Singularities of special Lagrangian submanifolds and SYZ

Dominic Joyce
Oxford University

based on
math.DG/0310460
math.DG/0206016
math.DG/0011179

and references in these
Almost Calabi-Yau m-folds

An almost Calabi-Yau m-fold (M, J, g, Ω) is a compact complex m-fold (M, J) with a Kähler metric g with Kähler form ω, and a nonvanishing holomorphic $(m, 0)$-form Ω, the holomorphic volume form.

It is a Calabi-Yau m-fold if $|\Omega|^2 \equiv 2^m$. Then $\nabla \Omega = 0$ and g is Ricci-flat.
Special Lagrangian m-folds

Let (M, J, g, Ω) be an almost Calabi-Yau m-fold. Let N be a real m-submanifold of M. We call N special Lagrangian (SL) if $\omega|_N \equiv \text{Im} \Omega|_N \equiv 0$.

If (M, J, g, Ω) is a Calabi-Yau m-fold then $\text{Re} \Omega$ is a calibration on (M, g), and N is an SL m-fold iff it is calibrated with respect to $\text{Re} \Omega$.
Singular SL m-folds

General singularities of SL m-folds may be very bad, and difficult to study. Would like a class of singular SL m-folds with nice, well-behaved singularities to study in depth. Would like these to occur often in real life, i.e. of finite codimension in the space of all SL m-folds. SL m-folds with isolated conical singularities (ICS) are such a class.
Let N be an SL m-fold in M whose only singular points are x_1, \ldots, x_n. Near x_i we can identify M with $\mathbb{C}^m \cong T_{x_i}M$, and N near x_i approximates an SL m-fold in \mathbb{C}^m with singularity at 0. We say N has isolated conical singularities if near x_i it converges with order $O(r^{\mu_i})$ for $\mu_i > 1$ to an SL cone C_i in \mathbb{C}^m nonsingular except at 0.
SL m-folds with ICS have a rich theory.

• **Examples.** Many examples of SL cones C_i in \mathbb{C}^m have been constructed. Rudiments of classification for $m = 3$.

• **Regularity near** x_1, \ldots, x_n. Let $\iota: N \to M$ be the inclusion. If $\nabla^k \iota$ converges to C_i near x_i with order $O(r^{\mu_i-k})$ for $k = 0, 1$ then it does so for all $k \geq 0$.
• Deformation theory. The moduli space \mathcal{M}_N of deformations of N is locally homeomorphic to $\Phi^{-1}(0)$, for smooth $\Phi : \mathcal{I} \rightarrow \mathcal{O}$ and fin. dim. vector spaces \mathcal{I}, \mathcal{O} with \mathcal{I} the image of $H^1_{cs}(N', \mathbb{R})$ in $H^1(N', \mathbb{R})$, $N' = N \setminus \{x_1, \ldots, x_n\}$, and $\dim \mathcal{O} = \sum_{i=1}^{n} s\text{-ind}(C_i)$. Here $s\text{-ind}(C_i) \in \mathbb{N}$ is the stability index, the obstructions from C_i. If $s\text{-ind}(C_i) = 0$ for all i then \mathcal{M}_N is smooth.
• **Desingularization.** Let \(C \) be an SL cone in \(\mathbb{C}^m \), nonsingular except at 0. A nonsingular SL \(m \)-fold \(L \) in \(\mathbb{C}^m \) is **Asymptotically Conical (AC)** \(C \) if \(L \) converges to \(C \) at infinity with order \(O(r^\lambda) \) for \(\lambda < 1 \). Then \(tL \) converges to \(C \) as \(t \to 0_+ \). Thus, AC SL \(m \)-folds model how families of nonsingular SL \(m \)-folds develop singularities modelled on \(C \).
If \(N \) is an SL \(m \)-fold with ICS at \(x_1, \ldots, x_n \) and cones \(C_i \), and \(L_1, \ldots, L_n \) are AC SL \(m \)-folds in \(\mathbb{C}^m \) with cones \(C_i \), then under cohomological conditions we can construct a family of compact nonsingular SL \(m \)-folds \(\tilde{N}_t \) for small \(t > 0 \) converging to \(N \) as \(t \to 0 \), by gluing \(tL_i \) into \(N \) at \(x_i \), all \(i \).
Generic codimension of singularities. Given an SL m-fold N with ICS in M, we have moduli spaces M_N of deformations of N, and $M_{\tilde{N}}$ of desingularizations \tilde{N} of N made by gluing in L_1, \ldots, L_n. Here M_N is part of the boundary of $M_{\tilde{N}}$. If M is a generic almost C-Y m-fold then M_N, $M_{\tilde{N}}$ are smooth with known dimension.
Call $\dim \mathcal{M}_{\tilde{N}} - \dim \mathcal{M}_N$ the index of the singularities of N. It is the sum over i of $\text{s-ind}(C_i)$ and topological terms from L_i. In a dimension k family \mathcal{B} of SL_m-folds in a generic almost C-Y m-fold M, only singularities with index $\leq k$ occur. For SYZ in generic M we need to know about singularities with index 1,2,3 (and 4).

