126

connection, I-38
I-241
I-242
I-242
I-268

transverse fibre product, I-19
I-27
I-80
I-87

vector bundle, I-10
I-14
I-17
I-237

weakly smooth map, I-4
I-5

weakly smooth map, I-29
I-78
I-87

vector field, I-11

manifold with corners and a-corners,
I-18
I-19

manifold with faces, I-5
I-36

manifold with g-corners,
I-14
I-17
I-4
I-23
I-25
I-85
I-86
I-102

b-cotangent bundle, I-17
b-fibration, I-23
I-25
I-85
I-87
I-123

b-normal map, I-10

b-submersion, I-23
I-25
I-102
I-123

b-tangent bundle, I-17

b-transverse fibre product, I-23
I-25
I-85
I-86
I-102
I-123

c-transverse fibre product, I-23
I-25
I-85
I-86
I-102
I-125

definition, I-16
examples, I-16
I-17
interior X°, I-16
interior map, I-16
simple map, I-16
smooth map, I-16

manifold with generalized corners,
see manifold with g-corners
moduli space

of J-holomorphic curves, I-iv
I-v
I-vi
of J-holomorphic curves, I-ix
I-x

monoid, I-14
I-16
toric, I-15
weakly toric, I-14
rank, I-15

μ-Kuranishi neighbourhood, I-109
I-113
category of, I-109
I-111
coordinate change, I-2
I-111

minimal, I-37

morphism, I-109
on μ-Kuranishi space, I-125
I-127

sheaf property of, I-112
I-116
I-125

μ-Kuranishi space, I-106
I-134
and m-Kuranishi spaces, I-120
I-122

canonical bundle, I-74
coordinate change, I-18

corner functor, I-124
I-125
definition, I-114
discrete property of morphisms,
I-119
I-120
I-124

étale morphism, I-48

fibre product, I-106
I-109
I-110
I-107

k-corner functor, I-124
morphism, I-115
etale, I-18
µ-Kuranishi neighbourhood on, I-125
coordinate change, I-126
global, I-125
morphism of, I-126
obstruction space, I-1–I-3
7
definition, II-21
orientation, I-74
product, I-118
quasi-tangent space, II-1–II-7
definition, II-21
virtual dimension, I-2
µ-Kuranishi space with a-corners, I-117
b-normal morphism, I-120
interior morphism, I-120
strongly a-smooth morphism, I-120
µ-Kuranishi space with boundary, I-125
µ-Kuranishi space with corners, I-117
b-normal morphism, I-120
interior morphism, I-120
isomorphism, I-125
k-corners $C_k(X)$, I-123
strongly smooth morphism, I-119
µ-Kuranishi space with corners and a-corners, I-117
b-normal morphism, I-120
interior morphism, I-120
strongly a-smooth morphism, I-120
µ-Kuranishi space with g-corners, I-117
b-normal morphism, I-120
interior morphism, I-120
simple morphism, I-120
µ-Kuranishi structure, I-114
$O(s)$ and $O(s^2)$ notation, I-40
orbifold, I-35
orbifold with corners, I-178
and Kuranishi spaces, I-176
as a 2-category, I-171
orientations, I-174–I-176
is a manifold, I-176
Kuranishi orbifold, I-175
transverse fibre product, I-108–I-109
orientation, I-27
orientation convention, I-28
O_X-module, I-239
partition of unity, I-106–I-109
polyfold, I-vi
presheaf, I-106
sheafification, I-231
quantum cohomology, I-iv
relative tangent sheaf, I-38
sheaf, I-2
inverse image, I-231
of abelian groups, rings, etc., I-230
326
presheaf, I-230, I-240
sheafification, I-231, I-240
pullback, I-231, I-259, I-261
pushforward, I-231
soft, I-237
stalk, I-230
site, I-232
stack, I-103, I-232, II-48
Artin, I-232
Deligne–Mumford, I-232

topological stack, II-74, II-117
strict 2-functor, I-226
structure sheaf, I-235
subcategory, I-221
full, I-222
submersion, I-19, I-27
symplectic cohomology, I-iv, II-iv
Symplectic Field Theory, I-ix, II-iv

symplectic geometry, I-iv–I-vi, I-1, II-iv–II-vi

3-tangent sheaf, I-38, I-242, I-261, I-268, I-270
tangent space
in Man, II-3, II-14
topological space

Hausdorff, I-61
locally compact, I-61
locally second countable, I-61
metrizable, I-62
paracompact, I-61
second countable, I-61
transverse fibre product, I-19, I-27
orientation, I-29

vector bundle, I-10, I-37, I-237, I-239
connection, I-38, I-241, I-242
morphism, I-238
section, I-238
sheaf of sections, I-239

virtual chain, I-iv, II-iv
virtual class, I-iv, II-iv

weak 2-category, I-67, I-72
weak 2-functor, I-75, I-76, I-87, I-226
weak 2-natural transformation, I-227
modification, I-228