Problem: classify singularities with small index.
Mirror Symmetry

String theorists believe that each Calabi–Yau 3-fold X has a quantization, a SCFT. Calabi–Yau 3-folds X, \hat{X} are a mirror pair if their SCFT’s are related by a certain involution of SCFT structure. Then invariants of X, \hat{X} are related in surprising ways. For instance,

$$H^{1,1}(X) \cong H^{2,1}(\hat{X}) \text{ and } H^{2,1}(X) \cong H^{1,1}(\hat{X}).$$
Using physics, Strominger, Yau and Zaslow proposed:

The SYZ Conjecture. Let X, \hat{X} be mirror Calabi–Yau 3-folds. There is a compact 3-manifold B and continuous, surjective $f : X \to B$ and $\hat{f} : \hat{X} \to B$, such that

(i) For b in a dense $B_0 \subset B$, the fibres $f^{-1}(b), \hat{f}^{-1}(b)$ are dual SL 3-tori T^3 in X, \hat{X}.

(ii) For $b \notin B_0$, $f^{-1}(b)$ and $\hat{f}^{-1}(b)$ are singular SL 3-folds in X, \hat{X}.
We call f, \hat{f} special Lagrangian fibrations, and $\Delta = B \setminus B_0$ the discriminant. In (i), the nonsingular fibres T, \hat{T} of f, \hat{f} are supposed to be dual tori. Topologically, this means an isomorphism $H^1(T, \mathbb{Z}) \cong H_1(\hat{T}, \mathbb{Z})$. But the metrics on T, \hat{T} should really be dual as well. This only makes sense in the ‘large complex structure limit’, when the fibres are small and nearly flat.
U(1)-invariant SL 3-folds

Let U(1) act on \mathbb{C}^3 by
$$(z_1, z_2, z_3) \mapsto (e^{i\theta} z_1, e^{-i\theta} z_2, z_3).$$

Let N be a U(1)-invariant SL 3-fold. Then locally we can write N in the form
$$\{(z_1, z_2, z_3) : |z_1|^2 - |z_2|^2 = 2a, \quad z_1z_2 = v(x, y) + iy, \quad z_3 = x + iu(x, y), \quad x, y \in \mathbb{R}\},$$
where $u, v : \mathbb{R}^2 \to \mathbb{R}$ satisfy
$$u_x = v_y \quad \text{and} \quad v_x = -2(v^2 + y^2 + a^2)^{1/2} u_y. \quad (\ast)$$
Since $u_x = v_y$, there exists a potential function f with $u = f_y$ and $v = f_x$. The 2nd equation of (*) becomes

$$f_{xx} + 2(f_x^2 + y^2 + a^2)^{1/2} f_{yy} = 0.$$

This is a second-order quasi-linear equation. When $a \neq 0$ it is locally uniformly elliptic. When $a = 0$ it is non-uniformly elliptic, except at singular points $f_x = y = 0$.

16
Theorem A. Let S be a compact domain in \mathbb{R}^2 satisfying some convexity conditions. Let $\phi \in C^{3,\alpha}(\partial S)$. If $a \neq 0$ there exists a unique $f \in C^{3,\alpha}(S)$ satisfying (\dagger) with $f|_{\partial S} = \phi$. If $a = 0$ there exists a unique $f \in C^1(S)$ satisfying (\dagger) with weak second derivatives, with $f|_{\partial S} = \phi$. Also f depends continuously in $C^1(S)$ on a, ϕ.

17
Theorem A shows that the Dirichlet problem for \((+)\) is uniquely solvable in certain convex domains. The induced solutions \(u, v \in C^0(S)\) of \((*)\) yield U(1)-invariant SL 3-folds in \(\mathbb{C}^3\) satisfying certain boundary conditions over \(\partial S\). When \(a \neq 0\) these SL 3-folds are nonsingular, when \(a = 0\) they are singular when \(v = y = 0\).
Theorem B.
Let \(\phi, \phi' \in C^{3,\alpha}(\partial S) \), let \(a \in \mathbb{R} \) and let \(f, f' \in C^{3,\alpha}(S) \) or \(C^1(S) \) be the solutions of (\(+\)) from Theorem A with \(f|_{\partial S} = \phi, \ f'|_{\partial S} = \phi' \). Let \(u = f_y, \ v = f_x, \ u' = f'_y, \ v' = f'_x \). Suppose \(\phi - \phi' \) has \(k+1 \) local maxima and \(k+1 \) local minima on \(\partial S \). Then \((u, v) - (u', v')\) has no more than \(k \) zeroes in \(S^o \), counted with multiplicity.
Theorem C.
Let \(u, v \in C^0(S) \) be a singular solution of (\(\ast \)) with \(a = 0 \), e.g. from Theorem A. Then

- **either** \(u(x, y) \equiv u(x, -y) \) and \(v(x, y) \equiv -v(x, -y) \), so that \(u, v \) is singular on the \(x \)-axis,

- **or** the singularities \((x, 0) \) of \(u, v \) in \(S^\circ \) are isolated, with a multiplicity \(n > 0 \). Multiplicity \(n \) singularities occur in codimension \(n \) of boundary data.

All multiplicities occur.
Theorem D.
Let \(U \subset \mathbb{R}^3 \) be open, \(S \) as above, and \(\Phi : U \to C^{3,\alpha}(\partial S) \) continuous such that if \((a, b, c) \neq (a, b', c') \in U\) then \(\Phi(a, b, c) - \Phi(a, b', c') \) has 1 local maximum and 1 local minimum.
For \(\alpha = (a, b, c) \in U \), let \(f_{\alpha} \in C^1(S) \) be the solution of \((+)\) from Theorem A with \(f_{\alpha}|_{\partial S} = \Phi(\alpha) \).
Set $u_\alpha = (f_\alpha)_y$ and $v_\alpha = (f_\alpha)_x$. Let N_α be the SL 3-fold
\[
\{(z_1, z_2, z_3) : |z_1|^2 - |z_2|^2 = 2a, \\
z_1z_2 = v_\alpha(x, y) + iy, \\
z_3 = x + iu_\alpha(x, y), (x, y) \in S^\circ\}.
\]
Then there exists an open $V \subset \mathbb{C}^3$ and a continuous map $F : V \to U$ with $F^{-1}(\alpha) = N_\alpha$.
This is a $U(1)$-invariant special Lagrangian fibration. It can include singular fibres, of every multiplicity $n > 0$.
Example. Define $f : \mathbb{C}^3 \to \mathbb{R} \times \mathbb{C}$ by $f(z_1, z_2, z_3) = (a, b)$, where $2a = |z_1|^2 - |z_2|^2$ and

$$b = \begin{cases}
 z_3, & z_1 = z_2 = 0, \\
 z_3 + \bar{z}_1 \bar{z}_2 / |z_1|, & a \geq 0, \ z_1 \neq 0, \\
 z_3 + \bar{z}_1 \bar{z}_2 / |z_2|, & a < 0.
\end{cases}$$

Then f is a piecewise-smooth SL fibration of \mathbb{C}^3. It is not smooth on $|z_1| = |z_2|$. The fibres $f^{-1}(a, b)$ are T^2-cones when $a = 0$, and nonsingular $S^1 \times \mathbb{R}^2$ when $a \neq 0$.

23
Conclusions
Using these SL fibrations as local models, if X is a generic ACY 3-fold and $f : X \to B$ an SL fibration, I predict:

- f is only piecewise smooth.
- All fibres have finitely many singular points.
- Δ is codim 1 in B. Generic singularities are modelled on the example above.
- Some codim 2 singularities are also locally $U(1)$-invariant.
• Codim 3 singularities are not locally U(1)-invariant.
• If $f : X \to B$, $\hat{f} : \hat{X} \to B$ are dual SL fibrations of mirror C-Y 3-folds, the discriminants $\Delta, \hat{\Delta}$ have different topology near codim 3 singular fibres, so $\Delta \neq \hat{\Delta}$.

This contradicts some statements of the SYZ Conjecture. I regard SYZ as primarily a limiting statement about the ‘large complex structure limit’.